

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FELIPE MARTIN SAMPAIO

Energy-Efficient Memory Architecture Design and

Management for Parallel Video Coding

Thesis presented as partial requirement for the PhD

degree in Computer Science.

Advisor: Prof. Dr. Sergio Bampi

Co-advisor: Prof. Dr. Bruno Zatt

Porto Alegre

2018

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Sampaio, Felipe Martin

Energy-Efficient Memory Architecture Design and Management for

Parallel Video Coding / Felipe Martin Sampaio. -- 2018

169 f.

Orientador: Sergio Bampi.

Co-orientador: Bruno Zatt.

Tese (Doutorado) – Universidade Federal do Rio Grande do Sul,

Instituto de Informática, Programa de Pós-Graduação em Computação,

Porto Alegre, BR–RS, 2018.

1. High-Efficiency Video Coding. 2. On-Chip Memory Design. 3.

Memory Management. 4. Application-Specific Knowledge. 5. Parallel

Processing. I. Bampi, Sergio, orient. II. Zatt, Bruno, coorient. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitor: Profa. Jane Fraga Tutikian

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas

Coordenador do PPGC: Prof. João Luiz Dihl Comba

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

Trabalhar na área que escolhi para meu futuro, ter a oportunidade de contribuir com a

comunidade acadêmica por meio do meu esforço de pesquisa, participar de eventos científicos

onde pude conhecer os mais recentes avanços tecnológicos, experimentar a prática docente e

me encantar com a possibilidade de ser um agente do transformação por meio da educação.

Estes são apenas alguns dos benefícios, além de outros tantos, que tive durante o período em

que fui estudante de doutorado. Iniciei apenas como um estudante e terminei como professor e

amante da pesquisa científica. No primeiro ano (2013), quando trabalhei como bolsista em

tempo integral do PPGC, pude me focar e trabalhar para desenvolver toda a base fundamental

do que seria a minha Tese de doutorado. Quando fui nomeado e decidi por dividir minha jornada

de trabalho como professor do Instituto Federal do Rio Grande do Sul (IFRS), sabia que

conciliar ambas as atividades seria desafiador e que me exigiria muita dedicação. Durante o

segundo ano 2014), pude dar continuidade aos trabalhos, tendo a oportunidade apresentar um

dos meus artigos na conferência ISLPED, que ocorreu na cidade de San Diego, no estado da

Califórnia, Estados Unidos. Em 2015 desenvolvi outra parte importante do meu projeto de

doutorado, tendo a possibilidade de apresentá-lo no evento CASES, em Amsterdã. Ainda em

2016, ingressei no curso de Formação de Professores para os Componentes Curriculares da

Formação Profissional, o que me habilitou como Licenciado em Ciência da Computação e me

trouxe toda a base que faltava dentro das minhas atividades docentes. Diante deste breve relato

da minha trajetória, agradeço ao Programa de Pós-Graduação em Computação da UFRGS, além

do Campus Farroupilha do IFRS pela oportunidade de dar continuidade à minha formação.

Juntamente com o CEFET-RS (ensino médio e técnico) e a UFPel (graduação), estas

instituições me mostraram que é possível ter uma formação de qualidade por meio da dedicação

de todos os agentes envolvidos. Me sinto privilegiado de ser egresso e de poder divulgar tudo

de sensacional que estas instituições oferecem a seus estudantes. Me comprometo a utilizar

todos os ensinamentos adquiridos sempre em prol do desenvolvimento humano, social,

científico e tecnológico.

No início dos meus estudos no doutorado, ela era minha namorada e morava a mais de 1200

quilômetro de distância. Passados cinco anos, além de namorados nos tornamos (nesta ordem):

companheiros, pais de um gato, moradores de um mesmo lar, noivos, pais (ansiosos pelo

nascimento da nossa “pulga”), casados e pais efetivamente (agora com o nascimento daquela

que encanta nossas vida todos os dias). Minha vida mudou muito durante este período, sendo

que em todas ela esteve comigo. Amor, carinho, compreensão, companheirismo, esforço e

dedicação são algumas palavras que descrevem minha esposa, Meiri Brum Lima Sampaio,

fazendo com que eu tenha cada vez mais admiração por tudo que ela representa na minha vida.

Quando me mudei para Farroupilha, ela me deu a maior prova de amor e veio para perto de

mim; quando eu precisei trabalhar por finais de semana seguidos, ela segurou as pontas e me

deu total apoio; quando eu estava cansado e precisava desabafar, ela sempre esteve ali para

mim. Poderia, sem esforço algum, dedicar o espaço inteiro desta Tese para para agradecer cada

momento que vivemos juntos; e certamente não seria suficiente. Amo o que construímos, amo

o que vivemos, amo o que surgiu da gente e amo planejar e construir uma vida ao teu lado.

Obrigado por tudo!

Há um pouco mais que um ano e cinco meses, em um final de tarde em Caxias do Sul, caiu

a ficha de que, tudo o que eu tinha sentido até agora, não se comparava ao que estava por vir.

Deste então, vivo todos os dias na companhia da guriazinha mais cativante, cheia de energia e

com o sorriso mais lindo do mundo inteiro. Encontrar ela e receber um sorriso, um abraço

apertado e um grito de “papai” renova as energias e dá um sentido especial para a vida.

Trabalhar se torna mais fácil pois sei que a noite eu viverei isso. Espero que eu consiga oferecer

todas as oportunidades que eu tive para a formação da minha filha, e que ela possa escolher

com autonomia seu futuro, sempre com respeito às pessoas e às diferenças.

Olhando para trás e com uma visão do mundo um pouco melhor do que já tive, me sinto

privilegiado nas oportunidades que tive na vida. Não são todos (poucos, na verdade) que tem a

oportunidade de estudar sem se preocupar com mais nada. A possibilidade de acesso a escolas

de qualidade, o incentivo para me qualificar pessoal e profissionalmente, a certeza de que, se

algo desse errado, teria um apoio incondicional que me ajudaria a superar qualquer dificuldade.

Tudo isto foi proporcionado por duas pessoas maravilhosas que sempre se dedicaram muito e

que sempre me apoiaram em todas as minhas decisões. Atualmente passamos pouco tempo

juntos, mas a minha admiração por tudo que eles representam aumenta cada vez mais. Além de

tudo, nada melhor que o exemplo para que os filhos cresçam se espelhando em seus pais. Diante

disso, queria agradecer aos meus pais, Iracy e Toribio, e dizer que são meus ídolos para a vida:

quero ser para minha filha tudo o que eles sempre foram para mim. Amo vocês!

Durante os últimos anos pude também acompanhar a evolução pessoal e profissional

daquela que acompanhei crescer desde bebê. Foi muito especial poder participar da tua

trajetória, mesmo que nos últimos 7 anos a distância. Além de irmãos, somos dindo/afilhada e,

mais recentemente, comadre/compadre. Teu carinho por mim, pela Meiri e pela Aninha sempre

me mostrou a pessoa maravilhosa, correta e dedicada que és. Que tu sigas sempre nesse

caminho, sabendo que a qualquer momento pode contar com meu apoio!

Seguindo neste ritmo, gostaria de estender os agradecimentos a todos meus familiares que

sempre serviram de base e sempre estiveram juntos comigo. Tenho muita sorte de ter no meu

nome as marcas das famílias “Martin” e “Sampaio”: certamente o que eu me tornei hoje é o

reflexo de tudo que vivi ao lado de vocês. Além disso, também entrei de “gaiato” nas famílias

“Lima” e “Brum”, que mesmo não estando registradas no meu nome, tem um espaço especial

em meu coração. Obrigado a todos!

Agradeço também aos meus orientadores, os quais contribuíram de forma essencial durante

todo o período do doutorado. Ao professor Sergio Bampi, pela sempre disponibilidade em me

auxiliar no desenvolvimento dos trabalhos, nas submissões dos artigos e nos encaminhamentos

junto ao PPGC. Ao professor e colega Bruno Zatt, que aceitou o convite para ser co-orientador

do trabalho e que sempre esteve disposto a trabalhar e dar valiosas contribuições a tudo que

desenvolvi (mesmo com prazos extremamente exíguos…). Ao professor Muhammad Shafique,

pela colaboração que mantivemos durante todo o meu trabalho de doutorado. A qualidade do

trabalho não teria sido a mesma sem esta cooperação que tivemos durante estes anos. Me sinto

honrado de trabalhar com vocês!

A amizade e o companheirismo tiveram uma parte importante nesta trajetória recente.

Agradeço aos meus amigos que conviveram comigo mais diariamente como colegas de

apartamento (Daniel, Diego, Rafael, Mateus e Bruno - estes dois últimos por períodos curtos,

mas muito significativos). Aos meus amigos de fé, que me acompanham há mais de uma

década, muito obrigado pela parceria, pelo companheirismo e pela cumplicidade. Em especial,

alguns tiveram papéis especiais como padrinhos e madrinhas de casamento (Lucas, Carol, Igor,

Juliana, Cícero, Duda e Diego). Além disso, dois participaram quase que diariamente das nossas

vidas acompanhando e sendo referência no crescimento da Aninha: sei que os “didis” Lucas e

Carol serão exemplos importantes para nossa pequena. Estendo estes destaques a todos os que

me acompanharam (de maneira mais ou menos próxima) durante a minha trajetória: em especial

a todos que integram a grande família Fifonde!

Meus colegas de trabalho tiveram papel fundamental durante a trajetória, sejam pelas

discussões técnicas sobre assuntos relacionados ao trabalho, ou mesmo pelos momentos de

descontração que me proporcionaram. Principalmente durante o primeiro ano do doutorado,

quando estive em tempo integral no laboratório 215 do Instituto de Informática da UFRGS, tive

colegas que, além de parceiros nas atividades de pesquisa, foram amigos que compartilharam

comigo toda a rotina de morar em Porto Alegre (quase todos, assim como eu, se encontravam

longe das famílias). Dividimos os anseios, as perspectivas e os sonhos durante este período

importante de nossos processos formativos. Nos anos seguintes me inseri em um contexto

diferente: sendo professor do Campus Farroupilha do Instituto Federal do Rio Grande do Sul.

Em uma perspectiva diferente, pude conhecer e trabalhar junto com grandes profissionais da

educação, nos quais pude me inspirar para este novo papel que comecei a ter. Todos os

momentos de discussão, conversa e de descontração foram importantes para que eu pudesse

conciliar todas as minhas atividades. Muito obrigado a todos do Campus Farroupilha que

tiveram participação durante este processo!

Aproveito também para estender meu agradecimento a um grupo importante de colegas que

tive durante os últimos quatro anos: os alunos que passaram por mim nas diferentes atividades

de ensino, pesquisa e extensão que desenvolvi. Incrível chegar em sala de aula com a ideia de

que o aprendizado seria adquirido por eles e perceber que fui eu quem mais aprendi nesse

processo. Cada um com quem pude conviver certamente deixou sua marca na minha trajetória,

e agradeço a todos pela possibilidade de contribuir com sua formação.

ABSTRACT

This Thesis presents the design of an energy-efficient hybrid scratchpad video memory

architecture (called Hy-SVM) for parallel High-Efficiency Video Coding. Video coding stands

out as a high complex part in the video processing applications. HEVC standard brought

innovations that increase the memory requirements, mainly due to: (a) the novel coding

structures, which aggravates the computational complexity by providing a wider range of

possibilities to be analyzed; and (b) the high-level parallelism features provided by the Tiles

partitioning, which provides performance acceleration, but, at the same time, strongly adds hard

challenges to the memory infrastructure. The main bottleneck in terms of external memory

transmission and on-chip storage is the reference frames data: which consists of already coded

(and reconstructed) entire frames that must be stored and intensively accessed during the

encoding process of future frames. Due to the large volume of data required to represent the

reference frames, they are typically stored in the external memory (especially when high-

definition videos are targeted). The proposed Hy-SVM architecture is inserted in a video coding

system, which is based on multiple Tiles partitioning to enable parallel HEVC encoding: each

Tile is assigned to a specific processing unit. The key ideas of Hy-SVM include: application-

specific design and management; combined multiple levels of private and shared memories that

jointly exploit intra-Tile and inter-Tiles data reuse; scratchpad memories (SPMs) as energy-

efficient on-chip data storage; combined SRAM and STT-RAM hybrid memory (HyM) design.

We propose a design methodology for Hy-SVM that leverages application-specific properties

to properly define the HyMs parameters. In order to provide run-time adaptation (for both off-

and on-chip parts), Hy-SVM integrates a memory management layer composed of: (1) overlap

prediction, which has the goal of identifying the redundant memory access behavior by

analyzing monitored past frames encoding to increase inter-Tiles data reuse exploitation; (2)

memory pressure management, which aims on balancing the Tiles-accumulated memory

pressure targeting on improving external memory communication channel usage; and (3)

lifetime-aware data management scheme that alleviates STT-RAM SPMs of high bit-toggling

write accesses to increase the their cells lifetime, as well as to reduce overhead issues related to

poor write characteristics of STT-RAM. Application-specific knowledge was exploited by

inheriting HEVC properties and performing run-time monitoring of memory accesses. Such

information is used to properly design the on-chip video memories, as well as being utilized as

input parameters of the run-time memory management layer. Based on the run-time decisions

from the proposed Hy-SVM management strategies, Hy-SVM integrates distributed memory

access management units (MAMUs) to control the access dynamics of private and shared

SPMs. Additionally, adaptive power management units (APMUs) are able to strongly reduce

on-chip energy consumption due to an accurate overlap prediction.

The experimental results demonstrate Hy-SVM overall energy savings over related works

under various HEVC encoding scenarios. Compared to traditional data reuse schemes, like

Level-C, the combined intra-Tile and inter-Tiles data reuse provides 69%-79% of energy

reduction. Regarding related HEVC video memory architectures, the savings varied from 2.8%

(worst case) to 67% (best case). From the external memory perspective, Hy-SVM can improve

data reuse (by also exploiting inter-Tiles data redundancy), resulting on 11%-71%% of reduced

off-chip energy consumption. Additionally, our APMUs contribute by reducing on-chip energy

consumption of Hy-SVM by 56%-95%, for the evaluated HEVC scenarios. Thus, compared to

related works, Hy-SVM presents the lowest on-chip energy consumption. The memory pressure

management scheme can reduce the variations in the memory bandwidth by 37%-83% when

compared to the traditional raster scan processing for 4- and 16-core parallelized HEVC

encoder. The lifetime-aware data management significantly extends the STT-RAM lifetime,

achieving 0.83 of normalized lifetime (near to the optimal case). Moreover, the overhead of

implementing our management units insignificantly affects the performance and energy-

efficiency of Hy-SVM.

Keywords: High-Efficiency Video Coding. Parallel Processing. On-Chip Memory Design.

Memory Management. Application-Specific Knowledge. Emerging Memory Technologies and

Organizations.

Projeto e Gerenciamento de Arquitetura de Memória Energeticamente

Eficiente para Codificadores de Vídeo HEVC

RESUMO

Esta tese de doutorado apresenta o projeto de uma arquitetura de memória híbrida

energeticamente eficiente baseada em memórias do tipo scratchpad (Hy-SVM) para a

codificação paralela de vídeos segundo o padrão HEVC. A codificação de vídeo se destaca

como uma parte extremamente complexa nas aplicações de processamento de vídeo. O padrão

HEVC traz inovações que complicam fortemente os requerimentos de memória de tais

aplicações, principalmente devido a: (a) novas estruturas de codificação, as quais agravam a

complexidade computacional por proporcionarem muitas modos possíveis de codificação que

devem ser analisados; além do (b) suporte de alto nível à paralelização da codificação por meio

do particionamento das unidades de codificação em múltiplos Tiles, o qual provê a aceleração

da performance dos codificadores, porém, ao mesmo tempo, adiciona grandes desafios à

infraestrutura de memória. O principal gargalo em termos de comunicação com a memória

externa e de armazenamento interno (dentro do chip do codificador) é dados pelas informações

dos quadros de referência: que consiste em uma série de quadros completos já codificados (e

reconstruídos) que devem ser mantidos em memória e acessados de forma intensa durante o

processamento dos quadros futuros. Devido ao grande volume de dados que são necessários

para representar os quadros de referência, estes são tipicamente armazenados na memória

externa dos codificadores (principalmente quando vídeos de alta e ultra alta resolução são

processados). A arquitetura proposta Hy-SVM está inserida em um sistema de codificação

baseado no particionamento dos quadros do vídeo de entrada em múltiplos Tiles, de forma a

habilitar a codificação paralela das informações segundo o padrão HEVC: neste cenário, cada

Tile é assinalado para uma específica unidade de processamento do codificador HEVC, o qual

executa o processamento dos diferentes Tiles em paralelo. A ideias chave da arquitetura Hy-

SVM incluem: projeto e gerenciamento de memórias para a aplicação específica de codificação

de vídeo; uso de múltiplos níveis de memórias privadas e compartilhadas, com o objetivo de

explorar o reuso de dados intra-Tile e inter-Tiles de forma combinada; uso de memórias do tipo

scratchpad (SPMs) para o armazenamento interno da informações de forma eficiente em termos

de consumo de energia; projeto de memórias híbridas utilizando as tecnologias SRAM e STT-

RAM como base. Uma metodologia de projeto é proposta para a arquitetura Hy-SVM, a qual

aproveita propriedades específicas da aplicação para, de forma adequada, definir os parâmetros

de projeto das memórias híbridas. De forma a prover adaptação em tempo de execução (para

ambas as memórias on-chip e off-chip), a arquitetura Hy-SVM integra uma camada de

gerenciamento composta pelas seguintes estratégias: (1) predição do overlap (sobreposição de

acessos), o qual busca identificar o comportamento dos acessos redundantes entre diferentes

unidades de processamento do codificador HEVC a partir da análise dos acessos à memória das

codificações dos quadros passados do vídeo, com o objetivo de aumentar o potencial de

exploração do reuso de dados inter-Tiles; (2) gerenciamento dos acessos à memória externa,

responsável por balancear a vazão de dados com a memória acumulada entre as múltiplas

unidades de processamento do codificador HEVC paralelo, com o objetivo de melhorar o uso

do barramento de comunicação com a memória externa; e (3) gerenciamento de dados das

SPMs implementadas a partir de células de memória STT-RAM, o qual alivia estas células de

acessos de escrita com alta atividade de chaveamento dos bits armazenados, com o objetivo de

aumentar o tempo de vide destas células, bem como reduzir as penalidades relativas à

ineficiência dos acessos de escrita nas memórias STT-RAM. O conhecimento específico da

aplicação foi utilizado nas estratégias de gerenciamento em tempo de execução das seguintes

formas: explorando parâmetros da codificação HEVC e realizando monitorando em tempo real

dos acessos à memória realizados pelo codificador. Estas informações são utilizadas tanto pelas

técnicas de gerenciamento, quanto pelas metodologias de projeto das memórias. Baseadas nas

decisões tomadas pela camada de gerenciamento, a arquitetura Hy-SVM integra unidades de

gerenciamento de acessos à memória (memory access management units – MAMUs) para

controlar as dinâmicas de acesso das memórias SPM privadas e compartilhadas. Além disso,

unidades adaptativas de gerenciamento de potência (adaptive power management units –

APMUs) são capazes de reduzir o consumo de energia interno do chip do codificador a partir

das estimativas precisas de formação dos overlaps.

Os resultados obtidos por meio dos experimentos realizados demonstram economias de

consumo energético da arquitetura Hy-SVM, quando comparada a trabalhos relacionados, sob

diversos cenários de teste. Quando comparada a estratégias de reuso de dados tradicionais para

codificadores de vídeo, como o esquema Level-C, a exploração do reuso de dados combinado

nos níveis intra-Tile e inter-Tiles provê 69%-79% de redução de energia. Considerando as

arquiteturas de memória de vídeo com foco no padrão HEVC, os ganhos variaram desde 2,8%

(pior caso) até 67% (melhor caso). Da perspectiva do consumo de energia relacionado à

comunicação com a memória externa, a arquitetura Hy-SVM é capaz de melhorar o reuso de

dados (por explorar também o reuso de dados inter-Tiles), resultando em um consumo de

energia on-chip 11%-17% menor. Além disso, as APMUs contribuem para reduzir o consumo

de energia on-chip da arquitetura Hy-SVM em 56%-95%, para os cenários de teste analisados.

Desta forma, comparada aos trabalhos relacionados, a arquitetura Hy-SVM apresenta o menor

consumo energético on-chip. O gerenciamento da vazão da comunicação com a memória

externa é capaz de reduzir as variações de largura de banda em 37%-83%, quando comparado

à ordem tradicional de processamento, para cenários de teste com 4 e 16 Tiles sendo

processados em paralelo pelo codificador HEVC. O gerenciamento de dados pôde, de forma

significativa, estender o tempo de vida das células de memória STT-RAM, alcançando 0,83 de

tempo de vida normalizado (métrica adotada para comparação, ficando muito próximo do caso

ideal). Além disso, as sobrecargas causadas pela implementação das unidades de gerenciamento

não afetam de foram significativa a performance e a eficiência energética da arquitetura Hy-

SVM propostas por este trabalho.

Keywords: High-Efficiency Video Coding. Processamento Paralelo. Projeto de Memória On-

Chip. Gerenciamento de Memória. Conhecimento Específico da Aplicação. Tecnologias e

Organizações de Memórias Emergentes.

LIST OF FIGURES

Figure 1.1: Internet traffic predictions from Cisco experts: (a) overall internet traffic trend (2016 to

2021); (b) video traffic by segment at 2021; (c) internet traffic trend considering only mobile devices

(2016 to 2021); and (d) video traffic by resolution (Standard Definition (SD), High Definition (HD) and

Ultra-High Definition (UHD)). ... 20

Figure 1.2: HEVC vs. H.264/AVC encoder (a) encoding time and (b) memory accesses comparison. 21

Figure 1.3: Memory requirements analysis for HEVC encoding. .. 22

Figure 1.4: Overview of the novel contributions of this work. ... 25

Figure 2.1: Basic concepts of digital videos: YCbCr color space representation of digital videos; 4:2:0

color format (supported by HEVC); temporal and spatial redundancies exemplification. 29

Figure 2.2: Block diagram of a video encoder (following the hybrid compression model). 30

Figure 2.3: Block diagram of a video decoder (following the hybrid compression model). 32

Figure 2.4: HEVC block diagram for the encoding process (with integrated frame reconstruction loop).

 ... 34

Figure 2.5: Frames of a digital video grouped by GOPs. .. 36

Figure 2.6: (a) Example of adopted CU sizes within a CTU and (b) final CTU division for video frame

texture adaptation. ... 37

Figure 2.7: (a) Prediction dynamics for each CU within the coding tree and the generation of the PU;

(b) Partition sizes allowed by HEVC into PUs (intra PUs only support 2Nx2N and NxN partitions). 38

Figure 2.8: Rate-Distortion Optimization (RDO) algorithm. .. 39

Figure 2.9: Common prediction structures utilized by HEVC applications: Random Access and Low

Delay. .. 40

Figure 2.10: Basic concepts related to the Motion Estimation process. .. 41

Figure 2.11: A video frame divided into nine Tiles. ... 42

Figure 2.12: 4-Tile partitioning of a video frame and a typical processing assignment for a 4-core

manycore processor. .. 43

Figure 2.13: (a) Basic 1-bit SRAM cell organization and the (b) widely-adopted Full-CMOS 6T memory

cell. .. 43

Figure 2.14: Simplistic example of an N-bank SRAM memory array: each bank composed of a matrix

of 8x16 1-bit memory cells; each memory line stores a 16-bit memory word. 44

Figure 2.15: Spin-Transfer Torque RAM (STT-RAM) 1-bit cell (a) schematic view; (b) structural view;

and (c) resistance range distribution to represent logic bits “0” and “1”. ... 47

Figure 3.1: (a) Level-C and (b) Level-D schemes, which exploit intra-Tile data reuse in search window

and frame width levels, respectively. .. 51

Figure 4.1: Memory requirements analysis for HEVC encoding. ... 57

Figure 4.2: Memory pressure for (a) each processing unit; and (b) accumulated and average cases for

BasketballDrive. .. 58

Figure 4.3: Redundant memory access between different processing units (assuming 1 Tile per unit)

growing trend for increased parallelism. ... 59

Figure 4.4: Overlap concept: (a) Example of Tile partitioning and of the overlap formation; reference

frame access maps (b) for each Tile (specific for each processing unit) and (c) for the formed overlap.

 ... 60

Figure 4.5: Reference frame access maps for the overlap formation in uniforms partitioning with 2, 4, 8

and 16 Tiles. .. 60

Figure 4.6: Overlap formation and its involved parameters. ... 61

Figure 4.7: Block diagram of the proposed memory architectures, divided according to on-chip memory

design and memory management layer perspectives. ... 62

Figure 5.1: Block diagram of our hybrid scratchpad video memory architecture. 64

Figure 5.2: Adopted organization for the off- and on-chip memory parts. ... 66

Figure 5.3: (a) Overlapping statistics for increasing search window size for evaluations with

BasketballDrive test sequence; (b) motion delta distribution for several video sequences. 67

Figure 5.4: Motion knowledge extraction for SharedL2 SPM sizing. .. 67

Figure 5.5: Example of reference frame replacement (for BasketballDrive sequence) and its

corresponding bit-toggling activity map. .. 68

Figure 5.6: Design space exploration for joint (a) STT-RAM lifetime and (b) SRAM size optimization,

resulting on a (c) tradeoff analysis. ... 69

Figure 5.7: Bit-toggling activity of different bit positions. ... 69

Figure 5.8: Hybrid video memories (HyMs) physical organization for L2 level (PrivL2 and SharedL2).

 ... 71

Figure 6.1: Overlap identification (OvID) in (a) Random Access and (b) Low Delay HEVC encoder

configurations. ... 73

Figure 6.2: Example of overlap sizing variation for several temporal distances (DME factor). 74

Figure 6.3: Correlation between consecutive overlaps (RA5, RA3, RA1 and RA0), considering Random

Access prediction structure. .. 74

Figure 6.4: Overlap displacement correlation analysis. .. 75

Figure 6.5: (a) Graphical and (b) data representation of an overlap by our energy-efficient management

of Hy-SVM. ... 75

Figure 6.6: Flowchart of our run-time overlap prediction scheme and its relation to Hy-SVM on-chip

management units. ... 76

Figure 6.7: Example of overlap prediction operations when estimating RA2 (invert) and RA3

(downscale; using α=0.75) formations from RA1 monitored reference overlap. 78

Figure 6.8: Example of overlap prediction operations when estimating LD2 (invert) and LD3 (upscaling;

using α=1.25) formations from LD1 monitored reference overlap. .. 78

Figure 6.9: Video content and neighborhood correlation analysis for BasketballDrive test sequence. 80

Figure 6.10: Intra-Tile memory pressure analysis for BasketballDrive. ... 80

Figure 6.11: Example: spatial and temporal predictors selecting. ... 81

Figure 6.12: Example: CTU-groups division for re-scheduling. ... 82

Figure 6.13: Memory pressure statistics for each Tile of the BasketballDrive test sequence (PDFs and

histogram). .. 83

Figure 6.14: CTUs re-scheduling algorithm.. 84

Figure 6.15: Statistical correlation between BT and EBT metrics. ... 85

Figure 6.16: Data management for a HyM write operation. ... 86

Figure 6.17: Example of a HyM data assignment. .. 86

Figure 6.18: Block diagram of our on-chip Hy-SVM management units integrated to the run-time

overlap prediction and memory monitoring units. .. 87

Figure 6.19: Flow of our memory access management unit with read/write policy. 88

Figure 6.20: An example of data interaction for a 2-Tile HEVC encoding. ... 89

Figure 6.22: Adaptive on-chip power management of SPMs. .. 90

Figure 6.23: Flow of the proposed adaptive power management unit of SharedL2 SPMs. 91

Figure 6.24: Flow of the proposed adaptive power management unit of PrivL2 SPMs. 91

Figure 6.25: Example: adaptive power management of STT-RAM L2 SPMs for a 2-Tile scenario. ... 92

Figure 7.1: Off-chip energy savings of Hy-SVM compared to related works for increased number of

Tiles and for Random Access and Low Delay HEVC configurations (average scenario of tested video

sequences). .. 95

Figure 7.2: Off-chip energy savings of Hy-SVM compared to related works for increased search window

size and video resolution (average scenario of HD1080 and 2K tested video sequences and of Random

Access and Low Delay structures). ... 97

Figure 7.3: Off-chip energy savings of Hy-SVM compared to related works for different input video

sequences (fixed 192x192 search window size; average scenario between Random Access and Low

Delay structures). .. 98

Figure 7.4: On-chip energy consumption of Hy-SVM compared to related works. 99

Figure 7.5: On-chip static energy reduction due to adaptive power management of PrivL1 SPMs. . 100

Figure 7.6: Representation of the adopted methodology for overlap prediction accuracy evaluation. 102

Figure 7.7: Overlap prediction evaluation, in terms of: (1) prediction accuracy, (2) over-prediction

reduction and (3) under-prediction overhead. ... 103

Figure 7.8: Accumulated memory pressure results. .. 104

Figure 7.9: (a)(b) Memory pressure balancing analysis compared to original raster scan order and (c)

frame-by-frame analysis (for Random Access prediction structure). ... 105

Figure 7.10: Normalized STT-RAM cells lifetime. .. 105

Figure 7.11: Overhead analysis in terms of: (a) latency, (b) dynamic energy and (c) extra on-chip

memory size. ... 106

Figure B.1: Bit-toggling activity estimation and actual bit-toggling occurrences for all evaluated test

sequences... 122

Figure B.2: Bit-toggling activity per bit using the evaluated test sequences. 123

Figure B.3: Lifetime improvements and SRAM size for the BasketballDrive, BQTerrace and Cactus test

sequences... 123

Figure B.4: Lifetime improvements and SRAM size for the Kimono, Traffic and Kimono test sequences.

 ... 124

LIST OF TABLES

Table 2.1: SRAM vs. STT-RAM Technologies (DONG et al., 2008) .. 46

Table 3.1: Comparison of Data-Reuse Schemes ... 51

Table 3.2: Comparison of Energy-Efficient Video Memory Architectures Targeting HEVC 55

Table 6.1: Overlap Prediction Assignment for Random Access and Low Delay HEVC Encoder

Configurations ... 77

Table 7.1: Overall Energy Savings of Hy-SVM Compared to Related Works 101

Table A.1: Design-Decision Parameters of Hy-SVM Design Methodology 120

Table A.2: Sizing of Evaluated Hy-SVM Design Parameters (STT-RAM SPMs) 120

Table A.3: Sizing of Evaluated Hy-SVM Design Parameters (RAM SPMs) 120

Table A.4: Power and Latency Components of Evaluated STT-RAM SPMs 121

Table A.5: Power and Latency Components of Evaluated SRAM SPMs ... 121

LIST OF ABBREVIATIONS AND ACRONYMS

2K 2560x1600 pixels resolution

ACT Activation

AGU Address Generation Unit

APMU Adaptive Power Management Unit

AOM Alliance for Open Media

AVC Advanced Video Coding

B Block

BL Bitline

BLB Bitline-bar

BT Bit-toggling activity

BT_KEY Bit-toggling activity key

BU Basic Unit

CABAC Context-Adaptive Binary Arithmetic Coding

CMOS Complementary Metal-Oxide-Semiconductor

CTile Tile classification (H-, M- or L-Type)

CTU Coding Tree Unit

CU Coding Unit

CurrOv Current overlap

Dim Dimension

DME Motion Estimation distance factor

DM Data management

DMT Data Management Table

DPB Decoded Picture Buffer

DRAM Dynamic Random Access Memory

dSVM Distributed Scratchpad Video Memory

EBT Estimated bit-toggling activity

enHyV Energy-Efficient Hybrid Video Memory

FPS Frames per second

FQ Forward quantization

FT Forward transform

GOP Group of Pictures

H Height

HD High Definition

HD1080 1920x1080 pixels resolution

HEVC High-Efficiency Video Coding

HM HEVC Test Model

HyM Hybrid Memory

Hy-SVM Hybrid Scratchpad Video Memory

IQ Inverse quantization

IT Inverse transform

LD Low Delay

JVET Joint Video Exploration Team

JVT-VC Joint Video Team - Video Coding

LPDDR Low-Power Dual-Data Rate

LS Line size

LSB Least-significant bit

MAMU Memory Access Management Unit

MC Motion Compensation

ME Motion Estimation

MLC Multi-level cell

MOT Monitored Overlap Table

MPEG Moving Picture Experts Group

MRAM Magnetic Random Access Memory

MSB Most-significant bit

MSD Mean Squared Deviance

MSE Mean Squared Error

MTJ Magnetic Tunneling Junction

NB Number of banks

NG Number of CTU groups

NL Number of lines

NMOS N-Type Metal-Oxide-Semiconductor

NS Number of sectors

NVM Non-Volatile Memory

NVSim Non-Volatile Simulator

PCM Phase-Change Memory

PDF Probability Density Function

PMOS P-Type Metal-Oxide-Semiconductor

POT Predicted Overlap Table

PredOv Predicted overlap

PrivL1SPM Private L1 Level Scratchpad Memory

PrivL2SPM Private L2 Level Scratchpad Memory

PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

RA Random Access

RAP Random Access Point

RCDR Reference-Centered Data Reuse

RD Read

R-D Rate-Distortion

RDO Rate-Distortion Optimization

REF Refresh

RefOv Reference overlap

SA Sense amplifier

SAD Sum of Absolute Differences

SD Standard Definition

SharedL2 SPM Shared L2 Level Scratchpad Memory

SL Sourceline

SLC Single-Level Cell

SPM Scratchpad Memory

SRAM Static Random Access Memory

SS Sector size

STBY Standby

STT-RAM Spin-Transfer Torque Random Access Memory

SW Search Window

TB Tiles boundary

TH Threshold

TU Transform Unit

TZ Test Zone

UDH Ultra-High Definition

W Width

WA Write amplifier

WE Wakeup Energy

WL Wordline

WP Weighted prediction

WPP Wavefront Parallel Processing

WR Write

YCbCr Luminance, Blue and Red Chrominance

SUMMARY

1. INTRODUCTION .. 20

 Problems Definition ... 21

 Key Research Opportunities and Challenges .. 22

 Goals of this Thesis .. 23

 Main Contributions ... 24
 Energy-Efficient On-Chip Memory Design ... 25
 Energy-Efficient Memory Management Layer .. 25

 Text Organization .. 26

2. BACKGROUND ... 28

 Preliminaries on Video Coding ... 28
 Digital Video Characteristics ... 28
 Hybrid Video Compression Model .. 30
 Rate-Distortion (R-D) Cost .. 32
 Distortion Metrics .. 33

 High-Efficiency Video Coding .. 33
 HEVC Coding Structures ... 36

2.2.1.1. Video Partitioning Structures ... 36
2.2.1.2. Frame Partitioning Structures .. 36

 Rate-Distortion Optimization (RDO) ... 38
 Inter-Frame Prediction ... 39
 Parallelism Support of HEVC: Tiles .. 42

 Memory Technologies .. 43
 Static Random Access Memory (SRAM) .. 43

2.3.1.1. 1-Bit SRAM Cell ... 43
2.3.1.2. Multi-Bank SRAM Array .. 44
2.3.1.3. Energy Consumption in SRAM Arrays ... 44

 Spin-Transfer Torque RAM (STT-RAM) .. 45
2.3.2.1. 1-Bit STT-RAM Cell ... 46

3. STATE-OF-THE-ART RELATED WORKS .. 48

 General-Purpose Energy-Efficient Memory Works ... 48
 Scratchpad Memories ... 48
 Hybrid Memory Design ... 48

 Tiles-Parallelized HEVC Works ... 49
 HEVC Hardware and Software Implementations .. 49
 HEVC Parallelization Strategies .. 49

 Application-Specific Memory Optimization for Video Coding ... 50
 Data-Reuse Schemes .. 51
 Reference Frame Compression Schemes ... 52
 Motion Estimation Architectures with On-Chip Memory Design for HEVC 53

 Energy-Efficient Video Memory Architectures .. 53
 H.264/MVC Related Works ... 53
 HEVC Related Works .. 54

 Preliminary Works from This Thesis ... 56

4. HEVC MEMORY DYNAMICS AND OVERVIEW OF PROPOSED MEMORY

ARCHITECTURE .. 57

 HEVC Memory Profiling .. 57

 Tiles-Accumulated Memory Pressure Evaluation .. 58

 Inter-Tiles Data Reuse Evaluation ... 58
 Inter-Tiles Redundant Memory Access Evaluation ... 58
 Overlap Concept .. 59
 Overlap Formation Parameters... 61

 Overview of the Proposed Energy-Efficient Hybrid Scratchpad Video Memory Architecture and Its

Run-Time Management Layer .. 62

5. ON-CHIP HYBRID SCRATCHPAD VIDEO MEMORY ARCHITECTURE 64

 Overview of Hy-SVM Architecture .. 64

 On- and Off-Chip Memory Models .. 65

 Evaluations for Design Space Exploration of SPMs/HyMs Design ... 66
 Overlap Size Evaluation ... 66
 Design Space Exploration of HyMs ... 67

 Design Methodology of SPMs/HyMs .. 69
 Overlap Sizing Parameters ... 69
 L1 Level SPMs Design .. 70
 L2 Level HyMs Design .. 70

6. ENERGY-EFFICIENT MEMORY MANAGEMENT LAYER .. 73

 Overlap Prediction ... 73
 Overlap Correlation Evaluations .. 73
 Overlap Representation .. 75
 Overlap Prediction Scheme .. 76

 Memory Pressure Management .. 79
 Intra- and Inter-Frame Memory Accesses Correlations ... 79
 Overview of Memory Pressure Management Scheme ... 80
 Memory Pressure Prediction Algorithm... 81
 Run-Time Statistics-Based CTU Memory Classification .. 81
 CTU Re-Scheduling Scheme ... 83

 Lifetime-Aware Data Management .. 84

 On-Chip Memory Management Units ... 86
 Memory Access Power Management Unit (MAMU) .. 87
 Adaptive Power Management Unit (APMU) ... 89

6.4.2.1. Adaptive Power Management of L1 SPMs .. 89
6.4.2.1. Adaptive Power Management of L2 SPMs .. 90

7. EXPERIMENTAL RESULTS AND DISCUSSIONS ... 93

 Experimental Setup ... 93
 Video Coding Evaluation Methodology .. 93
 Memory Simulation Methodology ... 93
 Off- and On-Chip Power Models ... 94
 Comparison-Purpose Baseline Hy-SVM Variations .. 94

 Energy Efficiency Evaluation ... 94
 Off-Chip Energy Results .. 94

7.2.1.1. Analysis-1: Parallelism and HEVC Prediction Structure ... 94
7.2.1.2. Analysis-2: Search Window Size and Video Resolution ... 97
7.2.1.3. Analysis-3: Video Sequences Characteristics .. 97

 On-Chip Energy Results .. 98
7.2.2.1. Overall On-Chip Energy Savings ... 98
7.2.2.2. On-Chip Energy Savings in PrivL1 SPMs ... 100

 Overall Energy Results .. 100

 Overlap Prediction Accuracy Evaluation .. 102

 Off-Chip Memory Communication Evaluation .. 104

 STT-RAM Lifetime Evaluation .. 105

 Overhead Evaluation ... 105

8. CONCLUSIONS ... 107

 Summary of Experimental Results ... 108

 Publications during the PhD Work .. 109

 Future Works ... 109
 Approximate storage for video coding applications ... 110
 Memory requirements evaluation for next-generation video coding standards 110

REFERENCES .. 112

APPENDIX A – CHARACTERIZATION OF DESIGNED ON-CHIP HYBRID VIDEO

MEMORIES .. 120

APPENDIX B – DETAILED BIT-TOGGLING ACTIVITY AND DESIGN SPACE

EXPLORATION FOR INCREASED STT-RAM LIFETIME ... 122

ANNEX A – LIST OF PUBLICATIONS DURING THIS PHD WORK 125

20

1. INTRODUCTION

Video processing emerges as the most used multimedia application in the embedded

systems field, reaching billions of users mainly due to the popularization of mobile devices.

The availability of very high definition video cameras significantly increases the multimedia

processing requirements in such devices. Furthermore, the recent advances of streaming

services motivate users to constantly share and view digital videos over the internet.

Experts from Cisco released on July 2017 a forecast about the impact of visual networking

applications in the data traffic over the internet. The analyses comprehend actual traffic analysis

of 2016 and trace prediction trend lines until 2021. The complete technical reports are available

at (CISCO, 2017). A summary of the main forecasts regarding multimedia applications,

focusing on video processing, is depicted in Figure 1.1.

0%

20%

40%

60%

80%

100%

2016 2021

0%

20%

40%

60%

80%

100%

0

10

20

30

40

2016 2017 2018 2019 2020 2021

0

50

100

150

200

250

2016 2017 2018 2019 2020 2021

2016 2017 2018 2019 2020 2021

2016 2017 2018 2019 2020 2021

050100150200250

2016

Video Others

D
at

a
Tr

an
sm

is
si

o
n

 o
ve

r
th

e
 In

te
rn

et

[E
xa

b
yt

es
p

er
 M

o
n

th
]

(a) Overall Internet Traffic [2016 – 2021]

(c) Mobile Internet Traffic [2016 – 2021]

0

10

20

30

40

0

50

100

150

200

250

Others (4%)

Live Video
(13%)

Video on
Demand

(83%)

(b) By Segment [2021]

Video mobile traffic (1):
average growing of
48% by year

Video mobile traffic (2):
61% (2016) up to
80% (2021)

Video traffic over
the internet:
up to 81% by 2021

Live video transmission:
13% (2021) of the
overall vídeo traffic

2016 2021

(d) By Video Resolution

0%20%40%60%80%100%

UHD HD SD

1%

76%

23%

30%

66%

4%UHD videos: will
represent 30% of
the total video
traffic by 2021

Figure 1.1: Internet traffic predictions from Cisco experts: (a) overall internet traffic trend (2016 to

2021); (b) video traffic by segment at 2021; (c) internet traffic trend considering only mobile devices

(2016 to 2021); and (d) video traffic by resolution (Standard Definition (SD), High Definition (HD)

and Ultra-High Definition (UHD)).

When considering the overall scenario (Figure 1.1a), the predictions say that 81% of all

internet traffic will be occupied by video transmission in 2021. The considered segments of

video applications were: video on demand (like Youtube, Netflix and another related video

streaming services), live video transmission and others (like surveillance applications).

Observing the predicted video traffic by segment at 2021, live video transmission will represent

13% (see Figure 1.1b). Live video applications lead to hard constraints for the processing,

storage and transmission parts, since they impose real time requirements, aggravating the

challenges for software and hardware designers to support it.

Figure 1.1c depicts the internet data traffic prediction considering only the mobile devices.

Still, video processing stands out as the most representative application field: from 61% in 2016

up to 80% in 2021. In this analysis, it can be noted a stronger growth in the video traffic part,

reaching 48% of increasing by year (on average). This trend endorses the need of efficient

embedded multimedia processing (in terms of performance and energy) to support the growing

demand for video applications on battery-powered devices.

21

Furthermore, the forecasts also trace the traffic considering the transmitted video resolutions

(Figure 1.1d). In this scenario, it can be noted a strong increase in the Ultra-High Definition

(UHD) video support. UHD videos, which represented only 1% of the total video transmission

over the internet in 2016, will reach 30% of the total video traffic by 2021. Roughly, UHD

videos have 2.5x and 9x more data than High Definition (HD) videos and Standard Definition

(SD) videos. This leads to a significant complexity increasing for all steps inside the video

processing system (storage, transmission, encoding and decoding).

 Problems Definition

Advanced video processing algorithms introduce very high pressure on memory hierarchy,

leading to undesirable energy and performance overhead (SHAFIQUE et al., 2012; ZATT et

al., 2011a). Video codecs (encoders and decoders) are among the most complex and widely

deployed video processing applications. Recently, the High-Efficient Video Coding (HEVC)

(ISO/IEC-JCT1/SC29/WG11, 2013a) standard has been released to provide double coding

efficiency compared to the H.264/AVC (its predecessor). However, this comes at the cost of

increased computation time and by more than 40% (see Figure 1.2a). Besides employing novel

complex coding tools, an HEVC encoder requires a significant amount of data from the off-

/on-chip memories due to more memory intensive reference frames transmission for the

prediction steps. On average, the memory demand is 2x-3x higher compared to the H.264/AVC

(see Figure 1.2b). Thus, high off-/on-chip memory bandwidth along with larger on-chip video

memories (to support bigger resolutions) leads to increased energy consumption in the HEVC

encoders.

05E+111E+121,5E+122E+122,5E+123E+12

HD720

HEVC H.264/AVC

0

2E+11

4E+11

6E+11

8E+11

1E+12

1,2E+12

1,4E+12

1 2 3

M
e

m
o

ry
 B

W
. [

G
B

/s
]

0.5

1.5

1

3

2

2.5

0
HD720 HD1080 2K

0

2

4

6

8

10

12

HD720 HD1080 2K

En
co

d
in

g
T

im
e

 [
h

o
u

rs
]

6

3

9

12

0
HD720p HD1080p 2K

(a) (b)

Figure 1.2: HEVC vs. H.264/AVC encoder (a) encoding time and (b) memory accesses comparison1.

Furthermore, HEVC incorporate techniques to allow parallel execution, increasing the

performance the encoding part, such as Tiles partitioning (MISRA et al., 2013). This strategy

divides the frame into rectangular regions that can be encoded in parallel. Whereas providing

speedup to encoding applications, such tools aggravate the energy consumption of the memory

infrastructure (on- and off-chip parts; see Figure 1.3a and Figure 1.3b), posing new challenges

for multimedia systems. The main Tiles-parallelized HEVC challenge is to efficiently exploit

the inter-Tiles data reuse potential, which significantly increases as more parallelism is

exploited (Figure 1.3d). In this work, we refer to this reference frame region that is redundantly

accessed by more than one Tile processing as the overlap region (this concept will be

extensively presented and discussed along the text). It can be also noted that, by increasing the

parallelism employed during a HEVC encoding process, the external memory pressure2 grows

and becomes more unpredictable (see Figure 1.3c), imposing hard challenges to the access

management.

1 Average results for commonly used test sequences [13], 128x128 search window, H.264/AVC and HEVC test

models, 300 frames.

2 Also known as instant off-chip memory bandwidth.

22

010203040506070

1-Tile

HD720 HD1080 2K

0

20

40

60

80

1-Tile 2-Tile 4-Tile 8-Tile 16-TileSR
A

M
 S

ta
ti

c
En

er
gy

 [
m

J]

200

100

300

400

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

On-Chip Perspective

Obs-1: SRAM static
energy increases with the
number of video Tiles.

0

1000000

2000000

3000000

4000000

5000000

6000000

1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

O
ff

-C
h

ip
 E

n
er

gy
 [

m
J]

400

200

500

600

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

Off-Chip Perspective

300

100

Obs-2: In the meantime, off-chip
memory energy is not reduced.

0

200

400

600

800

1000

single 2-core 4-core 8-core 16-core
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

0

0.2

0.4

0.6

0.8

1.0

In
st

an
t

M
em

o
ry

B

an
d

w
id

th
[M

B
/s

]

0%

20%

40%

60%

80%

100%

1 Tile 2 Tiles 4 Tiles 8 Tiles 16 Tiles

Overlapping Private

0

40

20

100

Ti
le

s
O

ve
rl

ap
p

in
g

[%
 o

f
fr

am
e

d
at

a]

60
80

2-Tile 4-Tile 8-Tile 12-Tile 16-Tile

(a) (b)

(c) (d)

Obs-4: From 5% to 45% of
redundant memory accesses

Obs-3: Increased and spread
memory pressure trend

Figure 1.3: Memory requirements analysis for HEVC encoding.

Thereby, based on these preliminary evaluations, there is a strong need for energy-efficient

memory architectures targeting the viability of parallel features of HEVC. Chapter 4 will

present a detailed memory profiling of parallel executions of HEVC encoders to analyze

specific behaviors and to specify the main energy bottlenecks.

 Key Research Opportunities and Challenges

There are some important state-of-the-art research opportunities in the way of proposing

memory architectures to enable energy-efficient HEVC execution on embedded manycore

systems. Each one of these research fields brings hard challenges that will guide the proposed

solutions of this work. A brief summary of these opportunities and the corresponding key

challenges are presented as follows. A detailed review and further discussions of state-of-the-

art works for each research area will be given at Chapter 3 .

Application-Specific Knowledge: Application-specific properties exploitation has been

adopted by video coding community to base contributions in different research fields, such as

computational complexity control units (CORREA et al., 2011, 2013), fast mode decision

engines (LIAO; YANG; CHEN, 2016; PODDER; PAUL; MURSHED, 2016) and hardware

accelerators design (BONATTO et al., 2017; CHO et al., 2015; M; SK, 2017). Recent trends

demonstrated benefits of application-specific knowledge for memory design and management

targeting low power video encoding (SAMPAIO et al., 2013a; SHAFIQUE et al., 2012; ZATT

et al., 2011a, 2011b). In such works, specific video coding properties and video content

characteristics are used as a basis for the proposed memory architectures. Therefore, one

important challenge is to leverage HEVC-specific knowledge to design and manage energy-

efficient video memories for HEVC encoding. Still, these works also takes advantage of the

strong correlation between the memory access behaviors during the video encoding. Therefore,

another important challenge is to implement run-time monitoring systems to catch memory-

related properties during the HEVC encoding process to provide helpful information for the

management units to improve the memory energy efficiency.

Memory Requirements for Parallel Video Coding: Even considering HEVC application-

specific knowledge for memory architectures design to increase their energy efficiency, most

of the published works does not consider the memory requirements for parallelized video

23

coding. Important issues related to memory infrastructure in parallelized systems are related to:

(1) restrictive access rates and increased memory pressure, due to multiple processing units

requesting data in parallel; (2) conflicts related to the access of the same data from different

processing units, leading to memory contention; and (3) inter-cores data accesses redundancy,

requiring shared on-chip memories to minimize external memory communication. Therefore,

the challenge is to develop application-specific video memory architectures targeting energy

efficiency considering parallel video coding requirements.

Scratchpad Memories: A large body of research explored efficient cache organizations

targeting multi/manycore processors. To overcome/alleviate the hardware overhead of caches,

Scratch-Pad Memories (SPMs) evolved for energy-constrained embedded systems

(BANAKAR et al., 2002). Instead of providing hardware support for map data/code from off-

chip to on-chip memory, SPM allows designed/compiler to perform content management

saving extra energy compared to complete caches under certain operating scenarios. Therefore,

the challenge here is to efficiently utilize SPMs by exploiting application-specific knowledge to

enable energy savings in the SPMs design and access management.

Hybrid Memory Design: Recently, the hybrid memory architectures for general purpose

manycore processors have been emerged. The hybrid memory design utilizes emerging

memory technologies (e.g., MRAM, STT-RAM (DONG et al., 2008)) in combination with

traditional SRAM cells (ABE et al., 2012; KHAN; SHAFIQUE; HENKEL, 2013). Their goal

is to reduce the impact of SRAM shortcomings, like low density and high static energy

consumption. Generally, for general purpose applications, the emerging technologies are

desired for last-level caches due to the low-static-energy and high-density features (CHEN et

al., 2012). However, in reason of the lack of application-specific knowledge, these schemes are

typically not efficient enough to support the high memory requirements of HEVC. Therefore,

there is a need of application-driven design for energy-efficient hybrid memories tailored

towards HEVC executing in manycore processors. This work exploits the STT-RAM (Spin-

Transfer Torque RAM) usage in combination with SRAM, which is known to be a non-volatile

memory (NVM), keeping data stored even if the cells are switched-off (no static energy

consumption). Although all mentioned advantages of STT-RAM, its cell imposes hard energy

and performance penalties during the write operations. In addition, STT-RAM cells have its

lifetime dependent on the bit-toggling activity of the write operations (WU et al., 2010).

Therefore, there is a challenge here of properly data management policies (focusing on

reducing the write activity) to increase the cells lifetime and to enable energy efficiency in a

STT-RAM based hybrid memory system.

 Goals of this Thesis

The major goal of this thesis is to improve the energy efficiency for the memory

infrastructure (off- and on-chip video memories) to enable Tiles-parallelized HEVC execution

in embedded video processing applications. The proposed solutions are based on opportunities

mostly brought by novel memory technologies and organizations, as discussed in the previous

section.

Specific goals of this work are listed as follows. They will guide the insights and ideas for

the designed memory architecture:

G1. Take advantage of application-specific knowledge of HEVC standard (i.e. its new

coding tools) and video content properties to develop an energy-efficient video memory

architecture;

G2. Consider specialized and more restricted memory requirements for energy-efficient

HEVC parallel execution (multiple-Tiles feature of HEVC);

24

G3. Analyze, at design time, properties and offline memory access statistics of HEVC

parallel executions to define design methodologies to improve the energy efficiency of

on-chip video memories;

G4. Analyze, at run time, on-/off-chip memory-related access behaviors related to HEVC

encoding process to adapt the memory management to the current requirements, in

order to achieve higher energy savings;

G5. Utilize SPMs as energy-efficient on-chip video memories by exploiting the application-

specific knowledge to simplify their management units circuitry;

G6. Design multi-level on-chip video memory architectures to both exploit intra-Tile and

inter-Tile data reuse to allow further external memory energy savings;

G7. Exploit hybrid memory design, utilizing emerging STT-RAM technology, to minimize

the SRAM energy-related shortcomings when large on-chip video memories are

required for parallel HEVC execution, while handling endurance and write-inefficiency

of STT-RAM cells.

G8. Balance Tiles-accumulate memory pressure to maximize the usage of the off-chip

memory channel for reference data fetching;

 Main Contributions

Figure 1.4 presents an overview of the contributions of this work, inside the adopted parallel

HEVC execution system. To exploit multiple processing units system, uniform Tiles

partitioning is defined for the input video. As these Tiles can be encoded independent to each

other, they can be assigned to different processing units (as in Figure 1.4a). In the external

memory (implemented using DRAM technology) is stored all data required for HEVC

execution. Especially, the memory architectures focus on provide energy-efficient management

for the reference frames (Figure 1.4b). Typically, for each target reference frame, each

processing core will access data around its corresponding Tile position. In order to provide

energy-efficient storage for the reference frames, this work implements a Hybrid Scratchpad

Video Memory Architecture (Hy-SVM). The proposed memory architecture is designed based

on methodologies that leverage application-specific knowledge (Figure 1.4d) and offline

memory-related statistics from HEVC. Techniques that exploit monitored run-time memory-

related statistics to increase the energy efficiency of Hy-SMVM are implemented by three

different memory management schemes (Figure 1.4e): (1) Overlap Prediction, (2) Memory

Pressure Management and (3) Lifetime-Aware Data Management. Based on run-time decisions

of such schemes, Hy-SVM integrates distributed Memory Access Management Units

(MAMUs) and Adaptive Power Management Units (APMUs), which effectively manages the

access dynamics and the energy consumption, being adaptive to the input video content

properties.

The overall ideas related to each one of the main contributions of this work are presented as

follows:

25

On-Chip Hybrid Scratchpad Video Memory (Hy-SVM)

Application-Specific Knowledge

Video Content

Video Coding Knowledge

HEVC Processing

ST

ST

ST

ST

ST

ST

STT-RAM SRAM

Energy-Efficient Memory Management

On-Chip Memory
Management

Overlap
Prediction

ST

ST

ST

ST

ST

ST

STT-RAM SRAM
Tile 0 Tile 1

Tile 2 Tile 3
Input Video

Tiles Boundary

Adaptive Power
Management Unit

(APMU)

Memory Access
Management

(MAMU)

Memory Access Map
(Inside one frame)

M
em

o
ry A

ccess

Memory Access Maps
(For consecutive frames)

T1 T2

T3 T4

M
e

m
.

 A
cc

.

Reference Frame Access Map
[for 2+ cores]

Run-Time Memory Monitoring

Overlap Formation Bit-Toggling Activity

Memory Access Correlations

(a)

(e)

(d)

(c)

0 1 2 3 4 5 6 7 8

LD2

LD0 LD1 LD3 LD5 LD7 LD9 LD11 LD13

LD4 LD6 LD10 LD12 LD14LD8

0 1 2 3 4 5 6 7 8

RA0
RA1 RA2

RA3 RA4 RA9 RA10

RA5 RA6 RA8 RA7 RA11 RA12 RA14 RA13

Best CTU

Hybrid Memory DesignIntra- and Inter-Tile Data Reuse

Memory
Pressure

Management

Lifetime-Aware
Data

Management

External Memory (DRAM)
(Reference Frames)

Target Reference Frame

Overlap (to Shared SPMs)

No Overlap
(to Private SPMs)

Parallel HEVC Encoder

Proc. Unit 0

Proc. Unit 1

Proc. Unit 2

Proc. Unit 3

Private
(L1 and L2 Levels)

Shared
(L2 Level)

Figure 1.4: Overview of the novel contributions of this work.

 Energy-Efficient On-Chip Memory Design

 Hybrid Scratchpad Video Memory Architecture (Hy-SVM): that is composed of

multiple levels of private and shared SPMs. It consists on (i) private L13 SPMs,

implemented as SRAM arrays, to store the search window samples required for each

HEVC processing unit; and (ii) private and shared L2 SRAM/STT-RAM hybrid

memory SPMs (called HyMs) to provide reference frame level data reuse. The

proposed design methodology leverages application-specific knowledge to define

the hardware design parameters of SPMs.

 Energy-Efficient Memory Management Layer

 Overlap Prediction: that leverages application-specific properties (e.g., history of

past overlaps, video content and HEVC knowledge; see Figure 1.4d) to estimate the

overlap characteristics for the next frame encoding. The overlap consists on the

reference frame region that is accessed by two or more processing cores (each core

processes one specific Tile). Figure 1.4d depicts the typical pattern of the formed

overlap. Important overlap properties are related to its size, shape and access

intensity distribution.

 Lifetime-Aware Data Management: that leverages application-specific properties to

improve the STT-RAM cells endurance in the HyMs. The proposed data

3 L1 and L2 in this work are not related to cache levels, but scratchpad memories implemented using SRAM-only

(L1 level) or hybrid SRAM/STT-RAM (L2 level).

26

management scheme dynamically decides if the incoming reference frame block will

be stored in the SRAM or STT-RAM portion. This decision is based on the estimated

bit-toggling activity of each memory write operation in the HyMs, since most of

STT-RAM shortcomings are related to write accesses.

 Memory Pressure Management: that leverages the memory access correlation within

and across different Tiles (i.e. intra- and inter- Tiles correlations; see Figure 1.4d) to

balance the instant memory pressure that is necessary for multiple cores to

simultaneously access the external memory channel.

 On-Chip Management Units of SPMs: that implements memory access management

units (MAMUs) and adaptive power management units (APMUs) to manage the

data migration and the energy consumption of Hy-SVM (as in Figure 1.4e). Based

on the overlap prediction output, the MAMUs implements read and write policies

that manage the incoming Hy-SVM access to the corresponding SPM/HyM.

Furthermore, APMUs can adapt the power gating strength according to the predicted

overlap characteristics, which strongly depend on the video content.

 Text Organization

This PhD Thesis is organized as follows:

Chapter 2 brings the basics related to video coding applications and further details of the

state-of-the-art High-Efficiency Video Coding (HEVC), which are crucial to understand the

ideas of the proposed video memory architectures. Additionally, this chapter presents the

concepts related to the energy consumption of memory technologies for on-/off-chip memories.

Initially, traditional Static-RAM (SRAM) is addressed. Following, the adopted emerging

memory technologies for the proposed on-chip hybrid memory architectures are explained:

Static Random Access Memory (SRAM) and Spin-Transfer Torque RAM (STT-RAM).

Chapter 3 presents the main ideas of state-of-the-art works that focus on improving energy

efficiency of memory systems. Initially, a brief overview of general-purpose contributions

regarding memory architectures for parallel processing is given. Then, application-specific

works targeting video coding memory optimization are presented and discussed. After, detailed

comparisons are performed with related energy-efficient video memory architectures.

Chapter 4 shows detailed HEVC memory evaluations to motivate the proposed on-chip

memory architecture and energy-efficient management units. The main goal is to have a better

understanding of the access behaviors of parallel HEVC to support the ideas. A key concept

behind this work is duly defined: the overlap formation. Finally, the novel contributions are

retaken by introducing the following technical chapters.

Chapter 5 introduces our Hybrid Scratchpad Video Memory Architecture (Hy-SVM),

which is strongly based on the overlap exploitation to save external memory energy. Initially,

an overview of the designed SPM levels and the adopted on- and off-chip memory organization

models are presented. Then, offline statistical evaluations of HEVC and video content

properties are performed, which will base the design of SPMs. Thus, the proposed methodology

to define the memory parameters of all on-chip memory levels is described. Moreover, a logic

organization of proposed hybrid SPMs is presented, relying on a joint combination of SRAM

and STT-RAM portions to increase cells lifetime.

Chapter 6 properly describes the energy-efficient management layer of Hy-SVM. At first,

the overlap prediction scheme is presented. The proposed strategy is based on performed

evaluations from correlated characteristics from consecutive overlaps. After, the memory

pressure management strategy is presented to properly manage the off-chip communication.

27

To manage STT-RAM write and to handle with endurance issues, the lifetime-aware data

management scheme is explained. The effective hardware implementations of the proposed

management schemes are integrated in the on-chip management units of Hy-SVM, composed

be distributed memory access management units (MAMUs) and adaptive power management

units (APMUs), which are described in the last part of the chapter.

Chapter 7 presents discussions regarding the experimental results, mostly presented in

terms of energy consumption considering the on- and off-chip parts. The adopted

methodologies for video coding evaluation, the used memory power models and the simulation

infrastructure for parallel HEVC execution are also presented. The results of Hy-SVM are

extensively compared to state-of-the-art related works and baseline implementations. Besides

energy evaluations, external memory communication, overlap prediction accuracy and

overhead analyses are also presented.

Chapter 8 concludes this thesis by presenting the final remarks. All contributions are

summarized and the initially defined goals are discussed, based on the achieved results. As

reflexive analysis from the PhD path, future research perspectives are presented.

28

2. BACKGROUND

Uncompressed video signals lead to a huge amount of data. Still, digital video usage has

become even more ubiquous (SZE; BUDAGAVI; SULLIVAN, 2014). As results from this,

video traffic is the biggest load on communication networks and data storage in a world-wide

scenario. In this field, video compression has a key role of alleviating these constraints.

The H.264/AVC standard (ITU-T, 2013) still has important contribution in the video

processing applications. However, considering the requirements imposed in its definition,

H.264/AVC encoders are not enough scalable to meet the nowadays constant hunger for higher

video quality (e.g. in terms of ultra-high resolutions, higher frame rates, and higher fidelity). In

this scenario, the High-Efficiency Video Coding (HEVC) emerged (ISO/IEC-

JCT1/SC29/WG11, 2013a), offering a major step forward to support these requirements.

At the first part, this chapter has the goal of introducing the main basic fundamental concepts

involved in the video compression (aka. coding) applications (Section 2.1). From this, the

HEVC standard is discussed in deeper details (Section 2.2). The emphases are for the HEVC

structures and coding tools that are mostly related to the proposed memory architectures. For

details regarding the other parts of HEVC processing, some references will be suggested.

In the second part, it will be given an introduction regarding the memory technologies and

organizations adopted by the memory architectures designed by this work (Section 2.3). The

main goal is to present the memory cells internal design (at transistor level), as well as memory

organization structures. Finally, energy consumption characteristics of all covered memory

technologies will be discussed and compared.

 Preliminaries on Video Coding

 Digital Video Characteristics

A digital video is a sequence of static images (called frames or pictures) that, when

exhibited at an enough temporal rate, gives a motion sensation to the viewer. In general, the

enough frame rate to ensure a smooth motion perception considering the human visual system

is around 30 frames per second (fps) (RICHARDSON, 2004). For nowadays video applications

demand, which provides improved realism experience to users, the required frame rate for

digital videos reaches 120 frames per second (SZE; BUDAGAVI; SULLIVAN, 2014). Each

frame within the video is digitally represented by a two-dimensional matrix of pixels, with

horizontal dimension of W (width) and vertical dimension of H (height).

The pixel is the digital data that stores the color and luminosity information of its

corresponding position inside a frame. There are several color spaces that define the numerical

representation of the pixels properties. Video coding applications are typically based on the

YCbCr color space (see Figure 2.1). In such space, there are three different information:

luminance (Y), blue chrominance (Cb) and red chrominance (Cr). The luminance channel (also

referred as luma) represents the luminosity (light intense – gray scale fashion) of the picture.

The chrominance matrices (or chroma) are related to the different color tones of the frame. The

YCbCr color space is the preferred one for video coding applications in reason of its weak

correlation between the channels (RICHARDSON, 2004). As consequence, compression tools

can be applied separately for each component, enabling the exploitation of specific properties

of each one. Video coding community commonly refers to each luma or chroma component of

a pixel as sample. By following this, it is possible to define that one pixel has one luma, one

blue chroma and one red choma sample associated with it.

29

H/2

Video Frame (T0) Video Frame (T1)

H
 (

h
ei

g
h

t)

W (width)

H

W
W/2 W/2

Luminance

Blue
Chrominance

Red
Chrominance

Color format (4:2:0)

Figure 2.1: Basic concepts of digital videos: YCbCr color space representation of digital videos; 4:2:0

color format (supported by HEVC); temporal and spatial redundancies exemplification.

Digital videos, even in the raw format (without any compression), can have their samples

matrices subsampled according with the predefined color format. When considering the YCbCr

space, luma is the most important channel, regarding its visual contribution for the human eye

perception. Therefore, the resolution of chroma channels can be reduced with imperceptible

losses in the subject video quality. The most common formats are 4:4:4, 4:2:2 and 4:2:0. In

4:4:4 format (no subsampling), there is no chroma resolution reduction and each pixel has its

own luma, blue chroma and red chroma samples. The 4:2:2 and 4:2:0 are subsampled ones,

where the chroma matrices dimensions are reduced. In these cases, one chroma sample (red and

blue) is used to express the color property of more than one pixel.

HEVC encoders widely adopt the 4:2:0 format as input digital video format (SULLIVAN

et al., 2012). In this scenario, the blue and red chroma matrices are 2-subsampled in both

horizontal and vertical dimensions (as depicted in Figure 2.1). As result, one chroma sample is

inherited by four neighboring pixels. Therefore, by only applying this subsampled color format,

the representation of one video frame is reduced by 50%.

Important characteristics from digital videos are related to the high data redundancy within

them. The main goal of video encoders is to exploit such redundancies to reduce bit

representation, while keeping the original visual quality; or, at least, minimizing the quality

drops. The most representative data redundancy is noted when temporal-consecutive frames are

observed (called temporal redundancy). Due to the high frame rate of digital videos (as already

discussed), it is highly probable that almost the same scenario is represented by neighboring

pictures (considering the exhibition order). Taking a 30-fps digital video as example, where

consecutive pictures are captured with a time difference of 1/30 seconds (about 33

milliseconds), it is intuitive to conclude that most part of the scene is similar. The variation

between adjacent frames, in this case, is mostly derived from the objects displacement inside

the scenario during the capture time. This means that the objects stay inside the frame, but in a

different position. Throughout the text, these characteristics will be referred as video motion

properties. Video encoders strongly take advantage from the temporal redundancy by applying

30

intricate motion search algorithms to capture these properties. The inter-frame prediction is the

coding tool responsible for this exploitation (RICHARDSON, 2004).

In addition to the temporal redundancy, there is a substantive potential for data

representation reduction when exploiting homogeneous regions in neighboring pixels inside a

frame (called spatial redundancy). Picture areas that represent a scene background, or a clean

and blue sky are practical examples of high homogeneity. Furthermore, even well-behavior

textured regions present spatial redundancy that can be exploited. The spatial redundancy is

exploited by the intra-frame prediction tool (RICHARDSON, 2004).

At last, there is also the entropic redundancy, which refers to the exploitation of different

frequency of occurrences for distinct encoded symbols in a video. This issue is similarly

handled with ordinary data compression algorithms, where high-frequent symbols are coded

with less bits. Still, video coding tools apply specialized data compression algorithms to achieve

higher compression rates (RICHARDSON, 2004).

Given some basics regarding digital videos characteristics, preliminaries about video coding

are presented as follows.

 Hybrid Video Compression Model

The HEVC, as well as recent previous video coding standards, is based on the hybrid video

compression model, which is composed of the following functional blocks: (a) prediction

operations (intra- and inter-frame predictions), (b) de-correlating transforms, (c) quantization

and (d) entropy coding. Basically, the prediction blocks exploit already coded data (within or

across video frames) to best represent the video region that is being coded. This predicted

representation may not be exactly the same as the original. Thus, the difference (called residue)

must considered in order to guarantee the quality of the coded video. Transforms and

quantization strongly acts to reduce the residue representation. All generated information is,

then, processed by the entropy coding part.

Figure 2.2 graphically depicts the hybrid video compression model flow to encode

(compress) a given input digital video. The presented coding tools process the video by initially

dividing the color matrices into smaller regions. At this part of the text, these smaller regions

of the frame will be generically called blocks. One of the main HEVC innovations is the

definition of very flexible data structures that enables the selection of variable-sized frame

blocks. The goal is to adapt the block size to the video content properties: detailed frame regions

can be split to smaller block sizes, while homogeneous areas can be grouped into larger blocks.

Current

Frame
(original)

Reference

Frame
(temporal)

Current

Frame

(reconstructed)

Intra Frame

Prediction

FT/FQ
Entropy

Coding

IQ/IT

Mode
Decision

Inter Frame

Prediction

01001
10110
01011
10010

Output HEVC
bitstream

Figure 2.2: Block diagram of a video encoder (following the hybrid compression model).

31

Initially, the main goal of a video encoder is to analyze different ways of representing each

block of the current frame (frame that is being currently processed) using already coded

information: from the already coded blocks (1) of the current frame (spatial redundancy

exploitation), or (2) of the past frames (temporal redundancy exploitation). This already

processed information serves as reference to represent the current block. Thus, instead of

including the whole pixels information in the final bitstream, the encoder will generate coding

information to express the right way of reconstructing the current block in the decoder side.

The above presented task is executed by the prediction step and represents the main core of

the hybrid video compression model. The intra-frame prediction is responsible to analyze the

spatial correlation (within the current frame), while the inter-frame prediction analyzes the

temporal motion properties (across the past frames). The prediction step generates two main

information: the predicted block and prediction mode. The predicted block represents the best

possible representation of the current block solely through the use of already coded reference

blocks. In the same direction, the prediction mode is a video coding control entity that stores

the selected way of using the reference data to re-generate the predicted block. Note that the

prediction mode is important for the decoder side, since it has to reconstruct the predicted block

to rebuild the original video. As already mentioned, the predicted block frequently differs from

the original block. Hence, simply discarding this difference may result in significant losses

during the encoding process. To handle this issue, this data (called residual block) is also sent

into the output bitstream. In the decoder side, the predicted block is generated by having the

prediction mode information, and further added to the residual block to rebuild the original

block.

In hybrid video compression, there is a special treatment path to compress the residual data:

composed of the forward transforms and quantization steps (FT/FQ modules in Figure 2.2).

Before being processed by the entropy encoding, the residue is applied to mathematical

transforms operations. The goal of the transforms is to convert the samples values from the

spatial to the frequency domain, in order to de-correlate the residue and concentrate the high-

frequency elements in a few coefficients. Over the transforms output, the quantization

eliminates the small values associated to spectral components that are not perceptually relevant,

typically generating sparse matrices of samples (with many near-zero values). It is important to

highlight that the quantization inserts losses in the residual data. The strength of the quantization

cuts is controlled by the Quantization Parameter (QP): higher is the QP higher is the

quantization strength, leading to more losses during the encoding process. In the same vein,

these higher losses are generally followed by higher compression rates. The QP is frequently

used to adapt the required bandwidth to transmit the output bitstream over an unstable

communication channel (VIZZOTTO et al., 2012).

At the end of the encoding flow, the entropy coding applies data compression algorithms

over all generated data (residue, prediction modes, and other video coding control information)

to reduce its representation and to pack them into pre-defined encoding units (SZE;

BUDAGAVI; SULLIVAN, 2014). The entropy coding output is generally referred as

bitstream, which is sent for properly transmission or storage.

Figure 2.3 depicts the block diagram of the decoder side. As input, the decoder receives the

encoded bitstream and it is initially processed by the entropy decoding. In this step, all the

encoding structures are decoded and reorganized to be sent to their respective modules. The

residue part is reconstructed by the inverse quantization and transforms steps (IT/IQ module in

Figure 2.3). The adopted prediction modes (decided during the encoding process) are forwarded

to the intra- and inter-frame decoding. The task executed by these modules is to recreate the

predicted block (the same as in the encoder side). By having the predicted block and the

32

reconstructed residue block, the last step is to add them: generating the reconstructed block.

This flow is performed for every block of the video, leading to the generation of the

reconstructed video. Due to the quantization inserted drops, the reconstructed video is always

different from the original one4.

Intra Frame

Decoding

Entropy

Decoding
IQ/IT

Inter Frame

Decoding

Reference

Frame
(temporal)

Current

Frame

(reconstructed)

01001
10110
01011
10010

Input HEVC
bitstream

Figure 2.3: Block diagram of a video decoder (following the hybrid compression model).

Still observing the encoding process illustrated in Figure 2.2, there is a frame reconstruction

loop inside the encoder. When analyzing the video decoder perspective, the reference data used

to reconstruct the video frame blocks is rebuilt in a lossy scenario, since the quantization

(applied in the encoder side) inserts errors in the residue. To ensure consistency in both sides,

the reference information used by the decoder (to reconstruct the video) must be the same as

the adopted by the encoder side (during the prediction steps). Hence, it is necessary to insert a

reconstruction path to create the same references that will be used in the decoder. This

reconstruction loop is composed of inverse versions of transforms and quantization steps (see

Figure 2.2). The reconstructed residue, which is lossy due to the quantization, is added to the

predicted block to compose the reconstructed frames. The reconstructed frames (also known as

reference frames) must be locally stored during the encoding process, since they are used for

the intra- and inter-frame predictions.

 Rate-Distortion (R-D) Cost

The efficiency of compression algorithms are usually measured using the rate-distortion (R-

D) cost (SULLIVAN; WIEGAND, 1998). The rate metric is related to the size (number of bits)

of the generated output bitstream. The distortion corresponds to the objective quality measure

of the drops inserted during the encoding process. The R-D cost is the usually adopted metric

to express the coding efficiency of a video encoder. Equation (1) presents the R-D cost

mathematical definition, where λ is the lagrangian parameter that correctly weights the tradeoff

between distortion and bitrate size (depending on the adopted QP).

RDCost = 𝐷 + 𝜆𝑅 (1)

From this definition, it can be affirmed that the main optimization problem related to video

compression algorithms is to minimize the R-D cost, leading to the maximization of the coding

efficiency. It is important to note that every decision made during the encoding process will

have repercussion (positive or negative) in the coding efficiency. Thus, the optimal coding

efficiency is achieved when the R-D cost is used as metric for every required decision during

the prediction steps over each current block of the input video. This leads to a huge complexity

to video encoders. This method is called rate-distortion optimization and its adoption in a

HEVC encoder will be presented in Section 2.2.2.

As follows, some widely-used distortion metrics are presented.

4 Except when QP is equal to zero, which leads to a lossless compression. This scenario is rarely used in practice.

33

 Distortion Metrics

The most used objective distortion metric is the Peak Signal-to-Noise Ratio (PSNR)

(RICHARDSON, 2004), which is defined in Equation (2), where MAX is the maximum value

that a sample can assume (2n-1, where n is the number of bits of a sample), and the MSE is the

Mean-Squared Error for image or block. The MSE is calculated as in Equation (3), where W

and H represents the image (or block) horizontal and vertical dimensions, and O and R represent

the original and the reconstructed luma or chroma samples, respectively. In these calculations,

the MSE metric is the one that objectively expresses the difference (distortion) between the

samples from the two frames or blocks. Another interesting distortion metric is the Sum of

Absolute Differences (SAD), which is defined by Equation (4). SAD is a low-complexity metric

that is intensive used in hardware implementations of video coding modules.

𝑃𝑆𝑁𝑅𝑑𝐵 = 10 ∙ log10 (
𝑀𝐴𝑋²

√𝑀𝑆𝐸
) (2)

𝑀𝑆𝐸 =
1

𝑊 ∙ 𝐻
∑ ∑(𝑅𝑖,𝑗 − 𝑂(𝑖,𝑗))²

𝐻

𝑗=0

𝑊

𝑖=0

 (3)

𝑆𝐴𝐷 = ∑ ∑(𝑅𝑖,𝑗 − 𝑂(𝑖,𝑗))

𝐻

𝑗=0

𝑊

𝑖=0

 (4)

 High-Efficiency Video Coding

The High-Efficiency Video Coding (HEVC) reunites the accumulated experience of around

four decades of video coding community researches and barely three decades of international

standardization. The result of such efforts was formally standardized as ITU-T

Recommendation H.265 and ISOIEC International Standard 23008-2 (MPEG-H part 2). The

first version of HEVC was completed in January 2013 (but formally released in a few months

later) (ISO/IEC-JCT1/SC29/WG11, 2013a). Specifically to develop the HEVC standard, a

patternship arrangement was formalized as a new joint organization, called Joint Collaborative

Team on Video Coding (JCT-VC) (JCT-VC, 2017). The JCT-VC organized four meeting per

year after its creation. Each of these events had hundreds of attendees and involved hundreds

of submitted contributions that were analyzed to be incorporated in the final standard.

HEVC offers the same basic proposition today when compared to H.264/AVC, in the time

of its development and subsequent release: double the compression efficiency. This means that

HEVC is able to compress digital videos twice as much as H.264/AVC without any

repercussion in the video quality. In the same perspective, HEVC achievements allows the

support of higher resolutions, frame rates or video fidelity levels, and keep the output bitrate

compliant with the transmission and storage infrastructure (SULLIVAN et al., 2012).

The HEVC encoding process follows the block-based hybrid video compression model, as

already introduced in Section 2.1.2. In Figure 2.4 a typical HEVC encoder is presented. It can

be noted a similar flow of operations when compared to the already discussed diagram of Figure

2.2. Initially, the input video frame is subdivided into fixed-size blocks (called Coding Tree

Units in HEVC). Starting from the maximum size, it is subdivided into smaller coding blocks

respecting a quadtree structure (called coding units). This structure allows high flexibility for

variable-block size coding (properly explained in Section 2.2.1). Each coding unit is, then,

processed by inter- and intra-frame prediction engines; generating prediction units. The inter-

frame prediction has two main modules: the Motion Estimation, which is composed of a motion

34

search engine to derive the motion properties of the current coding unit; and the Motion

Compensation, which is responsible for getting Motion Estimation outputs (motion vector and

reference frame index; further explained in Section 2.2.3) and generating the prediction

information for the current coding unit. The mode decision selects the best prediction mode

and, then, the residual information is calculated. The residue is processed by transform and

quantization. HEVC also defines a quadtree structure for the transforms, organizing the residue

into transform units to enable variable transform size operations. Finally, the quantized residue

is encoded by the entropy coding, which implement the Context-Adaptive Binary Arithmetic

Coding (CABAC in Figure 2.4). To generate the reconstructed samples, the quantized residue

is applied to inverse transforms and quantization, added to the predicted coding unit and

processed by in-loop filters. HEVC defines the Deblocking Filter and the Sample Adaptive

Filter to improve subjective video quality by eliminating artifacts generated by the block-based

compression tools (SULLIVAN et al., 2012). Note that the reconstructed blocks are used as

spatial and temporal references for intra- and inter-frame prediction operations (see Figure 2.4).

To support this, a Decoded Picture Buffer (DPB) is required to keep stored the reconstructed

frames (also called reference frames). The frames in the DPB must be available to serve as

reference or inter-frame predictions of next frames.

Fr
am

e
 R

e
co

n
st

ru
ct

io
n

 L
o

o
p

Inter-Frame Prediction

Subdivision
into Coding

Tree Units

Input video signal

Motion Estimation

Intra-Frame
Prediction

Motion Compensation

In-Loop Filter

Inverse Quantization
and Transform

Transform and
Quantization

Encoder General Control

Decoded Picture Buffer

Residual Information
CABAC Entropy

Coding

Output
bitstream

01011
01101
10110

64

64

Coding Quadtree
with Coding Units

Mode-, Quadrtree-,
Motion- and Filter

Information

Current
Coding Unit

Reference
frames
(candidate
blocks)

Motion vector;
Reference frame id

Prediction Units
for Inter-CU

Prediction Units
for Intra-CU

Predicted
Coding
Unit

Original
Coding
Unit

Transformed
and quantized

residue

Spatial
references

Reconstructed
residue

Reconstructed
block

Reconstructed
block (filtered)

Figure 2.4: HEVC block diagram for the encoding process

(with integrated frame reconstruction loop).

Source: SZE; BUDAGAVI; SULLIVAN, 2014

One of the main innovations of HEVC is related to a novel organization of the coding

structures. In the H.264/AVC standard, the frame was initially partitioned in fixed-size

macroblocks of 16x16 samples (WIEGAND et al., 2003). The prediction and transform steps

were able to further partition a macroblock into smaller sizes: 16x8, 8x16, 8x8, 8x4, 4x8 and

4x4 (smallest block size). In HEVC, the block partitioning starts with 64x64 size, which enables

a better fit to higher resolutions videos. This 64x64 block is the start point of a quaternary-tree

based partitioning structure, called Coding Tree Unit (CTU). During the prediction steps, the

block is split into four smaller sized ones, called Coding Units (CU), and the prediction

operations (intra- and inter-frames) are applied to the new blocks. This process is executed in a

35

recursive way, until the smaller supported block size (8x8). Still, given a specific coding unit

of a specific size inside the quaternary tree, the prediction step can further partition the block

in eight different formats (four symmetric and four asymmetric). The information regarding the

prediction steps (like prediction modes, motion information and adopted partition shape) are

represented by a Prediction Unit (PU). Furthermore, when the residue is generated (difference

between predicted and original samples), the transform module can also be applied to different

block sizes, called Transform Units. The main goal such innovations is to enable high flexibility

during the encoding process to adapt the compression tools to the video content. Section 2.2.1

will present the HEVC coding structures in a deeper level of details.

The prediction step, responsible for exploiting the reference data to find the most efficient

way of represent the current block information, is divided into intra- and inter-frame

predictions. The intra-frame prediction, which decreases the spatial redundancy, uses the

samples of already coded neighboring PUs (within the same frame) to predict the current one.

HEVC supports 35 different modes for intra prediction: 33 angular modes, a flat mode, and a

planar mode (SULLIVAN et al., 2012). In H.264/AVC, only nine modes were defined to 4x4

blocks and four modes for 16x16 blocks (WIEGAND et al., 2003).

Besides the spatial dependencies within a frame, the temporal redundancies (motion

properties) are reduced by the inter-frame prediction. The core of this step is the Motion

Estimation (ME), which is composed of a block-matching search engine that scans the reference

frames to find for the most similar block to represent the current PU. To represent the

displacement of the best-match block in the reference frame, the ME produces a motion vector

for each PU partition. HEVC supports motion search in one quarter of pixel accuracy for luma

samples and one eighth of pixel accuracy.

The compression gains obtained from the more flexible coding structures comes with the

cost of increased computational complexity for the encoders. In HEVC scenario, without any

complexity reduction technique, intra- and inter-prediction must be executed for all partitions

of every PU possibility of each CU analyzed within the quad-tree structure of each CTU inside

the video frame. For optimal coding efficiency, the Rate-Distortion Optimization (RDO) is

adopted to determine CTU division and the best prediction modes for each selected PU. The

RDO is based on calculating the R-D cost (explained in Section 2.1.3) for each PU possibility

inside the CTU. This leads to a huge computational cost, since barely entire encoding and

decoding flows are necessary to estimate the R-D metric for each analyzed PU. Section 2.2.2

presents further explanations about the RDO inside the HEVC encoding.

Among all prediction operations, ME inherits the most computational complexity, being the

main bottleneck in terms of execution time and required memory bandwidth. Thus, techniques

to optimize these issues around ME execution have significant impact in the overall HEVC

encoder. Section 2.2.3 presents further details of inter-frame prediction, highlighting important

concepts of ME.

To handle this high computational complexity, HEVC defines a special data partitioning

way that facilitates parallel processing: the video frame division into rectangular regions called

Tiles. The main idea is: coding units belonging to different Tiles have broken data dependency

and, thus, can be processed in parallel. Therefore, all CTUs of a Tile can be assigned to a

specific processing core. Another parallelism opportunity defined by HEVC is related to an

alternative processing order of the coding units, called Wavefront Parallel Processing (WPP),

where a much finer parallelism degree can be exploited by dividing the frame into rows of

coding units (SZE; BUDAGAVI; SULLIVAN, 2014). Section 2.2.4 further describes these

parallelism features introduced by HEVC, focusing on the Tiles partitioning.

36

 HEVC Coding Structures

2.2.1.1. Video Partitioning Structures

In HEVC, the input video sequence is divided into Group of Pictures (GOP). The GOP

reunites at least two consecutive frames to constitute Random Access Points (RAP) from which

the decoder can start decoding without direct dependency with any previous frames. Figure 2.5

illustrates the division of the frames sequence into GOPs of size four.

0 1 2 3 4 5 6 7

I-
Fr

am
e

P-
Fr

am
e

B
-F

ra
m

e

B
-F

ra
m

e

8 9 10 11 i+1 i+2 i+3i

(...)

I-
Fr

am
e

P-
Fr

am
e

B
-F

ra
m

e

B
-F

ra
m

e

I-
Fr

am
e

P-
Fr

am
e

B
-F

ra
m

e

B
-F

ra
m

e

I-
Fr

am
e

P-
Fr

am
e

B
-F

ra
m

e

B
-F

ra
m

e

GOP1GOP0
GOP2 GOPN

Group of
Pictures

Video Sequence

Figure 2.5: Frames of a digital video grouped by GOPs.

The frames in a video sequence are classified as I-, P- or B-frames. In an I-frame, all CTUs

are encoded only using spatial references, e.g., only intra-frame prediction is performed. This

means that the decoding process for I-frames does not depends on the reconstructed data of

other frames. I-frames are important for the first encoded frame and to insert RAPs to allow

decoder synchronization, which is important for continuous video streaming applications.

Further, P- and B-frames are encoded using both intra- and inter-frame predictions. The P-

frames have temporal dependencies with only one reference frame, while B-frames utilize the

bi-prediction that allows references to more than one reference frame.

2.2.1.2. Frame Partitioning Structures

Each frame is partitioned into square-shape Coding Tree Units (CTUs). The CTU represents

the basic processing unit in HEVC and it is in that regard similar to the concept of a macroblock

in prior video coding standards. HEVC does not set a fixed size for the CTU. However, typical

HEVC applications adopted the largest possible size defined in the standard: 64x64. The CTU

structure comprehends a quadtree structure, also referred as coding tree, which specifies the

CTU division into Coding Units (CUs). Figure 2.6a depicts the quadtree structure of a CTU and

exemplify its possible subdivision into variable-sized CUs. Similarly to the CTU, a CU consists

in a square block of samples. At CTU level (depth 0 in Figure 2.6a), a flag into the bitstream

indicates whether the complete CTU represents a CU or whether it will be divided into four

equally-sized blocks. If the CTU is split, four new CUs are formed (depth 1). In a recursive

way, each one of the new CUs can be further split into four new blocks (depths 2 and 3). This

hierarchical subdivision process ends when the minimum CU size is reached. In typical HEVC

applications, the minimum size of a CU is 8x8 samples. The final CTU division of the given

example can be observed at Figure 2.6b.

37

depth 0
CUSize = 64

(a) Chosen Coding Units within the CTU

depth 1
CUSize = 32

depth 2
CUSize = 16

depth 3
CUSize = 8

(b) Final CTU Division

Figure 2.6: (a) Example of adopted CU sizes within a CTU and

(b) final CTU division for video frame texture adaptation.

This flexible encoding structure can adapt the CUs sizes according to the video content:

larger CUs are used to exploit homogeneous areas, while smaller CUs can have a best fit into

textured regions. When larger CUs are chosen, there are gains in the compression rates, since

the CTU will be composed of fewer CUs and, this way, less coding control symbols are

generated. However, if not well predicted, large CUs may incur in more residual information

to be encoded, leading to higher distortion due to quantization cuts. In the other hand, CTUs

divided into smaller CUs will require more control information. Analogously, smaller CUs

better adapts the coding granularity to the video texture properties, reducing the inserted

distortion in the residual treatment path. Therefore, the decisions involved in the CUs

subdivision have a key role to provide high coding efficiency to HEVC encoding.

The CUs represent the encoding structures to which a coding mode is assigned. For each

CU, it is decided whether the luma and chroma samples are predicted using intra- or inter-frame

prediction. Figure 2.7a graphically illustrates this prediction dynamics for each CU of size

2Nx2N. All information related to the adopted prediction for the CU is represented by a

Prediction Unit (PU). Note that different CUs within the same CTU may have different

prediction modes (intra or inter). Additionally, for each one of prediction options, a CU can be

further split during the prediction step. Each CU may be partitioned into two or four PUs, which

are separately predicted. An important definition is that all PUs of a CU should be predicted

with either as inter or as intra. Thus, an entire CU can be classified as inter-CU or intra-CU.

HEVC supports eight different modes for partitioning a CU into PUs, as illustrated in Figure

2.7b: four symmetric and four asymmetric partitioning.

If a CU is signaled as intra, the corresponding PUs must stores one of the 35 supported

spatial intra prediction modes for luma samples5. HEVC defines that intra-CUs can only support

2Nx2N and NxN partitions. For inter-CUs, all eight partitions can be assigned. Each PU of an

inter-CU should store, among others, the motion vector and the used reference frame(s)

index(es).

5 For chroma channels, one of 5 available modes should be selected.

38

2N

2N CU

Reference Frames
(Already Coded Frames)

Current Frame

Inter-Frame
Prediction

Intra-Frame
Prediction

Mode
Decision

Asymmetric Partitions

Symmetric Partitions

2N x 2N 2N x N N x 2N N x N

2N x nU nL x 2N2N x nD nR x 2N

(a) Prediction Dynamics and PU Decison (b) Partition Sizes

PUPrediction Mode

Partition Size

Motion Vetor(s)

Intra Mode(s)

Figure 2.7: (a) Prediction dynamics for each CU within the coding tree and the generation of the PU;

(b) Partition sizes allowed by HEVC into PUs (intra PUs only support 2Nx2N and NxN partitions).

The Mode Decision (gray module in Figure 2.7) is the responsible for deciding the best PUs

for each CU inside the quadtree structure. Note that the decisions about the best prediction

mode, allied to the already discussed decisions regarding the best CTU division into smaller

CUs, represents the key challenge of the general control of a HEVC encoder. In a simplistic

analysis, the prediction step of a 64x64 CTU has to analyze both intra- and inter-CU options

for each level of the coding tree structure. This leads to one 64x64 CU, four 32x32 CUs, sixteen

16x16 CUs and sixty four 8x8 CUs (last level). For each one of these 85 possible CUs, two

different partitioning ways must be evaluated by the intra-frame prediction, while eight are

evaluated by inter-frame prediction. In total, 149 intra-PUs and 849 inter-PUs must be analyzed

by the Mode Decision to process an entire CTU. Considering a 1080p input video sequence

(1920x1080 pixels) that comprehends 506 CTUs, more than 500,000 PUs should be predicted

and its coding efficiency analyzed. In HEVC reference software HM (ISO/IEC-

JCT1/SC29/WG11, 2013b), the RDO is adopted as optimal scheme for the Mode Decision

module, generating the upper-case scenario in terms of coding efficiency (considering the R-D

cost metric). Details regarding the RDO will be presented in the next section.

 Rate-Distortion Optimization (RDO)

The RDO represents an upper boundary in terms of coding efficiency, since its main strategy

is to perform a complete depth-first search for all configurations of CUs and PUs. The goal is

to ensure optimal decisions when encoding each CTU within a video frame.

RDO is based on the minimization of the R-D cost, which relates the bitrate size with the

output video distortion (already discussed in Section 2.1.4). Figure 2.8 presents a recursive

function (called compressCU) that depicts the idea of the RDO execution when analyzing a

given coding unit CU of d depth in the quadtree structure. This function returns, at the end of

its execution, the best R-D cost of encoding the current CU.

First, intra- and inter-frame predictions are triggered to exploit spatial and temporal

dependencies. As result, the RDO estimates the R-D cost for the best PUs generated by the

prediction steps for the current CU (RDInter and RDIntra – lines 1 and 2). At this point, all

partitioning ways for the PUs described in 2.2.1 were analyzed. Then, the RDBest is calculated

as the best (minimum) R-D cost between intra-CU or inter-CU choices (line 3). RDBest

represents the minimal R-D cost achieved by not splitting the current CU into smaller ones. To

evaluate the cost of going through the next quadtree depth, the same function is recursively

called for the next-depth sub-CUs (CU0, CU1, CU2 and CU3). The best R-D costs estimated for

each one of the smaller CUs are accumulated in the RDSubBest (lines 4-8). It is important to note

39

that the recursive calls to compressCU leads to execution of the same explained steps for each

one of the sub-CUs; and this process is recursively executed until the smallest CU size is

reached. At the end, the RDO returns the minimum R-D cost between the choice of not splitting

the CU and the option of dividing the CU into sub-CUs (line 9).

Algorithm: compressCU(Coding Unit: CU, Depth: d)
1. RDInter = checkRDCostInter(CU, d);
2. RDIntra = checkRDCostIntra(CU, d);
3. RDBest = min(RDinter, RDintra);
4. RDSubBest = 0;
5. RDSubBest += compressCU(CU0, d+1);
6. RDSubBest += compressCU(CU1, d+1);
7. RDSubBest += compressCU(CU2, d+1);
8. RDSubBest += compressCU(CU3, d+1);
9. return min(RDSubBest, RDBest);

Figure 2.8: Rate-Distortion Optimization (RDO) algorithm.

Besides the exploitation of all possible CU sizes within the quadtree, the RDO decisions for

the best configuration are based on the R-D cost. This means that, for every analyzed intra- or

inter-CU option, the HEVC encoder must estimates the final bitrate repercussion of such

decision, as well as the impact on the reconstructed frame distortion. Based on the HEVC

encoder diagram of Figure 2.4, the bitrate size estimation requires the residue generation, and

posterior transforms, quantization entropy coding processing. Furthermore, the distortion

knowledge can only be generated by calculating the residue, applying transforms, quantization

and then all frame reconstruction loop process (highlighted in Figure 2.4): composed of inverse

transforms, inverse quantization and final filtering operations. In summary, RDO implements

a brute-force algorithm, which analyzes every possibility, and further uses the R-D cost as

comparison metric, requiring high computation to generate the rate and distortion metric for

each analyzed situation. For the above discussed reasons, RDO is not used in practical

implementations of HEVC encoders. To handle with this issue, many researches aims on

proposing complexity reduction compared to RDO (CORREA et al., 2012, 2013).

The most computational complex module of HEVC encoding is the inter-frame prediction

step. Furthermore, the memory related issues of HEVC are strongly related to this module. The

RDO usage as mode decision strategy highly aggravates these penalties, since inter-frame

prediction must be executed for every tested inter-CU configuration. Section 4.1 motivates it

by presenting a HEVC memory profiling that indicates the inter-frame prediction, particularly

the Motion Estimation as the main memory bottleneck. As the focus of this work is to provide

energy-efficiency memory architectures for HEVC encoding, the inter-frame prediction and the

Motion Estimation aspects will be further discussed as follows. Additionally details if intra-

frame prediction dynamics will not be presented in this text, and can be encountered in (SZE;

BUDAGAVI; SULLIVAN, 2014).

 Inter-Frame Prediction

In HEVC applications, there are two typical adopted prediction structures, which are

depicted in Figure 2.9. The numbers in Figure 2.9 represents the encoding frame sequence,

while the left-to-right frame disposition is related video exhibition order. In the Low Delay

configuration, each frame is only able to use past frames (in the exhibition order) as temporal

references. This leads to the same encoding and exhibition order. The Random Access

configuration defines a hierarchical B structure, which defines temporal layers: represented by

different shades of gray for the B-frames. Another detail is related to an alternative encoding

order: initially, the first and the last frame are processed (first temporal layer; I- and P-frames,

respectively); then, the fourth frame is encoded as a B-frame (second temporal layer), using

reference frames from the previous layer; after, the frames of third temporal and the fourth (last)

40

temporal layers are processed. The hierarchical B structure leads to different coding and

exhibition orders. There is also the Intra Only configuration, where only I-frames are allowed

(no inter-frame prediction is performed) and there are no dependencies between frames.

0 1 2 3 4 5 6 7 8 0 5 3 6 2 7 4 8 1

Low Delay Random Access

GOP Size = 8 GOP Size = 8

Figure 2.9: Common prediction structures utilized by HEVC applications:

Random Access and Low Delay.

The arrows of Figure 2.9 indicate the inter-frame prediction direction: the arrows start from

the current frame and arrive at the reference frames, indicating the temporal dependencies

during the encoding process. To be used as reference, the frame must be previously encoded,

reconstructed and entirely available in the DPB (typically assigned to an external memory in

HEVC encoders).

An example: considering the Low Delay configuration and assuming that the frame 2

(exhibition and coding order) is, at the moment, the current frame to be processed by inter-

frame prediction. This frame has temporal dependencies with frames 0 and 1, as depicted in

Figure 2.9. This means that, in both encoding and decoding sides, frames 0 and 1 must be

previously processed and reconstructed before frame 2 processing is started. When analyzing

the frame 2 (coding order) in the Random Access structure, its processing depends on the frames

0 and 1 (coding order). In this case, the dependencies are past (frame 0) and future (frame 1)

frames in the exhibition order. The utilization of future frames as reference is an important issue

of recent video encoders.

Motion Estimation (ME) is the main core of the inter-frame prediction, being responsible to

capture the temporal correlations between temporal neighboring frames within a video

sequence. Figure 2.10 illustrates the ME processing. For each analyzed PU to be associated to

an inter-CU in the current frame, the ME is applied according to the adopted prediction

structure. The main goal of ME is to find the best match of each analyzed PU (called current

PU) of the current frame using, as reference, one or more reconstructed frames (aka. reference

frames). The optimal best match corresponds to the block in the reference frame that minimizes

the R-D cost in the final HEVC processing. As already discussed, the optimal solution for the

best coding efficiency is a computation-intensive task, since almost entire encoding and

decoding flows must be executed to estimate the R-D cost for each possible matching block in

the reference frames. As local decision in ME, the block that minimizes the residual information

(difference between original and predicted blocks; see Section 2.1.2) is the chosen one as near-

optimal result. In this sense, a low-complexity similarity metric is used to measure the amount

of generated residue.

Using this metric as basis, the current PU is compared to a subset of blocks of the reference

frames (called candidate blocks) and the most similar one is selected as the best match. As

result, the ME delivers (1) a motion vector indicating the displacement between the current PU

position and the best match, as well as (2) reference indexes that refers to the selected reference

frames.

41

Reference Frame 2

Reference Frame 1

Search Window

Current CTU

Already coded
CTUs

Current
PU

Current Frame

Reference Frame 0

Co-localized
PU postion

ME start
point

Candidate
blocks

...

Similarity
Comparison

Best
match

Best
match

PU frame
postion

Motion
Vector

xPU

yPU

Figure 2.10: Basic concepts related to the Motion Estimation process.

Due to the typical adopted frame rates, the best match tends to be found in positions closed

to the current PU position. Thus, the ME search typically starts in reference frames positions

near to the co-located current PU position. Furthermore, there is also a demonstrated correlation

between the motion properties between neighboring PUs. Typical ME engines adopts an initial

computation to slightly change the ME start point according to the motion vectors generated

during previous ME of neighboring PUs (called motion predictors; illustrated in Figure 2.10).

To limit the ME search range, a common decision is to restrict the candidate blocks to a squared

region of the reference frame called search window. If motion predictors analysis is supported

to displace the ME start point, the search window is moved accordingly.

After the ME, the Motion Compensation (MC) utilizes the motion vector and the reference

frame indexes to build the predicted block. The MC needs to fetch (from the DPB) the candidate

block that was selected as the best match for the current PU. This is necessary for the posterior

residue calculation, which must be sent to transforms and quantization steps. HEVC also

exploits additionally techniques to increase inter-prediction efficiency, like fractional ME (with

quarter-pixel precision for luma samples). These strategies will not be discussed in this text

since they are out of the scope of this work.

In order to guide the ME search within the search window, several motion search algorithms

have been proposed since previous video coding standards. The HEVC HM reference software

implements two important ones: the Full Search, representing the exhaustive search option that

leads to the optimal case; and the Test Zone (TZ) Search (PURNACHAND; ALVES;

NAVARRO, 2012), being the heuristic-based solution that provides sub-optimal results.

The idea of Full Search is to compare the current PU with all possible candidate blocks

inside the search window. By starting with the candidate block from the upper-left corner of

the search window, the algorithm checks its similarity with the current PU. This process is

repeated for the candidate block that begins one sample to the right. The search window is

scanned in a raster order until the bottom-right corner of the search window is reached. Due to

this exhaustive approach, Full Search achieves the best rate-distortion results. However, the

number of comparisons grows in a quadratic order. As alternative, HM implements the TZ

Search as a fast search algorithm, which is based in local greedy decisions with the goal of

42

directing the search to iteratively catch the motion. Compared to the exhaustive search option,

the TZ Search achieves speedup rates of 23x with insignificant losses in the coding efficiency

(PURNACHAND; ALVES; NAVARRO, 2012.

Although the motion search algorithm directly affects the ME efficiency, the similarity

criterion has also an important role. A widely adopted metric for ME similarity evaluation is

the Sum of the Absolute Difference (SAD), which was already presented in Section 2.1.4.

 Parallelism Support of HEVC: Tiles

An important innovation of HEVC is the definition high-level parallelization features to

speedup the encoding process. This work focus on the coarse-grain parallel support of HEVC

called Tiles. When Tiles usage is enabled, the picture is divided into rectangular-shaped groups

of CTUs separated by vertical and/or horizontal boundaries (MISRA et al., 2013). The number

of Tiles and the local of their boundaries can be defined for the entire sequence or changed from

frame to frame (SZE; BUDAGAVI; SULLIVAN, 2014). Further, the Tiles can be partitioned

in uniform or non-uniform ways. Figure 2.12 depicts an example of Tiles partitioning:

composed of three rows and three columns, totalizing nine Tiles disposed in a non-uniform

format.

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

Tile 6 Tile 7 Tile 8

CTU

Tiles Boundary

Figure 2.11: A video frame divided into nine Tiles.

Tiles boundaries do break parsing and prediction dependencies to that all CTUs within a

Tile can be encoded independent from CTUs of other Tiles. Only filtering operations can still

cross Tiles boundaries in order to prevent Tile border artifacts (SZE; BUDAGAVI;

SULLIVAN, 2014).

Figure 2.12 depicts a practical 4-Tile partitioning and the corresponding association with a

4-core manycore processor. As already defined, the CTUs of different Tiles can be processed

without any dependencies with each other. This offers the opportunity of parallel processing

between such CTUs.

The main research field of this work is based on the Tiles partitioning support of HEVC

encoders. There are several research challenges involved in the hardware and software support

for parallel HEVC using multiple Tiles. This works focuses on solving the memory issues of

supporting multiple processing cores (each one processing a specific Tile) simultaneously

accessing the same infrastructure for storing and fetching data. As already motivated in Section

1.1 and further evaluated in Chapter 4, the increased computational complexity inserted by the

novel coding structures of HEVC, allied to the possibility of parallel encoding, poses a

43

challenge of ensuring energy efficiency to the encoder memory infrastructure to enable parallel

HEVC encoding into embedded system applications. At the same time, the adopted memory

hierarchy must ensure enough data bandwidth to properly feed the processing cores.

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Video Frame Many-core Processor

Core 0

Core 1

Core 2

Core 3

M
e
m

o
ry

H

ie
ra

rc
h

y

Figure 2.12: 4-Tile partitioning of a video frame and a typical processing assignment for a 4-core

manycore processor.

The main propositions of this work are strongly based on exploiting novel memory

technologies and organizations to compose energy-efficient video memories. Thus, the

following sections introduce these memory technologies. The main intention is to define the

main electrical characteristics that will base the ideas of the proposed memory architectures.

 Memory Technologies

This section shows background concepts regarding the adopted memory technologies in this

work. Initially, details regarding SRAM cell characteristics and its organization to compose

memory arrays are presented. After, the properties of emerging STT-RAM cells are discussed.

 Static Random Access Memory (SRAM)

2.3.1.1. 1-Bit SRAM Cell

SRAM is the type of memory used as the building block of the most type of on-chip

memories, like caches and scratchpad memories. As SRAM uses the same fabrication process

as the nowadays processors, it leads to a simply integration onto the processor die. The basic 1-

bit SRAM cell is implemented as two cross-coupled inverters, which are accessed by using two

pass transistors, as depicted in Figure 2.13a. The cross-coupled connection builds a regenerative

feedback that enables it to an indefinitely storage of one data bit. This configuration has one

interface that allows either read or write operations, but not both simultaneously (JACOB; NG;

WANG, 2010).

BL BLB

WL

Basic 1-bit SRAM Memory Cell Full-CMOS 6T Implementation

WL

BL BLB

Figure 2.13: (a) Basic 1-bit SRAM cell organization and the (b) widely-adopted Full-CMOS 6T

memory cell.

For a read operation, the word line (WL) is asserted and, as result, the stored bit is detected

by the voltage differential between the bitline pair (BL and BLB). To write a specific bit into

44

SRAM cell, the BL pair is driven with a differential voltage from an external source to force

the data onto the memory cell.

2.3.1.2. Multi-Bank SRAM Array

Figure 2.14 depicts a basic example of a N-bank SRAM memory organization. Each

memory bank is composed of a matrix of SRAM cells (implemented as in Figure 2.13). The

cells from the same memory line are connected by the same WLRow, where Row represents the

SRAM memory line position. Additionally, all memory cells that store the bit of same word

position share the same bitlines. As memory peripherals, a row address decoder receives the

input address line (3-bit address in the example of Figure 2.14) and activates only the

corresponding word line. Sense and write amplifiers (SA and WA in Figure 2.14) are disposed

to deal with differential encoding of bitlines and to drive the data in/out from/to input and output

memory pins. Further, a precharge circuitry is required to ensure precharged bitlines at the

beginning of read and write operations. To provide higher data bandwidth, the memory can be

organized into multiple banks.

R
O

W
 D

EC
O

D
ER

SA SA

...

Bank-(N-1)
PRECH. CIRC.

WA WA
D

A
TA

 IN

DATA OUT

R
O

W
 D

EC
O

D
ER

SA SA

...

Bank-1
PRECH. CIRC.

WA WA

D
A

TA
 IN

DATA OUT

R
O

W
 D

EC
O

D
ER

SA SA SA SA SA SA

...

WL0

WL7

Bank-0
PRECHARGE CIRCUITRY

WA WA WA WA WA WA

D
A

TA
 IN

DATA OUT

A
D

D
R

ES
S

Figure 2.14: Simplistic example of an N-bank SRAM memory array: each bank composed of a matrix

of 8x16 1-bit memory cells; each memory line stores a 16-bit memory word.

The following steps are necessary to perform a read operation: (1) the incoming address is

decoded and one memory line is selected (WLRow is set); (2) the access transistors of all memory

cells of the selected WLRow line are activated and the stored bits are passed to the bitlines (in a

differential encoding); (3) the sense amplifiers are turned on to amplify the small difference

voltage at each bitline pair into full-swing logic signals; and finally, (4) all bitlines are

precharged to VDD and get ready for next read/write operation.

The steps for a write access are: (1) the incoming address is decoded and one memory line

is selected; (2) simultaneously to step 1, the write amplifiers generate the required voltage

differential at bitlines to flip the memory cell state (when necessary); (3) cell flipping process

takes place (when the stored bit is opposite to the value that is being written); and, at the end,

(4) the precharging process reset the bitlines for the next access (CHENG; HUANG, 2005).

2.3.1.3. Energy Consumption in SRAM Arrays

There are two main sources of power dissipation for SRAM (also for CMOS circuits): static

and dynamic energies; see Equation (5) (ZATT et al., 2016). The static power is a result of the

leakage currents. When the input voltage is lower than the NMOS transistors threshold voltage,

in an ideal case, the NMOS transistors do not conduce any current. However, in a real case

45

CMOS transistors do not completely block this current: called leakage current. The closer are

the input and threshold voltages the stronger the leakage. The same happens for the PMOS

transistors of SRAM cell. Equation (6) presents the static power dissipation formula, which is

function of the leakage current (ILeakage) and of the supply voltage (VDD). It is important to note

that the static energy is consumed even when no memory accesses are performed.

The dynamic power of SRAM cells is composed of two main components: the switching

and the short circuit power components (see Equation (7)). The switching portion represents

the power that is dissipated during flipping of the transistors state. It can be note in Equation

(8) that the switching power (PSwitch) is function of: switching activity (α), operation frequency

(f), load capacitance (CL) and VDD. Moreover, the short circuit power (Equation (9)) happens at

the moment that the input transistor gate signal changes from ground to VDD, and vice versa.

There is a specific input voltage where both PMOS and NMOS transistors are conducing,

leading to a short circuit current (IShort).

PSRAM_Cell = PStatic + PDynamic (5)

PStatic = ILeakage × VDD (6)

PDynamic = PSwitch + PShort (7)

PSwitch =
1

2
α × f × CL × VDD

2 (8)

PShort = IShort × VDD (9)

ESRAM_Cell = PSRAM_Cell × t (10)

The overall energy consumption of a SRAM cell is calculated by taken the power dissipation

along the time (t); see formula in Equation (10). By analyzing the components that compose

the energy consumption of a SRAM cell, some insights can be performed in order to reduce it.

Adaptive power management can be performed by employing power-gate circuitry and proper

management to turn of unused memory cells (VDD equals to zero). Another way of managing

energy is to reduce the switching activity: leading to reduced switching power (dynamic

portion).

Recent manycore processors implements large SRAM arrays as last-level caches to provide

inter-cores data reuse and to support the required memory bandwidth from massive parallel

applications. In some cases, 128MB of on-chip storage is required for state-of-the arte

manycore processors (SAMPAIO et al., 2015). Large SRAM arrays suffer with high static

power dissipation due to the huge usage of memory cells, as well as their peripheral circuitry

(previously explained in Section 2.3.1.2). Emerging memory technologies have emerged as an

attractive alternative option for implementing large-sizes on-chip memories. The Spin-Transfer

Torque RAM (STT-RAM) stands out as one of the most promising technology. This work

adopted this technology to implement hybrid video memories aiming on taking advantage of

the low-power features of this emerging technology. Details regarding STT-RAM memory

technology and its multi-level cells design are presented in the following section.

 Spin-Transfer Torque RAM (STT-RAM)

As an emerging memory technology, the Spin-Transfer Torque SRAM (STT-RAM)

(DONG et al., 2008) provides higher density, better scalability and low static power features

compared to the SRAM. In other aspects SRAM is still much more efficient, like in terms of

write power and overall performance. Table 2.1 presents a subjective comparison between

46

SRAM and STT-RAM technologies6, where the dark-gray cells represent the best scenario of

each parameter.

Table 2.1: SRAM vs. STT-RAM Technologies (DONG et al., 2008)

Tech.
Energy Latency

Volatility
Static Read Write Read Write

SRAM HH L L L L Volatile

STT-RAM L L HH L H Non-Volatile

The on-chip video memories have a particular property that facilitates the STT-RAM usage:

they have a relatively low write intensity compared to a very high read intensity (SAMPAIO et

al., 2014a). As the on-chip video memories implement data-reuse schemes for the search

window samples, only a few data of the reference frame would be written to start the next CTU

prediction. Once the needed data is stored on chip, the motion estimation massively accesses

the on-chip video memory until the best match is found. As can be noticed in Table 2.1, the

STT-RAM energy and performance are poor for write operations compared to that of the

SRAM. Thus, video coding is a promising application for STT-RAM based hybrid memories.

STT-RAM is also known to be a non-volatile memory (NVM). This characteristic is very

important for on-chip video memories, since parts of the memory may be switched-off (no static

energy consumption) while keeping the data stored, leading to no extra external memory

accesses to re-fetch the information. However, the NVM cells lifetime (aka. endurance

property) highly depends on the bit-toggling activity of the writing operations (WU et al., 2010).

If improperly balanced, the lifetime of a STT-RAM cell can be significantly reduced,

compromising the overall memory system performance. Therefore, there is a need for memory

data management policies to increase the NVM lifetime in a hybrid video memory design.

2.3.2.1. 1-Bit STT-RAM Cell

Spin-Transfer Torque RAM (STT-RAM) cell stores one logic bit in a magnetic tunneling

junction (MTJ) – an oxide layer between two ferromagnetic layers. In this work, the “1T1J”

structure was adopted for 1-bit STT-RAM cell, being composed of: (a) one NMOS access

transistor with its gate connected to the WL (as in previously presented SRAM layout); (b) one

MTJ that effectively stores the logical bit under magnetic principles. Figure 2.15 illustrates the

schematic and the structural view of the 1T1J 1-bit STT-RAM cell. The source of the NMOS

is connected to the source line (SL), and one side of the MTJ is connected to the bitline. The

resistance value of the MTJ is determined by the relative magnetic field direction between these

two layers (DONG et al., 2008). One layer has fixed magnetization (called reference layer).

The other can have its magnetization changed due to a polarized programming current (called

free layer). In a 1-bit STT-RAM cell, ‘low resistances’ due to parallel magnetization and ‘high

resistances’ due to anti-parallel magnetization represent the logic bits ‘1’ and ‘0’, respectively

(as shown in Figure 2.15c).

6 The terms L, H and HH are used for a subjective comparison between STT-RAM and SRAM regarding its electrical characteristics: “L”

means low, “H” means high, and “HH” means very high.

47

BL

SL

WL NMOS

Free Layer

Reference Layer

MTJ

M
T

J
re

si
st

an
ce

WL

SL BL

NMOS
0 1

#
O

cc
u

rr
e

n
ce

MTJ resistance

(c)(b)(a)

Figure 2.15: Spin-Transfer Torque RAM (STT-RAM) 1-bit cell (a) schematic view; (b) structural

view; and (c) resistance range distribution to represent logic bits “0” and “1”.

The read operation respects the following steps: Initially, (1) a small negative voltage

difference is applied on BL relative do SL; then, (2) this lead to a current passing through MTJ,

which should be small enough to not trigger a write operation; (3) the sense amplifier compares

this current with a reference one, deciding if a “0” or “1” logic bit is stored in the memory cell.

To perform a write operation: (1) when “0” logic bit is being written, a positive voltage is

established between SL and BL, and, for a “1” writing, vice versa; (2) the current amplitude

necessary to reverse the direction of the ferromagnetic layer is determined by the MTJ size and

the write pulse duration: the smaller is the MTJ or the longer the write pulse, the less the

switching pulse is needed.

An important feature of recent STT-RAM technology achievements is the integration with

CMOS-based SRAM arrays. The interface provided by STT-RAM cells (WR, BL and SL) is

compliant to the SRAM cells (Section 2.3.1). Although fabrication process of STT-RAM incurs

extra cost and additional fabrication complexity, mainly to integrate with CMOS logic,

technology advances it this field have been enabling the utilization of this technology for both

off- and on- chip memory arrays. In this work, it is proposed efficient ways of using STT-RAM

as on-chip video memory, in combination of SRAM, to provide energy savings to the reference

frames storage.

48

3. STATE-OF-THE-ART RELATED WORKS

This chapter has the goal of discussing the related works to situate the main contributions

of this Thesis inside the different state-of-the-art research fields. Initially, related works for

general-purpose processing are analyzed (Section 3.1). In this first part, scratchpad memories

and hybrid memory design challenges and opportunities are discussed. Then, initiatives for

parallelization of video coding are evaluated (Section 3.2), as well as the gap of memory-

optimized solutions to support energy-efficient parallel HEVC implementations. In sequence,

works that exploited application-specific video coding properties for memory optimization are

discussed (Section 3.3). After that, energy-efficient video memory architectures for non-

parallelized and Tiles-parallelized video coding are discussed in several aspects (Section 3.4).

At this part, detailed comparison between the proposed ideas is performed. At the end, a

description of preliminary works that bases Hy-SVM architecture is presented (Section 3.5).

 General-Purpose Energy-Efficient Memory Works

Energy efficiency has been the target of lots of works in general-purpose multi-core systems

in the last decades. In this section, two key memory design research fields are analyzed: the

adoption of scratchpad memories and the exploration of emerging memory technologies in

hybrid design. Before moving to application-specific exploitation of such techniques, brief

discussions regarding general-purpose applications are presented.

 Scratchpad Memories

As opportunity for application-specific applications, scratchpad memories (SPMs)

overcome/alleviate the hardware overhead of caches. In SPMs, instead of providing hardware

support for mapping data/code between off-chip and on-chip memory, the designer and/or the

programmer/compiler are responsible to perform access management. If well designed, SPMs

allow energy savings of up to 30% compared to complete cache memories (BANAKAR et al.,

2002). SPMs are widely available to be used as high-performance and energy-efficiency on-

chip storage option in nowadays processor chips (IBM RESEARCH, 2013; TEXAS

INSTRUMENTS, 2017). Furthermore, recent advances on SPMs design and management

techniques allowed its usage on nowadays system-on-a-chips and graphic processing units

(ALVAREZ et al., 2015; HANSEN et al., 2017; MONAZZAH; FARBEH; MIREMADI, 2017;

VILLEGAS et al., 2017). In this work, we utilize SPMs as opportunity for designing

application-specific on-chip video memories, enabling energy savings by exploiting the

knowledge from the HEVC encoding.

Power efficient management of these scratchpad memories is of key importance. External

memory pressure and on-chip scratchpad memory management for high-performance

manycore systems have been explored in (JEONG et al., 2012; PILLA et al., 2012). However,

these works do not account for the application-specific properties, thus may not be efficiently

applied to compose on-chip video memories.

 Hybrid Memory Design

The hybrid memory design exploiting the development of emerging non-volatile memory

technology has been research target during the last years (ABE et al., 2012; CHEN et al., 2012;

DONG et al., 2008; JOG et al., 2012; KHAN; SHAFIQUE; HENKEL, 2013; LI et al., 2009;

WU et al., 2010). These works provide a solid foundation to enable these emerging technologies

feasible to be integrated with CMOS logic circuitry of nowadays embedded manycore

processors. However, these works may not efficiently support the video coding high memory

demand, since they did not take into account application-specific properties.

49

STT-RAM stands out as one of the most promising emerging memory technology, being

target of industry research interests. Some commercial and academic initiatives highlight STT-

RAM feasibility to be utilized: in standalone data storage systems (LAPEDUS, 2017;

MERTENS, RON, 2018), as external memory alternative (JIN; SHIHAB; JUNG, 2014;

KÜLTÜRSAY et al., 2013), as embedded storage option for specific applications (like

multimedia, automotive and display panel) (MERTENS, 2017), as well as integrated into multi-

core processors to implement last-level caches (AHN; YOO; CHOI, 2016; IMANI; PATIL;

ROSING, 2016; KHOSHAVI et al., 2016).

One critical issue regarding non-volatile memories (like STT-RAM) is their limited

endurance, which may lead to wear-our errors occurrence. It not well managed, such data loss

may result, in the worst case, on application unexpected failures. Even with recent advances on

fabrication process of non-volatile memories, state-of-the-art works have been proposed

different management schemes aiming on alleviating STT-RAM cells from frequent bit toggles

during write accesses (ARJOMAND et al., 2017; KIM; KIM; LEE, 2017; MIN et al., 2017;

REED et al., 2017; YAZDANSHENAS et al., 2014); thus resulting on extended lifetime. The

improved endurance achieved by these techniques are limited due to the requirements of

considering general-purposed memory access behavior. In this work, application-specific

properties could be leveraged as opportunity to further increase STT-RAM cells lifetime.

 Tiles-Parallelized HEVC Works

 HEVC Hardware and Software Implementations

HEVC performance and energy constraints have been addressed in recent state-of-the-art

implementations. For the decoding part, efficient software (STROGENE.COM, 2018) and

hardware (CHIANG et al., 2016; LIU et al., 2015; ZHOU et al., 2017) implementations are able

to reach enough processing rates without strongly affecting the overall energy consumption.

However, the encoder reunites the most complex coding space exploration tools, imposing

much more challenges for designing energy efficient implementations. In this context,

parallelization features have been exploited to allow software and hardware for HEVC encoders

(CHEN et al., 2016; CHO et al., 2015). In the same way that performance is improved,

parallelization of the video encoding highly aggravates the energy consumption of HEVC

encoders, especially for the off- and on-chip video memories. Thus, the challenge is to increase

the energy efficiency of the video memory infrastructure for parallelized HEVC encoders

requirements.

 HEVC Parallelization Strategies

Several works have exploited HEVC high-level parallelization features to achieve

performance speedup, especially for encoder implementations. In this context, different

strategies were developed to properly define the best Tiles partitioning of video frames for

parallel processing (BLUMENBERG et al., 2013; CHI et al., 2012; JIN; DAI, 2016; KHAN;

SHAFIQUE; HENKEL, 2014; SHAFIQUE; KHAN; HENKEL, 2014).

In Blumenberg et al. (2013), variance maps from the raw video are used as hint to determine

the best Tiles boundary locations. The scheme adopts a 2-step algorithm to group the higher

correlated samples into the same Tile. The Tiles partitioning can be updated for each encoded

frame. The main concern is related to determine the breaking points of spatial references that

will result in lower coding efficiency losses.

Chi et al. (2012) provides efficient implementations of HEVC tools for parallel processing

(Tiles and WPP). Afterwards, it was proposed a novel parallelization tool, called overlapped

50

wavefront approach, which achieves higher performance and coding efficiency than Tiles and

WPP schemes.

Khan (2014) relies estimating the total workload in an Intra Only HEVC encoder to

determine the best Tiles partitioning. To adapt the Tiles-specific workload to the available

processing capabilities, a scheme that manages the complexity knobs of the encoder were

proposed. Further, to maximize the power efficiency, the operation frequency of each

processing core is adapted depending upon the workload required for the corresponding Tile.

Shafique (2014) targets on minimizing the total power consumption by adapting the Tiles

partitioning to activate an appropriate number of cores according to video-related processing

demands. The best way of partitioning the video frame is the one that maximizes the coding

efficiency and, at the same time, fulfills the throughput scenarios.

As can be noted by the above discussed schemes, they typically take into account the

workload of each HEVC processing unit to define the best Tiles organization. Indeed, a well-

balanced workload is an important factor when focusing on maximizing performance and

minimizing power dissipation of a HEVC encoder. However, crucial issues regarding the

storage and transmission of HEVC data in off-chip and on-chip video memories are not

considered in these works. In a parallel-processing system, the memory infrastructure is highly

required, leading to energy wasting if not properly designed and managed. Hence, it can be

observed a gap of energy-efficient video memories to support parallel HEVC hardware- and

software-based implementations.

Only Jin (2016) has concerns regarding the impacts of Tiles-based HEVC parallelization in

the video memories. Jin (2016) proposed a content-adaptive Tiles partitioning to improve the

HEVC compression efficiency under on-chip memory constraints. Based on maximum Tiles

dimensions due to fixed on-chip memory size for the CTUs line buffer, the scheme employs a

local competition optimization-based rectangular clustering scheme to partition the frames into

a required number of Tiles adapting to video content variations. As shortcoming of this work,

the proposed scheme focus on optimizing the memory design exploiting only intra-Tile data

reuse, not considering the potential of inter-Tiles data reuse. Further, video memories

characteristics of very high read intensity (compared to write operations) are not exploited in

the work. Therefore, to address this gap our work focus on exploiting the inter-Tiles data reuse,

as well as intrinsic video memories characteristics (like high read access intensity).

Furthermore, another important aspect is the external memory pressure that may be

unbalanced due to different video properties at each Tile region within the video frame (as

motivated in Section 4.2). If not well managed, it might lead to low/high power peak

fluctuations and off-chip communication channel wasting. To address this issue, we propose a

memory pressure management, which integrates Hy-SVM, to properly balance the instant

memory requirements in a Tiles-parallelized HEVC encoder.

 Application-Specific Memory Optimization for Video Coding

This section presents application-specific memory optimization schemes and architectures

for video coding. As a widely used solution, traditional data-reuse schemes are presented and

compared to the adopted strategy by Hy-SVM. Moreover, state-of-the-art reference fame

compressing techniques for H.264/AVC and HEVC are presented and discussed, regarding

their main shortcomings for parallel video coding. After, ME hardware architectures for HEVC-

specific coding structures are presented. The main goal is to analyze the adopted on-chip

memory infrastructure. At the end, video memories architectures for decoders are analyzed.

51

 Data-Reuse Schemes

During the past decade, multiple works developed data-reuse schemes for the reference

frames samples (CHEN et al., 2006; GRELLERT et al., 2011; TUAN; CHANG; JEN, 2002).

In such works, the regularity of fetching the entire search window samples was exploited, even

when fast search algorithms are adopted, which may not access the entire search window.

Tuan (2002) and Chen (2006) were the first works to exploit the data locality between

neighboring search window samples in video coding applications. Level-C strategy (Figure

3.1a) relies on keep stored in on-chip video memory one entire search window. In doing so, due

to the overlap between neighboring search windows (dark gray area in Figure 3.1a), just the

remaining samples are required to be fetched from external memory. In Level-C, considering

the traditional raster scan encoding order, a complete data reuse exploitation can be performed

for one entire row of search windows. In a frame width level, Level-D (Figure 3.1b) scheme

stores the entire row of search window in the on-chip video memory. Thus, besides exploiting

the data reuse in the entire row of search windows (as Level-C), Level-D allows data reuse

when the first block of the next row is processed (as depicted in Figure 3.1b). Moreover, several

other schemes in different levels were also proposed in these works (Level A, B and C+). In

the evaluations of this Thesis, Level-C and Level-D were adopted for comparison purposes.

SWH

S
W

V

0 1

Search

Window 0

Search

Window 1

SWH + N

S
W

V

FrameW

0 1

M

2 3 M-1

…

Search Window

Row 0

Search Window

Row 1

S
W

V
+

 N

(a) Level-C (b) Level-D

Figure 3.1: (a) Level-C and (b) Level-D schemes, which exploit intra-Tile data reuse in search window

and frame width levels, respectively.

Sampaio (2013a) presented a data-reuse scheme in a different perspective (compared to

Level-C and -D), when targeting multiview video coding scenarios. The proposed strategy,

called Reference-Centered Data Reuse (RCDR) changes the ME processing order to reduce the

number of times that one reference frame is fetched. In multiview video coding, the reference

frame communication is aggravated due to the inter-view prediction, which exploits data

redundancy between different cameras (views) for the multiview video. Due to this out-of-order

processing, partial results are generated, which must have to be stored until can be discarded.

Table 3.1: Comparison of Data-Reuse Schemes

Work Target Data-Reuse Level
Inter-Tiles

Data Reuse?
Coding Order

Tuan (2002) – Level-C MPEG-2 Search window No Raster scan

Tuan (2002) – Level-D H.264/AVC
Reference frame width

(within the same Tile)
No Raster scan

Sampaio (2013a) –

RCDR

Multiview

H.264/AVC
Search window No

Reference-centered

order

This Work – Hy-SVM
Parallelized

HEVC

Multi-level - Search

window and (L1)

Reference Frame (L2)

Yes
Balanced-pressure

CTU re-scheduling

52

Table 3.1 summarizes the above discussed data reuse schemes and compares them to the

strategy employed by Hy-SVM architecture. In terms of data-reuse level, Hy-SVM is the first

of proposing a multi-level approach, which jointly exploits search window (L1 SPMs) and

reference frame (L2 SPMs) levels of data reuse. Moreover, inter-Tiles data reuse is a novelty

introduced by the proposed video memory architecture, which increases the overall energy

savings by reducing external memory communication. Hy-SVM also adopts a CTU re-

scheduled order to balance the memory pressure in according to the video content properties.

 Reference Frame Compression Schemes

Reference frame compressing strategies are exploited since previous video coding

standards, and have the focus of reducing the data bandwidth from on-chip and off-chip

memories by compressing the reference frames data (GUO et al., 2016; GUO; ZHOU; GOTO,

2014; LIAN et al., 2016a, 2016b; SAMPAIO et al., 2013b; SILVEIRA et al., 2015; ZHU et al.,

2015).

Sampaio et al. (2013b) presented a lossy reference frame compressing scheme that employs

a spatial prediction scheme to reduce provide near-zero representation of reference frame

blocks, allowing efficient data compressing utilizing Huffman tables. The proposed strategy

was developed for H.264/AVC multiview video coding memory requirements.

Silveira et al. (2015) implemented a low-complexity and lossless reference frame

compression solution that performs intra-block double differential coding over 64x64 blocks to

prepare them for static Huffman coding. Furthermore, hardware implementations of

compressor e decompressor parts were designed, indicating power reduction in both on- and

off-chip memory parts.

In Guo (2014), a hybrid spatial-domain prediction is proposed, which is enhanced with

additional modes to support various image characteristics. After that, efficient residual

regrouping based on semi-fixed-length coding improves compression performance. A hardware

implementation was designed to implement and evaluate the proposed techniques. Results

indicate enough performance to support 3840x2160 HEVC encoding.

Zhu (2015) proposed an architecture that overcomes limitations of implementing frame re-

compression techniques in HEVC video codecs. The work also provides easy connection with

all video coding implementations.

Lian et al. (2016a) focused on improving the reference frame compression performance of

state-of-the-art lossless algorithms, which noticeably degrades the external memory access

latency. In doing so, the work developed an adaptive quantization oriented parallel lossless

frame memory recompression algorithm. Experimental results demonstrate applicability of the

designed hardware for compressor and decompressor parts for UHD videos, when utilized

along with data reuse schemes.

In the same direction, Lian et al. (2016b) improved the previous work by strongly adapting

the compression algorithm to the specifications of DRAM-based external memories. In this

context, read and write dynamic, as well as page activation behavior are considered in the

proposed scheme. Hence it improves off-chip energy savings compared to related works.

Guo et al. (2016) proposed a lossy reference frame compression algorithm that mostly

focuses on minimizing the error propagation, which causes increased quality degradation of

reference frames. As results, better and lower fluctuation in PNSR results were verified.

Even though these works can be applied to parallel HEVC encoding, they do not consider

parallel memory accesses issues from different processing units, leading to: compromised

scalability for increased parallelism, unsupported memory contention, and increased memory

53

access latency. Further, on-chip memory energy is even aggravated since multiple on-chip logic

circuitry must be inserted to keep the performance rates when various processing units are used

in parallel.

 Motion Estimation Architectures with On-Chip Memory Design for HEVC

Hardware design for motion estimation has been a key research challenge for recent video

encoders. In this context, architectures for ME were designed targeting MPEG-2 and

H.264/AVC specifications and requirements (PORTO; AGOSTINI; BAMPI, 2009; ROVATI

et al., 2000). However, HEVC increased ME computational complexity by allowing more

flexible block partitioning when compared to previous video coding standards (as already

discussed in Section 2.2.1). Hence, it poses harder challenges for energy-efficient ME targeting

HEVC encoders. To provide on-chip data storage support in such ME architectures, several

works integrate video memory design (FAN et al., 2017; JOU; CHANG; CHANG, 2015;

PARK et al., 2016; VAYALIL; KONG, 2017).

Fan et al. (2017) developed a hardware-oriented integer ME algorithm and the related

hardware implementation. For the reference frames management, the designed architecture

implements 2-D data reuse supported by horizontal and vertical reference SRAMs, along with

on-chip memory reduction supported by 4x4 block compression.

Jou (2015) presented a joint algorithm and architecture design for ME that reduces the

integer ME, complexity by selecting the most probable search directions and steps through

statistical analysis. Besides, a novel fractional ME scheme reduces the interpolation filtering

operations. These novel schemes contributes by increasing reference samples data reuse. It

adopts a cache design as on-chip video memory, optimized by double Z scan indexed

addressing to simplify access management.

Vayalil (2017) designed a full-search variable-block-size ME that reduces the memory

requirements by following a Morton order for data reading and a sum of absolute differences

reuse strategy.

Park et al. (2016) implemented a hardware architecture for ME using a modified reference

data access skip (MRDAS) scheme for reducing the minimum memory bandwidth. Along with

external memory communication reduction, coding efficiency is negligible degraded by the

proposed technique.

None of the above discussed works support parallel execution of ME when multiple Tiles

are defined. Parallelization of ME imposes the need of extra logic to implement multiple search

engines, as well as requires specialized memory support to provide higher throughput rates. In

doing so, the energy efficiency and performance of discussed ME architectures are significantly

compromised when used in parallel HEVC encoder implementations.

 Energy-Efficient Video Memory Architectures

The analysis of related energy-efficient video memory architectures is divided in three parts.

At first, solutions designed for multiview video coding specific requirements are discussed.

Then, video memories developed for HEVC are detailed and compared to the proposed Hy-

SVM. At the end, two preliminary hardware design, developed as initial approaches of this PhD

works, are detailed.

 H.264/MVC Related Works

Energy-efficient video memory design and management were already important research

focus since multiview video coding (MVC) extension of H.264/AVC standard was released.

MVC encoders highly require from memory since inter-view prediction is employed to exploit

54

disparity redundancies between frames from different views (cameras) (VETRO; WIEGAND;

SULLIVAN, 2011). In this scenario, energy-efficient video memory architectures were

strongly necessary. Several works focused on leveraging MVC memory behaviors and

multiview video content properties to increase the energy savings of on- and off-chip parts of

reference frame handling (SAMPAIO et al., 2013a; SHAFIQUE et al., 2012; ZATT et al.,

2011a, 2011b).

Zatt et al. (2011a) presented a run-time adaptive energy-aware motion and disparity

estimation architecture considering multiview video coding extension of H.264/AVC. The

memory infrastructure incorporates data prefetching techniques for jointly reducing off- and

on-chip memory energy consumption. Search maps from previous blocks processing are used

to predict the search behavior for the next blocks. Power gating is adopted to shut down parts

of the on-chip memory depending on the prediction. Unlike the already discussed data reuse

schemes in Section 3.3.1, the search window is not completely fetched, avoiding unnecessary

access of unused samples when fast search algorithms are not adopted.

An on-chip multi-banked video memory for motion and disparity estimation was proposed

by Zatt et al. (2011b). The memory organization was driven by an extensive analysis of memory

usage behavior for several videos. Memory restrictions for each block are derived from inter-

frame and inter-view correlations. When low motion regions are processed, adaptive power

gating works to reduce the energy supply of less probable unused on-chip memory sectors. Still,

reference frame fetching is performed as the ME requires, which saves memory accesses for

fast search algorithms, but leads to irregular access pattern in the off-chip memory.

Shafique et al. (2012) introduced an adaptive power management targeting on-chip video

memories for multiview video coding. The energy-aware control checks the so called 3D-

neighborhood for texture, motion and disparity properties to predict the behavior for the current

block encoding. As in the previous discussed works, not the entire search window is fetched,

causing irregular off-chip memory accesses.

Sampaio (2013a), besides contributing with the already discussed reference-centered data

reuse scheme (see Section 3.3.1), also implemented an on-chip video memory architecture

integrated with off-chip memory data organization and on-chip power management. In the off-

chip perspective, a regular access pattern and reference frame data organization allowed

reduced energy consumption by reducing DRAM page activation overhead. Further, a

candidate blocks merging scheme was proposed to provide accurate hints to power gating

control.

The H.264/MVC-based memory architectures are not scalable enough to be energy efficient

for HEVC encoders due to its novel coding tools and complex video processing flow. By not

taking into account the novel coding model of the advanced HEVC, these works are not able to

achieve higher levels energy savings, as motivated in the evaluations of Chapter 4. Moreover,

in Tile parallelized HEVC encoders, multiple processing units request data at the same time

from the shared memory system. Thus, several other factors need to be taken into account, e.g.,

memory contention and memory access scheduling schemes. Still, inter-Tiles data reuse was

not exploited by any of related works, which is required for energy-efficient parallel HEVC

encoders.

 HEVC Related Works

Khan (2013) proposed the first on-chip video memory architecture targeting HEVC

encoders, called AMBER. It is based on a hybrid memory design utilizing STT-RAM

technology. Additionally, it uses SRAM to implement FIFO buffers to hide the high write

latency of STT-RAM cells. AMBER exploits the low leakage features of STT-RAM to store

55

the entire DPB (i.e. all reference frames required to completely process one GOP of a video) in

the on-chip video memory. Moreover, the search window size and the memory access pattern

is leveraged as run-time parameters to apply adaptive power management, increasing the energy

efficiency of AMBER.

Song (2015) implemented an on-chip memory architecture (called HVM) which combines

SPMs and caches to achieve energy efficient data storage. A run-time prediction algorithm is

proposed to effectively identify the most-frequent accessed memory regions in the search

windows for processing individual CTUs. Depending on their intra- and inter-core reused,

private or shared SPMs are accessed. An adaptive power gating scheme power offs SPM sectors

with expired search windows, thus reducing static energy consumption.

Table 3.2 resumes the characteristics of presented energy-efficient video memory

architectures for HEVC, relating their proposed schemes with Hy-SVM implemented

strategies. AMBER has the limitation of not considering parallel video processing in its on-chip

memory design and management units, which is inevitable to achieve high throughput. In terms

of adopted on-chip memory organization. The three works utilize SPMs to simplify the access

management circuitry. Besides, AMBER implements FIFOs as first level of memory to reduce

write access latency. However, the implemented FIFOs are not effectively part of the storage

system that may provide a high potential of energy-/performance-efficient design. Furthermore,

AMBER stores all reference frames in the on-chip STT-RAM memories that incur high

frequent-write, thus performing inefficient management under such scenarios and may only be

feasible for a certain set of video resolutions. Another gap that is not addressed by AMBER is

related to STT-RAM lifetime improvement, since all on-chip memory write accesses are

performed in the STT-RAM part.

Table 3.2: Comparison of Energy-Efficient Video Memory Architectures Targeting HEVC

Khan (2013) –

AMBER

Song (2015) –

HVM

This Work –

Hy-SVM

Tiles-Parallelized

HEVC Support?
No Yes Yes

On-Chip Memory

Organization
FIFO and SPM SPM and Cache SPM

On-Chip Storage
Current CTU and entire

Decoding Picture Buffer

Current search windows

(distributed along private

and shared SPMs and
Caches)

Current search windows (private

L1 SPMs) and reference frame
(private and shared L2 SPMs)

Inter-Tiles Data Reuse No Yes Yes

Memory Technologies SRAM and STT-RAM SRAM SRAM and STT-RAM

Application-Specific

Management Schemes
-

Load search window

prediction algorithm

Overlap prediction, memory

pressure management and
lifetime-aware data management

On-Chip Management

Units

Power-gating control (for

memory cells) and clock-

gating control (for ME

engine)

Video memory

management unit and

power-gating control

Distributed MAMUs and

APMUs

In another perspective, HVM integrates caches to store portions of the search window.

SPMs are used to support a prefetching unit (called load window prediction algorithm).

However, both private and shared caches/SPMs are logically organized in the same memory

level, which means that the incoming memory access is directed either to private or shared

memory array. In another vein, Hy-SVM defines two level of on-chip memories, which reduces

the required off-chip memory communication. Hy-SVM adopts a light-weight caches to the

56

second level to alleviate high-bit-toggling write operations to SPMs (implemented as STT-

RAM), thus leading to improved endurance.

 Preliminary Works from This Thesis

As first initiatives from this Thesis, two on-chip video memory architectures were proposed

to initially exploit Tiles-parallelized opportunities to enable energy-efficient data management

to HEVC encoders. The proposed Hy-SVM architecture is based on research opportunities and

extended contributions from works.

Sampaio et al. (2014a) was pioneer on exploiting inter-Tiles data reuse to reduce external

memory communication, thus improving the off-chip energy savings. The proposed

architecture was called Distributed Scratchpad Video Memory Architecture (dSVM), being

composed of private and shared memory arrays to enable support for intra-Tile and inter-Tiles

data reuse, respectively. The adopted on-chip memory models are based on SPMs to simplify

control circuitry. A policy for energy-efficient memory management was proposed, which was

based on the identification of the overlap characteristics, which is estimated by a simple, but

efficient, overlap prediction engine. An adaptive power management scheme was also proposed

to shutdown memory cells outside the predicted overlap, increasing the on-chip static energy

savings.

Sampaio et al. (2014c) improves dSVM achievements by developing a dedicated hybrid

video memory architecture (called enHyV) focusing on parallel HEVC. enHyV combines

SRAM and STT-RAM using private and shared SPMs. A design space exploration was

performed to find the best optimization point to define the size of SRAM and STT-RAM

memory arrays. Although enHyV implemented shared SPMs to support inter-Tiles data reuse,

the focus was to demonstrate the contributions of STT-RAM technology to implement on-chip

video memories. In doing so, just a simple overlap management unit integrates enHyV

management layer. To deal with STT-RAM write inefficiency and endurance issues, it was

proposed a data management scheme that reduces bit-toggling inefficiency during write

accesses.

As limitation of dSVM, although inter-Tiles data reuse is exploited, its potential is not well

exploited in this work, since adaptive management is not performed considering variable video

content properties inside the same frame. Depending on the video properties (like low/high

motion), energy may be wasted by not properly manage the shared video memories.

Furthermore, to support on-chip overlap storage for reduced external memory communication,

the additional SRAM to improve the data reuse brings extra static energy consumption.

Therefore, merely using SRAM it becomes unfeasible when using a large number of processing

units.

By exploiting STT-RAM advantages of low static energy consumption, enHyV could

improve dSVM capability by keeping stored one entire reference frame. Combined shared and

private SPMs allows joint intra-Tile and inter-Tiles data reuse. The shortcomings of enHyV are

mainly related to the lack of efficient memory access and power management techniques to

deal with video content dependent overlap formation characteristics.

57

4. HEVC MEMORY DYNAMICS AND OVERVIEW OF PROPOSED MEMORY

ARCHITECTURE

This chapter presents preliminary analysis of memory dynamics of different HEVC

encoding scenarios. In the first part, the goal is to characterize and motivate the main problem

related to the memory infrastructure of HEVC encoders: the bottleneck caused by the intense

reference frames transmission and the need of large on-chip video memories (Sections 4.1 and

4.2). The overlap formation, which represents a key concept for the proposed Hy-SVM

architecture design and management strategies, is presented in Section 4.3. At the end, to link

with the insights from the presented motivational analysis, the main contributions of this work

are briefly introduced (Section 4.4) as start point for their technical description along the next

chapters.

 HEVC Memory Profiling

The external memory transmission to fetch the reference frames, as well as the on-chip

storage to keep the data available for processing, are the main responsible for the high

performance and energy restrictions in a HEVC encoder. These constraints are aggravated when

real-time processing is required for very high resolutions (like 1080p, 2K and 4K) and high

frame rates (like 60 fps and 120 fps). Furthermore, at the same time that parallelism can be

exploited to meet these performance targets, it also leads to even higher penalties in the energy

perspective, mainly when it is considered for the memory infrastructure.

Figure 4.1 presents some memory access evaluations of a HEVC encoder application:

HEVC test model 11.0, using the TZ Search ME algorithm. In the overall HEVC encoder

perspective (Figure 4.1a), note that the inter prediction is responsible for up to 80% of the

memory accesses for the encoded videos. As already mentioned, the inter prediction must

evaluate all CUs into the CTU structure. Besides, the ME search algorithms intensively access

the memory to scan the reference frames (typically stored off-chip). Specifically in the inter

prediction, only the reference frame fetching occupies the memory transmission channel in

45%. It is important to notice that TZ Search is a very fast and efficient ME algorithm, which

reduces the memory communication in 23x, when compared to the exhaustive search (Full

Search) (PURNACHAND; ALVES; NAVARRO, 2012). Thus, even when efficient ME

algorithms are chosen, the memory requirements stills significantly affecting the encoding

system.

M
e

m
o

ry
 R

e
q

u
e

st
s

[%
]

0%

20%

40%

60%

80%

100%

BDrive BQTerrace Cactus Kimono AVERAGE
0

0.2
0.4
0.6
0.8
1.0

0%

20%

40%

60%

80%

100%

BDrive BQTerrace Cactus Kimono AVERAGEBDrive BQTerrace Cactus Kimono AVERAGE0
0.2
0.4
0.6
0.8
1.0

0%20%40%60%80%100%

B
Dr

iv
e

RDO Inter Rest of HEVC

0%20%40%60%80%100%

BDrive

Rest of RDO Inter Residual Coding Motion Estimation

(a) HEVC Encoder Perspective

(b) Inter Prediction Perspective

Obs-1: Up to 80% of
memory requests comes
from Inter Prediction

Obs-2: Inside Inter Prediction: up
to 45% of memory requests
comes from Motion Estimation

BDrive BQTerrace Cactus Kimono AVERAGE

Figure 4.1: Memory requirements analysis for HEVC encoding.

58

 Tiles-Accumulated Memory Pressure Evaluation

In this work, memory pressure is defined as the memory access requirement caused by a

CTU processing during a specific time. When considering multiple processing units, the

memory pressure may be (1) Tile-specific, or (2) accumulated (sum of all Tile-specific

pressures). Typically, the motion estimation is performed in the traditional raster scan order

(i.e., from top-left to bottom-right corner in row-by-row order). However, this may lead to

unbalanced external memory pressure, as depicted in the 4-Tile example of Figure 4.2a. The

maximum and minimum memory pressure peaks can be seen in Figure 4.2b. There are

significant memory access variations compared to the average access case (that typically does

not happen). This unbalanced memory pressure leads to high power peak dissipations and high

instant memory bandwidth requirements, which may surpass the maximum availability

constraints. Moreover, such unbalancing also leads to inefficient memory power management

due to (1) fluctuations in the sleep durations, (2) frequent PON-POFF switching, and (3) memory

usage prediction errors due to sudden access variations.

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Actual Average

0

3

6

9

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Tile 0 Tile 1 Tile 2 Tile 3

M
e

m
o

ry
P

re
ss

u
re

[M
b

yt
es

]

CTU Processing Time [raster scan order]

32% of maximum peak variation

27% of minimum peak variation

Conclusion: Non-adaptive CTU raster processing leads to
unbalancing memory pressure along the HEVC encoding time

(a) Core-Specific

(b) Accumulated

Figure 4.2: Memory pressure for (a) each processing unit; and

(b) accumulated and average cases for BasketballDrive.

Therefore, the key is to leverage application specific-properties to adapt and re-schedule

the CTU processing in order to achieve the best possible memory pressure balancing.

 Inter-Tiles Data Reuse Evaluation

 Inter-Tiles Redundant Memory Access Evaluation

When multiple Tiles are supported by a HEVC encoder, each processing unit is responsible

to encode the CTUs of a specific Tile. Thus, the ME of each processing unit intensively searches

in the reference frame to capture the motion properties. For the CTUs located near the Tiles

boundaries, the ME search algorithms (depending on the motion direction) may access

reference regions located across the Tiles limits in the reference frames. This leads to redundant

memory access between adjacent Tiles processing. This data redundancy tends to grow for an

increased number of Tiles (assuming 1 Tile per processing unit). The data redundant access

trend is plotted for growing number of Tiles in the Figure 4.3. In the worst case, the redundant

accesses reach 43% in a 16-Tile HEVC encoder. As larger is the memory accesses redundancy,

more processing units must concurrently access the same reference data from the external

memory without any data reuse. Therefore, it may be beneficial to design dedicated on-chip

memories for the data redundant regions to avoid external memory retransmission of the Tiles

shared reference data, saving off-chip memory energy.

59

BDrive Beauty Bosphorus BQTerr Cactus Kimono PScene RSGo SNDry YRide NFest People SLTrain Traffic
0

10

20

30

40

50

A
cc

e
ss

 R
e

d
u

n
d

an
cy

[%
 o

f
re

fe
re

n
ce

 s
am

p
le

s] 2-Tile 4-Tile 8-Tile 16-TileHD1080 videos

2K videos

Figure 4.3: Redundant memory access between different processing units

(assuming 1 Tile per unit) growing trend for increased parallelism.

It can also be noted that the inter-Tiles memory access redundancy may vary depending on

the input video. For the HD1080 tested sequences, low-motion videos, like BQTerrace (4.7%-

37%) and Bosphorus (4.8%-35%) tend to have less inter-Tiles access redundancy when

compared to more complex sequences, like BasketballDrive (5.8%-43%) and Kimono (6.4%-

43%). High-motion videos require more search steps to ME in order to find the most similar

candidate block in the delimited search window within the reference frames. Thus, analyzing

the PUs of CTUs near to the Tiles boundaries, it can be noted that ME may require more

memory accesses across this barrier, leading to increased access redundancy between the

parallel HEVC processing units. Therefore, besides designating on-chip video memories for

shared reference data, there is a strong need of application-driven design methodology for

efficient SPMs sizing, as well as dynamic adaptation of memory management to be adaptive to

different video content properties.

The overlap concept, which is adopted in this work to exploit the characteristics of the

formation of the inter-Tiles memory access redundancy inside the reference frames, is presented

as follows.

 Overlap Concept

The strategies for inter-Tiles data reuse are based on the overlap concept. The overlap is

composed by reference frame samples that are accessed by two or more processing units during

the parallel Tiles processing. The samples near to the Tile boundaries in the reference frame

must be fetched/stored by multiple processing units, leading to external memory contention,

redundant memory accesses and extra on-chip storage (causing energy wastage). An example

in Figure 4.4a depicts the overlapping accesses performed for more than one processing unit

(gray and black regions). When observing the memory access maps (Figure 4.4b), it is possible

to notice that each processing unit will direct its searches to regions of reference frame

according to the correspondent Tile position. When these access maps are merged and the

intersection is analyzed (Figure 4.4c), the formed overlapping region can be observed.

Figure 4.6 presents the reference frame access maps of the overlap formations considering

the BasketballDrive sequence when encoded with uniforms partitioning with 2, 4, 8 and 16

Tiles. Note that the overlap constitution is observed around the Tiles boundaries, being

increasingly representative when more parallelism is adopted. The access maps confirm the

same growing trend of previous analysis illustrated in Figure 4.3. Additionally, different shapes

and access intensities can be observed along the different Tiles boundaries. In the example of

the initial part of BasketballDrive, which concentrates the high motion CTUs in the left and

bottom parts of the captured scene, the shape of the resultant overlap is itself heterogeneous.

We can observe this variability (1) within the formation around one specific Tile boundary, as

well as (2) between the formations of different Tiles boundaries. Therefore, to handle with this

variable content-driven behavior, specialized management for each Tiles-boundary overlap

60

along with dynamic adaptation of variable overlap shapes is strongly required to achieve

increase energy savings for both on- and off-chip memory parts.

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

Current Frame Reference Frame
Search Window

1000
500

0
0

1920 1080

0

Overlap

- Overlapped accesses in the
regions near to the tiles

boundaries (external
memory energy wasting)

0
1080

1920

0

x coord.

y
co

o
rd

.

Tile 0 Tile 1

0
1080

1920

0

x coord.

y
co

o
rd

.

0
1080

1920

0

x coord.

y
co

o
rd

.

0
1080

1920

0

x coord.

y
co

o
rd

.

Tile 3Tile 2

Reference Frame Access Map

Overlap Concept

(a)

(b) (c)

Figure 4.4: Overlap concept: (a) Example of Tile partitioning and of the overlap formation; reference

frame access maps (b) for each Tile (specific for each processing unit) and (c) for the formed overlap.

0

1920
1080

0

0

1000

4-Tile

0

1920
1080

0

0

1000

2-Tile

0

1920
1080

0

0

1000

8-Tile

0

1920
1080

0

0

1000

16-Tile

Figure 4.5: Reference frame access maps for the overlap formation in uniforms partitioning with 2, 4,

8 and 16 Tiles.

61

 Overlap Formation Parameters

Figure 4.6 depicts an example of the overlap formation, as well as its main parameters. Let

PUA and PUB be adjacent prediction units of CUs belonging to CTUs of different Tiles. Thus,

they are encoded by different processing units that concurrently access the external memory for

reference frame fetching. Typically, to determine the best ME start point, the most recent search

algorithms (as TZ Search) for ME use past motion vectors as predictors for this purpose.

Therefore, the motion properties of the Tiles boundaries neighborhood strongly affect the

memory access behavior. In the example of Figure 4.6a, the predictors exploitation lead to a

ME starting point at PredA and PredB for PUA and PUB, respectively. The ME search is

typically limited by a maximum range, forming a squared search window surrounding the

starting point. Inside this delimited area, the algorithm will search for the best match for the

current PU. Still in the example, Figure 4.6b and Figure 4.6c depict the search window

formation and the actual accessed regions during the ME execution for PUA and PUB,

respectively. Note that the search pattern of TZ Search was used as case study. As result of the

access merging for both PUs processing in the reference frame, the redundant memory access

of these two ME searches are highlighted in Figure 4.6d (dark gray region). In this intersection,

the reference frame samples are required for more than one processing unit, leading to

redundant accesses (if not properly managed). This redundancy is called overlap in this work.

Besides the dynamic ME starting point, the video properties (motion field) near the Tiles

boundaries may lead to memory access in different directions inside the search window. High-

motion regions will cause a more distant ME starting point and will take the ME to longer

searches. In this case, the overlap tend to have higher thickness and variable displacement

(when consider the Tiles boundaries as the central position for overlap positioning). To properly

subsidize the proposed overlap prediction scheme, detailed overlap characteristics exploitation

is performed in Section 6.1.1.

Search Window
ME
Starting
Point

ME Accessed
Area (TZ Search)

(b) PU A Perspective

Search Window
ME
Starting
Point

ME Accessed
Area (TZ Search)

(c) PU B Perspective

PU A PU B

Tile t Tile t+1

PredA
PredB

(a) Example

Tiles
Boundary

Redundant
Memory
Accesses
(Overlap

Formation)

Search
Window
Overlap

Tiles Boundary

Overlap
Thickness

Overlap
Displacement

(d) Overall Perspective

Figure 4.6: Overlap formation and its involved parameters.

In summary, the main involved parameters in the overlap formation are: (1) the maximum

search delimitation (search window) and (2) the motion field of frame regions near the Tiles

boundaries. The search window is typically a fixed parameters and known at design time. In

contrast, the motion field is a video content property that should be analyzed at run time.

62

 Overview of the Proposed Energy-Efficient Hybrid Scratchpad Video Memory

Architecture and Its Run-Time Management Layer

This section introduces the technical content related to the proposed energy-efficient hybrid

scratchpad video memory architecture and its run-rime management schemes. Figure 4.7

depicts an overall block diagram that introduces a parallel HEVC encoding system along with

all contributions from this work. The system is based on multiple Tiles partitioning to enable

parallel HEVC encoding: each Tile is assigned to a specific processing unit. As we focus on

energy-efficient memory support, there is not any specific assumption for the HEVC parallel

implementations, which may be designed as a multi-/many-core software or as ASIC-based

hardware accelerators. The external main memory provides storage to all required data of

HEVC encoding, like original and reference frames, instructions, HEVC coding structures,

temporal variables, etc. In special, the entire DPB (e.g. all reference frames that are required to

encode a video GOP) must be stored in the main memory.

Tile-Based Parallel HEVC Encoding

Tile 0 Tile 1

Tile 2 Tile 3

HEVC Properties
Analysis

Run-Time Memory
Monitoring

Application-Specific
Knowledge

Overlap Prediction
Section 6.1

Hybrid Scratchpad Video
Memory Architecture
(Hy-SVM) Chapter 5

On-Chip Memory

SRAM and STT-RAM

Private/Shared Memory Levels

Proc. Unit 0

Proc. Unit 1

Proc. Unit 2

Proc. Unit 3

Parallel HEVCExternal Memory

Reference
Frames

Original
Frames

External Memory

Other Data
(Instructions;

HEVC Data
Structures;
Temporary

Variables)

On-Chip Management Units

Memory Access
Management Unit

(MAMU) Section 6.4.1

Read and Write Policies

Memory Arbitering

Adaptive Power
Management Unit

(APMU) Section 6.4.2

Memory Management Layer

Memory Pressure
Management

Section 6.2

Lifetime-Aware Data
Management

Section 6.3

SPM-Based Design

Figure 4.7: Block diagram of the proposed memory architectures, divided according to on-chip

memory design and memory management layer perspectives.

To allow energy-efficient on-chip storage of the reference frame samples, an on-chip hybrid

scratchpad video memory (Hy-SVM) was designed, which employs private and shared hybrid

memories to exploit combined intra-Tile and inter-Tiles data reuse. In the memory management

layer, run-time adaptive schemes were developed relying on application-specific knowledge:

(1) overlap prediction, (2) memory pressure management, and (3) lifetime-aware data

management. Application-specific knowledge was exploited by: (1) inheriting HEVC

properties and (2) performing run-time monitoring of memory accesses. Such information is

used to properly design the on-chip video memories, as well as being utilized as input

parameters for the schemes inside the memory management layer. As on-chip management

units to control the data dynamics of Hy-SVM, distributed memory access management units

(MAMUs) and adaptive power management units (APMUs) are implemented. MAMUs and

63

APMUs receive information from the run-time management schemes to improve the energy

savings of Hy-SVM.

As follows, Chapter 5 technically describes the hardware design of Hy-SVM. After that,

Chapter 6 presents the specific details of the energy-efficient memory management layer.

64

5. ON-CHIP HYBRID SCRATCHPAD VIDEO MEMORY ARCHITECTURE

This chapter introduces the on-chip hybrid scratchpad video memory architecture

organization. At first, an overview of architecture design is presented (Section 5.1),

highlighting hardware-specific details. Then, the on- and off-chip memory models adopted by

the proposed architecture are descripted (Section 5.2). After, offline statistical evaluations of

overlap formations and bit-toggling activities are performed to extract design-time parameters

for designing the multiple level of SPMs (Section 5.3). The developed design methodology,

which provides proper parameters to implement the on-chip SPMs, aiming on minimizing the

energy consumption while guaranteeing the required reference data storage (Section 5.4).

 Overview of Hy-SVM Architecture

Figure 5.1 depicts our hybrid scratchpad video memory architecture (Hy-SVM) and its

energy-efficient management layer for parallel HEVC encoding. Each Tile is assigned to a

specific processing unit. The proposed memory organization increases the energy efficiency of

reference frames management (off-chip fetching and on-chip storage). The coarser lines in

Figure 5.1 represent data connections, while finer lines illustrate the control flow between the

modules.

Adaptive Power
Management Units

Parallel
HEVC Encoder

Memory
Access

Management
Units

Private L2
SRAM/STT-RAM HyMs

Tile-specific region in
reference frame Extern

al M
em

o
ry

(D
R

A
M

)
(O

rigin
al Fram

es;
R

eferen
ce Fram

es)

Proc. Unit 0

Proc. Unit 1

Proc. Unit n-1

Private L1
SRAM SPMs
Tile-specific

search window

PrivL20

PrivL21

PrivL2n-1

SharedL2Ver

MAMU0

MAMUOv

DRAM
Controller

APMU0

APMUOvAPMU1

APMUn-1 Shared L2
SRAM/STT-RAM

HyMs
Overlapping region
in reference frame

PrivL10

PrivL10

PrivL1n-1

SharedL2HorEnergy-Efficient
Management Layer

(Chapter 6)

MAMU1

MAMUn-1

Interconnect Bus

Figure 5.1: Block diagram of our hybrid scratchpad video memory architecture.

Our Hy-SVM architecture is organized as two levels of on-chip memory arrays:

L1 SPMs Level: NTiles private SPMs7 (PrivL1) that store the search window samples for a

specific processing unit, allowing intra-Tile data reuse between each CU processing. At this

level, the SPMs are implemented as SRAM arrays, providing equally high performance and

energy efficiency for read and write operations. Since PrivL1 SPMs represent smaller memory

cells arrays, SRAM static energy consumption does not significantly affect the overall energy

efficiency.

L2 SPMs Level: NTiles private (PrivL2) and NTilesBoundaries shared (SharedL2) hybrid

memories (HyMs) that together can store one complete reference frame, providing combined

intra- and inter-Tiles data reuse. Each L2 level HyM is designed as a combination of a STT-

RAM SPM, exploiting STT-RAM high density and low static power features to implement

large L2 data arrays; as well as a smaller portion of SRAM SPM, that will support high bit-

7 Let NTiles be the number of Tiles and NTilesBoundaries be the number of Tiles boundaries.

65

toggling write activities to overcome STT-RAM write inefficiency. The PrivL2 stores the Tiles-

specific region of the reference frame (accessed privately by the corresponding processing unit).

Each HyM of PrivL2 has a direct data connection to the corresponding PrivL1 SPM. The

SharedL2 HyMs are connected to the PrivL1 SPMs by an interconnect bus and it is responsible

for the overlapping regions storage.

Along with SharedL2 HyMs, inter-Tiles data reuse is managed by a run-time overlap

prediction that accurately estimates the redundant memory access behavior for the next ME.

This prediction step is based on already monitored overlap formations from previous frames

encoding. This knowledge is then forwarded to on-chip memory management hardware

modules: (a) memory access management units (MAMUs) and (b) adaptive power management

units (APMUs). They are responsible to effectively manage the on-chip memories by

implementing a read/write policy, as well as proper power gating control over memory sectors.

The goal is to achieve the best possible energy efficiency depending on the video content

properties. Details regarding the energy-efficient memory management layer are presented in

Chapter 6.

As follows, the adopted on- and off-chip memory models are described. The proposed Hy-

SVM design methodology is strongly based on these defined parameters.

 On- and Off-Chip Memory Models

Figure 5.2 depicts the adopted on- and off-chip memory models and the defined notations

for the main involved parameters for the design part.

The external memory is composed of several banks. Each bank is a row-column matrix,

where the number of rows represents the addressing space and the number of columns is directly

related to the page size (PSize). Each row-column intersection stores a memory word of size

WSize. Each memory access will initially cause a page activation, to pass the activated data to

the page buffer. If consecutive accesses to a memory word are located in the same page, the

memory controller needs just to address a specific column of the page buffer (called burst

read/write operations). If other memory page is addressed, the current active page is precharged

and a new page is activated. The external memory organization adopted in this work follows

the LPDDR2 architecture. Further details regarding the operation flow of the selected off-chip

memory model can be found at (MICRON TECHNOLOGY INC., 2001)

Every data transmission from/to memory is based on a fixed basic access unit (BU), which

corresponds to a BUDim*BUDim picture block of the reference frame (see Figure 5.2a). The

samples of a BU are organized in a serialized way, so that all rows of one entire BU can be

stored in the same memory page (see Figure 5.2b). Since the consecutive accesses to the same

memory page lead to less page-activation energy overhead, improved energy efficiency can be

achieved. Still, depending on the adopted BUSize and PSize, adjacent BUs of the reference frame

can be organized in the same page. Thus, when external memory communication is required,

then several BUs are accessed in one burst operation to increase the energy efficiency.

As on-chip SPM design, a multi-bank memory organization is adopted (see Figure 5.2c).

Each SPM is composed of NB memory banks. To facilitate parallel access, each row of a BU

is stored in a specific SPM bank. Hence, one line of a memory bank can store LS bits, equals to

the size of one BU row (BUDim * NBSample
8). The exception is the first SPM bank, which

additionally stores control information for memory access management (explained in Section

5.4). A Banki is composed of NL lines, grouped into NS memory sectors of SS bytes. The number

8 In this work, we consider video sequences represented with 8-bit samples.

66

of BUs per sector (NBUPerSector), which corresponds to the number of memory lines per sector

(NLinesPerSector), defines the power management granularity applied to the SPMs. The BUDim and

NBUsPerSector are design-time parameters and should be carefully decided by the hardware

designer.

Different sectors of the SPM can be individually power-gated using a multiple sleep-state

transistor model. In the proposed techniques, it was adopted models supporting two (for STT-

RAM arrays) and three (for SRAM arrays) power states: OFF, Data Retentive (DR) and

S3=ON, where EStatic(OFF) < EStatic(DR) < EStatic(ON). Still, each state have also increasing

associated wake-up energies (WE(OFF)> WE(DR) > WE(ON)= 0). The electrical parameters

of each power state to derive the static energy consumption and the overhead caused by the

wakeup energies considers the characterization performed by (SINGH et al., 2007).

(a) Reference Frame

BUDim

BUDim

Column Buffer

...
BUDim

BUDim x BUDim

BUDim BUDim BUDim

BUDim

...

Burst Reading
Exploitation(c) Scratchpad Memory Design (SPM)

(b) External Memory Organization

Bank-0 Bank-1 Bank-2 Bank-(NB-1)

Sense Amplifiers

ST

BUDim

ST

...

Se
ct

o
r

0

... Se
ct

o
r

1

...

...

Figure 5.2: Adopted organization for the off- and on-chip memory parts.

Before moving forward to the physical and logical design, offline statistics-driven design

space explorations were performed to improve the proposed design methodology of Hy-SVM

with all possible application-specific knowledge of HEVC encoding.

 Evaluations for Design Space Exploration of SPMs/HyMs Design

 Overlap Size Evaluation

The proposed design methodology of Hy-SVM leverages the Tiles overlap behavior that

depends on the search window size and on the video motion properties. Adaptive ME

algorithms change the center of their searches by using spatial predictors (i.e. motion vectors

of previously-coded CUs). Moreover, low motion CUs will lead to less memory access to search

window samples. Hence, the optimal overlapping memory size for each video sequence follows

a statistical distribution of the near-boundaries motion properties. Figure 5.3a depicts statistics

of the Tiles overlap varying the search window size. On average, the overlap linearly increases

with the growing of the maximum search range. The more or less concentrated distribution

around the average size hints towards the video motion properties. Different regions near the

Tile boundaries may have different motion characteristics, which leads to more or less memory

access overlaps.

67

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Overlapping Statistics (b) Motion Delta PDF

32x32 64x64 128x128 192x192 256x256
0

100

200

300

400

Search Window

O
ve

rl
ap

 T
h

ic
kn

e
ss

[#

sa
m

p
le

s]

1.4

1.2

1.0

0.8

0.6

0.4

0
0 10-10 -5 5

Motion Delta

0.2

P
ro

b
ab

ili
ty

BasketballDrive

Cactus

BQTerrace

Kimono

Figure 5.3: (a) Overlapping statistics for increasing search window size for evaluations with

BasketballDrive test sequence; (b) motion delta distribution for several video sequences.

1. determineMotionDelta(Video: V; TilePartitioning: TP):
2. ListΔ = [];
3. For all Frame Є V
4. For all TileID Є TP
5. PredMap[TileID] = [];
6. For all CU Є TileID
7. CU.performMotionEstimation();
8. PredMap[TileID].insert(CU.getUsedPredictor());
9. End For
10. For all TileBoundaryID Є TP
11. //Let SideA and SideB the two tile boundary sides
12. For all CUSideA, CUSideB Є TileBoundaryID
13. PredA := PredMap[TileSideA][CUSideA][CoordID];
14. PredB := PredMap[TileSideB][CUSideB][CoordID];
15. ΔValue := |PredA – PredB|;
16. ListΔ.append(DeltaValue);
17. End For
18. End For
19. End For
20. {µΔ, σΔ} = norm_dist(ListΔ);
21. return {µΔ, σΔ};

Figure 5.4: Motion knowledge extraction for SharedL2 SPM sizing.

To statistically define the motion property near a specific Tile boundary of a given video, it

was defined the ΔMotion (motion delta) metric as being the video correlated parameter used for

determining the overlap size, as presented in Figure 5.4. For each frame of the video and for

each defined Tile boundary, the algorithm obtains the used ME spatial predictors (lines 7-8).

The difference of the predictors used by the near-boundary CUs from the two Tile boundary

sides (SideA and SideB) is then calculated (lines 12-17). This difference will represent the

access search range of SideA CUs in the SideB reference frame region, and vice-versa. The

Probability Density Function (PDF) of the ΔMotion metric is then calculated (line 20), where µΔ

and σΔ are the statistical average and standard deviation, respectively, of the motion delta

parameters extracted from video encoding. The PDFs for HD1080p test sequences are plotted

in Figure 5.3b. It can be noted diverse behaviors depending on the input video: high motion

videos like BasketballDrive and Kimono present more spread distributions, while low motion

videos like Cactus and BQTerrace have more concentrated distributions.

 Design Space Exploration of HyMs

As already discussed, STT-RAM presents low static energy consumption while having high

density. It allows us to designate the most part of the HyM to be composed of the STT-RAM

array. In the meantime, BUs from the reference frame that cause high bit-toggling activity

strongly decrease the STT-RAM lifetime, minimizing its non-volatility advantage. Thus, a

small portion of SRAM is used to handle with these BUs. Although SRAM does not degrade

from bit-toggling activity, it costs a large area and a high static energy consumption. Therefore,

68

the main challenge involved in the HyMs design is to leverage application-specific properties

to design a well-balanced combination of SRAM and STT-RAM to minimize the static energy

consumption whereas increasing the STT-RAM cells lifetime. The bit-toggling activity (BTA)

during a HyM write operation of a basic unit BUo over an already stored BU1 is defined as the

number of bits that toggles during the operation divided by the total number of written bits, as

in Equation (11). BUDim is the horizontal/vertical BU dimension and NBSample the number of bits

per sample. The toggling_bits function returns the number of collocated bits that are different

between two numbers.

BTA(BU0, BU1) =
∑ ∑ toggling_bits(BU0(x,y) , BU1(x,y))

BUDim
x=0

BUDim
y=0

BUDim
2 ∗ NBSample

 (11)

Example: Figure 5.4 illustrates the bit-toggling activity map resultant from the write

accesses during the replacement process between two consecutive reference frames (depicted

in the left part). We can note that the higher activities correspond to the higher motion and

textured areas of the video. In contrast, lower bit-toggling occurrences are related to more static

and homogeneous frame parts. Therefore, the video content properties must be taken into

account when dimensioning and managing HyMs.

Already Stored On Chip
Bit-Toggling Activity Map

To Be Stored On Chip

Figure 5.5: Example of reference frame replacement (for BasketballDrive sequence) and its

corresponding bit-toggling activity map.

Figure 5.6 depicts the design space exploration controlled by an external parameter: the bit-

toggling threshold (BTTH). Reference frame basic units that lead to bit-toggling activities lower

than BTTH are assigned to STT-RAM, while higher values will direct the BU to SRAM. Our

exploration varies the BTTH from 0 (no activity) to 1 (maximum activity, all bits toggle) in steps

of 0.01. We analyze our two optimization target variables: STT-RAM lifetime (Figure 5.6a)

and SRAM size (Figure 5.6b), since it is known that the static energy efficiency is limited by

the amount of SRAM cells (as discussed in Section 2.3). To find the best design point, we

analyze an efficiency plot that relates both variables (see Figure 5.6c). We run this exploration

for a set of video test sequences following our evaluation methodology (described in Section

7.1.1). The maximum efficiency point was discovered when BTTH=0.24. Using this design

point, we have that the SRAM usage factor (αSRAM) is equal to 35% and the STT-RAM lifetime

can be improved near to the optimal case (when no bit toggles): 0.83 normalized lifetime, as

detailed in Section 7.5. From the Hy-SVM perspective, αSRAM=35% means that the SRAM array

will be sized as 35% of the STT-RAM capacity. Note that the αSRAM factor is used for L2 HyMs

design (PrivL2 and SharedL2).

69

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

improved
lifetime

BTTH = 0.24

35% of SRAM in HyMs
to achieve the
best efficiency

(a) STT-RAM
Lifetime Analysis

(b) SRAM
Size Analysis

(c) STT-RAM Lifetime vs.
SRAM Size Tradeoff

Figure 5.6: Design space exploration for joint (a) STT-RAM lifetime and (b) SRAM size optimization,

resulting on a (c) tradeoff analysis.

The toggling activity at bit level is also exploited in Hy-SVM. Figure 5.7 depicts the

accumulated statistics for toggling occurrences for each bit position using ParkScene and

NebutaFestival test video sequences. Extended analyses considering other video sequences are

presented in the Appendix B. It can be noticed near-zero bit-toggling activity for the two most

significant bits (MSB) of the two sequences. Therefore, it means that even for BUs with high

average bit-toggling activities, the two MSB toggle with a very low probability. This property

is explored by always storing the two MSB in the STT-RAM, this way reducing the SRAM size

(saving further static energy) while not penalizing the STT-RAM cells lifetime. This enables

us to realize a fine-grained hybrid memory organization.

b1 b0b3 b2b4b5b6b7 b1 b0b3 b2b4b5b6b7

B
it

-T
o

gg
lin

g
A

ct
iv

it
y

0

1

0.8

0.6

0.4

0.2

Bits [from MSB to LSB] Bits [from MSB to LSB]

(1) Near-zero
bit-toggling
activity

Observation: The bit-toggling activity
behavior of different bit positions follows
similar properties independent on the video.

(2) b[5..3] reunite the
bit-toggling activity
property

ParkScene NebutaFestival

Figure 5.7: Bit-toggling activity of different bit positions.

Another important aspect from Figure 5.7 is that the bit range from b5 to b3 inherits the bit-

toggling activity of the entire 8-bit sample. It means that only these three specific bits of the

two involved data need to be compared to approximate the bit-toggling activity of this write

operation. It is exploited by generating a bit-toggling key (BT_KEY) composed of only these

three bits of some specific samples from reference frame BUs. This key aims to serve as an

identifier that must be stored by the lifetime-aware data management unit. The goal is to design

an energy-efficient way to estimate the bit-toggling activity of each write operation. Details

regarding this data management unit are given in Section 6.3.

 Design Methodology of SPMs/HyMs

 Overlap Sizing Parameters

Equations (12) and (13) define the Tiles overlap sizing formula for the overlap thickness

(OvThickness) and length (OvLength). These formula are used at design-time to properly derive the

SharedL2 SPMs parameters. The OvThickness is calculated from the search window width or

height, since it defines the maximum range ME can reach when searching in the reference

frames. Additionally, ME start point can be displaced by prior analysis from neighboring

motion predictors. Thus, the search window center can vary according to the motion field of

Tiles boundaries. To represent that, an off-line statistical parameter ΔMotion is inserted to scale

70

the overlap thickness to be adapted to the average case of test sequences. The OvLength is related

to the frame width or height, when overlaps are formed around horizontal or vertical Tiles

boundaries, respectively.

OvThickness(TBID) = {
ΔMotion × SWW, if vertical boundary

ΔMotion × SWH, if horizontal boundary
 (12)

OvLength(TBID) = {
FrameH, if vertical boundary

FrameW, if horizontal boundary
 (13)

 L1 Level SPMs Design

Based on the memory organization defined in Section 5.2, we determine the sizing for the

SPMs Levels in the proposed Hy-SVM architecture. As already explained, all SPMs (PrivL1,

PrivL2, and SharedL2 levels) are composed of BUDim memory banks as in Equation (14), which

allows parallel access of one entire BU. However, the other SPM parameters are different

depending on the Hy-SVM level.

PrivL1NB = PrivL2NB = SharedL2NB = BUDim (14)

The PrivL1 SPMs store Tile-specific search window samples, requiring PrivL1NL memory

lines, as expressed by Equation (15). The first memory bank of a PrivL1 SPM must store,

besides the first BU row, three control data: the horizontal and vertical BU frame position, and

a validate bit (as in Equation (16)). This information is important for MAMU to properly

manage hit and miss occurrences. In total, PrivL1LS bits are required for each memory bank,

where NBSample is the number of bits per reference frame sample. The power management of

PrivL1 SPMs, which is based on longer sleep duration opportunities from balanced memory

pressure (as properly explained in Section 6.4.2.1), is applied for each defined SPM sector. The

already defined NLinesPerSector parameter indicates the adopted management level (as already

discussed in Section 5.2). Thus, Equation (17) defines the sector size PrivL1SS and Equation

(18) presents the number of sectors within a PrivL1 SPM (PrivL1NS). These parameters directly

affects the overhead of implementing APMUs power maps.

PrivL1NL = NBUsPerPrivL1 = ⌈
SWW × SWH

BUSize
⌉ (15)

PrivL1LS = {
(|BUXPos| + |BUYPos| + 1) + BUDim × NBSample

BUDim ∗ NBSample

 if Bank0

 otherwise
 (16)

PrivL1SS = NLinesPerSector × BUSize (17)

PrivL1NS =
PrivL1NL

PrivL1SS
 (18)

 L2 Level HyMs Design

The L2 level of Hy-SVM completely stores one reference frame, by having its samples

distributed along the PrivL2 and SharedL2 HyMs. As illustrated in Figure 5.8, hybrid memory

design is exploited in L2 level of Hy-SVM by implementing HyMs containing: (a) one STT-

RAM SPM, which is designed to have specific memory lines for all BUs within Tile-specific

region of reference frame (in case of PrivL2), or within the overlapping regions (in case of

SharedL2); and (b) one SRAM SPM, which provides storage only for BUs estimated with high

bit-toggling activities, alleviating the STT-RAM part of high-cost write operations.

71

Hybrid Video Memory (HyM)

STT-RAM Sratchpad Memory

Bank-0 Bank-1 Bank-2 Bank-(NB-1)

Sense Amplifiers

ST

ST

...

...

...

...

SRAM Scratchpad Memory

Bank-0 Bank-1 Bank-2 Bank-(NB-1)

Sense Amplifiers

ST

...

ST
ST
ST
ST
ST
ST
ST
ST
ST

Figure 5.8: Hybrid video memories (HyMs) physical organization for L2 level (PrivL2 and SharedL2).

As definitions from the design space exploration HyMs (presented in Section 5.3.2) we

have: (a) the extraction of the αSRAM factor, which represents the size of SRAM portion (related

to HyM total size) that leads to the best optimization point between STT-RAM lifetime and on-

chip static energy consumption; and (b) the design decision to always store the two MSB of all

reference frame samples in the STT-RAM SPM of each HyM.

The first calculations refer to the STT-RAM SPMs of PrivL2 and SharedL2 HyMs, which

are designed to store all corresponding BUs. The SRAM SPMs design will be described based

on STT-RAM defined parameters.

STT-RAM SPMs Design: The PrivL2STT-NL number of memory lines depends on the frame

resolution and the number of Tiles, as expressed in Equation (19). In another perspective, the

SharedL2 SPMs requires SharedL2STT-NL lines, which is related to the OvThickness and OvLength

overlap parameters; see Equation (20). The PrivL2 STT-RAM SPMs are designed to guarantee

that all BUs within the same reference frame have a specific associated memory line. Thus, it

is not necessary to keep stored the frame position coordinates of the stored BU in a specific

SPM line. To ensure correct hit/miss detection by MAMU, a validate bit is stored alongside the

first BU row in Bank0. The same scheme is adopted for SharedL2 SPMs. Thus, the line size of

each L2 STT-RAM SPM bank (L2STT-LS) is defined in Equation (21). Our APMU acts on L2

level of Hy-SVM to reduce on-chip static energy consumption. Note that as L2 SPMs are

implemented as STT-RAM arrays, the shutdown operation of specific memory sectors does not

imply on off-chip memory re-fetching, due to the non-volatile nature of STT-RAM cells. The

power gating is applied for each memory sector. In doing so, the sector size L2STT-SS, which is

the same for PrivL2 and SharedL2 STT-RAM SPMs, is defined according to this design-time

parameter, as in Equation (22). As result, the number of memory sectors (PrivL2STT-NS and

SharedL2STT-NS), which directly affects the APMU design, is defined in Equations (23) and (24),

respectively.

PrivL2STT−NL = NBUsPerPrivL2−STT = ⌈
FrameW × FrameH

BUSize × NTiles
⌉ (19)

SharedL2STT−NL = NBUsPerSharedL2−STT = ⌈
OvThickness × OvLength

BUSize
⌉ (20)

72

L2STT−LS = {
BUDim + 1

BUDim

 if Bank0

 otherwise
 (21)

L2STT−SS = NLinesPerSector × BUSize (22)

PrivL2STT−NS =
PrivL2STT−NL

L2STT−SS
 (23)

SharedL2STT−NS =
SharedL2STT−NL

L2STT−SS
 (24)

SRAM SPMs Design: Considering the SRAM part, the design methodology is applied

equally for PrivL2 and SharedL2 HyMs by using the adopted sizing for the STT-RAM as

parameter. The number of lines of each SRAM SPM bank (PrivL2SRAM-NL and SharedL2SRAM-

NL) is derived from applying the offline statistics-based 𝛼𝑆𝑅𝐴𝑀 factor to the already defined

PrivL2STT-NL and SharedL2STT-NL parameters of STT-RAM part, as defined in Equations (25)

and (26). Since only a small part of the data is assigned to SRAM (to alleviate STT-RAM from

high bit-toggling activities), the horizontal and vertical BU frame positions, as well as a validate

bit, must be stored along with the reference data. Furthermore, as the two MSB of all samples

are always stored in the STT-RAM SPMs, the line size L2SRAM-LS can be reduced, as defined in

Equation (27). To provide a fine-grain power management for the SRAM SPMs, the power

states are assigned specifically for each memory line (as illustrated in Figure 5.8), leading to

the number of sectors (L2SRAM-NS) equals to L2SRAM-NL.

PrivL2SRAM−NL = NBUsPerPrivL2−SRAM = ⌈PrivL2STT−NL ∗ αSRAM⌉ (25)

SharedL2SRAM−NL = NBUsPerSharedL2−SRAM = ⌈SharedL2STT−NL ∗ αSRAM⌉ (26)

L2SRAM−LS = {
(|BUXPos| + |BUYPos| + 1) + BUDim ∗ (NBSample − 2)

BUDim ∗ (NBSample − 2)

 if Bank0

 otherwise
 (27)

To provide a proper hardware infrastructure for the management layer of Hy-SVM, small

on-chip memory blocks are designed. They serve to keep stored: (a) the monitored and

predicted overlap representations (Predicted and Monitored Overlap Tables – POTs and

MOTs); the power maps for APMU operation (frame- and CTU-level power maps); as well as

a data management table (DMT) to manage HyMs write operations. This hardware data

structures will be explained along with the related management schemes in next chapter.

73

6. ENERGY-EFFICIENT MEMORY MANAGEMENT LAYER

This chapter introduces the memory management layer, which enables run-time adaptation

and improved energy savings to the designed Hy-SVM architecture. Initially, details regarding

the overlap prediction scheme is presented in Section 6.1. An accurate prediction of the overlap

characteristics (size, shape and displacement) is of key importance to enable energy-efficient

inter-Tiles data reuse. In a different perspective, unbalanced memory pressure caused when

considering Tiles-accumulated memory requirements is treated by the memory pressure

management scheme, which is properly defined in Section 6.2. Well-balanced memory

transmission is extremely necessary to avoid off-chip power peaks and allow a better prediction

for the sleep durations of on-chip SPM sectors. STT-RAM lifetime and write access

inefficiency is handled by the lifetime-aware data management scheme, explained in Section

6.3. In addition, distributed on-chip management blocks composed of memory access

management units (MAMUs) and adaptive power management units (APMUs) are presented

in Section 6.4. They implemented hardware support of data structures and control logic to

properly manage the data dynamics of Hy-SVM.

 Overlap Prediction

We focus our evaluations and proposed overlap prediction scheme in the Low Delay (LD)

and Random Access (RA) prediction structures, as illustrated in Figure 6.1. Each arrow denotes

a prediction dependency evaluated by the ME, starting from the current frame and pointing to

the used reference frame. We assign an overlap identification (OvID) for each prediction

dependency. Further, another important parameter is the distance between the current and

reference frame of each OvID, represented by the notation DME. It is defined as the absolute

difference between the picture exhibition order number between the two frames: 𝐷𝑀𝐸(𝑂𝑣𝐼𝐷) =

|𝐹𝐶𝑢𝑟𝑟 − 𝐹𝑅𝑒𝑓| (depicted in the bottom of Figure 6.1). For example, the DME of the prediction

RA2 is calculated as 𝐷𝑀𝐸(𝑅𝐴2) = |4 − 8| = 4.

0 1 2 3 4 5 6 7 8

LD2

LD0 LD1 LD3 LD5 LD7 LD9 LD11 LD13

LD4 LD6 LD10 LD12 LD14LD8

0 1 2 3 4 5 6 7 8

RA0
RA1 RA2

RA3 RA4 RA6 RA5

RA7 RA8 RA10 RA9 RA13 RA14 RA12 RA11

(a) Random Access (b) Low DelayOverlap Identification (OVID)
within a Group of Pictures

Figure 6.1: Overlap identification (OvID) in (a) Random Access and

(b) Low Delay HEVC encoder configurations.

Note that each ME will lead to a formation of an overlapping region. The characteristics of

the overlaps were evaluated to base our run-time overlap prediction scheme (Section 6.1.1). An

accurate estimation of such properties is important (a) to improve inter-Tiles data reuse

(exploited by the SharedL2 SPMs), as well as (b) to provide less-frequent ON-OFF switching

activities, leading to higher energy savings for our adaptive power management scheme. To

support the variability of the overlap characteristics, a light-weight overlap data representation

is proposed (Section 6.1.2). The overlap prediction scheme is described in Section 6.1.3.

 Overlap Correlation Evaluations

Memory analyses were performed with the goal of identifying correlated parameters of

overlap formations between consecutive MEs. The evaluations consider three important overlap

characteristics: size, shape, and displacement.

74

Analysis-1 (Overlap Size): Figure 6.2 presents an evaluation of the overlap size by

exploiting MEs with different DME parameters. In this case, we are interested in the number of

redundant memory accesses within a reference frame depending on the absolute value of the

distance DME. Thus, this analysis does not consider the prediction direction. We can note that

the overlap size reduces when lower DME MEs are executed. Therefore, an insight is to leverage

the size of past overlaps in our prediction scheme. In doing so, the relation between the DME

factors must be taken into account to scale the predicted overlap accordingly. Our APMU can

exploit it by dynamically applying relaxed or aggressive power gating to improve the SPMs

energy efficiency according to predicted memory demand.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

300

200

100

0
6 100 4 9

#ME Order [Random Access Configuration]

O
ve

rl
ap

 S
iz

e
[K

B
]

|DME|=2

|DME|=4
|DME|=8

|DME|=1

1 2 3 75 8 11 12 13 14

Relaxed Power-Gating Aggressive Power-Gating

Figure 6.2: Example of overlap sizing variation for several temporal distances (DME factor).

Analysis-2 (Overlap Shape): Besides the size, another important aspect is the overlap

shape, which may significantly change along the overlap length. We can note this dynamic

behavior in Figure 6.3, where the shape varies according to the video content. Not exploiting

this variation may lead to inefficiency to memory energy consumption (on- and off-chip parts).

Furthermore, there is a significant similarity between the shapes of overlaps when analyzing

consecutive ME processing, as can be noted in Figure 6.3. Therefore, the shape characteristics

of previous formations can be used as reference to improve the prediction accuracy for the next

overlaps.

Overlap RA3
(DME=2)

Overlap RA1
(DME=4)

Overlap RA0
(DME=8)

Overlap RA7
(DME=1)

0
1

2
8

0

19200

0
1

2
8

0

19200

Memory accessesMIN MAX

width coordinatewidth coordinate

h
ei

gh
t

co
o

rd
in

at
e

h
ei

gh
t

co
o

rd
in

at
e

Hint-1: Variable shape
(thickness) along the
overlap length

Hint-2: High correlation
between overlap
formation characteristics
of consecutive MEs

Figure 6.3: Correlation between consecutive overlaps (RA5, RA3, RA1 and RA0), considering

Random Access prediction structure.

Analysis-3 (Overlap Displacement): Figure 6.4 presents an analysis (Probability Density

Function charts) comparing the overlap displacement for ME steps with different DME factors.

The displacement, in this evaluation, was measured by the distance of the center of the actual

75

overlap regarding the Tiles boundary. When we compare the generated overlap between MEs

with the same prediction direction (Figure 6.4a), we can note that higher DME factors lead to

higher and spreader overlap displacements. In another vein, ME operations with lower DME

values lead overlaps centered nearer the Tiles boundary, as well with a more concentrated

behavior. In Figure 6.4b, comparing MEs with opposite prediction directions (DME values with

different signals), we can observe opposite displacements in the formed overlaps. Therefore,

regarding this aspect, our insight is to leverage the past overlap displacement weighted by the

difference of DME factors.

-60 -40 -20 0 20 40 600 60-60

P
ro

b
a

b
ili

ty

-120 -100 -80 -60 -40 -20 0 20

0.10

0.08

0.06

0.04

0
-20-120 -60

Overlap Displacement [pixels]

0.02

P
ro

b
a

b
ili

ty

0-40-80-100 20
Overlap Displacement [pixels]

DME=8 DME=4

DME=2 DME=4 DME=-4
DME=1

(b) PDF (Opposite MEs)(a) PDF (Same ME Directions)

0.05

0.04

0.03

0.02

0

0.01

Hint-1: Overlap
displacement scales
with the ME ranges

Hint-2: Different ME
directions leads to
opposite overlap
displacements

Figure 6.4: Overlap displacement correlation analysis.

To exploit the discussed overlaps correlation in our prediction unit, we implement an

overlap representation that properly models the absolute size, the variable shape and

displacement properties.

 Overlap Representation

Equation (28) models an overlap as an ordered set of tuples, each one containing width

(widthi) and displacement (displi) information of a specific basic unit line i within the overlap.

The level of representation is based on the adopted BU dimension, being compliant to Hy-SVM

organization.

OvID = {(widthi, displi), ∀ 𝐵𝑈 𝑙𝑖𝑛𝑒 𝑖 |0 ≤ i < OvLength/BUDim} (28)

Basic
Unit

Total
SharedL2

SPM Capacity
(decided at

design-time)

Monitored
Overlap

(BUs inside
the overlap)

Side of Tile 0 Side of Tile 1

Overlap Graphical Representation Overlap Data Representation

7654321

10

980
11

Basic Unit
Line

O
ve

rl
ap

 l
en

gt
h

[#
Bu

s]

Overlap thickness [#Bus]

7
6
5

4
3

2
1

9
8

0

line
width

line
displacement #BULine

6
7
5
5
6
5
4
6
7
6
7
6

-4
-3
-2
-3
-3
-2
-2
-3
-4
-4
-3
-3

7

6

5

4

3
2

1

10
9

8

0

11

width displ

Figure 6.5: (a) Graphical and (b) data representation of an overlap by our energy-efficient

management of Hy-SVM.

Figure 6.5 illustrates an example of overlap representation. In the graphical view (Figure

6.5a), we can observe the possibility of modeling the variations of width and displacement

along the overlap length. For each BU line, the width is related to the overlap thickness (in

76

number of BUs), while the displacement is expressed as the distance of the first BU from the

Tiles boundary center. Hence, the design-time parameters OvLength and OvThickness related to the

overlap thickness and length (previously defined in Section 5.2), utilized to design the SharedL2

SPMs, are refined to provide a more accurate representation of the actual formed overlap. The

mapping between the graphical and the data representation is presented in Figure 6.5b. We can

note that each BU line within the overlap has associated width and displacement information.

Considering a 4-Tile HD1080p HEVC encoder, 256x256 search window size, and BUDim=8,

the overlap representation for the horizontal Tiles boundary requires 480 bytes, while the

vertical overlap occupies 136 bytes. These values represent a negligible overhead, especially

when comparing to the hardware resources required to implement L1 and L2 SPM Levels.

 Overlap Prediction Scheme

Our scheme is inspired on the video coding idea of selecting several references (past coded

information) to predict the behavior of the data that is being processed. Therefore, for each

overlap that is being predicted (called current overlap), the information of past monitored

overlap formations (called reference overlaps) are exploited. As result, an estimation of the

formation characteristics for the current overlap is generated (called predicted overlap). In this

context, there are two key data structures: the Monitored Overlaps Table (MOT) and the

Predicted Overlap Table (POT).

Figure 6.6 depicts the flowchart of our overlap prediction scheme, as well as its integration

with Hy-SVM on-chip management units (detailed presented in Sections 6.4 and 6.4.2). During

a ME processing, our Memory Monitoring Unit monitors the inter-Tiles redundant accesses.

This unit utilizes one bitmap for each HEVC processing unit to identify the accessed BUs within

a reference frame. As result, the bitmaps are combined, and the monitored overlap

representation (presented in the previous section) is generated and stored in the MOT. There is

a specific MOTTB for each Tile boundary TB, which is responsible to store a historic of the past

monitored overlap formations of this specific boundary.

T
a

b
le

 6
.1

Overlap Prediction of CurrOv ID:
PredOvID

end

Get reference overlap
RefOvID(TB) from MOTTB

Execute Motion Estimation
(Parallel HEVC)

Monitore overlap
formation

MAMU (access-level)
Section 6.4.1

Save monitored overlap
for Tiles boundary TB to

MOTTB (if necessary)

Apply prediction to
RefOvID(TB) - Eq. (29)-(32)

Store predicted overlap
PredOvID(TB) in POTTB

Build frame-level power
maps (APMU Section 6.4.2)

For each Tiles boundary
(TB) within a frame

Hy-SVM On-Chip Management

For each Tiles boundary
(TB) within a frame

end loop

APMU (CTU-Level)
Section 6.4.2

end loop

Figure 6.6: Flowchart of our run-time overlap prediction scheme and its relation to Hy-SVM on-chip

management units.

For each Tiles boundary within a frame, our scheme accesses the MOTTB to get the reference

overlap RefOvID(TB) that will be used for the prediction of CurrOvID(TB). To minimize the

MOTs size and guarantee the best possible correlation between current and reference overlaps,

proposes a prediction assignment based on the correlations of MEs, considering the Random

Access and Low Delay configurations. The overlap identifications follow the notations defined

in Table 6.1. Based on this assignment, a prediction operation is applied to estimate the

predicted overlap based on the monitored information from the selected reference overlap. The

prediction process is based on one of four possible operations: downscale, upscale, invert or

77

copy; as defined in Eqs. (29)-(32), where the α and β are offline statistical factors that were

extracted by experimental analysis using real-world video coding scenarios9.

Table 6.1: Overlap Prediction Assignment for Random Access and Low Delay HEVC Encoder

Configurations

Random Access Low Delay

Curr.

 OvID

Prediction

Operation

Ref.

OvID

Curr.

 OvID

Prediction

Operation

Ref.

OvID

RA0

off-line stats. (if first

frame) or copy RA0 from

previous GOP

LD0

off-line stats. (if first

frame) or copy RA0

from previous GOP

RA1 downscale(α) RA0 LD1 copy LD0

RA2 invert RA1 LD2 upscale(β) LD1

RA3 downscale(α) RA1 LD3 copy LD1

RA4 invert RA3 LD4 upscale(β) LD3

RA5 downscale(α) RA2 LD5 copy LD3

RA6 invert RA5 LD6 upscale(β) LD5

RA7 downscale(α) RA3 LD7 copy LD5

RA8 invert RA7 LD8 upscale(β) LD7

RA9 downscale(α) RA4 LD9 copy LD7

RA10 invert RA9 LD10 upscale(β) LD9

RA11 downscale(α) RA5 LD11 copy LD9

RA12 invert RA11 LD12 upscale(β) LD11

RA13 downscale(α) RA6 LD13 copy LD11

RA14 invert RA13 LD14 upscale(β) LD13

downscale(PredOvID, RefOvID, α):
PredOvID[i]. width ← ⌈RefOvID[i]. width × 𝛼⌉
PredOvID[i]. displ ← RefOvID[i]. displ,
∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 𝛼 < 0

(29)

upscale(PredOvID, RefOvID, β):
PredOvID[i]. width ← ⌈RefOvID[i]. width × β⌉ and
PredOvID[i]. displ ← RefOvID[i]. displ,
, ∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 β > 0

(30)

invert(PredOvID, RefOvID):
PredOvID[i]. width ← RefOvID[i]. width and

PredOvID[i]. displ ← −(RefOvID[i]. width + RefOvID[i]. displ), ∀ BU line i
(31)

copy(PredOvID, RefOvID):
PredOvID[i]. width ← RefOvID[i]. width and
PredOvID[i]. displ ← RefOvID[i]. displ, ∀ BU line i

(32)

Example-1: Let the RA1 prediction dependency be processed by ME and the inter-Tiles

redundant memory accesses be monitored, generating the RefOvRA1 (illustrated in Figure 6.7a).

From the proposed prediction assignment for Random Access configuration presented in Figure

6.1, the selected prediction operation for the next PredOvRA2 and PredOvRA3 are invert and

downscale, respectively. In Figure 6.7b we can observe the result of invert prediction operation,

where the overlap is displaced from left to right part related to the Tiles boundary. In this case,

the RA1 and RA2 have the same absolute value of DME, but with different signals: DME(RA1)=4

and DME(RA2)=-4. In this case, due to the opposite motion directions, the overlap formations

tends to be displaced (as motivated in Analysis-2 of Section 6.1.1). The estimation of

9 We adopted: α=0.75 and β=1.25 in our experiments.

78

PredOvRA3, reduces the overlap width parameters by a α=0.75 factor. The prediction

dependencies RA1 and RA3 have same direction but different distances: DME(RA1)=4 and

DME(RA2)=2. In doing so, the overlap formation for RA3 tends to be smaller than RA1, since

lower motion fields will be detected.

(b) Predicted Overlap (RA3)

(a) Reference Overlap (RA1)

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

(b) Predicted Overlap (RA2)

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-4
-4
-4
-4
-4
-3
-3
-3
-4
-4
-4
-4

7
6
5
4
3
2
1

10
9
8

0

11

width displ

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-1
-1
-2
-2
-2
-1
-1
-2
-2
-2
-2
-1

7
6
5
4
3
2
1

10
9
8

0

11

width displ

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

displ#BULine

4
4
5
5
5
3
3
4
5
5
5
4

-3
-3
-3
-3
-3
-2
-2
-2
-3
-3
-2
-2

7
6
5
4
3
2
1

10
9
8

0

11

width

invert

downsca le

Figure 6.7: Example of overlap prediction operations when estimating RA2 (invert) and RA3

(downscale; using α=0.75) formations from RA1 monitored reference overlap.

Example-2: In the perspective of Low Delay HEVC configuration, consider that LD1

prediction was computed and the RefOvLD1 was monitored (depicted in Figure 6.8a). According

to the adopted overlap prediction assignment of Table 6.1, the estimation steps of PredOvLD2

and PredOvLD3 are performed from the upscale (Figure 6.8b) and copy (Figure 6.8c) operations,

respectively. The upscale is applied since the overlap OvLD2 is generated during a ME of DME=2,

while the monitored overlap RefOvLD1 has DME=1. This means that higher motion tends to be

observed in OvLD2 (compared to OvLD1), leading to a higher probability of increased overlap.

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-4
-4
-4
-4
-4
-3
-3
-3
-4
-4
-4
-4

7
6
5
4
3
2
1

10
9
8

0

11

width displ

upscale

copy

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

displ

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-4
-4
-4
-4
-4
-3
-3
-3
-4
-4
-4
-4

7
6
5
4
3
2
1

10
9
8

0

11

width displ

#BULine

6
6
7
7
7
5
5
6
7
7
7
6

-4
-4
-4
-4
-4
-3
-3
-3
-4
-4
-4
-4

7
6
5
4
3
2
1

10
9
8

0

11

width

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

(b) Predicted Overlap (LD3)

(a) Reference Overlap (LD1) (b) Predicted Overlap (LD2)

Figure 6.8: Example of overlap prediction operations when estimating LD2 (invert) and LD3

(upscaling; using α=1.25) formations from LD1 monitored reference overlap.

79

The predicted overlap PredOvID(TB) is stored in the POTTB to become available for

MAMUs and APMUs operations. Details regarding the implementation of Hy-SVM on-chip

management units are given as follows.

 Memory Pressure Management

This section describes the proposed memory pressure management scheme, which focuses

on balancing the instant memory bandwidth in order to optimize the external memory

communication channel usage. As consequence of a well-balanced memory pressure, longer

sleep durations for the PrivL1 SPMs can be exploited to additionally save on-chip static energy

(as presented in Section 6.4.2.1).

Initially, application-specific evaluations are presented to capture the main correlations of

memory accesses in two perspectives: intra-frame (among spatial neighboring CTUs inside the

same frame) and inter-frame (among CTUs of consecutive frames). Based on this knowledge,

the memory pressure management scheme is presented, being composed of three main steps:

(1) memory pressure prediction, (2) run-time statistics-based CTU memory classification, and

(3) CTU re-scheduling.

 Intra- and Inter-Frame Memory Accesses Correlations

If it is possible to accurately predict the memory requirements for a given CTU, it can be

exploited by a power manager to balance the memory pressure in a very efficient way. In case

of high frame rates (30-60 fps), significant temporal correlation exists, i.e., the neighboring

frames have similar memory access behavior, as depicted in Figure 6.9. Additionally, high

video frame resolutions (e.g., FullHD=1920x1080 to 4K=3840x2160) increase the spatial

correlations between neighboring CTUs within the same frame. Furthermore, note that the

memory pressure for each CTU also depends upon their corresponding video content

characteristic (like texture and motion content). Therefore, the key is to leverage the knowledge

from the monitored memory pressure of spatially- and temporally-neighboring CTUs to obtain

a high quality prediction of the actual memory pressure for a given CTU.

While balancing the memory pressure is important from the external memory perspective,

it is also crucial to take care of the Tile-private on-chip SPMs. In this case, long sleep durations

(and consequently more static energy savings) can be achieved by consecutively encoding

CTUs with similar video content properties (like texture and motion), thus similar memory

pressure. Figure 6.10 shows Tiles with less memory requirements (like Tile 1) and more

memory demands (like Tile 2). In this case, longer sleep durations and higher energy savings

can be obtained for the SPM of processing the Tile 1. Furthermore, re-scheduled CTU

processing orders for a well-balanced memory pressure tends to group similar properties CTUs

to be consecutively encoded, providing even higher sleep durations (as demonstrated in Section

6.4.2.1). Hence, an important challenge here is how to leverage the CTU re-schedule for

memory pressure balancing and increased sleep durations for efficient PrivL1 SPM power

management.

Therefore, the main goal of the proposed memory pressure management is to leverage

application-specific properties for memory pressure balancing and, additionally, PrivL1

SPM’s static energy reduction targeting parallelized HEVC encoding. The following sections

will describe all modules of the proposed scheme.

80

Memory Access Map (T5)
100

20

M
em

o
ry R

eq
u

irem
en

ts
[M

b
ytes]

T1 T2 T3 T4 T5 T6 T7 T8

Original Frame (T5)

Memory pressure behavior
follows the video content

Memory pressure correlation
between spatial neighboring
CTUs within the same frame

Memory pressure correlation
between CTUs of temporal

neighboring frames

Figure 6.9: Video content and neighborhood correlation analysis for BasketballDrive test sequence.

0

2

4

6

8

10

12

Tile 0 Tile 1 Tile 2 Tile 3Tile 0 Tile 1 Tile 2 Tile 3
0

2

4

6

8

10

M
e

m
o

ry
P

re
ss

u
re

[M
b

yt
e

s] 12 10

2

Tile 0 Tile 1

Tile 2 Tile 3

8

6

4

3rd quartile

2nd quartile

1st quartile

minimum

maximum

Obs-1: Heterogenous memory access properties for different Tiles
Obs-2: Low-motion Tiles may increase the memory sleep-duration

Figure 6.10: Intra-Tile memory pressure analysis for BasketballDrive.

 Overview of Memory Pressure Management Scheme

Considering the already discussed analyzed memory access correlations, it was proposed a

memory pressure management scheme for parallelized HEVC. The key is to leverage the

memory access correlation within and across different Tiles (i.e. Intra- and Inter-Tile

correlations; as discussed in previous section).

The proposed memory pressure management scheme is composed of the following three

modules: (a) memory pressure prediction, (b) run-time statistics-based CTU memory

classification, and (c) CTU re-scheduling for memory pressure balancing. The run-time

memory monitoring unit feeds the statistics about the current memory requirements to the

system.

The proposed memory balancing management is composed of the following parts:

 Memory Pressure Prediction: that leverages the monitored memory pressure of

Tiles in the previously encoded CTUs in order to accurately predict the memory

requirements for Tiles in the current frame.

 Run-Time Statistics-Based CTU Memory Classification: that dynamically adapts the

parameters involved in the memory management scheme according to the predicted

memory pressure statistics.

 CTU Re-Scheduling: the proposed strategy groups the CTUs of a Tile into variable-

size groups (called CTU-groups). The size of the CTU-groups depends on the Tile-

specific motion activity properties. Depending upon the predicted memory pressure,

the CTU-groups are scheduled to closely meet the target pressure.

81

 Memory Pressure Prediction Algorithm

As demonstrated in Section 6.2.1, highly correlated memory pressure may exist (1) among

spatial neighboring CTUs (within the same frame); and (2) among CTUs of temporal neighboring

frames. Therefore, based on the actual memory usage of previously processed CTUs (ActualMem),

the prediction algorithm estimates the memory requirements of the CTUs in the current frame10.

Figure 6.11 depicts an example of used CTU predictors in the current and reference frames. Four

spatial predictors from the current frame and nine temporal predictors from each reference frame

are selected as input to a weighted prediction.

L
A F
H I

E
G

C DB

Current FrameReference Frame 0 Reference Frame 1

Co-located CTU

A F
H I

E
G

C DB
M

KJ

Current CTU

...

D0

Co-located CTU

...

D1

Figure 6.11: Example: spatial and temporal predictors selecting.

Equations (33) and (34) presents the spatial and temporal predictors selected for a given CTU:

PredTemp and PredSpatial, respectively. The letters A-M correspond to the spatial and temporal

predictors depicted in Figure 6.11. As statistical parameters for the prediction, different weighting

factors11 was applied according to the spatial location of the predictor related to the current CTU

position. Possible cases of CTU position are: center (αC), horizontal/vertical (αA), and diagonal (αD).

Equations (35)-(37) present the weighted prediction formula for predicting the memory pressure

considering a given CTU. The weighting factors were statistically generated based on the memory

access correlations of real video test sequences. First, the predicted memory pressure considering

only the temporal references is estimated: PredMemTemp in Equation (35). Then, the spatial

predictors are used to calculate the PredMemSpatial, as in Equation (36). Finally, both spatial and

temporal predictions are used to derive the predicted memory pressure for the given CTU:

PredMem in Equation (37).

PredTemp(FRef) := WP(ActualMem(FRef[A...I]), [αC,αA,αD]) (33)

PredSpatial := WP(ActualMem(FCurr[J...M]), [αA,αD]) (34)

PredMemTemp = ∑ {[∑ (PT)
PT ∈ PredTemp(FRef)

] ∗
1

D[FRef]
}

∀ FRef

 (35)

PredMemSpatial = ∑ (PS)

PS ∈ PredSpatial

 (36)

PredMem(CTU) = WP(PredMemTemp, PredMemSpatial, [αS,αT]) (37)

When some predictors are unavailable (e.g., in case of CTUs at the frame boundaries) the

weighted prediction is performed only with the available predictors. The predicted memory

requirements of the CTUs need to be analyzed to classify each video frame, Tile and CTU-

groups to characterize their memory access behavior.

 Run-Time Statistics-Based CTU Memory Classification

As motivated in Section 4.2, in order to avoid the memory pressure imbalance problem of

traditional raster scan order processing, the proposed scheme re-schedules the order of CTU

10 A current frame refers to the frame being encoded at that moment.
11 Statistically defined parameters using the experimental methodology described in Section 7.1: αC=0.5, αA=0.3, αD=0.2, αS=0.5, and

αT=0.5.

82

evaluations for motion estimation. To achieve this, the scheme partitions the CTUs of a Tile

into so-called CTU-groups, which are rectangular regions of CTUs such that, all CTUs of a

given CTU-group are processed consequently; see an example in Figure 6.12. The goal is to

assign CTUs with similar memory requirements/pressure into one group while balancing the

overall memory pressure of Tiles.

(a) 4 Video Tiles

Figure 6.12: Example: CTU-groups division for re-scheduling.

The memory access distribution follows specific properties (i.e., motion and texture) of each

video sequence. Hence, the video properties are used to decide the number of CTU-groups. The

proposed scheme adapts the number of CTU-groups at frame level according to the predicted

memory access distribution during each Tile processing. At first, a base number of groups is

defined, NB in Equation (38). It is based on the Probability Density Function (PDF) of the

predicted memory pressures at frame level (µF is the average, σF is the standard deviation) and

the average number of CTUs per Tile (NCTUPerTile). Later on, it is defined the actual number of

groups for each Tile (NG in Equation (39)) by comparing the predicted memory access

distribution of a given Tile (µT, σT) with that during the overall frame encoding. Tiles with

spread memory pressure distributions are divided into more CTU-groups to enable fine-grained

management (first clause of Equation (39)). The goal is to have a fine-grain management

because it may have very diverse memory behaviors within a Tile. In contrast, Tiles with

concentrated memory pressure distribution (second clause of Equation (39)) lead to few (but

large-sized) CTU-groups as their texture and motion properties tend to be correlated inside such

a Tile. The decision of having smaller CTU-groups must be carefully taken because the SPM

data reuse among adjacent CTUs is not available between each CTU-group processing, causing

efficiency loss in the SPM data management. Due to the CTU order inside one CTU-group (see

Figure 6.12), the SPMs are more efficient for large-groups.

𝑁𝐵 = ⌈(
𝜎𝐹

µ𝐹
) NCTUPerTile⌉

where: {µ𝐹, σF} = PDF(PredMem(CTU)|∀ CTU ∈ Frame 𝐹)
(38)

NG(T) = {
⌈NB + [(σT/µT)−(σF/µF)]NCTUPerTile⌉

⌈NB − [(σF/µF)−(σT/µT)]NCTUPerTile⌉
 if (σT > σF)

otherwise

Where: {µT, σT} = PDF(PredMem(CTU)|∀ CTU ∈ Tile 𝑇)

(39)

The predicted memory pressure distribution is used to classify the Tile in terms of motion

property. By comparing the average behavior of each Tile-specific distribution to the overall

frame distribution, Equation (40) defines three categories: H-type (high motion), M-type

(medium motion), and L-type (low motion). Moreover, each CTU-group also has its own PDF

(given in Equation (41)) that will be used for the re-scheduling decision during the memory

pressure balancing.

83

CTile(T) = {

(µT ≥ µF + 0.5σF), (H) High
(µF + 0.5σF > µT > µF − 0.5σF), (M) Medium

(µF + 0.5σF > µT), (L) Low

 (40)

{µG, σG} = PDF(PredMem(CTU)|∀ CTU ∈ CTUgroup 𝐺) (41)

0 4 8 12
0

20

40

30

10

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-60

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

µF = 5.69
σF = 1.7

µT0 = 5.94
σT0 = 1.69

µT1 = 4.72
σT1 = 0.78

µT2 = 6.6
σT2 = 1.92

µT3 = 5.43
σT3 = 1.56

BasketballDrive (PDF)
Tile 0 Tile 1

Tile 2 Tile 3

O
cc

u
rr

en
ce

s

Memory Pressure Memory Pressure Memory Pressure

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

Figure 6.13: Memory pressure statistics for each Tile of the BasketballDrive test sequence (PDFs and

histogram).

An Example: Figure 6.13 presents the run-time statistics of the predicted memory pressure

of a frame in the HD1080 BasketballDrive video encoded with 4 Tiles. The NBase value, which

is only dependent on the overall frame statistics, is calculated using Equation (38), i.e. NBase=6.

Using Equation (39), the number of CTU-groups at is calculated: NG(0)=6, NG(1)=2, NG(2)=8,

NG(3)=4. Using Equation (40), the motion classification of Tiles are: CTile(0)=M-type,

CTile(1)=L-type, CTile(2)=H-type, and CTile(3)=M-type.

The above analysis and predicted memory pressure statistics are used by the CTU re-

scheduling algorithm for memory pressure balancing and by the APMU of PrivL1 SPMs.

 CTU Re-Scheduling Scheme

The goal of the CTU re-scheduling is to balance the accumulated memory pressure at the

Tiles level, reducing the mean squared deviance (MSD) related to the average memory pressure

(ideal case). Different number of CTU-groups lead to variable-sized groups, containing more

or less CTUs within each Tile. The proposed scheme also classifies the Tiles according to the

motion properties in three classifications CTile={H-type, M-type, L-type} using the Equation

(40). Different Tile types will contribute in different ways for the accumulated balancing: H-

type Tiles start by occupying the most part of the memory bandwidth, M-type Tiles contribute

by median memory occupation, and the L-type Tiles aim to alleviate the memory pressure. The

main task is to schedule the CTU-groups processing.

Figure 6.14 depicts the proposed CTU-groups scheduling functionality that is called at two

points: (1) at the initial frame processing, when the decision about CTU-groups scheduling has

not already taken, and (2) at the end of one CTU-group processing, when a new group must be

scheduled. The call for this routine is performed at Tile-level, when the algorithm analyzes the

current scenario to take the best decision. So, the input parameters are the ID of the Tile (TileID)

and the list of CTU-groups (LCTU-Groups) that are inside the target Tile (line 1). For the first frame

of the video, there are no temporal references for memory predictors, so the traditional raster

scan order is performed (lines 2-3). If it is not the first frame, all memory predictions and run-

time memory-related classifications are performed at the beginning of the frame processing. In

84

case of the first CTU-group scheduling, the algorithm takes the motion Tile classification CTile

into account to decide the CTU-group that will be next coded (GToBeCoded) (lines 6-9). Otherwise,

the adaptive scheme analyzes the gap (gapAccumPress) between the current memory pressure

(currMemPress) and an approximate average case prediction (averageAccumPress in line 11).

So, the algorithm selects the CTU-group which has the predicted memory pressure and that has

the best fit to the predicted gap (lines 11-14). After this decision, the CTU-group is removed

from the non-coded groups list and the CTUs according are encoded according to the CTU-

groups internal processing order depicted in Figure 6.12 (line 17).

1. scheduleCTUGroup(Tile: TileID, List of CTU-groups: LCTU-Groups)
2. If first frame Then
3. GToBeCoded := LGroups.first(); //CTU-group equals to Tile
4. Else //not the first frame
5. If frame start Then //run-time statistical knowledge of Tiles
6. Tileclass := CTile(TileID); //Equation (40) – statistical classification
7. Case(TileClass = L-type): GToBeCoded := LCTU-Groups.min();
8. Case(TileClass = M-type): GToBeCoded := LCTU-Groups.median();
9. Case(TileClass = H-type): GToBeCoded := LCTU-Groups.max();
10. Else
11. averageAccumPress:= ∑ (𝜇𝑇)𝑁𝑇𝑖𝑙𝑒𝑠

𝑇=0 ; //sum of av. pressures
12. currAccumPress := getCurrentMemoryPressure(); //monitoring
13. gapAccumPress := averageAccumPress – currAccumPress;
14. GToBeCoded := (G | 𝜇𝐺 has the best fit to gapAccPress);
15. End If;
16. End If;
17. LCTU-Groups .remove(GToBeCoded); encode(GToBeCoded);

Figure 6.14: CTUs re-scheduling algorithm.

 Lifetime-Aware Data Management

The MAMU implements a special treatment during a write access in L2 HyMs (PrivL2 and

SharedL2), which is driven by the proposed lifetime-aware data management scheme. As

already discussed, this scheme aims on improving STT-RAM cells endurance (i.e., extending

the lifetime) to prevent Hy-SVM from wear-out errors. At the same time, as previously

presented in Section 5.3, the design methodology leveraged application-specific properties to

find the best possible optimization point of SRAM size within the HyMs, based on statistics of

bit-toggling activities using real cases of input video sequences. The main goal of our lifetime-

aware data management scheme is to provide an energy- and performance-efficient way of

predicting the bit-toggling activity relying on the knowledge from the video content. Based on

this, the incoming BU is directed either to STT-RAM or SRAM SPM, excepting by the two

MSB of each sample that are always written in STT-RAM part.

To estimate as simple as possible the bit-toggling activity during a write operation, the bit-

toggling key BT_KEY was defined as in Equation (42). This key is generated at the moment

before the write operation and it consists in a set of wires getting the bits from b5 to b3 of specific

samples resultant from the downsample8 operation from the reference frame BU. The choice

of these specific bits was taken due to the conclusion (2) from Figure 5.7. The downsample8

function selects equally-spaced samples of a BU, reducing its representation resolution by 8

times. As example, considering an 8x8 BU, the prior 64-sample block is down-sampled to

compose an 8-sample key12. Due to the spatial correlation between near pixels of a video frame,

it is possible to discard many ones and still maintain the bit-toggling activity property. Thus,

the BT_KEY will have 3x8=24 bits. The proposed estimated bit-toggling activity (EBT)

calculates the number of bits that differs between the BT_KEY of the two involved BUs, as in

Equation (43). This strategy is developed to avoid a complete read operation to fetch the entire

12 To facilitate the understanding, the explanations onwards will consider BUs of 8x8 samples (BUDim=8).

85

BU to, just then, perform the bit-toggling activity evaluation. The BT_KEY of each stored

reference BU is stored in a very fast special table, called Data Management Table (DMT).

Besides the BT_KEY, the DMT also stores a flag indicating whether the corresponding

reference BU is stored in the STT-RAM or SRAM array (called presence bit). A practical

example is depicted in the Figure 6.17, where each one of the nine reference BUs has a DMT

entry with its corresponding presence bit .value. Thus, the DMT line consists in BLDMT bits, as

in Equation (44). Figure 6.15 presents 2D maps and histograms to show the high correlation

between the actual bit-toggling activity (BT) and the estimated one (EBT). For a BUSize equals

to 8, the number of required bits is reduced to derive the toggling activity by ~22x using the

EBT metric. The circuit to compute the number of bits that differ between two BT_KEY can

be implemented with 24 1-bit XOR gates and a tree of 1-bit full adders, not representing neither

energy nor performance significant penalty for the HyMs.

Bit-Toggling Estimated Bit-Toggling

0

1.8k

1.2k

0.6k

0

3k

2k

1k

0 1

0

1

0

1

#O
cc

u
rr

en
ce

s

Estimated Bit-Toggling ActivityBit-Toggling Activity
0.5 0.750.25 0 10.5 0.750.25

Figure 6.15: Statistical correlation between BT and EBT metrics.

BT_KEY(BU) = 𝑐𝑜𝑛𝑐𝑎𝑡([b5. . b3]| b ∈ 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒8(BU)) (42)

EBT(BU0, BU1) = toggling_bits(BT_KEY(BU0), BT_KEY(BU1))/24 (43)

BLDMT = 1 + 24 = 25bits (44)

Figure 6.16 presents the data management steps for a HyM write operation. First, the

BT_KEY for the BU that is being written is generated (line 2). Then, the BT_KEY of the

already stored BU must be retrieved from the DMT (line 4) and the estimated activity αEBT is

then calculated (line 5). The αEBT is then compared with the offline statistical defined threshold

BTTH (line 6). In the case that αEBT is higher than BTTH, the BU to be written is divided to be

partially stored in the SRAM and STT-RAM (lines 7-10). In this case, SRAM dynamic energy

is sacrificed to increase the STT-RAM cells lifetime. It is demonstrated in the experimental

results discussion (Chapter 7) that this spent energy is very small compared to the overall

savings provided by Hy-SVM. For αEBT lower than BTTH, the BU is completely written into the

STT-RAM cells (line 13). The DMT is updated with the new BitPresence (lines 11-14) and with

the BT_KEY of the written BU (line 16).

The HyM read operation is much simpler than the write case, since no decision must be

taken. The DMT is just accessed to get the presence bit and, depending on this, STT-RAM or

SRAM/STT-RAM will be accessed. Finally, the data is forwarded to the requesting processing

unit by the access management unit. As the data management unit increases the STT-RAM

lifetime, the power management unit can power-gate unused cells with minimized risk of data

re-fetching from external memory.

86

1. manageWrite(Hybrid Memory: HyM; BasicUnit: BUToBeWritten;
 Basic Unit Positions: x, y)

2. KeyToBeWritten := BT_KEY(BUToBeWritten); //generate key - Equation (42)
3. AddressData := genPhysicalAddress(x, y); //calculate physical address
4. KeyToBeReplaced := DMT[AddressData][23..0]; //get already stored key
5. αEBT := EBT(KeyToBeWritten, KeyToBeReplaced); //estimate activity - Equation (43)
6. If (αEBT > BTTH) Then //high bit-toggling data
7. BUSTT-RAM := ((b[7..6] | ∀ b Є BUToBeWritten); //2-bit split
8. BUSRAM := (b[5..0] | ∀ b Є BUToBeWritten) //6-bit split
9. HyMSTT-RAM[AddressData].write(BUSTT-RAM); //STT-RAM write
10. HyMSRAM.write(x, y, BUSRAM); //SRAM write
11. DMT[AData][25].write(‘0‘); //DMT update – Presence Bit
12. Else //low bit-toggling data
13. HyMSTT-RAM[AddressData].write(BUToBeWritten); //STT-RAM write
14. DMT[AddressData][25].write(‘1‘); //DMT update – Presence Bit
15. End If;
16. DMT[AData][23..0].write(KeyToBeWritten); //DMT update

Figure 6.16: Data management for a HyM write operation.

To exemplify the lifetime-aware data management actuation, the logical organization of

HyMs is demonstrated in Figure 6.17, where a set of 3x3 reference BUs are taken as example.

As decision from the data management unit, the BUs (0,0), (1,1) and (2,2) are considered to

provoke high bit-toggling activity and must be partially stored in the SRAM SPM; while the

remaining BUs are completely stored in the STT-RAM SPM. For data management purposes,

a Data Management Table (DMT in and Figure 6.17) was also designed.

STT-RAM

BU(1,0)
8x8x8bits

BU(0,1)
8x8x8bits

BU(0,0)
8x8x2bits

BU(1,1)
8x8x2bits

BU(2,0)
8x8x8bits

BU(0,2)
8x8x8its

BU(1,2)
8x8x8bits

BU(2,1)
8x8x8bits

BU(2,2)
8x8x2bits

SRAM

BU(0,0)

BU(1,1)

BU(2,2)

8x8x6bits

8x8x6bits

8x8x6bits

SRAM
STT-RAM
STT-RAM
STT-RAM

SRAM
STT-RAM
STT-RAM
STT-RAM

SRAM

DMT

BU(0,0)

BU(1,0)
BU(2,0)
BU(0,1)
BU(1,1)
BU(2,1)
BU(0,2)
BU(1,2)
BU(2,2)

Figure 6.17: Example of a HyM data assignment.

 On-Chip Memory Management Units

Figure 6.18 presents the block diagram of the proposed on-chip Hy-SVM management

units. As example, Figure 6.18 illustrates hardware details of a 4-Tile HEVC case study, which

has one horizontal (Hor) and one vertical (Ver) Tiles boundary. The main goal is to rely on

accurate overlap prediction to employ energy-efficient memory access and power management

to designed SPMs in Hy-SVM architecture. As previously explained, the overlap prediction

leverages past overlap formations of past MEs, which are kept stored in the MOT. The proposed

memory monitoring is the unit responsible for capturing the inter-Tiles redundant memory

access behavior. The prediction unit stores the predicted overlap of a corresponding Tiles

boundary in the POTs.

87

On-Chip Management Units for SharedL2 SPMs

Power Maps

Run-Time
Memory

Monitoring
Unit

On-Chip Management Units for Priv SPMs of Tilei

HEVC
Processing

Unit (for Tilei)
Memory Access

Management
Unit

(MAMUi)

Predicted Overlap Tables (POTs)

POTHor

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

POTVer

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

Power Maps

Frame-Level

CTU-Level

to PrivL1 SPMi

to PrivL2 SPMi

to
 P

rivL2
 SP

M
i

Overlap
Prediction

basic unit
memory access

Monitored Overlap
Tables (MOTs)

MOTHor

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

W H

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

...

MOTVer

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

W H

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

...

Memory Access
Management

Unit
(MAMUOv)

Predicted Overlap Table (POTs)

POTHor

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

POTVer

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

Frame-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

CTU-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

Adaptive Power
Management

Unit
 (APMUOv)

to
 S

h
a

red
L2

 SP
M

V
er

Frame-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

CTU-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

to
 Sh

ared
L2

 SP
M

H
o

r

Adaptive Power
Management

Unit
 (APMUi)

to SharedL2 SPMVer

to SharedL2 SPMHor

from MAMU0

FI
FO

from MAMU1

from MAMU2

from MAMU3

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

Figure 6.18: Block diagram of our on-chip Hy-SVM management units integrated to the run-time

overlap prediction and memory monitoring units.

Each HEVC processing unit i has an associated instance of memory access management

unit (MAMUi) and of adaptive power management unit (APMUi). These modules utilize the

predicted overlap, available in the POTs, to provide energy-efficient management of the PrivL1

and PrivL2 SPMs for the processing unit i. The MAMUi receives a memory access request and,

based on a read/write policy, translates the address and forwards the operation to either PrivL1

or PrivL2. Further, if the incoming access is related to a basic unit inside any predicted overlap,

the request is forwarded to a MAMUOv, responsible of managing the SharedL2 SPMs accesses.

As the private MAMUs require the knowledge of the predicted overlaps, each unit has an

instance of the POTs (as in Figure 6.18). The APMUi analyzes the POT content and HEVC

parameters to build the power maps for the PrivL2 SPMi. The power maps are directly

connected to the sleep-transistors that control the power state of each sector of STT-RAM array.

Additionally, a specific APMUOv module manages the power gating operation of SharedL2

SPMs. Details regarding MAMUs and APMUs implemented schemes are given as follows.

 Memory Access Power Management Unit (MAMU)

Our MAMU implements a read/write policy (see flowchart of Figure 6.19) that takes

advantage from the Tiles overlap to increase the data-reuse of the reference frame samples.

When HEVC processing unit i requests a BU of positions xBU and yBU to Hy-SVM, as first step,

the MAMU translates the BU frame positions to PrivL1 SPM address space. Then, it performs

88

a PrivL1 SPMi access to check for hit/miss occurrence. In case of a hit, the BU is forwarded to

the processing unit. Otherwise, a miss leads to the access of L2 level SPMs. At this point, the

MAMU checks along with the predicted overlaps if the requested BU belongs to one Tiles

overlapping region. Assuming that the data is inside an overlap related to the Tiles intersection

TB, the corresponding SharedL2 SPMTB is then accessed. In this case, inter-Tiles data reuse is

exploited, since the processing of all Tiles that share the Tiles boundary TB may request the

same data. For non-overlapping regions, the PrivL2 SPMi is accessed, leading to intra-Tile data

reuse. Note that for each data request, either a ShreadL2 SPM or a PrivL2 SPM is accessed. If

a L2 hit is verified, the data is forwarded to the processing unit and the PrivL1 SPMi is filled

with the requested BU. In case of a L2 miss, the BU must be fetched from the external memory

and written to either PrivL2i or SharedL2TB SPM (depending on the predicted overlap) and the

PrivL1 SPMi. After that, the data is forwarded to the Tiles-specific HEVC processing unit.

PrivL1i

Forward basic unit
to Core i

Fill PrivL1i

Hit

Yes

No

Miss

Read basic unit
from PrivL2i

PrivL2i

Hit

SharedL2

Fill PrivL2i

Fill SharedL2

Fetch basic unit
from DRAM (burst)

Hit

Miss

Overlap?

No Yes

Miss

Core i request basic unit
xBU,yBU from to APMUi:

Translate BU position to
PrivL1i SPM address

Read basic unit
from PrivL1i

Overlap?

Access POTs to verify
overlaps

Translate BU position to
PrivL2i SPM address

Translate BU position to
SharedL2i SPM address

Read basic unit
from SharedL2

Figure 6.19: Flow of our memory access management unit with read/write policy.

Case-study example: Figure 6.20 depicts an example of data migration for our read/write

policy in four different cases, considering a 2-Tile HEVC encoding system.

(a) In the beginning, the on-chip SPMs are empty and each request will lead to external

memory fetching (L1 and L2 misses). Figure 6.20 shows that predicted overlap is

analyzed to determine whether the reference BU is stored in the PrivL2 SPMi or in the

SharedL2 SPMTB. The PrivL1 SPMi is always filled with the fetched data. During the

frame encoding, due to the intra-Tile (PrivL1 and PrivL2 SPMs) and inter-Tiles

(SharedL2 SPMs) reused data, more hits occur and even less external memory

communication is needed.

(b) The second case of Figure 6.20 depicts Tiles-centering CTUs processing where only the

PrivL2 SPMs are accessed (only intra-Tile data reuse). Note that all accesses inside this

case are directed to reference frame BUs outside the predicted overlap. We can also

observe some PrivL1 SPMs hits, which avoid L2 SPMs accessing and external memory

fetching.

(c) The third case illustrates accesses from CTUs located close to the Tiles boundary. In

this scenario, L2 memory hits are verified for both PrivL2 and SharedL2 SPMs (i.e.,

combined intra- and inter-Tiles data reuse). This case represents the best energy

efficiency when requiring L2 level access.

(d) The last scenario of Figure 6.20 presents the best case of energy efficiency, where all

memory accesses result on PrivL1 hits.

89

(a) (b) (c) (d)

N Y N Y N Y N Y N Y N
1 11 11 1

0
0,2
0,4
0,6
0,8

1
1,2

Fase -Fase +

Hit Miss DRAM

PrivL1 SPM0

PrivL1 SPM1

External
Memory

PrivL2 SPM0

PrivL2 SPM1

SharedL2
SPM

Overlap
Prediction

Tile 0

H
E

V
C

 E
n
co

d
in

g

Tile 1

H
E

V
C

 E
n
co

d
in

g

H
E

V
C

 E
n
co

d
in

g

Tile 0 Tile 1 Tile 0 Tile 1 Tile 0 Tile 1

Figure 6.20: An example of data interaction for a 2-Tile HEVC encoding.

 Adaptive Power Management Unit (APMU)

6.4.2.1. Adaptive Power Management of L1 SPMs

The APMU for PrivL1 SPMs, implemented with SRAM cells, monitors each private SPM

usage to capture the current video motion property and power-gate less-likely used sectors to

save on-chip static energy. At this level, it was considered a memory technology with three

power states: ON, DR (Data Retentive) and OFF.

Evaluations of Figure 6.21illustrate that it is possible to increase the potential of long sleep

durations once the memory pressure is balanced. For example, Figure 6.21a presents the SPM

usage for the processing unit 1 when encoding the BasketballDrive sequence. The SPM usage

(SPMUsage) calculated as the percentage of accessed SPM memory positions (measured by the

memory monitoring unit) during one ME operation (AccSPM), see Equation (45). As shown in

Figure 6.21b, the SPM usage for the entire CTU can be determined as the Probability Density

Function of the SWUsage values of all blocks within the CTU, see Equation (46).

SPMUsage(CUID) = AccSPM(CUID)/SSPM (45)

SPMUsagePDF(CTU) = {σSPM, µSPM} =

PDF(SPMUsage(BlockNode)|∀ BlockNode ∈ CTU)
(46)

At the beginning of a CTU encoding, the algorithm predicts the number of the memory

sectors that can be put into different power state (i.e., NON, NDR and NOFF). As basis for this

prediction, it was analyzed (1) the actual search window usage for previously processed CTUs

(e.g., CTUID-3, CTUID-2, and CTUID-1); (2) the predicted usage for the current CTUID and the

next CTUID+1 and CTUID+2. The goal is to have the knowledge of the past, present and predicted

future memory requirements to increase the on-chip static energy savings while minimizing the

overhead for memory sectors waking-up. Figure 6.21b presents an example of SPM usage PDFs

and the corresponding power states assignment.

90

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56

P
ri

vL
1

SP
M

 U
sa

ge

[%
]

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56

Raster CTU Order

0 10 20 30 40 50 60 0 10 20 30 40 50 60
#CTU Processing Time

50

40

30

20

10

0

Longer sleep durations

(a) Re-Scheduled CTU Order

#CTU Processing Time

0,00

0,20

0,40

0,60

0,80

1,00

Past CU0 CU1 CU2 CU3 Next Average

100

80

60

CTUID-3

SP
M

 U
sa

ge
 S

ta
ti

st
ic

 [
%

]

40

20

0 CTUID+2CTUID+1CTUIDCTUID-2

ON

DR

OFF(b) TH0

TH1
µSW+σSWµSW

Power StatesCTUID-1

Actual memory usages Predicted memory usages

Figure 6.21: (a) Increased memory pressure correlation;

(b) power states determination based on the SPM usage PDFs.

Figure 6.22 presents the APMU policy for PrivL1 SPMs. The actual SPM usage PDFs of

the past CTUs (ListActualSPMUsagePDF) and the next predicted SPM usage PDFs

(ListPredSPMUsagePDF) are used to determine the power states of the SPM sectors (lines 3-5). As in

Figure 6.21, the scheme defines two thresholds (TH0 and TH1) based on the average and

standard deviation of all cited PDFs (lines 6-7). Afterwards, the SPM sectors corresponding to

each power states are derived (lines 8-9). The physical assignment of the power states to the

SPM cells is performed at the beginning of every block processing within a CTU (lines 10-13).

In the case of data retransmission is required (SPM cells wake-up from the OFF state), the

control unit inserts stalls in the execution pipeline. Still, this penalty implies a negligible

energy/performance overhead since in the experiments the worst-case scenario is observed

<0.2% times.

1. managePowerSPM (Tile: TileID, CTU: CTUID)
2. PowerMapSPM := Ф; NON := 0; NDR := 0; NOFF := 0;
3. ListActualSPMUsagePDF := (SPMUsagePDF (ActualMem(CTUID) | ID Є {-3..-1}));
4. ListPredSPMUsagePDF := (SPMUsagePDF (PredMem(CTUID) | ID Є {0..2}));
5. ListPDF.append(ListActualSPMUsagePDF, ListPredSPMUsagePDF);
6. TH0 := max(µSPM+3.σSPM | (µSPM,σSPM) Є {ListPDF}); //TH’s definition
7. TH1 := max(µSPM+1. σSPM | (µSPM,σSPM) Є { ListPDF});
8. NOFF := (1 – TH0)*NSec; NDR := (TH0–TH1) *NSec; NON := TH1 *NSec;
9. PowerMapSPM.assignPowerStates(NON, NDR, NOFF);
10. For all Block Є CTUID
11. SPM[TileID].powerGate(PowerMapSPM); //apply power gating
12. encode(Block);
13. End For;

Figure 6.22: Adaptive on-chip power management of SPMs.

6.4.2.1. Adaptive Power Management of L2 SPMs

Our APMU leverages the predicted overlaps and the search limits of current CTUs to further

reduce the static energy consumption of Hy-SVM. The SPMs in the L2 level of Hy-SVM

(implemented as STT-RAM) were designed to operate in two power states: ON (VON=VDD

volts) and OFF (VOFF=0 volts). Due to the non-volatility characteristic of STT-RAM, the data

is kept stored in the memory cell even when OFF state is assigned (differently from SRAM

cells). Further, L2 SPMs are typically significantly larger than L1 SPMs, leading to higher

energy consumption. In doing so, our APMU concentrates effort in L2 SPMs, resulting in a

great impact in the Hy-SVM overall on-chip energy (as demonstrated in Chapter 7).

91

In Hy-SVM, the L2 Level can store an entire reference frame, exploiting STT-RAM reduced

leakage power and providing high intra-Tile and inter-Tiles data reuse, leading to reduced

external memory energy. Besides, the ME required memory accesses for all CUs within a CTU

is limited to a search window, which represents a small portion of the whole reference frame.

Our APMU scheme relies on estimates the search limits for the entire CTU processing, which

combines the search window of the ME for all CUs. The CTU search limits are defined as a

squared region of BUs of ⌈(SLDim × SLDim)/BUSize⌉ size, where SLDim = CTUSize + SWDim.

Figure 6.23 and Figure 6.24 present the flowcharts for the APMU when managing PrivL2

and SharedL2 STT-RAM SPMs within the HyMs. Our schemes act at the beginning of frame

processing (frame level; first flowcharts), as well as before the encoding of each CTU (CTU

level; second flowcharts). Note that CTU-level step of APMU may be executed at different

time stamps for each Tile processing, since it depends on the execution time spent to encode

CTUs with distinct properties in different processing units.

Build frame-level
power map of OvTB

Initialize
FrameLevelPowerMapTB

For each memory
sector MSx,y of OvTB

Is MSx,y
inside predicted

overlap?

Assign OFF state to
FrameLevelPowerMapTB[x,y]

Assign ON state to
FrameLevelPowerMapTB[x,y]

No

Yes

end loop

Access POTTB to verify
predicted overlap

end

Power Management of
SharedL2TB (at CTU level)

Copy FrameLevelPowerMapTB
to CTULevelPowerMapTB

For each memory sector
MSx,y of SharedL2TB

Is MSx,y
outside any
CTU search

window?

Power gate according to
CTULevelPowerMapTB

Assign OFF state to
CTULevelPowerMapTB[x,y]

end

end loop

Figure 6.23: Flow of the proposed adaptive power management unit of SharedL2 SPMs.

Build frame-level
power map of Tilei

Initialize
FrameLevelPowerMapi

For each memory
sector MSx,y of Tilei

Is MSx,y
outside predicted

overlap?

Assign OFF state to
FrameLevelPowerMapi[x,y]

Assign ON state to
FrameLevelPowerMapi[x,y]

No

Yes

end loop

Access POTs to verify
predicted overlap

end

Power Management of
PrivL2i (at CTU level)

Copy FrameLevelPowerMapi
to CTULevelPowerMapi

For each memory sector
MSx,y of PrivL2i

Is MSx,y
outside CTU search

window?

Power gate according to
CTULevelPowerMap i

Assign OFF state to
CTULevelPowerMap i[x,y]

end

end loop

Figure 6.24: Flow of the proposed adaptive power management unit of PrivL2 SPMs.

92

For an ease explanation of our concepts, an example of the APMU operation is illustrated

in Figure 6.25. In the first part, the adopted 2-Tile HEVC encoding scenario is represented at

reference frame perspective (Figure 6.25a). The current CTU search limits of Tile 0 and Tile 1

are depicted, as well as the predicted overlap (stored in the POT using the proposed

representation, as in in Figure 6.25b).

At the beginning of frame processing, the APMU builds one frame-level power map for

each L2 SPMs. For the PrivL2 SPMs, the memory sectors outside the predicted overlap have

associated power state set as ON. Otherwise, the OFF state is assigned. As previously discussed,

L2 accesses are directed either to a PrivL2 SPM or a SharedL2 SPM, depending on the predicted

formation of the overlap. The APMU frame-level power map building process is the opposite

for the SharedL2 SPMs, as presented in Figure 6.25c. The frame-level power maps are not

directly assigned to the sleep-transistors of the L2 SPMs, being start points to compose the

CTU-level power maps. At CTU level, our scheme checks the frame-level power map against

the search limits of the current CTUs. Note that the PrivL2 SPMs must be checked against the

search limits of its corresponding Tile processing, while the SharedL2 SPMs must be analyzed

considering the search limits of all HEVC processing units. The SPM sectors outside the search

limits are set as OFF state, resulting on CTU-level power maps of Figure 6.25d. By assigning

ON state for the STT-RAM sectors inside the CTU search limit, we ensure long sleep durations

during one entire CTU processing.

7654321

10

980
11

7
6

5
4

3
2

1

9

8

0

10

11

7
6

5
4

3

2
1

9
8

0

7654321 980 17161514131211 191810 27262524232221 292820

(a) Reference frame perspective

Current CTU
Search Limits

(Tile 1)
Current CTU
Search Limits

(Tile 0)

Predicted
Overlap

PrivL2 SPM0 PrivL2 SPM1
SharedL2 SPM

ON

7654321

10

980
11

7

6

5
4

3
2

1

9

8

0

ONOFF

1413121110

OFF

7654321

10

980
11

7

6
5

4
3

2
1

9

8

0

1413121110

OFF

(c) Frame-level power maps

PrivL2 SPM0 PrivL2 SPM1 SharedL2 SPM

7654321

10

980
11

7

6
5

4
3

2
1

9
8

0

ON

7654321

10

980
11

7
6

5

4
3

2
1

9
8

0

ON

ON

1413121110

OFF

7654321

10

980
11

7
6

5
4

3
2

1

9

8

0

1413121110

OFF

(d) CTU-level power maps

PrivL2 SPM0 PrivL2 SPM1 SharedL2 SPM

ON

OFF

OFF

(b) Predicted
Overlap Table

6
7
5
5
6
5
4
6
7
6
7
6

-4
-3
-2
-3
-3
-2
-2
-3
-4
-4
-3
-3

7
6
5
4
3
2
1

10
9
8

0

11

width displ

ON

Figure 6.25: Example: adaptive power management of STT-RAM L2 SPMs for a 2-Tile scenario.

93

7. EXPERIMENTAL RESULTS AND DISCUSSIONS

This chapter discusses the experimental results and compares them to related works. At first,

detailed experimental setup is presented in Section 7.1, organized in terms of adopted video

coding evaluation methodology, memory simulation methodology and on- and off-chip

memory power models. The discussion of our experimental results is composed of several parts.

Initially, (in Section 7.2) a detailed energy consumption profiling traced, which separately

evaluates off- and on-chip energy savings of Hy-SVM, as well as combining both parts to

compose an overall scenario. After that, (in Section 7.3) the proposed management units

regarding the overlap exploitation are evaluated in terms of prediction accuracy. Then, (in

Section 7.4) an external memory communication evaluation is performed to derive the

improvements of the proposed memory pressure management in terms of balanced data

transmission. The lifetime-aware data management scheme contributions on improving STT-

RAM cells lifetime is evaluated in Section 7.5. Finally, an overhead analysis of implementing

the proposed management units along with Hy-SVM is discussed in Section 7.6.

 Experimental Setup

 Video Coding Evaluation Methodology

The experimental analyses related to the video coding are based on the recommended HEVC

common test conditions (ISO/IEC-JCT1/SC29/WG11, 2012) using, primarily, the HEVC test

model (HM 11.0) (ISO/IEC-JCT1/SC29/WG11, 2013b). The HM is the official reference

software that is completely compliant with the HEVC standard, containing all state-of-the-art

coding tools provide by the standard. Experiments were executed for different parallelization

scenarios (multiple Tiles, which each Tile executes on a dedicated processing unit). The

experiments include the exploitation of a wide range search window dimensions: 128x128,

192x192, and 256x256. To provide different video content characteristics to properly evaluate

the efficiency of the proposed memory architectures, an extensive set of test video sequences

with distinct properties were evaluated: BasketballDrive (BDrive), Beauty, Bosphorus,

BQTerrace (BQTerr), Cactus, Kimono, ParkScene (PScene), ReadySteadyGo (RSGo),

ShakeNDry (SNDry), and YachtRide (YRide) - HD1080 (1920x1080 pixels); NebutaFestival

(NFest), PeopleOnStreet (People), SteamLocomotiveTrain (SLTrain) and Traffic - 2K

(2560x1600 pixels). Other important encoder specifications are: GOP=8, QP=32, CABAC,

Random Access configuration, and TZ Search algorithm.

 Memory Simulation Methodology

To capture the memory access profiling of the used HEVC encoding applications

(considering multiple level general-purpose cache memories), it was used the callgrind and

cachegrind tools of valgrind simulator (VALGRIND DEVELOPERS, 2017).

To simulate the access dynamics of the proposed memory architectures, several custom

simulators were developed. As main input of these simulators, memory accesses traces from

the used HEVC encoding applications were extracted. For each scheme inside the proposed

memory architectures, a software-based modeling was inserted in the developed simulators. To

provide the best possible accuracy of the memory energy estimation in terms of comparison

with related works, the used simulation environment incorporates widely used memory models

for all adopted technologies: SRAM and STT-RAM in the on-chip memory perspective; and

DRAM for the external memory. The developed simulation environment was built under an

open-source license and it is available for usage in the used project repository13.

13 Custom simulators developed in this work are available at https://bitbucket.org/felsamps/

https://bitbucket.org/felsamps/

94

 Off- and On-Chip Power Models

To perform the electrical characterization for the adopted 32nm SRAM memory arrays, the

CACTI 6.5 tool was used (HP LABS, 2008). Regarding the STT-RAM based on-chip

memories, the evaluations consider the generated parameters of NVSim tool (XIANGYU

DONG et al., 2012). The SPM design parameters resultant from the proposed Hy-SVM design

methodology for the evaluated video coding scenarios are summarized in Appendix A.

Furthermore, based on the designed SPM organizations, Appendix A presents the power and

latency characterization, which was performed using the above presented tools (CACTI for

SRAM and NVSim for STT-RAM).

For the main memory, it was adopted one 4-Gbit Low-Power DDR2 module (MICRON

TECHNOLOGY INC., 2011). The energy components of a LPDDR2 were estimated using the

main memory accesses of each application and the technology data from Micron (MICRON

TECHNOLOGY INC., 2005, 2005). The main specifications are: Vdd=1.2V, Freq=533MHz,

WSize=32 bits, PSize=512B, NRows=16K and NColumns=2K. The total energy is derived by the

composition of six components: page activation energy (EACT), write energy (EWR), read energy

(ERD), I/O pins energy (EDQ), refresh energy (EREF) and standby energy (ESTBY). In the

experimental analysis along this paper, the assumption is that the memory will always operate

in the ACT state and the standby energy will be equivalent to the PACT_STBY component.

All control-flow hardware blocks were synthesized using Cadence synthesis flow using ST

65nm standard-cells library.

 Comparison-Purpose Baseline Hy-SVM Variations

Besides the comparison with related works, we implemented baseline variations of Hy-

SVM to measure the efficiency of our design decisions. Hence, three alternative comparison-

purpose architectures were evaluated in our experiments:

 All-SRAM: adopts the SRAM technology for all SPMs in Hy-SVM architecture. The goal

is to evaluate the benefits (static energy consumption) and shortcomings (poor write

efficiency) of using STT-RAM in L2 SPMs;

 Priv-Only: avoids the usage of Shared SPMs, thus exploiting only intra-Tile data reuse. The

main purpose is to evaluate the impacts of SharedL2 SPMs, as well as the overlap

management efficiency;

 No-APMU: avoids the proposed power management over L2 SPMs. The goal is to evaluate

the contributions of APMU in the on-chip energy savings of Hy-SVM;

 No-DM: avoids the lifetime-aware data management and the SRAM SPMs within L2

HyMs. With this variation, the goal is to evaluate the advantages (increased STT-RAM

lifetime) and disadvantages (energy consumption overhead) of implementing this

endurance optimization technique inside Hy-SVM architecture.

 Energy Efficiency Evaluation

 Off-Chip Energy Results

In order to analyze different parameters and their impacts in the Hy-SVM off-chip energy

savings, the experimental results are organized in three different (but connected) evaluations.

7.2.1.1. Analysis-1: Parallelism and HEVC Prediction Structure

Figure 7.1 depicts the first evaluation of off-chip energy savings of Hy-SVM compared to

related implementations. The analysis presents the savings for 2-, 4-, 8- and 16-Tile with Low

95

Delay and Random Access HEVC configurations. To observe the behavior for different search

window sizes, the energy results were separated for 128x128, 192x192 and 256x256

dimensions. In this first evaluation, the presented savings were calculated as the average

scenario of all tested video sequences.

O
ff

-c
h

ip
 e

n
e

rg
y

sa
vi

n
gs

 [
%

]

-25

0

25

50

75

100 128x128 search window

-25

0

25

50

75

100 192x192 search window

-25

0

25

50

75

100 256x256 search window

2-Tile
Low Delay

4-Tile
Low Delay

8-Tile
Low Delay

16-Tile
Low Delay

2-Tile
Random
Access

4-Tile
Random
Access

8-Tile
Random
Access

16-Tile
Random
Access

Level-C Priv-Only dSVM RCDR Level-D enHyV AMBER

Figure 7.1: Off-chip energy savings of Hy-SVM compared to related works

for increased number of Tiles and for Random Access and Low Delay HEVC configurations

(average scenario of tested video sequences).

Level-C (CHEN et al., 2006) represents the upper bound results, since it only exploits intra-

Tile data reuse in search window level. Hy-SVM can reduce up to 66%, 76% and 82% the off-

chip energy consumption compared to Level-C, when considering 128x128, 192x192 and

256x256 search windows, respectively. In this case, the energy savings remain stable when

increased number of Tiles are used. Still, the adopted HEVC prediction configuration does not

affect the achieved gains.

Regarding dSVM (SAMPAIO et al., 2014a) architecture, which also exploits joint intra-

Tile and inter-Tiles data reuse, our Hy-SVM can achieve savings of up to 49%, 63% and 71%

for the tested search window sizes. The use of STT-RAM allows Hy-SVM energy-efficient on-

chip storage of entire reference frame samples. Hence, it strongly impacts the external memory

communication, as dSVM adopts intra-Tile data reuse in search window level. Since dSVM

strongly increases the on-chip memory when increased number of Tiles is adopted, the Hy-

SVM savings is reduced for increased parallelism. In some extreme cases, dSVM has improved

Hy-SVM off-chip energy efficiency, like for 16-Tile scenario using 128x128 search window

size. For the other cases, Hy-SVM still is able of achieving improved results. As we demonstrate

in next section, the extra energy consumed by Hy-SVM larger on-chip SPMs is compensated

by STT-RAM benefits and improved power management.

Comparing with RCDR (SAMPAIO et al., 2013a) data reuse strategy, it can be noted

increased savings when higher parallelism levels are adopted in HEVC encoders. In the best

96

case scenarios, Hy-SVM can reduce the off-chip energy by 21%, 33% and 44% when

considering 16-Tile Low Delay settings. RCDR achieves improved energy efficiency for

Random Access prediction structure since its implemented reference-centered alternative

processing order can better exploit the reuse of the same reference frame to perform more

consecutive MEs. However, due to RCDR search window level date reuse, Hy-SVM could

overcome the off-chip energy savings by employing a more complete access redundancy

support.

When analyzing Level-D, Hy-SVM can improve off-chip energy efficiency by up to 51%,

on average in the best case scenario (256x256 search window). In this case, the increased

parallelism does not significantly affect the energy reduction. When analyzing the worst case

of Hy-SVM (128x128 search window and Random Access structure), Level-D overcomes the

energy savings by 11%. In the remaining cases, Hy-SVM can reach better results. However,

Level-D was not developed to support alternative CTUs processing scheduling, since its data

reuse strategy is completely dependent on the traditional raster scan order. In its turn, Hy-SVM

multi-level data reuse (search window level in L1 SPMs and reference frame level in L2 SPMs)

can be adaptive to the run-time adaptive alternative CTUs processing order proposed to balance

the accumulated memory pressure of all HEVC processing units. The results of Level-D in

Figure 7.1 considers the traditional raster scan order, which is not be the same for alternative

re-scheduled CTUs processing orders.

AMBER (KHAN; SHAFIQUE; HENKEL, 2013) and enHyV (SAMPAIO et al., 2014c)

achieved improved off-chip energy savings when compared to Hy-SVM: up to 12% and 22%

on average, respectively. AMBER fully exploits reference frame level data reuse, avoiding data

re-fetching from external memory during a frame processing. However, to support Tiles-

parallelized HEVC, AMBER requires the multiplication of its on-chip video memories, which

strongly affects its on-chip energy efficiency (as discussed in next sections). enHyV implements

data-reuse schemes in the same levels of Hy-SVM, without a proper management of the overlap

formation. In the external memory perspective, enHyV provides a more complete support for

inter-Tiles redundant accesses, leading to reduced SharedL2 misses. Still, Hy-SVM can achieve

competitive off-chip energy results and, additionally, implements an overlap management that

strongly reduces the SharedL2 SPMs on-chip energy. Considering an overall energy analysis,

which combines off- and on-chip energy parts, Hy-SVM surpasses AMBER and enHyV

implementation due to more efficient on-chip power management (discussed in Section 7.2.2).

Compared to our Priv-Only baseline implementation, the SharedL2 SPMs contributes by

reducing from 11% (2-Tile) up to 71% (16-Tile) the external memory energy consumption, on

average. Note that the achieved savings increase when more Tiles are used (higher parallelism),

due to the well-exploited increased inter-Tiles data reuse potential by Hy-SVM. We

demonstrate in the next sections that the on-chip energy required for SharedL2 SPMs is strongly

reduced by our energy-efficient management schemes, resulting on savings when compared to

Priv-Only.

Observing the average results comparing the two evaluated HEVC prediction structures, we

can note that Hy-SVM can achieve better energy efficiency when Low Delay is adopted: the

savings are 5%-10% higher when compared to Random Access scenario. The main reason is

related to a more predictable behavior of the overlap formations in Low Delay, since it

organizes the frame dependencies adopting the same DME factors for each processed frame (as

can be seen in Figure 6.1, presented in the beginning of Section 6.1). It is demonstrated in the

analyses of 7.3, when the accuracy of the proposed overlap prediction is evaluated under

different test conditions.

97

7.2.1.2. Analysis-2: Search Window Size and Video Resolution

Another important remark from Analysis-1 is the increased savings achieved by Hy-SVM

when increase search window is analyzed. For a proper exploitation of this parameter, as well

the impact of the video resolution, Figure 7.2 presents the off-chip energy savings for growing

search window and video dimensions.

O
ff

-c
h

ip
 e

n
e

rg
y

sa
vi

n
gs

 [
%

]

-25

0

25

50

75

100

-25

0

25

50

75

100

2-Tile 4-Tile

8-Tile 16-Tile

128x128
HD1080

192x192
HD1080

256x256
HD1080

128x128
2K

192x192
2K

256x256
2K

128x128
HD1080

192x192
HD1080

256x256
HD1080

128x128
2K

192x192
2K

256x256
2K

Level-C Priv-Only dSVM RCDR Level-D enHyV AMBER

Figure 7.2: Off-chip energy savings of Hy-SVM compared to related works for increased search

window size and video resolution (average scenario of HD1080 and 2K tested video sequences and of

Random Access and Low Delay structures).

In a general perspective, it can be note an growing behavior of the achieved energy

efficiency when increased search windows and video resolutions are adopted. Starting by

Level-C, the achieved Hy-SVM reduction is improved by 12% and 11%, on average, when

increasing the search window size for HD1080 and 2K resolution videos, respectively. In case

of the savings regarding dSVM architecture, the average gains are 63% (HD1080) and 52%

(2K). For RCDR, larger search windows lead to an increase of energy savings of 119%

(HD1080) and 78% (2K). The same behavior is noted when compared to Level-D: 180%

(HD1080) and 119% (2K). When compared to AMBER and enHyV, which achieve better

results than Hy-SVM, the energy savings behavior is not strongly related to the search window

size, since all these architecture implement reference frame level data reuse.

7.2.1.3. Analysis-3: Video Sequences Characteristics

Besides the different energy saving results for different video resolutions, the varied video

characteristics, like low/high motion and texture properties, may affect the efficiency of the

proposed Hy-SVM architecture. Figure 7.3 depicts the off-chip energy savings for all tested

video sequences, separated for 2-, 4-, 8- and 16-Tile HEVC scenarios. In this analysis, the

192x192 search window size is fixed and the average of the achieved savings for Random

Access and Low Delay configurations is considered.

We observe that the off-chip energy savings may vary according to video content properties.

HEVC encoding of high motion sequences (like Kimono and BasketballDrive (BDrive) in

Figure 7.3) lead to larger overlaps, since the motion search reaches more distant reference frame

samples. In these cases, our Hy-SVM architecture is able to exploit this increased inter-Tiles

data reuse potential and save external memory communication. In contrast, low motion videos

like Bosphorus and Traffic, lead to smaller overlap formations. In these cases, inter-Tiles data

reuse potential is itself lower, leading to reduced energy efficiency of implementing SharedL2

SPMs to exploit this data redundancy. Therefore, the energy savings of Hy-SVM compared to

related works is reduced. As discussed in the motivational analysis of Section 4.3, it was a

premise for Hy-SVM design this run-time adaptivity of the proposed management schemes to

98

the video content characteristics, enabling dynamic higher/lower energy savings depending on

the captured potential of inter-Tiles data reuse.
O

ff
-c

h
ip

 e
n

e
rg

y
sa

vi
n

gs
 [

%
]

BDrive Beauty Bosphorus BQTerr Cactus Kimono PScene RSGo SNDry YRide NFest People Traffic

-25

0

25

50

75

100 2-Tile

-25

0

25

50

75

100 4-Tile

-25

0

25

50

75

100 8-Tile

-25

0

25

50

75

100 16-Tile

Level-C Priv-Only dSVM RCDR Level-D enHyV AMBER

Figure 7.3: Off-chip energy savings of Hy-SVM compared to related works for different input video

sequences (fixed 192x192 search window size; average scenario between Random Access and Low

Delay structures).

 On-Chip Energy Results

7.2.2.1. Overall On-Chip Energy Savings

Figure 7.4 shows the on-chip energy analysis of Hy-SVM compared to related works and

baseline. In this evaluation, the energy consumption was normalized to All-SRAM results,

which represents the worst-case scenario among the related works. Besides, the analysis also

compares the on-chip energy for the three selected search window sizes. The energy

measurements in Figure 7.4 represent the average scenario of HD1080 and 2K tested videos.

The results of this analysis are barely the same for Random Access and Low Delay structures.

The chosen prediction structure for HEVC encoding does not affect the static energy

consumption, since the design methodology of HyMs generates the same SPM parameters for

both cases. In terms of dynamic energy (related to write and read accesses), Random Access

typically requires higher number of on-chip SPM accesses, which leads to higher dynamic

energy consumption. However, as static portion represents the major part of the total on-chip

memory energy consumption, the total energy consumption difference between Random

Access and Low Delay structures becomes insignificant.

From enHyV perspective, Hy-SVM achieves, in the best case, on-chip energy savings of up

to 82%-95% (HD1080-2K), 73%-92% and 64%-89% for 2-Tile scenarios using 128x128,

192x192 and 256x256 search windows, respectively. The gains over enHyV are mostly due to

an improved power management, which relies on overlap prediction to increase the on-chip

static energy savings. An accurate prediction allows Hy-SVM to shut down SPM sectors

outside the overlap (for SharedL2 SPMs) or inside the overlap (for PrivL2 SPMs) to reduce on-

chip energy in according to input video content characteristics. In the worst cases (HD1080 16-

Tile scenario), Hy-SVM still overcomes enHyV on-chip energy savings by 9% (256x256), 14%

(192x192) and 28% (128x128).

99

O
n

-c
h

ip
 s

ta
ti

c
en

er
gy

 c
o

n
su

m
p

ti
o

n
 [

n
o

rm
al

iz
ed

 t
o

 A
ll-

SR
A

M
]

0

0.2

0.4

0.6

0.8

1.0 128x128 search window

0

0.2

0.4

0.6

0.8

1.0 192x192 search window

0

0.2

0.4

0.6

0.8

1.0 256x256 search window

2-Tile
HD1080

4-Tile
HD1080

8-Tile
HD1080

16-Tile
HD1080

2-Tile
2K

4-Tile
2K

8-Tile
2K

16-Tile
2K

All-SRAM No-APMU enHyV dSVM No-DM Hy-SVM

Figure 7.4: On-chip energy consumption of Hy-SVM compared to related works.

When compared to dSVM, our Hy-SVM architecture presents competitive on-chip energy

consumption. dSVM surpasses Hy-SVM gains when lower parallelism levels are adopted. For

instance, when considering 2-Tile scenarios of Figure 7.4, the energy consumption is up to 65%

(256x256), 46% (192x192) and 21% (128x128) lower than Hy-SVM. On another perspective,

when growing number of Tiles is adopted, Hy-SVM overcomes dSVM in terms of on-chip

energy efficiency, saving up to 8% (256x256), 25% (192x192) and 45% (256x256) compared

to dSVM. Combining these with the previous off-chip energy results (overall perspective

presented in next section), Hy-SVM is able reduce the energy of external memory

communication with competitive on-chip energy consumption.

Compared to baseline All-SRAM and No-APMU implementations, our Hy-SVM can achieve

up to 94% and 95% (2-Tile), 90% and 84% (4-Tile), 83% and 72% (8-Tile), and 73% and 56%

(16-Tile) energy reduction, respectively. The savings related to All-SRAM are related to the

STT-RAM low leakage power dissipation. The savings compared to No-APMU represent the

efficiency of our power management over the two levels of SPMs of Hy-SVM.

When observing the No-DM baseline implementation results, we note that complete Hy-

SVM consumes from 18%-30% more on-chip energy. This overhead is related to the SRAM

SPMs that were inserted in PrivL2 and SharedL2 HyMs to alleviate STT-RAM from high bit-

toggling write accesses, leading to improved STT-RAM cells lifetime (as demonstrated in

Section 7.5).

The authors of AMBER did not informed the on-chip static energy savings lead by the

proposed power-gating scheme. Thus, it is not possible to perform a fair comparison with Hy-

100

SVM, so AMBER results were not inserted in the analysis of Figure 7.414. AMBER represents

an upper bound scenario in terms of on-chip energy consumption, since it is necessary to

replicate the storage of the reference frames for each Tile processing. Considering this, Hy-

SVM consumes, on average, 95% (128x128), 92% (192x192) and 90% (256x256) less on-chip

energy than AMBER. To have an idea of on-chip memory optimization of Hy-SVM compared

to AMBER, we compare it to the No-APMU baseline version of Hy-SVM. In this analysis, we

can also note savings of up to 58%-69% (2-Tile), 68%-81% (4-Tile), 81-88% (8-Tile) and 87%-

92% (16-Tile), on average, when processing HD1080 and 2K videos, respectively. Therefore,

even when not considering the gains achieved by the APMU, the proposed design methodology

overcomes AMBER in terms of on-chip memory energy optimization.

7.2.2.2. On-Chip Energy Savings in PrivL1 SPMs

Figure 7.5a depicts the on-chip static energy savings specific of PrivL1 SPMs. On average,

the proposed scheme saves 56% of on-chip energy by power gating the unused and less-likely

used memory sectors. The wake-up energies overhead is already included into the results of

Figure 7.5.

0%

20%

40%

60%

80%

SPM0 SPM1 SPM2 SPM3 Total

0%

20%

40%

60%

80% 4-Tile

BDrive BQTerr Cactus Kimono

80

60

40

20

0

80

60

40

20

0

O
n

-C
h

ip
 E

n
e
rg

y

S
a
v
in

g
s
 [

%
]

SPM0 SPM1 SPM2 SPM3 Overall

(a) (b)
BasketballDrive4-Tile (average case)

M-Type

Tile

L-Type

Tile

H-Type

Tile

M-Type

Tile

Figure 7.5: On-chip static energy reduction due to

adaptive power management of PrivL1 SPMs.

The achieved energy reductions are high in case of low-motion Tiles. It incurs in longer

sleep durations due to consecutive processing of CTU with similar texture and motion. This

behavior is demonstrated in Figure 7.5b where the total energy savings are decomposed for

each PrivL1 SPM that is responsible to handle with Tile-specific search window. In this

analysis, we adopted the same scenario used as example during the explanation of the memory

pressure management scheme (Section 6.2). The low-motion Tiles provide the highest savings

while the medium- and high-motion Tiles required more energy due to higher memory usage

as a result of an extensive search. When considering SPMs, the energy/performance overhead

of waking up the memory cells are negligible, since one block of the search window is

continuously accessed during one ME operation over a given block of the CTU. Thus, the

energy/performance penalty is completely amortized, not leading to significant overhead for

the overall memory system.

 Overall Energy Results

Table 7.1 presents the overall energy savings of Hy-SVM for three different scenarios. The

total energy is computed (sixth column of Table 7.1) by the composition of off- and on-chip

parts, including the control hardware that implements the management schemes.

14 To have a comparison with AMBER on-chip energy, we estimated the size of its on-chip memories and, based

on the defined design methodology, extracted the energy consumption components using the same methodology

than Hy-SVM.

101

Table 7.1: Overall Energy Savings of Hy-SVM Compared to Related Works

Solution

On-Chip

Mem.

[KB]

On-Chip

Energy

[mJ]

Off-Chip

BW.

[MB/s]

Off-Chip

Energy

[mJ]

Total

Energy

[mJ]

Savings

Hy-SVM

[%]

Scenario 1: 4-Tile HD1080, 192x192 search window and Low Delay

Level-C (TUAN; CHANG; JEN,

2002)
256 121 435 5708 5829 69.3%

Level-D (TUAN; CHANG; JEN,

2002)
240 110 128 1681 1790 0.1%

dSVM (SAMPAIO et al., 2014a) 631 285 218 2854 3139 43.0%

AMBER (KHAN; SHAFIQUE;

HENKEL, 2013)
8100 4072 99 1297 5369

66.7%

(58.7%*)

enHyV (SAMPAIO et al., 2014c) 3496 726 111 1453 2179 18.0%

Our No-APMU 3496 763 111 1453 2216 19.3%

Our No-DM 2656 249 111 1453 1702 -5.0%

Our Hy-SVM 3496 313 112 1475 1788 -

Scenario 2: 4-Tile 2K, 192x192 search window and Low Delay

Level-C (TUAN; CHANG; JEN,

2002)
256 121 840 8806 8927 72.6%

Level-D (TUAN; CHANG; JEN,

2002)
320 210 235 2466 2676 8.6%

dSVM (SAMPAIO et al., 2014a) 776 440 420 4403 4844 49.5%

AMBER (KHAN; SHAFIQUE;

HENKEL, 2013)
16000 4144 195 2048 6192

60.5%

(44.4%*)

enHyV (SAMPAIO et al., 2014c) 6358 1310 200 2100 3410 28.3%

Our No-APMU 6358 1344 200 2100 3444 29.0%

Our No-DM 4776 260 200 2100 2360 -3.6%

Our Hy-SVM 6358 330 202 2116 2446 -

Scenario 3: 8-Tile 2K, 256x256 search window and Random Access

Level-C (TUAN; CHANG; JEN,

2002)
800 345 1172 30488 30833 78.5%

Level-D (TUAN; CHANG; JEN,

2002)
320 210 272 7073 7283 8.8%

dSVM (SAMPAIO et al., 2014a) 1720 884 340 8842 9726 31.7%

AMBER (KHAN; SHAFIQUE;

HENKEL, 2013)
32000 8288 195 5081 13369

50.3%

(48.3%*)

enHyV (SAMPAIO et al., 2014c) 7442 1588 200 5212 6800 2.4%

Our No-APMU 7442 1695 200 5212 6907 3.9%

Our No-DM 5720 668 200 5212 5881 -12.9%

Our Hy-SVM 7442 830 223 5810 6640 -

*savings of No-APMU over AMBER

Compared to Level-C scheme, even this presenting the smallest on-chip video memory (i.e.,

lower on-chip energy), Hy-SVM can reach overall energy savings of 69%-79%. These gains

are mainly related to the reduction of 5.2 times in the external memory energy by exploiting

inter-Tiles data reuse. When analyzing Level-D strategy, we note competitive results: from

0.1% to 9% of savings. Level-D also implements reference frame level data reuse (as Hy-SVM),

but it stores only one row of search windows on chip: this leads to a balanced usage on-chip

storage and off-chip memory bandwidth. However, as already discussed, these improvements

in the overall memory energy efficiency of Level-D are strongly based on regular raster scan

order for CTUs processing. When alternative methods of CTUs re-scheduling are required, like

the implemented in the proposed memory pressure management integrated in the Hy-SVM

architecture, the energy savings of Level-D are compromised.

Regarding the dSVM architecture, the hybrid multiple levels of SPMs allows Hy-SVM total

memory energy savings of 31%-50% for the tested scenarios. Even requiring more and larger

102

SPMs, Hy-SVM is able to reduce on-chip energy consumption by adopting improved power

management, compared to dSVM. Moreover, multiple levels of SPMs allowed reduced off-

chip memory bandwidth and, consequently, improved off-chip energy efficiency. When

comparing to AMBER, which achieves the best off-chip energy results, Hy-SVM reaches up to

66.7% of total energy savings. If we do not consider the APMU and the overlap management

of Hy-SVM, the No-APMU baseline version can, still, achieve overall energy reduction

compared to AMBER: 59%, 44% and 48% for scenarios 1, 2 and 3, respectively. As previously

discussed, enHyV also achieves lower external memory energy consumption than Hy-SVM.

However, in an off- and on-chip combined perspective, Hy-SVM surpasses enHyV by

achieving up to 28% of improved energy efficiency.

Finally, the proposed management layer, composed of overlap prediction, and on-chip

MAMUs and AMPUs, can improve the energy efficiency of Hy-SVM by up to 29% (best case

of scenario 2). The insertion of SRAM SPMs in L2 HyMs, as well as all involved hardware

circuitry to support the proposed lifetime-aware data management represents, in the overall

energy perspective, an overhead from 4% up to 13% in terms of overall energy consumption.

 Overlap Prediction Accuracy Evaluation

Figure 7.6 depicts the metrics used for the accuracy evaluation of the proposed overlap

prediction scheme. For each ME, our memory simulation environment captures the predicted

overlap (exemplified in Figure 7.6a), as well as the actual overlap formation (Figure 7.6b).

Based on these, a prediction accuracy map is built (as in Figure 7.6c). For each BU inside the

SharedL2 HyM storage area for a specific Tiles boundary, which is dimensioned by the design-

time calculated parameters OvThickness and OvLength, our methodology classifies it as a prediction

hit, as an over-prediction, or as an under-prediction. One prediction hit means that the target

BU was correctly estimated as inside/outside the overlap formation, thus indicating the

accuracy of the overlap prediction scheme. One over prediction means that one BU, which was

initially predicted as being part of the overlap, is not inside the actual overlap formation. This

case leads to Hy-SVM on-chip energy wasting, since one entire SPM sector is assigned with

ON state and no inter-Tiles data reuse is verified. In another perspective, one under prediction

signifies that one BU inside the actual formed overlap was not predicted accordingly. In this

scenario, off-chip energy wasting is verified since inter-Tiles data reuse is not exploited.

7654321

10

980
11

O
ve

rl
ap

 le
ng

th
 [

#B
u

s]

Overlap thickness [#Bus]

7

6
5
4

3
2
1

9
8

0

7654321

10

980
11

O
ve

rl
ap

 le
ng

th
 [

#B
u

s]

Overlap thickness [#Bus]

7

6

5
4

3

2
1

9

8

0

7654321

10

980
11

O
ve

rl
a

p
le

n
gt

h
[#

Bu
s]

7
6

5

4
3

2

1

9

8

0

Overlap thickness [#Bus]

(a) Predicted Overlap (b) Actual Overlap (c) Prediction Accuracy Map

Prediction
hit

Under
prediction

Over
prediction

Figure 7.6: Representation of the adopted methodology for overlap prediction accuracy evaluation.

 Figure 7.7 depicts the accuracy evaluation of the proposed overlap prediction, compared

to a baseline scenario where no prior prediction is performed and all SharedL2 HyM BUs are

assumed to be part of the overlap. In this analysis, the most important factors that impact the

accuracy evaluation are the number of Tiles, the search window size and the adopted HEVC

103

prediction structure. The percentage values of Figure 7.7 are related to the average cases for all

tested video sequences.
P

re
d

ic
ti

o
n

 h
it

s
im

p
ro

ve
m

en
t

[%
]

0

20

40

60

80

100

0

4

8

12

16

20
0

20

40

60

80

100

(a) Prediction accuracy

O
ve

r-
p

re
d

ic
ti

o
n

re
d

u
ct

io
n

 [
%

]
U

n
d

er
-p

re
d

ic
ti

o
n

o
ve

rh
ea

d
 [

%
]

128x128
Low Delay

192x129
Low Delay

256x256
Low Delay

128x128
Random Access

192x192
Random Access

256x256
Random Access

(b) Over-prediction reduction (on-chip energy savings)

(c) Under-prediction overhead (off-chip energy wasting)

2-Tile

4-Tile 8-Tile

16-Tile

Figure 7.7: Overlap prediction evaluation, in terms of: (1) prediction accuracy, (2) over-prediction

reduction and (3) under-prediction overhead.

The first analysis (Figure 7.7a) presents the improvements in term of prediction hits. The

best cases are observed for lower number of Tiles, achieving up to 32%, 74% and 83% of

increased accuracy (2-Tile Low Delay scenarios). It can also be noted a growing accuracy trend

when larger search windows are used. Regarding the HEVC prediction structure, the proposed

prediction scheme presents best results when Low Delay is selected. As already indicated in

previous evaluations, Low Delay prediction dependencies have a more predictable behavior

when compared to Random Access.

In the second analysis (Figure 7.7b), the over prediction reduction is evaluated. It is

important to notice that the case where the entire SharedL2 HyM BUs are estimated as overlap

represents the worst case of over prediction. Compared to this baseline, the proposed overlap

prediction strategy is able to reduce the over predictions by 81%, 75%, 74%, and 72% on

average for the tested 2-, 4-, 8-, and 16-Tile scenarios. The behavior of the over prediction

indexes are similar for all tested search windows and HEVC prediction structures.

At the end, the overhead of under prediction occurrences are analyzed in Figure 7.7c. Note

that the adopted baseline case, where all BUs of a SharedL2 SPM are assumed to be inside the

overlap, does not have under prediction occurrences. Considering the Low Delay structure, only

1%-4%, on average, of under predicted BUs were verified. Due to the more unpredicted

behavior of Random Access prediction dependencies, higher overhead was verified (from 12%

to 16%, on average). As already demonstrated in the energy efficiency evaluation of Hy-SVM,

this overhead does not imply on significant penalties, when compared to related works.

104

 Off-Chip Memory Communication Evaluation

Besides the energy efficiency improvements achieved by the proposed Hy-SVM

architecture, another aspect addressed by this work is related to the unbalanced behavior of the

external memory communication when adopting traditional raster scan order of CTU

processing. Thus, this section evaluates the results achieved by the memory pressure

management scheme with regarding to the CTU re-scheduling strategy that aimed to provide a

more balanced external memory communication.

MSD metric: Let the Mem[0…m] be the discretized memory pressure measurements along

the time. The mean squared deviance (MSD) calculates the squared different between each

memory pressure measured point and the Mem average value (µMem), as in Equation (47).

MSD(Mem[0…m]) =
1

|Mem|
∑ (µMem − Memi)

2
m

i=0
 (47)

0

10

20

30

40

50

1 11 21 31 41 51 61 71 81 91 101 111

Raster Ours Average

#CTU Processing Time

50

40

30

20

0 50 60 70 80 90 100 110 12040302010M
em

o
ry

P
re

ss
u

re
[M

b
yt

es
]

10

0

BasketballDrive

Figure 7.8: Accumulated memory pressure results.

Figure 7.8 presents a temporal evaluation of the memory pressure comparing (1) the

traditional CTU raster processing order; (2) application-specific memory pressure balancing

scheme using CTU-rescheduling; and (3) the optimal corner case where the memory pressure

is continuously equals to the average pressure. The case (3) is a theoretical approximation used

to evaluate the gaps of the schemes related to the best possible balancing case. Figure 7.8 shows

that the proposed scheme balances the pressure for each processing unit. Compared to the

traditional raster order, the maximum-minimum peak variations are reduced from 27%-32% to

9%-13%, respectively. The scheme proposed in this work achieves this balancing by effectively

predicting the memory requirements, capturing the Tile-specific properties, and managing the

processing order.

Figure 7.9 presents the results regarding the memory pressure balance. As already

discussed, more Tiles potentially leads to more unbalanced accumulated memory pressure,

since more concurrent memory accesses are performed during each time slot. In this scenario,

there is a high probability of having very different motion properties being processed by

different units at the same time. So, the balancing gap when more Tiles are used is higher. The

proposed scheme successfully exploits this potential, as shown in Figure 7.9. The average MSD

efficiency reduction ranges from 37% to 83%, for 4 to 16 Tiles. Therefore, the application-

specific memory power management is efficiently scalable when working with an increased

number of Tiles.

Figure 7.9c depicts a frame-by-frame MSD reduction analysis. During the first frame

processing, as only spatial references can be used as input for the memory pressure predictor,

the scheme achieves results close to the original raster order. However, by acquiring the

temporal knowledge, the scheme fits the CTU-Groups accordingly to capture the motion

properties and achieves increased memory pressure balancing for the other remaining frames.

105

Thus, the scheme can better balance the accumulated memory pressure by up to 49% in the case

of 4-Tile BasketballDrive scenario (Figure 7.9c).

N
o

rm
a

liz
e

d
 M

SD
[M

e
an

 S
q

u
ar

e
 D

e
vi

at
io

n
]

0

0,2

0,4

0,6

0,8

1

BasketballDrive BQTerrace Cactus Kimono
0

0,2

0,4

0,6

0,8

1

BasketballDrive BQTerrace Cactus Kimono

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
BDrive BQTerr Cactus Kimono BDrive BQTerr Cactus Kimono

4-Tile 16-Tile

00,10,20,30,40,50,60,70,80,91

B
as

ke
tb

al
lD

ri
ve

C
ac

tu
s

Ours Raster

(a) (b)

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8

40

20

0

60

M
SD

 R
e

d
u

ct
io

n
 [

%
]

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

BasketballDrive (frame-by-frame within a GOP)

#Picture coding order

only spatial
predictors

(c)

Figure 7.9: (a)(b) Memory pressure balancing analysis compared to original raster scan order and (c)

frame-by-frame analysis (for Random Access prediction structure).

 STT-RAM Lifetime Evaluation

The data management unit of Hy-SVM significantly improves the STT-RAM cells lifetime,

as demonstrated in Figure 7.10.

In this analysis, the normalized STT-RAM lifetime is plotted bordered by the lifetime of

Hy-SVM without any data management (No-DM baseline variation) and by the best case

scenario, where no bit toggles occur during write operations (1.0 value). On average, it has a

normalized lifetime of 0.83, nearer to the best case than the Hy-SVM basic approach without

any management. The data management of Hy-SVM can achieve higher lifetime improvements

for low-textured videos, like Kimono with 0.85 normalized lifetime. In another vein, highly

detailed scenes lead to high bit-toggling activities, requiring high SRAM usage to alleviate

STT-RAM cells. As Hy-SVM was designed for the average case, lifetime is less improved for

this kind of videos. However, even for the worst case scenario, the scheme still can improve the

lifetime (0.79 lifetime for Traffic).

0,00 0,20 0,40 0,60 0,80 1,00

BasketballDrive

BQTerrace

Cactus

Kimono

Nebuta

People

Average

People
Traffic

Cactus
BQTerrace

BDrive

Kimono

Average

0 0.2 0.4 0.6 0.8 1
Normalized STT-RAM LifetimeOur No-DM

N
o

 To
g

g
le

s

Figure 7.10: Normalized STT-RAM cells lifetime.

 Overhead Evaluation

Figure 7.11 presents an overhead analysis of the implemented management techniques in

Hy-SVM. We utilize the All-SRAM and Priv-Only baseline implementations to discuss the

overhead in terms of access latency (Figure 7.11a) and dynamic energy consumption (Figure

7.11b).

106

2-Tile 4-Tile 8-Tile 16-Tile
0

1

2

3

4

5

6

7

8

O
ve

rh
ea

d
 [

%
]

(a) Latency Overhead

2-Tile 4-Tile 8-Tile 16-Tile
0
1
2
3
4
5
6
7
8

O
ve

rh
ea

d
 [

%
]

(b) Dynamic Energy Overhead

Hy-SVM vs. All-SRAM

Hy-SVM vs. Priv-Only

9
10

O
ve

rh
ea

d
 [

%
]

(c) On-Chip Memory Overhead

HD1080

2-Tile

2K HD1080

4-Tile

2K HD1080

8-Tile

2K HD1080

16-Tile

2K
0

1

2

3

4

5

Figure 7.11: Overhead analysis in terms of: (a) latency, (b) dynamic energy and (c) extra on-chip

memory size.

Compared to All-SRAM, the overhead of inefficient STT-RAM write operations represents

(on average) only 0.3% in terms of latency, and 0.8% in dynamic energy. Since PrivL1 SPMs

have high hit rates (more than 95%), combined to low write intensity of video memories, STT-

RAM write penalty in Hy-SVM can be reduced. The comparison with Priv-Only version aims

to evaluate the MAMU inserted overhead of analyzing the POTs to direct the incoming access

either to PrivL2 or SharedL2 SPM. Still, the high L1 hit rates strongly reduces the overhead of

overlap management, since it runs when L2 level access is required. Additionally, the hardware

required for overlap management is composed of small tables and requires simple logic

operations. As result, we can notice an overhead (on average) in the latency of only 4.7%, as

well as 8.8% in the dynamic energy. Complementary, Figure 7.11c shows the extra on-chip

memory size required to implement the proposed energy-efficient management layer of Hy-

SVM. In this analysis, we compute the size of monitored and predicted overlap tables (POTs

and MOTs), as well as the frame-level and CTU-level power maps. As result, the overhead

achieves only 4% in the worst-case scenario (16-Tile).

107

8. CONCLUSIONS

This PhD work focused on designing an energy-efficient memory architecture (Hy-SVM)

to enable parallel HEVC encoding. HEVC standard innovates on providing a light-weight

parallelization feature: the Tiles partitioning. In the meantime that the adoption of multiple Tiles

accelerates the HEVC encoding process, it strongly aggravates the memory issues, which were

already restrictive for a non-parallelized coding scenario.

The proposed strategies were developed to efficiently support the novel coding structures

and parallelization capabilities; addressing G2 specific goal15. For the proposed on-chip video

memory architecture, both with respect to design methodology and with respect to their

properly management schemes, energy efficiency could be achieved by leveraging application-

specific properties from video coding applications; addressing G1 specific goal. The

application knowledge was mostly exploited by implementing run-time monitoring units in the

proposed architectures. The goal was to collect important hints to properly manage the off- and

on-chip energy consumption. Some run-time analyzed information were: (a) redundant memory

access to reference frames between different Tiles, (b) memory accesses correlations of CTUs

within and across different Tiles, (c) Tile-specific and Tiles-accumulated memory pressure, and

(d) bit-toggling activity during reference frames replacement; addressing G4 specific goal.

Furthermore, HEVC encoding parameters also served as important information to optimize the

on-chip memory design and all proposed management schemes. Some examples are: adopted

prediction structures, decided CTU division along the coding tree structure, and video content

properties (like motion and texture characteristics).

The main contributions of this work were mostly based on research opportunities brought

by recent advances in memory technologies and organization models. The use of scratchpad

memory, which strongly increased the potential of energy reduction of designed Hy-SVM

architecture, was utilized as base of the on-chip data storage organization; addressing G5

specific goal. The Hy-SVM architecture implements private and shared SPMs to provide

energy-efficient storage of Tile-specific (search window and Tile-specific reference frame

region) and Tiles-shared (redundant reference frame region) data. By adopting a multi-level

organization, L1 (composed of private SRAM SPMs) and L2 (composed of private and shared

SRAM/STT-RAM hybrid SPMs - HyMs), Hy-SVM was able to provide a complete support of

intra-Tile and inter-Tiles data reuse, incurring on significantly reduction of off-chip data

communication to fetch the reference data when compared to video memories designed by

related works; addressing G6 specific goal. Hy-SVM architecture relies on hybrid memory

design, by taking advantage from SRAM and STT-RAM benefits to potentiate energy savings

to the on-chip HyMs. A proper design space methodology was performed to measure the best

distribution between SRAM and STT-RAM portions; addressing G7 specific goal. Moreover,

offline statistical evaluations resulted on important knowledge that was inherited by the

proposed design methodology of HyMs circuit-level parameters; addressing G3 specific goal.

To guarantee energy efficiency, adaptive management schemes provided run-time

adaptation to different memory requirements of video coding (caused by variable properties of

input video sequences). Initially, the redundant memory accesses of reference data from

different processing units (called overlap) have been exploited by the overlap prediction

management. It run-time estimates the overlap properties for the next frame processing and

provides dynamic adaptation to the HyMs. Moreover, the unbalanced external memory

bandwidth, cause by HEVC parallel encoding of distinct video coding properties that leads to

15 To link the concluding remarks of this chapter with the prior PhD goals (defined in Section 1.3), the labels

assigned to them are referred in this chapter.

108

unstable memory demands, was the target of the proposed memory pressure management;

addressing G8 specific goal. The main goal was to re-schedule the CTU processing order to

obtain a well-balanced memory pressure, leading to a better usage of the external memory

channel. Endurance issues of STT-RAM cells were addressed by the proposed lifetime-aware

data management; addressing G7 specific goal. This scheme was integrated in the energy-

efficient management layer of Hy-SVM.

The data migration dynamics along the multiple SPM levels and the external memories were

controlled by the distributed memory access management units (MAMUs). The MAMUs had

the role of manage the SPM access according to the decisions taken by the memory

management layer. In this sense, MAMUs implemented proper read and write policies in order

to maximize the inter-Tiles data reuse and STT-RAM cells lifetime, as well as contribute to the

memory pressure balancing. On-chip energy consumption was managed by the adaptive power

management units (APMUs), which could significantly reduce the on-chip static consumption

by leveraging more balanced memory requirements, leading to longer sleep durations to L1

private SPMs sectors, and providing accurate estimation of the overlap characteristics, resulting

on energy savings for L2 private and shared SPMs.

 Summary of Experimental Results

Several tested conditions of HEVC encoding affected the energy consumption behavior of

Hy-SVM. In this sense, extensive analyses were performed using different video resolutions,

search window sizes, prediction structures, number of Tiles, and video content properties.

In an overall scenario, the Hy-SVM architecture outperformed the related works when

analyzing combined on-chip and off-chip energy consumption. The best case among the

evaluated conditions, the overall energy reductions reached 79% (over Level-C), 9% (over

Level-D), 50% (over dSVM), 59% (over AMBER), and 28% (over enHyV). These savings

were achieved by the combined reduction provided by Hy-SVM in the on-chip and off-chip

energy portions. In the off-chip perspective, the joint intra-Tile and inter-Tiles data reuse

supported by the multiple levels of SPMs could strongly reduce the external memory

communication. Thus, Hy-SVM surpassed some related works by 82% (over Level-C), 71%

(over dSVM), 44% (over RCDR) and 51% (over Level-D). In contrast, AMBER and enHyV

achieved better off-chip energy results: 22% and 12% of savings compared to Hy-SVM, on

average. However, these reductions came with a cost of extra on-chip energy consumption. In

this perspective, Hy-SVM outperformed all related works, reaching from 9% (worst case) to

95% (best case) of on-chip energy savings representing the best results in all evaluated

scenarios. The contribution of each proposed strategy within Hy-SVM was evaluated due to the

definition of baseline variations, which serves as comparison purpose. The utilization of STT-

RAM in the hybrid memory design (in combination with SRAM arrays) increased the on-chip

energy savings by up to 73%-94%. Furthermore, APMUs could leverage well balanced memory

requirements and an accurate overlap estimation to contribute with up to 56%-95% of reduction

(only on-chip part), and up to 29% (overall consumption).

Most of the memory energy consumption improvements of Hy-SVM were resultant from

accurate estimations from the overlap prediction scheme, which could be verified by proper

accuracy analyses. For the evaluated scenarios, the prediction strategy improved the accuracy

by 83% (in the best case), compared to a baseline case where no management is performed.

The cases where over predictions occur could be reduced by 72%-81%, and the under prediction

overhead reached 1%-16%, on average. Well-balanced off-chip memory communication was

achieved by the memory pressure management scheme, which re-schedules the CTUs

processing order leading to 37%-83% of mean squared deviance reduction. STT-RAM cells

lifetime was significantly extended by the proposed data management strategy. In this case, the

109

experimental results pointed to a 0.83 normalized lifetime, corresponding to important

improvements on cells endurance. The overhead of integrating all related management layers

were also performed in terms of energy consumption, access latency and on-chip dynamic

energy, and extra on-chip memory cells. For all evaluated scenarios, the measured overhead did

not imply on significantly affect Hy-SVM energy efficiency.

Considering the achieved energy savings, the contributions in terms of balanced memory

pressure and extended memory cells lifetime, as well the insignificant overhead of

implementing Hy-SVM run-time management schemes, it was demonstrated the feasibility of

energy-efficient multimedia processing supporting parallel execution in state-of-the-art HEVC

encoders, thus addressing the main goal of this PhD Thesis.

 Publications during the PhD Work

As results of this PhD research, , several scientific publications were concluded. In the first

part of PhD activities, two preliminary video memories implementations initially exploited the

potential of SPMs and hybrid memory design (combination of SRAM and STT-RAM) to

improve energy efficiency of reference data storage in parallel HEVC. Thus, the Distributed

Scratchpad Video Memory (dSVM) architecture and its related management schemes were

published in the Design, Automation and Test in Europe Conference and Exhibition – DATE

2014 (SAMPAIO et al., 2014a). Besides the memory design, this work also introduced the

overlap concept and proposed a first version of overlap prediction scheme. Moreover, as

energy-efficient hybrid video memory (enHyV) architecture and its involved management parts

were published in the IEEE/ACM International Conference on Computer-Aided Design –

ICCAD 2014 (SAMPAIO et al., 2014c). In this work, lifetime optimization of STT-RAM was

firstly exploited. The memory pressure management scheme was the subject of a paper

published in the IEEE/ACM International Symposium on Low Power Electronics and Design

– ISLPED 2014 (SAMPAIO et al., 2014b). Improvements on multi-level hybrid SPMs

organization and on the overlap prediction strategy, as well as detailed memory access power

management units, were part of the contributions that compose a submitted paper to the IEEE

Transactions on Circuits and Systems for Video Technology (TCSVT). As result from all these

efforts, we proposed the Hy-SVM architecture in this PhD thesis, which integrates the hybrid

memories design and the application-driven management layers published in these partial

works.

An initial version of an approximation-aware multi-level STT-RAM memory architecture,

based on resilience evaluations of video coding applications, was published in the International

Conference on Compilers, Architecture and Synthesis for Embedded Systems – CASES 2015

(co-located event of the Embedded Systems Week – ESWeek) (SAMPAIO et al., 2015). It

composes an initial effort within the approximate storage research field, representing a starting

point for future works, as detailed as follows.

The list of publications and the complete published papers are presented in Annex A.

 Future Works

This Thesis explored different research topics in order to improve the energy efficiency of

parallel HEVC requirements regarding its memory infrastructure. In this sense, there are several

other research challenges that should be addressed, as well as opportunities from recent

advances that can be applied to video coding scenario. They are summarized as follows:

110

 Approximate storage for video coding applications

Video coding can be classified as a resilient application when considering the reference

frames as a resilient data. Thus, approximate storage can be exploited over such data to achieve

energy savings during the memory operations. In this case, energy efficiency can be improved

by tolerating a controlled level of error occurrences with the goal of simplifying correction

routines.

Recently, state-of-the-art works have explored data approximations for energy reductions

in main memories (JUNG et al., 2016; LIU et al., 2011; SAMPSON et al., 2013). Jung et al.

(2016) performs a review regarding possibilities of approximation in DRAM memories. As a

practical implementation, Liu et al. (2011) extends the data refresh interval of DRAM memories

to potentially save energy consumption while assuming wear-out errors. Sampson et al. (2013)

uses approximate storage in PCM-based main memories by reducing write pulses and leading

to wear-out errors.

An ongoing research during this PhD work leveraged approximate storage opportunities

from resilient application were also exploited. An application-aware strategy was proposed by

Sampaio et al. (2015), which means that other resilient applications besides video coding can

take advantage from its improved energy efficiency. Unreliable multi-level cells (MLC) of

STT-RAM were adopted as memory infrastructure. The MLC design is a promising alternative

to single-level cells (SLC). In a MLC, one physical memory cell is able to store more than one

logic bit. Recent studies (BI et al., 2013; ZHANG et al., 2012) have demonstrated the feasibility

of MLC-based design of STT-RAM towards scalability and energy efficiency for larger banks.

However, due to the process variations, memory arrays based on MLC STT-RAM have more

frequent error occurrences during memory read and write operations. Thus, the energy

consumption can be compromised by the required extra circuitry to guarantee the reliability of

the memory system.

In the last years, state-of-the-art on-chip memory implementations that rely on approximate

storage using advances of STT-RAM technologies have been proposed (MONAZZAH et al.,

2017; RANJAN et al., 2017; ZHAO et al., 2017). Monazzah et al. (2017) and Ranjan et al.

(2017) developed general-purpose memories using selective approximation strengths to

optimize the energy efficiency of last-level caches. In an application-driven perspective, Zhao

et al. (2017) designed an MLC STT-RAM architecture for on-chip storage for image

applications.

Video coding applications have specific resilience behavior, which is mostly dependent on

the video content properties. Moreover, this variability may occur between different sequences,

as well as inside the same video, becoming even more intricate the exploitation of error

tolerance techniques to maximize the energy efficiency while minimizing the coding efficiency

drops. Thus, an important key challenge is to leverage specific video coding resilience

properties to enable approximation storage for the exploration of reliability-energy-quality

tradeoffs in on- and off-chip video memories. Furthermore, any data approximation in video

encoders should also guarantee error-free execution for the non-resilient kernels, ensuring no

critical failures during the execution.

 Memory requirements evaluation for next-generation video coding standards

Next-generation video coding standards are currently being developed by joint groups

coordinated by video standardization committees and world-wide companies involved on video

processing systems.

One effort is conducted by a joint group composed of experts from ITU-T and ISO/IEC

called “Joint Video Exploration Team” (JVET, 2018). By starting from HEVC reference

111

software, this group is evaluating novel coding tools to improve HEVC standard, focusing on

improve coding efficiency. The contributions from video processing research groups and

involved companies are integrated in the JEM reference software. As the same flow of

H.264/AVC and HEVC standards definition, extensive evaluations will be performed and the

most promising strategies will be incorporated in the final standard.

A parallel investigation is performed by a consortium of leading Internet companies, such

as Amazon, Apple, ARM, Cisco, Facebook, Google, IBM, Intel, Microsoft, Mozilla, Netflix

and NVIDIA, called Alliance for Open Media (AOM, 2018). The goal is to develop next-

generation media formats, codecs and technologies. Alliance members bring their collective

technology and expertise to meet growing Internet demand for top-quality video, audio,

imagery and streaming across devices of all kinds and for users worldwide. As first initiative

from this project, royalty-free video codec specification and open source implementation was

provided, named as AV1. In contrast to the definition of previous video coding standards, this

is the first time that an open video codec standardization was guided by commercial interests.

At the same time that important efforts are noticed to improve HEVC coding efficiency

during the definition of the next-generation video coding standards, performance and energy

issues of such novel tools should be extensively analyzed. Novel strategies for parallelization

have been proposed, which may highly require support from the memory system. Therefore,

besides coding efficiency and performance optimization evaluations, there is also a strong need

for memory requirements assessment of the novel tools proposed by the next-generation video

codecs.

112

REFERENCES

ABE, K. et al. Novel hybrid DRAM/MRAM design for reducing power of high

performance mobile CPU. 2012 International Electron Devices Meeting. Anais... In: 2012

INTERNATIONAL ELECTRON DEVICES MEETING. dez. 2012

AHN, J.; YOO, S.; CHOI, K. Prediction Hybrid Cache: An Energy-Efficient STT-RAM Cache

Architecture. IEEE Transactions on Computers, v. 65, n. 3, p. 940–951, mar. 2016.

ALVAREZ, L. et al. Runtime-Guided Management of Scratchpad Memories in Multicore

Architectures. 2015 International Conference on Parallel Architecture and Compilation

(PACT). Anais... In: 2015 INTERNATIONAL CONFERENCE ON PARALLEL

ARCHITECTURE AND COMPILATION (PACT). out. 2015

AOM. Home. Disponível em: <http://aomedia.org/>. Acesso em: 19 fev. 2018.

ARJOMAND, M. et al. Leveraging value locality for efficient design of a hybrid cache in

multicore processors. 2017 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). Anais... In: 2017 IEEE/ACM INTERNATIONAL CONFERENCE ON

COMPUTER-AIDED DESIGN (ICCAD). nov. 2017

BANAKAR, R. et al. Scratchpad memory: a design alternative for cache on-chip memory

in embedded systems. Proceedings of the Tenth International Symposium on

Hardware/Software Codesign, 2002. CODES 2002. Anais... In: PROCEEDINGS OF THE

TENTH INTERNATIONAL SYMPOSIUM ON HARDWARE/SOFTWARE CODESIGN,

2002. CODES 2002. 2002

BI, X. et al. Unleashing the potential of MLC STT-RAM caches. Proceedings of the

International Conference on Computer-Aided Design. Anais...IEEE Press, 2013Disponível em:

<http://dl.acm.org/citation.cfm?id=2561913>. Acesso em: 13 jun. 2014

BLUMENBERG, C. et al. Adaptive content-based Tile partitioning algorithm for the

HEVC standard. Picture Coding Symposium (PCS), 2013. Anais... In: PICTURE CODING

SYMPOSIUM (PCS), 2013. dez. 2013

BONATTO, L. V. M. et al. Low-power Multi-size HEVC DCT Architecture Proposal for

QFHD Video Processing. Proceedings of the 30th Symposium on Integrated Circuits and

Systems Design: Chip on the Sands. Anais...: SBCCI ’17.New York, NY, USA: ACM,

2017Disponível em: <http://doi.acm.org/10.1145/3109984.3109987>. Acesso em: 15 fev. 2018

CHEN, C.-Y. et al. Level C+ data reuse scheme for motion estimation with corresponding

coding orders. IEEE Transactions on Circuits and Systems for Video Technology, v. 16, n.

4, p. 553–558, abr. 2006.

CHEN, D. et al. Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, v. PP, n. 99, p. 1–13, 2018.

CHEN, K. et al. A Novel Wavefront-Based High Parallel Solution for HEVC Encoding. IEEE

Transactions on Circuits and Systems for Video Technology, v. 26, n. 1, p. 181–194, jan.

2016.

CHEN, Y.-T. et al. Dynamically reconfigurable hybrid cache: An energy-efficient last-level

cache design. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012.

Anais...2012Disponível em: <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6176431>.

Acesso em: 2 maio. 2013

CHENG, S.-P.; HUANG, S.-Y. A low-power SRAM design using quiet-bitline architecture.

2005 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT’05).

113

Anais... In: 2005 IEEE INTERNATIONAL WORKSHOP ON MEMORY TECHNOLOGY,

DESIGN, AND TESTING (MTDT’05). ago. 2005

CHI, C. C. et al. Parallel Scalability and Efficiency of HEVC Parallelization Approaches. IEEE

Transactions on Circuits and Systems for Video Technology, v. 22, n. 12, p. 1827–1838,

dez. 2012.

CHIANG, P. T. et al. A QFHD 30-frames/s HEVC Decoder Design. IEEE Transactions on

Circuits and Systems for Video Technology, v. 26, n. 4, p. 724–735, abr. 2016.

CHO, S. et al. Efficient In-Loop Filtering Across Tile Boundaries for Multi-Core HEVC

Hardware Decoders With 4 K/8 K-UHD Video Applications. IEEE Transactions on

Multimedia, v. 17, n. 6, p. 778–791, jun. 2015.

CISCO. Visual Networking Index (VNI) Forecast Highlights Tool. Disponível em:

<https://www.cisco.com/c/m/en_us/solutions/service-provider/vni-forecast-highlights.html>.

Acesso em: 6 nov. 2017.

CORREA, G. et al. Complexity control of high efficiency video encoders for power-constrained

devices. IEEE Transactions on Consumer Electronics, v. 57, n. 4, p. 1866–1874, nov. 2011.

CORREA, G. et al. Motion compensated tree depth limitation for complexity control of

HEVC encoding. 2012 19th IEEE International Conference on Image Processing (ICIP).

Anais... In: 2012 19TH IEEE INTERNATIONAL CONFERENCE ON IMAGE

PROCESSING (ICIP). 2012

CORREA, G. et al. Coding Tree Depth Estimation for Complexity Reduction of HEVC.

2013 Data Compression Conference. Anais... In: 2013 DATA COMPRESSION

CONFERENCE. mar. 2013

DONG, X. et al. Circuit and Microarchitecture Evaluation of 3D Stacking Magnetic RAM

(MRAM) As a Universal Memory Replacement. : DAC ’08.New York, NY, USA: ACM,

2008Disponível em: <http://doi.acm.org/10.1145/1391469.1391610>. Acesso em: 4 nov. 2017

FAN, Y. et al. A Hardware-Oriented IME Algorithm for HEVC and its Hardware

Implementation. IEEE Transactions on Circuits and Systems for Video Technology, v. PP,

n. 99, p. 1–1, 2017.

GRELLERT, M. et al. A multilevel data reuse scheme for Motion Estimation and its VLSI

design. 2011 IEEE International Symposium of Circuits and Systems (ISCAS). Anais... In:

2011 IEEE INTERNATIONAL SYMPOSIUM OF CIRCUITS AND SYSTEMS (ISCAS).

maio 2011

GUO, L. et al. Frame-level quality and memory traffic allocation for lossy embedded

compression in video codec systems. 2016 IEEE International Conference on Multimedia

Expo Workshops (ICMEW). Anais... In: 2016 IEEE INTERNATIONAL CONFERENCE ON

MULTIMEDIA EXPO WORKSHOPS (ICMEW). jul. 2016

GUO, L.; ZHOU, D.; GOTO, S. A New Reference Frame Recompression Algorithm and Its

VLSI Architecture for UHDTV Video Codec. IEEE Transactions on Multimedia, v. 16, n. 8,

p. 2323–2332, dez. 2014.

HANSEN, H. E. et al. A shared scratchpad memory with synchronization support. 2017

IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International

Symposium of System-on-Chip (SoC). Anais... In: 2017 IEEE NORDIC CIRCUITS AND

SYSTEMS CONFERENCE (NORCAS): NORCHIP AND INTERNATIONAL

SYMPOSIUM OF SYSTEM-ON-CHIP (SOC). out. 2017

114

HP LABS. HP Labs : CACTI. Disponível em: <http://www.hpl.hp.com/research/cacti/>.

Acesso em: 6 nov. 2017.

IBM RESEARCH. The Cell Project - IBM. CT002. Disponível em:

<http://researcher.watson.ibm.com/researcher/view_group.php?id=2649>. Acesso em: 29 jul.

2015.

IMANI, M.; PATIL, S.; ROSING, T. Low power data-aware STT-RAM based hybrid cache

architecture. 2016 17th International Symposium on Quality Electronic Design (ISQED).

Anais... In: 2016 17TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC

DESIGN (ISQED). mar. 2016

ISO/IEC-JCT1/SC29/WG11. Common test conditions and software reference

configurations, 2012.

ISO/IEC-JCT1/SC29/WG11. High Efficiency Video Coding (HEVC) text specification

draft 10, 2013a.

ISO/IEC-JCT1/SC29/WG11. High Efficiency Video Coding (HEVC) Test Model 13 (HM

13) Encoder Description, 2013b.

ITU-T. ITU-T Recommendation H.264 (05/2003): advanced video coding for generic

audiovisual services, 2013.

JACOB, B.; NG, S.; WANG, D. Memory Systems: Cache, DRAM, Disk. [s.l.] Elsevier

Science, 2010.

JCT-VC. JCT-VC - Joint Collaborative Team on Video Coding. Disponível em:

<http://www.itu.int:80/en/ITU-T/studygroups/2017-2020/16/Pages/video/jctvc.aspx>. Acesso

em: 5 nov. 2017.

JEONG, M. K. et al. A QoS-aware memory controller for dynamically balancing GPU and

CPU bandwidth use in an MPSoC. Proceedings of the 49th Annual Design Automation

Conference. Anais...ACM, 2012Disponível em: <http://dl.acm.org/citation.cfm?id=2228513>.

Acesso em: 14 mar. 2014

JIN, X.; DAI, Q. Clustering-Based Content Adaptive Tiles Under On-chip Memory

Constraints. IEEE Transactions on Multimedia, v. 18, n. 12, p. 2331–2344, dez. 2016.

JIN, Y.; SHIHAB, M.; JUNG, M. Area, Power, and Latency Considerations of STT-MRAM

to Substitute for Main Memory. Proc. ISCA. Anais...2014Disponível em:

<http://www.utdallas.edu/~jung/uploads/Main/stt-mram-study.pdf>. Acesso em: 27 jul. 2015

JOG, A. et al. Cache revive: architecting volatile STT-RAM caches for enhanced

performance in CMPs. Proceedings of the 49th Annual Design Automation Conference.

Anais...2012Disponível em: <http://dl.acm.org/citation.cfm?id=2228406>. Acesso em: 17 jul.

2013

JOU, S. Y.; CHANG, S. J.; CHANG, T. S. Fast Motion Estimation Algorithm and Design for

Real Time QFHD High Efficiency Video Coding. IEEE Transactions on Circuits and

Systems for Video Technology, v. 25, n. 9, p. 1533–1544, set. 2015.

JUNG, M. et al. Invited: Approximate computing with partially unreliable dynamic

random access memory #x2014; Approximate DRAM. 2016 53nd ACM/EDAC/IEEE

Design Automation Conference (DAC). Anais... In: 2016 53ND ACM/EDAC/IEEE DESIGN

AUTOMATION CONFERENCE (DAC). jun. 2016

JVET. JVET JEM software | JVET. Disponível em: <https://jvet.hhi.fraunhofer.de/>. Acesso

em: 19 fev. 2018.

115

KHAN, M. U. K.; SHAFIQUE, M.; HENKEL, J. AMBER: Adaptive energy management

for on-chip hybrid video memories. 2013 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD). Anais... In: 2013 IEEE/ACM INTERNATIONAL CONFERENCE

ON COMPUTER-AIDED DESIGN (ICCAD). nov. 2013

KHAN, M. U. K.; SHAFIQUE, M.; HENKEL, J. Software architecture of High Efficiency

Video Coding for many-core systems with power-efficient workload balancing. 2014

Design, Automation Test in Europe Conference Exhibition (DATE). Anais... In: 2014

DESIGN, AUTOMATION TEST IN EUROPE CONFERENCE EXHIBITION (DATE). mar.

2014

KHOSHAVI, N. et al. Read-Tuned STT-RAM and eDRAM Cache Hierarchies for Throughput

and Energy Enhancement. arXiv:1607.08086 [cs], 27 jul. 2016.

KIM, H.; KIM, S.; LEE, J. Write-Amount-Aware Management Policies for STT-RAM Caches.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 25, n. 4, p. 1588–

1592, abr. 2017.

KÜLTÜRSAY, E. et al. Evaluating STT-RAM as an energy-efficient main memory

alternative. 2013 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). Anais... In: 2013 IEEE INTERNATIONAL SYMPOSIUM ON

PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS). abr. 2013

LAPEDUS, M. Semiconductor Engineering .:. Four Foundries Back MRAM. Disponível

em: <https://semiengineering.com/four-foundries-back-mram/>. Acesso em: 20 fev. 2018.

LI, J. et al. Hybrid cache architecture with disparate memory technologies. ACM

SIGARCH Computer Architecture News. Anais...2009Disponível em:

<http://dl.acm.org/citation.cfm?id=1555761>. Acesso em: 2 maio. 2013

LIAN, X. et al. Parallel Content-Aware Adaptive Quantization Oriented Lossy Frame Memory

Recompression for HEVC. IEEE Transactions on Circuits and Systems for Video

Technology, v. PP, n. 99, p. 1–1, 2016a.

LIAN, X. et al. Lossless Frame Memory Compression Using Pixel-Grain Prediction and

Dynamic Order Entropy Coding. IEEE Transactions on Circuits and Systems for Video

Technology, v. 26, n. 1, p. 223–235, jan. 2016b.

LIAO, W.; YANG, D.; CHEN, Z. A fast mode decision algorithm for HEVC intra

prediction. 2016 Visual Communications and Image Processing (VCIP). Anais... In: 2016

VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP). nov. 2016

LIU, S. et al. Flikker: Saving DRAM Refresh-power Through Critical Data Partitioning.

Proceedings of the Sixteenth International Conference on Architectural Support for

Programming Languages and Operating Systems. Anais...: ASPLOS XVI.New York, NY,

USA: ACM, 2011Disponível em: <http://doi.acm.org/10.1145/1950365.1950391>. Acesso

em: 27 jul. 2015

LIU, T. M. et al. Energy and area efficient hardware implementation of 4K Main-10 HEVC

decoder in Ultra-HD Blu-ray player and TV systems. 2015 IEEE International Conference

on Multimedia and Expo (ICME). Anais... In: 2015 IEEE INTERNATIONAL CONFERENCE

ON MULTIMEDIA AND EXPO (ICME). jun. 2015

M, M. A. B.; SK, N. M. High Performance Integer DCT Architectures for HEVC. 2017

30th International Conference on VLSI Design and 2017 16th International Conference on

Embedded Systems (VLSID). Anais... In: 2017 30TH INTERNATIONAL CONFERENCE

ON VLSI DESIGN AND 2017 16TH INTERNATIONAL CONFERENCE ON EMBEDDED

SYSTEMS (VLSID). jan. 2017

116

MERTENS, R. GlobalFoundries: 22nm eMRAM technology is now available, prototyping

to start in Q1 2018 | MRAM-Info. Disponível em: <https://www.mram-

info.com/globalfoundries-22nm-emram-technology-now-available-prototyping-start-q1-

2018>. Acesso em: 20 fev. 2018.

MERTENS, RON. Everspin starts to produce commercial 40nm 256Mb STT-MRAM

chips | MRAM-Info. Disponível em: <https://www.mram-info.com/everspin-starts-produce-

commercial-40nm-256mb-stt-mram-chips>. Acesso em: 20 fev. 2018.

MICRON TECHNOLOGY INC. TN-46-03 – Calculating DDR Memory System

PowerMicron Technology Inc., , 2001. Disponível em:

<https://www.micron.com/~/media/documents/products/technical-

note/dram/tn4603.pdf?la=en>. Acesso em: 10 maio. 2017

MICRON TECHNOLOGY INC. TN-46-12: Mobile DRAM Power-Saving

Features/CalculationsMicron Technology Inc., , 2005. Disponível em:

<https://www.micron.com/~/media/documents/products/technical-note/dram/tn4612.pdf>.

Acesso em: 10 maio. 2017

MICRON TECHNOLOGY INC. 4Gb: x16, x32 Mobile LPDDR2 SDRAM S4Micron

Technology Inc., , 2011. Disponível em:

<https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-

power-dram/lpddr2/u80m_4gb_mobile_lpddr2_s4_sdram.pdf>. Acesso em: 11 maio. 2017

MIN, C. et al. Extending the lifetime of object-based NAND flash device with STT-

RAM/DRAM hybrid buffer. 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC). Anais... In: 2017 22ND ASIA AND SOUTH PACIFIC DESIGN

AUTOMATION CONFERENCE (ASP-DAC). jan. 2017

MISRA, K. et al. An Overview of Tiles in HEVC. IEEE Journal of Selected Topics in Signal

Processing, v. 7, n. 6, p. 969–977, dez. 2013.

MONAZZAH, A. M. H. et al. QuARK: Quality-configurable approximate STT-MRAM

cache by fine-grained tuning of reliability-energy knobs. 2017 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED). Anais... In: 2017 IEEE/ACM

INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN

(ISLPED). jul. 2017

MONAZZAH, A. M. H.; FARBEH, H.; MIREMADI, S. G. OPTIMAS: Overwrite Purging

Through In-Execution Memory Address Snooping to Improve Lifetime of NVM-Based

Scratchpad Memories. IEEE Transactions on Device and Materials Reliability, v. 17, n. 3,

p. 481–489, set. 2017.

PARK, S. et al. An efficient motion estimation hardware architecture using Modified

Reference Data Access(MRDAS) skip algorithm for high Efficiency Video

Coding(HEVC) encoder. 2016 IEEE 6th International Conference on Consumer Electronics -

Berlin (ICCE-Berlin). Anais... In: 2016 IEEE 6TH INTERNATIONAL CONFERENCE ON

CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN). set. 2016

PILLA, L. L. et al. A hierarchical approach for load balancing on parallel multi-core

systems. Parallel Processing (ICPP), 2012 41st International Conference on. Anais...IEEE,

2012Disponível em: <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6337573>. Acesso

em: 14 mar. 2014

PODDER, P. K.; PAUL, M.; MURSHED, M. Fast Mode Decision in the HEVC Video Coding

Standard by Exploiting Region with Dominated Motion and Saliency Features. PLOS ONE, v.

11, n. 3, p. e0150673, 10 mar. 2016.

117

PORTO, R.; AGOSTINI, L.; BAMPI, S. Hardware Design of the H.264/AVC Variable

Block Size Motion Estimation for Real-Time 1080HD Video Encoding. 2009 IEEE

Computer Society Annual Symposium on VLSI. Anais... In: 2009 IEEE COMPUTER

SOCIETY ANNUAL SYMPOSIUM ON VLSI. maio 2009

PURNACHAND, N.; ALVES, L. N.; NAVARRO, A. Improvements to TZ search motion

estimation algorithm for multiview video coding. 2012 19th International Conference on

Systems, Signals and Image Processing (IWSSIP). Anais... In: 2012 19TH INTERNATIONAL

CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP). abr.

2012

RANJAN, A. et al. STAxCache: An approximate, energy efficient STT-MRAM cache.

Design, Automation Test in Europe Conference Exhibition (DATE), 2017. Anais... In:

DESIGN, AUTOMATION TEST IN EUROPE CONFERENCE EXHIBITION (DATE), 2017.

mar. 2017

REED, E. et al. Probabilistic Replacement Strategies for Improving the Lifetimes of NVM-

based Caches. Proceedings of the International Symposium on Memory Systems. Anais...:

MEMSYS ’17.New York, NY, USA: ACM, 2017Disponível em:

<http://doi.acm.org/10.1145/3132402.3132433>. Acesso em: 2 fev. 2018

RICHARDSON, I. E. H.264 and MPEG-4 Video Compression: Video Coding for Next-

generation Multimedia. [s.l.] Wiley, 2004.

ROVATI, F. S. et al. An innovative, high quality and search window independent motion

estimation algorithm and architecture for MPEG-2 encoding. IEEE Transactions on

Consumer Electronics, v. 46, n. 3, p. 697–705, ago. 2000.

SAMPAIO, F. et al. Energy-efficient memory hierarchy for Motion and Disparity

Estimation in Multiview Video Coding. Design, Automation Test in Europe Conference

Exhibition (DATE), 2013. Anais... In: DESIGN, AUTOMATION TEST IN EUROPE

CONFERENCE EXHIBITION (DATE), 2013. mar. 2013a

SAMPAIO, F. et al. Content-adaptive reference frame compression based on intra-frame

prediction for multiview video coding. 2013 IEEE International Conference on Image

Processing. Anais... In: 2013 IEEE INTERNATIONAL CONFERENCE ON IMAGE

PROCESSING. set. 2013b

SAMPAIO, F. et al. dSVM: Energy-efficient distributed Scratchpad Video Memory

Architecture for the next-generation High Efficiency Video Coding. Design, Automation

and Test in Europe Conference and Exhibition (DATE), 2014. Anais... In: DESIGN,

AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION (DATE),

2014. mar. 2014a

SAMPAIO, F. et al. Content-driven memory pressure balancing and video memory power

management for parallel High Efficiency Video Coding. 2014 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED). Anais... In: 2014 IEEE/ACM

INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN

(ISLPED). ago. 2014b

SAMPAIO, F. et al. Energy-efficient architecture for advanced video memory. 2014

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Anais... In: 2014

IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN

(ICCAD). nov. 2014c

SAMPAIO, F. et al. Approximation-aware Multi-Level Cells STT-RAM cache

architecture. 2015 International Conference on Compilers, Architecture and Synthesis for

118

Embedded Systems (CASES). Anais... In: 2015 INTERNATIONAL CONFERENCE ON

COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS

(CASES). out. 2015

SAMPSON, A. et al. Approximate Storage in Solid-state Memories. Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchitecture. Anais...: MICRO-46.New

York, NY, USA: ACM, 2013Disponível em: <http://doi.acm.org/10.1145/2540708.2540712>.

Acesso em: 31 jul. 2015

SHAFIQUE, M. et al. Adaptive power management of on-chip video memory for

Multiview Video Coding. 2012 49th ACM/EDAC/IEEE Design Automation Conference

(DAC). Anais... In: 2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION

CONFERENCE (DAC). jun. 2012

SHAFIQUE, M.; KHAN, M. U. K.; HENKEL, J. Power efficient and workload balanced

tiling for parallelized high efficiency video coding. 2014 IEEE International Conference on

Image Processing (ICIP). Anais... In: 2014 IEEE INTERNATIONAL CONFERENCE ON

IMAGE PROCESSING (ICIP). out. 2014

SILVEIRA, D. et al. Efficient reference frame compression scheme for video coding systems:

algorithm and VLSI design. Journal of Real-Time Image Processing, p. 1–21, 11 dez. 2015.

SINGH, H. et al. Enhanced Leakage Reduction Techniques Using Intermediate Strength Power

Gating. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 15, n. 11,

p. 1215–1224, nov. 2007.

SONG, C.; JU, L.; JIA, Z. Hybrid scratchpad and cache memory management for energy-

efficient parallel HEVC encoding. 2015 33rd IEEE International Conference on Computer

Design (ICCD). Anais... In: 2015 33RD IEEE INTERNATIONAL CONFERENCE ON

COMPUTER DESIGN (ICCD). out. 2015

STROGENE.COM. Strongene - HEVC/H.265 Decoder. Disponível em:

<http://www.xhevc.com/en/hevc/decoder/download.jsp>. Acesso em: 9 jan. 2018.

SULLIVAN, G. J. et al. Overview of the High Efficiency Video Coding (HEVC) Standard.

IEEE Transactions on Circuits and Systems for Video Technology, v. 22, n. 12, p. 1649–

1668, dez. 2012.

SULLIVAN, G. J.; WIEGAND, T. Rate-distortion optimization for video compression. IEEE

Signal Processing Magazine, v. 15, n. 6, p. 74–90, nov. 1998.

SZE, V.; BUDAGAVI, M.; SULLIVAN, G. J. (EDS.). High Efficiency Video Coding

(HEVC). Cham: Springer International Publishing, 2014.

TEXAS INSTRUMENTS. TMS370CX7X from Texas Instruments. Disponível em:

<http://www.ti.com/mcu/docs/mcuorphan.tsp?contentId=15364>. Acesso em: 29 jul. 2015.

TUAN, J.-C.; CHANG, T.-S.; JEN, C.-W. On the data reuse and memory bandwidth analysis

for full-search block-matching VLSI architecture. IEEE Transactions on Circuits and

Systems for Video Technology, v. 12, n. 1, p. 61–72, jan. 2002.

VALGRIND DEVELOPERS. Valgrind Home. Disponível em: <http://valgrind.org/>. Acesso

em: 6 nov. 2017.

VAYALIL, N. C.; KONG, Y. VLSI Architecture of Full-Search Variable-Block-Size Motion

Estimation for HEVC Video Encoding. IET Circuits, Devices Systems, v. 11, n. 6, p. 543–

548, 2017.

119

VETRO, A.; WIEGAND, T.; SULLIVAN, G. J. Overview of the Stereo and Multiview Video

Coding Extensions of the H.264/MPEG-4 AVC Standard. Proceedings of the IEEE, v. 99, n.

4, p. 626–642, abr. 2011.

VILLEGAS, A. et al. Lightweight Hardware Transactional Memory for GPU Scratchpad

Memory. IEEE Transactions on Computers, v. PP, n. 99, p. 1–1, 2017.

VIZZOTTO, B. B. et al. A Model Predictive Controller for Frame-Level Rate Control in

Multiview Video Coding. 2012 IEEE International Conference on Multimedia and Expo.

Anais... In: 2012 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO.

jul. 2012

WIEGAND, T. et al. Overview of the H.264/AVC video coding standard. IEEE Transactions

on Circuits and Systems for Video Technology, v. 13, n. 7, p. 560–576, jul. 2003.

WU, X. et al. Design exploration of hybrid caches with disparate memory technologies. ACM

Transactions on Architecture and Code Optimization, v. 7, n. 3, p. 1–34, 1 dez. 2010.

XIANGYU DONG et al. NVSim: A Circuit-Level Performance, Energy, and Area Model for

Emerging Nonvolatile Memory. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, v. 31, n. 7, p. 994–1007, jul. 2012.

YAZDANSHENAS, S. et al. Coding Last Level STT-RAM Cache for High Endurance and

Low Power. IEEE Computer Architecture Letters, v. 13, n. 2, p. 73–76, jul. 2014.

ZATT, B. et al. Run-time adaptive energy-aware Motion and Disparity Estimation in

Multiview Video Coding. 2011 48th ACM/EDAC/IEEE Design Automation Conference

(DAC). Anais... In: 2011 48TH ACM/EDAC/IEEE DESIGN AUTOMATION

CONFERENCE (DAC). jun. 2011a

ZATT, B. et al. A low-power memory architecture with application-aware power

management for motion amp; disparity estimation in Multiview Video Coding. 2011

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Anais... In: 2011

IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN

(ICCAD). nov. 2011b

ZATT, B. et al. 3D Video Coding for Embedded Devices: Energy Efficient Algorithms and

Architectures. [s.l.] Springer New York, 2016.

ZHANG, Y. et al. Multi-level cell STT-RAM: Is it realistic or just a dream? Proceedings of

the International Conference on Computer-Aided Design. Anais...ACM, 2012Disponível em:

<http://dl.acm.org/citation.cfm?id=2429498>. Acesso em: 13 jun. 2014

ZHAO, H. et al. Approximate image storage with multi-level cell STT-MRAM main

memory. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

Anais... In: 2017 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED

DESIGN (ICCAD). nov. 2017

ZHOU, D. et al. An 8K H.265/HEVC Video Decoder Chip With a New System Pipeline

Design. IEEE Journal of Solid-State Circuits, v. 52, n. 1, p. 113–126, jan. 2017.

ZHU, J. et al. An independent bandwidth reduction device for HEVC VLSI video system.

2015 IEEE International Symposium on Circuits and Systems (ISCAS). Anais... In: 2015 IEEE

INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS). maio 2015

120

APPENDIX A – CHARACTERIZATION OF DESIGNED ON-CHIP HYBRID

VIDEO MEMORIES

Table A.1: Design-Decision Parameters of Hy-SVM Design Methodology

Input Parameters

BU Dim. 8

BUs (Lines) per Sector 4

Bits per Sample 8

Motion Delta 2

Line Size (bits) 64

Sector Size (bits) 256

Table A.2: Sizing of Evaluated Hy-SVM Design Parameters (STT-RAM SPMs)

Scenario Parameters STT-RAM SPMs

Mem.

Level
SPM ID #Tiles

Search

Window

Video

Resolution

Size

(Bytes)

Size

(KB)

Number

of Lines

(NL)

Number

of

Sectors

(NS)

PrivL2

PrivL2-1 2

-

HD1080 1036800 1013 16200 4050

PrivL2-2 2 2K 2048000 2000 32000 8000

PrivL2-3 4 HD1080 518400 506 8100 2025

PrivL2-4 4 2K 1024000 1000 16000 4000

PrivL2-5 8 HD1080 259200 253 4050 1013

PrivL2-6 8 2K 512000 500 8000 2000

PrivL2-7 16 HD1080 129600 127 2025 506

PrivL2-8 16 2K 256000 250 4000 1000

SharedL2-

Ver

SharedL2-Ver-1
-

128x128 HD1080 138240 135 2160 540

SharedL2-Ver-2 128x128 2K 204800 200 3200 800

SharedL2-

Hor

SharedL2-Hor-1
-

128x128 HD1080 245760 240 3840 960

SharedL2-Hor-2 128x128 2K 138240 135 2160 540

Table A.3: Sizing of Evaluated Hy-SVM Design Parameters (RAM SPMs)

Scenario Parameters STT-RAM SPMs

Mem. Level SPM ID #Tiles
Search

Window

Video

Resolution

Size

(Bytes)

Size

(KB)

Number

of Lines

(NL)

Number

of

Sectors

(NS)

PrivL1

PrivL1-1

-

128x128

-

36864 36 576 144

PrivL1-2 192x192 65536 64 1024 256

PrivL1-3 256x256 331776 324 5184 1296

PrivL2

PrivL2-1 2

-

HD1080 362880 354 5670 1418

PrivL2-2 2 2K 716800 700 11200 2800

PrivL2-3 4 HD1080 181440 177 2835 709

PrivL2-4 4 2K 358400 350 5600 1400

PrivL2-5 8 HD1080 90720 89 1418 354

PrivL2-6 8 2K 179200 175 2800 700

PrivL2-7 16 HD1080 45360 44 709 177

PrivL2-8 16 2K 89600 88 1400 350

SharedL2-

Ver

SharedL2-Ver-1
- -

HD1080 48384 47 756 189

SharedL2-Ver-4 2K 71680 70 1120 280

SharedL2-

Hor

SharedL2-Hor-1
- -

HD1080 86016 84 1344 336

SharedL2-Hor-4 2K 48384 47 756 189

121

Table A.4: Power and Latency Components of Evaluated STT-RAM SPMs

SPM ID

Static

Power

(mW)

Dynamic Energy (pJ) Latency (ns)

Read Write Read Write

PrivL2-1 257,558 185,82 638,208 1,984 10,69

PrivL2-2 1018 276,83 729,131 1,8 10,604

PrivL2-3 128,561 133,596 589,01 1,9 10,653

PrivL2-4 257,558 185,82 638,208 1,984 10,69

PrivL2-5 64,281 103,368 558,782 1,877 10,637

PrivL2-6 128,561 133,596 589,01 1,9 10,653

PrivL2-7 32,1405 100,902 557,808 1,547 10,482

PrivL2-8 64,281 103,368 558,782 1,877 10,637

SharedL2-Ver-1 63,781 100,902 557,808 1,547 10,482

SharedL2-Ver-2 64,281 103,368 558,782 1,877 10,637

SharedL2-Hor-1 64,281 103,368 558,782 1,877 10,637

SharedL2-Hor-2 128,561 133,596 589,01 1,9 10,653

Table A.5: Power and Latency Components of Evaluated SRAM SPMs

SPM ID

Static

Power

(mW)

Dynamic Energy (pJ) Latency (ns)

Read Write Read Write

PrivL1-1 17,0668 0,118908 0,326939 0,979512 0,997519

PrivL1-2 30,1414 0,144643 0,144643 1,29467 1,29467

PrivL1-3 43,1164 0,253412 0,497958 1,29934 1,29934

PrivL2-1 420,034 1,1613 1,3594 3,56072 3,56072

PrivL2-2 819,35 1,70061 1,66746 5,05218 5,05218

PrivL2-3 210,017 0,755956 0,95405 2,61526 2,61526

PrivL2-4 420,034 1,1613 1,3594 3,56072 3,56072

PrivL2-5 109,736 0,395138 1,02507 2,28963 2,28963

PrivL2-6 210,017 0,755956 0,95405 2,61526 2,61526

PrivL2-7 55,0989 0,278891 0,592609 1,46829 1,46829

PrivL2-8 109,736 0,395138 1,02507 2,28963 2,28963

SharedL2-Ver-1 109,736 0,395138 1,02507 2,28963 2,28963

SharedL2-Ver-2 210,017 0,755956 0,95405 2,61526 2,61526

SharedL2-Hor-1 55,0989 0,278891 0,592609 1,46829 1,46829

SharedL2-Hor-2 109,736 0,395138 1,02507 2,28963 2,28963

122

APPENDIX B – DETAILED BIT-TOGGLING ACTIVITY AND DESIGN SPACE

EXPLORATION FOR INCREASED STT-RAM LIFETIME

Estimated Bit-Toggling
Activity

Actual Bit-Toggling
Activity

BasketballDrive

BQTerrace

Cactus

Kimono

PeopleOnStreet

Traffic

Figure B.1: Bit-toggling activity estimation and actual bit-toggling occurrences for all evaluated test

sequences.

123

b1 b0b3 b2b4b5b6b7 b1 b0b3 b2b4b5b6b7

B
it

-T
o

gg
lin

g
A

ct
iv

it
y

0

1

0.8

0.6

0.4

0.2

Bits [from MSB to LSB] Bits [from MSB to LSB]

BasketballDrive BQTerrace

b1 b0b3 b2b4b5b6b7

b1 b0b3 b2b4b5b6b7

Bits [from MSB to LSB]

Bits [from MSB to LSB]

Cactus

Kimono

b1 b0b3 b2b4b5b6b7 b1 b0b3 b2b4b5b6b7

B
it

-T
o

gg
lin

g
A

ct
iv

it
y

0

1

0.8

0.6

0.4

0.2

Bits [from MSB to LSB] Bits [from MSB to LSB]

Traffic PeopleOnStreet

Figure B.2: Bit-toggling activity per bit using the evaluated test sequences.

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold
Tr

ad
e

o
ff

 (
a)

 v
s.

 (
b

)

BasketballDrive

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40
0

,0
0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

BQTerrace

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

Cactus

Figure B.3: Lifetime improvements and SRAM size for the BasketballDrive, BQTerrace and Cactus

test sequences.

124

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e
0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

Kimono

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

Traffic

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00
0

,0
0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

Kimono

Figure B.4: Lifetime improvements and SRAM size for the Kimono, Traffic and Kimono test

sequences.

125

ANNEX A – LIST OF PUBLICATIONS DURING THIS PHD WORK

SAMPAIO, F.; SHAFIQUE, M.; ZATT, B.; BAMPI, S.; HENKEL, J. dSVM: Energy-efficient

distributed Scratchpad Video Memory Architecture for the next-generation High Efficiency

Video Coding. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014.

Anais... In: DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION

(DATE), 2014. mar. 2014

SAMPAIO, F.; SHAFIQUE, M.; ZATT, B.; BAMPI, S.; HENKEL, J. Content-driven memory

pressure balancing and video memory power management for parallel High Efficiency Video

Coding. 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

Anais... In: 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS

AND DESIGN (ISLPED). ago. 2014

SAMPAIO, F. ; SHAFIQUE, M.; ZATT, B.; BAMPI, S.; HENKEL, J. Energy-efficient architecture

for advanced video memory. 2014 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). Anais... In: 2014 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-

AIDED DESIGN (ICCAD). nov. 2014

SAMPAIO, F. ; SHAFIQUE, M.; ZATT, B.; BAMPI, S.; HENKEL, J.. Approximation-aware Multi-

Level Cells STT-RAM cache architecture. 2015 International Conference on Compilers, Architecture

and Synthesis for Embedded Systems (CASES). Anais... In: 2015 INTERNATIONAL CONFERENCE

ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES).

out. 2015

SAMPAIO, F.; SHAFIQUE, M.; ZATT, B.; BAMPI, S.; HENKEL, J. Hybrid Scratchpad Video

Memory Architecture for Energy-Efficient Parallel HEVC. IEEE Transactions on Circuits and Systems

for Video Technology (TCSVT). (submitted)

978-3-9815370-2-4/DATE14/©2014 EDAA

dSVM: Energy-Efficient Distributed Scratchpad Video Memory

Architecture for the Next-Generation High Efficiency Video Coding
Felipe Sampaio

1
, Muhammad Shafique

2
, Bruno Zatt

3
, Sergio Bampi

1
, Jörg Henkel

2

1
Informatics Institute, PPGC, Federal University of Rio Grande do Sul (UFRGS), Brazil

2
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

3
GACI, PPGC, CDTec, Federal University of Pelotas (UFPel), Brazil

{felipe.sampaio, bampi}@inf.ufrgs.br, bzatt@inf.ufpel.edu.br, {muhammad.shafique, henkel}@kit.edu

Abstract— An energy-efficient distributed Scratchpad Video

Memory Architecture (dSVM) for the next-generation parallel High
Efficiency Video Coding is presented. Our dSVM combines private and
overlapping (shared) Scratchpad Memories (SPMs) to support data
reuse within and across different cores concurrently executing multiple
parallel HEVC threads. We developed a statistical method to size and
design the organization of the SPMs along with a supporting memory
reading policy for energy efficiency. The key is to leverage the HEVC
and video content knowledge. Furthermore, we integrate an adaptive
power management policy for SPMs to manage the power states of
different memory parts at run time depending upon the varying video
content properties. Our experimental results illustrate that our dSVM
architecture reduces the overall memory energy consumption by up to
51%-61% compared to parallelized state-of-the-art solutions [11]. The
dSVM external memory energy savings increase with an increasing
number of parallel HEVC threads and size of search window.
Moreover, our SPM power management reacts to the current video
properties and achieves up to 54% on-chip leakage energy savings.

Keywords—Video Memory, Scratchpad Memory, HEVC,

Application-Specific Optimizations, Energy Efficiency, Adaptivity.

I. INTRODUCTION

To bridge the increasing gaps between the processor and memory
scaling/speed in many-cores era with memory-intensive applications,
specialization of memory architectures has become one of most
important design issues. Multiple cores simultaneously accessing the
same memory infrastructure incur high energy consumption and
contention. Meanwhile, embedded multi-/many-core processors are
subjected to stringent energy constraints. These issues intricate when
executing memory-intensive applications like video coding, image
matching, etc.

The High Efficiency Video Coding (HEVC) is the next-generation
video coding standard [1] that provides double compression compared to
its predecessor H.264/AVC. However, this comes at the cost of >40%
more computation effort compared to the H.264 encoder as shown by
our experimental analysis in Fig. 1a. This increased complexity is due to
the novel Coding Tree Unit (CTU) structure [2] and a plethora of new
prediction modes that result in an increase mode decision space [3].
Moreover, these new coding features lead to >2x more memory accesses
compared to H.264/AVC due to more intensive reference frames storage
and transmission (as in Fig. 1b). A large amount of off-/on-chip memory
accesses and large-sized on-chip memories lead to high energy
consumption in HEVC encoders. To achieve high performance, HEVC
encoders can be parallelized on multi-/many-core processing platforms.
However, this may lead to further increase in the energy consumption
and memory pressure due to multiple encoding cores requiring the same
data from the memory infrastructure, posing new challenges for the
embedded multimedia systems.

A large body of research explored efficient cache organizations and
on-chip memory architectures for general purpose multi-/many-core
processors [18]. To overcome/alleviate the hardware overhead of caches,
Scratch-Pad Memories (SPMs) evolved for energy-constrained
embedded systems [19]. Instead of providing hardware support for
mapping data/code from off-chip to on-chip memory, SPM allows
designer/compiler to perform content management saving up to 30% of

energy compared to complete caches under certain operating scenarios
[19]1. The challenge is to efficiently utilize the SPMs.

Considering the above-discussed memory issues of HEVC, general-
purpose techniques for SPM management [20]-[22] may not be energy
efficient. Recent trends demonstrated benefits of application-specific
SPMs management for low-power H.264 video encoding for single core
or ASIC-based systems [4]-[7]. However, these works lack support for
many-cores which are more memory restrictive and do not address
memory contention in private vs. shared memories for cores
synchronization. Moreover, these works do not account for the novel
coding model of the advanced HEVC that can be leveraged to achieve
even higher energy savings as we will motivate in Section I.B.

In summary, there is a strong need for application-specific memory
design targeting energy-efficient high efficiency video encoding on
embedded multi-/many-core platforms. Our goal is to leverage the
application-specific characteristics of the emerging HEVC standard to
increase the potential of energy savings.

HEVC H.264/AVC

0

2E+11

4E+11

6E+11

8E+11

1E+12

1,2E+12

1,4E+12

1 2 3
M

e
m

o
ry

 B
W

.
[G

B
/s

]

0.5

1.5

1

3

2

2.5

0
HD720 HD1080 2K

0

2

4

6

8

10

12

HD720 HD1080 2K

E
n

co
d

in
g

 T
im

e
 [

h
o

u
rs

]

6

3

9

12

0
HD720p HD1080p 2K

(a) (b)

Fig. 1 HEVC vs. H.264/AVC encoder (a) encoding time; (b) memory accesses.

(average results for commonly used test sequences [13], 128x128 search window,

H.264/AVC and HEVC test models, 300 frames)

Before moving further, we will present basics of HEVC to the level
of details necessary to understand our novel contribution.

A. Overview of HEVC Coding Tools and Related Memory Issues

To facilitate parallelization with minimal quality loss, the
standardization committee (JCT-VC) introduced the novel concept of
Tiles2 in HEVC, which is different from slices that are used for video
streaming [17]. Tiles divide one video frame into rectangular regions that
can be coded independent of each other, thus increasing the thread level
parallelism [15][16]. Fig. 2 presents an example of 4-Tile partitioning.
Each Tile is assigned to a specific core without any data dependency
with another Tile processing.

The inter-frame prediction with Motion Estimation (ME) is the most
complex processing step in the HEVC encoder as it corresponds to
>80% of the computation time and energy consumption of HEVC
encoders. ME searches the best match of a block from the current frame
in a set of so-called reference frames3. The search is performed in a
restricted search window. The reference frames are typically stored in
the external/off-chip memory while the search windows are stored in on-
chip memories. Due to the memory management for fetching the search
window samples from the off-chip and increased leakage energy for
keeping them in the on-chip memory, the ME becomes the most

1
 Examples: IBM Cell Processor [23], ARM10E [24], TI TMS370CX7X [25], etc.

2
 These are video Tiles, i.e. different from hardware tiles in many-core processors.

3
 These are previously coded and reconstructed frames.

memory–intensive processing block [4]-[7]. As a result, 70%-90% of the
ME energy is spent in the off-chip and on-chip memories (leakage and
dynamic) [4]-[7]. Furthermore, multiple Tiles amplify the memory
pressure since more data must be fetched/stored during the same time
instant.

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Multicore Processor

Core 0

Core 1

Core 2

Core 3

Video Frame

Independent data

processing for different tiles

M
e
m

o
ry

H

ie
ra

rc
h

y

Fig. 2 Video Tiles and multicore organization for parallel HEVC.

Another novel coding tool of the HEVC that aggravates the memory
problem is variable-sized Coding Units (CUs). The HEVC decision is
based on a quad-tree structure (see Fig. 3). The root for the decision is
the 64x64 CU, called coding-tree block (CTB). The encoder is
responsible for deciding what is the best partitioning for the current CTB
that provides the best coding efficiency, in terms of bitrate and coded
video quality. Current HEVC draft also supports 32x32, 16x16 and 8x8
CU sizes [17].

(0) (8)

(1) (2) (3) (9) (10) (18)

(17)(12)(11)(7)(5) (6)(4)

(13) (14) (15) (16)

64

64

(0)

(1) (2)

(3)

(8)

(9) (10)

(18)

(4) (5)

(6) (7)

(12)(11)

(17)

(13) (14)(15) (16)

Fig. 3 An example of HEVC coding tree unit organization

B. Goals and Motivational Analysis

The main goal of our work is to leverage the application-specific
knowledge of the emerging HEVC standard (i.e. its new coding tools)
and video content properties to develop an energy-efficient SPM-based
on-chip video memory. The key is (1) to analyze and exploit the memory
access behavior in the video Tiles-based processing; and (2) the
overlapping reference samples that define the shared access patterns for
different cores processing different Tiles. The samples near to the tile
boundaries in the reference frame must be fetched/stored by multiple
cores, leading to external memory contention, redundant memory access
and extra on-chip storage (causing energy wastage). An example in Fig.
4a depicts the overlapping accesses performed for more than one tile
processing core (gray and black regions).

In the following, we highlight important memory related issues
during the Tile-based HEVC processing with the help of our
experimental case study and expose the potential of application-specific
optimization with the help of several observations.

Analysis-1: The overlapping regions tend to grow for an increased
number of Tiles (assuming 1 Tile per core). The overlap size trend is
plotted for growing number of Tiles in the Fig. 4b. In the worst case, the
overlap reaches 50% in a 16-core HEVC encoder. As larger is the
overlapping area, more cores must concurrently access the same
reference data from the external memory without any data reuse.
Therefore, it may be beneficial to design dedicated SPMs for the
overlapping regions to avoid external memory retransmission of the
Tiles shared reference data, saving off-chip memory energy.

Analysis-2: Although the ME is performed within a search window,
the search algorithm may not require all the samples. For instance, the
TZ search algorithm in the HEVC software [14] does not necessarily
explores the entire search window analysis [6]. Moreover, adaptive ME
algorithms feature changing centering of the search window depending
upon the already coded neighboring CUs. As a result, the Tiles overlap
shape may substantially vary according to the video content as shown in

Fig. 5. Furthermore, the samples inside the overlapping regions have
different access intensities. It shows that, not all parts of the on-chip
video memory (storing the overlapping samples) will be accessed for
every CU depending on the video content. Even for the accessed sectors,
the access distribution is different depending on the video content
characteristics. Therefore, the key is to leverage the overlapping memory
access knowledge to predict the unused or less-frequently used memory
sectors for adaptive power management of the SPMs.

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

0%

20%

40%

60%

80%

100%

1 Tile 2 Tiles 4 Tiles 8 Tiles 16 Tiles

Overlapping Private

0

40

20

100

T
il

e
s

O
v

e
rl

a
p

p
in

g

[%
 o

f
fr

a
m

e
 d

a
ta

]

2-core
encoder

60

80

4-core
encoder

8-core
encoder

12-core
encoder

16-core
encoder

Overlapping Increasing

Current Frame Reference Frame(a)

(b)

Search Window

Fig. 4 (a) Example of Tile partitioning and of the overlapping problem;

(b) Evaluation of overlapping accesses for different number of Cores (HD1080p;

“BasketballDrive” sequence; 127x127 search window)

Hint-2: Heterogeneous overlapping

region: sizing and shaping

Hint-1: Different memory access

intensity: high/low motion regions

High accessLow access

0 600 1200 1800

0

500

1000

750

250

x coordinate

y
 c

o
o

rd
in

a
te

700
800

900

1000
1100

1100

500

600

700

800

1000

900
Zoom

Fig. 5 Distribution of the overlapping samples

(HD1080p; “BasketballDrive” sequence; 127x127 search window)

C. Our Novel Contributions

We propose an energy efficient distributed Scratchpad video
memory architecture (dSVM) for the next-generation High-Efficiency
Video Coding (HEVC) exploiting the video Tiles based parallel
processing on multi/many-core processors. It employs:

• A Distributed Scratchpad Video Memory Architecture (Section
III) that integrates several private and overlapping (shared) SPMs to
support intra-Tile and inter-Tiles data reuse, respectively, among
various cores. We develop a scheme that leverages the offline
statistical analysis of HEVC and video content to size and design the
organization of SPMs. A reading policy is designed for energy-
efficient data fetching.

• Adaptive Power Management of dSVM (Section IV) that takes
into account the size and the shape of the predicted overlapping area
to select appropriate sleep states for different regions of private and
overlapping SPMs.

We evaluate the energy efficiency of our dSVM architecture for
various recommended test video sequences for different number of Tiles.

To the best of authors’ knowledge, this is the first work towards
energy-efficient on-chip memory hierarchy for the emerging Tile-based
parallel HEVC encoders.

II. MEMORY MODELS AND NOTATIONS

Every data transmission from/to memory is based on a fixed basic
access unit (BU), which corresponds to a BUSize*BUSize picture block.
When external memory communication is required, then several BUs
are accessed in one burst operation to increase the energy efficiency.

On-Chip SRAM Organization Model: We adopt a bank-based
partitioning Scratchpad memory (SPM) model to allow for parallel data
accesses; see Fig. 6. Each SPM is composed of NB number of banks. To
facilitate parallel reading, different rows of a BU are stored in parallel

banks. A bank Bi is composed of NS sectors of size SS. Each sector has NL

number of lines of size SL.

Different sectors of the SPM can be individually power-gated using
a multiple sleep-state transistor model supporting four power states [12]:
S0=OFF, [S1,S2]=Data Retentive and S3=ON, where EStatic(S0) <
EStatic(S1) < EStatic(S2) < EStatic(S3). Still, each state have also increasing
associated wake-up energies (WE(S0)> WE(S1)> WE(S2)> WE(S3)= 0).

Scratchpad Video Memory

…Bank 0 Bank NB-1Bank 1 Bank 2

… ………

Sector

Memory
line

…On-Chip
Power
Gating
Control

Sleep
transistors

ST

ST

Fig. 6 Organization model of our scratchpad video memory

Off-Chip DDR DRAM Model: For energy estimation of the off-
chip memory, we adopt the DDR (Dual Data Rate) DRAM model
depicted in [9]-[10]. The total power is derived by the composition of six
components: (1) page activation energy (EACT), (2) write energy (EWR),
(3) read energy (ERD), (4) I/O pins energy (EDQ), (5) refresh energy
(EREF), and (6) standby energy (ESTBY). In the experimental analysis, we
assume that the memory will always operate in the active state and the
standby energy will be equivalent to the EACT_STBY component.

III. ARCHITECTURE OF OUR DISTRIBUTED SCRATCHPAD

VIDEO MEMORY

Fig. 7 depicts the block diagram of our distributed Scratchpad video
memory architecture (dSVM) for multi-core HEVC encoding. Each
core4 is assigned the processing of one out of the n video Tiles. The
SPMs are used to store different parts of the reference frame used for
ME or other encoding blocks. We propose two levels of SPMs:
1) A core-private SPM (PrivSPM) to store the search window data

corresponding to each CU for intra-Tile data reuse, and
2) A core-shared SPM (OvSPM) to store the Tiles overlapping

reference data for inter-Tiles data reuse.

Data Bus

Address Bus

External Memory

D
D

R

A
rb

it
e

r

Multicore Processor

Processing
Core 0

Processing
Core 1

Processing
Core 2

Processing
Core 3

Processing
Core n

…

Cache
Hierarchy

(Instruction
and Program

Data)

Memory
Controller

Adaptive
Power

Management
of SPMs

SPM Access
Management

Unit

Private SPMs

SPM0

SPM1

SPM2

SPM3

SPMn

…

Motion
Estimation
Analyzer

Overlapping SPMs
(Tiles Shared)

SPMHor

SPMVer

Interconnect Bus
External

Memory AGU

Fig. 7 Our dSVM architecture integrated in a HEVC encoder

4
 A core has a small private instruction and data cache to store the program code and
common data (like variables). The SPM is used for large data like reference frame.

Each core sends the search window data requests to the SPM access
management module using the vertical/horizontal frame coordinates. The
SPM access management unit will schedule the memory accesses
according to our DRAM/SPM reading policy (see Section III.A). The
overlap patters and size is extracted by the Motion Estimation Analyzer
and forwarded to (i) the SPM access management module to map the
overlapping region to the on-chip OvSPMs; and (ii) the adaptive power
management unit for selecting an appropriate sleep state for the idle
SPM regions. If external memory access is required, the frame positions
are translated to physical DRAM memory position addresses by the
Address Generation Unit (External Memory AGU in Fig. 7). The
adaptive power management unit analyzes the Tiles overlap size to
adaptively predict the less-likely accessed or idle memory sectors of the
PrivSPMs and OvSPMs and to select an appropriate sleep state in order
to save SPM leakage energy.

In the following sections, we detail the SPM access management
module, SPM sizing and design, and adaptive power management
policy.

A. SPM Access Management Unit: Reading Policy and External

Memory Arbitering

Our SPM access management unit implements the memory reading
policy (see flowchart of Fig. 8) that takes advantage from the tiles
overlap to increase the data-reuse of the reference frames samples. If a
core i requests data from the SPM memory organization, as the first step,
the SPM access management unit checks along with the overlap
prediction if the requested data potentially belongs to one tiles
overlapping region. Assuming that the data is inside an overlap related to
the tiles intersection T, the corresponding cores-shared OvSPMT is then
accessed. In this case, the inter-Tiles data reuse is exploited, since all
tiles that share the tile boundary T may request the same data. For non-
overlapping regions, the PrivSPMi is accessed, leading to intra-Tile data
reuse. Note that for each core data request, either the shared (OvSPMT)
or the private (PrivSPMi) memory is accessed. In the case of a hit, the
data is simply forwarded to core i. In case of a miss, the data must be
fetched from the external memory and forwarded to the core i. For
improved energy efficiency, the SPM access management unit requests a
burst of samples from the DRAM memory, which reduces the DRAM
page activation energy and amortizes the initial latency for memory
random access [7]. Furthermore, the corresponding SPM is filled with
the fetched data. To handle parallel accesses to the OvSPM, we employ a
priority based scheduling.

Fig. 8 Flow of our SPM access management unit with the reading policy

Hit Miss DRAM

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

N Y N Y N Y N Y N

(a) (b) (c)

Fig. 9 An example of data interaction for a 2-core system

An Example: Fig. 9 illustrates an example for our memory reading
policy in three different cases for a 2-core encoding system.

a) In the beginning, the on-chip SPMs are empty and each request will
lead to external memory fetching (OvSPM and PrivSPM misses).
Fig. 9 shows that the overlap prediction is analyzed to determine
whether the reference data is stored in the PrivSPMi or in the
OvSPMT. During the frame processing, due to the intra-Tile and
inter-Tiles reused data, more hits occur and even less external
memory communication is needed.

b) The second case in Fig. 9 depicts tile-centering CUs processing
where only the PrivSPMs is accessed (i.e. only intra-Tile data reuse).

c) The last case shows the best case of energy efficiency, where
memory hits are observed for both PrivSPMs (i.e. intra-Tile data
reuse) and OvSPMs (i.e. inter-Tiles data reuse) accessing.

B. Design of Scratchpad Video Memories

A key challenge is to determine an appropriate size and organization
of different SPMs (PrivSPMs and OvSPMs) to optimize for leakage and
dynamic energy. We propose an application-guided methodology that
exploits the statistical analysis of memory access behavior Tile-
parallelized HEVC in order to increase the energy efficiency of our
dSVM architecture.

Our methodology leverages the Tiles overlap behavior that depends
on the search window size and the video motion properties. Adaptive ME
algorithms change the center of their search windows by using spatial
predictors (i.e., motion vectors of previously-coded CUs). Moreover, low
motion CUs will lead to less search window usage. Hence, the optimal
overlapping memory size for each video sequence follows a statistical
distribution of the near-boundaries ME motion predictors. Fig. 10a
depicts statistics of the tiles overlap varying the search window size. On
average, the overlap linearly increases with the increase n the search
range. The more or less concentrated distribution around the average size
hints towards the video motion properties. Different regions near the tile
boundaries have different motion characteristic, which leads to more or
less memory access overlaps.

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Overlapping Statistics (b) Motion Delta PDF

32x32 64x64 128x128 192x192 256x256
0

100

200

300

400

Search Window

O
v

e
rl

a
p

 T
h

ic
k

n
e

ss

[#
sa

m
p

le
s]

1.4

1.2

1.0

0.8

0.6

0.4

0
0 10-10 -5 5

Motion Delta

0.2

P
ro

b
a

b
il

it
y

BasketballDrive

Cactus

BQTerrace

Kimono

Fig. 10 (a) Overlapping statistics for increasing search window size for the

“BasketballDrive” test video sequence;

(b) motion delta distribution for several test video sequences

To statistically define the motion property near a specific tile boundary
of a given video, we define the ∆Motion (motion delta) metric as being the
video correlated parameter used for determining the overlap size, as
presented in Fig. 11. For each frame of the video and for each defined
Tile boundary, the algorithm obtains the used ME spatial predictors
(lines 7-8). The difference of the predictors used by the near-boundary
CUs from the two Tile boundary sides (SideA and SideB) is then
calculated (lines 12-17). This difference will represent the access search
range of SideA CUs in the SideB reference frame region, and vice-versa.
The Probability Density Function (PDF) of the motion delta metric is
then calculated (line 20), where µ∆ and σ∆ are the statistical average and
standard deviation, respectively, of the motion delta parameters extracted
from the video. The PDFs for HD1080p test sequences are plotted in Fig.
10b. We can note diverse behaviors depending on the input video: high
motion videos like BasketballDrive and Kimono present more spread
distributions, while low motion videos like Cactus and BQTerrace have
more concentrated distributions. Using the motion parameter and the
search window dimension, we define the Tiles overlap sizing formula for
the overlap thickness (OvThickness) and length (OvLength) in Eq. (1)-(2),
respectively. The signal of the motion delta represents the video motion
direction near the target tiles boundary. Negative values mean that we

have opposite motion directions, which decreases the overlap size, while
positive motion delta values increases the range of the overlap.

1. determineMotionDelta(Video: V; TilePartitioning: TP):
2. ListΔ = [];
3. For all Frame Є V
4. For all TileID Є TP
5. PredMap[TileID] = [];
6. For all CU Є TileID
7. CU.performMotionEstimation();
8. PredMap[TileID].insert(CU.getUsedPredictor());
9. End For
10. For all TileBoundaryID Є TP
11. //Let SideA and SideB the two tile boundary sides
12. For all CUSideA, CUSideB Є TileBoundaryID
13. PredA := PredMap[TileSideA][CUSideA][CoordID];
14. PredB := PredMap[TileSideB][CUSideB][CoordID];
15. ΔValue := |PredA – PredB|;
16. ListΔ.append(DeltaValue);
17. End For
18. End For
19. End For
20. {µΔ, σΔ} = norm_dist(ListΔ);
21. return {µΔ, σΔ};

Fig. 11 Motion knowledge extraction for overlapping SPM sizing Ov������	

(TileBoundary��) = 	2 × SW + Δ#$%�$�	
where: Δ#$%�$� = μ' + 2 ∗ σ' (1)

 Ov*	�+%�(TileBoundary��) = ,H./01	W./01	 	if	vertical	if	horizontal	 (2)

Based on statistical evaluations and the memory organization model
defined in the Section II, we determine the physical sizing for SPMs in
our dSVM; see Eq. (3)-(7). For the overlapping data, each Tile boundary
will leads to a specific OvSPM design. Our sizing formulation is based
on the definition of the BU size (BUSize), which is the smaller unit that
can be accessed. For instance, a BUSize equals to 16 means that the
smaller data transmission unit is one 16x16 reference block. The BU size
is a design decision for efficient power management depending on the
adopted search window dimension. One BU in the overlap is mapped to
a specific memory line (composed of OvSPMSL bytes) along the
OvSPMNB memory banks. Each OvSPM sector groups specific rows of
the BUs along the overlap thickness (OvSPMSS). One entire line of BUs
is completely stored into a group of same positioned sectors along the

OvSPMNB memory blocks. In total, each OvSPM has OvSPMNS, to store
the complete overlapping data. N89:;# = N��<	
=$>�?0/�	
 (3) OvSPM:B = BU:�D	 (4) OvSPMEF = BU:�D	 (5) OvSPM:G = HOv�����	

/BU:�D	J ∗ S* (6) OvSPMEG = OvSPMEF ∗ HOv�����	

/BU:�D	J (7)

The PrivSPM stores the search window samples, as expressed in Eq.
(8)-(12). The data organization is similar to that presented for the
OvSPMs except that the PrivSPM must store core-private search window
instead of Tile overlaps. N;/�9:;# = N��<	
 (8) PrivSPM:B = BU:�D	 (9) PrivSPMEF = BU:�D	 (10) PrivSPM:G = HSWK/BU:�D	J ∗ S* (11) PrivSPMEG = PrivSPMEF ∗ HLMN/OPQRSTJ (12)

IV. ADAPTIVE POWER MANAGEMENT OF SPMS

In case where the overlap size is reduced when low motion is
captured around the tiles boundary, we propose an adaptive power

management scheme for the OvSPM in our dSVM architecture to reduce
its leakage energy. Furthermore, PrivSPMs are less accessed when CUs
near the Tile boundaries are encoded since most memory requests are
actually performed in the OvSPMs. Therefore, our scheme power-gates
the PrivSPMs regions that are not accessed due to the overlap
intersection.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

300

200

100

0
6 100 4 9

#ME Order [Random Access HEVC Configuration]

O
v
e

rl
a

p
 S

iz
e

 [
K

B
]

|D|=2

|D|=4
|D|=8

|D|=1

1 2 3 75 8 11 12 13 14

Relaxed Power-Gating Aggressive Power-Gating

Fig. 12 Overlap sizing variation for several temporal distances (D factor).

To capture the impact of temporal distance for overlap size
prediction, we define a term “D” as the distance between the current and
reference frames. This distance directly affects our overlap prediction.
More distant frames (i.e. high D values) lead to high overlap size due to
more intense motion activity. Smaller overlaps can be noted when D is
decreasing. Fig. 12 illustrates the overlap size for MEs with different D
factors. Our power management selects an appropriate sleep state
according to the motion behavior: relaxed power-gating (i.e. putting idle
sectors in data retentive modes) is used when we have high motion
overlaps. In case of low motion overlaps, aggressive power-gating (i.e.
putting sectors in power-OFF mode) is applied to save more leakage
energy.

1. managePowerOverlapSPM (Frame: FCurrent, FReference;
TileBoundary: TileBoundaryID) //frame-level management

2. currOverlapUsage := 0;
3. {µUsage, σUsage} := getOverlapUsages(); //run-time statistics
4. DME := getPoc(FCurrent) – getPoc(FReference); //overlap prediction (lines 3-4)

5. PredOv(TileBoundaryID) := U μV
0+	 − σV
0+		μV
0+		μV
0+	 + σV
0+		μV
0+	 + 2. σV
0+		
If		D#[= 1If	2 ≥ D#[≥ 3If	4 ≥ D#[≥ 7If	D#[≥ 8

6. PowerMapOv(x,y) := b			S0			S3 										If	(x, y) ∈ to	predicted	overlap							otherwise

7. For all CTU Є {Tile0, Tile1, …, Tilen-1} //CTU-level management
8. SearchLimits := getSearchLimits(CTU);

9. PowerMapOv(x,y) := jPowerMap89S1S2
If	(x, y) ∉ (PredOv ∩ SearchLimits)	Else	If	(x, y)	shared	by	2	tilesElse	If	(x, y)	shared	by > 2	rstuv

10. SPM[TileBoundaryID].powerGate(PowerMapOv);
11. currOverlapUsage += performMotionEstimation();
12. End For
13. store(currOverlapUsage);
14. return;

Fig. 13 Adaptive power management policy for the Overlapping SPM.

1. managePowerPrivateSPM(Frame Tile: TileID)
2. (∀	(x,y)	Є PowerMapSW, PowerMapSW(x,y) := S3);
3. For all CTU Є TIleID //CU level power-gating
4. For all TileBoundaryID Є TilePartitioning

5. PowerMapSW(x,y):=, S0PowerMap:x if		(x, y) ∈ PredOv(TileBoundary��)otherwise

6. End For
7. SPMPriv[TileID].powerGate(PowerMapSW);
8. performMotionEstimation();
9. End For
10. return;

Fig. 14 Adaptive power management policy for the Private SPM .

Fig. 13 depicts our adaptive power management policy for the
OvSPM. At frame level, online statistics of overlap SPMs usages for
previous ME are generated (line 2). As shown in Fig. 12, using the “D”
factor of the current ME as parameter, we predict the current overlap size
(line 5). For all SPM lines outside the predicted overlap, the OFF state

(S0) is assigned to the PowerMapOv corresponding position; otherwise,
the ON state is assigned (S3). In CTU processing level (line 7), our
power management checks for the non-accessed OvSPM positions that
are inside the overlap prediction to put them in data retentive states
(lines 8-9). S2 state is assigned for positions potentially accessed by
more than two Tiles, while S1 state is used for overlap positions shared
for only two Tiles. The overlap usage for the current ME is updated at
every CTU processing (line 11) and saved to be used for future overlap
predictions (line 13).

The adaptive power management policy for the PrivSPMs is
depicted in Fig. 14. At the beginning of a CTU processing, it checks for
intersected positions between the core-private search window and any
predicted overlap. For each intersection, it power-gates the
corresponding PrivSPM positions (line 5 in Fig. 14). Note, both OvSPM
and PrivSPM managements work in parallel in our dSVM system.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental analysis is based on the recommended HEVC
common test conditions [13] using the HEVC test model (HM 11.0)
[14]. We execute the experiments for 4-Tile and 8-Tile scenarios (each
Tile executes on a dedicated core) with five search window dimensions:
64x64, 96x96, 128x128, 192x192, and 256x256. Six test video
sequences with different properties were evaluated: BaskettballDrive
(BDrive), BQTerrace, Cactus and Kimono (HD1080p: 1920x1080),
PeopleOnStreet (People) and NebutaFestival (Nebuta) (2K: 2500x1600).
Other encoder specifications are: GOP=8, CABAC, FRExt, Random
Access configuration, and TZ Search algorithm.

For memory energy evaluation, we use the CACTI 6.5
leakage/dynamic energies estimation for a 32nm SRAM-based SPM.
The leakage reduction and wake-up energies were derived from the
analytical model presented in [12]. The 4-Gbit Low-Power DDR2
(LPDDR2) DRAM MT42L128M16D1GU-25WT electrical
specifications [8] were used to determine all external memory energy
components mentioned in Section II. As a design decision for combined
coarse- and fine-grained SPM management, considering the most widely
used video resolutions and search window sizes (as listed above), we
adopt BUSize=16.

To evaluate the savings of our dSVM architecture, we select two
other comparison partners: (a) SPMs with Level C-based data reuse for
each core, and (b) our dSVM with only the PrivSPMs and no shared
OvSPMs. The energy evaluations consider the first 30 consecutive
frames of each test video sequence.

B. Energy Savings

Tab. 1 presents the overall energy evaluation with a breakdown of
off-chip and on-chip memory energy consumption.

TAB. 1 OVERALL ENERGY CONSUMPTION EVALUATION

SPMs
Size
[KB]

On-Chip
Energy

[mJ]

Off-Chip
Energy

[mJ]

Overall
Energy

[mJ]

Savings
dSVM

[%]
Scenario 1: 4-Tile HD1080, 129x129 search window

Level C [11] 144 16 587 603 36%
Our PrivSPM Only 144 16 469 485 21%
Our dSVM 614 33 351 384 -

Scenario 2: 8-Tile HD1080, 129x129 search window

Level C [11] 288 33 587 620 61%
Our PrivSPM Only 288 32 462 494 51%
Our dSVM 1098 63 179 242 -

Tab. 1 shows that our complete dSVM architecture provides the
best energy efficiency for the two tested scenarios. Considering the
accumulated size of SPM blocks (private plus overlapping), the dSVM
architecture presents the highest memory usage. However, our adaptive
power management is able to significantly reduce the leakage
consumption and accordingly adapting the power states to the predicted

overlap size and shape. Therefore, the dSVM architecture can reduce
the on-chip energy consumption being competitive with the related non-
shared memories approaches. Furthermore, this slight on-chip energy
overhead is amortized by significant savings in the external memory
transfers that leads to overall savings of 21%-36% compared to Level C
and our PrivSPM Only solution (scenario 1), respectively. In the
scenario 2, our energy savings even increase to 51%-61% compared to
Level C and our PrivSPM Only solution, respectively. Note that our
dSVM architecture provides increasing overall savings when more Tiles
(i.e. parallel HEVC threads) are used (2x higher savings, on average).
Extrapolating our results for more than 8 video Tiles (as more inter-
Tiles data reuse potential can be exploited), our dSVM can achieve
even higher memory energy savings.

0%

20%

40%

60%

80%

1 2 3 4 5

0%

20%

40%

60%

80%

1 2 3 4 5 6

80

60

40

20

0

E
x

te
rn

a
l
M

e
m

o
ry

 E
n

e
rg

y
 S

a
v

in
g

s
 [

%
]

(O
u

rs
 c

o
m

p
a
re

d
 t
o

 L
e
ve

l
C

 a
n

d
 O

u
rs

 P
ri
v-

O
n

ly
)

BDrive BQTerrace Cactus Kimono Nebuta People

80

60

40

20

0
32x32 64x64 128x128 192x192 256x256

Our savings compared to Level C

Our savings compared to Priv-Only
4-Tile 8-Tile

Search window size

Video sequence

(a)

(b)

Fig. 15 External memory energy savings for 4-tile and 8-tile scenarios: (a)

average savings for all sequences varying the search window size and (b) savings

for each tested sequence (128x128 search window size)

0%

20%

40%

60%

80%

4-Tile 8-Tile

BDrive BQTerrace Cactus Kimono Nebuta People

80

60

40

20

0

O
n

-C
h

ip
 E

n
e

rg
y

S
a
v

in
g

s
 [
%

]

Fig. 16 Leakage energy savings due to our dynamic power management of

the dSVM architecture (128x128 search window size)

Off-Chip Memory Energy Savings: Fig. 15 depicts the external
memory energy savings of our dSVM for different search window sizes,
input video test sequences, and the number of parallelized Tiles. Fig. 15
shows that as more Tiles are used, more external memory energy is
saved due to the larger overlap. Our dSVM architecture supersedes other
comparison partners by exploiting our novel concept of both intra-Tile
and inter-Tiles data reuse. The dSVM savings increase with the growing
search window from 7% to 58% for the 4-Tiles partitioning and from
17% to 71% for the 8-Tiles partitioning. This due to exploiting the
shared memory accesses coming from different processing cores.
Furthermore, there are savings also vary depending upon the video
content: low motion videos leads to less overlap and less potential of
reduction. In the best case, the Cactus sequence achieves an external
memory energy reduction of 55% and 74% for 4-Tiles and 8-Tiles
partitioning (using 128x128 search window size).

On-Chip Memory Energy Savings: Fig. 16 depicts the on-chip
leakage energy savings of our dSVM architecture due to our adaptive
power management policy. On average, our policy reduces the leakage
energy by 54% and 52%, considering 4-Tile and 8-Tile scenarios. Part of
the savings is related to the PrivSPMs energy management, which
captures the intersections of the search window positions with the any

predicted overlap. Regarding the OvSPMs, our scheme can significantly
reduce the leakage energy for low motion ME, where the overlap tends
to be small.

VI. CONCLUSION

This work presented a distributed Scratchpad Video Memory
Architecture for the next-generation parallel High Efficiency Video
Coding. It exploits intra- and inter- video Tile level data reuse jointly
through private and shared SPMs of different cores executing parallel
HEVC threads. The SPM design is based on application-specific
knowledge of HEVC and statistical analysis of memory access behavior
w.r.t. the video content properties. To further reduce the leakage energy,
we integrated an adaptive power management policy for SPMs that
exploit the prediction of the overlapping accesses from different cores
and their relationship to the video content properties. Our dSVM
architecture provides up to 61% reduction in the overall memory energy
and 54% in the leakage energy compared to state-of-the-art. Our
proposed contribution enables energy-efficient multimedia systems
supporting multiple threads of the next-generation HEVC encoder.

ACKNOWLEDGMENTS

This work was partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre
"Invasive Computing" (SFB/TR 89); http://invasic.de and partly
supported by DAAD and CAPES as part of the PROBRAL project
"VideoArch3D - Power-Efficient Techniques for 3D-Multimedia".

REFERENCES

[1] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, T. Wiegand, “High Efficiency Video
Coding (HEVC) text specification draft 7”, May 2012.

[2] D. Marpe, et al, “Video compression using nested quadtree structures, leaf merging,
and improved techniques for motion representation and entropy coding,” IEEE
TCSVT, vol. 20, no. 12, pp. 1676–1687, 2010.

[3] B. M. T. Pourazad, C. Doutre, M. Azimi, P, Nasiopoulos, “HEVC: The New Gold
Standard for Video Compression: How Does HEVC Compare with H.264/AVC?,”
IEEE CEM, pp. 36-46, 2012.

[4] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel, "Run-time
adaptive energy-aware motion and disparity estimation in multiview video coding",
IEEE/ACM/EDA DAC, pp. 1026-1031, 2011.

[5] M. Shafique, B. Zatt, F. L. Walter, S. Bampi, J. Henkel, “Adaptive Power
Management of On-Chip Video Mamory for Multiview Video Coding”,
IEEE/ACM/EDA DAC, pp. 866-875, 2012.

[6] B. Zatt, M. Shafique, S. Bampi, J. Henkel, “A Low-Power Memory Architecture with
Application-Aware Power Management for Motion & Disparity Estimation in
Multiview Video Coding”,IEEE/ACM ICCAD, pp. 40-47, 2011.

[7] F. Sampaio, B. Zatt, M. Shafique, J. Henkel, S. Bampi, “Energy-Efficient Memory
Hierarchy for Motion and Disparity Estimation in Multiview Video Coding”,
IEEE/ACM DATE, pp. 665-670, 2013.

[8] Micron. “4Gb: x16, x32 Mob. LPDDR2 SDRAM S4”. Rev. N 05/13 EN, 168p, 2013.

[9] Micron. “TN-46-03 – Calc. DDR Mem. System Power”. Rev. B 3/05 EN, 26p, 2005.

[10] Micron. “TN-46-12: Mob. DRAM Power-Sav. Features/Calc.”, 10p, 2009.

[11] C.-Y. Chen, C.-Y. Chen, C.-T. Huang, L.-G. Chen. “Level C+ Data Reuse Scheme
for Motion Estimation with Corresponding Coding Orders”, IEEE TCSVT, vol. 16,
no. 4, p. 553-558, 2006.

[12] H. Singh, L. Agarwal, D. Sylvester, K.J. Nowka, "Enhanced leakage reduction
techniques using intermediate strength power gating", IEEE TVLSI, vol. 15, no. 11,
pp. 1215-1224, 2007.

[13] F. Bossen, “Common test conditions and software reference configurations”, ITU-
T/ISO/IEC JCTVC-K1100, October 2012.

[14] JCT-VC. HEVC Software SVN, 2011. Available in: <https://hevc.hhi.fraunhofer.de/>

[15] Misra, K.; Segall, A.; Horowitz, M.; Xu, S.; Fuldseth, A.; Zhou, M., "An overview of
tiles in HEVC," IEEE JSTSP, no.99, 2013

[16] C. Blumenberg, D. Palomino, B. Zatt, S. Bampi. “Adaptive Content-Based Tile
Partitioning Algorithm for the HEVC Standard”, PCS, p. 185-188, 2014.

[17] JCT-VC, “High Efficiency Video Coding (HEVC) text spec. draft 10”, 2013.

[18] Iyengar, A., "Design and performance of a general-purpose software cache," IEEE
IPCCC, vol., no., pp.329,336, 1999.

[19] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, “Scratchpad
Memory: Design Alternative for Cache on-chip Memory in Embedded Systems,”
CODES+ISSS, pp. 73–78, 2002.

[20] K. Bai and A. Shrivastava, “Automatic and efficient heap data management for
limited local memory multicore architectures,” IEEE DATE, 2013, 2013, pp. 593-598.

[21] N. Deng, W. Ji, J. Li, F. Shi, and Y. Wang, “A Novel Adaptive Scratchpad Memory
Management Strategy,” IEEE RTCSA pp. 236–241, 2009.

[22] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, and H. Shin, “Scratchpad Memory
Management Techniques for Code in Embedded Systems without an MMU” IEEE
TC, vol. 59, no. 8, pp.1047-1062, 2010.

[23] IBM, “The Cell Project”, Last Accessed: Sep. 2013,
<http://researcher.watson.ibm.com/researcher/view_project.php?id=2649>.

[24] ARM, “ARM10 Family: An Overview”, pp. 11, 2005

[25] Texas Instruments, “TMS370CX7X from Texas Instruments”,
<www.ti.com/mcu/docs/mcuorphan.tsp?contentId=15364>.

Content-Driven Memory Pressure Balancing and Video Memory
Power Management for Parallel High Efficiency Video Coding

Felipe Sampaio1, Muhammad Shafique2, Bruno Zatt3, Sergio Bampi1, Jörg Henkel2
1Informatics Institute, PPGC, Federal University of Rio Grande do Sul (UFRGS), Brazil

2Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany
3GACI, PPGC, CDTec, Federal University of Pelotas (UFPel), Brazil

{felipe.sampaio, bampi}@inf.ufrgs.br, bzatt@inf.ufpel.edu.br, {muhammad.shafique, henkel}@kit.edu

ABSTRACT
We present a novel content-driven memory pressure balancing and
video memory power management scheme for parallel High
Efficiency Video Coding (HEVC). The key is to leverage the
application-specific knowledge to balance the (instant) access
pressure on Scratchpad-based Video Memories (SVMs) for
parallelized video processing. Our scheme accurately predicts the
memory requirements of each processing core based on monitored
memory usage and leverages this knowledge to perform a
categorization of different video regions. Afterwards, it employs an
adaptive policy for memory pressure balancing by rescheduling
encoding of different video blocks based on their categories. This
balancing also facilitates our scheme to perform efficient power-
gating of unused parts of SVMs. Experimental results show that our
scheme reduces the variations in the memory pressure by 37%-83%
when compared to the traditional raster scan processing for 4- and
16-core parallelized HEVC encoder. Our content-driven power
management saves 56% (on average) of SVM leakage energy.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems; B.3.2 [Design Styles]: Cache memories

Keywords

On-chip memory, memory pressure reduction, application-specific
optimization, HEVC, video coding, adaptivity, power management,
low-power, energy.

1. INTRODUCTION AND RELATED WORK
Parallelization of video processing applications under stringent
energy budget is a significant challenge for the next-generation
embedded manycore multimedia systems. Moreover, the memory
hierarchy consumes a significant portion of the chip footprint and
power/energy in such systems. Meeting these constraints becomes
quite intricate when considering the escalating complexity of
emerging video coding standards, like HEVC [1].

The High Efficiency Video Coding (HEVC) standard [1] aims at
providing 2x higher compression efficiency compared to that of the
state-of-the-art H.264/AVC standard. To achieve this, HEVC
introduces novel data structures and coding tools that increase the
computational effort by 40% and memory requirements by >2x
compared to H.264/AVC (see Figure 1a). To alleviate this increased
computation, HEVC provides parallelization support in form of
Video Tiles that are independently processed on different cores.
However, this further complicates the memory design in an
embedded multimedia system through the following means: (1)

More on-chip video memories are required to feed the processing
cores that incur an increase in the leakage and dynamic energy. (2)
External memory pressure is increased since multiple cores try to
access the data at the same time, thus also leading to an increase in
the off-chip energy. Moreover, the number of scenarios with
unbalanced memory pressure may increase due to the run-time
variation of the video content (as shown in Figure 1b) that lead to
high instant power dissipation and may surpass the maximum
available memory bandwidth. Therefore, it is crucial to balance the
memory pressure while performing efficient power management of
video memories in parallel HEVC encoding.

Recently, the use of scratchpad memories has proliferated in the
manycore systems (like in IBM Cell [10]) as power-efficient on-chip
memories to complement or replace large-sized shared caches [8].
The scratchpad memories avoid energy overhead of tags and write
replacement management to provide >30% energy reduction
compared to a full cache design [8]. Power efficient management of
these scratchpad memories is of key importance. External memory
pressure and on-chip scratchpad memory management for high-
performance manycore systems have been explored in [12][13].
However, these works do not account for the application-specific
properties, thus may not be efficiently employed for on-chip video
memories. From the application-driven perspective, several works
proposed dedicated power management schemes for video encoding
regarding both off-/on-chip video memories [2]-[4]. However, these
works lack support for parallel HEVC video encoding and
corresponding memory constraints. Therefore, these techniques may
perform inefficient under scenarios with (1) unbalanced memory
pressure during parallel HEVC encoding (as we motivate in Section
1.2); and (2) simultaneously accessed multiple on-chip memories.

0%

0%

0%

0%

0%

0%

0%

Basketball BQTerrace Cactus Kimono People Traffic
0

20

40

60

80

100

120

H
EV

C
 In

cr
ea

si
n

g
D

em
an

d
s

[%
 c

o
m

p
ar

ed
to

H
.2

64
/A

V
C

]

BDrive BQTerr Cactus Kimono Traffic People

00,0000050,000010,0000150,000020,000025

Encoding Time Memory Access

0

1E-08

2E-08

3E-08

4E-08

5E-08

0 100 200 300 400

P
ro

b
ab

ili
ty

[x
10

-8
]

0

1

2

3

4

5

Instant Memory Pressure [MB]
0 100 200 300 400

(b)(a)

2-Core

4-Core

8-Core

16-Core

Figure 1. (a) HEVC increasing demands compared to H.264/AVC (b)
memory pressure Probability Density Function for BasketballDrive.

Summarizing, the challenge is to obtain balanced pressure for off-
and on-chip memories based on multiple Scratchpad-based Video
Memories (SVMs) used by different Video Tiles in parallel HEVC
encoding and to provide efficient SVM power management by
exploiting this knowledge .

Before proceeding further, we first provide preliminaries of HEVC.

1.1 HEVC Preliminaries
The HEVC introduces the Coding-Tree Unit (CTU, e.g., a 64x64
block) as a basic encoding entity within a video frame. The CTU is
divided using a recursive splitting into blocks of NxN or 2Nx2N
sizes (e.g., 32x32, 16x16 and so on) [1]. An example partitioning is
shown in Figure 2b. The Motion Estimation is performed for all
possible blocks. For each block it searches for the most similar block
within a search window in one or more reference frames (i.e. already
encoded and reconstructed frames).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ISLPED'14, August 11 - 13 2014, La Jolla, CA, USA
Copyright 2014 ACM 978-1-4503-2975-0/14/08…$15.00.

http://dx.doi.org/10.1145/2627369.2627615

The search window is defined as the maximum range of motion
search in both horizontal and vertical directions. This motion search
process for multiple blocks may consume up to 90% of the total
HEVC encoding energy [2]. Besides CTUs, HEVC supports
rectangular Video Tiles (each containing multiple CTU) that can be
processed in parallel without any data dependency [7]. Figure 2a
presents an example of a 2x2 Video Tiles configuration (4-Tile
scenario) for a video frame with 8x4 CTUs.

64

64

(0)

(1) (2)

(3)

(8)
(9) (10)

(18)

(4) (5)
(6)(7)

(12)(11)

(17)

(13)(14)(15)(16)

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Video Frame
CTU(a) (b)

Figure 2. (a) Multiple Video Tiles in a video frame;
(b) An example CTU partitioning.

1.2 Motivational Case Studies
We have performed an experimental analysis (see experimental setup
in Section 4) for (1) memory pressure and access imbalance when
processing multiple Video Tiles concurrently; (2) memory pressure
and access correlations; and (3) Intra-Video Tile access behavior.
These analyses provide a foundation for our novel contributions.

1) Memory Pressure Analysis: We define memory pressure as the
memory access requirement caused by a CTU processing during a
specific time. When considering multiple processing cores, the
memory pressure may be (1) core-specific, or (2) accumulated (sum
of all core-specific pressures). Typically, the motion estimation is
performed in the traditional raster scan order (i.e., from top-left to
bottom-right corner in row-by-row order). However, this may lead to
unbalanced external memory pressure, as depicted in the 4-Tile
example of Figure 3a. The maximum and minimum memory
pressure peaks can be seen in Figure 3b. There are significant
memory access variations compared to the average access case (that
typically does not happen). This unbalanced memory pressure leads
to high power peak dissipations and high instant memory bandwidth
requirements, which may surpass the maximum availability
constraints. Moreover, such unbalancing also leads to inefficient
memory power management due to (1) fluctuations in the sleep
durations, (2) frequent PON-POFF switching, and (3) memory usage
prediction errors due to sudden access variations. Therefore, the key
is to leverage application specific-properties to adapt and re-
schedule the CTU processing in order to achieve the best possible
memory pressure balancing.

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Actual Average

0

3

6

9

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Tile 0 Tile 1 Tile 2 Tile 3

M
e

m
o

ry
P

re
ss

u
re

[M
b

yt
es

]

CTU Processing Time [raster scan order]

32% of maximum peak variation

27% of minimum peak variation

Conclusion: Non-adaptive CTU raster processing leads to
unbalancing memory pressure along the HEVC encoding time

(a) Core-Specific

(b) Accumulated

Figure 3. Memory pressure for (a) each processing core; and (b)

accumulated and average cases for BasketballDrive.

2) Spatial/Temporal Neighboring Analysis: If it is possible to
accurately predict the memory requirements for a given CTU, it can
be exploited by a power manager to balance the memory pressure in
a very efficient way. In case of high frame rates (30-60 fps),
significant temporal correlation exists, i.e. the neighboring frames
have similar memory access behavior, as depicted in Figure 4.
Additionally, high video frame resolutions (e.g., FullHD=1920x1080
to 4K=3840x2160) increase the spatial correlations between

neighboring CTUs within the same frame. Furthermore, we can note
that the memory pressure for each CTU also depends upon their
corresponding video content characteristic (like texture and motion
content). Therefore, the key is to leverage the knowledge from the
monitored memory pressure of spatially- and temporally-
neighboring CTUs to obtain a high quality prediction of the actual
memory pressure for a given CTU.

3) Intra-Video Tile Memory Analysis: While balancing the
memory pressure is important from the external memory perspective,
it is also crucial to take care of the core-private on-chip SVMs. In
this case, long sleep durations (and consequently more leakage
energy savings) can be achieved by consecutively encoding CTUs
with similar video content properties (like texture and motion), thus
similar memory pressure. Figure 5 shows Video Tiles with less
memory requirements (like Video Tile 1) and more memory
demands (like Video Tile 2). In this case, longer sleep durations and
higher energy savings can be obtained for the SVM of core
processing the Video Tile 1. Furthermore, re-scheduled CTU
processing orders for a well-balanced memory pressure tends to
group similar properties CTUs to be consecutively encoded,
providing even higher sleep durations (as we will demonstrate in
Section 3). Hence, the key challenge here is how to leverage the
CTU re-schedule for memory pressure balancing and increased
sleep durations for efficient SVM power management.

Memory Access Map (T5)
100

20

M
em

o
ry R

eq
u

irem
en

ts
[M

b
ytes]

T1 T2 T3 T4 T5 T6 T7 T8

Original Frame (T5)

Memory pressure behavior
follows the video content

Memory pressure correlation
between spatial neighboring
CTUs within the same frame

Memory pressure correlation
between CTUs of temporal

neighboring frames

Figure 4. Video content and neighborhood correlation analysis for

BasketballDrive test sequence.

0

2

4

6

8

10

12

Tile 0 Tile 1 Tile 2 Tile 3Tile 0 Tile 1 Tile 2 Tile 3
0

2

4

6

8

10

M
em

o
ry

P
re

ss
u

re
[M

b
yt

es
] 12 10

2

Tile 0 Tile 1

Tile 2 Tile 3

8

6

4

3rd quartile

2nd quartile

1st quartile

minimum

maximum

Obs-1: Heterogenous memory access properties for different Tiles
Obs-2: Low-motion Tiles may increase the memory sleep-duration

Figure 5. Intra-Tile memory pressure analysis for BasketballDrive.

The goal of our work is to leverage application-specific properties
for memory pressure balancing and SVM’s leakage energy reduction
targeting parallelized HEVC encoding.

1.3 Our Novel Contributions
We propose content-driven memory pressure balancing along with
SVM power management for HEVC parallelized on manycore
processors. The key is to leverage the memory access correlation
within and across different Video Tiles (i.e. Intra- and Inter- Video
Tile correlation). Our scheme employs:

 A Memory Pressure Prediction Algorithm (Section 2.1) that
leverages the monitored memory pressure of Video Tiles in the
previously encoded CTUs in order to accurately predict the memory
requirements for Video Tiles in the current frame.

 Run-Time Statistics-Based CTU Memory Classification
(Section 2.2) that dynamically adapts the parameters involved in our
memory power management scheme according to the predicted
memory pressure statistics.

 CTU Re-Scheduling for Memory Pressure Balancing
(Section 2.3) our scheme groups the CTUs of a Video Tile into

variable-size groups (called CTU-groups). The size of the CTU-
groups depends on the Video Tile-specific motion activity properties.
Depending upon the predicted memory pressure, we schedule the
CTU-groups to closely meet the target pressure.

 Content-Driven Power Management of SVMs (Section 3):
since the CTU-groups may also exhibit similar properties blocks, our
scheme analyzes the predicted memory usage of different CTU to
increase the potential of the sleep-duration of different SVM regions
and thereby increasing the leakage energy savings.

To the best of authors’ knowledge, this is the first work towards
managing the memory pressure in parallel video processing that
exploits the video content properties and memory access correlation.

1.4 Overview of Our Memory System
Figure 6 depicts the overall system with our content-driven memory
power management. To support HEVC encoding parallelized using n
Video Tiles, our system has (1) a multicore processor with n cores
and (2) a memory infrastructure containing n SVMs, such that every
core has its private on-chip SVM for search window storage used
during the motion estimation process. The SVMs are connected to
the external memory by data/address bus interfaces. Our content-
driven memory pressure balancing scheme is composed of the
following three modules: (a) memory pressure prediction, (b) run-
time statistics-based CTU memory classification, and (c) CTU re-
scheduling for memory pressure balancing. Furthermore, our
memory management system also employs a content-driven power
management of SVMs. It leverages the run-time statistical analysis
performed by (a) and (b). A memory monitoring unit feeds the
statistics about the current memory requirements to our system.

Our Content-Driven Memory Pressure Balancing Scheme

External Memory

(Video Input; Reference Frames)

Memory
Pressure

Prediction

Run-Time Statistics-
Based CTUs Memory

Classification

CTU-Rescheduling for Memory
Pressure Balancing

Our Content-Driven Power
Management of SVMs

SPM0 SPMn/2-1

SPMn/2 SPMn-1

......

...

...

Scratchpad Video Memories

Core0

Coren/2

Coren/2-1

Coren-1

......

...

...

Multicore Processor

M
e
m

o
ry

H

ie
ra

rc
h

y

M
e

m
o

ry
 M

o
n

it
o

ri
n

g

Figure 6. n-Tile HEVC encoding system with our application-specific

memory power management scheme.

Although traditional scratchpad memories require programmer
driven control, recent works have demonstrated run-time
management of these memories where data allocation is managed by
a virtual manager, like [8][9]. In our case, instead of explicitly
passing the control to the programmer, we have an application-
specific hardware management of these SVMs (which is much
simpler compared to the management circuitry of cache memories).

2. CONTENT-DRIVEN MEMORY PRESSURE
BALANCING SCHEME

2.1 Memory Pressure Prediction
As demonstrated in Section 1.2, highly correlated memory pressure
may exist (1) among spatial neighboring CTUs (within the same
frame); and (2) among CTUs of temporal neighboring frames.
Therefore, based on the actual memory usage of previously processed
CTUs (ActualMem), our prediction algorithm estimates the memory
requirements of the CTUs in the current frame1. Figure 7 depicts an
example of used CTU predictors in the current and reference frames.
Four spatial predictors from the current frame and nine temporal
predictors from each reference frame are selected as input to a

1 A current frame refers to the frame being encoded at that moment.

weighted prediction. Eq. (1)-(2) presents the spatial and temporal
predictors selected for a given CTU: PredTemp and PredSpatial,
respectively. The letters A-M correspond to the spatial and temporal
predictors depicted in Figure 7. As statistical parameters for the
prediction, we apply different weighting factors2 according to the
spatial location of the predictor related to the current CTU position.
Possible cases of CTU position are: center (αC), horizontal/vertical
(αA), and diagonal (αD). Eq. (3)-(5) present the weighted prediction
formula for predicting the memory pressure considering a given CTU.
The weighting factors were statistically generated based on the
memory access correlations of real video test sequences. First, the
predicted memory pressure considering only the temporal references
is estimated: PredMemTemp in Eq. (3). Then, the spatial predictors are
used to calculate the PredMemSpatial, as in Eq. (4). Finally, both spatial
and temporal predictions are used to derive the predicted memory
pressure for the given CTU: PredMem in Eq. (5).

PredTemp(FRef) := WP(ActualMem(FRef[A...I]),) (1)

PredSpatial := WP(ActualMem(FCurr[J...M]),) (2)

 ∑ {[∑ ()
 ()

]

}

 (3)

 ∑ ()
 (4)

 () () (5)

When some predictors are unavailable (e.g., in case of CTUs at the
frame boundaries) the weighted prediction is performed only with
the available predictors.

L
A F
H I

E
G

C DB

Current FrameReference Frame 0 Reference Frame 1

Co-located CTU

A F
H I

E
G

C DB
M

KJ

Current CTU

...

D0

Co-located CTU

...

D1

Figure 7. Example: spatial and temporal predictors selecting.

The predicted memory requirements of the CTUs need to be
analyzed to classify each video frame, Video Tile and CTU-groups
to characterize their memory access behavior.

2.2 Run-Time Statistics-Based CTU Memory

Classification
As motivated in Section 1.2, in order to avoid the memory pressure
imbalance problem of traditional raster scan order processing, our
scheme re-schedules the order of CTU evaluations for motion
estimation. To achieve this, our scheme partitions the CTUs of a
Video Tile into so-called CTU-groups, which are rectangular regions
of CTUs such that, all CTUs of a given CTU-group are processed
consequently; see an example in Figure 8. The goal is to assign
CTUs with similar memory requirements/pressure into one group
while balancing the overall memory pressure of Video Tiles.

(a) 4 Video Tiles

Figure 8. Example: CTU-groups division for re-scheduling.

The memory access distribution follows specific properties (i.e.,
motion and texture) of each video sequence. Hence, we use the video

2

Statistically defined parameters using the experimental methodology
described in Section 4: αC=0.5, αA=0.3, αD=0.2, αS=0.5, and αT=0.5.

properties to decide the number of CTU-groups. Our scheme adapts
the number of CTU-groups at frame level according to the predicted
memory access distribution of Video Tiles. At first, a base number of
groups is defined, NB in Eq. (6). It is based on the Probability Density
Function (PDF) of the predicted memory pressures at frame level (µF

is the average, σF is the standard deviation) and the average number
of CTUs per Video Tile (NCTUPerTile). Later on, we define the actual
number of groups for each Video Tile (NG in Eq. (7)) by comparing
the predicted memory access distribution of a given Video Tile (µT,
σT) with that of the with the overall frame. Video Tiles with spread
memory pressure distributions are divided into more CTU-groups to
enable fine-grained management (first clause of Eq. (7)). The goal is
to have a fine-grain management because we may have very diverse
memory behaviors within a Video Tile. In contrast, Video Tiles with
concentrated memory pressure distribution (second clause of Eq. (7))
lead to few (but large-sized) CTU-groups as their texture and motion
properties tend to be correlated inside such a Video Tile. The
decision of having smaller CTU-groups must be carefully taken
because the SVM data reuse among adjacent CTUs is not available
between each CTU-group processing, causing efficiency loss in the
SVM data management. Due to the CTU order inside one CTU-
group (see Figure 8), the SVMs are more efficient for large-groups.

 ⌈() ⌉
where: { } (())

(6)

 () {
()
()

⌈ () () ⌉

⌈ () () ⌉

Where: { } (())

(7)

The predicted memory pressure distribution is used to classify the
Video Tile in terms of motion property. By comparing the average
behavior of each Video Tile-specific distribution to the overall frame
distribution, Eq. (8) defines three categories: H-type (high motion),
M-type (medium motion), and L-type (low motion). Moreover, each
CTU-group also has its own PDF (given in Eq. (9)) that will be used
for the re-scheduling decision during the memory pressure balancing.

 () {

() ()
() ()

() ()

 (8)

{ } (()) (9)

0 4 8 12
0

20

40

30

10

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

0

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-60

0,0000001

0,0000002

0,0000003

0,0000004

0,0000005

0,0000006

0 4 8 120 4 8 12

0.2

0.4

0.6
X10-6

µF = 5.69
σF = 1.7

µT0 = 5.94
σT0 = 1.69

µT1 = 4.72
σT1 = 0.78

µT2 = 6.6
σT2 = 1.92

µT3 = 5.43
σT3 = 1.56

BasketballDrive (PDF)
Tile 0 Tile 1

Tile 2 Tile 3

O
cc

u
rr

en
ce

s

Memory Pressure Memory Pressure Memory Pressure

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

Figure 9. Memory pressure statistics for each Video Tile of the

BasketballDrive test sequence (PDFs and histogram).

An Example: Figure 9 presents the run-time statistics of the
predicted memory pressure of a frame in the HD1080
BasketballDrive video encoded with 4-Tiles. The NBase value, which
is only dependent on the overall frame statistics, is calculated using
Eq. (6), i.e. NBase=6. Using Eq. (7), the number of CTU-groups at is
calculated: NG(0)=6, NG(1)=2, NG(2)=8, NG(3)=4. Using Eq. (8), the
motion classification of Video Tiles are: CTile(0)=M-type, CTile(1)=L-
type, CTile(2)=H-type, and CTile(3)=M-type.

The above analysis and predicted memory pressure statistics are used
by our CTU re-scheduling algorithm for memory pressure balancing
and by the corresponding power management policy.

2.3 CTU Re-Scheduling for Memory Pressure
Balancing
The goal of our CTU re-scheduling is to balance the accumulated
memory pressure at the Video Tiles level, reducing the mean squared
deviance (MSD) related to the average memory pressure (ideal case).
Different number of CTU-groups leads to variable-sized groups,
containing more or less CTUs within each Video Tile. Our scheme
also classifies the Video Tiles according to the motion properties in
three classifications CTile={H-type, M-type, L-type} using the Eq. (8).
Different Video Tile types will contributes in different ways for the
accumulated balancing: H-type Video Tiles start by occupying the
most part of the memory bandwidth, M-type Video Tiles contribute
by median memory occupation, and the L-type Video Tiles aim to
alleviate the memory pressure. The main task of our scheme is to
schedule the CTU-groups processing.

Figure 10 depicts our CTU-groups scheduling functionality that is
called at two points: (1) at the initial frame processing, when the
decision about CTU-groups scheduling has not already taken, and (2)
at the end of one CTU-group processing, when a new group must be
scheduled. The call for this routine is performed at Video Tile-level,
when the algorithm analyzes the current scenario to take the best
decision. So, as input parameters we have the ID of the Video Tile
TileID and the list of CTU-groups (LCTU-Groups) that are inside the
target Video Tile (line 1). For the first frame of the video, there are
no temporal references for memory predictors, so the traditional
raster scan order is performed (lines 2-3). If it is not the first frame,
all memory predictions and run-time memory-related classifications
are performed at the beginning of the frame processing. In case of
the first CTU-group scheduling, the algorithm takes the motion
Video Tile classification CTile into account to decide the CTU-group
that will be next coded (GToBeCoded) (lines 6-9). Otherwise, our
adaptive scheme analyzes the gap (gapAccumPress) between the
current memory pressure (currMemPress) and an approximate
average case prediction (averageAccumPress in line 11). So, the
algorithm selects the CTU-group which has the predicted memory
pressure and that has the best fit to the predicted gap (lines 11-14).
After this decision, the CTU-group is removed from the non-coded
groups list and the CTUs according are encoded according to the
CTU-groups internal processing order depicted in Figure 8 (line 17).

1. scheduleCTUGroup(Video Tile: TileID, List of CTU-groups: LCTU-Groups)
2. If first frame Then
3. GToBeCoded := LGroups.first(); //CTU-group equals to Video Tile
4. Else //not the first frame
5. If frame start Then //run-time statistical knowledge of Video Tiles
6. Tileclass := CTile(TileID); //Eq. (8) – statistical classification
7. Case(TileClass = L-type): GToBeCoded := LCTU-Groups.min();
8. Case(TileClass = M-type): GToBeCoded := LCTU-Groups.median();
9. Case(TileClass = H-type): GToBeCoded := LCTU-Groups.max();
10. Else
11. averageAccumPress:= ∑ (𝜇)

 ; //sum of av. pressures

12. currAccumPress := getCurrentMemoryPressure(); //monitoring
13. gapAccumPress := averageAccumPress – currAccumPress;
14. GToBeCoded := (G | 𝜇 has the best fit to gapAccPress);
15. End If;
16. End If;
17. LCTU-Groups .remove(GToBeCoded); encode(GToBeCoded);

Figure 10. CTUs re-scheduling algorithm.

Besides memory pressure balancing, we also develop an on-chip
power management that controls the low-power states of different
blocks of the SVMs while increasing their sleep durations.

3. CONTENT-DRIVEN POWER MANAGEMENT
Our power management policy monitors each core’s private SVM
usage to capture the current video motion property and power-gate
less-likely used sectors to save on-chip leakage energy.

Memory Power Model: We consider a memory technology with
three power states: PON, PDR (Data Retentive) and POFF, where:

VON=Vdd, VDR=0.3*Vdd and VOFF=0, and the wake-up energies (WE)
for power states transitions3 are WET0=1/2*CCircuit*Vdd

2, and
WET1=0.65*WET0. Vdd is the memory supply voltage, and CCircuit is
the total capacitance of the memory [5]. Our SVMs are divided into
NSecs memory sectors that are power gated by the same sleep
transistor. One memory sector supports a 16x16 search window
block (SSector=16*16*8bits=2048bits). This sectors organization
allows fine-grain memory management during the encoding, since
variable blocks sizes are processed and very accurate memory power
states assignment is required. The SVMs are sized to store one
complete search window in a private way for each core. Hence, we
have NSVM=NTiles=NCores number of SVMs and each SVM has
SSVM=(SWH+64)*(SWV+64)*8 Kbits, where SWV and SWH are the
search window vertical and horizontal dimensions.

Run-Time SVM Usage Analysis: Our evaluations in Figure 11
illustrate that we can increase the potential of long sleep durations
once the memory pressure is balanced. For example, Figure 11a
presents the SVM usage for the core 1 when encoding the
BasketballDrive sequence. The SVM usage (SVMUsage) calculated as
the percentage of accessed SVM memory positions (measured by our
memory monitoring unit) during one ME operation (AccSVM), see
Eq. (10). As shown in Figure 11(b), the SVM usage for the entire
CTU can be determined as the Probability Density Function of the
SWUsage values of all blocks within the CTU, see Eq. (11).

 () () (10)

 () { }

 (())
(11)

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56

C
o

re
-S

p
ec

if
ic

 S
V

M

U
sa

ge
 [

%
]

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56

Raster CTU Order

0 10 20 30 40 50 60 0 10 20 30 40 50 60
#CTU Processing Time

50

40

30

20

10

0

Longer sleep durations

(a) Re-Scheduled CTU Order

#CTU Processing Time

0,00

0,20

0,40

0,60

0,80

1,00

Past CU0 CU1 CU2 CU3 Next Average

100

80

60

CTUID-3

SV
M

 U
sa

ge
 S

ta
ti

st
ic

 [
%

]

40

20

0 CTUID+2CTUID+1CTUIDCTUID-2

ON

DR

OFF(b) TH0

TH1
µSW+σSWµSW

Power StatesCTUID-1

Actual memory usages Predicted memory usages

Figure 11. (a) Increased memory pressure correlation;

(b) power states determination based on the SVM usage PDFs.

Our Power Management Scheme: At the beginning of a CTU
encoding, the algorithm predicts the number of the memory sectors
that can be put into different power state (i.e., NON, NDR and NOFF).
As basis for this prediction, we analyze (1) the actual search window
usage for previously processed CTUs (e.g., CTUID-3, CTUID-2, and
CTUID-1); (2) the predicted usage for the current CTUID and the next
CTUID+1 and CTUID+2. The goal is to have the knowledge of the past,
present and predicted future memory requirements to increase the
on-chip leakage energy savings while minimizing the overhead for
memory sectors waking-up. Figure 11(b) presents an example of
SVM usage PDFs and the corresponding power states assignment.

Figure 12 presents our power management policy. The actual SVM
usage PDFs of the past CTUs (ListActualSVMUsagePDF) and the next
predicted SVM usage PDFs (ListPredSVMUsagePDF) are used to
determine the power states of the SVM sectors (lines 3-5). As in
Figure 11, we define two thresholds (TH0 and TH1) based on the
average and standard deviation of all cited PDFs (lines 6-7).
Afterwards, the SVM sectors corresponding to each power states are
derived (lines 8-9). The physical assignment of the power states to
the SVM cells is performed at the beginning of every block
processing within a CTU (lines 10-13). In the case data

3 Power states transitions: T0 (POFFPON), and T1 (PDRPON).

retransmission is required (SVM cells wake-up from the POFF state),
the control unit inserts stalls in the execution pipeline. Still, this
penalty implies a negligible energy/performance overhead since in
our experiments the worst-case scenario is observed <0.2% times.

1. managePowerSVM (Video Tile: TileID, CTU: CTUID)
2. PowerMapSVM := Ф; NON := 0; NDR := 0; NOFF := 0;
3. ListActualSVMUsagePDF := (SVMUsagePDF (ActualMem(CTUID) | ID Є {-3..-1}));
4. ListPredSVMUsagePDF := (SVMUsagePDF (PredMem(CTUID) | ID Є {0..2}));
5. ListPDF.append(ListActualSVMUsagePDF, ListPredSVMUsagePDF);
6. TH0 := max(µSVM+3.σSVM | (µSVM,σSVM) Є {ListPDF}); //TH’s definition
7. TH1 := max(µSVM+1. σSVM | (µSVM,σSVM) Є { ListPDF});
8. NOFF := (1 – TH0)*NSec; NDR := (TH0–TH1) *NSec; NON := TH1 *NSec;
9. PowerMapSVM.assignPowerStates(NON, NDR, NOFF);
10. For all Block Є CTUID
11. SVM[TileID].powerGate(PowerMapSVM); //apply power gating
12. encode(Block);
13. End For;

Figure 12. On-chip power management of SVMs.

4. RESULTS AND DISCUSSIONS

4.1 Experimental Methodology
The experiments are performed using the HEVC software (HM 11.0)
using the common test conditions adopted by the video coding
community [6]. Four HD1080p (1920x1080) test video sequences
with different properties were adopted: BasketballDrive (BDrive),
BQTerrace (BQTerr), Cactus and Kimono. We consider 4-/16-Tile
scenarios, 128x128 search window size (typical dimension for
HD1080p [7]), GOP=8, FRExt, CABAC, and TZ Search algorithm
for motion estimation. We use 4 and 16 threads (i. e., Video Tiles),
each executing on a dedicated/specific processing core. Therefore,
we use 4-, and 16-core x86 processor in our setup. Table 1 presents
the on-chip SVM parameters as per the model defined in Section 3.

Table 1. On-Chip SVMs Sizing Parameters

SVM Sizing Parameter Value

Number of SVMs 4, 8, 16 (one SVM per core)

SVM Sector Size 2048 bits = 256 B

SVM Size (128+64) * (128+64) * 1B = 36 KB

Memory Size (4-Core) 114 KB

Memory Size (16-Core) 576 KB

We developed a custom simulator that takes the HM 11.0 memory
traces for each thread (independent Video Tile) as input and
estimates the accumulated memory pressure and the on-chip leakage
energy. Our simulator contains memory models for the external
memory and for the on-chip SVMs. For the external memory, we
used a Low-Power DDR2 DRAM (LPDDR2) memory model (from
Micron technical specification [14][15]) to derive the memory
pressure. For the on-chip memory leakage energy estimation, we
extracted the electrical parameters (for the 65nm SRAM technology
node) using the CACTI 6.5 tool [11], as well as the multiple power
states model described in Section 3.

MSD metric: Let the Mem[0…m] be the discretized memory pressure
measurements along the time. The mean squared deviance (MSD)
calculates the squared different between each memory pressure
measured point and the Mem average value (µMem), as in Eq. (12).

 ()

∑ ()

 (12)

4.2 Memory Pressure Balancing Results
Figure 13 presents a temporal evaluation of the memory pressure
comparing (1) the traditional CTU raster processing order; (2) our
application-specific memory pressure balancing scheme using CTU-
rescheduling; and (3) the optimal corner case where the memory
pressure is continuously equals to the average pressure. The case (3)
is a theoretical approximation used to evaluate the gaps of our and
the traditional schemes related to the best possible balancing case.
Figure 13 shows that our scheme balances the pressure for each
processing core. Compared to the traditional raster order, the

maximum-minimum peak variations are reduced from 27%-32% to
9%-13%, respectively. Our scheme achieves this balancing by
effectively predicting the memory requirements, capturing the Video
Tile-specific properties, and managing the processing order.

Figure 14 presents our results regarding the memory pressure
balance. As already discussed, more Video Tiles potentially leads to
more unbalanced accumulated memory pressure, since more
concurrent memory accesses are performed during each time slot. In
this scenario, there is a high probability of having very different
motion properties being processed by different cores at the same
time. So, the balancing gap when more Video Tiles are used is
higher. Our scheme successfully exploits this potential, as shown in
Figure 14. The MSD efficiency reduction ranges from, on average,
37% to 83%, for 4 to 16 Video Tiles. Therefore, our application-
specific memory power management is efficiently scalable when
working with an increased number of Video Tiles.

0

10

20

30

40

50

1 11 21 31 41 51 61 71 81 91 101 111

Raster Ours Average

#CTU Processing Time

50

40

30

20

0 50 60 70 80 90 100 110 12040302010M
em

o
ry

P
re

ss
u

re
[M

b
yt

es
]

10

0

BasketballDrive

Figure 13. Accumulated memory pressure results of our scheme.

N
o

rm
a

liz
e

d
 M

SD
[M

e
an

 S
q

u
ar

e
 D

e
vi

at
io

n
]

0

0,2

0,4

0,6

0,8

1

BasketballDrive BQTerrace Cactus Kimono
0

0,2

0,4

0,6

0,8

1

BasketballDrive BQTerrace Cactus Kimono

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
BDrive BQTerr Cactus Kimono BDrive BQTerr Cactus Kimono

4-Tile 16-Tile

00,10,20,30,40,50,60,70,80,91

B
as

ke
tb

al
lD

ri
ve

C
ac

tu
s

Ours Raster

(a) (b)

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8

40

20

0

60

M
SD

 R
e

d
u

ct
io

n
 [

%
]

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

BasketballDrive (frame-by-frame within a GOP)

#Picture coding order

only spatial
predictors

(c)

Figure 14. (a)(b) Memory pressure balancing analysis compared to

the original raster scan order and (c) frame-by-frame analysis.

Figure 14c depicts a frame-by-frame MSD reduction analysis.
During the first frame processing, as only spatial references can be
used as input for our memory pressure predictor, our scheme
achieves results close to the original raster order. However, by
acquiring the temporal knowledge, our scheme fits the CTU-Groups
accordingly to capture the motion properties and achieves increased
memory pressure balancing for the other remaining frames. Thus, we
can increase the accumulated memory pressure balancing by up to
49% in the case of 4-Tile BasketballDrive scenario (Figure 14c).

4.3 On-Chip Leakage Energy Savings
Figure 15a depicts the on-chip leakage energy savings of our
content-driven SVM power management policy for different video
sequences. On average, our scheme saves 56% of on-chip energy by
power gating the unused and less-likely used memory sectors. The
wake-up energies overhead is already included into the results of
Figure 15. Our energy reductions are high in case of the low-motion
Video Tiles by achieving longer sleep durations due to consecutive
processing of CTU with similar texture and motion. This behavior is
demonstrated in Figure 15b where the total energy savings are
decomposed for each core-private SVM. The low-motion Video
Tiles provide the highest savings while the medium- and high-
motion Video Tiles required more energy due to higher memory
usage as a result of an extensive search. When considering SVMs,
the energy/performance overhead of waking up the memory cells are
negligible, since one block of the search window is continuously

accessed during one ME operation over a given block of the CTU.
Thus, the energy/performance penalty is completely amortized, not
leading to significant overhead for the overall memory system.

0%

20%

40%

60%

80%

SPM0 SPM1 SPM2 SPM3 Total

0%

20%

40%

60%

80% 4-Tile

BDrive BQTerr Cactus Kimono

80

60

40

20

0

80

60

40

20

0

O
n

-C
h

ip
 E

n
e
rg

y

S
a
v
in

g
s
 [

%
]

SPM0 SPM1 SPM2 SPM3 Overall

(a) (b)
BasketballDrive4-Tile (average case)

M-Type

Tile

L-Type

Tile

H-Type

Tile

M-Type

Tile

Figure 15. On-chip static energy reduction due to our content-driven

power management of SVMs.

5. CONCLUSIONS
This work presented a content-driven memory pressure balancing
scheme with an integrated power management policy. Our scheme is
composed of: (1) a prediction unit that estimates the memory
pressure due to the monitoring of past CTUs encoding; (2) a run-time
statistics-based CTU memory classification that adapts the involved
parameters of our schemes to the current video content; (3) a
memory pressure balancing strategy that adaptively changes the
CTU processing order to reduce the accumulated memory pressure
variations; and (4) a power management policy that analyzes the
actual and predicted memory usage for the CTUs to accordingly
power-gate unused (or less-likely used) video memory sectors. Our
experimental results demonstrated that our scheme can reduce the
memory pressure peak variation by 37%-83% compared to the state-
of-the-art raster processing order, for 4-/16-core processors. The
SVM leakage energy is reduced by 56%. This work illustrates that
the reducing memory pressure and on-chip SVM leakage energy are
crucial for parallel HEVC on real-world embedded systems.

6. AKNOLEDGEMENTS
This work was partly supported by DFG as part of Transregional.
Collaborative Research Centre "Invasive Computing" (SFB/TR 89);
and partly by DAAD/CAPES as part of PROBRAL project
VideoArch3D.

7. REFERENCES
[1] JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 10

(for FDIS & Consent)”, Doc.: JCTVC-L1003_v9, 2013.

[2] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel, "Run-time
adaptive energy-aware motion and disparity estimation in multiview video
coding", IEEE DAC, pp. 1026-1031, 2011.

[3] M. Shafique, B. Zatt, S. Bampi, J. Henkel, “Adaptive Power Management of On-
Chip Video Mem. for Multiview Video Coding”, DAC, pp. 866-875, 2012.

[4] F. Sampaio, B. Zatt, M. Shafique, J. Henkel, S. Bampi, “Energy-Efficient
Memory Hierarchy for Motion and Disparity Estimation in Multiview Video
Coding”, IEEE DATE, pp. 665-670, 2013.

[5] H. Singh et al., "Enhanced leakage reduction techniques using intermediate
strength power gating", IEEE Transactions on Very Large Scale Integration,
vol. 15, no. 11, pp. 1215-1224, 2007.

[6] F. Bossen, “Common test conditions and software reference configurations”,
ITU-T/ISO/IEC JCTVC-K1100, 2012.

[7] K. Misra et al., "An overview of tiles in HEVC," JSTSP, no.99, 2013.

[8] D. Cho et al., "Adaptive Scratch Pad Memory Management for Dynamic
Behavior of Multimedia Applications," TCAD, v.28, n.4, pp.554-567, 2009.

[9] I. Issenin, et al. “Data-Reuse-Driven Energy-Aware Cosynthesis of Scratch Pad
Memory and Hierarchical Bus-Based Communication Architecture for
Multiprocessor Streaming Applications”. TCAD, v. , n. , pp. 1439-1452, 2008.

[10] IBM, “The Cell Project”, Last Accessed: Sep. 2013,
<researcher.watson.ibm.com/researcher/view_project.php?id=2649>.

[11] S. Thoziyoor, N. Muralimanohar, J.-H. Ahn, and N. P. Jouppi, “CACTI 5.1
technical report,” HP Labs, Tech. Rep. HPL-2008-20, 2008.

[12] M. Jeong, et al. “A QoS-aware memory controller for dynamically balancing
GPU and CPU bandwidth use in an MPSoC,” DAC, pp. 850–855., 2012.

[13] L. L. Pilla, et al. “A hierarchical approach for load balancing on parallel multi-
core systems,” In: ICPP’12, pp. 118–127, 2012.

[14] Micron. “4Gb: x16, x32 Mob. LPDDR2 SDRAM S4”, 168p, 2013.

[15] Micron. “TN-46-03 – Calculating DDR Mem. System Power”., 26p, 2005.

Energy-Efficient Architecture for Advanced Video Memory
Felipe Sampaio

1
, Muhammad Shafique

2
, Bruno Zatt

3
, Sergio Bampi

1
, Jörg Henkel

2

1
Informatics Institute, PPGC, Federal University of Rio Grande do Sul (UFRGS), Brazil

2
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

3
GACI, PPGC, CDTec, Federal University of Pelotas (UFPel), Brazil

{felipe.sampaio, bampi}@inf.ufrgs.br, bzatt@inf.ufpel.edu.br, {muhammad.shafique, henkel}@kit.edu

Abstract— An energy-efficient hybrid on-chip video memory

architecture (enHyV) is presented that combines private and shared

memories using a hybrid design (i.e., SRAM and emerging STT-

RAM). The key is to leverage the application-specific properties to

efficiently design and manage the enHyV. To increase STT-RAM

lifetime, we propose a data management technique that alleviates the

bit-toggling write occurrences. An adaptive power management is

also proposed for static-energy savings. Experimental results

illustrate that enHyV reduces on-chip static memory energy

compared to SRAM-only version of enHyV and to state-of-art

AMBER hybrid video memory [9] by 66%-75% and 55%-76%,

respectively. Furthermore, negligible external memory energy

consumption is required for reference frames communication (98%

lower than state-of-the-art Level C+ technique [18]). Our data

management significantly improves the enHyV STT-RAM lifetime,

achieving 0.83 of normalized lifetime (near to the optimal case). Our

hybrid memory design and management incur low overhead in

terms of latency and dynamic energy.

I. INTRODUCTION

Advanced video processing algorithms introduce very high

pressure on the memory hierarchy, leading to undesirable energy

and performance overheads [2][3]. Therefore, battery-powered

applications incorporate dedicated video memories to provide

enough data bandwidth while reducing energy consumption.

Video codecs are among the most complex and widely deployed

video processing applications. Recently, the next-generation High-

Efficiency Video Coding (HEVC) [1] has been released that

provides double coding efficiency compared to the H.264/AVC.

However, this comes at the cost of increased computation time by

more than 40% [8]. Besides employing novel complex coding

tools, an HEVC encoder requires a significant amount of data from

the off-/on-chip memories due to more intensive reference frames

transmission for the prediction. On average, the memory demand

is 2x-3x higher compared to that of the H.264/AVC [8]. High off-

/on-chip memory bandwidth along with larger on-chip video

memories (to support bigger resolutions) leads to increased energy

consumption in HEVC encoders. Additionally, the HEVC has data

parallelism support to provide high processing rates. However,

parallel processing tightens the memory energy restrictions due to

multiple cores accessing the same memory infrastructure

simultaneously, which aggravates the memory pressure.

Recently, the hybrid memory architectures for general purpose

manycore processors have evolved that utilize emerging memory

technologies (e.g., MRAM, STT-RAM [12]; see Section I.B) in

combination with traditional SRAM cells [9][11]. Their goal is to

reduce the impact of SRAM shortcomings like low density and

high static energy consumption. Typically, for general purpose

applications, the emerging technologies are desired for the last-

level cache due to the low-static-energy and high-density features

[10]. However, due to lack of application-specific knowledge,

these schemes are not efficient enough to support the high memory

requirements of HEVC.

Therefore, there is a need of application-driven design for

energy-efficient and performance-aware hybrid memories tailored

towards HEVC executing on manycore processors.

Before we introduce our novel contributions, we will present

our motivational memory analysis of HEVC encoders followed by

a brief overview of the emerging memory technologies in

comparison to the traditional SRAM.

A. Memory Energy Bottleneck in HEVC

The new coding structure of HEVC divides the video frame

into flexible block sizes following a quad-tree structure called

coding-tree unit (CTU) [7]. Typically the CTU partitioning starts

from the maximum allowable block size of 64x64 pixels into

several coding units (CU) of sizes 32x32, 16x16 and 8x8 pixels.

Fig. 1(a) depicts an example of CTU partitioning. For each CU,

the motion estimation searches the most similar block within a

delimited squared portion of reference frames, called search

window [7]. The motion estimation processes each possible CU

inside a CTU, thus resulting in the most time and energy

consuming module of an HEVC encoder. It requires 70%-80% of

the encoding time and consumes 80%-90% of the total energy

[2][3]. Furthermore, from the memory perspective, the reference

frames fetching from the external memory and its on-chip storage

lead to significant energy consumption (>92% of the motion

estimation energy) [2][3].

Independent data
processing for
different tiles

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Video Frame

64

64

(0)

(1) (2)

(3)

(8)

(9) (10)

(18)

(4) (5)

(6) (7)

(12)(11)

(17)

(13)(14)(15)(16)

(b) 4-Tile HEVC Processing(a) CTU Arrangement

Fig. 1 (a) Example of CTU partitioning into variable-sized CUs; (b) 4-Tile

partitioning of a video frame.

010203040506070

1-Tile

HD720 HD1080 2K

0

20

40

60

80

1-Tile 2-Tile 4-Tile 8-Tile 16-TileSR
A

M
 S

ta
ti

c
En

e
rg

y
[m

J]

200

100

300

400

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

On-Chip Perspective

Observation 1: SRAM static
energy increases with the
number of video Tiles.

0

1000000

2000000

3000000

4000000

5000000

6000000

1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

O
ff

-C
h

ip
 E

n
e

rg
y

[m
J]

400

200

500

600

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

Off-Chip Perspective

300

100

Observation 2: In the meantime, off-
chip memory energy is not reduced.

Fig. 2 SRAM on-chip static energy vs. DRAM off-chip energy analyses

using reference-frame-on-chip strategy.

To exploit multiple cores in a manycore system, the HEVC

provides a light-weight data parallelism support that divides the

video frame into rectangular regions called video Tiles [7]; see Fig.

1(b). These video Tiles can be encoded independent to each other

without any spatial dependencies, thus can be parallelized on

multiple cores. The video Tile-parallelized HEVC aggravates the

video memory bottleneck (as shown in Fig. 2 for a larger number

of video Tiles), leading to large on-chip video memories and high

static energy consumption. Typically, the entire reference frame

for each video Tiles processing is fetched to the on-chip SRAM-

based video memories (i.e., reference-frame-on-chip scenario in

Fig. 2). Fig. 2 illustrates a significant increase in the SRAM static

energy when increasing the number of used video Tiles whereas

the external memory bandwidth is not even reduced. An important

observation can be made: the on-chip video memories based on

SRAM have low energy efficiency when larger on-chip video

memories are required for parallel video Tiles processing support.

In general, this would also be valid for other multi-threaded video

processing workloads. Hybrid memory design has emerged as a

promising solution to address the SRAM limitations, i.e., low

density and high static energy.

B. SRAM and Emerging STT-RAM Memory Technologies

As an emerging memory technology, the Spin-Transfer Torque

SRAM (STT-RAM) [12] provides higher density, better scalability

and low static power features compared to the SRAM. In other

aspects SRAM is still much more efficient, like in terms of write

power and overall performance. Table I presents a subjective

comparison between SRAM and STT-RAM technologies1, where

the dark-gray cells represent the best scenario of each parameter.

TABLE I SRAM VS. STT-RAM TECHNOLOGIES [12]

Energy Latency

Volatility
Static Read Write Read Write

SRAM HH L L L L Volatile

STT-

RAM
L L HH L H

Non-

Volatile

The on-chip video memories have a particular property that

facilitates the STT-RAM usage: they have a relatively low write

intensity compared to a very high read intensity [8]. As the on-

chip video memories implement data-reuse schemes for the search

window samples, only a few data of the reference frame would be

written to start the next CTU prediction. Once the needed data is

stored on chip, the motion estimation massively accesses the on-

chip video memory until the best match is found. As can be

noticed in Table I, the STT-RAM energy and performance are

poor for write operations compared to that of the SRAM. Thus,

video coding is a promising application for STT-RAM based

hybrid memories.

STT-RAM is also known to be a non-volatile memory (NVM).

This characteristic is very important for on-chip video memories,

since parts of the memory may be switched-off (no static energy

consumption) while keeping the data stored, leading to no extra

external memory accesses to re-fetch the information. However,

the NVM cells lifetime (aka. endurance property) highly depends

1 The terms L, H and HH are used for a subjective comparison between STT-

RAM and SRAM regarding its electrical characteristics: “L” means low, “H”

means high, and “HH” means very high.

on the bit-toggling activity of the writing operations [13]. If

improperly balanced, the lifetime of a STT-RAM cell can be

significantly reduced, compromising the overall memory system

performance. Therefore, there is a need for memory data

management policies to increase the NVM lifetime in a hybrid

video memory design.

In summary, the high bit-toggling writing operations need to

be directed to the SRAM cells, while lower bit-toggling writes are

the preferred ones for the NVM part. The knowledge of the bit-

toggling can be accurately predicted using the video content and

application-specific properties. In our HEVC processing system,

reference frames are read from/written to the on-chip video

memory. Thus, the key is to exploit the application-specific

properties of HEVC reference frames to write the data on either

NVM or SRAM parts of the hybrid on-chip video memory to

increase the NVM cells lifetime.

C. Overview of Our Novel Concepts and Contributions

In this work, we leverage the application-specific properties to

design and manage an energy-efficient hybrid on-chip video

memory architecture (enHyV, Fig. 3a) that is composed of several

small hybrid memory modules (HyMs, Fig. 3b). To address

SRAM limitations (low density and high static energy), enHyV

integrates both SRAM and STT-RAM where the STT-RAM cells

are intensively used to increase the overall energy efficiency. We

demonstrate the applicability and benefits with the help of a

parallel High Efficiency Video Coding (HEVC).

Already Stored On Chip

(d) Bit-Toggling Map

Multicore
HEVC

Encoder

L2 Memory

Private0

Private1

Private2

Private3

Shared0

Shared1

L1 Memory

Private0

Private1

Private2

Private3

-STT-RAM: Low/medium
bit-toggling image blocks

-SRAM: High bit-
toggling image blocks

(c) On-Chip
Replacement Example

(b) Hybrid Memory Design and Management

(a) Overview Diagram of Our enHyV Architecture

DRAM External Memory
(Reference Frames)

...

To Be Stored On Chip

Private0 Private1

Private2 Private3

Shared0

Sh
ar

ed
1

ST

ST

ST

ST

ST

ST

STT-RAM SRAM

Fig. 3 Overview of our proposed enHyV architecture.

Our novel contributions in a nutshell are:

A Hybrid On-Chip Video Memory Architecture (enHyV;

Section III): It is composed of multiple levels of private and

shared HyMs, as shown in Fig. 3a. It consists of (1) private L12

HyMs to store the search window samples required for each

HEVC processing core, (2) private and shared L2 HyMs to

implement the reference frame level data reuse. The HyMs are

managed by our energy-efficient management units. Our design

methodology is based on offline statistical analyses using

recommended test video sequences (that are different from the

ones used for evaluation to avoid data biasing) [19]. Moreover, the

2 L1 and L2 in this work do not refer to cache levels, but hybrid memory

levels implemented as scratchpad memories.

sizing and energy-efficient management of HyMs are proposed to

determine how much SRAM and STT-RAM cells are used at each

memory level.

Energy-Efficient Management of enHyV (Section IV): It

leverages application-specific properties to improve the STT-

RAM cells endurance and to manage the energy consumption. As

the lifetime is directly correlated with the bit-toggling activity (see

Fig. 3c, d) during the write operations, we propose a dynamic data

management that dynamically decides if the incoming reference

frame block will be stored in the SRAM or STT-RAM cells.

Furthermore, an adaptive power management technique exploits

the high-endurance STT-RAM cell to switch off less used portions

of L2 HyMs to obtain increased on-chip energy savings.

To the best of authors’ knowledge, this is the first work of

exploiting hybrid memory for multi-threaded video processing.

II. RELATED WORKS

The hybrid memory design exploiting the development of
emerging non-volatile memory technology has been research
target during the last years [9]-[16]. These works provide a solid
foundation to enable these emerging technologies feasible to be
integrated with CMOS logic circuitry of nowadays embedded
manycore processors. However, these works may not efficiently
support the video coding high memory demand, since they did not
take into account application-specific properties. During the past
decade, multiple works developed dedicated memory architectures
for the H.264/AVC [18] and contentdriven complexity and energy
reduction for motion estimation [4][5]. The H.264/AVC-based
memory architectures are not scalable enough to be energy
efficient for HEVC encoders due to its novel coding tools and
complex video processing flow. In another scenario, application-
specific properties were exploited to reduce computational
complexity and energy consumption (both off/on-chip parts)
targeting the video coding [2][3] . In video Tile parallelized HEVC
encoders, multiple cores request data at the same time from the
shared memory system. Thus, several other factors need to be
taken into account, e.g., memory contention, coherence protocols,
and memory access scheduling schemes. The work in [8] designed
a SRAM-based distributed memory architecture. The additional
SRAM to improve the data reuse brings extra static energy
consumption. Therefore, merely using SRAM it becomes
infeasible when using a large number of parallel cores. The first
dedicated hybrid memory design for video coding (called
AMBER) was presented in [9]. It uses SRAM only as a FIFO
buffer to hide the high write latency of STT-RAM cells, but not
effectively being part of the storage system that may provide a
high potential of energy-/performance-efficient design. AMBER
stores all reference frames in the on-chip STT-RAM memories
that incur high frequent-write, thus performing inefficient
management under such scenarios and may only be feasible for a
certain set of video resolutions. In particular, AMBER has two key
limitations: (1) it does not support parallel video processing,
which is inevitable to achieve high throughput; and (2) it does not
target lifetime improvements and all write accesses are performed
in the STT-RAM part.

III. HYBRID ON-CHIP VIDEO MEMORY ARCHITECTURE

Fig. 4 depicts the block diagram of our hybrid on-chip video

memory architecture (enHyV) and its energy-efficient

management scheme for parallel video processing. Each video Tile

is assigned to a specific processing core. The enHyV is designed

to increase the energy efficiency of video frames management

(off-chip fetching and on-chip storage). Note, as a case study, we

use parallelized HEVC encoders but the concepts are equally

beneficial for other multi-threaded video processing applications.

Our enHyV architecture is organized as two levels of hybrid

memories (HyMs):

L1 Level: n private hybrid memories3 (PrivL1) that store the

search window samples, allowing intra-Tile data reuse between

each CU processing.

L2 Level: n private HyMs (PrivL2) and m shared HyMs

(SharedL2) that together can store one complete reference frame,

providing combined intra-/inter-Tiles data reuse. The SharedL2 is

connected to the PrivL1 by an interconnect bus and it is

responsible for the overlapping regions storage (as in Fig. 3a). The

PrivL2 stores the remaining data (accessed by only one core).

Each HyM of PrivL2 has a direct connection to the corresponding

PrivL1 HyM.

In addition to two levels of HyMs, an Access Management

Unit and a DRAM Access Generator are designed to jointly

manage the off-/on-chip memories data interaction. The detailed

data interaction is explained in the following.

Ex
te

rn
al

 M
e

m
o

ry
 (

D
R

A
M

)
(O

ri
gi

n
al

 F
ra

m
es

;
R

ef
er

en
ce

 F
ra

m
es

)

Interconnect
Bus

Private L2 (Non-overlap)

Memory
Hierarchy
(Ordinary

data;
Instructions)

Core 0

Core 1

HEVC Encoder Control

Shared L2 (Overlap)

…

HyM0 HyMm

M
em

o
ry

M
an

.

M
em

o
ry

M
an

.

…

HyM0

M
em

o
ry

M
an

.

M
em

o
ry

M
an

.

M
em

o
ry

M
an

.HyM1 HyMn

Private L1 (Search Window)

…

HyM0

M
em

o
ry

M
an

. HyM1

M
em

o
ry

M
an

.

M
em

o
ry

M
an

.HyMn Core n

Power
Management

Unit

Data
Management

Unit

Access
Manag.

Unit

Energy-Efficient

Management of enHyV
Hybrid On-Chip Video Memory (enHyV)

DRAM
Address

Generator
DRAM

Controller

Fig. 4 The block diagram of our enHyV architecture.

A. enHyV Access Management

The access management unit starts to execute when a

processing core i requests data from enHyV. Depending on the CU

size being processed, different sizes of data blocks must be

requested. In this sense, our enHyV management splits the

requested data into several fixed-size data blocks and, for each

one, it starts checking each HyM level. If a PrivL1 HyMi hit is

verified, the data is simply forwarded to the core i and no more

action is required. Otherwise, if a miss occurs, the L2 memories

must be verified. SharedL2 or PrivL2 HyMs are mutual-

exclusively accessed depending whether the requested data is in an

overlap region or not. A L2 hit avoids external memory fetching

and the data can be forwarded to the core i. Furthermore, the data

is written into PrivL1 HyMi, increasing the intra-Tile data reuse. In

case of L2 miss, the DRAM access generator is triggered to

perform sequential external memory accesses to fetch reference

frames data. The fetched data is then written into the

corresponding SharedL2/PrivL2 and PrivL1 HyMs and passed to

the requesting core.

Next we present design space exploration results using

statistical analysis of video properties to properly design and size

the SRAM and STT-RAM arrays for each involved HyM of

enHyV.

3 Let n be the number of Tiles and m be the number of Tiles boundaries.

B. Design Space Exploration of Hybrid Memories (HyMs)

As already discussed, STT-RAM presents low static energy

consumption while having high density. It allows us to designate

the most part of the HyM to be composed of the STT-RAM array.

In the meantime, blocks from the reference frame that cause high

bit-toggling activity strongly decrease the STT-RAM lifetime,

minimizing its non-volatility advantage. Thus, a small portion of

SRAM is used to handle with these blocks. Although SRAM does

not degrade from bit-toggling activity, it costs a large area and a

high static energy consumption. Therefore, the main challenge

involved in the HyMs design is to leverage application-specific

properties to design a well-balanced combination of SRAM and

STT-RAM to minimize the static energy consumption whereas

increasing the STT-RAM cells lifetime. We define the bit-toggling

activity (BT) during a HyM write operation of a block Bo over an

already stored block B1 as the number of bits that toggles during

the operation divided by the total number of written bits, as in Eq.

(1). BSize is the horizontal/vertical block size and NBSample the

number of bits per sample. The toggling_bits function returns the

number of collocated bits that are different between two numbers.

 ()
∑ ∑ (() ())

 (1)

Fig. 5 depicts the design space exploration controlled by an
external parameter: the bit-toggling threshold (BTTH). Reference
frame blocks that lead to bit-toggling activities lower than BTTH
are assigned to STT-RAM, while higher values will direct the
block to SRAM. Our exploration varies the BTTH from 0 (no
activity) to 1 (maximum activity, all bits toggle) in steps of 0.01.
We analyze our two optimization target variables: STT-RAM
lifetime (Fig. 5a) and SRAM size (Fig. 5b), since we know that the
static energy efficiency is limited by the amount of SRAM cells
(as discussed in Section I.B). To find the best design point, we
analyze an efficiency plot that relates both variables (see Fig. 5c).
We run this exploration for a set of video test sequences following
our evaluation methodology (described in Section V). The
maximum efficiency point was discovered when BTTH=0.24. Using
this design point, we have that the SRAM usage factor (αSRAM) is
equal to 35% and the STT-RAM lifetime can be improved near to
the optimal case (when no bit toggles): 0.83 normalized lifetime,
as detailed in Section VI.C. From the enHyV perspective,
αSRAM=36% means that the SRAM array will be sized as 36% of
the STT-RAM capacity. Note that the αSRAM factor can be used for
any type of HyM design (PrivL1, PrivL2 and SharedL2).

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

ST
T-

R
A

M
 L

if
e

ti
m

e

0,00

0,20

0,40

0,60

0,80

1,00

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0

0
,4

5

0
,5

0

0
,5

5

0
,6

0

0
,6

5

0
,7

0

0
,7

5

0
,8

0

0
,8

5

0
,9

0

0
,9

50 10.6 0.80.40.2

100

0

Bit-Toggling Threshold

SR
A

M
 S

iz
e

[%
 o

f
th

e
to

ta
l]

60
80

40
20

0,00

0,20

0,40

0
,0

0

0
,0

9

0
,1

8

0
,2

7

0
,3

6

0
,4

5

0
,5

4

0
,6

3

0
,7

2

0
,8

1

0
,9

0

0
,9

90 10.6 0.80.40.2

H

L

Bit-Toggling Threshold

Tr
ad

e
o

ff
 (

a)
 v

s.
 (

b
)

improved
lifetime

BTTH = 0.24

35% of SRAM in HyMs
to achieve the
best efficiency

(a) STT-RAM
Lifetime Analysis

(b) SRAM
Size Analysis

(c) STT-RAM Lifetime vs.
SRAM Size Tradeoff

Fig. 5 (c) Design space exploration for joint (a) STT-RAM lifetime and (b)
SRAM size optimization

The toggling activity at bit level is also exploited in enHyV.

Fig. 6 depicts the accumulated statistics for toggling occurrences

for each bit position using ParkScene and NebutaFestival test

video sequences [19]. It can be noticed that we have near-zero bit-

toggling activity for the two most significant bits (MSB) of the

two sequences. Therefore, it means that even for blocks with high

average bit-toggling activities, the two MSB toggle with a very

low probability. We exploit this property by always storing the

two MSB in the STT-RAM, this way reducing the SRAM size

(saving further static energy) while not penalizing the STT-RAM

cells lifetime. This enables us to realize a fine-grained hybrid

memory organization.

b1 b0b3 b2b4b5b6b7 b1 b0b3 b2b4b5b6b7

B
it

-T
o

gg
lin

g
A

ct
iv

it
y

0

1

0.8

0.6

0.4

0.2

Bits [from MSB to LSB] Bits [from MSB to LSB]

(1) Near-zero
bit-toggling
activity

Observation: The bit-toggling activity
behavior of different bit positions follows
similar properties independent on the video.

(2) b[5..3] reunite the
bit-toggling activity
property

ParkScene NebutaFestival

Fig. 6 Bit-toggling activity of different bit positions.

Another important aspect from Fig. 6 is that the bit range from

b5 to b3 inherits the bit-toggling activity of the entire 8-bit sample.

It means that we only need to compare these three specific bits of

the two involved data to approximate the bit-toggling activity of

this write operation. We exploit it by generating a bit-toggling key

(BT_KEY) composed of only these three bits of some specific

samples from reference frame blocks. This key aims to serve as an

identifier that must be stored by the data management unit. Our

goal is to design an energy-efficient way to estimate the bit-

toggling activity of each write operation. Details regarding this

data management unit are given in Section IV.A.

C. HyM Physical and Logical Organization

Fig. 7 presents the physical organization of the HyMs. The size

of the HyMs (SizeHyM) is different depending on the enHyV level,

as in Eq. (2): PrivL1 HyMs must store a complete search window

sized according to horizontal and vertical dimensions SWH and

SWV; PrivL2 HyM size depends on the video dimensions (FrameH

or FrameV, depending on the video Tiles direction) and the number

of used video Tiles (NTiles); SharedL2 must support the overlapping

region size, which varies according to the search window

dimension (SWH or SWV) and the frame dimension. The BSize in Eq.

(3) refers to the basic access unit used for every enHyV memory

transaction. Our sizing methodology works for any value of BSize.

It is interesting for our specific HEVC case to use BSize as 8, since

8x8 is the smallest CU size allowed in the HEVC latest working

draft [1].

 {

⌈() ⌉

⌈() ()⌉

 ⌈() ⌉

 (2)

 (3)

SRAM (Light-Weight Cache)

ST

ST
Bank 7Bank 2Bank 1Bank 0

N
L

SR
A

M

BLSRAM

..
.

Header

STT-RAM (Scratchpad Memory)

ST

ST
Bank 7Bank 2Bank 1Bank 0

N
L

STT..
.

BLSTT

Application-Driven
Management of enHyV

Dynamic
Power

Management

DMT

BLDMT

..
.

N
L D

M
T=

N
L S

TT

Dynamic Data
Management

Energy-Efficient

Management of enHyV

Fig. 7 Hybrid memory (HyM) organization.

The sizing formulas of the STT-RAM part are expressed in Eq.

(4)-(6). The STT-RAM array is designed as a scratchpad memory

and each BSizexBSize reference frame block has a fixed and unique

position. This part must be sized to store all possible reference

blocks: (i) the entire search window for PrivL1 HyMs and (ii) the

corresponding reference frame part for PrivL2 and SharedL2.

Thus, the STT-RAM size (SizeSTT) follows the total size of the

HyM, expressed by the already calculated HyMSize. The STT-RAM

memory part is composed of BSize parallel banks. Each bank has

NLSTT memory lines of NBSTT bits. The set of memory lines of the

same row composes one reference frame block. With this design,

one complete BSizexBSize block can be completely written/read in

one clock cycle. Equations (7)-(9) present the sizing variables of

the SRAM portion. Since only a few part of the data is assigned to

SRAM (to alleviate STT-RAM from high bit-toggling activities),

we design it as a fully-associative light-weight cache memory, as

in Fig. 7. The data array size of SRAM cache (SizeSRAM) represents

a fraction of the HyMSize, using the already calculated αSRAM factor.

The header of each line is composed of the (x,y) spatial

coordinates of the reference block. Similar to the STT-RAM

design, one entire row of lines of the BSize banks stores one

complete reference block. Since the two MSB are always stored in

the STT-RAM array, the memory line size NLSRAM is smaller than

the NLSTT, reducing by 25% the data array size.

 (4)

 (5)

 () (6)

 ⌈ ⌉ (7)

 () (8)

 () (9)

The logical organization of our HyMs is demonstrated in Fig.

8, where a set of 3x3 reference blocks are taken as example. As

decision from the data management unit, the blocks (0,0), (1,1)

and (2,2) are considered to provoke high bit-toggling activity and

must be partially stored in the SRAM cache; while the remaining

blocks are completely stored in the STT-RAM scratchpad

memory. For data management purposes, a Data Management

Table (DMT in Fig. 7 and Fig. 8) was also designed.

STT-RAM

Blk(1,0)
8x8x8bits

Blk(0,1)
8x8x8bits

Blk(0,0)
8x8x2bits

Blk(1,1)
8x8x2bits

Blk(2,0)
8x8x8bits

Blk(0,2)
8x8x8its

Blk(1,2)
8x8x8bits

Blk(2,1)
8x8x8bits

Blk(2,2)
8x8x2bits

SRAM

Blk(0,0)

Blk(1,1)

Blk(2,2)

8x8x6bits

8x8x6bits

8x8x6bits

SRAM
STT-RAM
STT-RAM
STT-RAM

SRAM
STT-RAM
STT-RAM
STT-RAM

SRAM

DMT

Blk(0,0)

Blk(1,0)
Blk(2,0)
Blk(0,1)
Blk(1,1)
Blk(2,1)
Blk(0,2)
Blk(1,2)
Blk(2,2)

Fig. 8 HyM data assignment example

The DMT design is fully explained in Section IV along with

our energy-efficient management of enHyV.

IV. ENERGY-EFFICIENT MANAGEMENT OF ENHYV

Besides the enHyV memory organization and access

management unit, we also developed an energy-efficient

management of the designed HyMs. The data management unit

aims to increase the STT-RAM cells lifetime, allowing much more

effective power management. Details about the schemes are given

as follows.

A. Data Management Unit

To estimate as simple as possible the bit-toggling activity

during a write operation, we define the bit-toggling key BT_KEY

as in Eq. (10). This key is generated at the moment before the

write operation and it consists in a set of wires getting the bits

from b5 to b3 of eight specific samples resultant from the

downsamplingTo8 operation from the reference frame block. The

choice of these specific bits was taken due to the conclusion (2)

from Fig. 6. The downsamplingTo8 function selects eight equally-

spaced samples of a block, reducing its representation resolution.

In our case, due to the spatial correlation between near pixels of a

video frame, it is possible to discard many ones and still maintain

the bit-toggling activity property. Thus, the BT_KEY will have

3x8=24 bits. The proposed estimated bit-toggling activity (EBT)

calculates the number of bits that differs between the BT_KEY of

the two involved blocks, as in Eq. (11). This strategy is developed

to avoid a complete read operation to fetch the entire block to, just

then, perform the bit-toggling activity evaluation. We store the

BT_KEY of each stored reference block in a very fast special

table, called Data Management Table (DMT). Besides the

BT_KEY, the DMT also stores a flag indicating whether the

corresponding reference block is stored in the STT-RAM or

SRAM array (called presence bit). A practical example is depicted

in and Fig. 8, where each one of the nine reference blocks has a

DMT entry with its corresponding presence bit .value. Thus, the

DMT line consists in BLDMT bits, as in Eq. (12). Fig. 9 presents 2D

maps and histograms to show the high correlation between the

actual bit-toggling activity (BT) and the estimated one (EBT). For

a BSize equals to 8, we reduce the number of required bits to derive

the toggling activity by ~22x using the EBT metric. The circuit to

compute the number of bits that differ between two BT_KEY can

be implemented with 24 1-bit XOR gates and a tree of 1-bit full

adders, not representing neither energy nor performance

significant penalty for the HyMs.

Bit-Toggling Estimated Bit-Toggling

0

1.8k

1.2k

0.6k

0

3k

2k

1k

0 1

0

1

0

1

#O
cc

u
rr

en
ce

s

Estimated Bit-Toggling ActivityBit-Toggling Activity
0.5 0.750.25 0 10.5 0.750.25

Fig. 9 Statistical correlation between BT and EBT metrics.

 () ([] ()) (10)

 () (() ()) (11)

 (12)

Fig. 10 presents the data management steps for a HyM write

operation. First, the BT_KEY for the block that is being written is

generated (line 2). Then, the BT_KEY of the already stored block

must be retrieved from the DMT (line 4) and the estimated activity

αEBT is then calculated (line 5). The αEBT is then compared with the

offline statistical defined threshold BTTH (line 6). In the case that

αEBT is higher than BTTH, the block to be written is divided to be

partially stored in the SRAM and STT-RAM (lines 7-10). In this

case, we sacrifice SRAM dynamic energy to increase the STT-

RAM cells lifetime. We demonstrate in the results section that this

spent energy is very small compared to the overall savings

provided by enHyV. For αEBT lower than BTTH, the block is

completely written into the STT-RAM cells (line 13). The DMT is

updated with the new BitPresence (lines 11-14) and with the BT_KEY

of the written block (line 16).

The HyM read operation is much simpler than the write case,

since no decision must be taken. The DMT is just accessed to get

the presence bit and, depending on this, STT-RAM or

SRAM/STT-RAM will be accessed. Finally, the data is forwarded

to the requesting core by the access management unit. As the data

management unit increases the STT-RAM lifetime, the power

management unit can power-gate unused cells with minimized risk

of data re-fetching from external memory.

1. manageWrite(Hybrid Memory: HyM; Data 8x8 Block: BlockToBeWritten;
 8x8 Block Positions: x, y)

2. KeyToBeWritten := BT_KEY(BlockToBeWritten); //generate key - Eq. (10)
3. AddressData := genPhysicalAddress(x, y); //calculate physical address
4. KeyToBeReplaced := DMT[AddressData][23..0]; //get already stored key
5. αEBT := EBT(KeyToBeWritten, KeyToBeReplaced); //estimate activity - Eq. (11)
6. If (αEBT > BTTH) Then //high bit-toggling data
7. BlockSTT-RAM := ((b[7..6] | b Є BlockToBeWritten); //2-bit split
8. BlockSRAM := (b[5..0] | b Є BlockToBeWritten) //6-bit split
9. HyMSTT-RAM[AddressData].write(BlockSTT-RAM); //STT-RAM write
10. HyMSRAM.write(x, y, BlockSRAM); //SRAM write
11. DMT[AData][25].write(‘0‘); //DMT update – Presence Bit
12. Else //low bit-toggling data
13. HyMSTT-RAM[AddressData].write(BlockToBeWritten); //STT-RAM write
14. DMT[AddressData][25].write(‘1‘); //DMT update – Presence Bit
15. End If;
16. DMT[AData][23..0].write(KeyToBeWritten); //DMT update

Fig. 10 Data management for a HyM write operation.

B. Power Management Unit

Our HyMs were designed to be able to operate in two power

states: ON (VON=VDD volts) and OFF (VOFF=0 volts). Due to the

non-volatility characteristic of STT-RAM, the data is kept stored

in the memory cell even when OFF state is assigned. This is not

the case for SRAMs, leading to a data loss and requiring later an

external memory re-fetching. Typically, the PrivL2 and SharedL2

HyMs are very much larger than PrivL1 HyMs, leading to

significantly higher on-chip energy consumption. In this sense, our

power management concentrates effort in the L2 HyMs, resulting

in a great impact in the enHyV overall static energy (as

demonstrated by our experimental results in Section VI).

OverlapReference Frame Block

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

Tiles Boundary T

Tile 0 Tile 1

Tile 0 Current
Search Window

Tile 1 Current
Search Window

OFF OFF OFF OFF

OFF OFF OFF OFF

OFF OFF OFF OFF

OFF ON ON ON

OFF ON ON ON

OFF ON ON ON

OFF OFF OFF OFF

OFF OFF OFF OFF

PrivL2
HyM0 STT-RAM

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

PrivL2
HyM1 STT-RAM

OFF OFF OFF OFF

OFF OFF OFF OFF

OFF OFF OFF OFF

OFF OFF OFF OFF

ON OFF OFF OFF

ON OFF OFF OFF

ON OFF OFF OFF

OFF OFF OFF OFF

OFF

OFF

OFF

OFF

ON

ON

ON

OFF

OFF OFF

OFF OFF

OFF OFF

OFF OFF

OFF ON

OFF ON

OFF ON

OFF OFF

SharedL2
HyM0 STT-RAM

Fig. 11 Example: Power management for STT-RAM for a 2-Tile scenario.

The STT-RAM power management is performed at CTU level

and it is depicted in Fig. 11. At the beginning of a CTU

processing, our scheme checks all STT-RAM positions against the

search window limits. Note that the PrivL2 HyMs must be

checked only against the search window of its corresponding core,

while the SharedL2 HyMs must be analyzed considering all cores

that share this overlapping region. For the intersecting area, all

related STT-RAM cells are assigned as ON. Otherwise, the OFF

state is assigned. This assignment can be observed in the Fig. 11

example. It can be noted that all memory lines inside the search

window limits are switched on, even not knowing if all data will

be requested from PrivL1. It facilitates the control unit and

provides low read latency when any of the reference blocks inside

the search window limits are retrieved from the L2 HyMs. Since

all CUs processing inside the CTU will perform memory access

inside the search window limits, we guarantee long sleep durations

to amortize the wake-up energy and latency overhead.

We also developed a power management strategy for the

SRAM part. Our scheme acts at frame-level for SRAM

management. Since the bit-toggling activity can vary depending on

the video, we may have different SRAM usages. In order to adapt

to the video content, our scheme run-time analyzes the SRAM

usage Probability Density Function (PDF) for previous frames to

estimate the usage for the next reference frame fetching. The

THSRAM threshold determines the amount of SRAM to be switched

to the ON state, while the other parts are assigned to OFF state.

The THSRAM is run-time calculated as THSRAM=μ+σ, where μ

(average) and σ (standard deviation) are parameters from PDF of

SRAM usage statistics during past frames processing. In case the

SRAM usage surpasses the estimated THSRAM, wake-up energy and

latency are required to assign ON power state. However, due to the

very high similarity of consecutive frames, we also guarantee a

long sleep duration and significant on-chip static energy savings.

V. EVALUATION METHODOLOGY

A custom simulator was developed to capture the video

memory access traces. Based on adopted memory power models,

it estimates the energy consumption for on- and off- chip memory

parts, as well as the STT-RAM cells lifetime improvement and

access latency overhead. Details regarding our memory electrical

models and video coding configurations are given as follows.

TABLE II SRAM AND STT-RAM CHARACTERIZATION FOR 65NM [12]

Parameter SRAM STT-RAM STT-RAM Ratio

Area (F=feature size) 146F2 37F2 3.94x smaller

Static Power (mW/mm2) 25.2 2.7 9.33x lower

Read Latency (ns) 2.795 2.795 -

Write Latency (ns) 2.795 11.287 4x higher

Read Dyn. Energy (nJ) 0.151 0.155 -

Write Dyn. Energy (nJ) 0.151 2.942 15.5 higher

A. On-Chip SRAM and STT-RAM Power Models

The CACTI 6.5 tool [24] was used for SRAM energies/

latencies for 32nm memories. We adopt the static energy reduction

and wake-up latencies/energies from the analytical model depicted

in [23]. We adopted the STT-RAM memory characterization from

[12]. This work evaluated STT-RAM and developed scaling

factors to be compared with SRAM. Table II presents the used

scaling factor in our work to evaluate the performance and energy

efficiencies of enHyV different technologies.

B. External LPDDR DRAM Memory Model

The memory is composed of several banks. Each bank is a

row-column matrix, where the number of rows (NRows) represents

the addressing space and the number of columns (NColumns) is

directly related to the page size (PSize). Each row-column

intersection stores a memory word of size WSize. Each memory

access will initially cause a page activation, to pass the activated

data to the page buffer. If consecutive accesses are located in the

same page, the memory controller needs just to address a specific

column of the page buffer (called burst read/write operations). If

other memory page is addressed, the current active page is

precharged and a new page is activated.

The 4-Gbit Low-Power DDR2 (LPDDR2) DRAM

MT42L128M16D1GU-25WT [20] chip was used. The main

specifications are: Vdd=1.2V, Freq=533MHz, WSize=32bits,

PSize=512B, NRows=16K and NColumns=2K. The total energy is

derived by the composition of six components: page activation

energy, write energy, read energy, I/O pins energy, refresh energy

and standby energy [21][22].

C. Video Coding Experimental Setup

Our experimental setup for HEVC evaluation considers

recommended test conditions [19] using the HEVC test model

(HM 11.0) [6]. We execute our experiments for 4-Tile and 8-Tile

scenarios (each video Tile executes on a dedicated processing

core). As inputs for our experiments, we select six video test

sequences from the JCT-VC recommended test video benchmark

[19]: BasketballDrive (BDrive), BQTerrace, Cactus, and Kimono

(HD1080: 1920x1080), and PeopleOnStreet (People) and Traffic

(2K: 2560x1600). Note that we use different video sequences for

the analysis and design space exploration of HyMs: ParkScene

(HD1080); NebutaFestival and SteamLocomotive (2K). By using

different sets of video benchmarks in the design and evaluation

parts, we guarantee that our results are not biased towards the

design decisions using the same videos. Other encoder

specifications are: 128x128 search window (default value in HM

11.0), GOP=8, CABAC, FRExt, Random Access configuration,

and TZ Search block matching for the motion estimation.

For comparison purposes, we also implemented a SRAM-only

version of enHyV, where the STT-RAM arrays are implemented

as SRAM. Additionally, it is also used for comparison to the state-

of-the-art AMBER hybrid memory for non-parallelized HEVC

[9]. In the case of AMBER, as their STT-RAM memory arrays do

not support parallel access, we replicate the entire memory

infrastructure according to the number of used video Tiles. For

external memory energy evaluation, the Level C+ traditional data-

reuse scheme [9] was used to estimate our savings.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. On-Chip Energy Results

Fig. 12 depicts the static energy consumption results of our

enHyV architecture compared to the SRAM-only solution and to

the state-of-the-art related works. Our hybrid design, even not

taking into account the power management savings, is able to

reduce the leakage energy by 50%-62%, compared to the SRAM-

only case for 4-Tile and 8-Tile scenarios, respectively.

Furthermore, our power management unit is able to improve by

33% the static energy reduction, achieving 66%-75% of savings

related to SRAM-only. Also, as our power management is

adaptive to the video content due to the proper analysis of the

SRAM usage of already frames processing, it provides improved

reductions when low motion videos are encoded, like Traffic (up

to 80% of savings for the 4-Tile scenario). Considering the state-

of-the-art AMBER hybrid video memory architecture [9], the

enHyV consumes 55%-76% less static energy consumption, on

average. AMBER stores all reference frame on-chip, which leads

to very large STT-RAM arrays. Even with the low leakage energy

consumption of STT-RAM memory cells (around 90% lower than

SRAM [12]), AMBER is not efficient when video Tiles are

processed in parallel. For the 8-Tile scenario, AMBER consumes

the highest static energy, which is up to 4.28x higher than enHyV.

0,000,100,200,300,400,500,600,700,800,901,00

BasketballDrive

SRAM-only AMBER enHyV enHyV w/ Power Management

0,00

0,20

0,40

0,60

0,80

1,00

BasketballDrive BQTerrace Cactus Kimono NebutaFestival PeopleOnStreet

0,00000

0,20000

0,40000

0,60000

0,80000

1,00000

BasketballDrive BQTerrace Cactus Kimono NebutaFestival PeopleOnStreet

BDrive BQTerrace Cactus Kimono Traffic People

BDrive BQTerrace Cactus Kimono Traffic People

1

0

0.2

0.4

0.6
0.8

1

0

0.2

0.4

0.6
0.8

N
o

rm
al

iz
e

d
O

n
-C

h
ip

 S
ta

ti
c

En
e

rg
y

4-Tile

8-Tile

Fig. 12 On-chip static energy comparison of enHyV with related works.

B. Off-Chip Energy Results

The external memory energy analysis is presented in Fig. 13.

As enHyV can completely reuse the samples within the same

reference frame, we can achieve huge savings compared to Level

C+: 98% on average for the HD and 2K tested videos. As Level

C+ employs search window data reuse, its gains are limited when

parallelized video Tiles are processed, since inter-Tiles data reuse

is not exploited. On the other hand, AMBER completely avoids

the need of external memory communication to fetch the reference

frames, since the complete decoding picture buffer is implemented

as on-chip STT-RAM memories. Observing Fig. 13, enHyV

architecture consumes near-zero off-chip energy for reference

frames transmission. In the meantime, as already discussed, our

well-balanced hybrid design of SRAM and STT-RAM, with the

power management unit, can reduce the on-chip energy compared

to AMBER. Furthermore, enHyV also improves STT-RAM

lifetime, guaranteeing efficient STT-RAM power management.

0

100000

200000

300000

400000

500000

600000

700000

96x96 128x128 192x192
0

100000

200000

300000

400000

500000

600000

700000

96x96 128x128 192x192

Ex
te

rn
al

M
e

m
o

ry
En

e
rg

y
[m

Jo
u

le
s

-
o

n
av

er
ag

e]

96x96 128x128 192x192

450

600

300

150

0

750

HD1080 Videos

0,00,51,01,52,02,5

Basket
bakk

enHyV Level C+

96x96 128x128 192x192

900

1050

Search Window Size Search Window Size

enHyV consumption:
2.4 mJ on average

enHyV consumption:
4.7 mJ on average

2K Videos

Fig. 13 External memory energy consumption of enHyV compared to Level

C+ [9] (average for 4-/8-Tile scenarios).

C. STT-RAM Lifetime Results

The data management unit of enHyV significantly improves

the STT-RAM cells lifetime, as demonstrated in Fig. 14. In this

analysis, we plot the normalized STT-RAM lifetime bordered by

the lifetime of enHyV without any data management (zero value)

and by the best case scenario, where no bit toggles occurs during

write operations (1.0 value). On average, we have a normalized

lifetime of 0.83, nearer to the best case than the enHyV basic

approach without any management. Our data management of

enHyV can achieve higher lifetime improvements for low-textured

videos, like Kimono with 0.85 normalized lifetime. In another

vein, highly detailed scenes lead to high bit-toggling activities,

requiring high SRAM usage to alleviate STT-RAM cells. As we

design enHyV for the average case, lifetime is less improved for

this kind of videos. However, even for the worst case scenario, our

scheme still can improve the lifetime (0.79 lifetime for Traffic).

0,00 0,20 0,40 0,60 0,80 1,00

BasketballDrive

BQTerrace

Cactus

Kimono

Nebuta

People

Average

People
Traffic

Cactus
BQTerrace

BDrive

Kimono

Average

0 0.2 0.4 0.6 0.8 1
Normalized STT-RAM LifetimeenHyV w/o Data Manag.

N
o

 To
ggle

s

Fig. 14 Normalized STT-RAM cells lifetime.

D. enHyV Overhead: Access Latency and Dynamic Energy

STT-RAM poor performance and energy efficiencies when

writing along with our energy-efficient management scheme

imposes overhead to the access latency and dynamic energy during

the read/write operations. Fig. 15Erro! Fonte de referência não

encontrada. depicts these overheads. As already discussed in the

motivational section, video memories have the characteristic of

being high read-intensity applications. Thus, the write overhead is

amortized by the high amount of read operations. In terms of

average access latency, we noticed 1.3% of increased latency on

the average case. For the dynamic energy perspective, the

overhead is 7.7% on average. Taking all these small overhead into

account, our enHyV architecture still achieves the highest energy

efficiency compared to state-of-the-art works with insignificant

access latency overhead.

0,00%
0,40%
0,80%
1,20%
1,60%

B
D

ri
v

e

B
Q

T
e

rr
a

ce

C
a

c
tu

s

K
im

o
n

o

N
e

b
u

ta

P
e

o
p

le

4-Tile 8-Tile

O
ve

rh
e

ad
 [

%
]

0,00%

0,50%

1,00%

1,50%

2,00%

BDrive BQTerrace Cactus Kimono Nebuta People

0

0.5

1

1.5

2

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

BDrive BQTerrace Cactus Kimono Nebuta People
0

2

4

6

8

10
Average Access

Latency Overhead
Average Dynamic
Energy Overhead

Fig. 15 enHyV overhead analysis: HyMs access latency and dynamic energy.

VII. CONCLUSIONS

This work presented an energy-efficient hybrid on-chip video

memory (enHyV) architecture for advanced multi-threaded video

processing applications and demonstrated the practical benefits

using the next-generation parallelized High Efficiency Video

Coding application. Small SRAM arrays were designed in

combination with STT-RAM to alleviate the bit-toggling activity

during write operations, increasing STT-RAM cells lifetime. For

energy-efficient management, an adaptive data management unit

selects either SRAM or STT-RAM to be written depending on the

estimated bit-toggling activity of each write operation. We

additionally employed a power management unit that saves static

energy from both SRAM and STT-RAM parts. Our experimental

results showed that enHyV design could achieve average static

energy savings of 66%-75% and 55%-76% compared to SRAM-

only version of enHyV and state-of-the-art AMBER architecture,

respectively. External energy consumption could be significantly

minimized compared to traditional Level C+ scheme (98%

reduced), resulting on negligible off-chip communication

overhead. Our data management unit could significantly improve

the STT-RAM cells lifetime, achieving 0.83 normalized lifetime.

Our enHyV architecture enables energy-efficient implementations

of parallelized video processing applications.

VIII. ACKNOWLEDGEMENTS

This work was partly supported by DFG as part of
Transregional. Collaborative Research Centre "Invasive
Computing" (SFB/TR 89).

IX. REFERENCES

[1] JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 10
(for FDIS & Consent)”, Doc.: JCTVC-L1003_v9, 2013.

[2] B. Zatt, M. Shafique, F. Sampaio, S. Bampi, J. Henkel., "Run-time adaptive

energy-aware motion and disparity estimation in multiview video coding",

ACM/EDA/IEEE DAC, pp. 1026-1031, 2011.

[3] M. Shafique, B. Zatt, S. Bampi, J. Henkel. “Adaptive Power Management of

On-Chip Video Mamory for Multiview Video Coding”, ACM/EDA/IEEE

DAC, pp. 866-875, 2012.

[4] M. Shafique et al, "An HVS-based Adaptive Computational Complexity
Reduction Scheme for H.264/AVC video encoder using Prognostic Early

Mode Exclusion," IEEE/ACM DATE , pp.1713-1718, 2010.

[5] M. Shafique et al., "enBudget: A Run-Time Adaptive Predictive Energy-

Budgeting scheme for energy-aware Motion Estimation in H.264/MPEG-4

AVC video encoder," IEEE/ACM DATE, pp.1725-1730, 2010.

[6] JCT-VC. HEVC Software SVN, 2011. Available in:

<https://hevc.hhi.fraunhofer.de/ >

[7] B. Pourazad et al., “HEVC: The New Gold Standard for Video Compression:

How Does HEVC Compare with H.264/AVC?,” IEEE CeM, pp. 36-46, 2012.

[8] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel, “dSVM: Energy-

Efficient Dist. Scratchpad Video Memory Architecture for the Next-

Generation High Efficiency Video Coding”, IEEE/ACM DATE, 2014.

[9] M. U. K. Khan, M. Shafique, J. Henkel. “AMBER: Adaptive Energy

Management for On-Chip Hybrid Video Memories”. IEEE/ACM ICCAD, pp.

405-412, 2013.

[10] Y.-T. Chen et al., "Dyn. reconfigurable hybrid cache: An energy-efficient last-

level cache design", IEEE/ACM DATE, vol., no., pp.45,50, 12-16, 2012.

[11] K. Abe et al, "Novel hybrid DRAM/MRAM design for reducing power of high

performance mobile CPU," IEDM, pp.10-13, 2012.

[12] X. Dong et al., "Circuit and microarchitecture evaluation of 3D stacking

magnetic RAM (MRAM) as a universal memory replacement,"

ACM/EDA/IEEE DAC, pp.554,559, 2008.

[13] X. Wu et al. “Hybrid Cache Architecture with Disparate Memory
Technologies” IEEE/ACM ISCA. pp. 34-45, 2009.

[14] A. Jog et al., “Cache revive: architecting volatile STT-RAM caches for

enhanced performance in CMPs,” ACM/EDA/IEEE DAC, 2012, pp. 243–252.

[15] X. Wu et al, “Design exploration of hybrid caches with disparate memory

technologies,” ACM TACO, vol. 7, no. 3, pp. 1–34, Dec. 2010.

[16] Li, L. Zhang et al., “Hybrid cache architecture with disparate memory

technologies,” in ACM SIGARCH CAN, 2009, vol. 37, pp. 34–45.

[17] A. Jadidi, "High-endurance and performance-efficient design of hybrid cache

arch. through adaptive line replacement", ACM/IEEE ISLPED, p.79,84, 2011.

[18] C.-Y. Chen et al. “Level C+ Data Reuse Scheme for Motion Estimation with
Corresponding Coding Orders”, IEEE TCSVT, v. 16, n. 4, p. 553-558, 2006.

[19] F. Bossen, “Common test conditions and software reference configurations”,

ITU-T/ISO/IEC JCTVC-K1100, October 2012.

[20] Micron. “4Gb: x16, x32 Mobile LPDDR2 SDRAM S4”, 168p, 2013.

[21] Micron. “TN-46-03 Calc. DDR Mem. System Power”. Rev. B 3/05 EN, 2005.

[22] Micron. “TN-46-12 DRAM Power-Saving Features/Calcs”. Rev. B 5/09, 2009.

[23] H. Singh et al., "Enhanced leakage reduction techniques using intermediate

strength power gating", IEEE TVLSI, vol. 15, no. 11, pp. 1215-1224, 2007.

[24] S. Thoziyoor et al, “CACTI 5.1 tech. report,” HP Labs, 2008.

Approximation-Aware Multi-Level Cells STT-RAM
Cache Architecture

ABSTRACT
Current manycore processors exhibit large on-chip last-level

caches that may reach sizes of 32MB – 128MB and incur high

power/energy consumption. The emerging Multi-Level Cells

(MLC) STT-RAM memory technology improves the capacity and

energy efficiency issues of large-sized memory banks. However,

MLC STT-RAM incurs non-negligible protection overhead to

ensure reliable operations when compared to the Single-Level

Cells (SLC) STT-RAM.

In this paper, we propose an approximation-aware MLC

STT-RAM cache architecture, which is partially-protected to

restrict the reliability overhead and in turn leverages variable

resilience characteristics of different applications for adaptively

curtailing the protection overhead under a given error tolerance

level. It thereby improves the energy-efficiency of the cache while

meeting the reliability requirements. Our cache architecture is

equipped with a latency-aware hardware module for double-error

correction. To achieve high energy efficiency, approximation-

aware read and write policies are proposed that perform

approximate storage management while tolerating some errors

bounded within the user-provided tolerance level. The architecture

also facilitates run-time control on the quality of applications’

results. We perform a case study on the next-generation advanced

video encoding applications that exhibit memory-intensive

functional blocks with varying resilience properties and inherent

support for parallelism.

Experimental results demonstrate that our approximation-

aware MLC STT-RAM based cache architecture can improve the

energy efficiency compared to state-of-the-art fully-protected

caches (7%-19%, on average), while incurring minimal quality

penalties in the output (-0.219% to -0.426%, on average).

Furthermore, our architecture supports complete error protection

coverage for all cache data when processing non-resilient

application. The hardware overhead to implement our

approximation-aware management negligibly affects the energy

efficiency (0.15%-1.3% of overhead) and the access latency (only

0.02%-1.56% of overhead) of our architecture.

1. INTRODUCTION
Advanced manycore processors have tight memory energy budget

when processing massively parallel applications. The on-chip

memory infrastructure (typically composed of cache memory

hierarchy) must alleviate the main memory data communication

by employing multiple levels (up to L4, in some cases) of caches.

The landscape of recent on-chip systems (see Fig. 1) shows that

the memory consumes a significant portion of the footprint, for

instance, up to 128MB in IBM Power 8.

Traditional 6T-SRAM cell based memories incur large area

and high leakage power consumption [23][24]. Non-volatile

memory technologies have emerged as an attractive alternative

option for implementing large-sized on-chip memories. The Spin-

Transfer Torque RAM (STT-RAM) stands out as one of the most

promising technologies. It provides high scalability, improved

endurance and resilience to soft errors, and reduced leakage power

consumption [20]. Due to its inherent shortcomings of asymmetric

read/write behavior and poor write access efficiency, STT-RAM

has been mostly preferred for implementing the last-level caches

[23]. Typically, last-level caches require large memory banks and

have low read/write intensity characteristic (compared to the other

cache levels). Therefore, in STT-RAM based caches, in order to

increase the density of memory cells, multi-level cells (MLC)

design is a promising design alternative to single-level cell (SLC).

In MLC STT-RAM, one physical memory cell is able to store

more than one logic bit. Recent studies [7][10] have demonstrated

the feasibility of MLC-based design of STT-RAM towards

scalability for larger caches banks.

For the MLC support in STT-RAM technology, the

resistance range of the magnetic tunnel junction (MTJ) is further

discretized to store more than 2 logic states. However, due to

process variations, memory arrays based on MLC STT-RAM

have tight sense margin(s) between adjacent resistance states [7].

It leads to more frequent error occurrences during memory read

and write operations. Even though it is a more energy-efficient

solution, MLC STT-RAM requires extra circuitry to guarantee the

reliability of the memory system. Therefore, a key research

challenge is to design energy-efficient fault-tolerant cache

memories to enable multi-level cell STT-RAM usage in advanced

manycore processors.

POWER 8
(6-core)

POWER 8
(12-core)Coprocessor

5110P
SPARC T5

TILE Gx

Cortex A9-
MPCore

1
2
4
8

16
32
64

128
256

2010 2011 2012 2013 20142010 2011 2012 2013 2014
1

256

16

64

4

C
ac

h
e

 S
iz

e
[i

n
 M

B
]

Year

Nowadays manycore processors reach
32MB-128MB of on-chip cache memory

Fig. 1. Trend of cache memory size for practical case

studies of manycore processors.

1.1 State-of-the-Art and Key Research Challenges
Several works during the past decade proposed reliability

optimization schemes for SLC-based cache memories [12][13]

[15]. The work [12] proposes a fault-tolerant cache architecture

considering magnetic-RAM (MRAM) technology – first

generation of STT-RAM. In work [15], fault tolerance techniques

are proposed for management of voltage-scaled cache faults. A

fault-tolerant scratchpad memory (FTSPM) is proposed by [13],

using non-volatile memory technologies targeting the

vulnerability to soft-errors for the application data. However, none

of these works considers large-sized MLC-based memory designs.

Furthermore, MLC-based memories require specialized errors

handling due to their specific behavior on fault occurrences (as

detailed in the background section).

Recently reliability optimization for MLC STT-RAM based

memories have gathered community’s interest as a major research

challenge [7][8][9][10][11][14]. The works in [7][10] present an

intensive design exploration (at the transistor level) for analysis of

reliability characteristics of MLC cells. The proposals in [8][10]

employ wear-rate leveling techniques to improve the reliability of

STT-RAM cells by improving their endurance, leading to less

frequent wear-out errors. In [14], the same endurance problem is

targeted by assuming wear-out cells and applying error correction

computation over this faulty data. The work in [9] is the most

recent one to deal with MLC STT-RAM memories issues.

However, the [9] strategy is implemented at memory-cell level

and thereby incurs a significant (hardware and energy) overhead

for large-sized cache memories as every MLC cell must require

associated hardware for fault protection.

The goal of this paper is to achieve energy-efficient

reliability optimization in MLC STT-RAM based caches through

selective approximations of the storage data depending upon the

applications’ resilience level and user-provided error tolerance

level. The concept of selective data approximation allows for sub-

optimal results that facilitates simplification of the error-

protection hardware. The key challenge is to maximize the quality

of the applications’ results while at the same time minimizing the

energy consumption.

Recently, state-of-the-art have explored data approximations

for energy reductions in DRAM-based main memories [2][3][4].

The works [3][4] extend the data refresh interval of DRAM

memories to potentially saving energy consumption while

assuming wear-out errors. In [2], approximate storage is used in

PCM-based main memories by reducing write pulses and leading

to wear-out errors. To the best of authors’ knowledge, application

of approximate computing in MLC STT-RAM based on-chip

memories/caches and exploration of corresponding reliability–

energy–quality tradeoffs have yet not been explored.

Definition – Approximate Storage: In this work, we use the

term approximate storage for the memory access operations that

are not protected against read/write errors in MLC STT-RAMs

and may potentially exhibit bit errors.

1.2 Our Novel Contributions and System Overview

This paper addresses the above-discussed issues by introducing a

novel design and management of approximation-aware MLC

STT-RAM cache architecture. Fig. 2 illustrates the architectural

overview of our cache architecture highlighting its key

components along with its integration in an on-chip manycore

system. We allow the programmer to insert source-code

annotations for the identification of resilient and critical data (as

and enabled through approximation-aware compilers [5][6]).

Many-Core Processor

Memory Controller

Core 0

Core 1

Core 2

Core n-1

…

L1

L1

L1

L1

L2

L2

L2

L2

La
st

-L
e

ve
l

C
a

ch
e

In

te
rc

o
n

n
e

ct

Data Bus

Our Approximation-Aware Cache Architecture

Approximation-Aware Cache Management

Read
Policy

Write
Policy

Set Classification
Policy

Main
Memory
(off-chip;

DRAM)

Program
Instructions

(non-resilient;
reliable storage)

Application Data

Resilient Data
(approximation storage)

Critical Data
(reliable storage)

Partially-Protected Cache Architecture

Error
Correction

Unit
MLC STT-RAM Last-Level Cache

A
p

p
li

ca
ti

o
n

-A
w

a
re

 R
e

su
lt

s
Q

u
a

li
ty

 C
o

n
tr

o
l

Memory
Arbiter

Fig. 2. Overview of our approximation-aware MLC STT-

RAM cache architecture and its integration in a manycore.

Our key novel contributions in a nutshell are:

1) A Partially-Protected MLC STT-RAM Cache Architecture

(Section 4.1) that adopts a set-associative cache organization,

where the first n-1 memory banks store the n-1 blocks of the

cache sets. This part is implemented with 2-bit MLC STT-

RAM cell. The nth memory bank is dynamically selected to

store either the last block of the cache set or the error correction

codes (as part of the error protection system). To guarantee less

intrinsic error occurrences, the nth memory bank is implemented

by SLC cells. Our cache architecture is equipped with the

following three key components.

2) A Latency-Aware Error Correction Unit (Section 4.2) that

ensures error free execution by protecting memory operations

of application’s critical data. To avoid performance

degradation, our design targets reduced critical delay. It is

based on a double-error correction algorithm and it is composed

of two parts: (i) the encoding part executed at the time of cache

write operations, which generates the error correction codes;

and (ii) the decoding part applied at the time of the cache read

operations and it is responsible of correcting the cache block

data when any fault is detected.

3) An Approximation-Aware Cache Management Unit (Section

4.3) that classifies a cache set as ‘reliable’ (i.e. this set needs to

be stored with reliability) or ‘unreliable’ (i.e. this set does no

necessarily require reliability and can tolerate approximation

errors). It afterwards, exploits this knowledge to perform

approximate storage on the ‘unreliable’ marked sets and

thereby skipping the error correction functionality during the

read/write for these sets. To enable this approximation-aware

read and write access policies are developed to handle reliable

and approximate data storage.

4) An Application-Aware Quality Control Unit (Section 4.4) that

monitors the objective quality of the application’s output to

adapt the strength of the approximate storage, thus enabling a

variable approximation control. Different applications may

exhibit distinct approximate storage responses. Moreover, the

same application may demonstrate different output quality

profiles depending on the changing inputs. Our scheme adapts

the error protection strength to ensure better output quality with

an insignificant overhead.

2. BACKGROUND: MLC STT-RAM MEMORY
Spin-Transfer Torque RAM (STT-RAM) cell stores one logic bit

in a magnetic tunneling junction (MTJ) – an oxide layer between

two ferromagnetic layers (see Fig. 3). The resistance value of the

MTJ is determined by the relative magnetic field direction

between these two layers [25]. One layer has fixed magnetization

(called reference layer). The other can have its magnetization

changed due to a polarized programming current (called free

layer). In a Single-Level Cell (SLC) design (as shown in Fig. 3a),

‘low resistances’ due to parallel magnetization and ‘high

resistances’ due to anti-parallel magnetization represent the logic

bits ‘1’ and ‘0’, respectively.

BL

SL

WL
NMOS

Free Layer

Reference Layer

MTJ

M
TJ

 r
es

is
ta

n
ce

(a)

BL

SL

WL

(b)

Hard-bit

Soft-bit

Legend:
WL: word line
BL: memory bit line
SL: source line

0 1

00 01 10 11

#O
cc

u
rr

e
n

ce
#O

cc
u

rr
e

n
ce

MTJ resistance

MTJ resistance

SLC

MLC

(c)

(d)
Fig. 3. (a) SLC STT-RAM and (b) MLC STT-RAM cells

design; resistance distributions of (c) SLC and (d) MLC cells.

To compose a Multi-Level Cell (MLC), the read and write

operations must realize four or more resistances states in the same

device. In this work we consider the 2-bit MLC STT-RAM cells

as proposed by [7][10]; see Fig. 3b. To obtain this, two MTJ with

different sizes are vertically stacked along with one NMOS access

transistor. The large MTJ stores the “hard-bit”, whereas the small

MTJ has the “soft-bit”. As they are designed to have the same

resistance-area product, the small MTJ will lead to higher

resistances states than the larger MTJ. The four resistance states

(to represent the four logic combinations “00”, “01”, “10” and

“11”) are the combination of the magnetization direction of the

two MTJ. Fig. 3c and Fig. 3d demonstrate the resistance range of

each logic state, comparing SLC and MLC approaches. Due to

process variations, tight sense margins in MLC cells between two

adjacent resistance states have been observed.

Process variations and thermal fluctuations affect the

reliability of MLC STT-RAM memories [9]. When compared to

SLC, MLC suffers from relatively more error occurrences. These

errors can be classified into two categories: write errors and read

errors. In an MLC cell, ‘write errors’ happen when a small

programming current is applied to flip only the ‘soft-bit’, but due

to process variability the ‘hard-bit’ accidentally changes at the

same time. As this problem did not appear at SLC cells, ‘write

error’ management is a critical issue only when designing MLC-

based memories. Furthermore, the ‘read errors’ are mainly caused

by sensing errors, for example, when the resistance state cannot be

correctly read. This type of error may also happen when using

SLC cells. However, MLC aggravate this problem due to smaller

sense margin between adjacent resistances states. As it can be

seen in Fig. 3c and Fig. 3d, the resistance states that correspond to

“0” and “1” in SLC cells are further partitioned in the MLC cells,

to store the second logic bit. Due to variability, there are

resistance values where an erroneous logic state may be

interpreted, leading to a sensing error. The combination of write

and read errors for an MLC STT-RAM cell may jointly lead to

errors probabilities of 10-2 to 10-4 [9]. Thus, it becomes infeasible

to protect every memory position, especially in case of large on-

chip caches where the protection overhead would be non-

negligible.

3. CASE STUDY: RESILIENCE EVALUATION

FOR A VIDEO ENCODING APPLICATION
Several applications from image/video/vision processing and

recognition/data mining domains contain resilient kernels (i.e.

compute-intensive functional blocks) [1] that may tolerate data

errors without violating their core functionality. Such errors in

resilient kernels typically do not lead to critical failures during

their execution. However, the quality of the final results may be

deteriorated. In this work, we denote such a data set for a resilient

kernel as resilient data. In the following, we perform a case study

to evaluate the resilience nature of different kernels of an

important advanced video encoding application called the High-

Efficiency Video Coding (HEVC). Video encoders have widely

proliferated in various application domains, for instance, security,

automotive, consumer, and internet streaming (predicted to cover

up to 70%-80% of the internet traffic by 2017) [35].

The HEVC encoder exhibits various memory-intensive

functional blocks (leading to high energy consumption) with

variable resilience characteristics, thus making it a well-suited

benchmark application for our approximation-aware cache

architecture. Furthermore, HEVC inherently supports parallelism,

thus enabling parallel processing on multiple cores and creating

simultaneous cache access patterns by different cores.

3.1 HEVC Encoder Preliminaries
The High-Efficiency Video Coding (HEVC) [22] has been

developed to provide 2x better compression compared to

H.264/AVC. It employs rate-distortion optimization (RDO) in

order to maximize the compression rates with while minimizing

the video objective quality drops (distortion) [28]. The RDO

heuristics explore various coding configurations for each block in

a video frame. Therefore, HEVC inherently supports a quality-

energy design space.

Inter

Prediction

Input Video
(original)

Reference

Frames
(already coded

frames;

temporal and

spatial

references)

Intra

Prediction

Transforms/

Quantization

Filtering

Inverse

Transforms/

Quantization

Entropy

Encoding

Rate-

Distortion

Oprimization

bitrate

distortion

Resilient Data

Resilient Kernels

Fig. 4. Block diagram of an HEVC encoder illustrating the

resilient kernels and data; white blocks are non-resilient.

Each block in a video frame video can be encoded using the

content information from already coded frames (inter prediction),

or using the data from the same frame (intra prediction). These

already-coded frames are called reference frames and require a

significant amount of on-chip memory to realize fast energy-

efficient video coding architectures, especially in case of bigger

resolutions like full-HD (1920x1080 pixels), 2K (2560x1600),

and 4K (3840x2160) videos [33]. In case of inter-prediction, each

block in the ‘current frame’ is searched in the ‘reference frames’

through a very compute- and memory-intensive operation called

motion search. To achieve high compression rates HEVC tries to

match the block structure according to the object shape through a

recursive partitioning process which exponentially increases the

motion search complexity as it has to be performed for every

block partitioning. Therefore, to achieve high performance,

HEVC supports a light-weight data-parallelism support by

dividing the video frame into so-called Video Tiles (see Fig. 5),

which are rectangular regions in a video frame that can be

encoded independently (i.e. without any spatial dependencies) in

parallel on different cores in a manycore system [28].

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Multicore Processor

Core 0

Core 1

Core 2

Core 3

Video Frame

Independent data
processing for different tiles

M
e
m

o
ry

H

ie
ra

rc
h

y

Fig. 5. HEVC Video Tiles and multicore.

3.2 HEVC Memory Access Analysis
The memory operations required to access the reference frames’

data from the main memory represent the main memory

bottleneck in HEVC (as depicted in Fig. 6), which is aggravated

in case multiple cores are accessing the same memory

simultaneously. This is concentrated in the inter prediction

process, specifically during the motion search and can vary

depending on the adopted motion search algorithm and the

texture/motion properties of the input video content. Exhaustive

search (for the best possible coding efficiency) and fast search

(for higher performance with near-optimal coding efficiency)

algorithms can be used depending upon the system constraints. In

both scenarios, the reference frames transmission remains the

main memory bottleneck in HEVC encoders.

0%

20%

40%

60%

80%

100%

M
em

o
ry

 R
eq

.
[%

]

0%

20%

40%

60%

80%

100%

0
20
40
60
80

100

Up to 45%-98% of memory requests are
related to applications’ resilient data

0%20%40%60%80%100%

Basketball
Drive

Non-Resilient

Resilient

Fig. 6 Memory access profiling of the HEVC encoder.

3.3 HEVC Resilience Analysis
Though reference frames are the most intensively accessed

memory data, it is also primarily used by the most resilient

functional blocks of the HEVC encoders. This means that errors

can be tolerated during the reference frames accesses, leading

only to drops in encoding efficiency (application’s results in terms

of its core functionality of compression efficiency) and may not

even affect the output correctness (user-visible output). At the

same time, to ensure error free execution, the data required in

other functional blocks (like transforms, quantization, entropy

encoding and filtering operations – see Fig. 4) cannot tolerate

faults (thus denoted as the critical data) and must be

stored/processed with high reliability.

Insight-1: The existence of critical and resilient data is an

important characteristic of HEVC encoders, which is also

common in different other optimization-based applications, like

image and audio processing, graphical processing and

classification algorithms [1][5][6]. In such applications, the

memory infrastructure must ensure the correctness for the critical

data. For resilient data, however, data approximations can be

employed to save energy consumptions while tolerating errors

bounded under the user-provided tolerance levels. Therefore, a

memory infrastructure based on approximation storage for the

resilient data must, at the same time, facilitate high reliability

levels for the critical data so that it can be deployed in a real-

world scenario where cases of opportunities for variable

approximations and requirements of correct data exist

simultaneously.

Fig. 7a depicts the quality drop in the resilient data in HEVC

encoder applications in the presence of approximation errors

(summary of numerous data approximation experiments). In this

evaluation, the HM HEVC encoder [21] was used. The same trend

was observed in the fast x265 encoding application [31]. Detailed

description of our experimental setup is given in Section 5.

1,00E-05 1,00E-04 1,00E-03 1,00E-02 1,00E-01

Error rate [log scale]

Q
u

ality d
ro

p
 [B

D
-B

R
 -

%
]10-110-210-310-410-5

0

5

10

15

20
MLC STT-RAM Error Interval

(a) Objective Quality Drops (b) Subjective Quality Drops

1,00E-051,00E-01

Kimono

BQTerrace

BDrive

No Errors 10-3 Error Rate

No Errors 10-3 Error Rate

Fig. 7 Error injection evaluation over resilient data in

HEVC encoders.

Insight-2: It can be noted that, for the typical error

probability of unprotected MLC STT-RAM cells (10-4 to 10-2), the

data approximation errors for the resilient kernel affected the

quality of the application results by 0.5%, on average. Fig. 7b

presents example encoded frames of two video sequences: (1) the

BQTerrace sequence representing the case of minimal quality

drop of our analysis (0.2%); and (2) the BasketballDrive

sequence, which leads to the highest quality loss (2.3% on

average). Note, even for the worst case, the output quality loss is

not significant. Therefore, an insight from this analysis is that it is

possible to save energy by not protecting the memory operations

related to the resilient data, with insignificant penalties on the

application’s results.

Insight-3: The potential and impact of approximate storage

exploitation can vary depending on the applications’ specific

characteristics. Even for the same application, when processing

different inputs, a varied behavior in output quality degradation

may be noticed. Hence, it is important to vary the approximation

strength to facilitate run-time varying demands for distinct

approximation strengths. We denote this as variable

approximation control. Considering the knowledge of

applications’ resilience, user has to specify a error tolerance level,

as adopted by the approximate computing community [1]

[2][3][4]. In summary, there is a need for dynamic adaptation of

the approximation strength for different data storages due to

diverse resilience properties of different applications and their

varying nature for different input sets.

4. OUR APPROXIMATION-AWARE MLC

STT-RAM CACHE ARCHITECTURE
Our approximation-aware MLC STT-RAM cache architecture

adapts the error protection for different regions of the cache

according with its data resilience properties. Once approximate

storage can be applied, our architecture dynamically skips error

protection routines for those cache sectors. As we motivated in

Section 4, controlled approximate storage of resilient data does

not necessarily affect the quality of applications’ results.

In this section, we first present the architecture overview of

our partially-protected cache architecture (Section 4.1) followed

by the latency-aware error correction unit (Section 4.2).

Furthermore, the approximation-aware cache management unit is

proposed for energy-efficient read- and write- operations (Section

4.3). An application-aware output quality control unit (Section

4.4) is presented to adapt the approximate storage strength to

improve the output quality.

Example Parameters for the Ease-of-Concept Explanation:
Without the loss in the generality, for the ease of explanation of

our novel concepts with the help of example figures, we assume a

cache organization with the following parameters: 8-way set

associative cache; processor word size of 64 bits; cache block size

of 64 bytes (512 bits); main memory address bus of 29 bits (which

addresses 4 GB of data); last-level cache capacity of 64 MB

(compliant with Fig. 1 cache size trend for recent manycore

processors); 217 rows at each memory bank, supporting equally 217

cache sets. Still, our strategies can be applied for any cache

architectural configuration.

4.1 Partially-Protected Cache Architecture

As depicted in Fig. 8, our partially-protected cache architecture is

based on a set-associative cache organization.

According to our assumptions, we have 8 memory banks

(from Bank-0 to Bank-7) to store all blocks of all cache sets (way-

0 to way-7). We use a memory array composed of 2-bit MLC

STT-RAM to implement all fields of the cache line: valid bit, tag

and data arrays. As explained in Section 2, MLC cells are more

susceptible to errors during read or write operations, compared to

traditional SLC ones. To ensure reliability for critical data, we

designate the last memory bank to store error correction codes

(ECCs) for error protection. This specific bank (Bank-7) is

implemented as SLC cells (highlighted in red in Fig. 8), to

provide better intrinsic reliability. In this special memory bank,

the ECCs of each data of the seven other cache blocks are stored.

Thus, at every read and write operation, these ECCs must be

accessed to serve as input for the error correction unit. We realize

approximate storage by avoiding error protection of applications’

resilient data. In this case, the memory position of Bank-7 is

enabled for data storage, dynamically increasing the associativity

of these cache sets (from 7 to 8).

SLC STT-RAM Bank-7
(way-7 / ECC storage)

MLC STT-RAM Bank-1
(way-1)

MLC STT-RAM Bank-0
(way-0)

V Tag Data

Cache Set
(#Set) V Tag Data

..
.

..
.

..
....

AE

OPCODE

Tag (19 bits) #Set (17 bits)

= = =

Hit

8-to-1 multiplexer

Tag
Comparison

Logic

Instruction

0
1
2

217

Main memory address
#Column
(3 bits)

...

...

Majority
Logic

..
.

AE Checking
Logic

RSetToUSet

Memory Access Instructions
LW : load word (reliable)
SW : store word (reliable)
ALW : (approximate) load word
ASW : (approximate) store word

BCH
Decoder

2-to-1 multiplexer

Read Data

AE

BCH
Encoder

Write Data

IsALWorASW?

...

2-to-1 multiplexer

ChangeToRel

Results Quality
Control Logic

Error
Correction
Hardware

Fig. 8. Our partially-protected cache architecture.

At run-time, each set of the cache is classified according to

its reliability support. A set is classified as reliable set (RSet)

when its cache blocks must be protected (critical data). Otherwise,

a set is classified as unreliable set (USet). In this case, no

protection is ensured and the error correction unit is bypassed. In

both cases, the first seven memory banks remain storing

application data as common cache blocks. The Bank-7 cache

blocks have different bit-organization depending on the set

classification, as depicted in Fig. 9. First, we have an extra flag

(called approximation enable bit - AE) which will determine if the

whole set must be interpreted as RSet (AE=0) or USet (AE=1). If

the set is classified as RSet, the corresponding row of Bank-7

stores ECCs for error protection of the data inside the other 7

cache blocks of this set. In our example, the ECCs have 64 bits to

protect one cache block (512 bits). A simple logic is inserted for

AE checking, where the data read from Bank-7 is skipped for the

tag comparison when an RSet is accessed (AE Checking Logic in

Fig. 8). In the other case, in a USet configuration, the Bank-7

serves as the way-7 cache block of the set, which contains: valid

bit, tag (19 bits) and data columns (8 columns of 64 bits). When a

set is classified as a USet, we improve the average associativity of

the cache. However, data stored in a USet is not protected against

read and write errors.

Additionally, our partially-protected cache architecture

interacts with the management units using some control signals.

The RSetToUSet flag indicates when a given cache set has more

resilient data than critical data. This is required for dynamic

reclassification of the sets (as properly descripted in Section 4.3).

This signal is generated by the Majority Logic, as shown in Fig. 8.

The signal ChangeToRel is an input that comes from the

application-aware output quality control. This flag signalizes that

an approximate storage must be converted into a reliable one,

triggering the error correction unit to protect the memory

operation. Details regarding this adaptive control are given in

Section 4.4.

don’t care

(way-7 cache block) OR (error correction codes storage)AE

Approximation Enable Bit

If (AE) Then “Unreliable Set (USet)”
V Tag

Valid
Bit

Else “Reliable Set (RSet)”

Column-0 Column-1 Column-2 Column-7...

19 bits

512 bits (64 bytes)

64 bits

532 bits

ECC (way-0) ECC (way-1) ECC (way-2) ECC (way-6)...

64 bits
Fig. 9. Bit-level organization of cache line for reliable and

unreliable sets.

4.2 Latency-Aware Error Correction Unit
Simple-error correction (SEC) schemes, like SEC Hamming, are

not capable to support the error rates of MLC STT-RAM cells

[9][30]. Thus, double-error correction (DEC) algorithms are

required to ensure the protection for the applications’ critical data.

We select the DEC Bose-Chandhuri-Hocquenghem (BCH)

algorithm [32] to be integrated with our partially-protected cache

architecture. BCH codes comprehend a class of powerful error-

correction cyclic algorithms and are typically employed in

communication systems, but not being used for memory-based

applications due to their data redundancy and latency overhead for

the BCH decoder part. However, recent works, like [30],

demonstrated several simplifications for binary BCH codes that

make it practical for memory-based systems. In this case, most of

the arithmetic operators can be reduced to 2-bit XOR logic gates.

It allows for a fully combinational design and thereby reducing

the intrinsic latency of cyclic-based coding algorithms.

The BCH encoder generates the ECC from the input data.

This part does not represent any bottleneck, since it can be simply

implemented with a binary tree of XOR gates. The latency related

problems are in the BCH decoder since it needs to re-generate the

ECC from the input data and check this ECC with the old one

already stored in the Bank-7. Fig. 10 depicts the architecture for

the BCH decoder part. As can be noted, a BCH decoder contains

one instance of a BCH encoder. After the re-computation of the

ECC, it is compared with the old ECC (Comparator module),

composing an error vector that will be matched with predefined

error patterns (Error Locator module). As a result, a bit-vector

representing the location of the errors is passed to the Error

Corrector module, which will flip the faulty bits to obtain the

corrected data.

64

Col-0 Col-1

BCH
Decoder 0
(144,128)

... Data

Block size = 512 bits

Col-6 Col-7
128 bits

...
BCH

Decoder 3
(144,128)

128 bits

ECC
(from

way-7)

6
4

 b
it

s

16

..
.

...

Corrected Data

16
128 128

128

16

...

...

16

B
C

H
 E

n
co

d
e

r

Comparator

Error
Patterns

= = =..
.

...
Error
Corrector

16

64

Error Locator

Complete BCH Decoder BCH Decoder (144,128)

Fig. 10 BCH-based error correction hardware design

A binary logic (n, k) input block is a k-bit subspace of a

binary n-bit input. Thus, an n-bit codeword contains k-bit of data

and r (where r = k – n) bits for ECCs [30][32]. In our case, we

have to protect the cache blocks (512 bits) of each set. The ECCs,

in turn, must be stored in the Bank-7 (532 bits). In an RSet, we

need to store ECCs for seven cache blocks, leading to a maximum

of 76 bits for each ECC. The larger is the input data of a BCH

encoder/decoder, the longer is the critical path due to deeper XOR

trees to compute all bits. Since error protection must be applied in

memory operation of all critical data, longer critical paths for

BCH encoder/decoder may compromise the overall memory

access latency. The best optimization point is the one that

generates the larger ECC closer to the maximum allowed (76 bits)

and, at the same time, reduces the critical path by splitting the

error correction hardware into multiple BCH encoders/decoders

with shorter critical paths. More BCH modules used lead to high

leakage power. However, compared to the area occupied by the

memory data array of typical last-level caches, the leakage of the

complete error correction unit is insignificant (as demonstrated in

Section 6.1). By exploring the design space of BCH algorithm for

ECC generation, we can find the following solution as an efficient

one: the block size division into 128-bit words, leading to 4

parallel BCH encoders/decoders, generating 16-bit ECCs, each

one (as depicted in Fig. 10). Thus, the ECC for one cache block is

16x4=64 bits, and the ECC for the entire RSet is 64x7=448 bits.

4.3 Approximation-Aware Cache Management Unit
Fig. 11 depicts the proposed write policy, integrated in the

approximation-aware cache management unit of our partially-

protected cache architecture.

Case-4: Unreliable storage in a
reliable set

Case-3: Reliable storage in
a reliable set

Case-1: Unreliable storage
in an unreliable set

Case-2: Reliable storage
in an unreliable set

Activate cache set (#Set) Write request

AE?

Write data in the data
array (using LRU policy)

Update Bank-7 with
ECC for new data

ALW or
ASW?

Yes
Flush entire cache set

No

Mark as Reliable
Set (AE ß 0)

Store data in
data array

ALW or
ASW?

RSetToUSet?

Mark as Unreliable Set
(AE ß 1)

Use Bank-7 as
cache way-7

Yes

No

No

No

Yes

Update Bank-7 with
ECC for new data

Write data in the data
array (using LRU policy)

Write data in the data
array (using LRU policy)

Fig. 11. Write access management

As the first step, the data of the entire set is activated and

read (for hit/miss evaluation). Considering the AE flag (set

classification) and the type of memory instruction (reliable or

unreliable storage), four cases can be encountered:

Case-1: Unreliable storage of resilient data (ALW or ASW)

in a USet (AE=1). In this case, no protection is applied and the

data is simply written in the cache, using the least-recently used

(LRU) replacement policy.

Case-2: Reliable storage of critical data (LW or SW) in a

USet (AE=1). Reliable storage is not suitable to be performed in a

USet, since Bank-7 is used as an extra cache block. Thus, our

approximation management unit takes the following steps: (1) the

entire cache set is flushed and (2) reclassified as an RSet (AE is

assigned to 0). Bank-7 memory row is now responsible for storing

the ECCs for error protection. Furthermore, the data is written in

the cache, the ECCs are generated by the BCH encoder, and

stored in Bank-7 (to ensure future reliable operations for the data).

Case-3: Reliable storage of critical data (LW or SW) in an

RSet (AE=0). The data is simply written in the cache, the BCH

encoder computes the ECCs, to be stored in Bank-7.

Case-4: Unreliable storage of resilient data (ALW or ASW)

in an RSet (AE=0). As an RSet can support unreliable storages,

our management does not immediately reclassify the set as a

USet. The reclassification will only occur when the unreliable

storages in a set surpassing the reliable storages. To capture this

condition, we analyze the signal RSetToUSet, which is the result

of the Majority Logic (see Fig. 8). There is no need of ECC

generation, since unreliable storages skip error protection. When

the approximate memory access does not lead to a reclassification

to a USet, a special ECC is generated indicating that the given

cache block of that set corresponds to resilient data. This special

ECC signalizes that the error correction unit can be bypassed,

even when the read set is classified as an RSet.

Activate cache set (#Set)

Read request Send to memory controller
a DRAM read request

No
Hit?

ALW?

Write access
policy (Fig. 11)

Forward data to
lower cache levels

Yes

Read ECC from Bank-7
Error correction

processing
No

Yes

Fig. 12. Read access management.

Fig. 12 presents our read access management policy for our

partially-protected cache architecture. When a read request

occurs, the corresponding set is activated and the corresponding

rows of all memory banks are read. If the read access leads to a

miss (the tag checking fails), a request is sent to the memory

controller in order to fetch the required data from the main

memory. Once the data is read from the main memory, it must be

written to the cache. Our policy follows the already described

write policy to properly store the incoming data. Then, the data is

forward to the next cache levels. If a hit is verified, two cases

need to be considered: (1) if it is an approximate memory

instruction, the accessed data is simply forward to the next cache

levels; otherwise, (2) if the memory access instruction requires a

reliable access, then an extra step of error correction processing is

required. This step is performed by the BCH decoder module, as

already explained in Section 4.2.

ECC-4

Bank-7

0
AE

ECC-3ECC-2ECC-1ECC-0 ECC-5 ECC-6

V Tag Resilient Data1

Rel.
Res.
Rel.

Bank-0

Rel.
Res.
Res.

Bank-1

Rel.
Res.
Res.

Bank-2

Rel.
Res.
Rel.

Bank-3

Rel.
Res.
Rel.

Bank-4

Rel.
Res.
Rel.

Bank-5

Rel.
Res.
Res.

Bank-6

ECC-40 ECC-3ECC-0 ECC-5

#Set-A
#Set-B
#Set-C

V Tag

Valid Bit

Col-0 Col-1 Col-2 Col-7...

19 bits
512 bits (64 bytes)

64 bits

Legend:
#Set-A: Reliable set with only non-resilient data
#Set-B: Unreliable set with only resilient data
#Set-C: Reliable set with non-resilient/resilient data

Data

Fig. 13. An example of different set configurations and

allocation for resilient and critical data

An Example: Fig. 13 depicts a data allocation example. We

have three highlighted cache sets (#Set-A, #Set-B and #Set-C).

The #Set-A and #Set-C are classified as RSet (AE=0), and the

#Set-B is assigned as a USet. We can note two examples of RSet

allocations: in the case of #Set-A, all cache blocks are storing

reliable data, and Bank-7 is filled with the ECCs for the seven

cache blocks of the set. In case of #Set-C, the approximate and

reliable data are jointly stored in cache blocks of the same set. As

already explained, the set is only reclassified to USet if the

number of unreliable storages surpasses the number of reliable

ones (inside the target set). In this case, as we skip error protection

routines for the approximate data, and the ECC fields in Bank-7

corresponding to the resilient data are set to a special ECC,

identifying this fact. The #Set-B is an example of a USet, where

Bank-7 is used as way-7 block of the cache. The USets are only

suitable for unreliable storages, since we must have to ensure

error free execution by increasing the reliability when managing

application’s critical data. In this case, the average associativity of

the cache is increased, improving the number of hits and,

consequently, reducing main memory communication.

To give a behavioral idea of the partial protection proposed

in our approximation-aware MLC STT-RAM cache architecture,

Fig. 14 depicts the system properties when a resilient kernel of an

application starts running. As premise of our system, we must

ensure high reliability when storing critical data. In this case, our

partially-protected cache organization sacrifices the last memory

bank to store ECCs to ensure the data reliability. As a result, the

percentage of USets is near to 0% and the average associativity is

7. Further, the latency-aware error correction unit is used for all

read and write memory operations. When a resilient kernel starts

processing, bursts of unreliable storages (ALW and ASW memory

instructions) will fill the cache sets with resilient data. Hence, the

existing RSets are gradually reclassified as USets. Following the

same trend, the overall cache associativity will increase from 7 to

8, as ECCs can be discarded due to bursts of unreliable storage.

As the resilient kernel finishes, our cache architecture adaptively

reclassifies the groups to RSets, activating the error correction

hardware to protect the MLC cells against errors. This adaptive

run-time reclassification is crucial to achieve energy-efficient

error protection, while ensuring reliability for the critical data.

LW ... SW ASW ... ALW LW ...

Resilient part of an application

7-way

between 7- and 8-way

8-way

LOW

Increasing

HIGH LOW

ALWInstruction

% of USet

Assoc.

#Processor clock cycles

ASW

7-way

SW

Fig. 14. Timing diagram of our approximation-aware

partially-protected cache architecture.

4.4 Application-Aware Output quality Control

While saving energy is a crucial issue, the quality of

application’s output results must also be taken into account. Thus,

our cache architecture also employs an application-aware output

quality control scheme. At design-time determined intervals, the

quality level of application's output is forwarded by the

application to the quality control unit. As different applications

have different output characteristics, the application

user/developer defines an objective quality measure for the

application’s results. Under user-defined constraints, our

architecture can adapt the error correction coverage. The strategy

is to store a brief history of past registered objective quality levels.

When a descendent trend is observed, the quality control unit acts

by interpreting unreliable storages to reliable ones, thus trading

off energy with the improved quality level. Otherwise, when the

achieved quality level is above the quality constraint, the

protection for more unreliable storages can be activated.

The block diagram of our quality control unit is depicted in

Fig. 15. The signal ChangeToRel is used as the interface between

the output quality control and the cache architecture (see Fig. 8).

By setting this signal to ‘1’, an unreliable storage will be

protected. We define a THApp parameter, as the probability of

protecting (becoming reliable) for an unreliable storage. Thus, at

each application update with a new quality measurement, two

signals can be generated: (1) IncTH, indicating that a decreasing

trend is observed and more protection should be applied; and

(2) DecTH, which alleviates the protection by capturing the

increased quality case. As initial value, THApp is set to zero. We

update the THApp with increments (if IncTH=1) or decrements (if

DecTH=1) in steps of 0.05.

>

>

<

<

IncTH

DecTH

Q0 Q1 Q2

Monitored
Quality

THApp
Accumulator

Output Logic
Generator

ChangeToRel
(input signal of our partialy protected

cache architecture; see Fig. X)

Quality Results History

Fig. 15. Application-aware quality control unit.

Hardware Overhead: This application-aware quality

control unit requires a very simple implementation: three registers

to store the brief history of objective qualities (Q0, Q1 and Q2 in

Fig. 15), four subtractors to perform the comparisons, and two

AND-2 logic gates. Furthermore, an accumulator stores the update

value of THApp parameter. Finally, simple output logic, to translate

the THApp to the signal ChangeToRel, is required.

5. EXPERIMENTAL METHODOLOGY / SETUP
Two different HEVC encoders were used as benchmark:

(1) the HEVC HM implementation [21] by the JCT-VC group;

and (2) the x265 open-source application [31]. The resilient

kernels in HEVC encoder are greatly affected by the motion

search technique used during the inter-prediction step. In our

experiments, we evaluated two different algorithms: exhaustive

search and fast search (that adopts an heuristic evaluation choices

to avoid local minima). The Full Search algorithm was used as the

exhaustive search in both HM and x265. For the fast search, HM

uses the TZ Search algorithm, whereas x265 implements the

hexagonal search algorithm. As input test sequences, six different

test videos (recommended by the standardization committee) in

two different high definition resolutions were considered:

BasketballDrive (BDrive), BQTerrace (BQTerr), Cactus and

Kimono (full-HD: 1920x1080 pixels); Traffic and PeopleOnStreet

(People) (2K: 2560x1600) [16]. For results objective quality

evaluation of the selected video encoding applications, we

considered the Bjontegaard Delta metric (BD-BR) [26] as

recommended by the standardization committee and widely

adopted in the video coding community. The results quality drop

evaluation is done through error injection according to the MLC

STT-RAM error model. Note that the wear-out errors evaluation

is outside the scope of this work.

Table I Hardware-Related Parameters Adopted in Our

Experiments

Manycore Processor Parameter

Instruction Set Architecture x86

Number of Cores 16

Cache Parameters

L1 Cache

(Private)

Last-Level Cache

(Shared)

Technology SRAM 2-bit MLC STT-RAM

Design 4-way 8-way (ours)

Size 32 KB 64 MB

Read Latency (ns) 1.425 2.263

Write Latency (ns) 1.425 15.095

Leakage Power. (mW) 1.137 808.423

Read En. (pJ/acc) 48 1.497

Write En. (pJ/acc) 48 878

Main Memory Parameters

Model LPDDR2 - MT42L128M16D1GU-25WT

Access Latency 300 ns

Energy

Components

Refresh and Standby (fixed); Page Activate,

Read, Write and I/O Pins (variable)

For our experiments, we use the callgrind and cachegrind

tools of valgrind simulator [29] to extract the memory access

traces for each cache memory level and for the main memory.

Table I illustrate the parameters used in our experiments for L1

and last-level caches, such that, the selection of parameter values

follow the prominent state-of-the-art works [11][12][14][15] and

commercially available manycore processors. The cache latencies

and energy parameters of Table I were extracted using CACTI

(for SRAM) [27] and NVSim (for STT-RAM) [34]. Works in

MLC STT-RAM cells physical exploitation were considered to

derive the values for MLC design [7][10]. For the main memory,

we consider one 4-Gbit Low-Power DDR2 module [17]. The

energy components of a LPDDR2 were estimated using the main

memory accesses of each application and the technology data

from Micron [18][19]. All control-flow hardware blocks,

including the error correction module based on BCH algorithm

was synthesized using Cadence synthesis flow using ST 65nm

standard-cells library.

5.1 Resilience Characterization for HM and x265

Before moving forward to the experimental results discussion, it is

important to characterize the used benchmark applications in

terms of resilience of their memory accesses operations. The

characterization was performed for HM and x265 applications,

when encoding videos with fast and exhaustive motion search

engines. Fig. 16 depicts the percentage of approximate memory

access, when writing and reading resilient data. On average for

our case-study applications, approximate storage operations

represents 31%, 92%, 46% and 94%, for x265 and HM using fast

and exhaustive motion search engines, respectively.

6. RESULTS AND DISCUSSIONS
For evaluation purpose, we define an alternate implementation

that avoids approximation storage by assuming every cache

memory access as a reliable operation. Thus, the latency and

energy overhead of ensuring error protection is always observed.

The goal is to evaluate the energy efficiency of our partially-

protected cache architecture against fully-protected memory

designs, like [11]-[15].

6.1 Energy Efficiency Analysis
Table 2 presents the synthesis results of the error correction

module, in terms of delay and power consumption for BCH

encoder and decoder modules. As explained in Section 4.2, the

most complex part is the BCH decoder due to the internal BCH

encoder and comparison logic. Therefore, the critical delay and

the dynamic energy of the BCH encoder directly affect the write

operations of our approximation-aware cache architecture. The

BCH encoder, otherwise, increases the latency and dynamic

energy of read operations. Due to our partially-protected

approach, these overhead can be reduced when performing

approximations for the resilient data through error skipping.

Table 2 Error Correction Module Synthesis

 BCH

Encoder

BCH

Decoder

Error

Correction

Technology ST 65nm
Delay (ns) 0.47 1.49 -

Leakage Power (mW) 0.045 1.129 1.174

Dynamic Power (mW) 2.164 47.67 -

Dynamic Energy (pJ/acc) 5.085 350.375 -

To demonstrate the energy efficiency of the proposed

approximation-aware cache architecture based on MLC STT-

RAM memory, we extract the energy consumption of each part,

separately: on-chip energy (leakage and dynamic parts), off-chip

energy (due to main memory accesses), and the overall energy.

Table 3 summarizes the energy results for the benchmark

applications averaged over all test video sequences when

executing fast search algorithm.

Table 3 Energy-Efficiency Analysis of our

Partially-Protected MLC STT-RAM Cache Architecture

 HM Encoder x265 Encoder

On-Chip Leakage Energy (mJ)

Last-Level Cache 808.42

Error Correction Unit 1.174

Total 809.60

On-Chip Dynamic Energy (mJ)

Fully-Protected 15.01 1.06

Ours – Partially-Protected 12.02 0.98

Savings 20% 8%

Off-Chip Energy (mJ)

Fully-Protected 1,429.44 183.77

Ours – Partially-Protected 1,000.61 113.94

Savings 30% 38%

Overall Energy (mJ)

Fully-Protected 2,254.04 994.43

Ours – Partially-Protected 2,093.81 974.13

Overall Savings 19% 7%

In terms of on-chip leakage energy, we can note an

insignificant increase (+0.15%) when the error correction module

is inserted to compose our partially-protected cache architecture.

Although with core local L1 cache memory, the total L1 leakage

energy is significantly smaller compared to the last-level cache

(representing less than 1%). Fig. 17 depicts the leakage trend

overhead for varied cache memory sizes (4MB-64MB): 0.15%-

1.3%, considering the average of used applications.

Our partially-protected cache architecture can save dynamic

energy by 8%-20% through avoiding error protection of memory

operations for the resilient data, compared the fully-protected

cache. Fig. 18 presents a detailed analysis of on-chip dynamic

energy consumption of our cache architecture for all analyzed

video test sequences: on average, our architecture achieves 21%

and 30% dynamic energy savings for the tested applications when

running fast search and exhaustive search, respectively.

Fig. 16 Approximate-storage characterization for the used HEVC encoding applications (HM and x265).

0

0,003

0,006

0,009

0,012

0,015

4MB 8MB 16MB 32MB 64MB

1.5

0

0.3

0.9

0.6

1.2

Overhead Analysis

4 8 16 32 64

Cache Memory Size [MB]

O
ve

rh
ea

d
 [

%
]

0

200

400

600

800

1000

4MB 8MB 16MB 32MB 64MB

1

0

0.2

0.6

0.4

0.8

On-Chip
Leakage Energy

4 8 16 32 64

Cache Memory Size [MB]

Le
ak

ag
e

En
er

gy
 [

J]

Fig. 17 Leakage energy analysis.

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,01.0

0

0.2

0.6

0.4

0.8

N
o

rm
al

iz
ed

 E
n

er
gy

On-Chip Dynamic Energy (average)

Exhaustive SearchFast Search

0,00,10,20,30,40,50,60,70,80,91,0

Fully Protected Ours

Fig. 18 On-chip energy efficiency analysis for

(a) dynamic energy; and (b) leakage energy.

In the off-chip energy part, our architecture improves the

energy efficiency by enabling cache sets with an extra block,

compared with fully-protected cache. This leads to less last-level

cache misses, incurring in the reduced off-chip energy

consumption for main memory fetching and storage. In our

experiments, our partially-protected cache architecture can reach

savings of 30%-38% compared to the fully-protected architecture.

Note, the main memory access operations are significantly more

costly (in terms of latency and energy consumption) compared to

the on-chip cache access operations. Thus, our approximation-

aware cache architecture takes care of this by leveraging resilient

kernels of the applications to increase the cache sets associativity,

assuming approximation storage in these sets. At the same time,

we ensure error free execution by protecting the reliable memory

operations. We discuss these aspects further in Section 6.3.

On average, our approximation-aware cache architecture

together with the external memory provides energy savings of 7%

and 19% compared to full-protected cache, for HM and x265,

respectively.

6.2 Overhead Analysis: Access Latency
Besides the demonstrated energy efficiency of our architecture,

we also estimate the overhead of equipping the last-level cache

with the proposed novel hardware modules. Fig. 19 depicts the

latency and dynamic energy overhead of implementing extra

hardware for error protection for reliable memory access

operations.

When the approximate storage is exploited, our

approximation-aware read and write policies detect it and skip any

error protection procedures. In this case, no overhead is paid for

error correction, leading to no overhead in the access latency. For

reliable memory operations, error protection is then applied. A

reliable write operation incurs the following additional latencies:

(1) BCH encoder latency to generate the ECC for the new cache

block; (2) write access of MLC STT-RAM array to write the new

data; and (3) an extra write access to the SLC STT-RAM Bank-7

update the ECC of the modified cache set. Still, these accesses can

be done in parallel, leading to reduced overhead. When a reliable

read is performed, the access latency of our architecture

comprehends: read access from MLC STT-RAM array to get the

accessed data and the ECC from SLC-based Bank-7, and BCH

decoder to ensure the corrected data in the cache memory output.

The BCH encoder will add only 0.47 ns to the MLC STT-RAM

cache write latency, leading to an overhead of just 3.1%. The

BCH decoder, in turn, adds 1.49 ns to the cache read latency. In

our experiments, the average overhead in terms of the memory

access latency incurred by the insertion of our approximation-

aware management is 0.01%-0.72% and 0.02%-1.56%,

considering x265 and HM benchmarks using exhausting search

and fast search, respectively.

0%

0%

0%

1%

1%

1%

0%

0%

0%

1%

1%

1%

x265 – Exhaustive Search

0

0,2

0,6

O
ve

rh
e

ad
 [

%
]

0,4

0,8

HM – Exhaustive Search

1,0

0%

2%

4%

6%

8%

10%

0%

2%

4%

6%

8%

10%

x265 – Fast Search

0

2

6

10

O
ve

rh
e

ad
 [

%
]

4

8 HM – Fast Search

Access Latency Overhead

Fig. 19 Memory access latency overhead analysis.

6.3 Quality Analysis of Application’s Results
After demonstrating the energy efficiency of our approximation-

aware cache architecture due to reliability optimization exploiting

resiliency properties, we must also evaluate the quality drops of

applications’ results. For all tested applications and input video

sequences, the increased reliability of our error protection engine

for critical data ensured error-free execution for all experiments.

Table 4 Quality Analysis of Applications’ Results.

Video Sequence
BD-BR Drops [%]

x265 HM
BasketballDrive -0.182 -0.536

BQTerrace -0.067 -0.451

Cactus -0.146 -0.482

Kimono -0.297 -0.471

ParkScene -0.177 -0.268

PeopleOnStreet -0.357 -0.564

AVERAGE -0.219 -0.426

32,0000

34,0000

36,0000

38,0000

40,0000

42,0000

0 5000 10000 15000 20000 25000 30000 35000 400000 5000 10000 15000 20000 25000 30000 35000 40000
Bitrate [kbps]

39
41

37
35
33
31

P
SN

R
 [

d
B

]

BasketballDrive Sequence

27,0000

30,0000

33,0000

36,0000

39,0000

42,0000

0 20000 40000 60000 80000 100000 120000 1400000 20000 40000 60000 80000 100000 120000 140000 160000

Bitrate [kbps]

39
42

36
33
30
27

P
SN

R
 [

d
B

]

BQTerrace Sequence

32,000034,000036,000038,000040,000042,0000

0 20000 40000

Fully Protected

Ours (Partially Protected)

Fig. 20 RD curves for quality analysis (HM application).

Table 4 summarizes the evaluation of the quality loss of our

partially-protection architecture. In Fig. 20, a more detailed rate-

distortion analysis using two complex test video sequences:

BasketballDrive and BQTerrace. To improve the achieved quality

results, we proposed an application-aware quality control unit that

enables variable approximation control. The energy consumed by

this module is already counted in the energy efficiency analysis,

presented in Section 6.1. As already demonstrated, the overhead

to implement this adaptive control is negligible. We can note from

Table 4 that our variable approximation control minimizes the

quality loss that even becomes insignificant when comparing to

the best-case scenario: where all approximate read/write

operations are protected. Our experiments show that quality drops

varies from 0.173% to 0.485%, on average for x265 and HM

applications. It can be noted in Fig. 20 where the rate-distortion

curves are practically overlapped.

Therefore, we accomplish our goal of maximizing energy

efficiency when optimizing the reliability of MLC STT-RAM

caches while maximizing the applications’ output quality.

7. CONCLUSIONS
This work proposed an approximation-aware cache architecture

that leverages MLC STT-RAM density and low-power features to

design large-sized caches for advanced manycore processors. To

solve MLC STT-RAM reliability issues, our architecture is

partially-protected to reduce reliability overhead by leveraging

resilience properties of applications. The goal is to increase the

energy efficiency while meeting the reliability requirements. Our

architecture integrates a latency-aware double error-correction

unit to guarantee error protection for applications’ critical data,

ensuring error free execution. Approximation-aware read- and

write policies exploit approximate storage and organize them

along the reliable and unreliable cache positions. An adaptive

control takes care of the applications’ output quality. We

performed case studies on two next-generation advanced video

encoding applications that exhibit memory-intensive functional

blocks with variable resilience properties and parallelism support.

Experimental results over various test videos demonstrated

the improved energy efficiency (on average 7%-19%) of our

approximate-aware MLC STT-RAM based cache architecture

compared to fully-protected caches. At the same time, these gains

incur in minimal quality penalties in the output (quality loss from

-0.219% to -0.426%). The proposed error protection module

ensured complete error-free execution by providing full coverage

when processing non-resilient critical application function.

Furthermore, the overhead of implementing our approximation-

aware management negligibly impacts the energy-efficiency

(0.15%-1.3% of on-chip leakage) and the access latency (0.01%-

1.56%) of our cache architecture.

8. REFERENCES
[1] V. K. Chippa, S.T. Chakradar, K. Roy, A. Raughunathan. “Analysis and

Characterization of Inherent Application Resilience for Approximate
Computing”, In: Design Automation Conference, pp. 1-9, 2013.

[2] A. Sampson, J. Nelson, K. Strauss, L. Ceze. “Approximate Storage in Solid-
State Memories”. In: International Symposium on Microarchitecture, pp. 25-
35, 2013.

[3] J. Lucas, M. Alvarez-Mesa, M. Andersch, B. Juurlink. “Sparkk: Quality-
Scalable Approximate Storage in DRAM”, In: The Memory Forum, pp. 1-9,
2014.

[4] S. Liu, K. Pattabiraman, T. Moscibroda, B.Zorn. “Flikker: Saving DRAM
Refresh-power through Critical Data Partitioning”, In: Conference
onArchitectural Support for Programming Languages and Operating
Systems, pp. 213-224, 2011.

[5] A. Mishra, R. Barik, S. Paul. “iACT: A Software-Hardware Framework for
Understanding the Scope of Approximate Computing”, In: Workshop on
Approximate Computing Across the System Stack, 2014.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, D.
Grossman. “EnerJ: Approximate Data Types for Safe and General Low-
Power Computation”, In: Conference on Programming Language Design and
Implementation, pp. 164-174, 2011.

[7] X. Bi, M. Mao, D. Wang, H. Li. “Unleashing the Potential of MLC STT-
RAM Caches”, In: International Conference on Computer-Aided Design, pp.
429-436, 2013.

[8] M. Zhao, L. Jiang, Y. Zhang, C. J. Xue. “SLC-enabled Wear Leveling for
MLC PCM Considering Process Variation”, In: Design Automation
Conference, pp. 1-6, 2014.

[9] W. Wen, et al. “State-Restrict MLC STT-RAM Designs for High-Reliable
High-Performance Memory System”, In: Design Automation Conference,
pp. 1-6, 2014.

[10] Y. Zhang, L. Zhang, W. Wen, G. Sun, Y. Chen. “Multi-level Cell STT-
RAM: Is It Realistic or Just a Dream?”, In: International Conference on
Computer-Aided Design, pp. 1-6, 2014.

[11] Y. Chen, W.-F. wong, H. Li, C.-K. Koh, Y. Zhang, W. Wen. “On-Chip
Caches Built on Multilevel Spin-Torque RAM Cells and Its Optimizations”,
In: Journal on Emerging Technologies in Computing Systems, pp. 16:1-
16:22, 2013.

[12] C.-K. Koh, et al. “The Salvage Cache: A fault-tolerant cache architecture for
next-generation memory technologies”, In: IEEE ICCD, pp. 268-274, 2009.

[13] A. M. H. Monazzah, et al. “FTSPM: A Fault-Tolerant ScratchPad Memory”,
In: DSN, 2013.

[14] R. Azevedo, eta l. “Zombie Memory: Extending Memory Lifetime by
Reviving Dead Blocks”, In: ACM/IEEE ISCA, pp. 452-463, 2013.

[15] M. Gottscho, et al. “Power/Capacity Scaling: Energy Savings with Simple
Fault-Tolerant Caches”, In: ACM/IEEE/SIGDA DAC, pp. 1-6, 2014

[16] F. Bossen, “Common test conditions and software reference configurations”,
ITU-T/ISO/IEC JCTVC-K1100, October 2012.

[17] Micron. “4Gb: x16, x32 Mobile LPDDR2 SDRAM S4”, 168p, 2013.

[18] Micron. “TN-46-03 Calc. DDR Mem. System Power”. Rev. B 3/05 EN,
2005.

[19] Micron. “TN-46-12 DRAM Power-Saving Features/Calcs”. Rev. B 5/09,
2009.

[20] A. Jadidi, "High-endurance and performance-efficient design of hybrid cache
arch. through adaptive line replacement", ACM/IEEE ISLPED, p.79-84,
2011.

[21] JCT-VC. HEVC Software SVN, 2011. Available in:
<https://hevc.hhi.fraunhofer.de/ >

[22] JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 10
(for FDIS & Consent)”, Doc.: JCTVC-L1003_v9, 2013.

[23] Y.-T. Chen et al., "Dyn. reconfigurable hybrid cache: An energy-efficient
last-level cache design", IEEE/ACM DATE, vol., no., pp.45,50, 12-16, 2012.

[24] K. Abe et al, "Novel hybrid DRAM/MRAM design for reducing power of
high performance mobile CPU," IEDM, pp.10-13, 2012.

[25] X. Dong et al., "Circuit and microarchitecture evaluation of 3D stacking
magnetic RAM (MRAM) as a universal memory replacement,"
ACM/EDA/IEEE DAC, pp.554,559, 2008.

[26] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves”, VCEG Contribution VCEG-M33, Austin, April 2001.

[27] S. Thoziyoor et al, “CACTI 5.1 tech. report,” HP Labs, 2008.

[28] B. Pourazad et al., “HEVC: The New Gold Standard for Video Compression:
How Does HEVC Compare with H.264/AVC?,” IEEE CeM, pp. 36-46,
2012.

[29] Valgrind
TM

Developers. Valgrind Home. Available in: <http://valgrind.org/>

[30] R. Naseer, J. Draper. “Parallel Double Error Correcting Code Design to
Mitigate Multi-Bit Upsets in SRAMs”, In: Solid-State Circuits Conference,
p. 222-225, 2008.

[31] x265. “x265 HEVC High Efficiency Video Coding H.265 Encoder”.
Available in: <http://x265.org/>.

[32] J. Wiley and Sons, “Error Correction Coding: Mathematical Methods and
Algorithms”, 2005.

[33] I. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding for
Next-generation Multimedia”, Wiley, 2003.

[34] X. Dong, C. Xu, Y. Xieand, N.P. Jouppi. “NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Nonvolatile Memory.”
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, p. 994-1007, 2012.

[35] CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2013-2018. [S.l.]. 2013.

 1

Abstract— A hybrid scratchpad video memory (Hy-SVM) for

energy-efficient Tiles-parallelized High-Efficiency Video Coding

(HEVC) is presented herein. The key ideas of Hy-SVM include:

application-specific design and management; combined multiple

levels of private and shared memories that jointly exploits intra-

Tile and inter-Tiles data reuse; scratchpad memories (SPMs) as

on-chip data storage; SRAM and STT-RAM hybrid design. We

propose a design methodology for Hy-SVM that leverages

application-specific properties to properly define the SPMs

parameters. The inter-Tiles data reuse potential of parallel HEVC

is exploited by our run-time overlap prediction scheme, which

identifies the redundant memory access behavior by analyzing

monitored past frames encoding. Based on the predicted overlap

characteristics, Hy-SVM integrates memory access management

units (MAMUs) to control the access dynamics to the

private/shared SPM levels. Furthermore, adaptive access

management units (APMUs) can strongly reduce on-chip energy

consumption due to the predicted overlap formation. The

experimental results demonstrate Hy-SVM overall energy savings

of 55%-92% (4-Tile) and 43%-94% (8-Tile) when compared to

related works. From the external memory perspective, Hy-SVM

can improve data reuse, resulting in 24%-35% of off-chip energy

consumption. Additionally, our APMU contributes by reducing

on-chip energy consumption of Hy-SVM by 83%, on average.

Thus, compared to related works, Hy-SVM presents the lowest on-

chip energy consumption. Moreover, the overhead of

implementing our management units insignificantly affects the

performance- and energy-efficiency of Hy-SVM.

Index Terms—Video Memory, Scratchpad, HEVC,

Application-Specific Optimization, Energy Efficiency, Adaptivity.

I. INTRODUCTION

n multimedia processing systems, the video compression

(aka. video coding) has a key role, being responsible for

reducing the video data representation to enable efficient

storage and transmission. The High Efficiency Video Coding

(HEVC) is the state-of-the-art standard [1] that provides double

compression compared to its predecessor H.264/AVC [2].

However, this comes with a cost of more than 40%

computational effort increase when compared to H.264/AVC in

the encoding part [3]. The increased complexity of HEVC

results from the novel coding data structures and a plethora of

new prediction modes, resulting in a wider decision space [4].

0%

10%

20%

30%

40%

50%

2-Tile 4-Tile 8-Tile 16-Tile

T
il

e
s

O
ve

rl
a

p
[%

 o
f

fr
a

m
e

 d
at

a
]

0

20

10

50

30

40

2-Tile 4-Tile 8-Tile 16-Tile

82%in
te

r
p

re
d

ic
ti

o
n

18%

rest of
HEVC
tools

motion
estimation
(TZ Search –
reference
frames)

residual
coding

rest of
inter

46%

24%

20%

010203040506070

1-Tile

HD720 HD1080 2K

0

20

40

60

80

1-Tile 2-Tile 4-Tile 8-Tile 16-TileSR
A

M
 S

ta
ti

c
E

n
e

rg
y

[m
J]

200

100

300

400

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

On-Chip Perspective

Obs-2: SRAM static
energy increases with the
number of video Tiles.

0

1000000

2000000

3000000

4000000

5000000

6000000

1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

O
ff

-C
h

ip
 E

n
e

rg
y

[m
J]

400

200

500

600

0
1-Tile 2-Tile 4-Tile 8-Tile 16-Tile

Off-Chip Perspective

300

100

Obs-3: In the meantime, off-chip
memory energy is not reduced.

(a) HEVC Memory Access Breakdown

(b) Energy Consumption Analysis

(c) Inter-Tiles Data Reuse Potential

Obs-4: From 5% to
45% of redundant
memory accesses.

Obs-1: 82% from Inter
Prediction; 46% from
reference frames access

Fig. 1 - Memory requirements analysis for HEVC encoding.

From memory perspective, these new coding features lead to

2-3x more memory communication compared to H.264/AVC

[3]. The memory bottleneck in HEVC encoders is related to the

access to already processed (and reconstructed) video frames,

called reference frames. In this aspect, up to 50% of off-/on-

chip memory accesses are required for reference frames reading

and writing (Fig. 1a) leading to high memory-related energy

consumption during HEVC encoding. To face the increased

computational complexity, HEVC defines high-level

parallelization strategies, such as Tiles partitioning [5], which

divides the frame into rectangular regions that can be encoded

in parallel. Whereas providing speedup to encoding

applications, such tools aggravate the energy consumption of

the memory infrastructure (on- and off-chip parts; see Fig. 1b),

posing new challenges for multimedia systems. The main Tiles-

parallelized HEVC challenge is to efficiently exploit the inter-

Tiles data reuse potential, which significantly increases as more

parallelism is exploited (Fig. 1c). In this work, we refer to this

reference frame region that is redundantly accessed by more

than one Tile processing as the overlap region.

Thereby, there is a strong need for energy-efficient memory

architectures which are able to exploit the data reuse potential

stemming from parallel features of HEVC.

Felipe Sampaio, Bruno Zatt, Muhammad Shafique, Jörg Henkel, and Sergio Bampi

Hybrid Scratchpad Video Memory Architecture

for Energy-Efficient Parallel HEVC

I

Manuscript received February 08th, 2018.
F. Sampaio (fmsampaio@inf.ufrgs.br) and S. Bampi (bampi@inf.ufrgs.br)

are with the PPGC, Informatics Institute (II), Federal University of Rio Grande

do Sul (UFRGS), Brazil.
M. Shafique (muhammad.shafique@tuwien.ac.at) is with the Institute of

Computer Engineering, Vienna University of Technology (TU Wien), Austria.

B. Zatt (zatt@inf.ufpel.edu.br) is with Center of Technology Development
(CDTec), Federal University of Pelotas (UFPel), Brazil.

J. Henkel (henkel@kit.edu) is with the Chair for Embedded Systems (CES),

Karlsruhe Institute of Technology (KIT), Germany.

 2

A. Key Research Challenges and Opportunities

General-purpose memory hierarchies, like [6], [7], have

compromised energy efficiency when facing the state-of-the-art

HEVC encoding high memory requirements and specialized

dynamics [3]. Application-specific video memories have been

focus of research works since previous video coding standards,

like MPEG-2 [8], [9] and H.264/AVC [10]–[13]. The main

goal is to increase the energy efficiency of video memories

relying on video coding knowledge. However, these works lack

support for parallel video coding, which is more memory

restrictive and do not address memory contention in private vs.

shared memories for data synchronization. Hence, the

challenge is to leverage application-specific knowledge as

opportunity for designing dedicated energy-efficient video

memories for parallel video coding.

As opportunity for application-specific applications,

scratchpad memories (SPMs) overcome/alleviate the overhead

of caches. In SPMs, instead of providing hardware support for

mapping data/code from off-chip to on-chip memory, the

designer and/or the compiler are responsible to perform access

management. Due to application-specific knowledge

exploitation, SPMs allows energy savings of up to 30%

compared to complete cache memories [14]. SPMs are widely

available to be used as performance- and energy-efficient on-

chip storage option in nowadays processor chips [13][14]. In

this work, we utilize SPMs as opportunity for designing

application-specific on-chip video memories, enabling energy

savings by exploiting the knowledge from the HEVC encoder.

In another perspective, hybrid memory design exploiting the

industry advances of alternative memory technologies has been

research target during the last decade [17]–[20]. In hybrid on-

chip memory design, emerging memory technologies are used

in combination with traditional Static-RAM (SRAM) cells. The

goal is to reduce the impact of SRAM shortcomings, like low

density and high static energy consumption. In this context, the

Spin-Transfer Torque RAM (STT-RAM) stands out as a

promising technology. Recent academy and industry advances

serve as a solid foundation to enable STT-RAM to be integrated

with CMOS logic circuitry of nowadays general-purpose

processors or ASIC-based implementations [19]–[21]. Still, as

these works did not take into account application-specific

properties, they may not efficiently support the video coding

memory demand and data transmission characteristics. The

challenge here is to exploit application-driven design of hybrid

on-chip video memories tailored towards parallel HEVC.

B. Overview of Our Main Contributions

Considering previous discussions, the goal of this work is to

provide energy efficiency for the memory infrastructure in

Tiles-parallelized HEVC encoding.

To this end, we designed a hybrid scratchpad video memory

architecture (called Hy-SVM) that relies on joint inter- and

intra-Tiles data reuse and hybrid memory design (based on

combined SRAM and STT-RAM scratchpad memories) to

1 L1 and L2 in this work are not related to cache levels, but scratchpad

memories implemented using either SRAM (L1 level) or STT-RAM (L2 level).

allow energy-efficient storage in HEVC encoders. Furthermore,

a memory management layer that leverages application-specific

knowledge is proposed. A key concept in this work is the

overlap formation, representing the main characteristics of the

reference frame region that is accessed by more than one Tile

processing. This concept is properly defined in Section II.A.

Parallel HEVC Encoder

Energy-efficient Management Layer

On-Chip Hybrid Scratchpad
Video Memory (Hy-SVM)

ST

ST

ST

ST

ST

ST

STT-RAM SRAM

On-Chip Memory
Management

Run-Time Overlap
Prediction

(inter-Tiles data reuse
exploitation)

External Memory (DRAM)
(Reference Frames)

ST

ST

ST

ST

ST

ST

STT-RAM SRAM

Tile 0 Tile 1

Tile 2 Tile 3
Input Video

Tiles Boundary

Adaptive Power
Management Unit

(APMU)

Memory Access
Management

(MAMU)

Hybrid Memory Design

Intra- and Inter-Tiles
Data Reuse

Application-Specific
Knowledge

M
e

m
.

 A
cc

.

Reference Frame Access Map
[for 2+ cores]

Memory Monitoring

Video Coding Knowledge

Private SPMs
(L1 and L2 Levels)

Shared SPMs
(L2 Level)

Target Reference Frame

Overlap (to Shared SPMs)

No Overlap
(to Private SPMs)

Proc. Unit 0

Proc. Unit 1

Proc. Unit 2

Proc. Unit 3

Fig. 2 – Overview diagram of our main contributions

An overview of Hy-SVM and their integration with Tiles-

parallelized HEVC encoder is depicted in Fig. 2. It employs:

1) Hybrid Scratchpad Video Memory (Hy-SVM) Architecture

(Section IV) that is composed of multiple levels of private and

shared SPMs, as depicted in Fig. 2. It consists on (i) private

L11 SPMs, implemented as SRAM arrays, to store the search

window samples required for each HEVC processing unit;

and (ii) private and shared L2 STT-RAM SPMs to provide

reference frame level data reuse. The proposed design

methodology leverages application-specific knowledge to

define the hardware design parameters of SPMs.

2) Run-Time Overlap Prediction (Section V) that relies on

application-specific knowledge (e.g., monitored past

overlaps, video content and HEVC parameters; see Fig. 2) to

estimate the overlap characteristics for the next frame

encoding, improving the inter-Tiles data reuse potential. The

predicted overlap properties are related to its size, shape and

displacement.

3) On-Chip Hy-SVM Management (Section VI) that implements

memory access management units (MAMUs) and adaptive

power management units (APMUs) to manage the energy

consumption of Hy-SVM (as in Fig. 2). Based on the overlap

prediction output, the MAMUs implements read and write

policies that manage the incoming Hy-SVM access to the

corresponding SPM. Furthermore, APMUs can adapt the

power gating strength according to the predicted overlap

characteristics, which strongly depend on the video content.

 3

Paper organization: Section II presents background

concepts regarding HEVC and STT-RAM; Section III discusses

the main advantages/shortcomings of state-of-the-art works;

Section IV introduces our Hy-SVM architecture, as well as the

adopted organization models and the design methodology of

SPMs; Section V presents our run-time overlap prediction

scheme; Section VI describes our on-chip management units:

MAMU and APMU; Section VII shows the experimental

methodology; Section VIII discusses the experimental results

and compares our savings with related works and baseline

implementations; and, finally, Section IX concludes this work.

II. BACKGROUND

This section introduces some preliminary concepts regarding

HEVC and STT-RAM memory technology.

A. HEVC Background and Overlap Concept

The new coding structure of HEVC divides the video frame

into flexible block sizes following a quad-tree structure called

coding-tree unit (CTU) [4]. Typically the CTU partitioning

starts from the maximum allowable block size of 64x64 pixels,

and then explores breaking it into several coding units (CU) of

sizes 32x32, 16x16 and 8x8 pixels. Fig. 3 depicts an example

of CTU partitioning. For each CU, the encoder selects the best

prediction unit generated by either intra or inter prediction

steps. Inside the inter prediction, the motion estimation (ME) is

the most complex and memory consuming module. The ME

searches for the most similar block within a delimited portion

of reference frames, called search window [4]. The ME

processes each possible CU inside a CTU, thus resulting in the

most time and energy consuming module of an HEVC encoder.

(0) (8)

(1) (2) (3) (9) (10) (18)

(17)(12)(11)(7)(5) (6)(4)

(13) (14) (15) (16)

64

64

(0)

(1) (2)

(3)

(8)

(9) (10)

(18)

(4) (5)

(6) (7)

(12)(11)

(17)

(13) (14)(15) (16)
Fig. 3 - An example of HEC coding tree organization.

To exploit multiple cores in a many-core system, the HEVC

provides a light-weight data parallelism support that divides the

video frame into rectangular regions called Tiles [5]. In Fig. 4b,

the 8x4 CTUs video frame is partitioned into 4 Tiles (in a 2x2

fashion). These Tiles can be encoded independent of each other

without any spatial dependencies, thus can be parallelized on

multiple processing units: either general-purpose processing

cores or ASIC hardware accelerator encoding units.

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

Current Frame Reference Frame

Search Window (SW) of
CTUA

(a) (b)

SW of
CTUB

SW of
CTUD

SW of
CTUC

Fig. 4 - (a) 4-Tile partitioning and (b) overlap formation in a reference frame.

2 “L” means low, “H” means high, and “HH” means very high.

The samples near to the Tiles boundaries in the reference

frame must be fetched by multiple Tiles processing, leading to

external memory contention, redundant memory access and

extra on-chip storage (causing energy wasting). An example in

Fig. 4b depicts the overlap formation being the reference frame

region that is accessed for encoding more than one Tile.

B. STT-RAM Background

A Spin-Transfer Torque RAM (STT-RAM) cell stores one

logic bit in a magnetic tunneling junction – a very thin oxide

layer interposed between two ferromagnetic layers. The

resistance value of this junction is determined by the relative

magnetic field direction between these two layers [22]. One

layer has fixed magnetization (reference layer), while the other

can have its magnetization changed due to a polarized

programming current (called free layer). Thus, low resistances

due to parallel and high resistances due to anti-parallel

magnetizations represent the logic bits ‘0’ and ‘1’, respectively.

As an alternative to SRAM in the on-chip perspective, STT-

RAM provides higher density, better scalability, non-volatile

behavior, and low static power features compared to the SRAM.

In other aspects SRAM is still more efficient, by having a lower

write power and by its overall performance. Table I presents a

subjective comparison between SRAM and STT-RAM

technologies2, where the dark-gray cells represent the best

scenario of each parameter.

TABLE I SRAM VS. STT-RAM TECHNOLOGIES [22]

Energy Latency

Volatility
Static Read Write Read Write

SRAM HH L L L L Volatile

STT-

RAM
L L HH L H

Non-

Volatile

On-chip video memories require large arrays to implement

data reuse schemes, which is aggravated for parallel video

coding. The most promising STT-RAM characteristic is the low

static energy consumption, becoming a suitable memory

technology to implement such on-chip memories.

Another interesting property of on-chip video memories that

facilitates the STT-RAM usage is: they have a relatively low

write intensity compared to a very high read intensity. As the

on-chip video memories implement data-reuse schemes for the

search window samples, only a few data of the reference frame

would be written to start the next CTU prediction. Once the

needed data is stored on chip, the ME massively accesses the

on-chip video memory until the best match is found. As can be

noticed in Table I, the STT-RAM energy and performance are

poor for write operations compared to that of the SRAM. Thus,

video coding is a promising application for STT-RAM based

hybrid memories.

STT-RAM has the advantage of a non-volatile memory

(NVM). This characteristic is also very important for on-chip

video memories, since parts of the memory may be switched-

off (to eliminate static energy consumption) while keeping the

data stored, leading to no extra external memory accesses to

save and to re-fetch the data.

 4

III. RELATED WORKS

Since the HEVC release, several works were developed with

the goal of exploiting its high-level parallelization features. In

this context, different strategies have the goal of properly

defining the best partitioning of the video frame into Tiles for

parallel processing [23]–[27]. The proposed schemes typically

take into account the workload of each processing unit to define

the best tiling configuration. Only the strategy developed in

[24] addresses the impacts of Tiles-based HEVC parallelization

in the video memories. However, the proposed scheme focus on

optimizing the memory design exploiting only intra-Tile data

reuse, not considering the potential of inter-Tiles data reuse.

Further, video memories characteristics of very high read

intensity (compared to write operations) are not exploited in the

work. Therefore, to address this gap this work focus on

exploiting the inter-Tiles data reuse, as well as intrinsic video

memories characteristics, namely their high read access

intensity.

Several recent works exploited application-specific

knowledge to propose energy-efficient memory design and

management for HEVC. Reference frame compressing

strategies are exploited in HEVC by [28]–[30] focusing on

reducing the data bandwidth from on-chip and off-chip

memories by compressing the reference frames data. Even

though these works can be applied to parallel video encoding,

they do not exploit parallel memory accesses from different

processing units, leading to compromised scalability for

increased parallelism. Further, on-chip memory energy is even

aggravated, since multiple on-chip logic circuits must be

inserted to implement the compressing/decompressing steps for

the stored/fetched data. Dedicated video memories for HEVC

encoding were already proposed by [3], [31]–[33]. In dSVM [3]

and [31], SRAM-based distributed memory architectures were

designed. The additional SRAM to improve the data reuse

brings extra static energy consumption. Therefore, merely

adding more SRAM becomes unfeasible when using a large

number of processing cores. Dedicated hybrid video memories

for video coding were developed in [32] and [33]. AMBER [32]

uses SRAM only as FIFO buffers to hide the high write latency

of STT-RAM cells, but not effectively being part of the storage

system that may provide a high potential of energy-efficient

design. Additionally, AMBER does not support parallel video

processing, which is inevitable to achieve high processing

throughput. enHyV architecture [33] combines SRAM and

STT-RAM using private and shared SPMs. A design space

exploration was performed to find the best optimization point

between energy efficiency and STT-RAM endurance.

However, the inter-Tiles data reuse potential is not properly

exploited in this work, since no adaptive management is

performed depending on the video content. Depending on the

video properties (like low/high motion), energy may be wasted

by not properly managing the shared video memories.

3 Let NTiles be the number of Tiles and NTilesBoundaries be the number of Tiles

boundaries.

IV. HYBRID SCRATCHPAD VIDEO MEMORY ARCHITECTURE

(HY-SVM)

Fig. 5 depicts our hybrid scratchpad video memory

architecture (Hy-SVM) and its energy-efficient management

layer for parallel HEVC encoding. Each Tile is assigned to a

specific processing unit. The proposed memory organization

increases the energy efficiency of reference frames

management (off-chip fetching and on-chip storage). The

coarser lines in Fig. 5 represent data connections, while finer

lines illustrate the control flow between the modules.

Adaptive Power
Management Units

Parallel
HEVC

Encoder

Memory
Access

Management
Units

Private L2
STT-RAM

Tile-specific region in
reference frame Exte

rn
al M

e
m

o
ry

(D
R

A
M

)
(O

rigin
al Fram

es;
R

eferen
ce Fram

es)

Proc.
Unit 0

Proc.
Unit 1

Proc.
Unit n-1

Private L1
SRAM

Tile-specific
search window

PrivL20

PrivL21

PrivL2n-1

SharedL2Ver

MAMU0

MAMUOv

DRAM
Controller

APMU0

APMUOvAPMU1

APMUn-1 Shared L2
STT-RAM

Overlapping region
in reference frame

PrivL10

PrivL10

PrivL1n-1

SharedL2Hor

Run-Time Overlap
Prediction

Memory Monitoring

MAMU1

MAMUn-1

Interconnect Bus

Fig. 5 – Block diagram of our hybrid scratchpad video memory architecture.

Our Hy-SVM architecture is organized as two levels of

SPMs:

L1 SPMs Level: NTiles private SPMs3 (PrivL1) that store the

search window samples for a specific processing unit, allowing

intra-Tile data reuse between each CU processing. At this level,

the SPMs are implemented as SRAM arrays, providing equally

high performance and energy efficiency for read and write

operations. Since PrivL1 SPMs represent smaller memory cells

arrays, SRAM static energy consumption does not significantly

affect the overall energy efficiency.

L2 SPMs Level: NTiles private SPMs (PrivL2) and

NTilesBoundaries shared SPMs (SharedL2) that together can store

one complete reference frame, providing combined intra- and

inter-Tiles data reuse. All L2 level SPMs are designed using

STT-RAM technology, exploiting its high density and low

static power features to implement large L2 data arrays. The

PrivL2 stores the Tiles-specific region of the reference frame

(accessed privately by the corresponding processing unit). Each

SPM of PrivL2 has a direct data connection to the

corresponding PrivL1 SPM. The SharedL2 SPMs are connected

to the PrivL1 SPMs by an interconnect bus and it is responsible

for the overlapping regions storage.

Along with SharedL2 SPMs, inter-Tiles data reuse is

managed by a run-time overlap prediction that accurately

estimates the redundant memory access behavior for the next

ME. This prediction step is based on already monitored overlap

formations from previous frames encoding. This knowledge is

then forwarded to on-chip memory management hardware

modules: (a) memory access management units (MAMUs) and

(b) adaptive power management units (APMUs). They are

responsible to effectively manage the SPMs by implementing a

 5

read/write policy, as well as proper power gating control over

SPM sectors. The goal is to achieve the best possible energy

efficiency depending on the video content properties. Details

regarding the energy-efficient memory management layer are

presented in Sections V and VI.

A. Adopted Memory Models and Notations Definition

Fig. 6 depicts the adopted on- and off-chip memory models

that support Hy-SVM design. Every data transmission between

the SPM and the external memory is based on a fixed basic unit

(BU), which corresponds to the squared BUDim x BUDim picture

block of the reference frame (see Fig. 6a). The samples within

a BU are organized in a serialized way, so that all rows of an

entire BU can be stored in the same external memory page (see

Fig. 6b). Since consecutive accesses to the same memory page

lead to less page-activation overhead, improved energy

efficiency can be achieved.

(a) Reference Frame

BUDim

BUDim

Column Buffer

...
BUDim

BUDim x BUDim

BUDim BUDim BUDim

BUDim

...

Burst Reading
Exploitation(c) Scratchpad Memory Design (SPM)

(b) External Memory Organization

Bank-0 Bank-1 Bank-2 Bank-(NB-1)

Sense Amplifiers

ST

BUDim

ST

...

Se
ct

o
r

0

... Se
ct

o
r

1

...

...

Fig. 6 – Adopted organization for the off- and on-chip memory parts.

As on-chip SPM design, a multi-bank memory organization

is adopted (see Fig. 6c). Each SPM is composed of NB memory

banks. To facilitate parallel access, each row of a BU is stored

in a specific SPM bank. Hence, one line of a memory bank can

store SL bytes, equals to the size of one BU row (BUDim bytes)

4. The exception is the first SPM bank, which additionally stores

control information for memory access management (explained

in Section IV.B). A Banki is composed of NL lines, grouped into

NS memory sectors of SS bytes. The number of BUs per sector

(NBUPerSector), which corresponds to the number of memory lines

per sector (NLinesPerSector), defines the power management

granularity applied to the SPMs. The BUDim and NBUsPerSector are

design-time parameters and should be carefully decided by the

hardware designer.

B. Design of Hybrid Scratchpad Video Memories

Eq. (1)-(2) define the Tiles overlap sizing formula for the

overlap thickness (OvThickness) and length (OvLength). These

formulas are used at design-time to properly derive the

SharedL2 SPMs parameters. The OvThickness is calculated from

the search window width or height, since it defines the

4 In this work, we consider video sequences represented with 8-bit samples.

maximum range ME can reach when searching in the reference

frames. Additionally, ME start point can be displaced by prior

analysis from neighboring motion predictors. Thus, the search

window center can vary according to the motion field of Tiles

boundaries. To represent that, an off-line statistical parameter

ΔMotion is inserted to scale the overlap thickness to be adapted to

the average case of test sequences5. The OvLength is related to the

frame width or height, when overlaps are formed around

horizontal or vertical Tiles Boundaries, respectively.

OvThickness(TBID) = {
ΔMotion × SWW, if vertical boundary

ΔMotion × SWH, if horizontal boundary
 (1)

OvLength(TBID) = {
FrameH, if vertical boundary

FrameW, if horizontal boundary
 (2)

Based on the memory organization defined in Section IV.A,

we determine the physical sizing for the SPMs Levels in the

proposed Hy-SVM architecture. As already explained, all

SPMs (PrivL1, PrivL2, and SharedL2 levels) are composed of

BUDim memory banks as in Eq. (3), which allows parallel access

of one entire BU. However, the other SPM parameters are

different depending on the Hy-SVM level.

PrivL1NB = PrivL2NB = SharedL2NB = BDim (3)

The PrivL1 SPMs store Tile-specific search window

samples, requiring PrivL1NL memory lines, as expressed by Eq.

(4). The first memory bank of a PrivL1 SPM must store, besides

the first BU row, three control data: the horizontal and vertical

BU frame position, and a validate bit (as in Eq. (5)). This

information is important for MAMU to properly manage hit and

miss occurrences. The PrivL1 level does not have associated

power management, thus not requiring the overhead of sleep-

transistors and memory sectors definition.

PrivL1NL = NBUsPerPrivL1 = ⌈
SWW × SWH

BUSize
⌉ (4)

PrivL1SL = {
(|BUXPos| + |BUYPos| + 1) + BUDim

BUDim

 if Bank0

 otherwise
 (5)

The L2 level completely stores one reference frame, by

having its samples distributed along the PrivL2 and SharedL2

SPMs. The PrivL2 SPMs stores the Tile-specific reference

frame region, while the SharedL2 SPMs must support the

overlapping regions size. The PrivL2NL number of memory

lines depends on the frame resolution and the number of Tiles,

as expressed in Eq. (6). In another perspective, the SharedL2

SPMs requires SharedL2NL lines, which is related to the

OvThickness and OvLength overlap parameters; see Eq. (7). The

PrivL2 SPMs of Hy-SVM are designed to guarantee that all

BUs within the same reference frame have a specific associated

memory line. Thus, it is not necessary to keep stored the frame

position coordinates of the stored BU in a specific SPM line. To

ensure correct hit/miss detection by MAMU, a validate bit is

stored alongside the first BU row in Bank0. The same scheme

is adopted for SharedL2 SPMs, as defined in Eq. (8). Still, as in

PrivL2, only one validate bit must be stored for each BU.

5 In this work we adopted the same statistical method to determine ΔMotion

than [3].

 6

PrivL2NL = NBUsPerPrivL2 = ⌈
FrameW × FrameH

BUSize × NTiles
⌉ (6)

SharedL2NL = NBUsPerSharedL2 = ⌈
OvThickness × OvLength

BUSize
⌉ (7)

PrivL2SL = SharedL2SL = {
BUDim + 1

BUDim

 if Bank0

 otherwise
 (8)

Our adaptive power management strongly acts on L2 level of

Hy-SVM to reduce on-chip static energy consumption. Note

that as L2 SPMs are implemented as STT-RAM arrays, the

shutdown of specific memory sectors does not imply on off-

chip memory re-fetching, due to the non-volatile nature of STT-

RAM cells. The power gating is applied for each memory

sector. The already defined NLinesPerSector parameter indicates the

adopted management level (as already discussed in Section

IV.A). In doing so, the values of PrivL2SS and SharedL2SS are

defined according to this design-time parameter, as in Eq. (9).

As result, the number of memory sectors (PrivL2NS and

SharedL2NS), which directly affects the APMU design, is

defined in Eq. (10) and (11), respectively.

PrivL2SS = SharedL2SS = NLinesPerSector × BUSize (9)

PrivL2NS =
PrivL2NL

L2SectorSize
 (10)

SharedL2NS =
SharedL2NL

L2SectorSize
 (11)

The following sections describe the memory management

layer, which improves the energy efficiency of Hy-SVM

architecture. First, the run-time overlap prediction scheme is

presented. Then, the on-chip memory management units,

MAMU and APMU, are explained.

V. RUN-TIME OVERLAP PREDICTION

We focus our evaluations and proposed overlap prediction

scheme in the HEVC-defined Low Delay (LD) and Random

Access (RA) prediction structures, as illustrated in Fig. 7. Each

arrow denotes a prediction dependency evaluated by the ME,

starting from the current frame and pointing to the used

reference frame. We assign an overlap identification (OvID) for

each prediction dependency. Further, another important

parameter is the distance between the current and reference

frame of each OvID, represented by the notation DME. It is

defined as the absolute difference between the picture

exhibition order number between the two frames: DME(OvID) =
|FCurr − FRef| (depicted in the bottom of Fig. 7). For example,

the DME of the prediction RA2 is calculated as 𝐷𝑀𝐸(𝑅𝐴2) =
|4 − 8| = 4.

0 1 2 3 4 5 6 7 8

LD2

LD0 LD1 LD3 LD5 LD7 LD9 LD11 LD13

LD4 LD6 LD10 LD12 LD14LD8

0 1 2 3 4 5 6 7 8

RA0
RA1 RA2

RA3 RA4 RA6 RA5

RA7 RA8 RA10 RA9 RA13 RA14 RA12 RA11

(a) Random Access (b) Low DelayOverlap Identification (OVID)
within a Group of Pictures

Fig. 7 - Overlap identification (OvID) in (a) Random Access (RA) and (b) Low
Delay (LD) HEVC encoder configurations.

Note that each ME will lead to the formation of an

overlapping region. The characteristics of the overlaps were

evaluated to base our run-time overlap prediction scheme

(Section V.A). An accurate estimation of such properties is

important (a) to improve inter-Tiles data reuse (exploited by the

SharedL2 SPMs), as well as (b) to provide less-frequent ON-

OFF switching activities, leading to higher energy savings for

our adaptive power management scheme. To support the

variability of the overlap characteristics, a light-weight overlap

data representation is proposed (Section V.B). The overlap

prediction scheme is described in Section V.C.

A. Overlaps Correlation Evaluation

Memory analyses were performed with the goal of

identifying correlated parameters of overlap formations

between consecutive MEs. The evaluations consider three

important overlap characteristics: size, shape, and

displacement.

Analysis-1 (Overlap Size): Fig. 8 presents an evaluation of

the overlap size by exploiting MEs with different DME

parameters. In this case, we are interested in the number of

redundant memory accesses within a reference frame

depending on the absolute value of the distance DME. Thus, this

analysis does not consider the prediction direction. We can note

that the overlap size reduces when lower DME MEs are

executed. Therefore, an insight is to leverage the size of past

overlaps in our prediction scheme. In doing so, the relation

between the DME factors must be taken into account to scale the

predicted overlap accordingly. Our APMU can exploit it by

dynamically applying relaxed or aggressive power gating to

improve the SPMs energy efficiency according to predicted

memory demand.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

300

200

100

0
6 100 4 9

#ME Order [Random Access Configuration]

O
ve

rl
ap

 S
iz

e
[K

B
]

|D|=2

|D|=4
|D|=8

|D|=1

1 2 3 75 8 11 12 13 14

Relaxed Power-Gating Aggressive Power-Gating

Fig. 8 – Example of overlap sizing variation for several temporal distances (D

factor).

Analysis-2 (Overlap Shape): Besides the size, another

important aspect is the overlap shape, which may significantly

change along the overlap length. We can note this dynamic

behavior in Fig. 9, where the shape varies according to the video

content. Not exploiting this variation may lead to inefficiency

to memory energy consumption (on- and off-chip parts).

Furthermore, there is a significant similarity between the shapes

of overlaps when analyzing consecutive ME processing, as can

be noted in Fig. 9. Therefore, the shape characteristics of

previous formations can be used as reference to improve the

prediction accuracy for the next overlaps.

Analysis-3 (Overlap Displacement): Fig. 10 presents an

analysis (Probability Density Function charts) comparing the

overlap displacement for ME steps with different DME factors.

The displacement, in this evaluation, was measured by the

distance of the center of the actual overlap regarding the Tiles

 7

boundary. When we compare the generated overlap between

MEs with the same prediction direction (Fig. 10a), we can note

that higher DME factors lead to higher and spreader overlap

displacements. In another vein, ME operations with lower DME

values lead overlaps centered nearer the Tiles boundary, as well

with a more concentrated behavior. In Fig. 10b, comparing MEs

with opposite prediction directions (DME values with different

signals), we can observe opposite displacements in the formed

overlaps. Therefore, regarding this aspect, our insight is to

leverage the past overlap displacement weighted by the

difference of DME factors.
Overlap RA3

(DME=2)

Overlap RA1
(DME=4)

Overlap RA0
(DME=8)

Overlap RA7
(DME=1)

0
1

2
8

0

19200

0
1

2
8

0

19200

Memory accessesMIN MAX

width coordinatewidth coordinate

h
ei

gh
t

co
o

rd
in

at
e

h
ei

gh
t

co
o

rd
in

at
e

Hint-1: Variable shape
(thickness) along the
overlap length

Hint-2: High correlation
between overlap
formation characteristics
between consecutive ME

Fig. 9 - Correlation between consecutive overlaps (RA7, RA3, RA1 and RA0),

considering Random Access prediction structure.

-60 -40 -20 0 20 40 600 60-60

P
ro

b
a

b
il

it
y

-120 -100 -80 -60 -40 -20 0 20

0.10

0.08

0.06

0.04

0
-20-120 -60

Overlap Displacement [pixels]

0.02

P
ro

b
a

b
il

it
y

0-40-80-100 20
Overlap Displacement [pixels]

DME=8 DME=4

DME=2 DME=4 DME=-4
DME=1

(b) PDF (Opposite MEs)(a) PDF (Same ME Directions)

0.05

0.04

0.03

0.02

0

0.01

Hint-1: Overlap
displacement scales
with the ME ranges

Hint-2: Different ME
directions leads to
opposite overlap
displacements

Fig. 10 - Overlap displacement correlation analysis.

To exploit the discussed overlaps correlation in our

prediction unit, we implement an overlap representation that

properly models the absolute size, and the variable shape and

displacement properties.

B. Overlap Representation

Eq. (12) models an overlap as an ordered set of tuples, each

one containing width (widthi) and displacement (displi)

information of a specific basic unit line i within the overlap. The

level of representation is based on the adopted BU dimension,

being compliant to Hy-SVM organization.

OvID = {(widthi, displi), ∀ 𝐵𝑈 𝑙𝑖𝑛𝑒 𝑖 |0 ≤ i < OvLength/BUDim} (12)

Fig. 11 illustrates an example of overlap representation. In

the graphical view (Fig. 11a), we can observe the possibility of

modeling the variations of width and displacement along the

overlap length. For each BU line, the width is related to the

overlap thickness (in number of BUs), while the displacement

is expressed as the distance of the first BU from the Tiles

boundary center. Hence, the design-time parameters OvLength

and OvThickness related to the overlap thickness and length

(previously defined in Section IV.B), utilized to design the

SharedL2 SPMs, are refined to provide a more accurate

representation of the actual formed overlap. The mapping

between the graphical and the data representation is presented

in Fig. 11b. We can note that each BU line within the overlap

has associated width and displacement information.

Basic
Unit

Total
SharedL2

SPM Capacity
(decided at

design-time)

Monitored
Overlap

(BUs inside
the overlap)

Side of Tile 0 Side of Tile 1

Overlap Graphical Representation Overlap Data Representation

7654321

10

980
11

Basic Unit
Line

O
ve

rl
ap

 le
ng

th
 [

#B
u

s]

Overlap thickness [#Bus]

7
6
5

4
3

2
1

9
8

0

line
width

line
displacement #BULine

6
7
5
5
6
5
4
6
7
6
7
6

-4
-3
-2
-3
-3
-2
-2
-3
-4
-4
-3
-3

7
6

5

4

3
2

1

10
9

8

0

11

width displ

Fig. 11 – (a) Graphical and (b) data representation of an overlap by our energy-

efficient management of Hy-SVM.

Considering a 4-Tile HD1080p HEVC encoder, 256x256

search window size, and BUDim=8, the overlap representation

for the horizontal Tiles boundary requires 480 bytes, while the

vertical overlap occupies 136 bytes. These values represent a

negligible overhead, especially when comparing to the

hardware resources required to implement L1 and L2 SPM

Levels (as demonstrated in Section VIII.D).

C. Overlap Prediction Scheme

Our scheme is inspired on the video coding idea of selecting

several references (past coded information) to predict the

behavior of the data that is being processed. Therefore, for each

overlap that is being predicted (called current overlap), the

information of past monitored overlap formations (called

reference overlaps) are exploited. As result, an estimation of

the formation characteristics for the current overlap is generated

(called predicted overlap). In this context, there are two key

data structures: the Monitored Overlaps Table (MOT) and the

Predicted Overlap Table (POT).

T
a

b
le

 2

Overlap Prediction of CurrOv ID:
PredOvID

end

Get reference overlap
RefOvID(TB) from MOTTB

Execute Motion Estimation
(Parallel HEVC)

Monitore overlap
formation

MAMU (access-level)
Section VI.A

Save monitored overlap
for Tiles boundary TB to

MOTTB (if necessary)

Apply prediction to
RefOvID(TB) - Eq. (13)-(16)

Store predicted overlap
PredOvID(TB) in POTTB

Build frame-level power
maps (APMU - Section VI.B)

For each Tiles boundary
(TB) within a frame

Hy-SVM On-Chip Management

For each Tiles boundary
(TB) within a frame

end loop

APMU (CTU-Level)
Section VI.B

end loop

Fig. 12 – Flowchart of our run-time overlap prediction scheme and its relation

to Hy-SVM on-chip management units.

Fig. 12 depicts the flowchart of our overlap prediction

scheme, as well as its integration with Hy-SVM on-chip

management units (detailed presented in Section VI). During a

ME processing, our Memory Monitoring Unit monitors the

inter-Tiles redundant accesses. This unit utilizes one bitmap for

each HEVC processing unit to identify the accessed BUs within

a reference frame. As result, the bitmaps are combined, and the

 8

monitored overlap representation (presented in the previous

section) is generated and stored in the MOT. There is a specific

MOTTB for each Tile boundary TB, which is responsible to store

a historic of the past monitored overlap formations of this

specific boundary.

For each Tiles boundary within a frame, our scheme accesses

the MOTTB to get the reference overlap RefOvID(TB) that will

be used for the prediction of CurrOvID(TB). To minimize the

MOTs size and guarantee the best possible correlation between

current and reference overlaps, Table II proposes a prediction

assignment based on the correlations of MEs, considering the

Random Access and Low Delay configurations. The overlap

identifications follow the notations defined in Fig. 7. Based on

this assignment, a prediction operation is applied to estimate the

predicted overlap based on the monitored information from the

selected reference overlap. The prediction process is based on

one of four possible operations: downscale, upscale, invert or

copy; as defined in Eqs. (13)-(16), where the α and β are offline

statistical factors that were extracted by experimental analysis

using real-world video coding scenarios6.

TABLE II OVERLAP PREDICTION ASSIGNMENT FOR RANDOM ACCESS AND

LOW DELAY HEVC ENCODER CONFIGURATIONS

Random Access Low Delay

Curr.

 OvID

Prediction

Operation

Ref.

OvID

Curr.

 OvID

Prediction

Operation

Ref.

OvID

RA0

off-line stats. (if first

frame) or copy RA0

from previous GOP

LD0

off-line stats. (if first

frame) or copy RA0

from previous GOP

RA1 downscale(α) RA0 LD1 copy LD0

RA2 invert RA1 LD2 upscale(β) LD1

RA3 downscale(α) RA1 LD3 copy LD1

RA4 invert RA3 LD4 upscale(β) LD3

RA5 downscale(α) RA2 LD5 copy LD3

RA6 invert RA5 LD6 upscale(β) LD5

RA7 downscale(α) RA3 LD7 copy LD5

RA8 invert RA7 LD8 upscale(β) LD7

RA9 downscale(α) RA4 LD9 copy LD7

RA10 invert RA9 LD10 upscale(β) LD9

RA11 downscale(α) RA5 LD11 copy LD9

RA12 invert RA11 LD12 upscale(β) LD11

RA13 downscale(α) RA6 LD13 copy LD11

RA14 invert RA13 LD14 upscale(β) LD13

downscale(PredOvID, RefOvID, α):
PredOvID[i]. width ← ⌈RefOvID[i]. width × 𝛼⌉ and
PredOvID[i]. displ ← RefOvID[i]. displ,
∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 𝛼 < 0

(13)

upscale(PredOvID, RefOvID, β):
PredOvID[i]. width ← ⌈RefOvID[i]. width × β⌉ and
PredOvID[i]. displ ← RefOvID[i]. displ,
, ∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 β > 0

(14)

invert(PredOvID, RefOvID):
PredOvID[i]. width ← RefOvID[i]. width and

PredOvID[i]. displ ← −(RefOvID[i]. width +
 RefOvID[i]. displ), ∀ BU line i

(15)

copy(PredOvID, RefOvID):
PredOvID[i]. width ← RefOvID[i]. width and
PredOvID[i]. displ ← RefOvID[i]. displ, ∀ BU line i

(16)

Example: Consider the RA1 prediction dependency was

processed by ME and the inter-Tiles redundant memory

accesses was monitored, generating the RefOvRA1 (illustrated in

6 We adopted: α=0.75 and β=0.8 in our experiments.

Fig. 13a). From the proposed prediction assignment for

Random Access configuration presented in Table II, the

selected prediction operation for the next PredOvRA2 and

PredOvRA3 are invert and downscale, respectively. In Fig. 13b

we can observe the result of invert prediction operation, where

the overlap is displaced from left to right part related to the Tiles

boundary. In this case, the RA1 and RA2 have the same

absolute value of DME, but with different signals: DME(RA1)=4

and DME(RA2)=-4. In this case, due to the opposite motion

directions, the overlap formations tends to be displaced (as

motivated in Analysis-2 of Section V.A). The estimation of

PredOvRA3, reduces the overlap width parameters by a α=0.75

factor. The prediction dependencies RA1 and RA3 have same

direction but different distances: DME(RA1)=4 and

DME(RA2)=2. In doing so, the overlap for RA3 tends to be

smaller than RA1, since lower motion fields will be detected.

(c) Predicted Overlap (RA3)

(a) Reference Overlap (RA1)

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

(b) Predicted Overlap (RA2)

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-4
-4
-4
-4
-4
-3
-3
-3
-4
-4
-4
-4

7
6
5
4
3
2
1

10
9
8

0

11

width displ

#BULine

5
5
6
6
6
4
4
5
6
6
6
5

-1
-1
-2
-2
-2
-1
-1
-2
-2
-2
-2
-1

7
6
5
4
3
2
1

10
9
8

0

11

width displ

7654321

10

980
11

7
6
5
4
3
2
1

9
8

0

displ#BULine

4
4
5
5
5
3
3
4
5
5
5
4

-3
-3
-3
-3
-3
-2
-2
-2
-3
-3
-2
-2

7
6
5
4
3
2
1

10
9
8

0

11

width

invert

downsca le

Fig. 13 – Example of overlap prediction operations when estimating RA2
(invert) and RA3 (downscale; using α=0.75) from RA1 reference overlap.

The predicted overlap PredOvID(TB) is stored in the POTTB

to become available for MAMUs and APMUs operations.

Details regarding the implementation of Hy-SVM on-chip

management units are given as follows.

VI. ON-CHIP HY-SVM MANAGEMENT UNITS

Fig. 14 presents the block diagram of the proposed on-chip

Hy-SVM management units. As example, Fig. 14 illustrates

hardware details of a 4-Tile HEVC case study, which has one

horizontal (Hor) and one vertical (Ver) Tiles boundary. The

main goal is to rely on accurate overlap prediction to employ

energy-efficient memory access and power management to

designed SPMs in Hy-SVM architecture. As previously

explained, the overlap prediction leverages past overlap

formations of past MEs, which are kept stored in the MOT. The

proposed memory monitoring is the unit responsible for

capturing the inter-Tiles redundant memory access behavior.

The prediction unit stores the predicted overlap of a

corresponding Tiles boundary in the POTs.

Each HEVC processing unit i has an associated instance of

memory access management unit (MAMUi) and of adaptive

power management unit (APMUi). These modules utilize the

predicted overlap, available in the POTs, to provide energy-

 9

efficient management of the PrivL1 and PrivL2 SPMs for the

processing unit i. The MAMUi receives a memory access

request and, based on a read/write policy, translates the address

and forwards the operation to either PrivL1 or PrivL2. Further,

if the incoming access is related to a basic unit inside any

predicted overlap, the request is forwarded to a MAMUOv,

responsible of managing the SharedL2 SPMs accesses. As the

private MAMUs require the knowledge of the predicted

overlaps, each unit has an instance of the POTs (as in Fig. 14).

The APMUi analyzes the POT content and HEVC parameters

to build the power maps for the PrivL2 SPMi. The power maps

are directly connected to the sleep-transistors that control the

power state of each sector of STT-RAM array. Additionally, a

specific APMUOv module manages the power gating operation

of SharedL2 SPMs. Details regarding MAMUs and APMUs

implemented schemes are given as follows.

On-Chip Management Units for SharedL2 SPMs

Power Maps

Run-Time
Memory

Monitoring
Unit

On-Chip Management Units for Priv SPMs of Tilei

HEVC
Processing

Unit (for Tilei)
Memory Access

Management
Unit

(MAMUi)

Predicted Overlap Tables (POTs)

POTHor

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

POTVer

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

Power Maps

Frame-Level

CTU-Level

to PrivL1 SPMi

to PrivL2 SPMi

to
 P

rivL2
 SP

M
i

Overlap
Prediction

basic unit
memory access

Monitored Overlap
Tables (MOTs)

MOTHor

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

W H

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

...

MOTVer

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

W H

6

7

5

5

6

5

4

6

7

6

7

6

1

2

3

2

2

3

3

2

1

1

2

2

...

Memory Access
Management

Unit
(MAMUOv)

Predicted Overlap Table (POTs)

POTHor

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

POTVer

6
7
5
5
6
5
4
6
7
6
7
6

1
2
3
2
2
3
3
2
1
1
2
2

W H

6 VER/HOR
6 INIT_X
6 INIT_Y

Frame-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

CTU-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

Adaptive Power
Management

Unit
 (APMUOv)

to
 Sh

ared
L2

 SP
M

V
er

Frame-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

...

CTU-Level
6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

...

to
 Shared

L2
 SP

M
H

o
r

Adaptive Power
Management

Unit
 (APMUi)

to SharedL2 SPMVer

to SharedL2 SPMHor

from MAMU0

FI
FO

from MAMU1

from MAMU2

from MAMU3

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

6
7
5
5
6
5
4
6
7
6
7
6

..
.

Fig. 14 – Block diagram of our on-chip Hy-SVM management units integrated

to the run-time overlap prediction and memory monitoring units.

A. Memory Access Management Unit (MAMU)

Our MAMU implements a read/write policy (see flowchart

of Fig. 15) that takes advantage from the Tiles overlap to

increase the data-reuse of the reference frame samples. When

HEVC processing unit i requests a BU of positions xBU and yBU

to Hy-SVM, as first step, the MAMU translates the BU frame

positions to PrivL1 SPM address space. Then, it performs a

PrivL1 SPMi access to check for hit/miss occurrence. In case of

a hit, the BU is forwarded to the processing unit. Otherwise, a

miss leads to the access of L2 level SPMs. At this point, the

MAMU checks along with the predicted overlaps if the

requested BU belongs to one Tiles overlapping region.

Assuming that the data is inside an overlap related to the Tiles

intersection TB, the corresponding SharedL2 SPMTB is then

accessed. In this case, inter-Tiles data reuse is exploited, since

the processing of all Tiles that share the Tiles boundary TB may

request the same data. For non-overlapping regions, the PrivL2

SPMi is accessed, leading to intra-Tile data reuse. Note that for

each core data request, either a ShreadL2 SPM or a PrivL2 SPM

is accessed. If a L2 hit is verified, the data is forwarded to the

processing unit and the PrivL1 SPMi is filled with the requested

BU. In case of a L2 miss, the BU must be fetched from the

external memory and written to either PrivL2i or SharedL2TB

SPM (depending on the predicted overlap) and the PrivL1

SPMi. After that, the data is forwarded to the Tiles-specific

HEVC processing unit.

PrivL1i

Forward basic unit
to Core i

Fill PrivL1i

Hit

Yes

No

Miss

Read basic unit
from PrivL2i

PrivL2i

Hit

SharedL2

Fill PrivL2i

Fill SharedL2

Fetch basic unit
from DRAM (burst)

Hit

Miss

Overlap?

No Yes

Miss

Core i request basic unit
xBU,yBU from to APMUi:

Translate BU position to
PrivL1i SPM address

Read basic unit
from PrivL1i

Overlap?

Access POTs to verify
overlaps

Translate BU position to
PrivL2i SPM address

Translate BU position to
SharedL2i SPM address

Read basic unit
from SharedL2

Fig. 15 – Flow of our memory access management unit with read/write policy.

(a) (b) (c) (d)

N Y N Y N Y N Y N Y N
1 11 11 1

0
0,2
0,4
0,6
0,8

1
1,2

Fase -Fase +

Hit Miss DRAM

PrivL1 SPM0

PrivL1 SPM1

External
Memory

PrivL2 SPM0

PrivL2 SPM1

SharedL2
SPM

Overlap
Prediction

Tile 0

H
E

V
C

 E
n
co

d
in

g

Tile 1

H
E

V
C

 E
n
co

d
in

g

H
E

V
C

 E
n
co

d
in

g

Tile 0 Tile 1 Tile 0 Tile 1 Tile 0 Tile 1
Fig. 16 – An example of data interaction for a 2-Tile HEVC encoding.

Case-study example: Fig. 16 depicts an example of data

migration for our read/write policy in four different cases,

considering a 2-Tile HEVC encoding system.

(a) In the beginning, the on-chip SPMs are empty and each

request will lead to external memory fetching (L1 and L2

misses). Fig. 16 shows that predicted overlap is analyzed to

determine whether the reference BU is stored in the PrivL2

SPMi or in the SharedL2 SPMTB. The PrivL1 SPMi is always

filled with the fetched data. During the frame encoding, due

to the intra-Tile (PrivL1 and PrivL2 SPMs) and inter-Tiles

(SharedL2 SPMs) reused data, more hits occur and even less

external memory communication is needed.

(b) The second case of Fig. 16 depicts Tiles-centering CTUs

processing where only the PrivL2 SPMs are accessed (only

intra-Tile data reuse). Note that all accesses inside this case

are directed to reference frame BUs outside the predicted

overlap. We can also observe some PrivL1 SPMs hits, which

avoid L2 SPMs accessing and external memory fetching.

(c) The third case illustrates accesses from CTUs located close

to the Tiles boundary. In this scenario, L2 memory hits are

verified for both PrivL2 and SharedL2 SPMs (i.e. combined

intra- and inter-Tiles data reuse). This case represents the

best energy efficiency when requiring L2 level access.

(d) The last scenario of Fig. 16 presents the best case of energy

efficiency, where all memory accesses result on PrivL1 hits.

 10

B. Adaptive Power Management Unit (APMU)

Our APMU leverages the predicted overlaps and the search

limits of current CTUs to further reduce the static energy

consumption of Hy-SVM. The SPMs in the L2 level of Hy-

SVM (implemented as STT-RAM) were designed to operate in

two power states: ON (VON=VDD volts) and OFF (VOFF=0

volts). Due to the non-volatility characteristic of STT-RAM, the

data is kept stored in the memory cell even when OFF state is

assigned (differently from SRAM cells). Further, L2 SPMs are

typically significantly larger than L1 SPMs, leading to higher

energy consumption. In doing so, our APMU concentrates

effort in L2 SPMs, resulting in a great impact in the Hy-SVM

overall on-chip energy (as demonstrated in Section VIII).

In Hy-SVM, the L2 Level can store an entire reference frame,

exploiting STT-RAM reduced leakage power and providing

high intra-Tile and inter-Tiles data reuse, leading to reduced

external memory energy. Besides, the ME required memory

accesses for all CUs within a CTU is limited to a search

window, which represents a small portion of the whole

reference frame. Our APMU scheme relies on estimates the

search limits for the entire CTU processing, which combines

the search window of the ME for all CUs. The CTU search

limits are defined as a squared region of BUs of ⌈(SLDim ×
SLDim)/BUSize⌉ size, where SLDim = CTUSize + SWDim.

An example of the APMU operation is illustrated in Fig. 17.

In the first part, the adopted 2-Tile HEVC encoding scenario is

represented at reference frame perspective (Fig. 17a). The

current CTU search limits of Tile 0 and Tile 1 are depicted, as

well as the predicted overlap (stored in the POT using the

proposed representation, as in in Fig. 17b).

7654321

10

980
11

7
6

5
4

3
2

1

9
8

0

10

11

7
6

5
4
3

2
1

9
8

0

7654321 980 17161514131211 191810 27262524232221 292820

(a) Reference frame perspective

Current CTU
Search Limits

(Tile 1)
Current CTU
Search Limits

(Tile 0)

Predicted
Overlap

PrivL2 SPM0 PrivL2 SPM1
SharedL2 SPM

ON

7654321

10

980
11

7
6

5
4

3
2

1

9

8

0

ONOFF

1413121110

OFF

7654321

10

980
11

7

6
5

4
3

2
1

9

8

0

1413121110

OFF

(c) Frame-level power maps

PrivL2 SPM0 PrivL2 SPM1 SharedL2 SPM

7654321

10

980
11

7

6
5

4
3

2
1

9
8

0

ON

7654321

10

980
11

7
6
5

4
3

2
1

9
8

0

ON

ON

1413121110

OFF

7654321

10

980
11

7
6

5
4

3
2

1

9
8

0

1413121110

OFF

(d) CTU-level power maps

PrivL2 SPM0 PrivL2 SPM1 SharedL2 SPM

ON

OFF

OFF

(b) Predicted
Overlap Table

6
7
5
5
6
5
4
6
7
6
7
6

-4
-3
-2
-3
-3
-2
-2
-3
-4
-4
-3
-3

7
6
5
4
3
2
1

10
9
8

0

11

width displ

ON

Fig. 17 – Example: adaptive power management of STT-RAM L2 SPMs for a

2-Tile scenario.

At the beginning of frame processing, the APMU builds one

frame-level power map for each L2 SPMs. For the PrivL2

SPMs, the memory sectors outside the predicted overlap have

associated power state set as ON. Otherwise, the OFF state is

assigned. As previously discussed, L2 accesses are directed

either to a PrivL2 SPM or a SharedL2 SPM, depending on the

predicted formation of the overlap. The APMU frame-level

power map building process is the opposite for the SharedL2

SPMs, as presented in Fig. 17c. The frame-level power maps

are not directly assigned to the sleep-transistors of the L2 SPMs,

being start points to compose the CTU-level power maps. At

CTU level, our scheme checks the frame-level power map

against the search limits of the current CTUs. Note that the

PrivL2 SPMs must be checked against the search limits of its

corresponding Tile processing, while the SharedL2 SPMs must

be analyzed considering the search limits of all HEVC

processing units. The SPM sectors outside the search limits are

set as OFF state, resulting on CTU-level power maps of Fig.

17d. By assigning ON state for the STT-RAM sectors inside the

CTU search limit, we ensure long sleep durations during one

entire CTU processing.

VII. EVALUATION METHODOLOGY

A custom simulator was developed to capture the video

memory access traces. Based on adopted memory power

models, it estimates the energy consumption for on- and off-

chip parts, as well as the overhead of implementing our run-

time management schemes.

Regarding the design-time parameters of Hy-SVM (defined

in Section IV.A), we defined BUDim as 8 due to the smallest

possible CU size defined by HEVC [1]. To provide balanced

fine- and coarse-grain power management, the NBUsPerSector is set

as 4. In doing so, each sleep transistor determine the power state

of one 16x16 reference frame region stored in the SPM.

A. Memory Power Models

The CACTI 6.5 tool [34] was used for on-chip SRAM

energies/latencies considering 32nm memory cells. The 32nm

STT-RAM electrical parameters were extracted using the

NVSim tool [35]. To estimate static energy reduction, as well

as wake-up latencies/energies, we adopted the analytical model

proposed in [36]. As external memory, the 4-Gbit Low-Power

DDR2 (LPDDR2) DRAM MT42L128M16D1GU-25WT [37]

chip was used. The main specifications are: VDD=1.2V,

Freq=533MHz, word size of 32 bits, page size equals to 512

bytes, 16K rows and 2K columns. The total energy is derived

by the composition of six components: page activation energy,

write energy, read energy, I/O pins energy, refresh energy and

standby energy [38], [39].

B. Video Coding Parameters

The experimental evaluations are based on the recommended

HEVC common test conditions [40] using the HEVC test model

(HM 13.0) [41]. We perform analyses for 2, 4, 8 and 16 uniform

Tile partitioning scenarios based on a 128x128 search window

size. In total, fourteen different video sequences with distinct

properties were evaluated: BasketballDrive (BDrive), Beauty,

Bosphorus, BQTerrace (BQTerr), Cactus, Kimono, ParkScene

(PScene), ReadySteadyGo (RSGo), ShakeNDry (SNDry) and

 11

YachtRide (YRide) - HD1080 (1920x1080 pixels);

NebutaFestival (NFest), PeopleOnStreet (People),

SteamLocomotiveTrain (SLTrain) and Traffic (2K – 2560x1600

pixels). Other HEVC settings are: GOP=8, CABAC, FRExt,

Random Access configuration, and TZ Search algorithm.

C. Comparison-Purpose Baseline Hy-SVM Architectures

Besides the comparison with related works, we implemented

baseline variations of Hy-SVM to measure the efficiency of our

design decisions. Hence, three alternative comparison-purpose

architectures were evaluated in our experiments:

 All-SRAM: adopts the SRAM technology for all SPMs in

Hy-SVM architecture. The goal is to evaluate the benefits

(static energy consumption) and shortcomings (poor write

efficiency) of using STT-RAM in L2 SPMs;

 Priv-Only: avoids the usage of Shared SPMs, thus exploiting

only intra-Tile data reuse. The main purpose is to evaluate

the impacts of SharedL2 SPMs, as well as the overlap

management efficiency;

 No-APMU: avoids the proposed power management over L2

SPMs. The goal is to evaluate the contributions of APMU in

the on-chip energy savings of Hy-SVM.

VIII. EXPERIMENTAL RESULTS

The discussion of our experimental results is composed of

four parts: initially, (in subsection A) the energy consumption

regarding the external memory is analyzed; then, (in B) the on-

chip energy savings are evaluated; later, (in C) the overall

energy is computed and compared with related works and

baseline implementations; finally, (in D) an overhead analysis

is presented in terms of access latency and dynamic energy, as

well as required extra on-chip memory size.

A. Off-Chip Energy Results

Fig. 18 depicts the off-chip energy savings of Hy-SVM

compared to related implementations. The analysis was

performed for 4-Tile and 8-Tile HEVC encoding considering

different video sequences.

As first remark from the experiments, we observe that the

off-chip energy savings may vary according to video content

properties. HEVC encoding of high motion sequences (like

Kimono and BasketballDrive in Fig. 18) lead to larger overlaps,

since the motion search reaches more distant reference frame

samples. In these cases, our Hy-SVM architecture is able to

exploit this increased inter-Tiles data reuse potential and save

external memory communication.

Level-C [9] represents the upper bound results, since it only

exploits intra-Tile data reuse in search window level. Hy-SVM

can save up to 85% off-chip energy compared to Level-C, on

average. Regarding dSVM [3] architecture, which also exploits

joint intra-Tile and inter-Tiles data reuse, our Hy-SVM can

achieve savings of up to 80% and 61%, for 4- and 8- Tiles

respectively. The use of STT-RAM allows Hy-SVM the

energy-efficient on-chip storage of entire reference frame

samples. Hence, it strongly impacts in the external memory

communication, since dSVM adopts intra-Tile data reuse in

search window level. As we demonstrated in next section, the

extra energy consumed by Hy-SVM larger on-chip SPMs is

compensated by STT-RAM benefits and improved power

management. AMBER [32] and enHyV [33] achieved

increased off-chip energy savings when compared to Hy-SVM:

up to 9% and 16% on average, respectively. AMBER fully

exploits reference frame level data reuse, avoiding data re-

fetching from external memory during a frame processing.

However, to support Tiles-parallelized HEVC, AMBER

requires the multiplication of its on-chip video memories,

which strongly affects its on-chip energy efficiency (as

discussed in next sections). enHyV implements data-reuse

schemes in the same levels of Hy-SVM, without a proper

management of the overlap formation. In the external memory

perspective, enHyV provides a more complete support for inter-

Tiles redundant accesses, leading to reduced SharedL2 misses.

Still, Hy-SVM can achieve competitive off-chip energy results

and, additionally, implements an overlap management that

strongly reduces the SharedL2 SPMs on-chip energy.

Compared to our Priv-Only baseline implementation, the

SharedL2 SPMs contributes by reducing up to 24% (4-Tile) and

35% (8-Tile) the external memory energy consumption, on

average. Note that the achieved savings increase when more

Tiles are used (higher parallelism), due to the well-exploited

increased inter-Tiles data reuse potential by Hy-SVM. We

demonstrate in the next sections that the on-chip energy

required for SharedL2 SPMs is strongly reduced by our energy-

efficient management schemes, resulting on savings when

compared to Priv-Only.

BDrive Beauty Bosphorus BQTerr Cactus Kimono PScene RSGo SNDry YRide NFest People SLTrain Traffic

BDrive Beauty Bosphorus BQTerr Cactus Kimono PScene RSGo SNDry YRide NFest People SLTrain Traffic

0

20

40

60

80

100

-20

0

20

40

60

80

100

-20

O
ff

-c
h

ip
 e

n
er

gy
 s

av
in

gs
 [

%
] 4-Tile

8-Tile

Level-C dSVM Priv-Only enHyV AMBER

 Fig. 18 – Off-chip energy savings of Hy-SVM compared to related works (128x128 search window size).

 12

B. On-Chip Energy Results

Fig. 19 shows the on-chip energy analysis of Hy-SVM

compared to related works and baseline. In this evaluation,

AMBER represents the upper bound case, since it replicates the

storage of the reference frame for each Tile processing. In this

case, Hy-SVM consumes 97% less on-chip energy than

AMBER. The authors of AMBER did not informed the on-chip

static energy savings lead by the proposed power-gating

scheme. In doing so, it is not possible to perform a fair

comparison with Hy-SVM. However, when comparing with the

No-APMU baseline version of Hy-SVM, we can also note

savings of 69%-83% (4-Tile) and 82-89%% (8-Tile), on

average, when processing HD1080 and 2K videos, respectively.

From enHyV perspective, Hy-SVM achieves on-chip energy

savings from 66% (HD1080/8-Tile) up to 87% (2K/4-Tile). The

gains over enHyV are mostly due to an improved power

management, which relies on overlap management, as well as

to enHyV extra SRAM memory to improve STT-RAM cells

lifetime. When compared to dSVM, our Hy-SVM architecture

presents similar on-chip energy consumption: 28% lower for

2K videos and 31% higher for HD1080 videos. Combining this

with the previous off-chip energy results, Hy-SVM is able

reduce the energy of external memory communication with

similar on-chip energy consumption (demonstrated in next

section).

HD 1080 2K HD 1080 2K0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
e

d
 o

n
-c

h
ip

 s
ta

ti
c

e
n

e
rg

y
co

n
su

m
p

ti
o

n

4-Tile 8-Tile4-Tile 8-Tile

AMBER All-SRAM No-APMU enHyV dSVM Hy-SVM

Fig. 19 – On-chip energy consumption of Hy-SVM compared to related works.

Compared to baseline All-SRAM and No-APMU

implementations, our Hy-SVM can achieve up to 90% (4-Tile)

and 83% (8-Tile) energy reduction. The savings related to All-

SRAM are related to the STT-RAM low leakage power

dissipation. The savings compared to No-APMU represent the

efficiency of our power management over L2 level of SPMs.

C. Overall Energy Results

Table III presents the overall energy savings of Hy-SVM for

4-Tile and 8-Tile scenarios. The total energy is computed (fifth

column of Table III) by the composition of off- and on-chip

parts, including the control hardware that implements the

management schemes.

Compared to Level-C scheme, even this presenting the

smallest on-chip video memory (i.e. lower on-chip energy), Hy-

SVM can reach overall energy savings of 69%-77%. These

gains are mainly related to the reduction of 5.2 times in the

external memory energy by exploiting inter-Tiles data reuse.

Regarding the dSVM architecture, the multiple levels of SPMs

allows Hy-SVM total memory energy savings of 43%-72%, for

4- and 8-Tile respectively. When comparing to AMBER, which

achieves the best off-chip energy results, Hy-SVM reaches up

to 94% of total energy savings. If we do not consider the APMU

and the overlap management of HySVM, the No-APMU

baseline version can, still, achieve overall energy reduction

compared to AMBER (55% for 4-Tile; and 51% for 8-Tile

scenarios). As previously discussed, enHyV also achieves

lower external memory energy consumption than Hy-SVM.

However, in an off- and on-chip combined perspective, Hy-

SVM surpasses enHyV by achieving 58%-61% of improved

energy efficiency. Finally, the proposed management layer,

composed of overlap prediction, and on-chip MAMUs and

AMPUs, can improve the energy efficiency of Hy-SVM by

64% and 58% in 8-Tile and 4-Tile parallel HEVC, respectively.

TABLE III OVERALL ENERGY SAVINGS OF HY-SVM COMPARED TO

RELATED WORKS

Solution

On-

Chip

Mem.

[KB]

On-

Chip

Energy

[mJ]

Off-

Chip

Energy

[mJ]

Total

Energy

[mJ]

Savings

Hy-SVM

[%]

Scenario 1: 4-Tile HD 1080, 128x128 search window

Level-C [9] 144 68 1,379 1,447 77%

dSVM [3] 519 107 1,072 1,179 72%

AMBER [32] 8,100 4,072 183 4,255
79%*

92%

enHyV [33] 3,384 542 198 740 55%

Our No-APMU 2,544 711 198 908 64%

Our Hy-SVM 2,544 124 206 330 -

Scenario 2: 8-Tile HD 1080, 128x128 search window

Level-C [9] 288 137 1,360 1,497 69%

dSVM [3] 933 189 615 804 43%

AMBER [32] 16,200 8,144 183 8,327
87%*

94%

enHyV [33] 3,892 739 193 932 51%

Our No-APMU 3,168 906 193 1,100 58%

Our Hy-SVM 3,168 252 208 461 -

*savings of No-APMU over AMBER

D. Overhead Analysis

Fig. 20 presents an overhead analysis of the implemented

management techniques in Hy-SVM. We utilize the All-SRAM

and Priv-Only baseline implementations to discuss the

overhead in terms of access latency (Fig. 20a) and dynamic

energy consumption (Fig. 20b). Compared to All-SRAM, the

overhead of inefficient STT-RAM write operations represents

(on average) only 0.3% in terms of latency, and 0.8% in

dynamic energy. Since PrivL1 SPMs have high hit rates (more

than 95%), combined to low write intensity of video memories

(as discussed in Section II.B), STT-RAM write penalty in Hy-

SVM can be reduced. The comparison with Priv-Only version

aims to evaluate the MAMU inserted overhead of analyzing the

POTs to direct the incoming access either to PrivL2 or

SharedL2 SPM. Still, the high L1 hit rates strongly reduces the

overhead of overlap management, since it runs when L2 level

access is required. Additionally, the hardware required for

overlap management is composed of small tables and requires

simple logic operations. As result, we can notice an overhead

(on average) in the latency of only 4.7%, as well as 8.8% in the

dynamic energy. Complementary, Fig. 20c shows the extra on-

chip memory size required to implement the proposed energy-

efficient management layer of Hy-SVM. In this analysis, we

 13

compute the size of monitored and predicted overlap tables

(POTs and MOTs), as well as the frame-level and CTU-level

power maps. As result, the overhead achieves only 4% in the

worst-case scenario (16-Tile).

2-Tile 4-Tile 8-Tile 16-Tile
0

1

2

3

4

5

6

7

8

O
ve

rh
ea

d
 [

%
]

(a) Latency Overhead

2-Tile 4-Tile 8-Tile 16-Tile
0
1
2
3
4
5
6
7
8

O
ve

rh
ea

d
 [

%
]

(b) Dynamic Energy Overhead

Hy-SVM vs. All-SRAM

Hy-SVM vs. Priv-Only

9
10

O
ve

rh
e

a
d

 [
%

]

(c) On-Chip Memory Overhead

HD1080

2-Tile

2K HD1080

4-Tile

2K HD1080

8-Tile

2K HD1080

16-Tile

2K
0

1

2

3

4

5

Fig. 20 – Overhead analysis in terms of: (a) latency, (b) dynamic energy and (c)

extra on-chip memory size.

IX. CONCLUSIONS

This work presented a hybrid scratchpad video memory

architecture for parallelized High-Efficiency Video Coding. It

exploits opportunities from application-specific memory access

behavior, combining scratchpad memories and hybrid memory

design to improve the energy efficiency w.r.t. the memory

infrastructure of parallel HEVC video encoders. We designed

multiple levels of private and shared on-chip SPMs to fully

exploit intra-Tile and inter-Tiles data reuse. For the SPMs

implementation, we proposed a design methodology based on

extracted application-specific properties. To improve the

energy savings, we propose a memory management layer,

which exploits the existing overlapping regions within the

reference frames. In this context, our management layer is

composed of the run-time overlap prediction scheme, as well as

on-chip control units: memory access management and

adaptive power management units. Our architecture provides

from 51% up to 94% of energy savings compared to recent

related works. The proposed Hy-SVM enables energy-efficient

multimedia processing supporting parallel execution in state-

of-the-art HEVC encoders.

REFERENCES

[1] ISO/IEC-JCT1/SC29/WG11, “High Efficiency Video Coding (HEVC)

text specification draft 10.” 2013.

[2] ITU-T, “ITU-T Recommendation H.264 (05/2003): advanced video
coding for generic audiovisual services.” 2013.

[3] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “dSVM:

Energy-efficient distributed Scratchpad Video Memory Architecture for
the next-generation High Efficiency Video Coding,” in Design,

Automation and Test in Europe Conference and Exhibition (DATE), 2014,

2014, pp. 1–6.
[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.
[5] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An

Overview of Tiles in HEVC,” IEEE J. Sel. Top. Signal Process., vol. 7, no.

6, pp. 969–977, Dec. 2013.

[6] M. Zhang, V. M. Stojanovic, and P. Ampadu, “Reliable Ultra-Low-

Voltage Cache Design for Many-Core Systems,” IEEE Trans. Circuits
Syst. II Express Briefs, vol. 59, no. 12, pp. 858–862, Dec. 2012.

[7] A. Chakraborty, H. Homayoun, A. KHAJED, N. DUTT, A. ELTAWIL,

and F. KURDAHI, “Multi-Copy Cache: A Highly Energy Efficient Cache
Architecture,” CECS UC Irvine Tech. Rep. CECS-TR-10-05, 2010.

[8] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory

bandwidth analysis for full-search block-matching VLSI architecture,”
IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72, Jan.

2002.

[9] C.-Y. Chen, C.-T. Huang, L.-G. Chen, and L.-G. Chen, “Level C+ data
reuse scheme for motion estimation with corresponding coding orders,”

IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 553–558,

Apr. 2006.
[10] B. Zatt, M. Shafique, S. Bampi, and J. Henkel, “A low-power memory

architecture with application-aware power management for motion amp;

disparity estimation in Multiview Video Coding,” in 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2011, pp.

40–47.

[11] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, and J. Henkel,
“Run-time adaptive energy-aware Motion and Disparity Estimation in

Multiview Video Coding,” in 2011 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2011, pp. 1026–1031.
[12] F. Sampaio, B. Zatt, M. Shafique, L. Agostini, S. Bampi, and J. Henkel,

“Energy-efficient memory hierarchy for Motion and Disparity Estimation

in Multiview Video Coding,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, 2013, pp. 665–670.

[13] M. Shafique, B. Zatt, F. L. Walter, S. Bampi, and J. Henkel, “Adaptive
power management of on-chip video memory for Multiview Video

Coding,” in 2012 49th ACM/EDAC/IEEE Design Automation Conference

(DAC), 2012, pp. 866–875.
[14] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

“Scratchpad memory: a design alternative for cache on-chip memory in

embedded systems,” in Proceedings of the Tenth International Symposium
on Hardware/Software Codesign, 2002. CODES 2002, 2002, pp. 73–78.

[15] Texas Instruments, “TMS370CX7X from Texas Instruments,” 2017.

[Online]. Available:
http://www.ti.com/mcu/docs/mcuorphan.tsp?contentId=15364.

[Accessed: 29-Jul-2015].

[16] IBM Research, “The Cell Project - IBM,” 22-Mar-2013. [Online].
Available:

http://researcher.watson.ibm.com/researcher/view_group.php?id=2649.

[Accessed: 29-Jul-2015].
[17] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design trade-

offs for high density cross-point resistive memory,” in Proceedings of the

2012 ACM/IEEE international symposium on Low power electronics and
design, 2012, pp. 209–214.

[18] N. Khoshavi, X. Chen, J. Wang, and R. F. DeMara, “Read-Tuned STT-

RAM and eDRAM Cache Hierarchies for Throughput and Energy
Enhancement,” ArXiv160708086 Cs, Jul. 2016.

[19] J. Ahn, S. Yoo, and K. Choi, “Prediction Hybrid Cache: An Energy-

Efficient STT-RAM Cache Architecture,” IEEE Trans. Comput., vol. 65,
no. 3, pp. 940–951, Mar. 2016.

[20] H. Kim, S. Kim, and J. Lee, “Write-Amount-Aware Management Policies

for STT-RAM Caches,” IEEE Trans. Very Large Scale Integr. VLSI Syst.,
vol. 25, no. 4, pp. 1588–1592, Apr. 2017.

[21] M. Lapedus, “Semiconductor Engineering .:. Four Foundries Back

MRAM,” 23-Aug-2017. [Online]. Available:
https://semiengineering.com/four-foundries-back-mram/. [Accessed: 29-

Jan-2018].

[22] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
Microarchitecture Evaluation of 3D Stacking Magnetic RAM (MRAM) As

a Universal Memory Replacement,” New York, NY, USA, 2008, pp. 554–

559.
[23] C. Blumenberg, D. Palomino, S. Bampi, and B. Zatt, “Adaptive content-

based Tile partitioning algorithm for the HEVC standard,” in Picture

Coding Symposium (PCS), 2013, 2013, pp. 185–188.
[24] X. Jin and Q. Dai, “Clustering-Based Content Adaptive Tiles Under On-

chip Memory Constraints,” IEEE Trans. Multimed., vol. 18, no. 12, pp.

2331–2344, Dec. 2016.
[25] C. C. Chi et al., “Parallel Scalability and Efficiency of HEVC

Parallelization Approaches,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, pp. 1827–1838, Dec. 2012.
[26] M. Shafique, M. U. K. Khan, and J. Henkel, “Power efficient and workload

balanced tiling for parallelized high efficiency video coding,” in 2014

 14

IEEE International Conference on Image Processing (ICIP), 2014, pp.

1253–1257.
[27] M. U. K. Khan, M. Shafique, and J. Henkel, “Software architecture of High

Efficiency Video Coding for many-core systems with power-efficient

workload balancing,” in 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), 2014, pp. 1–6.

[28] L. Guo, D. Zhou, and S. Goto, “A New Reference Frame Recompression

Algorithm and Its VLSI Architecture for UHDTV Video Codec,” IEEE
Trans. Multimed., vol. 16, no. 8, pp. 2323–2332, Dec. 2014.

[29] J. Zhu, L. Guo, D. Zhou, S. Kimura, and S. Goto, “An independent

bandwidth reduction device for HEVC VLSI video system,” in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), 2015, pp. 609–

612.

[30] X. Lian, Z. Liu, W. Zhou, and Z. Duan, “Parallel Content-Aware Adaptive
Quantization Oriented Lossy Frame Memory Recompression for HEVC,”

IEEE Trans. Circuits Syst. Video Technol., vol. PP, no. 99, pp. 1–1, 2016.

[31] C. Song, L. Ju, and Z. Jia, “Hybrid scratchpad and cache memory
management for energy-efficient parallel HEVC encoding,” in 2015 33rd

IEEE International Conference on Computer Design (ICCD), 2015, pp.

712–719.
[32] M. U. K. Khan, M. Shafique, and J. Henkel, “AMBER: Adaptive energy

management for on-chip hybrid video memories,” in 2013 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2013, pp.
405–412.

[33] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Energy-

efficient architecture for advanced video memory,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2014, pp.

132–139.
[34] HP Labs, “HP Labs : CACTI,” 2008. [Online]. Available:

http://www.hpl.hp.com/research/cacti/. [Accessed: 06-Nov-2017].

[35] Xiangyu Dong, Cong Xu, Yuan Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Nonvolatile

Memory,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31,

no. 7, pp. 994–1007, Jul. 2012.
[36] H. Singh, K. Agarwal, D. Sylvester, and K. J. Nowka, “Enhanced Leakage

Reduction Techniques Using Intermediate Strength Power Gating,” IEEE

Trans. Very Large Scale Integr. VLSI Syst., vol. 15, no. 11, pp. 1215–1224,
Nov. 2007.

[37] Micron Technology Inc., “4Gb: x16, x32 Mobile LPDDR2 SDRAM S4.”

Micron Technology Inc., 2011.
[38] Micron Technology Inc., “TN-46-12: Mobile DRAM Power-Saving

Features/Calculations.” Micron Technology Inc., 2005.

[39] Micron Technology Inc., “TN-46-03 – Calculating DDR Memory System
Power.” Micron Technology Inc., 2001.

[40] ISO/IEC-JCT1/SC29/WG11, “Common test conditions and software

reference configurations.” 2012.
[41] ISO/IEC-JCT1/SC29/WG11, “High Efficiency Video Coding (HEVC)

Test Model 13 (HM 13) Encoder Description.” 2013.

