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ABSTRACT 

This Thesis presents the design of an energy-efficient hybrid scratchpad video memory 

architecture (called Hy-SVM) for parallel High-Efficiency Video Coding. Video coding stands 

out as a high complex part in the video processing applications. HEVC standard brought 

innovations that increase the memory requirements, mainly due to: (a) the novel coding 

structures, which aggravates the computational complexity by providing a wider range of 

possibilities to be analyzed; and (b) the high-level parallelism features provided by the Tiles 

partitioning, which provides performance acceleration, but, at the same time, strongly adds hard 

challenges to the memory infrastructure. The main bottleneck in terms of external memory 

transmission and on-chip storage is the reference frames data: which consists of already coded 

(and reconstructed) entire frames that must be stored and intensively accessed during the 

encoding process of future frames. Due to the large volume of data required to represent the 

reference frames, they are typically stored in the external memory (especially when high-

definition videos are targeted). The proposed Hy-SVM architecture is inserted in a video coding 

system, which is based on multiple Tiles partitioning to enable parallel HEVC encoding: each 

Tile is assigned to a specific processing unit. The key ideas of Hy-SVM include: application-

specific design and management; combined multiple levels of private and shared memories that 

jointly exploit intra-Tile and inter-Tiles data reuse; scratchpad memories (SPMs) as energy-

efficient on-chip data storage; combined SRAM and STT-RAM hybrid memory (HyM) design. 

We propose a design methodology for Hy-SVM that leverages application-specific properties 

to properly define the HyMs parameters. In order to provide run-time adaptation (for both off- 

and on-chip parts), Hy-SVM integrates a memory management layer composed of: (1) overlap 

prediction, which has the goal of identifying the redundant memory access behavior by 

analyzing monitored past frames encoding to increase inter-Tiles data reuse exploitation; (2) 

memory pressure management, which aims on balancing the Tiles-accumulated memory 

pressure targeting on improving external memory communication channel usage; and (3) 

lifetime-aware data management scheme that alleviates STT-RAM SPMs of high bit-toggling 

write accesses to increase the their cells lifetime, as well as to reduce overhead issues related to 

poor write characteristics of STT-RAM. Application-specific knowledge was exploited by  

inheriting HEVC properties and performing run-time monitoring of memory accesses. Such 

information is used to properly design the on-chip video memories, as well as being utilized as 

input parameters of the run-time memory management layer. Based on the run-time decisions 

from the proposed Hy-SVM management strategies, Hy-SVM integrates distributed memory 

access management units (MAMUs) to control the access dynamics of private and shared 

SPMs. Additionally, adaptive power management units (APMUs) are able to strongly reduce 

on-chip energy consumption due to an accurate overlap prediction. 

The experimental results demonstrate Hy-SVM overall energy savings over related works 

under various HEVC encoding scenarios. Compared to traditional data reuse schemes, like 

Level-C, the combined intra-Tile and inter-Tiles data reuse provides 69%-79% of energy 

reduction. Regarding related HEVC video memory architectures, the savings varied from 2.8% 

(worst case) to 67% (best case). From the external memory perspective, Hy-SVM can improve 

data reuse (by also exploiting inter-Tiles data redundancy), resulting on 11%-71%% of reduced 

off-chip energy consumption. Additionally, our APMUs contribute by reducing on-chip energy 

consumption of Hy-SVM by 56%-95%, for the evaluated HEVC scenarios. Thus, compared to 

related works, Hy-SVM presents the lowest on-chip energy consumption. The memory pressure 

management scheme can reduce the variations in the memory bandwidth by 37%-83% when 

compared to the traditional raster scan processing for 4- and 16-core parallelized HEVC 

encoder. The lifetime-aware data management significantly extends the STT-RAM lifetime, 

achieving 0.83 of normalized lifetime (near to the optimal case). Moreover, the overhead of 



 

 

 

 

implementing our management units insignificantly affects the performance and energy-

efficiency of Hy-SVM. 

 

Keywords: High-Efficiency Video Coding. Parallel Processing. On-Chip Memory Design. 

Memory Management. Application-Specific Knowledge. Emerging Memory Technologies and 

Organizations. 

  



 

 

 

Projeto e Gerenciamento de Arquitetura de Memória Energeticamente  

Eficiente para Codificadores de Vídeo HEVC 

 

RESUMO 

Esta tese de doutorado apresenta o projeto de uma arquitetura de memória híbrida 

energeticamente eficiente baseada em memórias do tipo scratchpad (Hy-SVM) para a 

codificação paralela de vídeos segundo o padrão HEVC. A codificação de vídeo se destaca 

como uma parte extremamente complexa nas aplicações de processamento de vídeo. O padrão 

HEVC traz inovações que complicam fortemente os requerimentos de memória de tais 

aplicações, principalmente devido a: (a) novas estruturas de codificação, as quais agravam a 

complexidade computacional por proporcionarem muitas modos possíveis de codificação que 

devem ser analisados; além do (b) suporte de alto nível à paralelização da codificação por meio 

do particionamento das unidades de codificação em múltiplos Tiles, o qual provê a aceleração 

da performance dos codificadores, porém, ao mesmo tempo, adiciona grandes desafios à 

infraestrutura de memória. O principal gargalo em termos de comunicação com a memória 

externa e de armazenamento interno (dentro do chip do codificador) é dados pelas informações 

dos quadros de referência: que consiste em uma série de quadros completos já codificados (e 

reconstruídos) que devem ser mantidos em memória e acessados de forma intensa durante o 

processamento dos quadros futuros. Devido ao grande volume de dados que são necessários 

para representar os quadros de referência, estes são tipicamente armazenados na memória 

externa dos codificadores (principalmente quando vídeos de alta e ultra alta resolução são 

processados). A arquitetura proposta Hy-SVM está inserida em um sistema de codificação 

baseado no particionamento dos quadros do vídeo de entrada em múltiplos Tiles, de forma a 

habilitar a codificação paralela das informações segundo o padrão HEVC: neste cenário, cada 

Tile é assinalado para uma específica unidade de processamento do codificador HEVC, o qual 

executa o processamento dos diferentes Tiles em paralelo. A ideias chave da arquitetura Hy-

SVM incluem: projeto e gerenciamento de memórias para a aplicação específica de codificação 

de vídeo; uso de múltiplos níveis de memórias privadas e compartilhadas, com o objetivo de 

explorar o reuso de dados intra-Tile e inter-Tiles de forma combinada; uso de memórias do tipo 

scratchpad (SPMs) para o armazenamento interno da informações de forma eficiente em termos 

de consumo de energia; projeto de memórias híbridas utilizando as tecnologias SRAM e STT-

RAM como base. Uma metodologia de projeto é proposta para a arquitetura Hy-SVM, a qual 

aproveita propriedades específicas da aplicação para, de forma adequada, definir os parâmetros 

de projeto das memórias híbridas. De forma a prover adaptação em tempo de execução (para 

ambas as memórias on-chip e off-chip), a arquitetura Hy-SVM integra uma camada de 

gerenciamento composta pelas seguintes estratégias: (1) predição do overlap (sobreposição de 

acessos), o qual busca identificar o comportamento dos acessos redundantes entre diferentes 

unidades de processamento do codificador HEVC a partir da análise dos acessos à memória das 

codificações dos quadros passados do vídeo, com o objetivo de aumentar o potencial de 

exploração do reuso de dados inter-Tiles; (2) gerenciamento dos acessos à memória externa, 

responsável por balancear a vazão de dados com a memória acumulada entre as múltiplas 

unidades de processamento do codificador HEVC paralelo, com o objetivo de melhorar o uso 

do barramento de comunicação com a memória externa; e (3) gerenciamento de dados das 

SPMs implementadas a partir de células de memória STT-RAM, o qual alivia estas células de 

acessos de escrita com alta atividade de chaveamento dos bits armazenados, com o objetivo de 

aumentar o tempo de vide destas células, bem como reduzir as penalidades relativas à 

ineficiência dos acessos de escrita nas memórias STT-RAM. O conhecimento específico da 

aplicação foi utilizado nas estratégias de gerenciamento em tempo de execução das seguintes 

formas: explorando parâmetros da codificação HEVC e realizando monitorando em tempo real 



 

 

 

 

dos acessos à memória realizados pelo codificador. Estas informações são utilizadas tanto pelas 

técnicas de gerenciamento, quanto pelas metodologias de projeto das memórias. Baseadas nas 

decisões tomadas pela camada de gerenciamento, a arquitetura Hy-SVM integra unidades de 

gerenciamento de acessos à memória (memory access management units – MAMUs) para 

controlar as dinâmicas de acesso das memórias SPM privadas e compartilhadas. Além disso, 

unidades adaptativas de gerenciamento de potência (adaptive power management units – 

APMUs) são capazes de reduzir o consumo de energia interno do chip do codificador a partir 

das estimativas precisas de formação dos overlaps. 

Os resultados obtidos por meio dos experimentos realizados demonstram economias de 

consumo energético da arquitetura Hy-SVM, quando comparada a trabalhos relacionados, sob 

diversos cenários de teste. Quando comparada a estratégias de reuso de dados tradicionais para 

codificadores de vídeo, como o esquema Level-C, a exploração do reuso de dados combinado 

nos níveis intra-Tile e inter-Tiles provê 69%-79% de redução de energia. Considerando as 

arquiteturas de memória de vídeo com foco no padrão HEVC, os ganhos variaram desde 2,8% 

(pior caso) até 67% (melhor caso). Da perspectiva do consumo de energia relacionado à 

comunicação com a memória externa, a arquitetura Hy-SVM é capaz de melhorar o reuso de 

dados (por explorar também o reuso de dados inter-Tiles), resultando em um consumo de 

energia on-chip 11%-17% menor. Além disso, as APMUs contribuem para reduzir o consumo 

de energia on-chip da arquitetura Hy-SVM em 56%-95%, para os cenários de teste analisados. 

Desta forma, comparada aos trabalhos relacionados, a arquitetura Hy-SVM apresenta o menor 

consumo energético on-chip. O gerenciamento da vazão da comunicação com a memória 

externa é capaz de reduzir as variações de largura de banda em 37%-83%, quando comparado 

à ordem tradicional de processamento, para cenários de teste com 4 e 16 Tiles sendo 

processados em paralelo pelo codificador HEVC. O gerenciamento de dados pôde, de forma 

significativa, estender o tempo de vida das células de memória STT-RAM, alcançando 0,83 de 

tempo de vida normalizado (métrica adotada para comparação, ficando muito próximo do caso 

ideal). Além disso, as sobrecargas causadas pela implementação das unidades de gerenciamento 

não afetam de foram significativa a performance e a eficiência energética da arquitetura Hy-

SVM propostas por este trabalho. 

 

Keywords: High-Efficiency Video Coding. Processamento Paralelo. Projeto de Memória On-

Chip. Gerenciamento de Memória. Conhecimento Específico da Aplicação. Tecnologias e 

Organizações de Memórias Emergentes. 
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1.  INTRODUCTION 

Video processing emerges as the most used multimedia application in the embedded 

systems field, reaching billions of users mainly due to the popularization of mobile devices. 

The availability of very high definition video cameras significantly increases the multimedia 

processing requirements in such devices. Furthermore, the recent advances of streaming 

services motivate users to constantly share and view digital videos over the internet.  

Experts from Cisco released on July 2017 a forecast about the impact of visual networking 

applications in the data traffic over the internet. The analyses comprehend actual traffic analysis 

of 2016 and trace prediction trend lines until 2021. The complete technical reports are available 

at (CISCO, 2017). A summary of the main forecasts regarding multimedia applications, 

focusing on video processing, is depicted in Figure 1.1.  
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Figure 1.1: Internet traffic predictions from Cisco experts: (a) overall internet traffic trend (2016 to 

2021); (b) video traffic by segment at 2021; (c) internet traffic trend considering only mobile devices 

(2016 to 2021); and (d) video traffic by resolution (Standard Definition (SD), High Definition (HD) 

and Ultra-High Definition (UHD)). 

When considering the overall scenario (Figure 1.1a), the predictions say that 81% of all 

internet traffic will be occupied by video transmission in 2021. The considered segments of 

video applications were: video on demand (like Youtube, Netflix and another related video 

streaming services), live video transmission and others (like surveillance applications). 

Observing the predicted video traffic by segment at 2021, live video transmission will represent 

13% (see Figure 1.1b). Live video applications lead to hard constraints for the processing, 

storage and transmission parts, since they impose real time requirements, aggravating the 

challenges for software and hardware designers to support it. 

Figure 1.1c depicts the internet data traffic prediction considering only the mobile devices. 

Still, video processing stands out as the most representative application field: from 61% in 2016 

up to 80% in 2021. In this analysis, it can be noted a stronger growth in the video traffic part, 

reaching 48% of increasing by year (on average). This trend endorses the need of efficient 

embedded multimedia processing (in terms of performance and energy) to support the growing 

demand for video applications on battery-powered devices. 
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Furthermore, the forecasts also trace the traffic considering the transmitted video resolutions 

(Figure 1.1d). In this scenario, it can be noted a strong increase in the Ultra-High Definition 

(UHD) video support. UHD videos, which represented only 1% of the total video transmission 

over the internet in 2016, will reach 30% of the total video traffic by 2021. Roughly, UHD 

videos have 2.5x and 9x more data than High Definition (HD) videos and Standard Definition 

(SD) videos. This leads to a significant complexity increasing for all steps inside the video 

processing system (storage, transmission, encoding and decoding). 

 Problems Definition 

Advanced video processing algorithms introduce very high pressure on memory hierarchy, 

leading to undesirable energy and performance overhead (SHAFIQUE et al., 2012; ZATT et 

al., 2011a). Video codecs (encoders and decoders) are among the most complex and widely 

deployed video processing applications. Recently, the High-Efficient Video Coding (HEVC) 

(ISO/IEC-JCT1/SC29/WG11, 2013a) standard has been released to provide double coding 

efficiency compared to the H.264/AVC (its predecessor). However, this comes at the cost of 

increased computation time and by more than 40% (see Figure 1.2a). Besides employing novel 

complex coding tools, an HEVC encoder requires a significant amount of data from the off-

/on-chip memories due to more memory intensive reference frames transmission for the 

prediction steps. On average, the memory demand is 2x-3x higher compared to the H.264/AVC 

(see Figure 1.2b). Thus, high off-/on-chip memory bandwidth along with larger on-chip video 

memories (to support bigger resolutions) leads to increased energy consumption in the HEVC 

encoders.  
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Figure 1.2: HEVC vs. H.264/AVC encoder (a) encoding time and (b) memory accesses comparison1.  

Furthermore, HEVC incorporate techniques to allow parallel execution, increasing the 

performance the encoding part, such as Tiles partitioning (MISRA et al., 2013). This strategy 

divides the frame into rectangular regions that can be encoded in parallel. Whereas providing 

speedup to encoding applications, such tools aggravate the energy consumption of the memory 

infrastructure (on- and off-chip parts; see Figure 1.3a and Figure 1.3b), posing new challenges 

for multimedia systems. The main Tiles-parallelized HEVC challenge is to efficiently exploit 

the inter-Tiles data reuse potential, which significantly increases as more parallelism is 

exploited (Figure 1.3d). In this work, we refer to this reference frame region that is redundantly 

accessed by more than one Tile processing as the overlap region (this concept will be 

extensively presented and discussed along the text). It can be also noted that, by increasing the 

parallelism employed during a HEVC encoding process, the external memory pressure2 grows 

and becomes more unpredictable (see Figure 1.3c), imposing hard challenges to the access 

management. 

                                                 
1 Average results for commonly used test sequences [13], 128x128 search window, H.264/AVC and HEVC test 

models, 300 frames. 

2 Also known as instant off-chip memory bandwidth.  
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Figure 1.3: Memory requirements analysis for HEVC encoding. 

Thereby, based on these preliminary evaluations, there is a strong need for energy-efficient 

memory architectures targeting the viability of parallel features of HEVC. Chapter 4 will 

present a detailed memory profiling of parallel executions of HEVC encoders to analyze 

specific behaviors and to specify the main energy bottlenecks. 

 Key Research Opportunities and Challenges 

There are some important state-of-the-art research opportunities in the way of proposing 

memory architectures to enable energy-efficient HEVC execution on embedded manycore 

systems. Each one of these research fields brings hard challenges that will guide the proposed 

solutions of this work. A brief summary of these opportunities and the corresponding key 

challenges are presented as follows. A detailed review and further discussions of state-of-the-

art works for each research area will be given at Chapter 3 . 

Application-Specific Knowledge: Application-specific properties exploitation has been 

adopted by video coding community to base contributions in different research fields, such as 

computational complexity control units (CORREA et al., 2011, 2013), fast mode decision 

engines (LIAO; YANG; CHEN, 2016; PODDER; PAUL; MURSHED, 2016) and hardware 

accelerators design (BONATTO et al., 2017; CHO et al., 2015; M; SK, 2017). Recent trends 

demonstrated benefits of application-specific knowledge for memory design and management 

targeting low power video encoding (SAMPAIO et al., 2013a; SHAFIQUE et al., 2012; ZATT 

et al., 2011a, 2011b). In such works, specific video coding properties and video content 

characteristics are used as a basis for the proposed memory architectures. Therefore, one 

important challenge is to leverage HEVC-specific knowledge to design and manage energy-

efficient video memories for HEVC encoding. Still, these works also takes advantage of the 

strong correlation between the memory access behaviors during the video encoding. Therefore, 

another important challenge is to implement run-time monitoring systems to catch memory-

related properties during the HEVC encoding process to provide helpful information for the 

management units to improve the memory energy efficiency. 

Memory Requirements for Parallel Video Coding: Even considering HEVC application-

specific knowledge for memory architectures design to increase their energy efficiency, most 

of the published works does not consider the memory requirements for parallelized video 
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coding. Important issues related to memory infrastructure in parallelized systems are related to: 

(1) restrictive access rates and increased memory pressure, due to multiple processing units 

requesting data in parallel; (2) conflicts related to the access of the same data from different 

processing units, leading to memory contention; and (3) inter-cores data accesses redundancy, 

requiring shared on-chip memories to minimize external memory communication. Therefore, 

the challenge is to develop application-specific video memory architectures targeting energy 

efficiency considering parallel video coding requirements.  

Scratchpad Memories: A large body of research explored efficient cache organizations 

targeting multi/manycore processors. To overcome/alleviate the hardware overhead of caches, 

Scratch-Pad Memories (SPMs) evolved for energy-constrained embedded systems 

(BANAKAR et al., 2002). Instead of providing hardware support for map data/code from off-

chip to on-chip memory, SPM allows designed/compiler to perform content management 

saving extra energy compared to complete caches under certain operating scenarios. Therefore, 

the challenge here is to efficiently utilize SPMs by exploiting application-specific knowledge to 

enable energy savings in the SPMs design and access management.  

Hybrid Memory Design: Recently, the hybrid memory architectures for general purpose 

manycore processors have been emerged. The hybrid memory design utilizes emerging 

memory technologies (e.g., MRAM, STT-RAM (DONG et al., 2008)) in combination with 

traditional SRAM cells (ABE et al., 2012; KHAN; SHAFIQUE; HENKEL, 2013). Their goal 

is to reduce the impact of SRAM shortcomings, like low density and high static energy 

consumption. Generally, for general purpose applications, the emerging technologies are 

desired for last-level caches due to the low-static-energy and high-density features (CHEN et 

al., 2012). However, in reason of the lack of application-specific knowledge, these schemes are 

typically not efficient enough to support the high memory requirements of HEVC. Therefore, 

there is a need of application-driven design for energy-efficient hybrid memories tailored 

towards HEVC executing in manycore processors. This work exploits the STT-RAM (Spin-

Transfer Torque RAM) usage in combination with SRAM, which is known to be a non-volatile 

memory (NVM), keeping data stored even if the cells are switched-off (no static energy 

consumption). Although all mentioned advantages of STT-RAM, its cell imposes hard energy 

and performance penalties during the write operations. In addition, STT-RAM cells have its 

lifetime dependent on the bit-toggling activity of the write operations (WU et al., 2010). 

Therefore, there is a challenge here of properly data management policies (focusing on 

reducing the write activity) to increase the cells lifetime and to enable energy efficiency in a 

STT-RAM based hybrid memory system. 

 Goals of this Thesis 

The major goal of this thesis is to improve the energy efficiency for the memory 

infrastructure (off- and on-chip video memories) to enable Tiles-parallelized HEVC execution 

in embedded video processing applications. The proposed solutions are based on opportunities 

mostly brought by novel memory technologies and organizations, as discussed in the previous 

section. 

Specific goals of this work are listed as follows. They will guide the insights and ideas for 

the designed memory architecture:  

G1. Take advantage of application-specific knowledge of HEVC standard (i.e. its new 

coding tools) and video content properties to develop an energy-efficient video memory 

architecture; 

G2. Consider specialized and more restricted memory requirements for energy-efficient 

HEVC parallel execution (multiple-Tiles feature of HEVC);  
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G3. Analyze, at design time, properties and offline memory access statistics of HEVC 

parallel executions to define design methodologies to improve the energy efficiency of 

on-chip video memories; 

G4. Analyze, at run time, on-/off-chip memory-related access behaviors related to HEVC 

encoding process to adapt the memory management to the current requirements, in 

order to achieve higher energy savings; 

G5. Utilize SPMs as energy-efficient on-chip video memories by exploiting the application-

specific knowledge to simplify their management units circuitry;  

G6. Design multi-level on-chip video memory architectures to both exploit intra-Tile and 

inter-Tile data reuse to allow further external memory energy savings; 

G7. Exploit hybrid memory design, utilizing emerging STT-RAM technology, to minimize 

the SRAM energy-related shortcomings when large on-chip video memories are 

required for parallel HEVC execution, while handling endurance and write-inefficiency 

of STT-RAM cells. 

G8. Balance Tiles-accumulate memory pressure to maximize the usage of the off-chip 

memory channel for reference data fetching; 

 Main Contributions 

Figure 1.4 presents an overview of the contributions of this work, inside the adopted parallel 

HEVC execution system. To exploit multiple processing units system, uniform Tiles 

partitioning is defined for the input video. As these Tiles can be encoded independent to each 

other, they can be assigned to different processing units (as in Figure 1.4a). In the external 

memory (implemented using DRAM technology) is stored all data required for HEVC 

execution. Especially, the memory architectures focus on provide energy-efficient management 

for the reference frames (Figure 1.4b). Typically, for each target reference frame, each 

processing core will access data around its corresponding Tile position. In order to provide 

energy-efficient storage for the reference frames, this work implements a Hybrid Scratchpad 

Video Memory Architecture (Hy-SVM). The proposed memory architecture is designed based 

on methodologies that leverage application-specific knowledge (Figure 1.4d) and offline 

memory-related statistics from HEVC. Techniques that exploit monitored run-time memory-

related statistics to increase the energy efficiency of Hy-SMVM are implemented by three 

different memory management schemes (Figure 1.4e): (1) Overlap Prediction, (2) Memory 

Pressure Management and (3) Lifetime-Aware Data Management. Based on run-time decisions 

of such schemes, Hy-SVM integrates distributed Memory Access Management Units 

(MAMUs) and Adaptive Power Management Units (APMUs), which effectively manages the 

access dynamics and the energy consumption, being adaptive to the input video content 

properties. 

The overall ideas related to each one of the main contributions of this work are presented as 

follows: 
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Figure 1.4: Overview of the novel contributions of this work. 

 Energy-Efficient On-Chip Memory Design 

 Hybrid Scratchpad Video Memory Architecture (Hy-SVM): that is composed of 

multiple levels of private and shared SPMs. It consists on (i) private L13 SPMs, 

implemented as SRAM arrays, to store the search window samples required for each 

HEVC processing unit; and (ii) private and shared L2 SRAM/STT-RAM hybrid 

memory SPMs (called HyMs) to provide reference frame level data reuse. The 

proposed design methodology leverages application-specific knowledge to define 

the hardware design parameters of SPMs. 

 Energy-Efficient Memory Management Layer 

 Overlap Prediction: that leverages application-specific properties (e.g., history of 

past overlaps, video content and HEVC knowledge; see Figure 1.4d) to estimate the 

overlap characteristics for the next frame encoding. The overlap consists on the 

reference frame region that is accessed by two or more processing cores (each core 

processes one specific Tile). Figure 1.4d depicts the typical pattern of the formed 

overlap. Important overlap properties are related to its size, shape and access 

intensity distribution. 

 Lifetime-Aware Data Management: that leverages application-specific properties to 

improve the STT-RAM cells endurance in the HyMs. The proposed data 

                                                 
3 L1 and L2 in this work are not related to cache levels, but scratchpad memories implemented using SRAM-only 

(L1 level) or hybrid SRAM/STT-RAM (L2 level). 
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management scheme dynamically decides if the incoming reference frame block will 

be stored in the SRAM or STT-RAM portion. This decision is based on the estimated 

bit-toggling activity of each memory write operation in the HyMs, since most of 

STT-RAM shortcomings are related to write accesses.  

 Memory Pressure Management: that leverages the memory access correlation within 

and across different Tiles (i.e. intra- and inter- Tiles correlations; see Figure 1.4d) to 

balance the instant memory pressure that is necessary for multiple cores to 

simultaneously access the external memory channel.  

 On-Chip Management Units of SPMs: that implements memory access management 

units (MAMUs) and adaptive power management units (APMUs) to manage the 

data migration and the energy consumption of Hy-SVM (as in Figure 1.4e). Based 

on the overlap prediction output, the MAMUs implements read and write policies 

that manage the incoming Hy-SVM access to the corresponding SPM/HyM. 

Furthermore, APMUs can adapt the power gating strength according to the predicted 

overlap characteristics, which strongly depend on the video content. 

 Text Organization 

This PhD Thesis is organized as follows: 

Chapter 2 brings the basics related to video coding applications and further details of the 

state-of-the-art High-Efficiency Video Coding (HEVC), which are crucial to understand the 

ideas of the proposed video memory architectures. Additionally, this chapter presents the 

concepts related to the energy consumption of memory technologies for on-/off-chip memories. 

Initially, traditional Static-RAM (SRAM) is addressed. Following, the adopted emerging 

memory technologies for the proposed on-chip hybrid memory architectures are explained: 

Static Random Access Memory (SRAM) and Spin-Transfer Torque RAM (STT-RAM).  

Chapter 3 presents the main ideas of state-of-the-art works that focus on improving energy 

efficiency of memory systems. Initially, a brief overview of general-purpose contributions 

regarding memory architectures for parallel processing is given. Then, application-specific 

works targeting video coding memory optimization are presented and discussed. After, detailed 

comparisons are performed with related energy-efficient video memory architectures. 

Chapter 4 shows detailed HEVC memory evaluations to motivate the proposed on-chip 

memory architecture and energy-efficient management units. The main goal is to have a better 

understanding of the access behaviors of parallel HEVC to support the ideas. A key concept 

behind this work is duly defined: the overlap formation. Finally, the novel contributions are 

retaken by introducing the following technical chapters. 

Chapter 5 introduces our Hybrid Scratchpad Video Memory Architecture (Hy-SVM), 

which is strongly based on the overlap exploitation to save external memory energy. Initially, 

an overview of the designed SPM levels and the adopted on- and off-chip memory organization 

models are presented. Then, offline statistical evaluations of HEVC and video content 

properties are performed, which will base the design of SPMs. Thus, the proposed methodology 

to define the memory parameters of all on-chip memory levels is described. Moreover, a logic 

organization of proposed hybrid SPMs is presented, relying on a joint combination of SRAM 

and STT-RAM portions to increase cells lifetime. 

Chapter 6 properly describes the energy-efficient management layer of Hy-SVM. At first, 

the overlap prediction scheme is presented. The proposed strategy is based on performed 

evaluations from correlated characteristics from consecutive overlaps. After, the memory 

pressure management strategy is presented to properly manage the off-chip communication.  
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To manage STT-RAM write and to handle with endurance issues, the lifetime-aware data 

management scheme is explained. The effective hardware implementations of the proposed 

management schemes are integrated in the on-chip management units of Hy-SVM, composed 

be distributed memory access management units (MAMUs) and adaptive power management 

units (APMUs), which are described in the last part of the chapter. 

Chapter 7 presents discussions regarding the experimental results, mostly presented in 

terms of energy consumption considering the on- and off-chip parts. The adopted 

methodologies for video coding evaluation, the used memory power models and the simulation 

infrastructure for parallel HEVC execution are also presented. The results of Hy-SVM are 

extensively compared to state-of-the-art related works and baseline implementations. Besides 

energy evaluations, external memory communication, overlap prediction accuracy and 

overhead analyses are also presented. 

Chapter 8 concludes this thesis by presenting the final remarks. All contributions are 

summarized and the initially defined goals are discussed, based on the achieved results. As 

reflexive analysis from the PhD path, future research perspectives are presented. 
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2. BACKGROUND  

Uncompressed video signals lead to a huge amount of data. Still, digital video usage has 

become even more ubiquous (SZE; BUDAGAVI; SULLIVAN, 2014). As results from this, 

video traffic is the biggest load on communication networks and data storage in a world-wide 

scenario. In this field, video compression has a key role of alleviating these constraints. 

The H.264/AVC standard (ITU-T, 2013) still has important contribution in the video 

processing applications. However, considering the requirements imposed in its definition, 

H.264/AVC encoders are not enough scalable to meet the nowadays constant hunger for higher 

video quality (e.g. in terms of ultra-high resolutions, higher frame rates, and higher fidelity). In 

this scenario, the High-Efficiency Video Coding (HEVC) emerged (ISO/IEC-

JCT1/SC29/WG11, 2013a), offering a major step forward to support these requirements. 

At the first part, this chapter has the goal of introducing the main basic fundamental concepts 

involved in the video compression (aka. coding) applications (Section 2.1). From this, the 

HEVC standard is discussed in deeper details (Section 2.2). The emphases are for the HEVC 

structures and coding tools that are mostly related to the proposed memory architectures. For 

details regarding the other parts of HEVC processing, some references will be suggested. 

In the second part, it will be given an introduction regarding the memory technologies and 

organizations adopted by the memory architectures designed by this work (Section 2.3). The 

main goal is to present the memory cells internal design (at transistor level), as well as memory 

organization structures. Finally, energy consumption characteristics of all covered memory 

technologies will be discussed and compared. 

 Preliminaries on Video Coding 

 Digital Video Characteristics 

A digital video is a sequence of static images (called frames or pictures) that, when 

exhibited at an enough temporal rate, gives a motion sensation to the viewer. In general, the 

enough frame rate to ensure a smooth motion perception considering the human visual system 

is around 30 frames per second (fps) (RICHARDSON, 2004). For nowadays video applications 

demand, which provides improved realism experience to users, the required frame rate for 

digital videos reaches 120 frames per second (SZE; BUDAGAVI; SULLIVAN, 2014). Each 

frame within the video is digitally represented by a two-dimensional matrix of pixels, with 

horizontal dimension of W (width) and vertical dimension of H (height).  

The pixel is the digital data that stores the color and luminosity information of its 

corresponding position inside a frame. There are several color spaces that define the numerical 

representation of the pixels properties. Video coding applications are typically based on the 

YCbCr color space (see Figure 2.1). In such space, there are three different information: 

luminance (Y), blue chrominance (Cb) and red chrominance (Cr). The luminance channel (also 

referred as luma) represents the luminosity (light intense – gray scale fashion) of the picture. 

The chrominance matrices (or chroma) are related to the different color tones of the frame. The 

YCbCr color space is the preferred one for video coding applications in reason of its weak 

correlation between the channels (RICHARDSON, 2004). As consequence, compression tools 

can be applied separately for each component, enabling the exploitation of specific properties 

of each one. Video coding community commonly refers to each luma or chroma component of 

a pixel as sample. By following this, it is possible to define that one pixel has one luma, one 

blue chroma and one red choma sample associated with it. 
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Figure 2.1: Basic concepts of digital videos: YCbCr color space representation of digital videos; 4:2:0 

color format (supported by HEVC); temporal and spatial redundancies exemplification. 

Digital videos, even in the raw format (without any compression), can have their samples 

matrices subsampled according with the predefined color format. When considering the YCbCr 

space, luma is the most important channel, regarding its visual contribution for the human eye 

perception. Therefore, the resolution of chroma channels can be reduced with imperceptible 

losses in the subject video quality. The most common formats are 4:4:4, 4:2:2 and 4:2:0. In 

4:4:4 format (no subsampling), there is no chroma resolution reduction and each pixel has its 

own luma, blue chroma and red chroma samples. The 4:2:2 and 4:2:0 are subsampled ones, 

where the chroma matrices dimensions are reduced. In these cases, one chroma sample (red and 

blue) is used to express the color property of more than one pixel.  

HEVC encoders widely adopt the 4:2:0 format as input digital video format (SULLIVAN 

et al., 2012). In this scenario, the blue and red chroma matrices are 2-subsampled in both 

horizontal and vertical dimensions (as depicted in Figure 2.1). As result, one chroma sample is 

inherited by four neighboring pixels. Therefore, by only applying this subsampled color format, 

the representation of one video frame is reduced by 50%. 

Important characteristics from digital videos are related to the high data redundancy within 

them. The main goal of video encoders is to exploit such redundancies to reduce bit 

representation, while keeping the original visual quality; or, at least, minimizing the quality 

drops. The most representative data redundancy is noted when temporal-consecutive frames are 

observed (called temporal redundancy). Due to the high frame rate of digital videos (as already 

discussed), it is highly probable that almost the same scenario is represented by neighboring 

pictures (considering the exhibition order). Taking a 30-fps digital video as example, where 

consecutive pictures are captured with a time difference of 1/30 seconds (about 33 

milliseconds), it is intuitive to conclude that most part of the scene is similar. The variation 

between adjacent frames, in this case, is mostly derived from the objects displacement inside 

the scenario during the capture time. This means that the objects stay inside the frame, but in a 

different position. Throughout the text, these characteristics will be referred as video motion 

properties. Video encoders strongly take advantage from the temporal redundancy by applying 
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intricate motion search algorithms to capture these properties. The inter-frame prediction is the 

coding tool responsible for this exploitation (RICHARDSON, 2004). 

In addition to the temporal redundancy, there is a substantive potential for data 

representation reduction when exploiting homogeneous regions in neighboring pixels inside a 

frame (called spatial redundancy). Picture areas that represent a scene background, or a clean 

and blue sky are practical examples of high homogeneity. Furthermore, even well-behavior 

textured regions present spatial redundancy that can be exploited. The spatial redundancy is 

exploited by the intra-frame prediction tool (RICHARDSON, 2004). 

At last, there is also the entropic redundancy, which refers to the exploitation of different 

frequency of occurrences for distinct encoded symbols in a video. This issue is similarly 

handled with ordinary data compression algorithms, where high-frequent symbols are coded 

with less bits. Still, video coding tools apply specialized data compression algorithms to achieve 

higher compression rates (RICHARDSON, 2004). 

Given some basics regarding digital videos characteristics, preliminaries about video coding 

are presented as follows. 

 Hybrid Video Compression Model 

The HEVC, as well as recent previous video coding standards, is based on the hybrid video 

compression model, which is composed of the following functional blocks: (a) prediction 

operations (intra- and inter-frame predictions), (b) de-correlating transforms, (c) quantization 

and (d) entropy coding. Basically, the prediction blocks exploit already coded data (within or 

across video frames) to best represent the video region that is being coded. This predicted 

representation may not be exactly the same as the original. Thus, the difference (called residue) 

must considered in order to guarantee the quality of the coded video. Transforms and 

quantization strongly acts to reduce the residue representation. All generated information is, 

then, processed by the entropy coding part. 

Figure 2.2 graphically depicts the hybrid video compression model flow to encode 

(compress) a given input digital video. The presented coding tools process the video by initially 

dividing the color matrices into smaller regions. At this part of the text, these smaller regions 

of the frame will be generically called blocks. One of the main HEVC innovations is the 

definition of very flexible data structures that enables the selection of variable-sized frame 

blocks. The goal is to adapt the block size to the video content properties: detailed frame regions 

can be split to smaller block sizes, while homogeneous areas can be grouped into larger blocks.  
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Figure 2.2: Block diagram of a video encoder (following the hybrid compression model). 
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Initially, the main goal of a video encoder is to analyze different ways of representing each 

block of the current frame (frame that is being currently processed) using already coded 

information: from the already coded blocks (1) of the current frame (spatial redundancy 

exploitation), or (2) of the past frames (temporal redundancy exploitation). This already 

processed information serves as reference to represent the current block. Thus, instead of 

including the whole pixels information in the final bitstream, the encoder will generate coding 

information to express the right way of reconstructing the current block in the decoder side. 

The above presented task is executed by the prediction step and represents the main core of 

the hybrid video compression model. The intra-frame prediction is responsible to analyze the 

spatial correlation (within the current frame), while the inter-frame prediction analyzes the 

temporal motion properties (across the past frames). The prediction step generates two main 

information: the predicted block and prediction mode. The predicted block represents the best 

possible representation of the current block solely through the use of already coded reference 

blocks. In the same direction, the prediction mode is a video coding control entity that stores 

the selected way of using the reference data to re-generate the predicted block. Note that the 

prediction mode is important for the decoder side, since it has to reconstruct the predicted block 

to rebuild the original video. As already mentioned, the predicted block frequently differs from 

the original block. Hence, simply discarding this difference may result in significant losses 

during the encoding process. To handle this issue, this data (called residual block) is also sent 

into the output bitstream. In the decoder side, the predicted block is generated by having the 

prediction mode information, and further added to the residual block to rebuild the original 

block. 

In hybrid video compression, there is a special treatment path to compress the residual data: 

composed of the forward transforms and quantization steps (FT/FQ modules in Figure 2.2). 

Before being processed by the entropy encoding, the residue is applied to mathematical 

transforms operations. The goal of the transforms is to convert the samples values from the 

spatial to the frequency domain, in order to de-correlate the residue and concentrate the high-

frequency elements in a few coefficients. Over the transforms output, the quantization 

eliminates the small values associated to spectral components that are not perceptually relevant, 

typically generating sparse matrices of samples (with many near-zero values). It is important to 

highlight that the quantization inserts losses in the residual data. The strength of the quantization 

cuts is controlled by the Quantization Parameter (QP): higher is the QP higher is the 

quantization strength, leading to more losses during the encoding process. In the same vein, 

these higher losses are generally followed by higher compression rates. The QP is frequently 

used to adapt the required bandwidth to transmit the output bitstream over an unstable 

communication channel (VIZZOTTO et al., 2012). 

At the end of the encoding flow, the entropy coding applies data compression algorithms 

over all generated data (residue, prediction modes, and other video coding control information) 

to reduce its representation and to pack them into pre-defined encoding units (SZE; 

BUDAGAVI; SULLIVAN, 2014). The entropy coding output is generally referred as 

bitstream, which is sent for properly transmission or storage. 

Figure 2.3 depicts the block diagram of the decoder side. As input, the decoder receives the 

encoded bitstream and it is initially processed by the entropy decoding. In this step, all the 

encoding structures are decoded and reorganized to be sent to their respective modules. The 

residue part is reconstructed by the inverse quantization and transforms steps (IT/IQ module in 

Figure 2.3). The adopted prediction modes (decided during the encoding process) are forwarded 

to the intra- and inter-frame decoding. The task executed by these modules is to recreate the 

predicted block (the same as in the encoder side). By having the predicted block and the 
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reconstructed residue block, the last step is to add them: generating the reconstructed block. 

This flow is performed for every block of the video, leading to the generation of the 

reconstructed video. Due to the quantization inserted drops, the reconstructed video is always 

different from the original one4. 
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Figure 2.3: Block diagram of a video decoder (following the hybrid compression model). 

Still observing the encoding process illustrated in Figure 2.2, there is a frame reconstruction 

loop inside the encoder. When analyzing the video decoder perspective, the reference data used 

to reconstruct the video frame blocks is rebuilt in a lossy scenario, since the quantization 

(applied in the encoder side) inserts errors in the residue. To ensure consistency in both sides, 

the reference information used by the decoder (to reconstruct the video) must be the same as 

the adopted by the encoder side (during the prediction steps). Hence, it is necessary to insert a 

reconstruction path to create the same references that will be used in the decoder. This 

reconstruction loop is composed of inverse versions of transforms and quantization steps (see 

Figure 2.2). The reconstructed residue, which is lossy due to the quantization, is added to the 

predicted block to compose the reconstructed frames. The reconstructed frames (also known as 

reference frames) must be locally stored during the encoding process, since they are used for 

the intra- and inter-frame predictions.   

 Rate-Distortion (R-D) Cost  

The efficiency of compression algorithms are usually measured using the rate-distortion (R-

D) cost (SULLIVAN; WIEGAND, 1998). The rate metric is related to the size (number of bits) 

of the generated output bitstream. The distortion corresponds to the objective quality measure 

of the drops inserted during the encoding process. The R-D cost is the usually adopted metric 

to express the coding efficiency of a video encoder. Equation (1) presents the R-D cost 

mathematical definition, where λ is the lagrangian parameter that correctly weights the tradeoff 

between distortion and bitrate size (depending on the adopted QP). 

RDCost = 𝐷 + 𝜆𝑅 (1) 

From this definition, it can be affirmed that the main optimization problem related to video 

compression algorithms is to minimize the R-D cost, leading to the maximization of the coding 

efficiency. It is important to note that every decision made during the encoding process will 

have repercussion (positive or negative) in the coding efficiency. Thus, the optimal coding 

efficiency is achieved when the R-D cost is used as metric for every required decision during 

the prediction steps over each current block of the input video. This leads to a huge complexity 

to video encoders. This method is called rate-distortion optimization and its adoption in a 

HEVC encoder will be presented in Section 2.2.2.  

As follows, some widely-used distortion metrics are presented. 

                                                 
4 Except when QP is equal to zero, which leads to a lossless compression. This scenario is rarely used in practice. 
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 Distortion Metrics 

The most used objective distortion metric is the Peak Signal-to-Noise Ratio (PSNR) 

(RICHARDSON, 2004), which is defined in Equation (2), where MAX is the maximum value 

that a sample can assume (2n-1, where n is the number of bits of a sample), and the MSE is the 

Mean-Squared Error for image or block. The MSE is calculated as in Equation (3), where W 

and H represents the image (or block) horizontal and vertical dimensions, and O and R represent 

the original and the reconstructed luma or chroma samples, respectively. In these calculations, 

the MSE metric is the one that objectively expresses the difference (distortion) between the 

samples from the two frames or blocks. Another interesting distortion metric is the Sum of 

Absolute Differences (SAD), which is defined by Equation (4). SAD is a low-complexity metric 

that is intensive used in hardware implementations of video coding modules. 

𝑃𝑆𝑁𝑅𝑑𝐵 = 10 ∙ log10 (
𝑀𝐴𝑋²

√𝑀𝑆𝐸
) (2) 

𝑀𝑆𝐸 =
1

𝑊 ∙ 𝐻
∑ ∑(𝑅𝑖,𝑗 − 𝑂(𝑖,𝑗))²

𝐻

𝑗=0

𝑊
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 (3) 

𝑆𝐴𝐷 = ∑ ∑(𝑅𝑖,𝑗 − 𝑂(𝑖,𝑗))

𝐻

𝑗=0

𝑊
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 High-Efficiency Video Coding 

The High-Efficiency Video Coding (HEVC) reunites the accumulated experience of around 

four decades of video coding community researches and barely three decades of international 

standardization. The result of such efforts was formally standardized as ITU-T 

Recommendation H.265 and ISOIEC International Standard 23008-2 (MPEG-H part 2). The 

first version of HEVC was completed in January 2013 (but formally released in a few months 

later) (ISO/IEC-JCT1/SC29/WG11, 2013a). Specifically to develop the HEVC standard, a 

patternship arrangement was formalized as a new joint organization, called Joint Collaborative 

Team on Video Coding (JCT-VC) (JCT-VC, 2017). The JCT-VC organized four meeting per 

year after its creation. Each of these events had hundreds of attendees and involved hundreds 

of submitted contributions that were analyzed to be incorporated in the final standard. 

HEVC offers the same basic proposition today when compared to H.264/AVC, in the time 

of its development and subsequent release: double the compression efficiency. This means that 

HEVC is able to compress digital videos twice as much as H.264/AVC without any 

repercussion in the video quality. In the same perspective, HEVC achievements allows the 

support of higher resolutions, frame rates or video fidelity levels, and keep the output bitrate 

compliant with the transmission and storage infrastructure (SULLIVAN et al., 2012). 

The HEVC encoding process follows the block-based hybrid video compression model, as 

already introduced in Section 2.1.2. In Figure 2.4 a typical HEVC encoder is presented. It can 

be noted a similar flow of operations when compared to the already discussed diagram of Figure 

2.2. Initially, the input video frame is subdivided into fixed-size blocks (called Coding Tree 

Units in HEVC). Starting from the maximum size, it is subdivided into smaller coding blocks 

respecting a quadtree structure (called coding units). This structure allows high flexibility for 

variable-block size coding (properly explained in Section 2.2.1). Each coding unit is, then, 

processed by inter- and intra-frame prediction engines; generating prediction units. The inter-

frame prediction has two main modules: the Motion Estimation, which is composed of a motion 
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search engine to derive the motion properties of the current coding unit; and the Motion 

Compensation, which is responsible for getting Motion Estimation outputs (motion vector and 

reference frame index; further explained in Section 2.2.3) and generating the prediction 

information for the current coding unit. The mode decision selects the best prediction mode 

and, then, the residual information is calculated. The residue is processed by transform and 

quantization. HEVC also defines a quadtree structure for the transforms, organizing the residue 

into transform units to enable variable transform size operations. Finally, the quantized residue 

is encoded by the entropy coding, which implement the Context-Adaptive Binary Arithmetic 

Coding (CABAC in Figure 2.4). To generate the reconstructed samples, the quantized residue 

is applied to inverse transforms and quantization, added to the predicted coding unit and 

processed by in-loop filters. HEVC defines the Deblocking Filter and the Sample Adaptive 

Filter to improve subjective video quality by eliminating artifacts generated by the block-based 

compression tools (SULLIVAN et al., 2012). Note that the reconstructed blocks are used as 

spatial and temporal references for intra- and inter-frame prediction operations (see Figure 2.4). 

To support this, a Decoded Picture Buffer (DPB) is required to keep stored the reconstructed 

frames (also called reference frames). The frames in the DPB must be available to serve as 

reference or inter-frame predictions of next frames. 
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Figure 2.4: HEVC block diagram for the encoding process  

(with integrated frame reconstruction loop). 

Source: SZE; BUDAGAVI; SULLIVAN, 2014 

One of the main innovations of HEVC is related to a novel organization of the coding 

structures. In the H.264/AVC standard, the frame was initially partitioned in fixed-size 

macroblocks of 16x16 samples (WIEGAND et al., 2003). The prediction and transform steps 

were able to further partition a macroblock into smaller sizes: 16x8, 8x16, 8x8, 8x4, 4x8 and 

4x4 (smallest block size). In HEVC, the block partitioning starts with 64x64 size, which enables 

a better fit to higher resolutions videos. This 64x64 block is the start point of a quaternary-tree 

based partitioning structure, called Coding Tree Unit  (CTU). During the prediction steps, the 

block is split into four smaller sized ones, called Coding Units (CU), and the prediction 

operations (intra- and inter-frames) are applied to the new blocks. This process is executed in a 
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recursive way, until the smaller supported block size (8x8). Still, given a specific coding unit 

of a specific size inside the quaternary tree, the prediction step can further partition the block 

in eight different formats (four symmetric and four asymmetric). The information regarding the 

prediction steps (like prediction modes, motion information and adopted partition shape) are 

represented by a Prediction Unit (PU). Furthermore, when the residue is generated (difference 

between predicted and original samples), the transform module can also be applied to different 

block sizes, called Transform Units. The main goal such innovations is to enable high flexibility 

during the encoding process to adapt the compression tools to the video content. Section 2.2.1 

will present the HEVC coding structures in a deeper level of details. 

The prediction step, responsible for exploiting the reference data to find the most efficient 

way of represent the current block information, is divided into intra- and inter-frame 

predictions. The intra-frame prediction, which decreases the spatial redundancy, uses the 

samples of already coded neighboring PUs (within the same frame) to predict the current one. 

HEVC supports 35 different modes for intra prediction: 33 angular modes, a flat mode, and a 

planar mode (SULLIVAN et al., 2012). In H.264/AVC, only nine modes were defined to 4x4 

blocks and four modes for 16x16 blocks (WIEGAND et al., 2003). 

Besides the spatial dependencies within a frame, the temporal redundancies (motion 

properties) are reduced by the inter-frame prediction. The core of this step is the Motion 

Estimation (ME), which is composed of a block-matching search engine that scans the reference 

frames to find for the most similar block to represent the current PU. To represent the 

displacement of the best-match block in the reference frame, the ME produces a motion vector 

for each PU partition. HEVC supports motion search in one quarter of pixel accuracy for luma 

samples and one eighth of pixel accuracy.  

The compression gains obtained from the more flexible coding structures comes with the 

cost of increased computational complexity for the encoders. In HEVC scenario, without any 

complexity reduction technique, intra- and inter-prediction must be executed for all partitions 

of every PU possibility of each CU analyzed within the quad-tree structure of each CTU inside 

the video frame. For optimal coding efficiency, the Rate-Distortion Optimization (RDO) is 

adopted to determine CTU division and the best prediction modes for each selected PU. The 

RDO is based on calculating the R-D cost (explained in Section 2.1.3) for each PU possibility 

inside the CTU. This leads to a huge computational cost, since barely entire encoding and 

decoding flows are necessary to estimate the R-D metric for each analyzed PU. Section 2.2.2 

presents further explanations about the RDO inside the HEVC encoding. 

Among all prediction operations, ME inherits the most computational complexity, being the 

main bottleneck in terms of execution time and required memory bandwidth. Thus, techniques 

to optimize these issues around ME execution have significant impact in the overall HEVC 

encoder. Section 2.2.3 presents further details of inter-frame prediction, highlighting important 

concepts of ME.  

To handle this high computational complexity, HEVC defines a special data partitioning 

way that facilitates parallel processing: the video frame division into rectangular regions called 

Tiles. The main idea is: coding units belonging to different Tiles have broken data dependency 

and, thus, can be processed in parallel. Therefore, all CTUs of a Tile can be assigned to a 

specific processing core. Another parallelism opportunity defined by HEVC is related to an 

alternative processing order of the coding units, called Wavefront Parallel Processing (WPP), 

where a much finer parallelism degree can be exploited by dividing the frame into rows of 

coding units (SZE; BUDAGAVI; SULLIVAN, 2014). Section 2.2.4 further describes these 

parallelism features introduced by HEVC, focusing on the Tiles partitioning. 
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 HEVC Coding Structures 

2.2.1.1. Video Partitioning Structures 

In HEVC, the input video sequence is divided into Group of Pictures (GOP). The GOP 

reunites at least two consecutive frames to constitute Random Access Points (RAP) from which 

the decoder can start decoding without direct dependency with any previous frames. Figure 2.5 

illustrates the division of the frames sequence into GOPs of size four. 
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Figure 2.5: Frames of a digital video grouped by GOPs. 

The frames in a video sequence are classified as I-, P- or B-frames. In an I-frame, all CTUs 

are encoded only using spatial references, e.g., only intra-frame prediction is performed. This 

means that the decoding process for I-frames does not depends on the reconstructed data of 

other frames. I-frames are important for the first encoded frame and to insert RAPs to allow 

decoder synchronization, which is important for continuous video streaming applications. 

Further, P- and B-frames are encoded using both intra- and inter-frame predictions. The P-

frames have temporal dependencies with only one reference frame, while B-frames utilize the 

bi-prediction that allows references to more than one reference frame. 

2.2.1.2. Frame Partitioning Structures 

Each frame is partitioned into square-shape Coding Tree Units (CTUs). The CTU represents 

the basic processing unit in HEVC and it is in that regard similar to the concept of a macroblock 

in prior video coding standards. HEVC does not set a fixed size for the CTU. However, typical 

HEVC applications adopted the largest possible size defined in the standard: 64x64. The CTU 

structure comprehends a quadtree structure, also referred as coding tree, which specifies the 

CTU division into Coding Units (CUs). Figure 2.6a depicts the quadtree structure of a CTU and 

exemplify its possible subdivision into variable-sized CUs. Similarly to the CTU, a CU consists 

in a square block of samples. At CTU level (depth 0 in Figure 2.6a), a flag into the bitstream 

indicates whether the complete CTU represents a CU or whether it will be divided into four 

equally-sized blocks. If the CTU is split, four new CUs are formed (depth 1). In a recursive 

way, each one of the new CUs can be further split into four new blocks (depths 2 and 3). This 

hierarchical subdivision process ends when the minimum CU size is reached. In typical HEVC 

applications, the minimum size of a CU is 8x8 samples. The final CTU division of the given 

example can be observed at Figure 2.6b.  
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depth 0
CUSize = 64

(a) Chosen Coding Units within the CTU

depth 1
CUSize = 32

depth 2
CUSize = 16

depth 3
CUSize = 8

(b) Final CTU Division

 

Figure 2.6: (a) Example of adopted CU sizes within a CTU and  

(b) final CTU division for video frame texture adaptation.  

This flexible encoding structure can adapt the CUs sizes according to the video content: 

larger CUs are used to exploit homogeneous areas, while smaller CUs can have a best fit into 

textured regions. When larger CUs are chosen, there are gains in the compression rates, since 

the CTU will be composed of fewer CUs and, this way, less coding control symbols are 

generated. However, if not well predicted, large CUs may incur in more residual information 

to be encoded, leading to higher distortion due to quantization cuts. In the other hand, CTUs 

divided into smaller CUs will require more control information. Analogously, smaller CUs 

better adapts the coding granularity to the video texture properties, reducing the inserted 

distortion in the residual treatment path. Therefore, the decisions involved in the CUs 

subdivision have a key role to provide high coding efficiency to HEVC encoding. 

The CUs represent the encoding structures to which a coding mode is assigned. For each 

CU, it is decided whether the luma and chroma samples are predicted using intra- or inter-frame 

prediction. Figure 2.7a graphically illustrates this prediction dynamics for each CU of size 

2Nx2N. All information related to the adopted prediction for the CU is represented by a 

Prediction Unit (PU). Note that different CUs within the same CTU may have different 

prediction modes (intra or inter). Additionally, for each one of prediction options, a CU can be 

further split during the prediction step. Each CU may be partitioned into two or four PUs, which 

are separately predicted. An important definition is that all PUs of a CU should be predicted 

with either as inter or as intra. Thus, an entire CU can be classified as inter-CU or intra-CU. 

HEVC supports eight different modes for partitioning a CU into PUs, as illustrated in Figure 

2.7b: four symmetric and four asymmetric partitioning.    

If a CU is signaled as intra, the corresponding PUs must stores one of the 35 supported 

spatial intra prediction modes for luma samples5. HEVC defines that intra-CUs can only support 

2Nx2N and NxN partitions. For inter-CUs, all eight partitions can be assigned. Each PU of an 

inter-CU should store, among others, the motion vector and the used reference frame(s) 

index(es). 

                                                 
5 For chroma channels, one of 5 available modes should be selected. 
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Figure 2.7: (a) Prediction dynamics for each CU within the coding tree and the generation of the PU; 

(b) Partition sizes allowed by HEVC into PUs (intra PUs only support 2Nx2N and NxN partitions).  

The Mode Decision (gray module in Figure 2.7) is the responsible for deciding the best PUs 

for each CU inside the quadtree structure. Note that the decisions about the best prediction 

mode, allied to the already discussed decisions regarding the best CTU division into smaller 

CUs, represents the key challenge of the general control of a HEVC encoder. In a simplistic 

analysis, the prediction step of a 64x64 CTU has to analyze both intra- and inter-CU options 

for each level of the coding tree structure. This leads to one 64x64 CU, four 32x32 CUs, sixteen 

16x16 CUs and sixty four 8x8 CUs (last level). For each one of these 85 possible CUs, two 

different partitioning ways must be evaluated by the intra-frame prediction, while eight are 

evaluated by inter-frame prediction. In total, 149 intra-PUs and 849 inter-PUs must be analyzed 

by the Mode Decision to process an entire CTU. Considering a 1080p input video sequence 

(1920x1080 pixels) that comprehends 506 CTUs, more than 500,000 PUs should be predicted 

and its coding efficiency analyzed. In HEVC reference software HM (ISO/IEC-

JCT1/SC29/WG11, 2013b), the RDO is adopted as optimal scheme for the Mode Decision 

module, generating the upper-case scenario in terms of coding efficiency (considering the R-D 

cost metric). Details regarding the RDO will be presented in the next section.   

 Rate-Distortion Optimization (RDO) 

The RDO represents an upper boundary in terms of coding efficiency, since its main strategy 

is to perform a complete depth-first search for all configurations of CUs and PUs. The goal is 

to ensure optimal decisions when encoding each CTU within a video frame. 

RDO is based on the minimization of the R-D cost, which relates the bitrate size with the 

output video distortion (already discussed in Section 2.1.4). Figure 2.8 presents a recursive 

function (called compressCU) that depicts the idea of the RDO execution when analyzing a 

given coding unit CU of d depth in the quadtree structure. This function returns, at the end of 

its execution, the best R-D cost of encoding the current CU. 

First, intra- and inter-frame predictions are triggered to exploit spatial and temporal 

dependencies. As result, the RDO estimates the R-D cost for the best PUs generated by the 

prediction steps for the current CU (RDInter and RDIntra – lines 1 and 2). At this point, all 

partitioning ways for the PUs described in 2.2.1 were analyzed. Then, the RDBest is calculated 

as the best (minimum) R-D cost between intra-CU or inter-CU choices (line 3). RDBest 

represents the minimal R-D cost achieved by not splitting the current CU into smaller ones. To 

evaluate the cost of going through the next quadtree depth, the same function is recursively 

called for the next-depth sub-CUs (CU0, CU1, CU2 and CU3). The best R-D costs estimated for 

each one of the smaller CUs are accumulated in the RDSubBest (lines 4-8). It is important to note 
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that the recursive calls to compressCU leads to execution of the same explained steps for each 

one of the sub-CUs; and this process is recursively executed until the smallest CU size is 

reached. At the end, the RDO returns the minimum R-D cost between the choice of not splitting 

the CU and the option of dividing the CU into sub-CUs (line 9). 

Algorithm: compressCU(Coding Unit: CU, Depth: d) 
1.  RDInter = checkRDCostInter(CU, d); 
2.  RDIntra = checkRDCostIntra(CU, d); 
3.  RDBest = min(RDinter, RDintra); 
4.  RDSubBest = 0; 
5.  RDSubBest += compressCU(CU0, d+1); 
6.  RDSubBest += compressCU(CU1, d+1);  
7.  RDSubBest += compressCU(CU2, d+1); 
8.  RDSubBest += compressCU(CU3, d+1); 
9. return min(RDSubBest, RDBest); 

Figure 2.8: Rate-Distortion Optimization (RDO) algorithm. 

Besides the exploitation of all possible CU sizes within the quadtree, the RDO decisions for 

the best configuration are based on the R-D cost. This means that, for every analyzed intra- or 

inter-CU option, the HEVC encoder must estimates the final bitrate repercussion of such 

decision, as well as the impact on the reconstructed frame distortion. Based on the HEVC 

encoder diagram of Figure 2.4, the bitrate size estimation requires the residue generation, and 

posterior transforms, quantization entropy coding processing. Furthermore, the distortion 

knowledge can only be generated by calculating the residue, applying transforms, quantization 

and then all frame reconstruction loop process (highlighted in Figure 2.4): composed of inverse 

transforms, inverse quantization and final filtering operations. In summary, RDO implements 

a brute-force algorithm, which analyzes every possibility, and further uses the R-D cost as 

comparison metric, requiring high computation to generate the rate and distortion metric for 

each analyzed situation. For the above discussed reasons, RDO is not used in practical 

implementations of HEVC encoders. To handle with this issue, many researches aims on 

proposing complexity reduction compared to RDO (CORREA et al., 2012, 2013). 

The most computational complex module of HEVC encoding is the inter-frame prediction 

step. Furthermore, the memory related issues of HEVC are strongly related to this module. The 

RDO usage as mode decision strategy highly aggravates these penalties, since inter-frame 

prediction must be executed for every tested inter-CU configuration. Section 4.1 motivates it 

by presenting a HEVC memory profiling that indicates the inter-frame prediction, particularly 

the Motion Estimation as the main memory bottleneck. As the focus of this work is to provide 

energy-efficiency memory architectures for HEVC encoding, the inter-frame prediction and the 

Motion Estimation aspects will be further discussed as follows. Additionally details if intra-

frame prediction dynamics will not be presented in this text, and can be encountered in (SZE; 

BUDAGAVI; SULLIVAN, 2014). 

 Inter-Frame Prediction 

In HEVC applications, there are two typical adopted prediction structures, which are 

depicted in Figure 2.9. The numbers in Figure 2.9 represents the encoding frame sequence, 

while the left-to-right frame disposition is related video exhibition order. In the Low Delay 

configuration, each frame is only able to use past frames (in the exhibition order) as temporal 

references. This leads to the same encoding and exhibition order. The Random Access 

configuration defines a hierarchical B structure, which defines temporal layers: represented by 

different shades of gray for the B-frames. Another detail is related to an alternative encoding 

order: initially, the first and the last frame are processed (first temporal layer; I- and P-frames, 

respectively); then, the fourth frame is encoded as a B-frame (second temporal layer), using 

reference frames from the previous layer; after, the frames of third temporal and the fourth (last) 
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temporal layers are processed. The hierarchical B structure leads to different coding and 

exhibition orders. There is also the Intra Only configuration, where only I-frames are allowed 

(no inter-frame prediction is performed) and there are no dependencies between frames.  

0 1 2 3 4 5 6 7 8 0 5 3 6 2 7 4 8 1

Low Delay Random Access

GOP Size = 8 GOP Size = 8  

Figure 2.9: Common prediction structures utilized by HEVC applications:  

Random Access and Low Delay. 

The arrows of Figure 2.9 indicate the inter-frame prediction direction: the arrows start from 

the current frame and arrive at the reference frames, indicating the temporal dependencies 

during the encoding process. To be used as reference, the frame must be previously encoded, 

reconstructed and entirely available in the DPB (typically assigned to an external memory in 

HEVC encoders).  

An example: considering the Low Delay configuration and assuming that the frame 2 

(exhibition and coding order) is, at the moment, the current frame to be processed by inter-

frame prediction. This frame has temporal dependencies with frames 0 and 1, as depicted in 

Figure 2.9. This means that, in both encoding and decoding sides, frames 0 and 1 must be 

previously processed and reconstructed before frame 2 processing is started. When analyzing 

the frame 2 (coding order) in the Random Access structure, its processing depends on the frames 

0 and 1 (coding order). In this case, the dependencies are past (frame 0) and future (frame 1) 

frames in the exhibition order. The utilization of future frames as reference is an important issue 

of recent video encoders. 

Motion Estimation (ME) is the main core of the inter-frame prediction, being responsible to 

capture the temporal correlations between temporal neighboring frames within a video 

sequence. Figure 2.10 illustrates the ME processing. For each analyzed PU to be associated to 

an inter-CU in the current frame, the ME is applied according to the adopted prediction 

structure. The main goal of ME is to find the best match of each analyzed PU (called current 

PU) of the current frame using, as reference, one or more reconstructed frames (aka. reference 

frames). The optimal best match corresponds to the block in the reference frame that minimizes 

the R-D cost in the final HEVC processing. As already discussed, the optimal solution for the 

best coding efficiency is a computation-intensive task, since almost entire encoding and 

decoding flows must be executed to estimate the R-D cost for each possible matching block in 

the reference frames. As local decision in ME, the block that minimizes the residual information 

(difference between original and predicted blocks; see Section 2.1.2) is the chosen one as near-

optimal result. In this sense, a low-complexity similarity metric is used to measure the amount 

of generated residue.  

Using this metric as basis, the current PU is compared to a subset of blocks of the reference 

frames (called candidate blocks) and the most similar one is selected as the best match. As 

result, the ME delivers (1) a motion vector indicating the displacement between the current PU 

position and the best match, as well as (2) reference indexes that refers to the selected reference 

frames. 
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Figure 2.10: Basic concepts related to the Motion Estimation process. 

Due to the typical adopted frame rates, the best match tends to be found in positions closed 

to the current PU position. Thus, the ME search typically starts in reference frames positions 

near to the co-located current PU position. Furthermore, there is also a demonstrated correlation 

between the motion properties between neighboring PUs. Typical ME engines adopts an initial 

computation to slightly change the ME start point according to the motion vectors generated 

during previous ME of neighboring PUs (called motion predictors; illustrated in Figure 2.10). 

To limit the ME search range, a common decision is to restrict the candidate blocks to a squared 

region of the reference frame called search window. If motion predictors analysis is supported 

to displace the ME start point, the search window is moved accordingly. 

After the ME, the Motion Compensation (MC) utilizes the motion vector and the reference 

frame indexes to build the predicted block. The MC needs to fetch (from the DPB) the candidate 

block that was selected as the best match for the current PU. This is necessary for the posterior 

residue calculation, which must be sent to transforms and quantization steps. HEVC also 

exploits additionally techniques to increase inter-prediction efficiency, like fractional ME (with 

quarter-pixel precision for luma samples). These strategies will not be discussed in this text 

since they are out of the scope of this work. 

In order to guide the ME search within the search window, several motion search algorithms 

have been proposed since previous video coding standards. The HEVC HM reference software 

implements two important ones: the Full Search, representing the exhaustive search option that 

leads to the optimal case; and the Test Zone (TZ) Search (PURNACHAND; ALVES; 

NAVARRO, 2012), being the heuristic-based solution that provides sub-optimal results. 

The idea of Full Search is to compare the current PU with all possible candidate blocks 

inside the search window. By starting with the candidate block from the upper-left corner of 

the search window, the algorithm checks its similarity with the current PU. This process is 

repeated for the candidate block that begins one sample to the right. The search window is 

scanned in a raster order until the bottom-right corner of the search window is reached. Due to 

this exhaustive approach, Full Search achieves the best rate-distortion results. However, the 

number of comparisons grows in a quadratic order. As alternative, HM implements the TZ 

Search as a fast search algorithm, which is based in local greedy decisions with the goal of 
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directing the search to iteratively catch the motion. Compared to the exhaustive search option, 

the TZ Search achieves speedup rates of 23x with insignificant losses in the coding efficiency 

(PURNACHAND; ALVES; NAVARRO, 2012.  

Although the motion search algorithm directly affects the ME efficiency, the similarity 

criterion has also an important role. A widely adopted metric for ME similarity evaluation is 

the Sum of the Absolute Difference (SAD), which was already presented in Section 2.1.4. 

 Parallelism Support of HEVC: Tiles 

An important innovation of HEVC is the definition high-level parallelization features to 

speedup the encoding process. This work focus on the coarse-grain parallel support of HEVC 

called Tiles. When Tiles usage is enabled, the picture is divided into rectangular-shaped groups 

of CTUs separated by vertical and/or horizontal boundaries (MISRA et al., 2013). The number 

of Tiles and the local of their boundaries can be defined for the entire sequence or changed from 

frame to frame (SZE; BUDAGAVI; SULLIVAN, 2014). Further, the Tiles can be partitioned 

in uniform or non-uniform ways. Figure 2.12 depicts an example of Tiles partitioning: 

composed of three rows and three columns, totalizing nine Tiles disposed in a non-uniform 

format. 

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

Tile 6 Tile 7 Tile 8

CTU

Tiles Boundary

 

Figure 2.11: A video frame divided into nine Tiles. 

Tiles boundaries do break parsing and prediction dependencies to that all CTUs within a 

Tile can be encoded independent from CTUs of other Tiles. Only filtering operations can still 

cross Tiles boundaries in order to prevent Tile border artifacts (SZE; BUDAGAVI; 

SULLIVAN, 2014).  

Figure 2.12 depicts a practical 4-Tile partitioning and the corresponding association with a 

4-core manycore processor. As already defined, the CTUs of different Tiles can be processed 

without any dependencies with each other. This offers the opportunity of parallel processing 

between such CTUs. 

The main research field of this work is based on the Tiles partitioning support of HEVC 

encoders. There are several research challenges involved in the hardware and software support 

for parallel HEVC using multiple Tiles. This works focuses on solving the memory issues of 

supporting multiple processing cores (each one processing a specific Tile) simultaneously 

accessing the same infrastructure for storing and fetching data. As already motivated in Section 

1.1 and further evaluated in Chapter 4, the increased computational complexity inserted by the 

novel coding structures of HEVC, allied to the possibility of parallel encoding, poses a 
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challenge of ensuring energy efficiency to the encoder memory infrastructure to enable parallel 

HEVC encoding into embedded system applications. At the same time, the adopted memory 

hierarchy must ensure enough data bandwidth to properly feed the processing cores. 

Tile 0 Tile 1

Tile 2 Tile 3

Tiles Boundaries

Video Frame Many-core Processor

Core 0

Core 1

Core 2

Core 3

M
e
m

o
ry

 
H

ie
ra

rc
h

y

 

Figure 2.12: 4-Tile partitioning of a video frame and a typical processing assignment for a 4-core 

manycore processor. 

The main propositions of this work are strongly based on exploiting novel memory 

technologies and organizations to compose energy-efficient video memories. Thus, the 

following sections introduce these memory technologies. The main intention is to define the 

main electrical characteristics that will base the ideas of the proposed memory architectures. 

 Memory Technologies 

This section shows background concepts regarding the adopted memory technologies in this 

work. Initially, details regarding SRAM cell characteristics and its organization to compose 

memory arrays are presented. After, the properties of emerging STT-RAM cells are discussed. 

 Static Random Access Memory (SRAM) 

2.3.1.1. 1-Bit SRAM Cell 

SRAM is the type of memory used as the building block of the most type of on-chip 

memories, like caches and scratchpad memories. As SRAM uses the same fabrication process 

as the nowadays processors, it leads to a simply integration onto the processor die. The basic 1-

bit SRAM cell is implemented as two cross-coupled inverters, which are accessed by using two 

pass transistors, as depicted in Figure 2.13a. The cross-coupled connection builds a regenerative 

feedback that enables it to an indefinitely storage of one data bit. This configuration has one 

interface that allows either read or write operations, but not both simultaneously (JACOB; NG; 

WANG, 2010). 

BL BLB

WL

Basic 1-bit SRAM Memory Cell Full-CMOS 6T Implementation

WL

BL BLB

 

Figure 2.13: (a) Basic 1-bit SRAM cell organization and the (b) widely-adopted Full-CMOS 6T 

memory cell. 

For a read operation, the word line (WL) is asserted and, as result, the stored bit is detected 

by the voltage differential between the bitline pair (BL and BLB). To write a specific bit into 
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SRAM cell, the BL pair is driven with a differential voltage from an external source to force 

the data onto the memory cell. 

2.3.1.2. Multi-Bank SRAM Array 

Figure 2.14 depicts a basic example of a N-bank SRAM memory organization. Each 

memory bank is composed of a matrix of SRAM cells (implemented as in Figure 2.13). The 

cells from the same memory line are connected by the same WLRow, where Row represents the 

SRAM memory line position. Additionally, all memory cells that store the bit of same word 

position share the same bitlines. As memory peripherals, a row address decoder receives the 

input address line (3-bit address in the example of Figure 2.14) and activates only the 

corresponding word line. Sense and write amplifiers (SA and WA in Figure 2.14) are disposed 

to deal with differential encoding of bitlines and to drive the data in/out from/to input and output 

memory pins. Further, a precharge circuitry is required to ensure precharged bitlines at the 

beginning of read and write operations. To provide higher data bandwidth, the memory can be 

organized into multiple banks. 
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Figure 2.14: Simplistic example of an N-bank SRAM memory array: each bank composed of a matrix 

of 8x16 1-bit memory cells; each memory line stores a 16-bit memory word. 

The following steps are necessary to perform a read operation: (1) the incoming address is 

decoded and one memory line is selected (WLRow is set); (2) the access transistors of all memory 

cells of the selected WLRow line are activated and the stored bits are passed to the bitlines (in a 

differential encoding); (3) the sense amplifiers are turned on to amplify the small difference 

voltage at each bitline pair into full-swing logic signals; and finally, (4) all bitlines are 

precharged to VDD and get ready for next read/write operation. 

The steps for a write access are: (1) the incoming address is decoded and one memory line 

is selected; (2) simultaneously to step 1, the write amplifiers generate the required voltage 

differential at bitlines to flip the memory cell state (when necessary); (3) cell flipping process 

takes place (when the stored bit is opposite to the value that is being written); and, at the end, 

(4) the precharging process reset the bitlines for the next access (CHENG; HUANG, 2005). 

2.3.1.3. Energy Consumption in SRAM Arrays 

There are two main sources of power dissipation for SRAM (also for CMOS circuits): static 

and dynamic energies; see Equation (5) (ZATT et al., 2016). The static power is a result of the 

leakage currents. When the input voltage is lower than the NMOS transistors threshold voltage, 

in an ideal case, the NMOS transistors do not conduce any current. However, in a real case 
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CMOS transistors do not completely block this current: called leakage current. The closer are 

the input and threshold voltages the stronger the leakage. The same happens for the PMOS 

transistors of SRAM cell. Equation (6) presents the static power dissipation formula, which is 

function of the leakage current (ILeakage) and of the supply voltage (VDD). It is important to note 

that the static energy is consumed even when no memory accesses are performed.  

The dynamic power of SRAM cells is composed of two main components: the switching 

and the short circuit power components (see Equation (7)). The switching portion represents 

the power that is dissipated during flipping of the transistors state. It can be note in Equation 

(8) that the switching power (PSwitch) is function of: switching activity (α), operation frequency 

(f), load capacitance (CL) and VDD. Moreover, the short circuit power (Equation (9)) happens at 

the moment that the input transistor gate signal changes from ground to VDD, and vice versa. 

There is a specific input voltage where both PMOS and NMOS transistors are conducing, 

leading to a short circuit current (IShort).  

PSRAM_Cell = PStatic + PDynamic (5) 

PStatic = ILeakage × VDD (6) 

PDynamic = PSwitch + PShort (7) 

PSwitch =
1

2
α × f × CL × VDD

2   (8) 

PShort = IShort × VDD (9) 

ESRAM_Cell = PSRAM_Cell × t (10) 

The overall energy consumption of a SRAM cell is calculated by taken the power dissipation 

along the time (t); see formula in Equation (10). By analyzing the components that compose 

the energy consumption of a SRAM cell, some insights can be performed in order to reduce it. 

Adaptive power management can be performed by employing power-gate circuitry and proper 

management to turn of unused memory cells (VDD equals to zero). Another way of managing 

energy is to reduce the switching activity: leading to reduced switching power (dynamic 

portion). 

Recent manycore processors implements large SRAM arrays as last-level caches to provide 

inter-cores data reuse and to support the required memory bandwidth from massive parallel 

applications. In some cases, 128MB of on-chip storage is required for state-of-the arte 

manycore processors (SAMPAIO et al., 2015). Large SRAM arrays suffer with high static 

power dissipation due to the huge usage of memory cells, as well as their peripheral circuitry 

(previously explained in Section 2.3.1.2). Emerging memory technologies have emerged as an 

attractive alternative option for implementing large-sizes on-chip memories. The Spin-Transfer 

Torque RAM (STT-RAM) stands out as one of the most promising technology. This work 

adopted this technology to implement hybrid video memories aiming on taking advantage of 

the low-power features of this emerging technology. Details regarding STT-RAM memory 

technology and its multi-level cells design are presented in the following section. 

 Spin-Transfer Torque RAM (STT-RAM) 

As an emerging memory technology, the Spin-Transfer Torque SRAM (STT-RAM) 

(DONG et al., 2008) provides higher density, better scalability and low static power features 

compared to the SRAM. In other aspects SRAM is still much more efficient, like in terms of 

write power and overall performance. Table 2.1 presents a subjective comparison between 



 

 

46 

SRAM and STT-RAM technologies6, where the dark-gray cells represent the best scenario of 

each parameter. 

Table 2.1: SRAM vs. STT-RAM Technologies (DONG et al., 2008) 

Tech. 
Energy Latency 

Volatility 
Static Read Write Read Write 

SRAM HH L L L L Volatile 

STT-RAM L L HH L H Non-Volatile 

 

The on-chip video memories have a particular property that facilitates the STT-RAM usage: 

they have a relatively low write intensity compared to a very high read intensity (SAMPAIO et 

al., 2014a). As the on-chip video memories implement data-reuse schemes for the search 

window samples, only a few data of the reference frame would be written to start the next CTU 

prediction. Once the needed data is stored on chip, the motion estimation massively accesses 

the on-chip video memory until the best match is found. As can be noticed in Table 2.1, the 

STT-RAM energy and performance are poor for write operations compared to that of the 

SRAM. Thus, video coding is a promising application for STT-RAM based hybrid memories. 

STT-RAM is also known to be a non-volatile memory (NVM). This characteristic is very 

important for on-chip video memories, since parts of the memory may be switched-off (no static 

energy consumption) while keeping the data stored, leading to no extra external memory 

accesses to re-fetch the information. However, the NVM cells lifetime (aka. endurance 

property) highly depends on the bit-toggling activity of the writing operations (WU et al., 2010). 

If improperly balanced, the lifetime of a STT-RAM cell can be significantly reduced, 

compromising the overall memory system performance. Therefore, there is a need for memory 

data management policies to increase the NVM lifetime in a hybrid video memory design. 

2.3.2.1. 1-Bit STT-RAM Cell 

Spin-Transfer Torque RAM (STT-RAM) cell stores one logic bit in a magnetic tunneling 

junction (MTJ) – an oxide layer between two ferromagnetic layers. In this work, the “1T1J” 

structure was adopted for 1-bit STT-RAM cell, being composed of: (a) one NMOS access 

transistor with its gate connected to the WL (as in previously presented SRAM layout); (b) one 

MTJ that effectively stores the logical bit under magnetic principles. Figure 2.15 illustrates the 

schematic and the structural view of the 1T1J 1-bit STT-RAM cell. The source of the NMOS 

is connected to the source line (SL), and one side of the MTJ is connected to the bitline. The 

resistance value of the MTJ is determined by the relative magnetic field direction between these 

two layers (DONG et al., 2008). One layer has fixed magnetization (called reference layer). 

The other can have its magnetization changed due to a polarized programming current (called 

free layer). In a 1-bit STT-RAM cell, ‘low resistances’ due to parallel magnetization and ‘high 

resistances’ due to anti-parallel magnetization represent the logic bits ‘1’ and ‘0’, respectively 

(as shown in Figure 2.15c). 

                                                 
6 The terms L, H and HH are used for a subjective comparison between STT-RAM and SRAM regarding its electrical characteristics: “L” 

means low, “H” means high, and “HH” means very high. 
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Figure 2.15: Spin-Transfer Torque RAM (STT-RAM) 1-bit cell (a) schematic view; (b) structural 

view; and (c) resistance range distribution to represent logic bits “0” and “1”. 

The read operation respects the following steps: Initially, (1) a small negative voltage 

difference is applied on BL relative do SL; then, (2) this lead to a current passing through MTJ, 

which should be small enough to not trigger a write operation; (3) the sense amplifier compares 

this current with a reference one, deciding if a “0” or “1” logic bit is stored in the memory cell. 

To perform a write operation: (1) when “0” logic bit is being written, a positive voltage is 

established between SL and BL, and, for a “1” writing, vice versa; (2) the current amplitude 

necessary to reverse the direction of the ferromagnetic  layer is determined by the MTJ size and 

the write pulse duration: the smaller is the MTJ or the longer the write pulse, the less the 

switching pulse is needed. 

An important feature of recent STT-RAM technology achievements is the integration with 

CMOS-based SRAM arrays. The interface provided by STT-RAM cells (WR, BL and SL) is 

compliant to the SRAM cells (Section 2.3.1). Although fabrication process of STT-RAM incurs 

extra cost and additional fabrication complexity, mainly to integrate with CMOS logic, 

technology advances it this field have been enabling the utilization of this technology for both 

off- and on- chip memory arrays. In this work, it is proposed efficient ways of using STT-RAM 

as on-chip video memory, in combination of SRAM, to provide energy savings to the reference 

frames storage. 
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3. STATE-OF-THE-ART RELATED WORKS 

This chapter has the goal of discussing the related works to situate the main contributions 

of this Thesis inside the different state-of-the-art research fields. Initially, related works for 

general-purpose processing are analyzed (Section 3.1). In this first part, scratchpad memories 

and hybrid memory design challenges and opportunities are discussed. Then, initiatives for 

parallelization of video coding are evaluated (Section 3.2), as well as the gap of memory-

optimized solutions to support energy-efficient parallel HEVC implementations. In sequence, 

works that exploited application-specific video coding properties for memory optimization are 

discussed (Section 3.3). After that, energy-efficient video memory architectures for non-

parallelized and Tiles-parallelized video coding are discussed in several aspects (Section 3.4). 

At this part, detailed comparison between the proposed ideas is performed. At the end, a 

description of preliminary works that bases Hy-SVM architecture is presented (Section 3.5). 

 General-Purpose Energy-Efficient Memory Works 

Energy efficiency has been the target of lots of works in general-purpose multi-core systems 

in the last decades. In this section, two key memory design research fields are analyzed: the 

adoption of scratchpad memories and the exploration of emerging memory technologies in 

hybrid design. Before moving to application-specific exploitation of such techniques, brief 

discussions regarding general-purpose applications are presented. 

 Scratchpad Memories 

As opportunity for application-specific applications, scratchpad memories (SPMs) 

overcome/alleviate the hardware overhead of caches. In SPMs, instead of providing hardware 

support for mapping data/code between off-chip and on-chip memory, the designer and/or the 

programmer/compiler are responsible to perform access management. If well designed, SPMs 

allow energy savings of up to 30% compared to complete cache memories (BANAKAR et al., 

2002). SPMs are widely available to be used as high-performance and energy-efficiency on-

chip storage option in nowadays processor chips (IBM RESEARCH, 2013; TEXAS 

INSTRUMENTS, 2017). Furthermore, recent advances on SPMs design and management 

techniques allowed its usage on nowadays system-on-a-chips and graphic processing units 

(ALVAREZ et al., 2015; HANSEN et al., 2017; MONAZZAH; FARBEH; MIREMADI, 2017; 

VILLEGAS et al., 2017). In this work, we utilize SPMs as opportunity for designing 

application-specific on-chip video memories, enabling energy savings by exploiting the 

knowledge from the HEVC encoding. 

Power efficient management of these scratchpad memories is of key importance. External 

memory pressure and on-chip scratchpad memory management for high-performance 

manycore systems have been explored in (JEONG et al., 2012; PILLA et al., 2012). However, 

these works do not account for the application-specific properties, thus may not be efficiently 

applied to compose on-chip video memories. 

 Hybrid Memory Design 

The hybrid memory design exploiting the development of emerging non-volatile memory 

technology has been research target during the last years (ABE et al., 2012; CHEN et al., 2012; 

DONG et al., 2008; JOG et al., 2012; KHAN; SHAFIQUE; HENKEL, 2013; LI et al., 2009; 

WU et al., 2010). These works provide a solid foundation to enable these emerging technologies 

feasible to be integrated with CMOS logic circuitry of nowadays embedded manycore 

processors. However, these works may not efficiently support the video coding high memory 

demand, since they did not take into account application-specific properties.  
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STT-RAM stands out as one of the most promising emerging memory technology, being 

target of industry research interests. Some commercial and academic initiatives highlight STT-

RAM feasibility to be utilized: in standalone data storage systems (LAPEDUS, 2017; 

MERTENS, RON, 2018), as external memory alternative (JIN; SHIHAB; JUNG, 2014; 

KÜLTÜRSAY et al., 2013), as embedded storage option for specific applications (like 

multimedia, automotive and display panel) (MERTENS, 2017), as well as integrated into multi-

core processors to implement last-level caches (AHN; YOO; CHOI, 2016; IMANI; PATIL; 

ROSING, 2016; KHOSHAVI et al., 2016). 

One critical issue regarding non-volatile memories (like STT-RAM) is their limited 

endurance, which may lead to wear-our errors occurrence. It not well managed, such data loss 

may result, in the worst case, on application unexpected failures. Even with recent advances on 

fabrication process of non-volatile memories, state-of-the-art works have been proposed 

different management schemes aiming on alleviating STT-RAM cells from frequent bit toggles 

during write accesses (ARJOMAND et al., 2017; KIM; KIM; LEE, 2017; MIN et al., 2017; 

REED et al., 2017; YAZDANSHENAS et al., 2014); thus resulting on extended lifetime. The 

improved endurance achieved by these techniques are limited due to the requirements of 

considering general-purposed memory access behavior. In this work, application-specific 

properties could be leveraged as opportunity to further increase STT-RAM cells lifetime. 

 Tiles-Parallelized HEVC Works 

 HEVC Hardware and Software Implementations 

HEVC performance and energy constraints have been addressed in recent state-of-the-art 

implementations. For the decoding part, efficient software (STROGENE.COM, 2018) and 

hardware (CHIANG et al., 2016; LIU et al., 2015; ZHOU et al., 2017) implementations are able 

to reach enough processing rates without strongly affecting the overall energy consumption.  

However, the encoder reunites the most complex coding space exploration tools, imposing 

much more challenges for designing energy efficient implementations. In this context, 

parallelization features have been exploited to allow software and hardware for HEVC encoders 

(CHEN et al., 2016; CHO et al., 2015). In the same way that performance is improved, 

parallelization of the video encoding highly aggravates the energy consumption of HEVC 

encoders, especially for the off- and on-chip video memories. Thus, the challenge is to increase 

the energy efficiency of the video memory infrastructure for parallelized HEVC encoders 

requirements. 

 HEVC Parallelization Strategies 

Several works have exploited HEVC high-level parallelization features to achieve 

performance speedup, especially for encoder implementations. In this context, different 

strategies were developed to properly define the best Tiles partitioning of video frames for 

parallel processing (BLUMENBERG et al., 2013; CHI et al., 2012; JIN; DAI, 2016; KHAN; 

SHAFIQUE; HENKEL, 2014; SHAFIQUE; KHAN; HENKEL, 2014).  

In Blumenberg et al. (2013), variance maps from the raw video are used as hint to determine 

the best Tiles boundary locations. The scheme adopts a 2-step algorithm to group the higher 

correlated samples into the same Tile. The Tiles partitioning can be updated for each encoded 

frame. The main concern is related to determine the breaking points of spatial references that 

will result in lower coding efficiency losses.  

Chi et al. (2012) provides efficient implementations of HEVC tools for parallel processing 

(Tiles and WPP). Afterwards, it was proposed a novel parallelization tool, called overlapped 



 

 

50 

wavefront approach, which achieves higher performance and coding efficiency than Tiles and 

WPP schemes. 

Khan (2014) relies estimating the total workload in an Intra Only HEVC encoder to 

determine the best Tiles partitioning. To adapt the Tiles-specific workload to the available 

processing capabilities, a scheme that manages the complexity knobs of the encoder were 

proposed. Further, to maximize the power efficiency, the operation frequency of each 

processing core is adapted depending upon the workload required for the corresponding Tile. 

Shafique (2014) targets on minimizing the total power consumption by adapting the Tiles 

partitioning to activate an appropriate number of cores according to video-related processing 

demands. The best way of partitioning the video frame is the one that maximizes the coding 

efficiency and, at the same time, fulfills the throughput scenarios. 

As can be noted by the above discussed schemes, they typically take into account the 

workload of each HEVC processing unit to define the best Tiles organization. Indeed, a well-

balanced workload is an important factor when focusing on maximizing performance and 

minimizing power dissipation of a HEVC encoder. However, crucial issues regarding the 

storage and transmission of HEVC data in off-chip and on-chip video memories are not 

considered in these works. In a parallel-processing system, the memory infrastructure is highly 

required, leading to energy wasting if not properly designed and managed. Hence, it can be 

observed a gap of energy-efficient video memories to support parallel HEVC hardware- and 

software-based implementations. 

Only Jin (2016) has concerns regarding the impacts of Tiles-based HEVC parallelization in 

the video memories. Jin (2016) proposed a content-adaptive Tiles partitioning to improve the 

HEVC compression efficiency under on-chip memory constraints. Based on maximum Tiles 

dimensions due to fixed on-chip memory size for the CTUs line buffer, the scheme employs a 

local competition optimization-based rectangular clustering scheme to partition the frames into 

a required number of Tiles adapting to video content variations. As shortcoming of this work, 

the proposed scheme focus on optimizing the memory design exploiting only intra-Tile data 

reuse, not considering the potential of inter-Tiles data reuse. Further, video memories 

characteristics of very high read intensity (compared to write operations) are not exploited in 

the work. Therefore, to address this gap our work focus on exploiting the inter-Tiles data reuse, 

as well as intrinsic video memories characteristics (like high read access intensity). 

Furthermore, another important aspect is the external memory pressure that may be 

unbalanced due to different video properties at each Tile region within the video frame (as 

motivated in Section 4.2). If not well managed, it might lead to low/high power peak 

fluctuations and off-chip communication channel wasting. To address this issue, we propose a 

memory pressure management, which integrates Hy-SVM, to properly balance the instant 

memory requirements in a Tiles-parallelized HEVC encoder. 

 Application-Specific Memory Optimization for Video Coding 

This section presents application-specific memory optimization schemes and architectures 

for video coding. As a widely used solution, traditional data-reuse schemes are presented and 

compared to the adopted strategy by Hy-SVM. Moreover, state-of-the-art reference fame 

compressing techniques for H.264/AVC and HEVC are presented and discussed, regarding 

their main shortcomings for parallel video coding. After, ME hardware architectures for HEVC-

specific coding structures are presented. The main goal is to analyze the adopted on-chip 

memory infrastructure. At the end, video memories architectures for decoders are analyzed. 
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 Data-Reuse Schemes 

During the past decade, multiple works developed data-reuse schemes for the reference 

frames samples (CHEN et al., 2006; GRELLERT et al., 2011; TUAN; CHANG; JEN, 2002). 

In such works, the regularity of fetching the entire search window samples was exploited, even 

when fast search algorithms are adopted, which may not access the entire search window. 

Tuan (2002) and Chen (2006) were the first works to exploit the data locality between 

neighboring search window samples in video coding applications. Level-C strategy (Figure 

3.1a) relies on keep stored in on-chip video memory one entire search window. In doing so, due 

to the overlap between neighboring search windows (dark gray area in Figure 3.1a), just the 

remaining samples are required to be fetched from external memory. In Level-C, considering 

the traditional raster scan encoding order, a complete data reuse exploitation can be performed 

for one entire row of search windows. In a frame width level, Level-D (Figure 3.1b) scheme 

stores the entire row of search window in the on-chip video memory. Thus, besides exploiting 

the data reuse in the entire row of search windows (as Level-C), Level-D allows data reuse 

when the first block of the next row is processed (as depicted in Figure 3.1b). Moreover, several 

other schemes in different levels were also proposed in these works (Level A, B and C+). In 

the evaluations of this Thesis, Level-C and Level-D were adopted for comparison purposes. 
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Figure 3.1: (a) Level-C and (b) Level-D schemes, which exploit intra-Tile data reuse in search window 

and frame width levels, respectively. 

Sampaio (2013a) presented a data-reuse scheme in a different perspective (compared to 

Level-C and -D), when targeting multiview video coding scenarios. The proposed strategy, 

called Reference-Centered Data Reuse (RCDR) changes the ME processing order to reduce the 

number of times that one reference frame is fetched. In multiview video coding, the reference 

frame communication is aggravated due to the inter-view prediction, which exploits data 

redundancy between different cameras (views) for the multiview video. Due to this out-of-order 

processing, partial results are generated, which must have to be stored until can be discarded. 

Table 3.1: Comparison of Data-Reuse Schemes 

Work Target Data-Reuse Level 
Inter-Tiles 

Data Reuse? 
Coding Order 

Tuan (2002) – Level-C MPEG-2 Search window No Raster scan 

Tuan (2002) – Level-D H.264/AVC 
Reference frame width 

(within the same Tile) 
No Raster scan 

Sampaio (2013a) – 

RCDR 

Multiview 

H.264/AVC 
Search window No 

Reference-centered 

order 

This Work – Hy-SVM  
Parallelized 

HEVC 

Multi-level - Search 

window and (L1) 

Reference Frame (L2)  

Yes 
Balanced-pressure 

CTU re-scheduling 
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Table 3.1 summarizes the above discussed data reuse schemes and compares them to the 

strategy employed by Hy-SVM architecture. In terms of data-reuse level, Hy-SVM is the first 

of proposing a multi-level approach, which jointly exploits search window (L1 SPMs) and 

reference frame (L2 SPMs) levels of data reuse. Moreover, inter-Tiles data reuse is a novelty 

introduced by the proposed video memory architecture, which increases the overall energy 

savings by reducing external memory communication. Hy-SVM also adopts a CTU re-

scheduled order to balance the memory pressure in according to the video content properties.  

 Reference Frame Compression Schemes 

Reference frame compressing strategies are exploited since previous video coding 

standards, and have the focus of reducing the data bandwidth from on-chip and off-chip 

memories by compressing the reference frames data (GUO et al., 2016; GUO; ZHOU; GOTO, 

2014; LIAN et al., 2016a, 2016b; SAMPAIO et al., 2013b; SILVEIRA et al., 2015; ZHU et al., 

2015).  

Sampaio et al. (2013b) presented a lossy reference frame compressing scheme that employs 

a spatial prediction scheme to reduce provide near-zero representation of reference frame 

blocks, allowing efficient data compressing utilizing Huffman tables. The proposed strategy 

was developed for H.264/AVC multiview video coding memory requirements. 

Silveira et al. (2015) implemented a low-complexity and lossless reference frame 

compression solution that performs intra-block double differential coding over 64x64 blocks to 

prepare them for static Huffman coding. Furthermore, hardware implementations of 

compressor e decompressor parts were designed, indicating power reduction in both on- and 

off-chip memory parts. 

In Guo (2014), a hybrid spatial-domain prediction is proposed, which is enhanced with 

additional modes to support various image characteristics. After that, efficient residual 

regrouping based on semi-fixed-length coding improves compression performance. A hardware 

implementation was designed to implement and evaluate the proposed techniques. Results 

indicate enough performance to support 3840x2160 HEVC encoding. 

Zhu (2015) proposed an architecture that overcomes limitations of implementing frame re-

compression techniques in HEVC video codecs. The work also provides easy connection with 

all video coding implementations.  

Lian et al. (2016a) focused on improving the reference frame compression performance of 

state-of-the-art lossless algorithms, which noticeably degrades the external memory access 

latency. In doing so, the work developed an adaptive quantization oriented parallel lossless 

frame memory recompression algorithm. Experimental results demonstrate applicability of the 

designed hardware for compressor and decompressor parts for UHD videos, when utilized 

along with data reuse schemes.  

In the same direction, Lian et al. (2016b) improved the previous work by strongly adapting 

the compression algorithm to the specifications of DRAM-based external memories. In this 

context, read and write dynamic, as well as page activation behavior are considered in the 

proposed scheme. Hence it improves off-chip energy savings compared to related works. 

Guo et al. (2016) proposed a lossy reference frame compression algorithm that mostly 

focuses on minimizing the error propagation, which causes increased quality degradation of 

reference frames. As results, better and lower fluctuation in PNSR results were verified. 

Even though these works can be applied to parallel HEVC encoding, they do not consider 

parallel memory accesses issues from different processing units, leading to: compromised 

scalability for increased parallelism, unsupported memory contention, and increased memory 
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access latency. Further, on-chip memory energy is even aggravated since multiple on-chip logic 

circuitry must be inserted to keep the performance rates when various processing units are used 

in parallel.  

 Motion Estimation Architectures with On-Chip Memory Design for HEVC 

Hardware design for motion estimation has been a key research challenge for recent video 

encoders. In this context, architectures for ME were designed targeting MPEG-2 and 

H.264/AVC specifications and requirements (PORTO; AGOSTINI; BAMPI, 2009; ROVATI 

et al., 2000). However, HEVC increased ME computational complexity by allowing more 

flexible block partitioning when compared to previous video coding standards (as already 

discussed in Section 2.2.1). Hence, it poses harder challenges for energy-efficient ME targeting 

HEVC encoders. To provide on-chip data storage support in such ME architectures, several 

works integrate video memory design (FAN et al., 2017; JOU; CHANG; CHANG, 2015; 

PARK et al., 2016; VAYALIL; KONG, 2017). 

Fan et al. (2017) developed a hardware-oriented integer ME algorithm and the related 

hardware implementation. For the reference frames management, the designed architecture 

implements 2-D data reuse supported by horizontal and vertical reference SRAMs, along with 

on-chip memory reduction supported by 4x4 block compression.  

Jou (2015) presented a joint algorithm and architecture design for ME that reduces the 

integer ME, complexity by selecting the most probable search directions and steps through 

statistical analysis. Besides, a novel fractional ME scheme reduces the interpolation filtering 

operations. These novel schemes contributes by increasing reference samples data reuse. It 

adopts a cache design as on-chip video memory, optimized by double Z scan indexed 

addressing to simplify access management.  

Vayalil (2017) designed a full-search variable-block-size ME that reduces the memory 

requirements by following a Morton order for data reading and a sum of absolute differences 

reuse strategy.  

Park et al. (2016) implemented a hardware architecture for ME using a modified reference 

data access skip (MRDAS) scheme for reducing the minimum memory bandwidth. Along with 

external memory communication reduction, coding efficiency is negligible degraded by the 

proposed technique. 

None of the above discussed works support parallel execution of ME when multiple Tiles 

are defined. Parallelization of ME imposes the need of extra logic to implement multiple search 

engines, as well as requires specialized memory support to provide higher throughput rates. In 

doing so, the energy efficiency and performance of discussed ME architectures are significantly 

compromised when used in parallel HEVC encoder implementations. 

 Energy-Efficient Video Memory Architectures 

The analysis of related energy-efficient video memory architectures is divided in three parts. 

At first, solutions designed for multiview video coding specific requirements are discussed. 

Then, video memories developed for HEVC are detailed and compared to the proposed Hy-

SVM. At the end, two preliminary hardware design, developed as initial approaches of this PhD 

works, are detailed.  

 H.264/MVC Related Works 

Energy-efficient video memory design and management were already important research 

focus since multiview video coding (MVC) extension of H.264/AVC standard was released. 

MVC encoders highly require from memory since inter-view prediction is employed to exploit 
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disparity redundancies between frames from different views (cameras) (VETRO; WIEGAND; 

SULLIVAN, 2011). In this scenario, energy-efficient video memory architectures were 

strongly necessary. Several works focused on leveraging MVC memory behaviors and 

multiview video content properties to increase the energy savings of on- and off-chip parts of 

reference frame handling (SAMPAIO et al., 2013a; SHAFIQUE et al., 2012; ZATT et al., 

2011a, 2011b). 

Zatt et al. (2011a) presented a run-time adaptive energy-aware motion and disparity 

estimation architecture considering multiview video coding extension of H.264/AVC. The 

memory infrastructure incorporates data prefetching techniques for jointly reducing off- and 

on-chip memory energy consumption. Search maps from previous blocks processing are used 

to predict the search behavior for the next blocks. Power gating is adopted to shut down parts 

of the on-chip memory depending on the prediction. Unlike the already discussed data reuse 

schemes in Section 3.3.1, the search window is not completely fetched, avoiding unnecessary 

access of unused samples when fast search algorithms are not adopted. 

An on-chip multi-banked video memory for motion and disparity estimation was proposed 

by Zatt et al. (2011b). The memory organization was driven by an extensive analysis of memory 

usage behavior for several videos. Memory restrictions for each block are derived from inter-

frame and inter-view correlations. When low motion regions are processed, adaptive power 

gating works to reduce the energy supply of less probable unused on-chip memory sectors. Still, 

reference frame fetching is performed as the ME requires, which saves memory accesses for 

fast search algorithms, but leads to irregular access pattern in the off-chip memory. 

Shafique et al. (2012) introduced an adaptive power management targeting on-chip video 

memories for multiview video coding. The energy-aware control checks the so called 3D-

neighborhood for texture, motion and disparity properties to predict the behavior for the current 

block encoding. As in the previous discussed works, not the entire search window is fetched, 

causing irregular off-chip memory accesses.  

Sampaio (2013a), besides contributing with the already discussed reference-centered data 

reuse scheme (see Section 3.3.1), also implemented an on-chip video memory architecture 

integrated with off-chip memory data organization and on-chip power management. In the off-

chip perspective, a regular access pattern and reference frame data organization allowed 

reduced energy consumption by reducing DRAM page activation overhead. Further, a 

candidate blocks merging scheme was proposed to provide accurate hints to power gating 

control. 

The H.264/MVC-based memory architectures are not scalable enough to be energy efficient 

for HEVC encoders due to its novel coding tools and complex video processing flow. By not 

taking into account the novel coding model of the advanced HEVC, these works are not able to 

achieve higher levels energy savings, as motivated in the evaluations of Chapter 4. Moreover, 

in Tile parallelized HEVC encoders, multiple processing units request data at the same time 

from the shared memory system. Thus, several other factors need to be taken into account, e.g., 

memory contention and memory access scheduling schemes. Still, inter-Tiles data reuse was 

not exploited by any of related works, which is required for energy-efficient parallel HEVC 

encoders.  

 HEVC Related Works 

Khan (2013) proposed the first on-chip video memory architecture targeting HEVC 

encoders, called AMBER. It is based on a hybrid memory design utilizing STT-RAM 

technology. Additionally, it uses SRAM to implement FIFO buffers to hide the high write 

latency of STT-RAM cells. AMBER exploits the low leakage features of STT-RAM to store 
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the entire DPB (i.e. all reference frames required to completely process one GOP of a video) in 

the on-chip video memory. Moreover, the search window size and the memory access pattern 

is leveraged as run-time parameters to apply adaptive power management, increasing the energy 

efficiency of AMBER.  

Song (2015) implemented an on-chip memory architecture (called HVM) which combines 

SPMs and caches to achieve energy efficient data storage. A run-time prediction algorithm is 

proposed to effectively identify the most-frequent accessed memory regions in the search 

windows for processing individual CTUs. Depending on their intra- and inter-core reused, 

private or shared SPMs are accessed. An adaptive power gating scheme power offs SPM sectors 

with expired search windows, thus reducing static energy consumption. 

Table 3.2 resumes the characteristics of presented energy-efficient video memory 

architectures for HEVC, relating their proposed schemes with Hy-SVM implemented 

strategies. AMBER has the limitation of not considering parallel video processing in its on-chip 

memory design and management units, which is inevitable to achieve high throughput. In terms 

of adopted on-chip memory organization. The three works utilize SPMs to simplify the access 

management circuitry. Besides, AMBER implements FIFOs as first level of memory to reduce 

write access latency. However, the implemented FIFOs are not effectively part of the storage 

system that may provide a high potential of energy-/performance-efficient design. Furthermore, 

AMBER stores all reference frames in the on-chip STT-RAM memories that incur high 

frequent-write, thus performing inefficient management under such scenarios and may only be 

feasible for a certain set of video resolutions. Another gap that is not addressed by AMBER is 

related to STT-RAM lifetime improvement, since all on-chip memory write accesses are 

performed in the STT-RAM part. 

Table 3.2: Comparison of Energy-Efficient Video Memory Architectures Targeting HEVC 

 
Khan (2013) –  

AMBER 

Song (2015) –  

HVM 

This Work –  

Hy-SVM 

Tiles-Parallelized 

HEVC Support? 
No Yes Yes 

On-Chip Memory 

Organization 
FIFO and SPM SPM and Cache SPM 

On-Chip Storage 
Current CTU and entire 

Decoding Picture Buffer  

Current search windows 

(distributed along private 

and shared SPMs and 
Caches) 

Current search windows (private 

L1 SPMs) and reference frame 
(private and shared L2 SPMs) 

Inter-Tiles Data Reuse No Yes Yes 

Memory Technologies SRAM and STT-RAM SRAM SRAM and STT-RAM  

Application-Specific 

Management Schemes 
- 

Load search window 

prediction algorithm 

Overlap prediction, memory 

pressure management and 
lifetime-aware data management 

On-Chip Management 

Units 

Power-gating control (for 

memory cells) and clock-

gating control (for ME 

engine) 

Video memory 

management unit and 

power-gating control 

Distributed MAMUs and 

APMUs  

 

In another perspective, HVM integrates caches to store portions of the search window. 

SPMs are used to support a prefetching unit (called load window prediction algorithm). 

However, both private and shared caches/SPMs are logically organized in the same memory 

level, which means that the incoming memory access is directed either to private or shared 

memory array. In another vein, Hy-SVM defines two level of on-chip memories, which reduces 

the required off-chip memory communication. Hy-SVM adopts a light-weight caches to the 
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second level to alleviate high-bit-toggling write operations to SPMs (implemented as STT-

RAM), thus leading to improved endurance.  

 Preliminary Works from This Thesis 

As first initiatives from this Thesis, two on-chip video memory architectures were proposed 

to initially exploit Tiles-parallelized opportunities to enable energy-efficient data management 

to HEVC encoders. The proposed Hy-SVM architecture is based on research opportunities and 

extended contributions from works.  

Sampaio et al. (2014a) was pioneer on exploiting inter-Tiles data reuse to reduce external 

memory communication, thus improving the off-chip energy savings. The proposed 

architecture was called Distributed Scratchpad Video Memory Architecture (dSVM), being 

composed of private and shared memory arrays to enable support for intra-Tile and inter-Tiles 

data reuse, respectively. The adopted on-chip memory models are based on SPMs to simplify 

control circuitry. A policy for energy-efficient memory management was proposed, which was 

based on the identification of the overlap characteristics, which is estimated by a simple, but 

efficient, overlap prediction engine. An adaptive power management scheme was also proposed 

to shutdown memory cells outside the predicted overlap, increasing the on-chip static energy 

savings. 

Sampaio et al. (2014c) improves dSVM achievements by developing a dedicated hybrid 

video memory architecture (called enHyV) focusing on parallel HEVC. enHyV combines 

SRAM and STT-RAM using private and shared SPMs. A design space exploration was 

performed to find the best optimization point to define the size of SRAM and STT-RAM 

memory arrays. Although enHyV implemented shared SPMs to support inter-Tiles data reuse, 

the focus was to demonstrate the contributions of STT-RAM technology to implement on-chip 

video memories. In doing so, just a simple overlap management unit integrates enHyV 

management layer. To deal with STT-RAM write inefficiency and endurance issues, it was 

proposed a data management scheme that reduces bit-toggling inefficiency during write 

accesses. 

As limitation of dSVM, although inter-Tiles data reuse is exploited, its potential is not well 

exploited in this work, since adaptive management is not performed considering variable video 

content properties inside the same frame. Depending on the video properties (like low/high 

motion), energy may be wasted by not properly manage the shared video memories. 

Furthermore, to support on-chip overlap storage for reduced external memory communication, 

the additional SRAM to improve the data reuse brings extra static energy consumption. 

Therefore, merely using SRAM it becomes unfeasible when using a large number of processing 

units.  

By exploiting STT-RAM advantages of low static energy consumption, enHyV could 

improve dSVM capability by keeping stored one entire reference frame. Combined shared and 

private SPMs allows joint intra-Tile and inter-Tiles data reuse. The shortcomings of enHyV are 

mainly related to the lack of efficient memory access and power management techniques to 

deal with video content dependent overlap formation characteristics. 
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4. HEVC MEMORY DYNAMICS AND OVERVIEW OF PROPOSED MEMORY 

ARCHITECTURE 

This chapter presents preliminary analysis of memory dynamics of different HEVC 

encoding scenarios. In the first part, the goal is to characterize and motivate the main problem 

related to the memory infrastructure of HEVC encoders: the bottleneck caused by the intense 

reference frames transmission and the need of large on-chip video memories (Sections 4.1 and 

4.2). The overlap formation, which represents a key concept for the proposed Hy-SVM 

architecture design and management strategies, is presented in Section 4.3. At the end, to link 

with the insights from the presented motivational analysis, the main contributions of this work 

are briefly introduced (Section 4.4) as start point for their technical description along the next 

chapters. 

 HEVC Memory Profiling  

The external memory transmission to fetch the reference frames, as well as the on-chip 

storage to keep the data available for processing, are the main responsible for the high 

performance and energy restrictions in a HEVC encoder. These constraints are aggravated when 

real-time processing is required for very high resolutions (like 1080p, 2K and 4K) and high 

frame rates (like 60 fps and 120 fps). Furthermore, at the same time that parallelism can be 

exploited to meet these performance targets, it also leads to even higher penalties in the energy 

perspective, mainly when it is considered for the memory infrastructure. 

Figure 4.1 presents some memory access evaluations of a HEVC encoder application: 

HEVC test model 11.0, using the TZ Search ME algorithm. In the overall HEVC encoder 

perspective (Figure 4.1a), note that the inter prediction is responsible for up to 80% of the 

memory accesses for the encoded videos. As already mentioned, the inter prediction must 

evaluate all CUs into the CTU structure. Besides, the ME search algorithms intensively access 

the memory to scan the reference frames (typically stored off-chip). Specifically in the inter 

prediction, only the reference frame fetching occupies the memory transmission channel in 

45%. It is important to notice that TZ Search is a very fast and efficient ME algorithm, which 

reduces the memory communication in 23x, when compared to the exhaustive search (Full 

Search) (PURNACHAND; ALVES; NAVARRO, 2012). Thus, even when efficient ME 

algorithms are chosen, the memory requirements stills significantly affecting the encoding 

system. 
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Figure 4.1: Memory requirements analysis for HEVC encoding. 
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 Tiles-Accumulated Memory Pressure Evaluation 

In this work, memory pressure is defined as the memory access requirement caused by a 

CTU processing during a specific time. When considering multiple processing units, the 

memory pressure may be (1) Tile-specific, or (2) accumulated (sum of all Tile-specific 

pressures). Typically, the motion estimation is performed in the traditional raster scan order 

(i.e., from top-left to bottom-right corner in row-by-row order). However, this may lead to 

unbalanced external memory pressure, as depicted in the 4-Tile example of Figure 4.2a. The 

maximum and minimum memory pressure peaks can be seen in Figure 4.2b. There are 

significant memory access variations compared to the average access case (that typically does 

not happen). This unbalanced memory pressure leads to high power peak dissipations and high 

instant memory bandwidth requirements, which may surpass the maximum availability 

constraints. Moreover, such unbalancing also leads to inefficient memory power management 

due to (1) fluctuations in the sleep durations, (2) frequent PON-POFF switching, and (3) memory 

usage prediction errors due to sudden access variations.  
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Figure 4.2: Memory pressure for (a) each processing unit; and  

(b) accumulated and average cases for BasketballDrive. 

Therefore, the key is to leverage application specific-properties to adapt and re-schedule 

the CTU processing in order to achieve the best possible memory pressure balancing. 

 Inter-Tiles Data Reuse Evaluation 

 Inter-Tiles Redundant Memory Access Evaluation 

When multiple Tiles are supported by a HEVC encoder, each processing unit is responsible 

to encode the CTUs of a specific Tile. Thus, the ME of each processing unit intensively searches 

in the reference frame to capture the motion properties. For the CTUs located near the Tiles 

boundaries, the ME search algorithms (depending on the motion direction) may access 

reference regions located across the Tiles limits in the reference frames. This leads to redundant 

memory access between adjacent Tiles processing. This data redundancy tends to grow for an 

increased number of Tiles (assuming 1 Tile per processing unit). The data redundant access 

trend is plotted for growing number of Tiles in the Figure 4.3. In the worst case, the redundant 

accesses reach 43% in a 16-Tile HEVC encoder. As larger is the memory accesses redundancy, 

more processing units must concurrently access the same reference data from the external 

memory without any data reuse. Therefore, it may be beneficial to design dedicated on-chip 

memories for the data redundant regions to avoid external memory retransmission of the Tiles 

shared reference data, saving off-chip memory energy. 
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Figure 4.3: Redundant memory access between different processing units  

(assuming 1 Tile per unit) growing trend for increased parallelism. 

It can also be noted that the inter-Tiles memory access redundancy may vary depending on 

the input video. For the HD1080 tested sequences, low-motion videos, like BQTerrace (4.7%-

37%) and Bosphorus (4.8%-35%) tend to have less inter-Tiles access redundancy when 

compared to more complex sequences, like BasketballDrive (5.8%-43%) and Kimono (6.4%-

43%). High-motion videos require more search steps to ME in order to find the most similar 

candidate block in the delimited search window within the reference frames. Thus, analyzing 

the PUs of CTUs near to the Tiles boundaries, it can be noted that ME may require more 

memory accesses across this barrier, leading to increased access redundancy between the 

parallel HEVC processing units. Therefore, besides designating on-chip video memories for 

shared reference data, there is a strong need of application-driven design methodology for 

efficient SPMs sizing, as well as dynamic adaptation of memory management to be adaptive to 

different video content properties. 

The overlap concept, which is adopted in this work to exploit the characteristics of the 

formation of the inter-Tiles memory access redundancy inside the reference frames, is presented 

as follows. 

 Overlap Concept 

The strategies for inter-Tiles data reuse are based on the overlap concept. The overlap is 

composed by reference frame samples that are accessed by two or more processing units during 

the parallel Tiles processing. The samples near to the Tile boundaries in the reference frame 

must be fetched/stored by multiple processing units, leading to external memory contention, 

redundant memory accesses and extra on-chip storage (causing energy wastage). An example 

in Figure 4.4a depicts the overlapping accesses performed for more than one processing unit 

(gray and black regions). When observing the memory access maps (Figure 4.4b), it is possible 

to notice that each processing unit will direct its searches to regions of reference frame 

according to the correspondent Tile position. When these access maps are merged and the 

intersection is analyzed (Figure 4.4c), the formed overlapping region can be observed. 

Figure 4.6 presents the reference frame access maps of the overlap formations considering 

the BasketballDrive sequence when encoded with uniforms partitioning with 2, 4, 8 and 16 

Tiles. Note that the overlap constitution is observed around the Tiles boundaries, being 

increasingly representative when more parallelism is adopted. The access maps confirm the 

same growing trend of previous analysis illustrated in Figure 4.3. Additionally, different shapes 

and access intensities can be observed along the different Tiles boundaries. In the example of 

the initial part of BasketballDrive, which concentrates the high motion CTUs in the left and 

bottom parts of the captured scene, the shape of the resultant overlap is itself heterogeneous. 

We can observe this variability (1) within the formation around one specific Tile boundary, as 

well as (2) between the formations of different Tiles boundaries. Therefore, to handle with this 

variable content-driven behavior, specialized management for each Tiles-boundary overlap 
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along with dynamic adaptation of variable overlap shapes is strongly required to achieve 

increase energy savings for both on- and off-chip memory parts. 
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Figure 4.4: Overlap concept: (a) Example of Tile partitioning and of the overlap formation; reference 

frame access maps (b) for each Tile (specific for each processing unit) and (c) for the formed overlap. 
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Figure 4.5: Reference frame access maps for the overlap formation in uniforms partitioning with 2, 4, 

8 and 16 Tiles. 
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 Overlap Formation Parameters 

Figure 4.6 depicts an example of the overlap formation, as well as its main parameters. Let 

PUA and PUB be adjacent prediction units of CUs belonging to CTUs of different Tiles. Thus, 

they are encoded by different processing units that concurrently access the external memory for 

reference frame fetching. Typically, to determine the best ME start point, the most recent search 

algorithms (as TZ Search) for ME use past motion vectors as predictors for this purpose. 

Therefore, the motion properties of the Tiles boundaries neighborhood strongly affect the 

memory access behavior. In the example of Figure 4.6a, the predictors exploitation lead to a 

ME starting point at PredA and PredB for PUA and PUB, respectively. The ME search is 

typically limited by a maximum range, forming a squared search window surrounding the 

starting point. Inside this delimited area, the algorithm will search for the best match for the 

current PU. Still in the example, Figure 4.6b and Figure 4.6c depict the search window 

formation and the actual accessed regions during the ME execution for PUA and PUB, 

respectively. Note that the search pattern of TZ Search was used as case study. As result of the 

access merging for both PUs processing in the reference frame, the redundant memory access 

of these two ME searches are highlighted in Figure 4.6d (dark gray region). In this intersection, 

the reference frame samples are required for more than one processing unit, leading to 

redundant accesses (if not properly managed). This redundancy is called overlap in this work. 

Besides the dynamic ME starting point, the video properties (motion field) near the Tiles 

boundaries may lead to memory access in different directions inside the search window. High-

motion regions will cause a more distant ME starting point and will take the ME to longer 

searches. In this case, the overlap tend to have higher thickness and variable displacement 

(when consider the Tiles boundaries as the central position for overlap positioning). To properly 

subsidize the proposed overlap prediction scheme, detailed overlap characteristics exploitation 

is performed in Section 6.1.1. 
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Figure 4.6: Overlap formation and its involved parameters. 

In summary, the main involved parameters in the overlap formation are: (1) the maximum 

search delimitation (search window) and (2) the motion field of frame regions near the Tiles 

boundaries. The search window is typically a fixed parameters and known at design time. In 

contrast, the motion field is a video content property that should be analyzed at run time. 
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 Overview of the Proposed Energy-Efficient Hybrid Scratchpad Video Memory 

Architecture and Its Run-Time Management Layer 

This section introduces the technical content related to the proposed energy-efficient hybrid 

scratchpad video memory architecture and its run-rime management schemes. Figure 4.7 

depicts an overall block diagram that introduces a parallel HEVC encoding system along with 

all contributions from this work. The system is based on multiple Tiles partitioning to enable 

parallel HEVC encoding: each Tile is assigned to a specific processing unit. As we focus on 

energy-efficient memory support, there is not any specific assumption for the HEVC parallel 

implementations, which may be designed as a multi-/many-core software or as ASIC-based 

hardware accelerators. The external main memory provides storage to all required data of 

HEVC encoding, like original and reference frames, instructions, HEVC coding structures, 

temporal variables, etc. In special, the entire DPB (e.g. all reference frames that are required to 

encode a video GOP) must be stored in the main memory.  
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Figure 4.7: Block diagram of the proposed memory architectures, divided according to on-chip 

memory design and memory management layer perspectives. 

To allow energy-efficient on-chip storage of the reference frame samples, an on-chip hybrid 

scratchpad video memory (Hy-SVM) was designed, which employs private and shared hybrid 

memories to exploit combined intra-Tile and inter-Tiles data reuse. In the memory management 

layer, run-time adaptive schemes were developed relying on application-specific knowledge: 

(1) overlap prediction, (2) memory pressure management, and (3) lifetime-aware data 

management. Application-specific knowledge was exploited by: (1) inheriting HEVC 

properties and (2) performing run-time monitoring of memory accesses. Such information is 

used to properly design the on-chip video memories, as well as being utilized as input 

parameters for the schemes inside the memory management layer. As on-chip management 

units to control the data dynamics of Hy-SVM, distributed memory access management units 

(MAMUs) and adaptive power management units (APMUs) are implemented. MAMUs and 
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APMUs receive information from the run-time management schemes to improve the energy 

savings of Hy-SVM. 

As follows, Chapter 5 technically describes the hardware design of Hy-SVM. After that, 

Chapter 6 presents the specific details of the energy-efficient memory management layer. 
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5. ON-CHIP HYBRID SCRATCHPAD VIDEO MEMORY ARCHITECTURE 

This chapter introduces the on-chip hybrid scratchpad video memory architecture 

organization. At first, an overview of architecture design is presented (Section 5.1), 

highlighting hardware-specific details. Then, the on- and off-chip memory models adopted by 

the proposed architecture are descripted (Section 5.2). After, offline statistical evaluations of 

overlap formations and bit-toggling activities are performed to extract design-time parameters 

for designing the multiple level of SPMs (Section 5.3). The developed design methodology, 

which provides proper parameters to implement the on-chip SPMs, aiming on minimizing the 

energy consumption while guaranteeing the required reference data storage (Section 5.4). 

 Overview of Hy-SVM Architecture 

Figure 5.1 depicts our hybrid scratchpad video memory architecture (Hy-SVM) and its 

energy-efficient management layer for parallel HEVC encoding. Each Tile is assigned to a 

specific processing unit. The proposed memory organization increases the energy efficiency of 

reference frames management (off-chip fetching and on-chip storage). The coarser lines in 

Figure 5.1 represent data connections, while finer lines illustrate the control flow between the 

modules. 

Adaptive Power 
Management Units

Parallel 
HEVC Encoder

Memory 
Access 

Management 
Units

Private L2
SRAM/STT-RAM HyMs

Tile-specific region in 
reference frame Extern

al M
em

o
ry 

(D
R

A
M

)
(O

rigin
al Fram

es; 
R

eferen
ce Fram

es)

Proc. Unit 0

Proc. Unit 1

Proc. Unit n-1

Private L1
SRAM SPMs
Tile-specific 

search window

PrivL20

PrivL21

PrivL2n-1

SharedL2Ver

MAMU0

MAMUOv

DRAM 
Controller

APMU0

APMUOvAPMU1

APMUn-1 Shared L2
SRAM/STT-RAM 

HyMs
Overlapping region 
in reference frame

PrivL10

PrivL10

PrivL1n-1

SharedL2HorEnergy-Efficient 
Management Layer

(Chapter 6)

MAMU1

MAMUn-1

Interconnect Bus

 

Figure 5.1: Block diagram of our hybrid scratchpad video memory architecture. 

Our Hy-SVM architecture is organized as two levels of on-chip memory arrays: 

L1 SPMs Level: NTiles private SPMs7 (PrivL1) that store the search window samples for a 

specific processing unit, allowing intra-Tile data reuse between each CU processing. At this 

level, the SPMs are implemented as SRAM arrays, providing equally high performance and 

energy efficiency for read and write operations. Since PrivL1 SPMs represent smaller memory 

cells arrays, SRAM static energy consumption does not significantly affect the overall energy 

efficiency. 

L2 SPMs Level: NTiles private (PrivL2) and NTilesBoundaries shared (SharedL2) hybrid 

memories (HyMs) that together can store one complete reference frame, providing combined 

intra- and inter-Tiles data reuse. Each L2 level HyM is designed as a combination of a STT-

RAM SPM, exploiting STT-RAM high density and low static power features to implement 

large L2 data arrays; as well as a smaller portion of SRAM SPM, that will support high bit-

                                                 
7 Let NTiles be the number of Tiles and NTilesBoundaries be the number of Tiles boundaries. 
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toggling write activities to overcome STT-RAM write inefficiency. The PrivL2 stores the Tiles-

specific region of the reference frame (accessed privately by the corresponding processing unit). 

Each HyM of PrivL2 has a direct data connection to the corresponding PrivL1 SPM. The 

SharedL2 HyMs are connected to the PrivL1 SPMs by an interconnect bus and it is responsible 

for the overlapping regions storage. 

Along with SharedL2 HyMs, inter-Tiles data reuse is managed by a run-time overlap 

prediction that accurately estimates the redundant memory access behavior for the next ME. 

This prediction step is based on already monitored overlap formations from previous frames 

encoding. This knowledge is then forwarded to on-chip memory management hardware 

modules: (a) memory access management units (MAMUs) and (b) adaptive power management 

units (APMUs). They are responsible to effectively manage the on-chip memories by 

implementing a read/write policy, as well as proper power gating control over memory sectors. 

The goal is to achieve the best possible energy efficiency depending on the video content 

properties. Details regarding the energy-efficient memory management layer are presented in 

Chapter 6. 

As follows, the adopted on- and off-chip memory models are described. The proposed Hy-

SVM design methodology is strongly based on these defined parameters. 

 On- and Off-Chip Memory Models  

Figure 5.2 depicts the adopted on- and off-chip memory models and the defined notations 

for the main involved parameters for the design part.  

The external memory is composed of several banks. Each bank is a row-column matrix, 

where the number of rows represents the addressing space and the number of columns is directly 

related to the page size (PSize). Each row-column intersection stores a memory word of size 

WSize. Each memory access will initially cause a page activation, to pass the activated data to 

the page buffer. If consecutive accesses to a memory word are located in the same page, the 

memory controller needs just to address a specific column of the page buffer (called burst 

read/write operations). If other memory page is addressed, the current active page is precharged 

and a new page is activated. The external memory organization adopted in this work follows 

the LPDDR2 architecture.  Further details regarding the operation flow of the selected off-chip 

memory model can be found at (MICRON TECHNOLOGY INC., 2001) 

Every data transmission from/to memory is based on a fixed basic access unit (BU), which 

corresponds to a BUDim*BUDim picture block of the reference frame (see Figure 5.2a). The 

samples of a BU are organized in a serialized way, so that all rows of one entire BU can be 

stored in the same memory page (see Figure 5.2b). Since the consecutive accesses to the same 

memory page lead to less page-activation energy overhead, improved energy efficiency can be 

achieved. Still, depending on the adopted BUSize and PSize, adjacent BUs of the reference frame 

can be organized in the same page. Thus, when external memory communication is required, 

then several BUs are accessed in one burst operation to increase the energy efficiency.  

As on-chip SPM design, a multi-bank memory organization is adopted (see Figure 5.2c). 

Each SPM is composed of NB memory banks. To facilitate parallel access, each row of a BU 

is stored in a specific SPM bank. Hence, one line of a memory bank can store LS bits, equals to 

the size of one BU row (BUDim * NBSample
8). The exception is the first SPM bank, which 

additionally stores control information for memory access management (explained in Section 

5.4). A Banki is composed of NL lines, grouped into NS memory sectors of SS bytes. The number 

                                                 
8 In this work, we consider video sequences represented with 8-bit samples. 
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of BUs per sector (NBUPerSector), which corresponds to the number of memory lines per sector 

(NLinesPerSector), defines the power management granularity applied to the SPMs. The BUDim and 

NBUsPerSector are design-time parameters and should be carefully decided by the hardware 

designer.  

Different sectors of the SPM can be individually power-gated using a multiple sleep-state 

transistor model. In the proposed techniques, it was adopted models supporting two (for STT-

RAM arrays) and three (for SRAM arrays) power states: OFF, Data Retentive (DR) and 

S3=ON, where EStatic(OFF) < EStatic(DR) < EStatic(ON). Still, each state have also increasing 

associated wake-up energies (WE(OFF)> WE(DR) > WE(ON)= 0). The electrical parameters 

of each power state to derive the static energy consumption and the overhead caused by the 

wakeup energies considers the characterization performed by (SINGH et al., 2007). 
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Figure 5.2: Adopted organization for the off- and on-chip memory parts. 

Before moving forward to the physical and logical design, offline statistics-driven design 

space explorations were performed to improve the proposed design methodology of Hy-SVM 

with all possible application-specific knowledge of HEVC encoding.  

 Evaluations for Design Space Exploration of SPMs/HyMs Design 

 Overlap Size Evaluation 

The proposed design methodology of Hy-SVM leverages the Tiles overlap behavior that 

depends on the search window size and on the video motion properties. Adaptive ME 

algorithms change the center of their searches by using spatial predictors (i.e. motion vectors 

of previously-coded CUs). Moreover, low motion CUs will lead to less memory access to search 

window samples. Hence, the optimal overlapping memory size for each video sequence follows 

a statistical distribution of the near-boundaries motion properties. Figure 5.3a depicts statistics 

of the Tiles overlap varying the search window size. On average, the overlap linearly increases 

with the growing of the maximum search range. The more or less concentrated distribution 

around the average size hints towards the video motion properties. Different regions near the 

Tile boundaries may have different motion characteristics, which leads to more or less memory 

access overlaps. 
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Figure 5.3: (a) Overlapping statistics for increasing search window size for evaluations with 

BasketballDrive test sequence; (b) motion delta distribution for several video sequences. 

1. determineMotionDelta(Video: V;  TilePartitioning: TP): 
2. ListΔ = [ ]; 
3. For all Frame Є V 
4.      For all TileID Є TP 
5.           PredMap[TileID] = [ ]; 
6.           For all CU Є TileID 
7.                CU.performMotionEstimation(); 
8.                PredMap[TileID].insert(CU.getUsedPredictor()); 
9.           End For 
10.      For all TileBoundaryID Є TP 
11.            //Let SideA and SideB the two tile boundary sides  
12.           For all CUSideA, CUSideB Є TileBoundaryID 
13.                PredA := PredMap[TileSideA][CUSideA][CoordID]; 
14.                PredB := PredMap[TileSideB][CUSideB][CoordID]; 
15.                ΔValue := |PredA – PredB|; 
16.                ListΔ.append(DeltaValue); 
17.           End For 
18.      End For 
19. End For 
20. {µΔ, σΔ}  = norm_dist(ListΔ); 
21. return {µΔ, σΔ}; 

Figure 5.4: Motion knowledge extraction for SharedL2 SPM sizing. 

To statistically define the motion property near a specific Tile boundary of a given video, it 

was defined the ΔMotion (motion delta) metric as being the video correlated parameter used for 

determining the overlap size, as presented in Figure 5.4. For each frame of the video and for 

each defined Tile boundary, the algorithm obtains the used ME spatial predictors (lines 7-8). 

The difference of the predictors used by the near-boundary CUs from the two Tile boundary 

sides (SideA and SideB) is then calculated (lines 12-17). This difference will represent the 

access search range of SideA CUs in the SideB reference frame region, and vice-versa. The 

Probability Density Function (PDF) of the ΔMotion metric is then calculated (line 20), where µΔ 

and σΔ are the statistical average and standard deviation, respectively, of the motion delta 

parameters extracted from video encoding. The PDFs for HD1080p test sequences are plotted 

in Figure 5.3b. It can be noted diverse behaviors depending on the input video: high motion 

videos like BasketballDrive and Kimono present more spread distributions, while low motion 

videos like Cactus and BQTerrace have more concentrated distributions.  

 Design Space Exploration of HyMs 

As already discussed, STT-RAM presents low static energy consumption while having high 

density. It allows us to designate the most part of the HyM to be composed of the STT-RAM 

array. In the meantime, BUs from the reference frame that cause high bit-toggling activity 

strongly decrease the STT-RAM lifetime, minimizing its non-volatility advantage. Thus, a 

small portion of SRAM is used to handle with these BUs. Although SRAM does not degrade 

from bit-toggling activity, it costs a large area and a high static energy consumption. Therefore, 
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the main challenge involved in the HyMs design is to leverage application-specific properties 

to design a well-balanced combination of SRAM and STT-RAM to minimize the static energy 

consumption whereas increasing the STT-RAM cells lifetime. The bit-toggling activity (BTA) 

during a HyM write operation of a basic unit BUo over an already stored BU1 is defined as the 

number of bits that toggles during the operation divided by the total number of written bits, as 

in Equation (11). BUDim is the horizontal/vertical BU dimension and NBSample the number of bits 

per sample. The toggling_bits function returns the number of collocated bits that are different 

between two numbers. 

BTA(BU0, BU1) =
∑ ∑ toggling_bits(BU0(x,y) , BU1(x,y))

BUDim
x=0

BUDim
y=0

BUDim
2 ∗ NBSample

 (11) 

Example: Figure 5.4 illustrates the bit-toggling activity map resultant from the write 

accesses during the replacement process between two consecutive reference frames (depicted 

in the left part). We can note that the higher activities correspond to the higher motion and 

textured areas of the video.  In contrast, lower bit-toggling occurrences are related to more static 

and homogeneous frame parts. Therefore, the video content properties must be taken into 

account when dimensioning and managing HyMs. 

Already Stored On Chip
Bit-Toggling Activity Map

To Be Stored On Chip

 

Figure 5.5: Example of reference frame replacement (for BasketballDrive sequence) and its 

corresponding bit-toggling activity map. 

Figure 5.6 depicts the design space exploration controlled by an external parameter: the bit-

toggling threshold (BTTH). Reference frame basic units that lead to bit-toggling activities lower 

than BTTH are assigned to STT-RAM, while higher values will direct the BU to SRAM. Our 

exploration varies the BTTH from 0 (no activity) to 1 (maximum activity, all bits toggle) in steps 

of 0.01. We analyze our two optimization target variables: STT-RAM lifetime (Figure 5.6a) 

and SRAM size (Figure 5.6b), since it is known that the static energy efficiency is limited by 

the amount of SRAM cells (as discussed in Section 2.3). To find the best design point, we 

analyze an efficiency plot that relates both variables (see Figure 5.6c). We run this exploration 

for a set of video test sequences following our evaluation methodology (described in Section 

7.1.1). The maximum efficiency point was discovered when BTTH=0.24. Using this design 

point, we have that the SRAM usage factor (αSRAM) is equal to 35% and the STT-RAM lifetime 

can be improved near to the optimal case (when no bit toggles): 0.83 normalized lifetime, as 

detailed in Section 7.5. From the Hy-SVM perspective, αSRAM=35% means that the SRAM array 

will be sized as 35% of the STT-RAM capacity. Note that the αSRAM factor is used for L2 HyMs 

design (PrivL2 and SharedL2). 
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Figure 5.6: Design space exploration for joint (a) STT-RAM lifetime and (b) SRAM size optimization, 

resulting on a (c) tradeoff analysis. 

The toggling activity at bit level is also exploited in Hy-SVM. Figure 5.7 depicts the 

accumulated statistics for toggling occurrences for each bit position using ParkScene and 

NebutaFestival test video sequences. Extended analyses considering other video sequences are 

presented in the Appendix B. It can be noticed near-zero bit-toggling activity for the two most 

significant bits (MSB) of the two sequences. Therefore, it means that even for BUs with high 

average bit-toggling activities, the two MSB toggle with a very low probability. This property 

is explored by always storing the two MSB in the STT-RAM, this way reducing the SRAM size 

(saving further static energy) while not penalizing the STT-RAM cells lifetime. This enables 

us to realize a fine-grained hybrid memory organization. 
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Figure 5.7: Bit-toggling activity of different bit positions. 

Another important aspect from Figure 5.7 is that the bit range from b5 to b3 inherits the bit-

toggling activity of the entire 8-bit sample. It means that only these three specific bits of the 

two involved data need to be compared to approximate the bit-toggling activity of this write 

operation. It is exploited by generating a bit-toggling key (BT_KEY) composed of only these 

three bits of some specific samples from reference frame BUs. This key aims to serve as an 

identifier that must be stored by the lifetime-aware data management unit. The goal is to design 

an energy-efficient way to estimate the bit-toggling activity of each write operation. Details 

regarding this data management unit are given in Section 6.3. 

 Design Methodology of SPMs/HyMs 

 Overlap Sizing Parameters 

Equations (12) and (13) define the Tiles overlap sizing formula for the overlap thickness 

(OvThickness) and length (OvLength). These formula are used at design-time to properly derive the 

SharedL2 SPMs parameters. The OvThickness is calculated from the search window width or 

height, since it defines the maximum range ME can reach when searching in the reference 

frames. Additionally, ME start point can be displaced by prior analysis from neighboring 

motion predictors. Thus, the search window center can vary according to the motion field of 

Tiles boundaries. To represent that, an off-line statistical parameter ΔMotion is inserted to scale 
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the overlap thickness to be adapted to the average case of test sequences. The OvLength is related 

to the frame width or height, when overlaps are formed around horizontal or vertical Tiles 

boundaries, respectively. 

OvThickness(TBID) = {
ΔMotion × SWW,   if vertical boundary

ΔMotion × SWH,   if horizontal boundary
 (12) 

OvLength(TBID) = {
FrameH,   if vertical boundary

FrameW,   if horizontal boundary
 (13) 

 L1 Level SPMs Design  

Based on the memory organization defined in Section 5.2, we determine the sizing for the 

SPMs Levels in the proposed Hy-SVM architecture. As already explained, all SPMs (PrivL1, 

PrivL2, and SharedL2 levels) are composed of BUDim memory banks as in Equation (14), which 

allows parallel access of one entire BU. However, the other SPM parameters are different 

depending on the Hy-SVM level. 

PrivL1NB = PrivL2NB = SharedL2NB = BUDim (14) 

The PrivL1 SPMs store Tile-specific search window samples, requiring PrivL1NL memory 

lines, as expressed by Equation (15). The first memory bank of a PrivL1 SPM must store, 

besides the first BU row, three control data: the horizontal and vertical BU frame position, and 

a validate bit (as in Equation (16)). This information is important for MAMU to properly 

manage hit and miss occurrences.  In total, PrivL1LS bits are required for each memory bank, 

where NBSample is the number of bits per reference frame sample. The power management of 

PrivL1 SPMs, which is based on longer sleep duration opportunities from balanced memory 

pressure (as properly explained in Section 6.4.2.1), is applied for each defined SPM sector. The 

already defined NLinesPerSector parameter indicates the adopted management level (as already 

discussed in Section 5.2). Thus, Equation (17) defines the sector size PrivL1SS and Equation 

(18) presents the number of sectors within a PrivL1 SPM (PrivL1NS). These parameters directly 

affects the overhead of implementing APMUs power maps. 

PrivL1NL = NBUsPerPrivL1 = ⌈
SWW × SWH

BUSize
⌉ (15) 

PrivL1LS = {
(|BUXPos| + |BUYPos| + 1) + BUDim × NBSample

BUDim ∗ NBSample
   

 if Bank0

    otherwise
 (16) 

PrivL1SS = NLinesPerSector × BUSize (17) 

PrivL1NS =
PrivL1NL

PrivL1SS
 (18) 

 L2 Level HyMs Design 

The L2 level of Hy-SVM completely stores one reference frame, by having its samples 

distributed along the PrivL2 and SharedL2 HyMs. As illustrated in Figure 5.8, hybrid memory 

design is exploited in L2 level of Hy-SVM by implementing HyMs containing: (a) one STT-

RAM SPM, which is designed to have specific memory lines for all BUs within Tile-specific 

region of reference frame (in case of PrivL2), or within the overlapping regions (in case of 

SharedL2); and (b) one SRAM SPM, which provides storage only for BUs estimated with high 

bit-toggling activities, alleviating the STT-RAM part of high-cost write operations.  
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Figure 5.8: Hybrid video memories (HyMs) physical organization for L2 level (PrivL2 and SharedL2). 

As definitions from the design space exploration HyMs (presented in Section 5.3.2) we 

have: (a) the extraction of the αSRAM factor, which represents the size of SRAM portion (related 

to HyM total size) that leads to the best optimization point between STT-RAM lifetime and on-

chip static energy consumption; and (b) the design decision to always store the two MSB of all 

reference frame samples in the STT-RAM SPM of each HyM.  

The first calculations refer to the STT-RAM SPMs of PrivL2 and SharedL2 HyMs, which 

are designed to store all corresponding BUs. The SRAM SPMs design will be described based 

on STT-RAM defined parameters. 

STT-RAM SPMs Design: The PrivL2STT-NL number of memory lines depends on the frame 

resolution and the number of Tiles, as expressed in Equation (19). In another perspective, the 

SharedL2 SPMs requires SharedL2STT-NL lines, which is related to the OvThickness and OvLength 

overlap parameters; see Equation (20). The PrivL2 STT-RAM SPMs are designed to guarantee 

that all BUs within the same reference frame have a specific associated memory line. Thus, it 

is not necessary to keep stored the frame position coordinates of the stored BU in a specific 

SPM line. To ensure correct hit/miss detection by MAMU, a validate bit is stored alongside the 

first BU row in Bank0. The same scheme is adopted for SharedL2 SPMs. Thus, the line size of 

each L2 STT-RAM SPM bank (L2STT-LS) is defined in Equation (21). Our APMU acts on L2 

level of Hy-SVM to reduce on-chip static energy consumption. Note that as L2 SPMs are 

implemented as STT-RAM arrays, the shutdown operation of specific memory sectors does not 

imply on off-chip memory re-fetching, due to the non-volatile nature of STT-RAM cells. The 

power gating is applied for each memory sector. In doing so, the sector size L2STT-SS, which is 

the same for PrivL2 and SharedL2 STT-RAM SPMs, is defined according to this design-time 

parameter, as in Equation (22). As result, the number of memory sectors (PrivL2STT-NS and 

SharedL2STT-NS), which directly affects the APMU design, is defined in Equations (23) and (24), 

respectively. 

PrivL2STT−NL = NBUsPerPrivL2−STT = ⌈
FrameW × FrameH

BUSize × NTiles
⌉ (19) 

SharedL2STT−NL = NBUsPerSharedL2−STT = ⌈
OvThickness × OvLength

BUSize
⌉ (20) 
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L2STT−LS = {
BUDim + 1

BUDim
   

 if Bank0

    otherwise
 (21) 

 

L2STT−SS = NLinesPerSector × BUSize (22) 

PrivL2STT−NS =
PrivL2STT−NL

L2STT−SS
 (23) 

SharedL2STT−NS =
SharedL2STT−NL

L2STT−SS
 (24) 

SRAM SPMs Design: Considering the SRAM part, the design methodology is applied 

equally for PrivL2 and SharedL2 HyMs by using the adopted sizing for the STT-RAM as 

parameter.  The number of lines of each SRAM SPM bank (PrivL2SRAM-NL and SharedL2SRAM-

NL) is derived from applying the offline statistics-based 𝛼𝑆𝑅𝐴𝑀 factor to the already defined 

PrivL2STT-NL and SharedL2STT-NL parameters of STT-RAM part, as defined in Equations (25) 

and (26). Since only a small part of the data is assigned to SRAM (to alleviate STT-RAM from 

high bit-toggling activities), the horizontal and vertical BU frame positions, as well as a validate 

bit, must be stored along with the reference data. Furthermore, as the two MSB of all samples 

are always stored in the STT-RAM SPMs, the line size L2SRAM-LS can be reduced, as defined in 

Equation (27). To provide a fine-grain power management for the SRAM SPMs, the power 

states are assigned specifically for each memory line (as illustrated in Figure 5.8), leading to 

the number of sectors (L2SRAM-NS) equals to L2SRAM-NL.  

PrivL2SRAM−NL = NBUsPerPrivL2−SRAM = ⌈PrivL2STT−NL ∗ αSRAM⌉ (25) 

SharedL2SRAM−NL = NBUsPerSharedL2−SRAM = ⌈SharedL2STT−NL ∗ αSRAM⌉ (26) 

L2SRAM−LS = {
(|BUXPos| + |BUYPos| + 1) + BUDim ∗ (NBSample − 2)

BUDim ∗ (NBSample − 2)
   

 if Bank0

    otherwise
 (27) 

To provide a proper hardware infrastructure for the management layer of Hy-SVM, small 

on-chip memory blocks are designed. They serve to keep stored: (a) the monitored and 

predicted overlap representations (Predicted and Monitored Overlap Tables – POTs and 

MOTs); the power maps for APMU operation (frame- and CTU-level power maps); as well as 

a data management table (DMT) to manage HyMs write operations. This hardware data 

structures will be explained along with the related management schemes in next chapter. 
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6. ENERGY-EFFICIENT MEMORY MANAGEMENT LAYER 

This chapter introduces the memory management layer, which enables run-time adaptation 

and improved energy savings to the designed Hy-SVM architecture. Initially, details regarding 

the overlap prediction scheme is presented in Section 6.1. An accurate prediction of the overlap 

characteristics (size, shape and displacement) is of key importance to enable energy-efficient 

inter-Tiles data reuse. In a different perspective, unbalanced memory pressure caused when 

considering Tiles-accumulated memory requirements is treated by the memory pressure 

management scheme, which is properly defined in Section 6.2. Well-balanced memory 

transmission is extremely necessary to avoid off-chip power peaks and allow a better prediction 

for the sleep durations of on-chip SPM sectors. STT-RAM lifetime and write access 

inefficiency is handled by the lifetime-aware data management scheme, explained in Section 

6.3. In addition, distributed on-chip management blocks composed of memory access 

management units (MAMUs) and adaptive power management units (APMUs) are presented 

in Section 6.4. They implemented hardware support of data structures and control logic to 

properly manage the data dynamics of Hy-SVM. 

 Overlap Prediction  

We focus our evaluations and proposed overlap prediction scheme in the Low Delay (LD) 

and Random Access (RA) prediction structures, as illustrated in Figure 6.1. Each arrow denotes 

a prediction dependency evaluated by the ME, starting from the current frame and pointing to 

the used reference frame. We assign an overlap identification (OvID) for each prediction 

dependency. Further, another important parameter is the distance between the current and 

reference frame of each OvID, represented by the notation DME. It is defined as the absolute 

difference between the picture exhibition order number between the two frames: 𝐷𝑀𝐸(𝑂𝑣𝐼𝐷) =

|𝐹𝐶𝑢𝑟𝑟 − 𝐹𝑅𝑒𝑓| (depicted in the bottom of Figure 6.1). For example, the DME of the prediction 

RA2 is calculated as 𝐷𝑀𝐸(𝑅𝐴2) = |4 − 8| = 4. 

0 1 2 3 4 5 6 7 8

LD2

LD0 LD1 LD3 LD5 LD7 LD9 LD11 LD13

LD4 LD6 LD10 LD12 LD14LD8

0 1 2 3 4 5 6 7 8

RA0
RA1 RA2

RA3 RA4 RA6 RA5

RA7 RA8 RA10 RA9 RA13 RA14 RA12 RA11

(a) Random Access (b) Low DelayOverlap Identification (OVID)
within a Group of Pictures

 

Figure 6.1: Overlap identification (OvID) in (a)  Random Access and  

(b) Low Delay HEVC encoder configurations. 

Note that each ME will lead to a formation of an overlapping region. The characteristics of 

the overlaps were evaluated to base our run-time overlap prediction scheme (Section 6.1.1). An 

accurate estimation of such properties is important (a) to improve inter-Tiles data reuse 

(exploited by the SharedL2 SPMs), as well as (b) to provide less-frequent ON-OFF switching 

activities, leading to higher energy savings for our adaptive power management scheme. To 

support the variability of the overlap characteristics, a light-weight overlap data representation 

is proposed (Section 6.1.2). The overlap prediction scheme is described in Section 6.1.3. 

 Overlap Correlation Evaluations 

Memory analyses were performed with the goal of identifying correlated parameters of 

overlap formations between consecutive MEs. The evaluations consider three important overlap 

characteristics: size, shape, and displacement. 
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Analysis-1 (Overlap Size): Figure 6.2 presents an evaluation of the overlap size by 

exploiting MEs with different DME parameters. In this case, we are interested in the number of 

redundant memory accesses within a reference frame depending on the absolute value of the 

distance DME. Thus, this analysis does not consider the prediction direction. We can note that 

the overlap size reduces when lower DME MEs are executed. Therefore, an insight is to leverage 

the size of past overlaps in our prediction scheme. In doing so, the relation between the DME 

factors must be taken into account to scale the predicted overlap accordingly. Our APMU can 

exploit it by dynamically applying relaxed or aggressive power gating to improve the SPMs 

energy efficiency according to predicted memory demand. 
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Figure 6.2: Example of overlap sizing variation for several temporal distances (DME factor). 

Analysis-2 (Overlap Shape): Besides the size, another important aspect is the overlap 

shape, which may significantly change along the overlap length. We can note this dynamic 

behavior in Figure 6.3, where the shape varies according to the video content. Not exploiting 

this variation may lead to inefficiency to memory energy consumption (on- and off-chip parts).  

Furthermore, there is a significant similarity between the shapes of overlaps when analyzing 

consecutive ME processing, as can be noted in Figure 6.3. Therefore, the shape characteristics 

of previous formations can be used as reference to improve the prediction accuracy for the next 

overlaps. 
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Figure 6.3: Correlation between consecutive overlaps (RA5, RA3, RA1 and RA0), considering 

Random Access prediction structure. 

Analysis-3 (Overlap Displacement): Figure 6.4 presents an analysis (Probability Density 

Function charts) comparing the overlap displacement for ME steps with different DME factors. 

The displacement, in this evaluation, was measured by the distance of the center of the actual 
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overlap regarding the Tiles boundary. When we compare the generated overlap between MEs 

with the same prediction direction (Figure 6.4a), we can note that higher DME factors lead to 

higher and spreader overlap displacements. In another vein, ME operations with lower DME 

values lead overlaps centered nearer the Tiles boundary, as well with a more concentrated 

behavior. In Figure 6.4b, comparing MEs with opposite prediction directions (DME values with 

different signals), we can observe opposite displacements in the formed overlaps. Therefore, 

regarding this aspect, our insight is to leverage the past overlap displacement weighted by the 

difference of DME factors. 
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Figure 6.4: Overlap displacement correlation analysis. 

To exploit the discussed overlaps correlation in our prediction unit, we implement an 

overlap representation that properly models the absolute size, the variable shape and 

displacement properties. 

 Overlap Representation 

Equation (28) models an overlap as an ordered set of tuples, each one containing width 

(widthi) and displacement (displi) information of a specific basic unit line i within the overlap. 

The level of representation is based on the adopted BU dimension, being compliant to Hy-SVM 

organization. 

OvID = {(widthi, displi), ∀ 𝐵𝑈 𝑙𝑖𝑛𝑒 𝑖 |0 ≤ i < OvLength/BUDim}  (28) 
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Figure 6.5: (a) Graphical and (b) data representation of an overlap by our energy-efficient 

management of Hy-SVM. 

Figure 6.5 illustrates an example of overlap representation. In the graphical view (Figure 

6.5a), we can observe the possibility of modeling the variations of width and displacement 

along the overlap length. For each BU line, the width is related to the overlap thickness (in 
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number of BUs), while the displacement is expressed as the distance of the first BU from the 

Tiles boundary center. Hence, the design-time parameters OvLength and OvThickness related to the 

overlap thickness and length (previously defined in Section 5.2), utilized to design the SharedL2 

SPMs, are refined to provide a more accurate representation of the actual formed overlap. The 

mapping between the graphical and the data representation is presented in Figure 6.5b. We can 

note that each BU line within the overlap has associated width and displacement information. 

Considering a 4-Tile HD1080p HEVC encoder, 256x256 search window size, and BUDim=8, 

the overlap representation for the horizontal Tiles boundary requires 480 bytes, while the 

vertical overlap occupies 136 bytes. These values represent a negligible overhead, especially 

when comparing to the hardware resources required to implement L1 and L2 SPM Levels. 

 Overlap Prediction Scheme 

Our scheme is inspired on the video coding idea of selecting several references (past coded 

information) to predict the behavior of the data that is being processed. Therefore, for each 

overlap that is being predicted (called current overlap), the information of past monitored 

overlap formations (called reference overlaps) are exploited. As result, an estimation of the 

formation characteristics for the current overlap is generated (called predicted overlap). In this 

context, there are two key data structures: the Monitored Overlaps Table (MOT) and the 

Predicted Overlap Table (POT).  

Figure 6.6 depicts the flowchart of our overlap prediction scheme, as well as its integration 

with Hy-SVM on-chip management units (detailed presented in Sections 6.4 and 6.4.2). During 

a ME processing, our Memory Monitoring Unit monitors the inter-Tiles redundant accesses. 

This unit utilizes one bitmap for each HEVC processing unit to identify the accessed BUs within 

a reference frame. As result, the bitmaps are combined, and the monitored overlap 

representation (presented in the previous section) is generated and stored in the MOT. There is 

a specific MOTTB for each Tile boundary TB, which is responsible to store a historic of the past 

monitored overlap formations of this specific boundary. 
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Figure 6.6: Flowchart of our run-time overlap prediction scheme and its relation to Hy-SVM on-chip 

management units. 

For each Tiles boundary within a frame, our scheme accesses the MOTTB to get the reference 

overlap RefOvID(TB) that will be used for the prediction of CurrOvID(TB). To minimize the 

MOTs size and guarantee the best possible correlation between current and reference overlaps, 

proposes a prediction assignment based on the correlations of MEs, considering the Random 

Access and Low Delay configurations. The overlap identifications follow the notations defined 

in Table 6.1. Based on this assignment, a prediction operation is applied to estimate the 

predicted overlap based on the monitored information from the selected reference overlap. The 

prediction process is based on one of four possible operations: downscale, upscale, invert or 
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copy; as defined in Eqs. (29)-(32), where the α and β are offline statistical factors that were 

extracted by experimental analysis using real-world video coding scenarios9. 

Table 6.1: Overlap Prediction Assignment for Random Access and Low Delay HEVC Encoder 

Configurations 

 

Random Access Low Delay 

Curr. 

 OvID 

Prediction 

Operation 

Ref.  

OvID 

Curr. 

 OvID 

Prediction 

Operation 

Ref.  

OvID 

RA0 

off-line stats. (if first 

frame) or copy RA0 from 

previous GOP 

LD0 

off-line stats. (if first 

frame) or copy RA0 

from previous GOP 

RA1 downscale(α) RA0 LD1 copy LD0 

RA2 invert RA1 LD2 upscale(β) LD1 

RA3 downscale(α) RA1 LD3 copy LD1 

RA4 invert RA3 LD4 upscale(β) LD3 

RA5 downscale(α) RA2 LD5 copy LD3 

RA6 invert RA5 LD6 upscale(β) LD5 

RA7 downscale(α) RA3 LD7 copy LD5 

RA8 invert RA7 LD8 upscale(β) LD7 

RA9 downscale(α) RA4 LD9 copy LD7 

RA10 invert RA9 LD10 upscale(β) LD9 

RA11 downscale(α) RA5 LD11 copy LD9 

RA12 invert RA11 LD12 upscale(β) LD11 

RA13 downscale(α) RA6 LD13 copy LD11 

RA14 invert RA13 LD14 upscale(β) LD13 

 

downscale(PredOvID, RefOvID, α):  
PredOvID[i]. width ← ⌈RefOvID[i]. width × 𝛼⌉  
PredOvID[i]. displ ← RefOvID[i]. displ, 
∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 𝛼 < 0 

(29) 

upscale(PredOvID, RefOvID, β):  
PredOvID[i]. width ← ⌈RefOvID[i]. width × β⌉ and 
PredOvID[i]. displ ← RefOvID[i]. displ, 
, ∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 β > 0 

(30) 

invert(PredOvID, RefOvID):  
PredOvID[i]. width ← RefOvID[i]. width and 

PredOvID[i]. displ ← −(RefOvID[i]. width + RefOvID[i]. displ), ∀ BU line i 
(31) 

copy(PredOvID, RefOvID):  
PredOvID[i]. width ← RefOvID[i]. width and 
PredOvID[i]. displ ← RefOvID[i]. displ, ∀ BU line i 

(32) 

Example-1: Let the RA1 prediction dependency be processed by ME and the inter-Tiles 

redundant memory accesses be monitored, generating the RefOvRA1 (illustrated in Figure 6.7a). 

From the proposed prediction assignment for Random Access configuration presented in Figure 

6.1, the selected prediction operation for the next PredOvRA2 and PredOvRA3 are invert and 

downscale, respectively. In Figure 6.7b we can observe the result of invert prediction operation, 

where the overlap is displaced from left to right part related to the Tiles boundary. In this case, 

the RA1 and RA2 have the same absolute value of DME, but with different signals: DME(RA1)=4 

and DME(RA2)=-4. In this case, due to the opposite motion directions, the overlap formations 

tends to be displaced (as motivated in Analysis-2 of Section 6.1.1). The estimation of 

                                                 
9 We adopted: α=0.75 and β=1.25 in our experiments. 
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PredOvRA3, reduces the overlap width parameters by a α=0.75 factor. The prediction 

dependencies RA1 and RA3 have same direction but different distances:  DME(RA1)=4 and 

DME(RA2)=2. In doing so, the overlap formation for RA3 tends to be smaller than RA1, since 

lower motion fields will be detected. 

(b) Predicted Overlap (RA3)

(a) Reference Overlap (RA1)
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Figure 6.7: Example of overlap prediction operations when estimating RA2 (invert) and RA3 

(downscale; using α=0.75) formations from RA1 monitored reference overlap. 

Example-2: In the perspective of Low Delay HEVC configuration, consider that LD1 

prediction was computed and the RefOvLD1 was monitored (depicted in Figure 6.8a). According 

to the adopted overlap prediction assignment of Table 6.1, the estimation steps of PredOvLD2 

and PredOvLD3 are performed from the upscale (Figure 6.8b) and copy (Figure 6.8c) operations, 

respectively. The upscale is applied since the overlap OvLD2 is generated during a ME of DME=2, 

while the monitored overlap RefOvLD1 has DME=1. This means that higher motion tends to be 

observed in OvLD2 (compared to OvLD1), leading to a higher probability of increased overlap. 
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Figure 6.8: Example of overlap prediction operations when estimating LD2 (invert) and LD3 

(upscaling; using α=1.25) formations from LD1 monitored reference overlap. 
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The predicted overlap PredOvID(TB) is stored in the POTTB to become available for 

MAMUs and APMUs operations. Details regarding the implementation of Hy-SVM on-chip 

management units are given as follows. 

 Memory Pressure Management  

This section describes the proposed memory pressure management scheme, which focuses 

on balancing the instant memory bandwidth in order to optimize the external memory 

communication channel usage. As consequence of a well-balanced memory pressure, longer 

sleep durations for the PrivL1 SPMs can be exploited to additionally save on-chip static energy 

(as presented in Section 6.4.2.1). 

Initially, application-specific evaluations are presented to capture the main correlations of 

memory accesses in two perspectives: intra-frame (among spatial neighboring CTUs inside the 

same frame) and inter-frame (among CTUs of consecutive frames). Based on this knowledge, 

the memory pressure management scheme is presented, being composed of three main steps: 

(1) memory pressure prediction, (2) run-time statistics-based CTU memory classification, and 

(3) CTU re-scheduling. 

 Intra- and Inter-Frame Memory Accesses Correlations 

If it is possible to accurately predict the memory requirements for a given CTU, it can be 

exploited by a power manager to balance the memory pressure in a very efficient way. In case 

of high frame rates (30-60 fps), significant temporal correlation exists, i.e., the neighboring 

frames have similar memory access behavior, as depicted in Figure 6.9. Additionally, high 

video frame resolutions (e.g., FullHD=1920x1080 to 4K=3840x2160) increase the spatial 

correlations between neighboring CTUs within the same frame. Furthermore, note that the 

memory pressure for each CTU also depends upon their corresponding video content 

characteristic (like texture and motion content). Therefore, the key is to leverage the knowledge 

from the monitored memory pressure of spatially- and temporally-neighboring CTUs to obtain 

a high quality prediction of the actual memory pressure for a given CTU. 

While balancing the memory pressure is important from the external memory perspective, 

it is also crucial to take care of the Tile-private on-chip SPMs. In this case, long sleep durations 

(and consequently more static energy savings) can be achieved by consecutively encoding 

CTUs with similar video content properties (like texture and motion), thus similar memory 

pressure. Figure 6.10 shows Tiles with less memory requirements (like Tile 1) and more 

memory demands (like Tile 2). In this case, longer sleep durations and higher energy savings 

can be obtained for the SPM of processing the Tile 1. Furthermore, re-scheduled CTU 

processing orders for a well-balanced memory pressure tends to group similar properties CTUs 

to be consecutively encoded, providing even higher sleep durations (as demonstrated in Section 

6.4.2.1). Hence, an important challenge here is how to leverage the CTU re-schedule for 

memory pressure balancing and increased sleep durations for efficient PrivL1 SPM power 

management.  

Therefore, the main goal of the proposed memory pressure management is to leverage 

application-specific properties for memory pressure balancing and, additionally, PrivL1 

SPM’s static energy reduction targeting parallelized HEVC encoding. The following sections 

will describe all modules of the proposed scheme. 
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Figure 6.9: Video content and neighborhood correlation analysis for BasketballDrive test sequence. 
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Figure 6.10: Intra-Tile memory pressure analysis for BasketballDrive. 

 Overview of Memory Pressure Management Scheme 

Considering the already discussed analyzed memory access correlations, it was proposed a 

memory pressure management scheme for parallelized HEVC. The key is to leverage the 

memory access correlation within and across different Tiles (i.e. Intra- and Inter-Tile 

correlations; as discussed in previous section). 

The proposed memory pressure management scheme is composed of the following three 

modules: (a) memory pressure prediction, (b) run-time statistics-based CTU memory 

classification, and (c) CTU re-scheduling for memory pressure balancing. The run-time 

memory monitoring unit feeds the statistics about the current memory requirements to the 

system. 

The proposed memory balancing management is composed of the following parts: 

 Memory Pressure Prediction: that leverages the monitored memory pressure of 

Tiles in the previously encoded CTUs in order to accurately predict the memory 

requirements for Tiles in the current frame. 

 Run-Time Statistics-Based CTU Memory Classification: that dynamically adapts the 

parameters involved in the memory management scheme according to the predicted 

memory pressure statistics. 

 CTU Re-Scheduling: the proposed strategy groups the CTUs of a Tile into variable-

size groups (called CTU-groups). The size of the CTU-groups depends on the Tile-

specific motion activity properties. Depending upon the predicted memory pressure, 

the CTU-groups are scheduled to closely meet the target pressure. 
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 Memory Pressure Prediction Algorithm 

As demonstrated in Section 6.2.1, highly correlated memory pressure may exist (1) among 

spatial neighboring CTUs (within the same frame); and (2) among CTUs of temporal neighboring 

frames. Therefore, based on the actual memory usage of previously processed CTUs (ActualMem), 

the prediction algorithm estimates the memory requirements of the CTUs in the current frame10. 

Figure 6.11 depicts an example of used CTU predictors in the current and reference frames. Four 

spatial predictors from the current frame and nine temporal predictors from each reference frame 

are selected as input to a weighted prediction.  
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Figure 6.11: Example: spatial and temporal predictors selecting. 

Equations (33) and (34) presents the spatial and temporal predictors selected for a given CTU: 

PredTemp and PredSpatial, respectively. The letters A-M correspond to the spatial and temporal 

predictors depicted in Figure 6.11. As statistical parameters for the prediction, different weighting 

factors11 was applied according to the spatial location of the predictor related to the current CTU 

position. Possible cases of CTU position are: center (αC), horizontal/vertical (αA), and diagonal (αD). 

Equations (35)-(37) present the weighted prediction formula for predicting the memory pressure 

considering a given CTU. The weighting factors were statistically generated based on the memory 

access correlations of real video test sequences. First, the predicted memory pressure considering 

only the temporal references is estimated: PredMemTemp in Equation (35). Then, the spatial 

predictors are used to calculate the PredMemSpatial, as in Equation (36). Finally, both spatial and 

temporal predictions are used to derive the predicted memory pressure for the given CTU: 

PredMem in Equation (37).  

PredTemp(FRef) := WP(ActualMem(FRef[A...I]), [αC,αA,αD]) (33) 

PredSpatial := WP(ActualMem(FCurr[J...M]), [αA,αD]) (34) 

PredMemTemp = ∑ {[∑ (PT)
PT ∈ PredTemp(FRef)

] ∗
1

D[FRef]
}

∀ FRef

 (35) 

PredMemSpatial = ∑ (PS)

PS ∈ PredSpatial

 (36) 

PredMem(CTU) = WP(PredMemTemp, PredMemSpatial, [αS,αT]) (37) 

When some predictors are unavailable (e.g., in case of CTUs at the frame boundaries) the 

weighted prediction is performed only with the available predictors. The predicted memory 

requirements of the CTUs need to be analyzed to classify each video frame, Tile and CTU-

groups to characterize their memory access behavior. 

 Run-Time Statistics-Based CTU Memory Classification 

As motivated in Section 4.2, in order to avoid the memory pressure imbalance problem of 

traditional raster scan order processing, the proposed scheme re-schedules the order of CTU 

                                                 
10 A current frame refers to the frame being encoded at that moment. 
11 Statistically defined parameters using the experimental methodology described in Section 7.1: αC=0.5, αA=0.3, αD=0.2, αS=0.5, and 

αT=0.5. 
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evaluations for motion estimation. To achieve this, the scheme partitions the CTUs of a Tile 

into so-called CTU-groups, which are rectangular regions of CTUs such that, all CTUs of a 

given CTU-group are processed consequently; see an example in Figure 6.12. The goal is to 

assign CTUs with similar memory requirements/pressure into one group while balancing the 

overall memory pressure of Tiles. 

(a) 4 Video Tiles

 

Figure 6.12: Example: CTU-groups division for re-scheduling. 

The memory access distribution follows specific properties (i.e., motion and texture) of each 

video sequence. Hence, the video properties are used to decide the number of CTU-groups. The 

proposed scheme adapts the number of CTU-groups at frame level according to the predicted 

memory access distribution during each Tile processing. At first, a base number of groups is 

defined, NB in Equation (38). It is based on the Probability Density Function (PDF) of the 

predicted memory pressures at frame level (µF is the average, σF is the standard deviation) and 

the average number of CTUs per Tile (NCTUPerTile). Later on, it is defined the actual number of 

groups for each Tile (NG in Equation (39)) by comparing the predicted memory access 

distribution of a given Tile (µT, σT) with that during the overall frame encoding. Tiles with 

spread memory pressure distributions are divided into more CTU-groups to enable fine-grained 

management (first clause of Equation (39)). The goal is to have a fine-grain management 

because it may have very diverse memory behaviors within a Tile. In contrast, Tiles with 

concentrated memory pressure distribution (second clause of Equation (39)) lead to few (but 

large-sized) CTU-groups as their texture and motion properties tend to be correlated inside such 

a Tile. The decision of having smaller CTU-groups must be carefully taken because the SPM 

data reuse among adjacent CTUs is not available between each CTU-group processing, causing 

efficiency loss in the SPM data management. Due to the CTU order inside one CTU-group (see 

Figure 6.12), the SPMs are more efficient for large-groups. 

𝑁𝐵 = ⌈(
𝜎𝐹

µ𝐹
) NCTUPerTile⌉ 

where: {µ𝐹, σF} = PDF(PredMem(CTU)|∀ CTU ∈ Frame 𝐹) 
(38) 

NG(T) = {
⌈NB + [(σT/µT)−(σF/µF)]NCTUPerTile⌉

⌈NB − [(σF/µF)−(σT/µT)]NCTUPerTile⌉
     if (σT > σF)  

otherwise
  

Where: {µT, σT} = PDF(PredMem(CTU)|∀ CTU ∈ Tile 𝑇) 

(39) 

The predicted memory pressure distribution is used to classify the Tile in terms of motion 

property. By comparing the average behavior of each Tile-specific distribution to the overall 

frame distribution, Equation (40) defines three categories: H-type (high motion), M-type 

(medium motion), and L-type (low motion). Moreover, each CTU-group also has its own PDF 

(given in Equation (41)) that will be used for the re-scheduling decision during the memory 

pressure balancing. 
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CTile(T) = {

(µT ≥ µF + 0.5σF), (H) High 
(µF + 0.5σF > µT > µF − 0.5σF), (M) Medium

(µF + 0.5σF > µT), (L) Low

 (40) 

{µG, σG} = PDF(PredMem(CTU)|∀ CTU ∈ CTUgroup 𝐺) (41) 
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Figure 6.13: Memory pressure statistics for each Tile of the BasketballDrive test sequence (PDFs and 

histogram). 

An Example: Figure 6.13 presents the run-time statistics of the predicted memory pressure 

of a frame in the HD1080 BasketballDrive video encoded with 4 Tiles. The NBase value, which 

is only dependent on the overall frame statistics, is calculated using Equation (38), i.e. NBase=6. 

Using Equation (39), the number of CTU-groups at is calculated: NG(0)=6, NG(1)=2, NG(2)=8, 

NG(3)=4. Using Equation (40), the motion classification of Tiles are: CTile(0)=M-type, 

CTile(1)=L-type, CTile(2)=H-type, and CTile(3)=M-type. 

The above analysis and predicted memory pressure statistics are used by the CTU re-

scheduling algorithm for memory pressure balancing and by the APMU of PrivL1 SPMs. 

 CTU Re-Scheduling Scheme 

The goal of the CTU re-scheduling is to balance the accumulated memory pressure at the 

Tiles level, reducing the mean squared deviance (MSD) related to the average memory pressure 

(ideal case). Different number of CTU-groups lead to variable-sized groups, containing more 

or less CTUs within each Tile. The proposed scheme also classifies the Tiles according to the 

motion properties in three classifications CTile={H-type, M-type, L-type} using the Equation 

(40). Different Tile types will contribute in different ways for the accumulated balancing: H-

type Tiles start by occupying the most part of the memory bandwidth, M-type Tiles contribute 

by median memory occupation, and the L-type Tiles aim to alleviate the memory pressure. The 

main task is to schedule the CTU-groups processing.  

Figure 6.14 depicts the proposed CTU-groups scheduling functionality that is called at two 

points: (1) at the initial frame processing, when the decision about CTU-groups scheduling has 

not already taken, and (2) at the end of one CTU-group processing, when a new group must be 

scheduled. The call for this routine is performed at Tile-level, when the algorithm analyzes the 

current scenario to take the best decision. So, the input parameters are the ID of the Tile (TileID) 

and the list of CTU-groups (LCTU-Groups) that are inside the target Tile (line 1). For the first frame 

of the video, there are no temporal references for memory predictors, so the traditional raster 

scan order is performed (lines 2-3). If it is not the first frame, all memory predictions and run-

time memory-related classifications are performed at the beginning of the frame processing. In 
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case of the first CTU-group scheduling, the algorithm takes the motion Tile classification CTile 

into account to decide the CTU-group that will be next coded (GToBeCoded) (lines 6-9). Otherwise, 

the adaptive scheme analyzes the gap (gapAccumPress) between the current memory pressure 

(currMemPress) and an approximate average case prediction (averageAccumPress in line 11). 

So, the algorithm selects the CTU-group which has the predicted memory pressure and that has 

the best fit to the predicted gap (lines 11-14). After this decision, the CTU-group is removed 

from the non-coded groups list and the CTUs according are encoded according to the CTU-

groups internal processing order depicted in  Figure 6.12 (line 17).  

1. scheduleCTUGroup(Tile: TileID, List of CTU-groups: LCTU-Groups) 
2. If first frame Then    
3.      GToBeCoded := LGroups.first();     //CTU-group equals to Tile  
4. Else     //not the first frame 
5.      If frame start Then   //run-time statistical knowledge of Tiles 
6.           Tileclass := CTile(TileID);   //Equation (40)  – statistical classification 
7.           Case(TileClass = L-type): GToBeCoded := LCTU-Groups.min(); 
8.           Case(TileClass = M-type): GToBeCoded := LCTU-Groups.median(); 
9.           Case(TileClass = H-type): GToBeCoded := LCTU-Groups.max(); 
10.      Else 
11.           averageAccumPress:= ∑ (𝜇𝑇)𝑁𝑇𝑖𝑙𝑒𝑠

𝑇=0  ;  //sum of av. pressures 
12.           currAccumPress := getCurrentMemoryPressure();   //monitoring 
13.           gapAccumPress := averageAccumPress – currAccumPress; 
14.           GToBeCoded := (G  |  𝜇𝐺  has the best fit to gapAccPress); 
15.      End If; 
16. End If; 
17. LCTU-Groups .remove(GToBeCoded); encode(GToBeCoded); 

Figure 6.14: CTUs re-scheduling algorithm. 

 Lifetime-Aware Data Management  

The MAMU implements a special treatment during a write access in L2 HyMs (PrivL2 and 

SharedL2), which is driven by the proposed lifetime-aware data management scheme. As 

already discussed, this scheme aims on improving STT-RAM cells endurance (i.e., extending 

the lifetime) to prevent Hy-SVM from wear-out errors. At the same time, as previously 

presented in Section 5.3, the design methodology leveraged application-specific properties to 

find the best possible optimization point of SRAM size within the HyMs, based on statistics of 

bit-toggling activities using real cases of input video sequences. The main goal of our lifetime-

aware data management scheme is to provide an energy- and performance-efficient way of 

predicting the bit-toggling activity relying on the knowledge from the video content. Based on 

this, the incoming BU is directed either to STT-RAM or SRAM SPM, excepting by the two 

MSB of each sample that are always written in STT-RAM part. 

To estimate as simple as possible the bit-toggling activity during a write operation, the bit-

toggling key BT_KEY was defined as in Equation (42). This key is generated at the moment 

before the write operation and it consists in a set of wires getting the bits from b5 to b3 of specific 

samples resultant from the downsample8 operation from the reference frame BU. The choice 

of these specific bits was taken due to the conclusion (2) from Figure 5.7. The downsample8 

function selects equally-spaced samples of a BU, reducing its representation resolution by 8 

times. As example, considering an 8x8 BU, the prior 64-sample block is down-sampled to 

compose an 8-sample key12. Due to the spatial correlation between near pixels of a video frame, 

it is possible to discard many ones and still maintain the bit-toggling activity property. Thus, 

the BT_KEY will have 3x8=24 bits. The proposed estimated bit-toggling activity (EBT) 

calculates the number of bits that differs between the BT_KEY of the two involved BUs, as in 

Equation (43). This strategy is developed to avoid a complete read operation to fetch the entire 

                                                 
12 To facilitate the understanding, the explanations onwards will consider BUs of 8x8 samples (BUDim=8). 
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BU to, just then, perform the bit-toggling activity evaluation. The BT_KEY of each stored 

reference BU is stored in a very fast special table, called Data Management Table (DMT). 

Besides the BT_KEY, the DMT also stores a flag indicating whether the corresponding 

reference BU is stored in the STT-RAM or SRAM array (called presence bit). A practical 

example is depicted in the Figure 6.17, where each one of the nine reference BUs has a DMT 

entry with its corresponding presence bit .value. Thus, the DMT line consists in BLDMT bits, as 

in Equation (44). Figure 6.15 presents 2D maps and histograms to show the high correlation 

between the actual bit-toggling activity (BT) and the estimated one (EBT). For a BUSize equals 

to 8, the number of required bits is reduced to derive the toggling activity by ~22x using the 

EBT metric. The circuit to compute the number of bits that differ between two BT_KEY can 

be implemented with 24 1-bit XOR gates and a tree of 1-bit full adders, not representing neither 

energy nor performance significant penalty for the HyMs. 
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Figure 6.15: Statistical correlation between BT and EBT metrics. 

BT_KEY(BU) = 𝑐𝑜𝑛𝑐𝑎𝑡([b5. . b3]| b ∈ 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒8(BU)) (42) 

EBT(BU0, BU1) = toggling_bits(BT_KEY(BU0), BT_KEY(BU1))/24 (43) 

BLDMT = 1 + 24 = 25bits (44) 

Figure 6.16 presents the data management steps for a HyM write operation.  First, the 

BT_KEY for the BU that is being written is generated (line 2). Then, the BT_KEY of the 

already stored BU must be retrieved from the DMT (line 4) and the estimated activity αEBT is 

then calculated (line 5). The αEBT is then compared with the offline statistical defined threshold 

BTTH (line 6).  In the case that αEBT is higher than BTTH, the BU to be written is divided to be 

partially stored in the SRAM and STT-RAM (lines 7-10). In this case, SRAM dynamic energy 

is sacrificed to increase the STT-RAM cells lifetime. It is demonstrated in the experimental 

results discussion (Chapter 7) that this spent energy is very small compared to the overall 

savings provided by Hy-SVM. For αEBT lower than BTTH, the BU is completely written into the 

STT-RAM cells (line 13). The DMT is updated with the new BitPresence (lines 11-14) and with 

the BT_KEY of the written BU (line 16). 

The HyM read operation is much simpler than the write case, since no decision must be 

taken. The DMT is just accessed to get the presence bit and, depending on this, STT-RAM or 

SRAM/STT-RAM will be accessed. Finally, the data is forwarded to the requesting processing 

unit by the access management unit. As the data management unit increases the STT-RAM 

lifetime, the power management unit can power-gate unused cells with minimized risk of data 

re-fetching from external memory. 
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1. manageWrite(Hybrid Memory: HyM; BasicUnit: BUToBeWritten;  
 Basic Unit Positions: x, y) 

2. KeyToBeWritten := BT_KEY(BUToBeWritten);    //generate key - Equation (42) 
3. AddressData := genPhysicalAddress(x, y);   //calculate physical address 
4. KeyToBeReplaced := DMT[AddressData][23..0]; //get already stored key 
5. αEBT := EBT(KeyToBeWritten, KeyToBeReplaced);    //estimate activity - Equation (43) 
6. If (αEBT > BTTH) Then          //high bit-toggling data 
7.      BUSTT-RAM := ((b[7..6] | ∀ b Є BUToBeWritten);  //2-bit split 
8.      BUSRAM := (b[5..0] | ∀ b Є BUToBeWritten)         //6-bit split 
9.      HyMSTT-RAM[AddressData].write(BUSTT-RAM);     //STT-RAM write 
10.      HyMSRAM.write(x, y, BUSRAM);           //SRAM write 
11.      DMT[AData][25].write(‘0‘);                      //DMT update – Presence Bit 
12. Else                                   //low bit-toggling data 
13.      HyMSTT-RAM[AddressData].write(BUToBeWritten);   //STT-RAM write 
14.      DMT[AddressData][25].write(‘1‘);        //DMT update – Presence Bit 
15. End If; 
16. DMT[AData][23..0].write(KeyToBeWritten);                        //DMT update 

Figure 6.16: Data management for a HyM write operation. 

To exemplify the lifetime-aware data management actuation, the logical organization of 

HyMs is demonstrated in Figure 6.17, where a set of 3x3 reference BUs are taken as example. 

As decision from the data management unit, the BUs (0,0), (1,1) and (2,2) are considered to 

provoke high bit-toggling activity and must be partially stored in the SRAM SPM; while the 

remaining BUs are completely stored in the STT-RAM SPM. For data management purposes, 

a Data Management Table (DMT in and Figure 6.17) was also designed. 
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Figure 6.17: Example of a HyM data assignment. 

 On-Chip Memory Management Units 

Figure 6.18 presents the block diagram of the proposed on-chip Hy-SVM management 

units. As example, Figure 6.18 illustrates hardware details of a 4-Tile HEVC case study, which 

has one horizontal (Hor) and one vertical (Ver) Tiles boundary. The main goal is to rely on 

accurate overlap prediction to employ energy-efficient memory access and power management 

to designed SPMs in Hy-SVM architecture. As previously explained, the overlap prediction 

leverages past overlap formations of past MEs, which are kept stored in the MOT. The proposed 

memory monitoring is the unit responsible for capturing the inter-Tiles redundant memory 

access behavior. The prediction unit stores the predicted overlap of a corresponding Tiles 

boundary in the POTs. 
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On-Chip Management Units for SharedL2 SPMs 
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Figure 6.18: Block diagram of our on-chip Hy-SVM management units integrated to the run-time 

overlap prediction and memory monitoring units. 

Each HEVC processing unit i has an associated instance of memory access management 

unit (MAMUi) and of adaptive power management unit (APMUi). These modules utilize the 

predicted overlap, available in the POTs, to provide energy-efficient management of the PrivL1 

and PrivL2 SPMs for the processing unit i. The MAMUi receives a memory access request and, 

based on a read/write policy, translates the address and forwards the operation to either PrivL1 

or PrivL2. Further, if the incoming access is related to a basic unit inside any predicted overlap, 

the request is forwarded to a MAMUOv, responsible of managing the SharedL2 SPMs accesses. 

As the private MAMUs require the knowledge of the predicted overlaps, each unit has an 

instance of the POTs (as in Figure 6.18). The APMUi analyzes the POT content and HEVC 

parameters to build the power maps for the PrivL2 SPMi. The power maps are directly 

connected to the sleep-transistors that control the power state of each sector of STT-RAM array. 

Additionally, a specific APMUOv module manages the power gating operation of SharedL2 

SPMs. Details regarding MAMUs and APMUs implemented schemes are given as follows. 

 Memory Access Power Management Unit (MAMU) 

Our MAMU implements a read/write policy (see flowchart of Figure 6.19) that takes 

advantage from the Tiles overlap to increase the data-reuse of the reference frame samples. 

When HEVC processing unit i requests a BU of positions xBU and yBU to Hy-SVM, as first step, 

the MAMU translates the BU frame positions to PrivL1 SPM address space. Then, it performs 
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a PrivL1 SPMi access to check for hit/miss occurrence. In case of a hit, the BU is forwarded to 

the processing unit. Otherwise, a miss leads to the access of L2 level SPMs. At this point, the 

MAMU checks along with the predicted overlaps if the requested BU belongs to one Tiles 

overlapping region. Assuming that the data is inside an overlap related to the Tiles intersection 

TB, the corresponding SharedL2 SPMTB is then accessed. In this case, inter-Tiles data reuse is 

exploited, since the processing of all Tiles that share the Tiles boundary TB may request the 

same data. For non-overlapping regions, the PrivL2 SPMi is accessed, leading to intra-Tile data 

reuse. Note that for each data request, either a ShreadL2 SPM or a PrivL2 SPM is accessed. If 

a L2 hit is verified, the data is forwarded to the processing unit and the PrivL1 SPMi is filled 

with the requested BU. In case of a L2 miss, the BU must be fetched from the external memory 

and written to either PrivL2i or SharedL2TB SPM (depending on the predicted overlap) and the 

PrivL1 SPMi. After that, the data is forwarded to the Tiles-specific HEVC processing unit. 

PrivL1i

Forward basic unit 
to Core i

Fill PrivL1i

Hit

Yes

No

Miss

Read basic unit 
from PrivL2i

PrivL2i

Hit

SharedL2

Fill PrivL2i

Fill SharedL2

Fetch basic unit 
from DRAM (burst)

Hit

Miss

Overlap?

No Yes

Miss

Core i request basic unit 
xBU,yBU from to APMUi: 

Translate BU position to 
PrivL1i SPM address

Read basic unit 
from PrivL1i

Overlap?

Access POTs to verify 
overlaps

Translate BU position to 
PrivL2i SPM address

Translate BU position to 
SharedL2i SPM address

Read basic unit 
from SharedL2

 

Figure 6.19: Flow of our memory access management unit with read/write policy. 

Case-study example:  Figure 6.20 depicts an example of data migration for our read/write 

policy in four different cases, considering a 2-Tile HEVC encoding system. 

(a) In the beginning, the on-chip SPMs are empty and each request will lead to external 

memory fetching (L1 and L2 misses). Figure 6.20 shows that predicted overlap is 

analyzed to determine whether the reference BU is stored in the PrivL2 SPMi or in the 

SharedL2 SPMTB. The PrivL1 SPMi is always filled with the fetched data. During the 

frame encoding, due to the intra-Tile (PrivL1 and PrivL2 SPMs) and inter-Tiles 

(SharedL2 SPMs) reused data, more hits occur and even less external memory 

communication is needed.  

(b) The second case of Figure 6.20 depicts Tiles-centering CTUs processing where only the 

PrivL2 SPMs are accessed (only intra-Tile data reuse). Note that all accesses inside this 

case are directed to reference frame BUs outside the predicted overlap. We can also 

observe some PrivL1 SPMs hits, which avoid L2 SPMs accessing and external memory 

fetching. 

(c) The third case illustrates accesses from CTUs located close to the Tiles boundary. In 

this scenario, L2 memory hits are verified for both PrivL2 and SharedL2 SPMs (i.e., 

combined intra- and inter-Tiles data reuse). This case represents the best energy 

efficiency when requiring L2 level access. 

(d) The last scenario of Figure 6.20 presents the best case of energy efficiency, where all 

memory accesses result on PrivL1 hits. 
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Figure 6.20: An example of data interaction for a 2-Tile HEVC encoding. 

 Adaptive Power Management Unit (APMU) 

6.4.2.1. Adaptive Power Management of L1 SPMs 

The APMU for PrivL1 SPMs, implemented with SRAM cells, monitors each private SPM 

usage to capture the current video motion property and power-gate less-likely used sectors to 

save on-chip static energy. At this level, it was considered a memory technology with three 

power states: ON, DR (Data Retentive) and OFF.  

Evaluations of Figure 6.21illustrate that it is possible to increase the potential of long sleep 

durations once the memory pressure is balanced. For example, Figure 6.21a presents the SPM 

usage for the processing unit 1 when encoding the BasketballDrive sequence. The SPM usage 

(SPMUsage) calculated as the percentage of accessed SPM memory positions (measured by the 

memory monitoring unit) during one ME operation (AccSPM), see Equation (45). As shown in 

Figure 6.21b, the SPM usage for the entire CTU can be determined as the Probability Density 

Function of the SWUsage values of all blocks within the CTU, see Equation (46).  

SPMUsage(CUID) = AccSPM(CUID)/SSPM (45) 

SPMUsagePDF(CTU) = {σSPM, µSPM} =  

PDF(SPMUsage(BlockNode)|∀ BlockNode ∈ CTU) 
(46) 

At the beginning of a CTU encoding, the algorithm predicts the number of the memory 

sectors that can be put into different power state (i.e., NON, NDR and NOFF). As basis for this 

prediction, it was analyzed (1) the actual search window usage for previously processed CTUs 

(e.g., CTUID-3, CTUID-2, and CTUID-1); (2) the predicted usage for the current CTUID and the 

next CTUID+1 and CTUID+2. The goal is to have the knowledge of the past, present and predicted 

future memory requirements to increase the on-chip static energy savings while minimizing the 

overhead for memory sectors waking-up. Figure 6.21b presents an example of SPM usage PDFs 

and the corresponding power states assignment. 
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Figure 6.21: (a) Increased memory pressure correlation;  

(b) power states determination based on the SPM usage PDFs. 

Figure 6.22 presents the APMU policy for PrivL1 SPMs. The actual SPM usage PDFs of 

the past CTUs (ListActualSPMUsagePDF) and the next predicted SPM usage PDFs 

(ListPredSPMUsagePDF) are used to determine the power states of the SPM sectors (lines 3-5). As in 

Figure 6.21, the scheme defines two thresholds (TH0 and TH1) based on the average and 

standard deviation of all cited PDFs (lines 6-7). Afterwards, the SPM sectors corresponding to 

each power states are derived (lines 8-9). The physical assignment of the power states to the 

SPM cells is performed at the beginning of every block processing within a CTU (lines 10-13). 

In the case of data retransmission is required (SPM cells wake-up from the OFF state), the 

control unit inserts stalls in the execution pipeline. Still, this penalty implies a negligible 

energy/performance overhead since in the experiments the worst-case scenario is observed 

<0.2% times. 

1. managePowerSPM (Tile: TileID, CTU: CTUID)  
2. PowerMapSPM := Ф; NON := 0; NDR :=  0; NOFF := 0; 
3. ListActualSPMUsagePDF := (SPMUsagePDF (ActualMem(CTUID) | ID Є {-3..-1})); 
4. ListPredSPMUsagePDF := (SPMUsagePDF (PredMem(CTUID) | ID Є {0..2})); 
5. ListPDF.append(ListActualSPMUsagePDF, ListPredSPMUsagePDF); 
6. TH0 := max(µSPM+3.σSPM | (µSPM,σSPM) Є {ListPDF});   //TH’s definition 
7. TH1 := max(µSPM+1. σSPM | (µSPM,σSPM) Є { ListPDF}); 
8. NOFF := (1 – TH0)*NSec; NDR := (TH0–TH1) *NSec; NON := TH1 *NSec; 
9. PowerMapSPM.assignPowerStates(NON, NDR, NOFF); 
10. For all Block Є CTUID   
11.      SPM[TileID].powerGate(PowerMapSPM);   //apply power gating 
12.      encode(Block); 
13. End For; 

Figure 6.22: Adaptive on-chip power management of SPMs. 

6.4.2.1. Adaptive Power Management of L2 SPMs 

Our APMU leverages the predicted overlaps and the search limits of current CTUs to further 

reduce the static energy consumption of Hy-SVM. The SPMs in the L2 level of Hy-SVM 

(implemented as STT-RAM) were designed to operate in two power states: ON (VON=VDD 

volts) and OFF (VOFF=0 volts). Due to the non-volatility characteristic of STT-RAM, the data 

is kept stored in the memory cell even when OFF state is assigned (differently from SRAM 

cells). Further, L2 SPMs are typically significantly larger than L1 SPMs, leading to higher 

energy consumption. In doing so, our APMU concentrates effort in L2 SPMs, resulting in a 

great impact in the Hy-SVM overall on-chip energy (as demonstrated in Chapter 7). 
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In Hy-SVM, the L2 Level can store an entire reference frame, exploiting STT-RAM reduced 

leakage power and providing high intra-Tile and inter-Tiles data reuse, leading to reduced 

external memory energy. Besides, the ME required memory accesses for all CUs within a CTU 

is limited to a search window, which represents a small portion of the whole reference frame. 

Our APMU scheme relies on estimates the search limits for the entire CTU processing, which 

combines the search window of the ME for all CUs. The CTU search limits are defined as a 

squared region of BUs of ⌈(SLDim × SLDim)/BUSize⌉ size, where SLDim = CTUSize + SWDim. 

Figure 6.23 and Figure 6.24 present the flowcharts for the APMU when managing PrivL2 

and SharedL2 STT-RAM SPMs within the HyMs. Our schemes act at the beginning of frame 

processing (frame level; first flowcharts), as well as before the encoding of each CTU (CTU 

level; second flowcharts). Note that CTU-level step of APMU may be executed at different 

time stamps for each Tile processing, since it depends on the execution time spent to encode 

CTUs with distinct properties in different processing units. 
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Figure 6.23: Flow of the proposed adaptive power management unit of SharedL2 SPMs. 
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Figure 6.24: Flow of the proposed adaptive power management unit of PrivL2 SPMs. 
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For an ease explanation of our concepts, an example of the APMU operation is illustrated 

in Figure 6.25. In the first part, the adopted 2-Tile HEVC encoding scenario is represented at 

reference frame perspective (Figure 6.25a). The current CTU search limits of Tile 0 and Tile 1 

are depicted, as well as the predicted overlap (stored in the POT using the proposed 

representation, as in in Figure 6.25b).  

At the beginning of frame processing, the APMU builds one frame-level power map for 

each L2 SPMs. For the PrivL2 SPMs, the memory sectors outside the predicted overlap have 

associated power state set as ON. Otherwise, the OFF state is assigned. As previously discussed, 

L2 accesses are directed either to a PrivL2 SPM or a SharedL2 SPM, depending on the predicted 

formation of the overlap. The APMU frame-level power map building process is the opposite 

for the SharedL2 SPMs, as presented in Figure 6.25c. The frame-level power maps are not 

directly assigned to the sleep-transistors of the L2 SPMs, being start points to compose the 

CTU-level power maps. At CTU level, our scheme checks the frame-level power map against 

the search limits of the current CTUs. Note that the PrivL2 SPMs must be checked against the 

search limits of its corresponding Tile processing, while the SharedL2 SPMs must be analyzed 

considering the search limits of all HEVC processing units. The SPM sectors outside the search 

limits are set as OFF state, resulting on CTU-level power maps of Figure 6.25d. By assigning 

ON state for the STT-RAM sectors inside the CTU search limit, we ensure long sleep durations 

during one entire CTU processing. 
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Figure 6.25: Example: adaptive power management of STT-RAM L2 SPMs for a 2-Tile scenario. 
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7. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This chapter discusses the experimental results and compares them to related works. At first, 

detailed experimental setup is presented in Section 7.1, organized in terms of adopted video 

coding evaluation methodology, memory simulation methodology and on- and off-chip 

memory power models. The discussion of our experimental results is composed of several parts. 

Initially, (in Section 7.2) a detailed energy consumption profiling traced, which separately 

evaluates off- and on-chip energy savings of Hy-SVM, as well as combining both parts to 

compose an overall scenario. After that, (in Section 7.3) the proposed management units 

regarding the overlap exploitation are evaluated in terms of prediction accuracy. Then, (in 

Section 7.4) an external memory communication evaluation is performed to derive the 

improvements of the proposed memory pressure management in terms of balanced data 

transmission. The lifetime-aware data management scheme contributions on improving STT-

RAM cells lifetime is evaluated in Section 7.5. Finally, an overhead analysis of implementing 

the proposed management units along with Hy-SVM is discussed in Section 7.6. 

 Experimental Setup 

 Video Coding Evaluation Methodology 

The experimental analyses related to the video coding are based on the recommended HEVC 

common test conditions (ISO/IEC-JCT1/SC29/WG11, 2012) using, primarily, the HEVC test 

model (HM 11.0) (ISO/IEC-JCT1/SC29/WG11, 2013b). The HM is the official reference 

software that is completely compliant with the HEVC standard, containing all state-of-the-art 

coding tools provide by the standard. Experiments were executed for different parallelization 

scenarios (multiple Tiles, which each Tile executes on a dedicated processing unit). The 

experiments include the exploitation of a wide range search window dimensions: 128x128, 

192x192, and 256x256. To provide different video content characteristics to properly evaluate 

the efficiency of the proposed memory architectures, an extensive set of test video sequences 

with distinct properties were evaluated: BasketballDrive (BDrive), Beauty, Bosphorus, 

BQTerrace (BQTerr), Cactus, Kimono, ParkScene (PScene), ReadySteadyGo (RSGo), 

ShakeNDry (SNDry), and YachtRide (YRide) - HD1080 (1920x1080 pixels); NebutaFestival 

(NFest), PeopleOnStreet (People), SteamLocomotiveTrain (SLTrain) and Traffic - 2K 

(2560x1600 pixels). Other important encoder specifications are: GOP=8, QP=32, CABAC, 

Random Access configuration, and TZ Search algorithm. 

 Memory Simulation Methodology 

To capture the memory access profiling of the used HEVC encoding applications 

(considering multiple level general-purpose cache memories), it was used the callgrind and 

cachegrind tools of valgrind simulator (VALGRIND DEVELOPERS, 2017).  

To simulate the access dynamics of the proposed memory architectures, several custom 

simulators were developed. As main input of these simulators, memory accesses traces from 

the used HEVC encoding applications were extracted. For each scheme inside the proposed 

memory architectures, a software-based modeling was inserted in the developed simulators. To 

provide the best possible accuracy of the memory energy estimation in terms of comparison 

with related works, the used simulation environment incorporates widely used memory models 

for all adopted technologies: SRAM and STT-RAM in the on-chip memory perspective; and 

DRAM for the external memory. The developed simulation environment was built under an 

open-source license and it is available for usage in the used project repository13. 

                                                 
13 Custom simulators developed in this work are available at https://bitbucket.org/felsamps/   

https://bitbucket.org/felsamps/
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 Off- and On-Chip Power Models 

To perform the electrical characterization for the adopted 32nm SRAM memory arrays, the 

CACTI 6.5 tool was used (HP LABS, 2008). Regarding the STT-RAM based on-chip 

memories, the evaluations consider the generated parameters of NVSim tool (XIANGYU 

DONG et al., 2012). The SPM design parameters resultant from the proposed Hy-SVM design 

methodology for the evaluated video coding scenarios are summarized in Appendix A. 

Furthermore, based on the designed SPM organizations, Appendix A presents the power and 

latency characterization, which was performed using the above presented tools (CACTI for 

SRAM and NVSim for STT-RAM).  

For the main memory, it was adopted one 4-Gbit Low-Power DDR2 module (MICRON 

TECHNOLOGY INC., 2011). The energy components of a LPDDR2 were estimated using the 

main memory accesses of each application and the technology data from Micron (MICRON 

TECHNOLOGY INC., 2005, 2005). The main specifications are: Vdd=1.2V, Freq=533MHz, 

WSize=32 bits, PSize=512B, NRows=16K and NColumns=2K. The total energy is derived by the 

composition of six components: page activation energy (EACT), write energy (EWR), read energy 

(ERD), I/O pins energy (EDQ), refresh energy (EREF) and standby energy (ESTBY). In the 

experimental analysis along this paper, the assumption is that the memory will always operate 

in the ACT state and the standby energy will be equivalent to the PACT_STBY  component.  

All control-flow hardware blocks were synthesized using Cadence synthesis flow using ST 

65nm standard-cells library. 

 Comparison-Purpose Baseline Hy-SVM Variations 

Besides the comparison with related works, we implemented baseline variations of Hy-

SVM to measure the efficiency of our design decisions. Hence, three alternative comparison-

purpose architectures were evaluated in our experiments: 

 All-SRAM: adopts the SRAM technology for all SPMs in Hy-SVM architecture. The goal 

is to evaluate the benefits (static energy consumption) and shortcomings (poor write 

efficiency) of using STT-RAM in L2 SPMs; 

 Priv-Only: avoids the usage of Shared SPMs, thus exploiting only intra-Tile data reuse. The 

main purpose is to evaluate the impacts of SharedL2 SPMs, as well as the overlap 

management efficiency; 

 No-APMU: avoids the proposed power management over L2 SPMs. The goal is to evaluate 

the contributions of APMU in the on-chip energy savings of Hy-SVM; 

 No-DM: avoids the lifetime-aware data management and the SRAM SPMs within L2 

HyMs. With this variation, the goal is to evaluate the advantages (increased STT-RAM 

lifetime) and disadvantages (energy consumption overhead) of implementing this 

endurance optimization technique inside Hy-SVM architecture. 

 Energy Efficiency Evaluation 

 Off-Chip Energy Results 

In order to analyze different parameters and their impacts in the Hy-SVM off-chip energy 

savings, the experimental results are organized in three different (but connected) evaluations. 

7.2.1.1. Analysis-1: Parallelism and HEVC Prediction Structure 

Figure 7.1 depicts the first evaluation of off-chip energy savings of Hy-SVM compared to 

related implementations. The analysis presents the savings for 2-, 4-, 8- and 16-Tile with Low 
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Delay and Random Access HEVC configurations. To observe the behavior for different search 

window sizes, the energy results were separated for 128x128, 192x192 and 256x256 

dimensions. In this first evaluation, the presented savings were calculated as the average 

scenario of all tested video sequences.  
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Figure 7.1: Off-chip energy savings of Hy-SVM compared to related works  

for increased number of Tiles and for Random Access and Low Delay HEVC configurations  

(average scenario of tested video sequences). 

Level-C (CHEN et al., 2006) represents the upper bound results, since it only exploits intra-

Tile data reuse in search window level. Hy-SVM can reduce up to 66%, 76% and 82% the off-

chip energy consumption compared to Level-C, when considering 128x128, 192x192 and 

256x256 search windows, respectively. In this case, the energy savings remain stable when 

increased number of Tiles are used. Still, the adopted HEVC prediction configuration does not 

affect the achieved gains. 

Regarding dSVM (SAMPAIO et al., 2014a) architecture, which also exploits joint intra-

Tile and inter-Tiles data reuse, our Hy-SVM can achieve savings of up to 49%, 63% and 71% 

for the tested search window sizes. The use of STT-RAM allows Hy-SVM energy-efficient on-

chip storage of entire reference frame samples. Hence, it strongly impacts the external memory 

communication, as dSVM adopts intra-Tile data reuse in search window level. Since dSVM 

strongly increases the on-chip memory when increased number of Tiles is adopted, the Hy-

SVM savings is reduced for increased parallelism. In some extreme cases, dSVM has improved 

Hy-SVM off-chip energy efficiency, like for 16-Tile scenario using 128x128 search window 

size. For the other cases, Hy-SVM still is able of achieving improved results. As we demonstrate 

in next section, the extra energy consumed by Hy-SVM larger on-chip SPMs is compensated 

by STT-RAM benefits and improved power management.  

Comparing with RCDR (SAMPAIO et al., 2013a) data reuse strategy, it can be noted 

increased savings when higher parallelism levels are adopted in HEVC encoders. In the best 
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case scenarios, Hy-SVM can reduce the off-chip energy by 21%, 33% and 44% when 

considering 16-Tile Low Delay settings. RCDR achieves improved energy efficiency for 

Random Access prediction structure since its implemented reference-centered alternative 

processing order can better exploit the reuse of the same reference frame to perform more 

consecutive MEs. However, due to RCDR search window level date reuse, Hy-SVM could 

overcome the off-chip energy savings by employing a more complete access redundancy 

support. 

When analyzing Level-D, Hy-SVM can improve off-chip energy efficiency by up to 51%, 

on average in the best case scenario (256x256 search window). In this case, the increased 

parallelism does not significantly affect the energy reduction. When analyzing the worst case 

of Hy-SVM (128x128 search window and Random Access structure), Level-D overcomes the 

energy savings by 11%. In the remaining cases, Hy-SVM can reach better results. However, 

Level-D was not developed to support alternative CTUs processing scheduling, since its data 

reuse strategy is completely dependent on the traditional raster scan order. In its turn, Hy-SVM 

multi-level data reuse (search window level in L1 SPMs and reference frame level in L2 SPMs) 

can be adaptive to the run-time adaptive alternative CTUs processing order proposed to balance 

the accumulated memory pressure of all HEVC processing units. The results of Level-D in 

Figure 7.1 considers the traditional raster scan order, which is not be the same for alternative 

re-scheduled CTUs processing orders. 

AMBER (KHAN; SHAFIQUE; HENKEL, 2013) and enHyV (SAMPAIO et al., 2014c) 

achieved improved off-chip energy savings when compared to Hy-SVM: up to 12% and 22% 

on average, respectively. AMBER fully exploits reference frame level data reuse, avoiding data 

re-fetching from external memory during a frame processing. However, to support Tiles-

parallelized HEVC, AMBER requires the multiplication of its on-chip video memories, which 

strongly affects its on-chip energy efficiency (as discussed in next sections). enHyV implements 

data-reuse schemes in the same levels of Hy-SVM, without a proper management of the overlap 

formation. In the external memory perspective, enHyV provides a more complete support for 

inter-Tiles redundant accesses, leading to reduced SharedL2 misses. Still, Hy-SVM can achieve 

competitive off-chip energy results and, additionally, implements an overlap management that 

strongly reduces the SharedL2 SPMs on-chip energy. Considering an overall energy analysis, 

which combines off- and on-chip energy parts, Hy-SVM surpasses AMBER and enHyV 

implementation due to more efficient on-chip power management (discussed in Section 7.2.2). 

Compared to our Priv-Only baseline implementation, the SharedL2 SPMs contributes by 

reducing from 11% (2-Tile) up to 71% (16-Tile) the external memory energy consumption, on 

average. Note that the achieved savings increase when more Tiles are used (higher parallelism), 

due to the well-exploited increased inter-Tiles data reuse potential by Hy-SVM. We 

demonstrate in the next sections that the on-chip energy required for SharedL2 SPMs is strongly 

reduced by our energy-efficient management schemes, resulting on savings when compared to 

Priv-Only. 

Observing the average results comparing the two evaluated HEVC prediction structures, we 

can note that Hy-SVM can achieve better energy efficiency when Low Delay is adopted: the 

savings are 5%-10% higher when compared to Random Access scenario. The main reason is 

related to a more predictable behavior of the overlap formations in Low Delay, since it 

organizes the frame dependencies adopting the same DME factors for each processed frame (as 

can be seen in Figure 6.1, presented in the beginning of Section 6.1). It is demonstrated in the 

analyses of 7.3, when the accuracy of the proposed overlap prediction is evaluated under 

different test conditions. 
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7.2.1.2. Analysis-2: Search Window Size and Video Resolution 

Another important remark from Analysis-1 is the increased savings achieved by Hy-SVM 

when increase search window is analyzed. For a proper exploitation of this parameter, as well 

the impact of the video resolution, Figure 7.2 presents the off-chip energy savings for growing 

search window and video dimensions. 
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Figure 7.2: Off-chip energy savings of Hy-SVM compared to related works for increased search 

window size and video resolution (average scenario of HD1080 and 2K tested video sequences and of 

Random Access and Low Delay structures). 

In a general perspective, it can be note an growing behavior of the achieved energy 

efficiency when increased search windows and video resolutions are adopted. Starting by 

Level-C, the achieved Hy-SVM reduction is improved by 12% and 11%, on average, when 

increasing the search window size for HD1080 and 2K resolution videos, respectively. In case 

of the savings regarding dSVM architecture, the average gains are 63% (HD1080) and 52% 

(2K). For RCDR, larger search windows lead to an increase of energy savings of 119% 

(HD1080) and 78% (2K). The same behavior is noted when compared to Level-D: 180% 

(HD1080) and 119% (2K). When compared to AMBER and enHyV, which achieve better 

results than Hy-SVM, the energy savings behavior is not strongly related to the search window 

size, since all these architecture implement reference frame level data reuse.  

7.2.1.3. Analysis-3: Video Sequences Characteristics 

Besides the different energy saving results for different video resolutions, the varied video 

characteristics, like low/high motion and texture properties, may affect the efficiency of the 

proposed Hy-SVM architecture. Figure 7.3 depicts the off-chip energy savings for all tested 

video sequences, separated for 2-, 4-, 8- and 16-Tile HEVC scenarios. In this analysis, the 

192x192 search window size is fixed and the average of the achieved savings for Random 

Access and Low Delay configurations is considered. 

We observe that the off-chip energy savings may vary according to video content properties. 

HEVC encoding of high motion sequences (like Kimono and BasketballDrive (BDrive) in 

Figure 7.3) lead to larger overlaps, since the motion search reaches more distant reference frame 

samples. In these cases, our Hy-SVM architecture is able to exploit this increased inter-Tiles 

data reuse potential and save external memory communication. In contrast, low motion videos 

like Bosphorus and Traffic, lead to smaller overlap formations. In these cases, inter-Tiles data 

reuse potential is itself lower, leading to reduced energy efficiency of implementing SharedL2 

SPMs to exploit this data redundancy. Therefore, the energy savings of Hy-SVM compared to 

related works is reduced. As discussed in the motivational analysis of Section 4.3, it was a 

premise for Hy-SVM design this run-time adaptivity of the proposed management schemes to 
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the video content characteristics, enabling dynamic higher/lower energy savings depending on 

the captured potential of inter-Tiles data reuse. 
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Figure 7.3: Off-chip energy savings of Hy-SVM compared to related works for different input video 

sequences (fixed 192x192 search window size; average scenario between Random Access and Low 

Delay structures). 

 On-Chip Energy Results 

7.2.2.1. Overall On-Chip Energy Savings 

Figure 7.4 shows the on-chip energy analysis of Hy-SVM compared to related works and 

baseline. In this evaluation, the energy consumption was normalized to All-SRAM results, 

which represents the worst-case scenario among the related works. Besides, the analysis also 

compares the on-chip energy for the three selected search window sizes. The energy 

measurements in Figure 7.4 represent the average scenario of HD1080 and 2K tested videos. 

The results of this analysis are barely the same for Random Access and Low Delay structures. 

The chosen prediction structure for HEVC encoding does not affect the static energy 

consumption, since the design methodology of HyMs generates the same SPM parameters for 

both cases. In terms of dynamic energy (related to write and read accesses), Random Access 

typically requires higher number of on-chip SPM accesses, which leads to higher dynamic 

energy consumption. However, as static portion represents the major part of the total on-chip 

memory energy consumption, the total energy consumption difference between Random 

Access and Low Delay structures becomes insignificant. 

From enHyV perspective, Hy-SVM achieves, in the best case, on-chip energy savings of up 

to 82%-95% (HD1080-2K), 73%-92% and 64%-89% for 2-Tile scenarios using 128x128, 

192x192 and 256x256 search windows, respectively. The gains over enHyV are mostly due to 

an improved power management, which relies on overlap prediction to increase the on-chip 

static energy savings. An accurate prediction allows Hy-SVM to shut down SPM sectors 

outside the overlap (for SharedL2 SPMs) or inside the overlap (for PrivL2 SPMs) to reduce on-

chip energy in according to input video content characteristics. In the worst cases (HD1080 16-

Tile scenario), Hy-SVM still overcomes enHyV on-chip energy savings by 9% (256x256), 14% 

(192x192) and 28% (128x128).  
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Figure 7.4: On-chip energy consumption of Hy-SVM compared to related works. 

When compared to dSVM, our Hy-SVM architecture presents competitive on-chip energy 

consumption. dSVM surpasses Hy-SVM gains when lower parallelism levels are adopted. For 

instance, when considering 2-Tile scenarios of Figure 7.4, the energy consumption is up to 65% 

(256x256), 46% (192x192) and 21% (128x128) lower than Hy-SVM. On another perspective, 

when growing number of Tiles is adopted, Hy-SVM overcomes dSVM in terms of on-chip 

energy efficiency, saving up to 8% (256x256), 25% (192x192) and 45% (256x256) compared 

to dSVM. Combining these with the previous off-chip energy results (overall perspective 

presented in next section), Hy-SVM is able reduce the energy of external memory 

communication with competitive on-chip energy consumption.  

Compared to baseline All-SRAM and No-APMU implementations, our Hy-SVM can achieve 

up to 94% and 95% (2-Tile), 90% and 84% (4-Tile), 83% and 72% (8-Tile), and 73% and 56% 

(16-Tile) energy reduction, respectively. The savings related to All-SRAM are related to the 

STT-RAM low leakage power dissipation. The savings compared to No-APMU represent the 

efficiency of our power management over the two levels of SPMs of Hy-SVM. 

When observing the No-DM baseline implementation results, we note that complete Hy-

SVM consumes from 18%-30% more on-chip energy. This overhead is related to the SRAM 

SPMs that were inserted in PrivL2 and SharedL2 HyMs to alleviate STT-RAM from high bit-

toggling write accesses, leading to improved STT-RAM cells lifetime (as demonstrated in 

Section 7.5).  

The authors of AMBER did not informed the on-chip static energy savings lead by the 

proposed power-gating scheme. Thus, it is not possible to perform a fair comparison with Hy-



 

 

100 

SVM, so AMBER results were not inserted in the analysis of Figure 7.414. AMBER represents 

an upper bound scenario in terms of on-chip energy consumption, since it is necessary to 

replicate the storage of the reference frames for each Tile processing. Considering this, Hy-

SVM consumes, on average, 95% (128x128), 92% (192x192) and 90% (256x256) less on-chip 

energy than AMBER. To have an idea of on-chip memory optimization of Hy-SVM compared 

to AMBER, we compare it to the No-APMU baseline version of Hy-SVM. In this analysis, we 

can also note savings of up to 58%-69% (2-Tile), 68%-81% (4-Tile), 81-88% (8-Tile) and 87%-

92% (16-Tile), on average, when processing HD1080 and 2K videos, respectively. Therefore, 

even when not considering the gains achieved by the APMU, the proposed design methodology 

overcomes AMBER in terms of on-chip memory energy optimization. 

7.2.2.2. On-Chip Energy Savings in PrivL1 SPMs 

Figure 7.5a depicts the on-chip static energy savings specific of PrivL1 SPMs. On average, 

the proposed scheme saves 56% of on-chip energy by power gating the unused and less-likely 

used memory sectors. The wake-up energies overhead is already included into the results of 

Figure 7.5.  
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Figure 7.5: On-chip static energy reduction due to  

adaptive power management of PrivL1 SPMs. 

The achieved energy reductions are high in case of low-motion Tiles. It incurs in longer 

sleep durations due to consecutive processing of CTU with similar texture and motion. This 

behavior is demonstrated in Figure 7.5b where the total energy savings are decomposed for 

each PrivL1 SPM that is responsible to handle with Tile-specific search window. In this 

analysis, we adopted the same scenario used as example during the explanation of the memory 

pressure management scheme (Section 6.2). The low-motion Tiles provide the highest savings 

while the medium- and high-motion Tiles required more energy due to higher memory usage 

as a result of an extensive search. When considering SPMs, the energy/performance overhead 

of waking up the memory cells are negligible, since one block of the search window is 

continuously accessed during one ME operation over a given block of the CTU. Thus, the 

energy/performance penalty is completely amortized, not leading to significant overhead for 

the overall memory system. 

 Overall Energy Results 

Table 7.1 presents the overall energy savings of Hy-SVM for three different scenarios. The 

total energy is computed (sixth column of Table 7.1) by the composition of off- and on-chip 

parts, including the control hardware that implements the management schemes.  

                                                 
14 To have a comparison with AMBER on-chip energy, we estimated the size of its on-chip memories and, based 

on the defined design methodology, extracted the energy consumption components using the same methodology 

than Hy-SVM. 
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Table 7.1: Overall Energy Savings of Hy-SVM Compared to Related Works 

Solution 

On-Chip 

Mem. 

[KB] 

On-Chip 

Energy 

[mJ] 

Off-Chip 

BW. 

[MB/s] 

Off-Chip 

Energy 

[mJ] 

Total 

Energy 

[mJ] 

Savings  

Hy-SVM 

[%] 

Scenario 1: 4-Tile HD1080, 192x192 search window and Low Delay 

Level-C (TUAN; CHANG; JEN, 

2002) 
256 121 435 5708 5829 69.3% 

Level-D (TUAN; CHANG; JEN, 

2002) 
240 110 128 1681 1790 0.1% 

dSVM (SAMPAIO et al., 2014a) 631 285 218 2854 3139 43.0% 

AMBER (KHAN; SHAFIQUE; 

HENKEL, 2013) 
8100 4072 99 1297 5369 

66.7% 

(58.7%*) 

enHyV (SAMPAIO et al., 2014c) 3496 726 111 1453 2179 18.0% 

Our No-APMU 3496 763 111 1453 2216 19.3% 

Our No-DM 2656 249 111 1453 1702 -5.0% 

Our Hy-SVM 3496 313 112 1475 1788  - 

Scenario 2: 4-Tile 2K, 192x192 search window and Low Delay 

Level-C (TUAN; CHANG; JEN, 

2002) 
256 121 840 8806 8927 72.6% 

Level-D (TUAN; CHANG; JEN, 

2002) 
320 210 235 2466 2676 8.6% 

dSVM (SAMPAIO et al., 2014a) 776 440 420 4403 4844 49.5% 

AMBER (KHAN; SHAFIQUE; 

HENKEL, 2013) 
16000 4144 195 2048 6192 

60.5% 

(44.4%*) 

enHyV (SAMPAIO et al., 2014c) 6358 1310 200 2100 3410 28.3% 

Our No-APMU 6358 1344 200 2100 3444 29.0% 

Our No-DM 4776 260 200 2100 2360 -3.6% 

Our Hy-SVM 6358 330 202 2116 2446 -  

Scenario 3: 8-Tile 2K, 256x256 search window and Random Access 

Level-C (TUAN; CHANG; JEN, 

2002) 
800 345 1172 30488 30833 78.5% 

Level-D (TUAN; CHANG; JEN, 

2002) 
320 210 272 7073 7283 8.8% 

dSVM (SAMPAIO et al., 2014a) 1720 884 340 8842 9726 31.7% 

AMBER (KHAN; SHAFIQUE; 

HENKEL, 2013) 
32000 8288 195 5081 13369 

50.3% 

(48.3%*) 

enHyV (SAMPAIO et al., 2014c) 7442 1588 200 5212 6800 2.4% 

Our No-APMU 7442 1695 200 5212 6907 3.9% 

Our No-DM 5720 668 200 5212 5881 -12.9% 

Our Hy-SVM 7442 830 223 5810 6640  - 

*savings of No-APMU over AMBER 

Compared to Level-C scheme, even this presenting the smallest on-chip video memory (i.e., 

lower on-chip energy), Hy-SVM can reach overall energy savings of 69%-79%. These gains 

are mainly related to the reduction of 5.2 times in the external memory energy by exploiting 

inter-Tiles data reuse. When analyzing Level-D strategy, we note competitive results: from 

0.1% to 9% of savings. Level-D also implements reference frame level data reuse (as Hy-SVM), 

but it stores only one row of search windows on chip: this leads to a balanced usage on-chip 

storage and off-chip memory bandwidth. However, as already discussed, these improvements 

in the overall memory energy efficiency of Level-D are strongly based on regular raster scan 

order for CTUs processing. When alternative methods of CTUs re-scheduling are required, like 

the implemented in the proposed memory pressure management integrated in the Hy-SVM 

architecture, the energy savings of Level-D are compromised. 

Regarding the dSVM architecture, the hybrid multiple levels of SPMs allows Hy-SVM total 

memory energy savings of 31%-50% for the tested scenarios. Even requiring more and larger 
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SPMs, Hy-SVM is able to reduce on-chip energy consumption by adopting improved power 

management, compared to dSVM. Moreover, multiple levels of SPMs allowed reduced off-

chip memory bandwidth and, consequently, improved off-chip energy efficiency. When 

comparing to AMBER, which achieves the best off-chip energy results, Hy-SVM reaches up to 

66.7% of total energy savings. If we do not consider the APMU and the overlap management 

of Hy-SVM, the No-APMU baseline version can, still, achieve overall energy reduction 

compared to AMBER: 59%, 44% and 48% for scenarios 1, 2 and 3, respectively. As previously 

discussed, enHyV also achieves lower external memory energy consumption than Hy-SVM. 

However, in an off- and on-chip combined perspective, Hy-SVM surpasses enHyV by 

achieving up to 28% of improved energy efficiency.  

Finally, the proposed management layer, composed of overlap prediction, and on-chip 

MAMUs and AMPUs, can improve the energy efficiency of Hy-SVM by up to 29% (best case 

of scenario 2). The insertion of SRAM SPMs in L2 HyMs, as well as all involved hardware 

circuitry to support the proposed lifetime-aware data management represents, in the overall 

energy perspective, an overhead from 4% up to 13% in terms of overall energy consumption.  

 Overlap Prediction Accuracy Evaluation 

Figure 7.6 depicts the metrics used for the accuracy evaluation of the proposed overlap 

prediction scheme. For each ME, our memory simulation environment captures the predicted 

overlap (exemplified in Figure 7.6a), as well as the actual overlap formation (Figure 7.6b). 

Based on these, a prediction accuracy map is built (as in Figure 7.6c). For each BU inside the 

SharedL2 HyM storage area for a specific Tiles boundary, which is dimensioned by the design-

time calculated parameters OvThickness and OvLength, our methodology classifies it as a prediction 

hit, as an over-prediction, or as an under-prediction. One prediction hit means that the target 

BU was correctly estimated as inside/outside the overlap formation, thus indicating the 

accuracy of the overlap prediction scheme. One over prediction means that one BU, which was 

initially predicted as being part of the overlap, is not inside the actual overlap formation. This 

case leads to Hy-SVM on-chip energy wasting, since one entire SPM sector is assigned with 

ON state and no inter-Tiles data reuse is verified. In another perspective, one under prediction 

signifies that one BU inside the actual formed overlap was not predicted accordingly. In this 

scenario, off-chip energy wasting is verified since inter-Tiles data reuse is not exploited.  
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Figure 7.6: Representation of the adopted methodology for overlap prediction accuracy evaluation. 

 Figure 7.7 depicts the accuracy evaluation of the proposed overlap prediction, compared 

to a baseline scenario where no prior prediction is performed and all SharedL2 HyM BUs are 

assumed to be part of the overlap. In this analysis, the most important factors that impact the 

accuracy evaluation are the number of Tiles, the search window size and the adopted HEVC 
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prediction structure. The percentage values of Figure 7.7 are related to the average cases for all 

tested video sequences. 
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Figure 7.7: Overlap prediction evaluation, in terms of: (1) prediction accuracy, (2) over-prediction 

reduction and (3) under-prediction overhead. 

The first analysis (Figure 7.7a) presents the improvements in term of prediction hits. The 

best cases are observed for lower number of Tiles, achieving up to 32%, 74% and 83% of 

increased accuracy (2-Tile Low Delay scenarios). It can also be noted a growing accuracy trend 

when larger search windows are used. Regarding the HEVC prediction structure, the proposed 

prediction scheme presents best results when Low Delay is selected. As already indicated in 

previous evaluations, Low Delay prediction dependencies have a more predictable behavior 

when compared to Random Access. 

In the second analysis (Figure 7.7b), the over prediction reduction is evaluated. It is 

important to notice that the case where the entire SharedL2 HyM BUs are estimated as overlap 

represents the worst case of over prediction. Compared to this baseline, the proposed overlap 

prediction strategy is able to reduce the over predictions by 81%, 75%, 74%, and 72% on 

average for the tested 2-, 4-, 8-, and 16-Tile scenarios. The behavior of the over prediction 

indexes are similar for all tested search windows and HEVC prediction structures. 

At the end, the overhead of under prediction occurrences are analyzed in Figure 7.7c. Note 

that the adopted baseline case, where all BUs of a SharedL2 SPM are assumed to be inside the 

overlap, does not have under prediction occurrences. Considering the Low Delay structure, only 

1%-4%, on average, of under predicted BUs were verified. Due to the more unpredicted 

behavior of Random Access prediction dependencies, higher overhead was verified (from 12% 

to 16%, on average). As already demonstrated in the energy efficiency evaluation of Hy-SVM, 

this overhead does not imply on significant penalties, when compared to related works. 
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 Off-Chip Memory Communication Evaluation 

Besides the energy efficiency improvements achieved by the proposed Hy-SVM 

architecture, another aspect addressed by this work is related to the unbalanced behavior of the 

external memory communication when adopting traditional raster scan order of CTU 

processing. Thus, this section evaluates the results achieved by the memory pressure 

management scheme with regarding to the CTU re-scheduling strategy that aimed to provide a 

more balanced external memory communication. 

MSD metric: Let the Mem[0…m] be the discretized memory pressure measurements along 

the time. The mean squared deviance (MSD) calculates the squared different between each 

memory pressure measured point and the Mem average value (µMem), as in Equation (47). 

MSD(Mem[0…m]) =
1

|Mem|
∑ (µMem − Memi)

2
m

i=0
  (47) 
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Figure 7.8: Accumulated memory pressure results. 

Figure 7.8 presents a temporal evaluation of the memory pressure comparing (1) the 

traditional CTU raster processing order; (2) application-specific memory pressure balancing 

scheme using CTU-rescheduling; and (3) the optimal corner case where the memory pressure 

is continuously equals to the average pressure. The case (3) is a theoretical approximation used 

to evaluate the gaps of the schemes related to the best possible balancing case. Figure 7.8 shows 

that the proposed scheme balances the pressure for each processing unit. Compared to the 

traditional raster order, the maximum-minimum peak variations are reduced from 27%-32% to 

9%-13%, respectively. The scheme proposed in this work achieves this balancing by effectively 

predicting the memory requirements, capturing the Tile-specific properties, and managing the 

processing order. 

Figure 7.9 presents the results regarding the memory pressure balance. As already 

discussed, more Tiles potentially leads to more unbalanced accumulated memory pressure, 

since more concurrent memory accesses are performed during each time slot. In this scenario, 

there is a high probability of having very different motion properties being processed by 

different units at the same time. So, the balancing gap when more Tiles are used is higher. The 

proposed scheme successfully exploits this potential, as shown in Figure 7.9. The average MSD 

efficiency reduction ranges from 37% to 83%, for 4 to 16 Tiles. Therefore, the application-

specific memory power management is efficiently scalable when working with an increased 

number of Tiles. 

Figure 7.9c depicts a frame-by-frame MSD reduction analysis. During the first frame 

processing, as only spatial references can be used as input for the memory pressure predictor, 

the scheme achieves results close to the original raster order. However, by acquiring the 

temporal knowledge, the scheme fits the CTU-Groups accordingly to capture the motion 

properties and achieves increased memory pressure balancing for the other remaining frames. 
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Thus, the scheme can better balance the accumulated memory pressure by up to 49% in the case 

of 4-Tile BasketballDrive scenario (Figure 7.9c). 
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Figure 7.9: (a)(b) Memory pressure balancing analysis compared to original raster scan order and (c) 

frame-by-frame analysis (for Random Access prediction structure). 

 STT-RAM Lifetime Evaluation 

The data management unit of Hy-SVM significantly improves the STT-RAM cells lifetime, 

as demonstrated in Figure 7.10.  

In this analysis, the normalized STT-RAM lifetime is plotted bordered by the lifetime of 

Hy-SVM without any data management (No-DM baseline variation) and by the best case 

scenario, where no bit toggles occur during write operations (1.0 value). On average, it has a 

normalized lifetime of 0.83, nearer to the best case than the Hy-SVM basic approach without 

any management. The data management of Hy-SVM can achieve higher lifetime improvements 

for low-textured videos, like Kimono with 0.85 normalized lifetime. In another vein, highly 

detailed scenes lead to high bit-toggling activities, requiring high SRAM usage to alleviate 

STT-RAM cells. As Hy-SVM was designed for the average case, lifetime is less improved for 

this kind of videos. However, even for the worst case scenario, the scheme still can improve the 

lifetime (0.79 lifetime for Traffic). 
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Figure 7.10: Normalized STT-RAM cells lifetime. 

 Overhead Evaluation 

Figure 7.11 presents an overhead analysis of the implemented management techniques in 

Hy-SVM. We utilize the All-SRAM and Priv-Only baseline implementations to discuss the 

overhead in terms of access latency (Figure 7.11a) and dynamic energy consumption (Figure 

7.11b).  
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Figure 7.11: Overhead analysis in terms of: (a) latency, (b) dynamic energy and (c) extra on-chip 

memory size. 

Compared to All-SRAM, the overhead of inefficient STT-RAM write operations represents 

(on average) only 0.3% in terms of latency, and 0.8% in dynamic energy. Since PrivL1 SPMs 

have high hit rates (more than 95%), combined to low write intensity of video memories, STT-

RAM write penalty in Hy-SVM can be reduced. The comparison with Priv-Only version aims 

to evaluate the MAMU inserted overhead of analyzing the POTs to direct the incoming access 

either to PrivL2 or SharedL2 SPM. Still, the high L1 hit rates strongly reduces the overhead of 

overlap management, since it runs when L2 level access is required. Additionally, the hardware 

required for overlap management is composed of small tables and requires simple logic 

operations. As result, we can notice an overhead (on average) in the latency of only 4.7%, as 

well as 8.8% in the dynamic energy. Complementary, Figure 7.11c shows the extra on-chip 

memory size required to implement the proposed energy-efficient management layer of Hy-

SVM. In this analysis, we compute the size of monitored and predicted overlap tables (POTs 

and MOTs), as well as the frame-level and CTU-level power maps. As result, the overhead 

achieves only 4% in the worst-case scenario (16-Tile). 
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8. CONCLUSIONS 

This PhD work focused on designing an energy-efficient memory architecture (Hy-SVM) 

to enable parallel HEVC encoding. HEVC standard innovates on providing a light-weight 

parallelization feature: the Tiles partitioning. In the meantime that the adoption of multiple Tiles 

accelerates the HEVC encoding process, it strongly aggravates the memory issues, which were 

already restrictive for a non-parallelized coding scenario.  

The proposed strategies were developed to efficiently support the novel coding structures 

and parallelization capabilities; addressing G2 specific goal15. For the proposed on-chip video 

memory architecture, both with respect to design methodology and with respect to their 

properly management schemes, energy efficiency could be achieved by leveraging application-

specific properties from video coding applications; addressing G1 specific goal. The 

application knowledge was mostly exploited by implementing run-time monitoring units in the 

proposed architectures. The goal was to collect important hints to properly manage the off- and 

on-chip energy consumption. Some run-time analyzed information were: (a) redundant memory 

access to reference frames between different Tiles, (b) memory accesses correlations of CTUs 

within and across different Tiles, (c) Tile-specific and Tiles-accumulated memory pressure, and 

(d) bit-toggling activity during reference frames replacement; addressing G4 specific goal. 

Furthermore, HEVC encoding parameters also served as important information to optimize the 

on-chip memory design and all proposed management schemes. Some examples are: adopted 

prediction structures, decided CTU division along the coding tree structure, and video content 

properties (like motion and texture characteristics).  

The main contributions of this work were mostly based on research opportunities brought 

by recent advances in memory technologies and organization models. The use of scratchpad 

memory, which strongly increased the potential of energy reduction of designed Hy-SVM 

architecture, was utilized as base of the on-chip data storage organization; addressing G5 

specific goal. The Hy-SVM architecture implements private and shared SPMs to provide 

energy-efficient storage of Tile-specific (search window and Tile-specific reference frame 

region) and Tiles-shared (redundant reference frame region) data. By adopting a multi-level 

organization, L1 (composed of private SRAM SPMs) and L2 (composed of private and shared 

SRAM/STT-RAM hybrid SPMs - HyMs), Hy-SVM was able to provide a complete support of 

intra-Tile and inter-Tiles data reuse, incurring on significantly reduction of off-chip data 

communication to fetch the reference data when compared to video memories designed by 

related works; addressing G6 specific goal. Hy-SVM architecture relies on hybrid memory 

design, by taking advantage from SRAM and STT-RAM benefits to potentiate energy savings 

to the on-chip HyMs. A proper design space methodology was performed to measure the best 

distribution between SRAM and STT-RAM portions; addressing G7 specific goal. Moreover, 

offline statistical evaluations resulted on important knowledge that was inherited by the 

proposed design methodology of HyMs circuit-level parameters; addressing G3 specific goal. 

To guarantee energy efficiency, adaptive management schemes provided run-time 

adaptation to different memory requirements of video coding (caused by variable properties of 

input video sequences). Initially, the redundant memory accesses of reference data from 

different processing units (called overlap) have been exploited by the overlap prediction 

management. It run-time estimates the overlap properties for the next frame processing and 

provides dynamic adaptation to the HyMs. Moreover, the unbalanced external memory 

bandwidth, cause by HEVC parallel encoding of distinct video coding properties that leads to 

                                                 
15 To link the concluding remarks of this chapter with the prior PhD goals (defined in Section 1.3), the labels 

assigned to them are referred in this chapter. 
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unstable memory demands, was the target of the proposed memory pressure management; 

addressing G8 specific goal. The main goal was to re-schedule the CTU processing order to 

obtain a well-balanced memory pressure, leading to a better usage of the external memory 

channel. Endurance issues of STT-RAM cells were addressed by the proposed lifetime-aware 

data management; addressing G7 specific goal. This scheme was integrated in the energy-

efficient management layer of Hy-SVM. 

The data migration dynamics along the multiple SPM levels and the external memories were 

controlled by the distributed memory access management units (MAMUs). The MAMUs had 

the role of manage the SPM access according to the decisions taken by the memory 

management layer. In this sense, MAMUs implemented proper read and write policies in order 

to maximize the inter-Tiles data reuse and STT-RAM cells lifetime, as well as contribute to the 

memory pressure balancing. On-chip energy consumption was managed by the adaptive power 

management units (APMUs), which could significantly reduce the on-chip static consumption 

by leveraging more balanced memory requirements, leading to longer sleep durations to L1 

private SPMs sectors, and providing accurate estimation of the overlap characteristics, resulting 

on energy savings for L2 private and shared SPMs. 

 Summary of Experimental Results 

Several tested conditions of HEVC encoding affected the energy consumption behavior of 

Hy-SVM. In this sense, extensive analyses were performed using different video resolutions, 

search window sizes, prediction structures, number of Tiles, and video content properties. 

In an overall scenario, the Hy-SVM architecture outperformed the related works when 

analyzing combined on-chip and off-chip energy consumption. The best case among the 

evaluated conditions, the overall energy reductions reached 79% (over Level-C), 9% (over 

Level-D), 50% (over dSVM), 59% (over AMBER), and 28% (over enHyV). These savings 

were achieved by the combined reduction provided by Hy-SVM in the on-chip and off-chip 

energy portions. In the off-chip perspective, the joint intra-Tile and inter-Tiles data reuse 

supported by the multiple levels of SPMs could strongly reduce the external memory 

communication. Thus, Hy-SVM surpassed some related works by 82% (over Level-C), 71% 

(over dSVM), 44% (over RCDR) and 51% (over Level-D). In contrast, AMBER and enHyV 

achieved better off-chip energy results: 22% and 12% of savings compared to Hy-SVM, on 

average. However, these reductions came with a cost of extra on-chip energy consumption. In 

this perspective, Hy-SVM outperformed all related works, reaching from 9% (worst case) to 

95% (best case) of on-chip energy savings representing the best results in all evaluated 

scenarios. The contribution of each proposed strategy within Hy-SVM was evaluated due to the 

definition of baseline variations, which serves as comparison purpose. The utilization of STT-

RAM in the hybrid memory design (in combination with SRAM arrays) increased the on-chip 

energy savings by up to 73%-94%. Furthermore, APMUs could leverage well balanced memory 

requirements and an accurate overlap estimation to contribute with up to 56%-95% of reduction 

(only on-chip part), and up to 29% (overall consumption). 

Most of the memory energy consumption improvements of Hy-SVM were resultant from 

accurate estimations from the overlap prediction scheme, which could be verified by proper 

accuracy analyses. For the evaluated scenarios, the prediction strategy improved the accuracy 

by 83% (in the best case), compared to a baseline case where no management is performed. 

The cases where over predictions occur could be reduced by 72%-81%, and the under prediction 

overhead reached 1%-16%, on average. Well-balanced off-chip memory communication was 

achieved by the memory pressure management scheme, which re-schedules the CTUs 

processing order leading to 37%-83% of mean squared deviance reduction. STT-RAM cells 

lifetime was significantly extended by the proposed data management strategy. In this case, the 
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experimental results pointed to a 0.83 normalized lifetime, corresponding to important 

improvements on cells endurance. The overhead of integrating all related management layers 

were also performed in terms of energy consumption, access latency and on-chip dynamic 

energy, and extra on-chip memory cells. For all evaluated scenarios, the measured overhead did 

not imply on significantly affect Hy-SVM energy efficiency.   

Considering the achieved energy savings, the contributions in terms of balanced memory 

pressure and extended memory cells lifetime, as well the insignificant overhead of 

implementing Hy-SVM run-time management schemes, it was demonstrated the feasibility of 

energy-efficient multimedia processing supporting parallel execution in state-of-the-art HEVC 

encoders, thus addressing the main goal of this PhD Thesis. 

 Publications during the PhD Work 

As results of this PhD research, , several scientific publications were concluded. In the first 

part of PhD activities, two preliminary video memories implementations initially exploited the 

potential of SPMs and hybrid memory design (combination of SRAM and STT-RAM) to 

improve energy efficiency of reference data storage in parallel HEVC. Thus, the Distributed 

Scratchpad Video Memory (dSVM) architecture and its related management schemes were 

published in the Design, Automation and Test in Europe Conference and Exhibition – DATE 

2014 (SAMPAIO et al., 2014a). Besides the memory design, this work also introduced the 

overlap concept and proposed a first version of overlap prediction scheme. Moreover, as 

energy-efficient hybrid video memory (enHyV) architecture and its involved management parts 

were published in the IEEE/ACM International Conference on Computer-Aided Design – 

ICCAD 2014 (SAMPAIO et al., 2014c). In this work, lifetime optimization of STT-RAM was 

firstly exploited. The memory pressure management scheme was the subject of a paper 

published in the IEEE/ACM International Symposium on Low Power Electronics and Design 

– ISLPED 2014 (SAMPAIO et al., 2014b). Improvements on multi-level hybrid SPMs 

organization and on the overlap prediction strategy, as well as detailed memory access power 

management units, were part of the contributions that compose a submitted paper to the IEEE 

Transactions on Circuits and Systems for Video Technology (TCSVT). As result from all these 

efforts, we proposed the Hy-SVM architecture in this PhD thesis, which integrates the hybrid 

memories design and the application-driven management layers published in these partial 

works.  

An initial version of an approximation-aware multi-level STT-RAM memory architecture, 

based on resilience evaluations of video coding applications, was published in the International 

Conference on Compilers, Architecture and Synthesis for Embedded Systems – CASES 2015 

(co-located event of the Embedded Systems Week – ESWeek) (SAMPAIO et al., 2015). It 

composes an initial effort within the approximate storage research field, representing a starting 

point for future works, as detailed as follows. 

The list of publications and the complete published papers are presented in Annex A. 

 Future Works 

This Thesis explored different research topics in order to improve the energy efficiency of 

parallel HEVC requirements regarding its memory infrastructure. In this sense, there are several 

other research challenges that should be addressed, as well as opportunities from recent 

advances that can be applied to video coding scenario. They are summarized as follows: 
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 Approximate storage for video coding applications  

Video coding can be classified as a resilient application when considering the reference 

frames as a resilient data. Thus, approximate storage can be exploited over such data to achieve 

energy savings during the memory operations. In this case, energy efficiency can be improved 

by tolerating a controlled level of error occurrences with the goal of simplifying correction 

routines. 

Recently, state-of-the-art works have explored data approximations for energy reductions 

in main memories (JUNG et al., 2016; LIU et al., 2011; SAMPSON et al., 2013). Jung et al. 

(2016) performs a review regarding possibilities of approximation in DRAM memories. As a 

practical implementation, Liu et al. (2011) extends the data refresh interval of DRAM memories 

to potentially save energy consumption while assuming wear-out errors. Sampson et al. (2013) 

uses approximate storage in PCM-based main memories by reducing write pulses and leading 

to wear-out errors.  

An ongoing research during this PhD work leveraged approximate storage opportunities 

from resilient application were also exploited. An application-aware strategy was proposed by 

Sampaio et al. (2015), which means that other resilient applications besides video coding can 

take advantage from its improved energy efficiency. Unreliable multi-level cells (MLC) of 

STT-RAM were adopted as memory infrastructure. The MLC design is a promising alternative 

to single-level cells (SLC). In a MLC, one physical memory cell is able to store more than one 

logic bit. Recent studies (BI et al., 2013; ZHANG et al., 2012) have demonstrated the feasibility 

of MLC-based design of STT-RAM towards scalability and energy efficiency for larger banks. 

However, due to the process variations, memory arrays based on MLC STT-RAM have more 

frequent error occurrences during memory read and write operations. Thus, the energy 

consumption can be compromised by the required extra circuitry to guarantee the reliability of 

the memory system.  

In the last years, state-of-the-art on-chip memory implementations that rely on approximate 

storage using advances of STT-RAM technologies have been proposed (MONAZZAH et al., 

2017; RANJAN et al., 2017; ZHAO et al., 2017). Monazzah et al. (2017) and Ranjan et al. 

(2017) developed general-purpose memories using selective approximation strengths to 

optimize the energy efficiency of last-level caches. In an application-driven perspective, Zhao 

et al. (2017) designed an MLC STT-RAM architecture for on-chip storage for image 

applications.  

Video coding applications have specific resilience behavior, which is mostly dependent on 

the video content properties. Moreover, this variability may occur between different sequences, 

as well as inside the same video, becoming even more intricate the exploitation of error 

tolerance techniques to maximize the energy efficiency while minimizing the coding efficiency 

drops. Thus, an important key challenge is to leverage specific video coding resilience 

properties to enable approximation storage for the exploration of reliability-energy-quality 

tradeoffs in on- and off-chip video memories. Furthermore, any data approximation in video 

encoders should also guarantee error-free execution for the non-resilient kernels, ensuring no 

critical failures during the execution.  

 Memory requirements evaluation for next-generation video coding standards 

Next-generation video coding standards are currently being developed by joint groups 

coordinated by video standardization committees and world-wide companies involved on video 

processing systems. 

One effort is conducted by a joint group composed of experts from ITU-T and ISO/IEC 

called “Joint Video Exploration Team” (JVET, 2018). By starting from HEVC reference 
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software, this group is evaluating novel coding tools to improve HEVC standard, focusing on 

improve coding efficiency. The contributions from video processing research groups and 

involved companies are integrated in the JEM reference software. As the same flow of 

H.264/AVC and HEVC standards definition, extensive evaluations will be performed and the 

most promising strategies will be incorporated in the final standard. 

A parallel investigation is performed by a consortium of leading Internet companies, such 

as Amazon, Apple, ARM, Cisco, Facebook, Google, IBM, Intel, Microsoft, Mozilla, Netflix 

and NVIDIA, called Alliance for Open Media (AOM, 2018). The goal is to develop next-

generation media formats, codecs and technologies.  Alliance members bring their collective 

technology and expertise to meet growing Internet demand for top-quality video, audio, 

imagery and streaming across devices of all kinds and for users worldwide. As first initiative 

from this project, royalty-free video codec specification and open source implementation was 

provided, named as AV1. In contrast to the definition of previous video coding standards, this 

is the first time that an open video codec standardization was guided by commercial interests. 

At the same time that important efforts are noticed to improve HEVC coding efficiency 

during the definition of the next-generation video coding standards, performance and energy 

issues of such novel tools should be extensively analyzed. Novel strategies for parallelization 

have been proposed, which may highly require support from the memory system. Therefore, 

besides coding efficiency and performance optimization evaluations, there is also a strong need 

for memory requirements assessment of the novel tools proposed by the next-generation video 

codecs. 
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APPENDIX A – CHARACTERIZATION OF DESIGNED ON-CHIP HYBRID 

VIDEO MEMORIES  

Table A.1: Design-Decision Parameters of Hy-SVM Design Methodology 

Input Parameters 

BU Dim. 8 

BUs (Lines) per Sector 4 

Bits per Sample 8 

Motion Delta 2 

Line Size (bits) 64 

Sector Size (bits) 256 

 

Table A.2: Sizing of Evaluated Hy-SVM Design Parameters (STT-RAM SPMs) 

Scenario Parameters STT-RAM SPMs 

Mem. 

Level 
SPM ID #Tiles 

Search 

Window 

Video 

Resolution 

Size 

(Bytes) 

Size 

(KB) 

Number 

of Lines 

(NL) 

Number 

of 

Sectors 

(NS) 

PrivL2 

PrivL2-1 2 

- 

HD1080 1036800 1013 16200 4050 

PrivL2-2 2 2K 2048000 2000 32000 8000 

PrivL2-3 4 HD1080 518400 506 8100 2025 

PrivL2-4 4 2K 1024000 1000 16000 4000 

PrivL2-5 8 HD1080 259200 253 4050 1013 

PrivL2-6 8 2K 512000 500 8000 2000 

PrivL2-7 16 HD1080 129600 127 2025 506 

PrivL2-8 16 2K 256000 250 4000 1000 

SharedL2-

Ver 

SharedL2-Ver-1 
- 

128x128 HD1080 138240 135 2160 540 

SharedL2-Ver-2 128x128 2K 204800 200 3200 800 

SharedL2-

Hor 

SharedL2-Hor-1 
- 

128x128 HD1080 245760 240 3840 960 

SharedL2-Hor-2 128x128 2K 138240 135 2160 540 

 

Table A.3: Sizing of Evaluated Hy-SVM Design Parameters (RAM SPMs) 

Scenario Parameters STT-RAM SPMs 

Mem. Level SPM ID #Tiles 
Search 

Window 

Video 

Resolution 

Size 

(Bytes) 

Size 

(KB) 

Number 

of Lines 

(NL) 

Number 

of 

Sectors 

(NS) 

PrivL1 

PrivL1-1 

- 

128x128 

- 

36864 36 576 144 

PrivL1-2 192x192 65536 64 1024 256 

PrivL1-3 256x256 331776 324 5184 1296 

PrivL2 

PrivL2-1 2 

- 

HD1080 362880 354 5670 1418 

PrivL2-2 2 2K 716800 700 11200 2800 

PrivL2-3 4 HD1080 181440 177 2835 709 

PrivL2-4 4 2K 358400 350 5600 1400 

PrivL2-5 8 HD1080 90720 89 1418 354 

PrivL2-6 8 2K 179200 175 2800 700 

PrivL2-7 16 HD1080 45360 44 709 177 

PrivL2-8 16 2K 89600 88 1400 350 

SharedL2-

Ver 

SharedL2-Ver-1 
- - 

HD1080 48384 47 756 189 

SharedL2-Ver-4 2K 71680 70 1120 280 

SharedL2-

Hor 

SharedL2-Hor-1 
- - 

HD1080 86016 84 1344 336 

SharedL2-Hor-4 2K 48384 47 756 189 
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Table A.4: Power and Latency Components of Evaluated STT-RAM SPMs 

SPM ID 

Static 

Power 

(mW) 

Dynamic Energy (pJ) Latency (ns) 

Read Write Read Write 

PrivL2-1 257,558 185,82 638,208 1,984 10,69 

PrivL2-2 1018 276,83 729,131 1,8 10,604 

PrivL2-3 128,561 133,596 589,01 1,9 10,653 

PrivL2-4 257,558 185,82 638,208 1,984 10,69 

PrivL2-5 64,281 103,368 558,782 1,877 10,637 

PrivL2-6 128,561 133,596 589,01 1,9 10,653 

PrivL2-7 32,1405 100,902 557,808 1,547 10,482 

PrivL2-8 64,281 103,368 558,782 1,877 10,637 

SharedL2-Ver-1 63,781 100,902 557,808 1,547 10,482 

SharedL2-Ver-2 64,281 103,368 558,782 1,877 10,637 

SharedL2-Hor-1 64,281 103,368 558,782 1,877 10,637 

SharedL2-Hor-2 128,561 133,596 589,01 1,9 10,653 

 

Table A.5: Power and Latency Components of Evaluated SRAM SPMs 

SPM ID 

Static 

Power 

(mW) 

Dynamic Energy (pJ) Latency (ns) 

Read Write Read Write 

PrivL1-1 17,0668 0,118908 0,326939 0,979512 0,997519 

PrivL1-2 30,1414 0,144643 0,144643 1,29467 1,29467 

PrivL1-3 43,1164 0,253412 0,497958 1,29934 1,29934 

PrivL2-1 420,034 1,1613 1,3594 3,56072 3,56072 

PrivL2-2 819,35 1,70061 1,66746 5,05218 5,05218 

PrivL2-3 210,017 0,755956 0,95405 2,61526 2,61526 

PrivL2-4 420,034 1,1613 1,3594 3,56072 3,56072 

PrivL2-5 109,736 0,395138 1,02507 2,28963 2,28963 

PrivL2-6 210,017 0,755956 0,95405 2,61526 2,61526 

PrivL2-7 55,0989 0,278891 0,592609 1,46829 1,46829 

PrivL2-8 109,736 0,395138 1,02507 2,28963 2,28963 

SharedL2-Ver-1 109,736 0,395138 1,02507 2,28963 2,28963 

SharedL2-Ver-2 210,017 0,755956 0,95405 2,61526 2,61526 

SharedL2-Hor-1 55,0989 0,278891 0,592609 1,46829 1,46829 

SharedL2-Hor-2 109,736 0,395138 1,02507 2,28963 2,28963 
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APPENDIX B – DETAILED BIT-TOGGLING ACTIVITY AND DESIGN SPACE 

EXPLORATION FOR INCREASED STT-RAM LIFETIME 

Estimated Bit-Toggling 
Activity

Actual Bit-Toggling 
Activity

BasketballDrive

BQTerrace

Cactus

Kimono

PeopleOnStreet

Traffic

 

Figure B.1: Bit-toggling activity estimation and actual bit-toggling occurrences for all evaluated test 

sequences. 
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Figure B.2: Bit-toggling activity per bit using the evaluated test sequences. 
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Figure B.3: Lifetime improvements and SRAM size for the BasketballDrive, BQTerrace and Cactus 

test sequences. 
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Figure B.4: Lifetime improvements and SRAM size for the Kimono, Traffic and Kimono test 

sequences. 
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Abstract— An energy-efficient distributed Scratchpad Video 

Memory Architecture (dSVM) for the next-generation parallel High 
Efficiency Video Coding is presented. Our dSVM combines private and 
overlapping (shared) Scratchpad Memories (SPMs) to support data 
reuse within and across different cores concurrently executing multiple 
parallel HEVC threads. We developed a statistical method to size and 
design the organization of the SPMs along with a supporting memory 
reading policy for energy efficiency. The key is to leverage the HEVC 
and video content knowledge. Furthermore, we integrate an adaptive 
power management policy for SPMs to manage the power states of 
different memory parts at run time depending upon the varying video 
content properties. Our experimental results illustrate that our dSVM 
architecture reduces the overall memory energy consumption by up to 
51%-61% compared to parallelized state-of-the-art solutions [11]. The 
dSVM external memory energy savings increase with an increasing 
number of parallel HEVC threads and size of search window. 
Moreover, our SPM power management reacts to the current video 
properties and achieves up to 54% on-chip leakage energy savings. 

Keywords—Video Memory, Scratchpad Memory, HEVC, 

Application-Specific Optimizations, Energy Efficiency, Adaptivity.  

I.  INTRODUCTION 

To bridge the increasing gaps between the processor and memory 
scaling/speed in many-cores era with memory-intensive applications, 
specialization of memory architectures has become one of most 
important design issues. Multiple cores simultaneously accessing the 
same memory infrastructure incur high energy consumption and 
contention. Meanwhile, embedded multi-/many-core processors are 
subjected to stringent energy constraints. These issues intricate when 
executing memory-intensive applications like video coding, image 
matching, etc. 

The High Efficiency Video Coding (HEVC) is the next-generation 
video coding standard [1] that provides double compression compared to 
its predecessor H.264/AVC. However, this comes at the cost of >40% 
more computation effort compared to the H.264 encoder as shown by 
our experimental analysis in Fig. 1a. This increased complexity is due to 
the novel Coding Tree Unit (CTU) structure [2] and a plethora of new 
prediction modes that result in an increase mode decision space [3]. 
Moreover, these new coding features lead to >2x more memory accesses 
compared to H.264/AVC due to more intensive reference frames storage 
and transmission (as in Fig. 1b). A large amount of off-/on-chip memory 
accesses and large-sized on-chip memories lead to high energy 
consumption in HEVC encoders. To achieve high performance, HEVC 
encoders can be parallelized on multi-/many-core processing platforms. 
However, this may lead to further increase in the energy consumption 
and memory pressure due to multiple encoding cores requiring the same 
data from the memory infrastructure, posing new challenges for the 
embedded multimedia systems. 

A large body of research explored efficient cache organizations and 
on-chip memory architectures for general purpose multi-/many-core 
processors [18]. To overcome/alleviate the hardware overhead of caches, 
Scratch-Pad Memories (SPMs) evolved for energy-constrained 
embedded systems [19]. Instead of providing hardware support for 
mapping data/code from off-chip to on-chip memory, SPM allows 
designer/compiler to perform content management saving up to 30% of 

energy compared to complete caches under certain operating scenarios 
[19]1. The challenge is to efficiently utilize the SPMs. 

Considering the above-discussed memory issues of HEVC, general-
purpose techniques for SPM management [20]-[22] may not be energy 
efficient. Recent trends demonstrated benefits of application-specific 
SPMs management for low-power H.264 video encoding for single core 
or ASIC-based systems [4]-[7]. However, these works lack support for 
many-cores which are more memory restrictive and do not address 
memory contention in private vs. shared memories for cores 
synchronization. Moreover, these works do not account for the novel 
coding model of the advanced HEVC that can be leveraged to achieve 
even higher energy savings as we will motivate in Section I.B. 

In summary, there is a strong need for application-specific memory 
design targeting energy-efficient high efficiency video encoding on 
embedded multi-/many-core platforms. Our goal is to leverage the 
application-specific characteristics of the emerging HEVC standard to 
increase the potential of energy savings. 

HEVC H.264/AVC
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Fig. 1 HEVC vs. H.264/AVC encoder (a) encoding time; (b) memory accesses. 

(average results for commonly used test sequences [13], 128x128 search window, 

H.264/AVC and HEVC test models, 300 frames) 

Before moving further, we will present basics of HEVC to the level 
of details necessary to understand our novel contribution. 

A. Overview of HEVC Coding Tools and Related Memory Issues 

To facilitate parallelization with minimal quality loss, the 
standardization committee (JCT-VC) introduced the novel concept of 
Tiles2 in HEVC, which is different from slices that are used for video 
streaming [17]. Tiles divide one video frame into rectangular regions that 
can be coded independent of each other, thus increasing the thread level 
parallelism [15][16]. Fig. 2 presents an example of 4-Tile partitioning. 
Each Tile is assigned to a specific core without any data dependency 
with another Tile processing. 

The inter-frame prediction with Motion Estimation (ME) is the most 
complex processing step in the HEVC encoder as it corresponds to 
>80% of the computation time and energy consumption of HEVC 
encoders. ME searches the best match of a block from the current frame 
in a set of so-called reference frames3. The search is performed in a 
restricted search window. The reference frames are typically stored in 
the external/off-chip memory while the search windows are stored in on-
chip memories. Due to the memory management for fetching the search 
window samples from the off-chip and increased leakage energy for 
keeping them in the on-chip memory, the ME becomes the most 

                                                           
1
 Examples: IBM Cell Processor [23], ARM10E [24], TI TMS370CX7X [25], etc. 

2
 These are video Tiles, i.e. different from hardware tiles in many-core processors. 

3
 These are previously coded and reconstructed frames. 



memory–intensive processing block [4]-[7]. As a result, 70%-90% of the 
ME energy is spent in the off-chip and on-chip memories (leakage and 
dynamic) [4]-[7]. Furthermore, multiple Tiles amplify the memory 
pressure since more data must be fetched/stored during the same time 
instant. 
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Fig. 2 Video Tiles and multicore organization for parallel HEVC. 

Another novel coding tool of the HEVC that aggravates the memory 
problem is variable-sized Coding Units (CUs). The HEVC decision is 
based on a quad-tree structure (see Fig. 3). The root for the decision is 
the 64x64 CU, called coding-tree block (CTB). The encoder is 
responsible for deciding what is the best partitioning for the current CTB 
that provides the best coding efficiency, in terms of bitrate and coded 
video quality. Current HEVC draft also supports 32x32, 16x16 and 8x8 
CU sizes [17]. 
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Fig. 3 An example of HEVC coding tree unit organization 

B. Goals and Motivational Analysis 

The main goal of our work is to leverage the application-specific 
knowledge of the emerging HEVC standard (i.e. its new coding tools) 
and video content properties to develop an energy-efficient SPM-based 
on-chip video memory. The key is (1) to analyze and exploit the memory 
access behavior in the video Tiles-based processing; and (2) the 
overlapping reference samples that define the shared access patterns for 
different cores processing different Tiles. The samples near to the tile 
boundaries in the reference frame must be fetched/stored by multiple 
cores, leading to external memory contention, redundant memory access 
and extra on-chip storage (causing energy wastage). An example in Fig. 
4a depicts the overlapping accesses performed for more than one tile 
processing core (gray and black regions). 

In the following, we highlight important memory related issues 
during the Tile-based HEVC processing with the help of our 
experimental case study and expose the potential of application-specific 
optimization with the help of several observations. 

Analysis-1: The overlapping regions tend to grow for an increased 
number of Tiles (assuming 1 Tile per core). The overlap size trend is 
plotted for growing number of Tiles in the Fig. 4b. In the worst case, the 
overlap reaches 50% in a 16-core HEVC encoder. As larger is the 
overlapping area, more cores must concurrently access the same 
reference data from the external memory without any data reuse. 
Therefore, it may be beneficial to design dedicated SPMs for the 
overlapping regions to avoid external memory retransmission of the 
Tiles shared reference data, saving off-chip memory energy. 

Analysis-2: Although the ME is performed within a search window, 
the search algorithm may not require all the samples. For instance, the 
TZ search algorithm in the HEVC software [14] does not necessarily 
explores the entire search window analysis [6]. Moreover, adaptive ME 
algorithms feature changing centering of the search window depending 
upon the already coded neighboring CUs. As a result, the Tiles overlap 
shape may substantially vary according to the video content as shown in 

Fig. 5. Furthermore, the samples inside the overlapping regions have 
different access intensities. It shows that, not all parts of the on-chip 
video memory (storing the overlapping samples) will be accessed for 
every CU depending on the video content. Even for the accessed sectors, 
the access distribution is different depending on the video content 
characteristics. Therefore, the key is to leverage the overlapping memory 
access knowledge to predict the unused or less-frequently used memory 
sectors for adaptive power management of the SPMs. 

CTUA CTUB

Tile 0 Tile 1

Tile 2 Tile 3 Overlapping region!

CTUC CTUD

0%

20%

40%

60%

80%

100%

1 Tile 2 Tiles 4 Tiles 8 Tiles 16 Tiles

Overlapping Private

0

40

20

100

T
il

e
s 

O
v

e
rl

a
p

p
in

g
 

[%
 o

f 
fr

a
m

e
 d

a
ta

]

2-core
encoder

60

80

4-core
encoder

8-core
encoder

12-core
encoder

16-core
encoder

Overlapping Increasing

Current Frame Reference Frame(a)

(b)

Search Window

 

Fig. 4 (a) Example of Tile partitioning and of the overlapping problem; 

(b) Evaluation of overlapping accesses for different number of Cores (HD1080p; 

“BasketballDrive” sequence; 127x127 search window) 
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Fig. 5 Distribution of the overlapping samples 

(HD1080p; “BasketballDrive” sequence; 127x127 search window) 

C. Our Novel Contributions 

We propose an energy efficient distributed Scratchpad video 
memory architecture (dSVM) for the next-generation High-Efficiency 
Video Coding (HEVC) exploiting the video Tiles based parallel 
processing on multi/many-core processors. It employs: 

• A Distributed Scratchpad Video Memory Architecture (Section 
III) that integrates several private and overlapping (shared) SPMs to 
support intra-Tile and inter-Tiles data reuse, respectively, among 
various cores. We develop a scheme that leverages the offline 
statistical analysis of HEVC and video content to size and design the 
organization of SPMs. A reading policy is designed for energy-
efficient data fetching. 

• Adaptive Power Management of dSVM (Section IV) that takes 
into account the size and the shape of the predicted overlapping area 
to select appropriate sleep states for different regions of private and 
overlapping SPMs. 

We evaluate the energy efficiency of our dSVM architecture for 
various recommended test video sequences for different number of Tiles. 

To the best of authors’ knowledge, this is the first work towards 
energy-efficient on-chip memory hierarchy for the emerging Tile-based 
parallel HEVC encoders. 



II. MEMORY MODELS AND NOTATIONS 

Every data transmission from/to memory is based on a fixed basic 
access unit (BU), which corresponds to a BUSize*BUSize picture block. 
When external memory communication is required, then several BUs 
are accessed in one burst operation to increase the energy efficiency. 

On-Chip SRAM Organization Model: We adopt a bank-based 
partitioning Scratchpad memory (SPM) model to allow for parallel data 
accesses; see Fig. 6. Each SPM is composed of NB number of banks. To 
facilitate parallel reading, different rows of a BU are stored in parallel 

banks. A bank Bi is composed of NS sectors of size SS. Each sector has NL 

number of lines of size SL.  

Different sectors of the SPM can be individually power-gated using 
a multiple sleep-state transistor model supporting four power states [12]: 
S0=OFF, [S1,S2]=Data Retentive and S3=ON, where EStatic(S0) < 
EStatic(S1) < EStatic(S2) < EStatic(S3). Still, each state have also increasing 
associated wake-up energies (WE(S0)> WE(S1)> WE(S2)> WE(S3)= 0). 
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Fig. 6 Organization model of our scratchpad video memory 

Off-Chip DDR DRAM Model: For energy estimation of the off-
chip memory, we adopt the DDR (Dual Data Rate) DRAM model 
depicted in [9]-[10]. The total power is derived by the composition of six 
components: (1) page activation energy (EACT), (2) write energy (EWR), 
(3) read energy (ERD), (4) I/O pins energy (EDQ), (5) refresh energy 
(EREF), and (6) standby energy (ESTBY). In the experimental analysis, we 
assume that the memory will always operate in the active state and the 
standby energy will be equivalent to the EACT_STBY component.  

III. ARCHITECTURE OF OUR DISTRIBUTED SCRATCHPAD 

VIDEO MEMORY 

Fig. 7 depicts the block diagram of our distributed Scratchpad video 
memory architecture (dSVM) for multi-core HEVC encoding. Each 
core4 is assigned the processing of one out of the n video Tiles. The 
SPMs are used to store different parts of the reference frame used for 
ME or other encoding blocks. We propose two levels of SPMs: 
1) A core-private SPM (PrivSPM) to store the search window data 

corresponding to each CU for intra-Tile data reuse, and  
2) A core-shared SPM (OvSPM) to store the Tiles overlapping 

reference data for inter-Tiles data reuse. 
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Fig. 7 Our dSVM architecture integrated in a HEVC encoder 

                                                           
4
 A core has a small private instruction and data cache to store the program code and 
common data (like variables). The SPM is used for large data like reference frame. 

Each core sends the search window data requests to the SPM access 
management module using the vertical/horizontal frame coordinates. The 
SPM access management unit will schedule the memory accesses 
according to our DRAM/SPM reading policy (see Section III.A). The 
overlap patters and size is extracted by the Motion Estimation Analyzer 
and forwarded to (i) the SPM access management module to map the 
overlapping region to the on-chip OvSPMs; and (ii) the adaptive power 
management unit for selecting an appropriate sleep state for the idle 
SPM regions. If external memory access is required, the frame positions 
are translated to physical DRAM memory position addresses by the 
Address Generation Unit (External Memory AGU in Fig. 7). The 
adaptive power management unit analyzes the Tiles overlap size to 
adaptively predict the less-likely accessed or idle memory sectors of the 
PrivSPMs and OvSPMs and to select an appropriate sleep state in order 
to save SPM leakage energy. 

In the following sections, we detail the SPM access management 
module, SPM sizing and design, and adaptive power management 
policy. 

A. SPM Access Management Unit: Reading Policy and External 

Memory Arbitering 

Our SPM access management unit implements the memory reading 
policy (see flowchart of Fig. 8) that takes advantage from the tiles 
overlap to increase the data-reuse of the reference frames samples. If a 
core i requests data from the SPM memory organization, as the first step, 
the SPM access management unit checks along with the overlap 
prediction if the requested data potentially belongs to one tiles 
overlapping region. Assuming that the data is inside an overlap related to 
the tiles intersection T, the corresponding cores-shared OvSPMT is then 
accessed. In this case, the inter-Tiles data reuse is exploited, since all 
tiles that share the tile boundary T may request the same data. For non-
overlapping regions, the PrivSPMi is accessed, leading to intra-Tile data 
reuse. Note that for each core data request, either the shared (OvSPMT) 
or the private (PrivSPMi) memory is accessed. In the case of a hit, the 
data is simply forwarded to core i. In case of a miss, the data must be 
fetched from the external memory and forwarded to the core i. For 
improved energy efficiency, the SPM access management unit requests a 
burst of samples from the DRAM memory, which reduces the DRAM 
page activation energy and amortizes the initial latency for memory 
random access [7]. Furthermore, the corresponding SPM is filled with 
the fetched data. To handle parallel accesses to the OvSPM, we employ a 
priority based scheduling. 

 

Fig. 8 Flow of our SPM access management unit with the reading policy 
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Fig. 9 An example of data interaction for a 2-core system 

An Example: Fig. 9 illustrates an example for our memory reading 
policy in three different cases for a 2-core encoding system. 



a) In the beginning, the on-chip SPMs are empty and each request will 
lead to external memory fetching (OvSPM and PrivSPM misses). 
Fig. 9 shows that the overlap prediction is analyzed to determine 
whether the reference data is stored in the PrivSPMi or in the 
OvSPMT. During the frame processing, due to the intra-Tile and 
inter-Tiles reused data, more hits occur and even less external 
memory communication is needed. 

b) The second case in Fig. 9 depicts tile-centering CUs processing 
where only the PrivSPMs is accessed (i.e. only intra-Tile data reuse). 

c) The last case shows the best case of energy efficiency, where 
memory hits are observed for both PrivSPMs (i.e. intra-Tile data 
reuse) and OvSPMs (i.e. inter-Tiles data reuse) accessing. 

B. Design of Scratchpad Video Memories 

A key challenge is to determine an appropriate size and organization 
of different SPMs (PrivSPMs and OvSPMs) to optimize for leakage and 
dynamic energy. We propose an application-guided methodology that 
exploits the statistical analysis of memory access behavior Tile-
parallelized HEVC in order to increase the energy efficiency of our 
dSVM architecture. 

Our methodology leverages the Tiles overlap behavior that depends 
on the search window size and the video motion properties. Adaptive ME 
algorithms change the center of their search windows by using spatial 
predictors (i.e., motion vectors of previously-coded CUs). Moreover, low 
motion CUs will lead to less search window usage. Hence, the optimal 
overlapping memory size for each video sequence follows a statistical 
distribution of the near-boundaries ME motion predictors. Fig. 10a 
depicts statistics of the tiles overlap varying the search window size. On 
average, the overlap linearly increases with the increase n the search 
range. The more or less concentrated distribution around the average size 
hints towards the video motion properties. Different regions near the tile 
boundaries have different motion characteristic, which leads to more or 
less memory access overlaps.  
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Fig. 10 (a) Overlapping statistics for increasing search window size for the 

“BasketballDrive” test video sequence;  

(b) motion delta distribution for several test video sequences 

To statistically define the motion property near a specific tile boundary 
of a given video, we define the ∆Motion (motion delta) metric as being the 
video correlated parameter used for determining the overlap size, as 
presented in Fig. 11. For each frame of the video and for each defined 
Tile boundary, the algorithm obtains the used ME spatial predictors 
(lines 7-8). The difference of the predictors used by the near-boundary 
CUs from the two Tile boundary sides (SideA and SideB) is then 
calculated (lines 12-17). This difference will represent the access search 
range of SideA CUs in the SideB reference frame region, and vice-versa. 
The Probability Density Function (PDF) of the motion delta metric is 
then calculated (line 20), where µ∆ and σ∆ are the statistical average and 
standard deviation, respectively, of the motion delta parameters extracted 
from the video. The PDFs for HD1080p test sequences are plotted in Fig. 
10b. We can note diverse behaviors depending on the input video: high 
motion videos like BasketballDrive and Kimono present more spread 
distributions, while low motion videos like Cactus and BQTerrace have 
more concentrated distributions. Using the motion parameter and the 
search window dimension, we define the Tiles overlap sizing formula for 
the overlap thickness (OvThickness) and length (OvLength) in Eq. (1)-(2), 
respectively. The signal of the motion delta represents the video motion 
direction near the target tiles boundary. Negative values mean that we 

have opposite motion directions, which decreases the overlap size, while 
positive motion delta values increases the range of the overlap.  

1. determineMotionDelta(Video: V;  TilePartitioning: TP): 
2. ListΔ = [ ]; 
3. For all Frame Є V 
4.      For all TileID Є TP 
5.           PredMap[TileID] = [ ]; 
6.           For all CU Є TileID 
7.                CU.performMotionEstimation(); 
8.                PredMap[TileID].insert(CU.getUsedPredictor()); 
9.           End For 
10.      For all TileBoundaryID Є TP 
11.            //Let SideA and SideB the two tile boundary sides  
12.           For all CUSideA, CUSideB Є TileBoundaryID 
13.                PredA := PredMap[TileSideA][CUSideA][CoordID]; 
14.                PredB := PredMap[TileSideB][CUSideB][CoordID]; 
15.                ΔValue := |PredA – PredB|; 
16.                ListΔ.append(DeltaValue); 
17.           End For 
18.      End For 
19. End For 
20. {µΔ, σΔ}  = norm_dist(ListΔ); 
21. return {µΔ, σΔ}; 

Fig. 11 Motion knowledge extraction for overlapping SPM sizing Ov������	

(TileBoundary��) = 	2 × SW + Δ#$%�$�	
where:   Δ#$%�$� = μ' + 2 ∗ σ' (1) 

  Ov*	�+%�(TileBoundary��) = ,H./01	W./01	 	if	vertical	if	horizontal	 (2) 

Based on statistical evaluations and the memory organization model 
defined in the Section II, we determine the physical sizing for SPMs in 
our dSVM; see Eq. (3)-(7). For the overlapping data, each Tile boundary 
will leads to a specific OvSPM design. Our sizing formulation is based 
on the definition of the BU size (BUSize), which is the smaller unit that 
can be accessed. For instance, a BUSize equals to 16 means that the 
smaller data transmission unit is one 16x16 reference block. The BU size 
is a design decision for efficient power management depending on the 
adopted search window dimension. One BU in the overlap is mapped to 
a specific memory line (composed of OvSPMSL bytes) along the 
OvSPMNB memory banks. Each OvSPM sector groups specific rows of 
the BUs along the overlap thickness (OvSPMSS). One entire line of BUs 
is completely stored into a group of same positioned sectors along the 

OvSPMNB memory blocks. In total, each OvSPM has OvSPMNS, to store 
the complete overlapping data. N89:;# = N��<	
=$>�?0/�	
 (3) OvSPM:B = BU:�D	 (4) OvSPMEF = BU:�D	 (5) OvSPM:G = HOv�����	

/BU:�D	J ∗ S*  (6) OvSPMEG = OvSPMEF ∗ HOv�����	

/BU:�D	J (7) 

The PrivSPM stores the search window samples, as expressed in Eq. 
(8)-(12). The data organization is similar to that presented for the 
OvSPMs except that the PrivSPM must store core-private search window 
instead of Tile overlaps. N;/�9:;# = N��<	
 (8) PrivSPM:B = BU:�D	 (9) PrivSPMEF = BU:�D	 (10) PrivSPM:G = HSWK/BU:�D	J ∗ S* (11) PrivSPMEG = PrivSPMEF ∗ HLMN/OPQRSTJ (12) 

IV. ADAPTIVE POWER MANAGEMENT OF SPMS 

In case where the overlap size is reduced when low motion is 
captured around the tiles boundary, we propose an adaptive power 



management scheme for the OvSPM in our dSVM architecture to reduce 
its leakage energy. Furthermore, PrivSPMs are less accessed when CUs 
near the Tile boundaries are encoded since most memory requests are 
actually performed in the OvSPMs. Therefore, our scheme power-gates 
the PrivSPMs regions that are not accessed due to the overlap 
intersection. 
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Fig. 12 Overlap sizing variation for several temporal distances (D factor). 

To capture the impact of temporal distance for overlap size 
prediction, we define a term “D” as the distance between the current and 
reference frames. This distance directly affects our overlap prediction. 
More distant frames (i.e. high D values) lead to high overlap size due to 
more intense motion activity. Smaller overlaps can be noted when D is 
decreasing. Fig. 12 illustrates the overlap size for MEs with different D 
factors. Our power management selects an appropriate sleep state 
according to the motion behavior: relaxed power-gating (i.e. putting idle 
sectors in data retentive modes) is used when we have high motion 
overlaps. In case of low motion overlaps, aggressive power-gating (i.e. 
putting sectors in power-OFF mode) is applied to save more leakage 
energy. 

1. managePowerOverlapSPM (Frame: FCurrent, FReference;  
TileBoundary: TileBoundaryID)     //frame-level management 

2. currOverlapUsage := 0;  
3. {µUsage, σUsage} := getOverlapUsages();     //run-time statistics 
4. DME := getPoc(FCurrent) – getPoc(FReference);     //overlap prediction (lines 3-4) 

5. PredOv(TileBoundaryID) := U μV
0+	 − σV
0+		μV
0+		μV
0+	 + σV
0+		μV
0+	 + 2. σV
0+		
If		D#[ = 1If	2 ≥ D#[ ≥ 3If	4 ≥ D#[ ≥ 7If	D#[ ≥ 8  

6. PowerMapOv(x,y) := b			S0			S3 										If	(x, y) ∈ to	predicted	overlap							otherwise  

7. For all CTU Є {Tile0, Tile1, …, Tilen-1}     //CTU-level management 
8.      SearchLimits := getSearchLimits(CTU); 

9.      PowerMapOv(x,y) := jPowerMap89S1S2
If	(x, y) ∉ (PredOv ∩ SearchLimits)	Else	If	(x, y)	shared	by	2	tilesElse	If	(x, y)	shared	by > 2	rstuv  

10.      SPM[TileBoundaryID].powerGate(PowerMapOv); 
11.      currOverlapUsage += performMotionEstimation(); 
12. End For 
13. store(currOverlapUsage); 
14. return; 

Fig. 13 Adaptive power management policy for the Overlapping SPM. 

1. managePowerPrivateSPM(Frame Tile: TileID) 
2. (∀	(x,y)	Є PowerMapSW, PowerMapSW(x,y) := S3); 
3. For all CTU Є TIleID     //CU level power-gating 
4.      For all TileBoundaryID Є TilePartitioning 

5.           PowerMapSW(x,y):=, S0PowerMap:x if		(x, y) ∈ PredOv(TileBoundary��)otherwise            

6.      End For 
7.      SPMPriv[TileID].powerGate(PowerMapSW); 
8.      performMotionEstimation(); 
9. End For 
10. return; 

Fig. 14 Adaptive power management policy for the Private SPM . 

Fig. 13 depicts our adaptive power management policy for the 
OvSPM. At frame level, online statistics of overlap SPMs usages for 
previous ME are generated (line 2). As shown in Fig. 12, using the “D” 
factor of the current ME as parameter, we predict the current overlap size 
(line 5). For all SPM lines outside the predicted overlap, the OFF state 

(S0) is assigned to the PowerMapOv corresponding position; otherwise, 
the ON state is assigned (S3). In CTU processing level (line 7), our 
power management checks for the non-accessed OvSPM positions that 
are inside the overlap prediction to put them in data retentive states 
(lines 8-9). S2 state is assigned for positions potentially accessed by 
more than two Tiles, while S1 state is used for overlap positions shared 
for only two Tiles. The overlap usage for the current ME is updated at 
every CTU processing (line 11) and saved to be used for future overlap 
predictions (line 13). 

The adaptive power management policy for the PrivSPMs is 
depicted in Fig. 14. At the beginning of a CTU processing, it checks for 
intersected positions between the core-private search window and any 
predicted overlap. For each intersection, it power-gates the 
corresponding PrivSPM positions (line 5 in Fig. 14). Note, both OvSPM 
and PrivSPM managements work in parallel in our dSVM system. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The experimental analysis is based on the recommended HEVC 
common test conditions [13] using the HEVC test model (HM 11.0) 
[14]. We execute the experiments for 4-Tile and 8-Tile scenarios (each 
Tile executes on a dedicated core) with five search window dimensions: 
64x64, 96x96, 128x128, 192x192, and 256x256. Six test video 
sequences with different properties were evaluated: BaskettballDrive 
(BDrive), BQTerrace, Cactus and Kimono (HD1080p: 1920x1080), 
PeopleOnStreet (People) and NebutaFestival (Nebuta) (2K: 2500x1600). 
Other encoder specifications are: GOP=8, CABAC, FRExt, Random 
Access configuration, and TZ Search algorithm. 

For memory energy evaluation, we use the CACTI 6.5 
leakage/dynamic energies estimation for a 32nm SRAM-based SPM. 
The leakage reduction and wake-up energies were derived from the 
analytical model presented in [12]. The 4-Gbit Low-Power DDR2 
(LPDDR2) DRAM MT42L128M16D1GU-25WT electrical 
specifications [8] were used to determine all external memory energy 
components mentioned in Section II. As a design decision for combined 
coarse- and fine-grained SPM management, considering the most widely 
used video resolutions and search window sizes (as listed above), we 
adopt BUSize=16. 

To evaluate the savings of our dSVM architecture, we select two 
other comparison partners: (a) SPMs with Level C-based data reuse for 
each core, and (b) our dSVM with only the PrivSPMs and no shared 
OvSPMs. The energy evaluations consider the first 30 consecutive 
frames of each test video sequence. 

B. Energy Savings 

Tab. 1 presents the overall energy evaluation with a breakdown of 
off-chip and on-chip memory energy consumption. 

TAB. 1 OVERALL ENERGY CONSUMPTION EVALUATION 

 
SPMs 
Size 
[KB] 

On-Chip 
Energy 

[mJ] 

Off-Chip 
Energy 

[mJ] 

Overall 
Energy 

[mJ] 

Savings 
dSVM 

[%] 
Scenario 1: 4-Tile HD1080, 129x129 search window 

Level C [11] 144 16 587 603 36% 
Our PrivSPM Only 144 16 469 485 21% 
Our dSVM  614 33 351 384 - 

Scenario 2: 8-Tile HD1080, 129x129 search window 

Level C [11] 288 33 587 620 61% 
Our PrivSPM Only 288 32 462 494 51% 
Our dSVM  1098 63 179 242 - 

Tab. 1 shows that our complete dSVM architecture provides the 
best energy efficiency for the two tested scenarios. Considering the 
accumulated size of SPM blocks (private plus overlapping), the dSVM 
architecture presents the highest memory usage. However, our adaptive 
power management is able to significantly reduce the leakage 
consumption and accordingly adapting the power states to the predicted 



overlap size and shape. Therefore, the dSVM architecture can reduce 
the on-chip energy consumption being competitive with the related non-
shared memories approaches. Furthermore, this slight on-chip energy 
overhead is amortized by significant savings in the external memory 
transfers that leads to overall savings of 21%-36% compared to Level C 
and our PrivSPM Only solution (scenario 1), respectively. In the 
scenario 2, our energy savings even increase to 51%-61% compared to 
Level C and our PrivSPM Only solution, respectively. Note that our 
dSVM architecture provides increasing overall savings when more Tiles 
(i.e. parallel HEVC threads) are used (2x higher savings, on average). 
Extrapolating our results for more than 8 video Tiles (as more inter-
Tiles data reuse potential can be exploited), our dSVM can achieve 
even higher memory energy savings. 
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Fig. 15  External memory energy savings for 4-tile and 8-tile scenarios: (a) 

average savings for all sequences varying the search window size and (b) savings 

for each tested sequence (128x128 search window size) 
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Fig. 16  Leakage energy savings due to our dynamic power management of 

the dSVM architecture (128x128 search window size) 

Off-Chip Memory Energy Savings: Fig. 15 depicts the external 
memory energy savings of our dSVM for different search window sizes, 
input video test sequences, and the number of parallelized Tiles. Fig. 15 
shows that as more Tiles are used, more external memory energy is 
saved due to the larger overlap. Our dSVM architecture supersedes other 
comparison partners by exploiting our novel concept of both intra-Tile 
and inter-Tiles data reuse. The dSVM savings increase with the growing 
search window from 7% to 58% for the 4-Tiles partitioning and from 
17% to 71% for the 8-Tiles partitioning. This due to exploiting the 
shared memory accesses coming from different processing cores. 
Furthermore, there are savings also vary depending upon the video 
content: low motion videos leads to less overlap and less potential of 
reduction. In the best case, the Cactus sequence achieves an external 
memory energy reduction of 55% and 74% for 4-Tiles and 8-Tiles 
partitioning (using 128x128 search window size). 

On-Chip Memory Energy Savings: Fig. 16 depicts the on-chip 
leakage energy savings of our dSVM architecture due to our adaptive 
power management policy. On average, our policy reduces the leakage 
energy by 54% and 52%, considering 4-Tile and 8-Tile scenarios. Part of 
the savings is related to the PrivSPMs energy management, which 
captures the intersections of the search window positions with the any 

predicted overlap. Regarding the OvSPMs, our scheme can significantly 
reduce the leakage energy for low motion ME, where the overlap tends 
to be small. 

VI. CONCLUSION 

This work presented a distributed Scratchpad Video Memory 
Architecture for the next-generation parallel High Efficiency Video 
Coding. It exploits intra- and inter- video Tile level data reuse jointly 
through private and shared SPMs of different cores executing parallel 
HEVC threads. The SPM design is based on application-specific 
knowledge of HEVC and statistical analysis of memory access behavior 
w.r.t. the video content properties. To further reduce the leakage energy, 
we integrated an adaptive power management policy for SPMs that 
exploit the prediction of the overlapping accesses from different cores 
and their relationship to the video content properties. Our dSVM 
architecture provides up to 61% reduction in the overall memory energy 
and 54% in the leakage energy compared to state-of-the-art. Our 
proposed contribution enables energy-efficient multimedia systems 
supporting multiple threads of the next-generation HEVC encoder. 
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ABSTRACT 
We present a novel content-driven memory pressure balancing and 
video memory power management scheme for parallel High 
Efficiency Video Coding (HEVC). The key is to leverage the 
application-specific knowledge to balance the (instant) access 
pressure on Scratchpad-based Video Memories (SVMs) for 
parallelized video processing. Our scheme accurately predicts the 
memory requirements of each processing core based on monitored 
memory usage and leverages this knowledge to perform a 
categorization of different video regions. Afterwards, it employs an 
adaptive policy for memory pressure balancing by rescheduling 
encoding of different video blocks based on their categories. This 
balancing also facilitates our scheme to perform efficient power-
gating of unused parts of SVMs. Experimental results show that our 
scheme reduces the variations in the memory pressure by 37%-83% 
when compared to the traditional raster scan processing for 4- and 
16-core parallelized HEVC encoder. Our content-driven power 
management saves 56% (on average) of SVM leakage energy. 

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application-Based Systems]: Real-time 
and embedded systems; B.3.2 [Design Styles]: Cache memories 

Keywords 

On-chip memory, memory pressure reduction, application-specific 
optimization, HEVC, video coding, adaptivity, power management, 
low-power, energy. 

1. INTRODUCTION AND RELATED WORK 
Parallelization of video processing applications under stringent 
energy budget is a significant challenge for the next-generation 
embedded manycore multimedia systems. Moreover, the memory 
hierarchy consumes a significant portion of the chip footprint and 
power/energy in such systems. Meeting these constraints becomes 
quite intricate when considering the escalating complexity of 
emerging video coding standards, like HEVC [1]. 

The High Efficiency Video Coding (HEVC) standard [1] aims at 
providing 2x higher compression efficiency compared to that of the 
state-of-the-art H.264/AVC standard. To achieve this, HEVC 
introduces novel data structures and coding tools that increase the 
computational effort by 40% and memory requirements by >2x 
compared to H.264/AVC (see Figure 1a). To alleviate this increased 
computation, HEVC provides parallelization support in form of 
Video Tiles that are independently processed on different cores. 
However, this further complicates the memory design in an 
embedded multimedia system through the following means: (1) 

More on-chip video memories are required to feed the processing 
cores that incur an increase in the leakage and dynamic energy. (2) 
External memory pressure is increased since multiple cores try to 
access the data at the same time, thus also leading to an increase in 
the off-chip energy. Moreover, the number of scenarios with 
unbalanced memory pressure may increase due to the run-time 
variation of the video content (as shown in Figure 1b) that lead to 
high instant power dissipation and may surpass the maximum 
available memory bandwidth. Therefore, it is crucial to balance the 
memory pressure while performing efficient power management of 
video memories in parallel HEVC encoding. 

Recently, the use of scratchpad memories has proliferated in the 
manycore systems (like in IBM Cell [10]) as power-efficient on-chip 
memories to complement or replace large-sized shared caches [8]. 
The scratchpad memories avoid energy overhead of tags and write 
replacement management to provide >30% energy reduction 
compared to a full cache design [8]. Power efficient management of 
these scratchpad memories is of key importance. External memory 
pressure and on-chip scratchpad memory management for high-
performance manycore systems have been explored in [12][13]. 
However, these works do not account for the application-specific 
properties, thus may not be efficiently employed for on-chip video 
memories. From the application-driven perspective, several works 
proposed dedicated power management schemes for video encoding 
regarding both off-/on-chip video memories [2]-[4]. However, these 
works lack support for parallel HEVC video encoding and 
corresponding memory constraints. Therefore, these techniques may 
perform inefficient under scenarios with (1) unbalanced memory 
pressure during parallel HEVC encoding (as we motivate in Section 
1.2); and (2) simultaneously accessed multiple on-chip memories. 
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Figure 1. (a) HEVC increasing demands compared to H.264/AVC (b) 
memory pressure Probability Density Function for BasketballDrive. 

Summarizing, the challenge is to obtain balanced pressure for off- 
and on-chip memories based on multiple Scratchpad-based Video 
Memories (SVMs) used by different Video Tiles in parallel HEVC 
encoding and to provide efficient SVM power management by 
exploiting this knowledge . 

Before proceeding further, we first provide preliminaries of HEVC. 

1.1 HEVC Preliminaries 
The HEVC introduces the Coding-Tree Unit (CTU, e.g., a 64x64 
block) as a basic encoding entity within a video frame. The CTU is 
divided using a recursive splitting into blocks of NxN or 2Nx2N 
sizes (e.g., 32x32, 16x16 and so on) [1]. An example partitioning is 
shown in Figure 2b. The Motion Estimation is performed for all 
possible blocks. For each block it searches for the most similar block 
within a search window in one or more reference frames (i.e. already 
encoded and reconstructed frames). 
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The search window is defined as the maximum range of motion 
search in both horizontal and vertical directions. This motion search 
process for multiple blocks may consume up to 90% of the total 
HEVC encoding energy [2]. Besides CTUs, HEVC supports 
rectangular Video Tiles (each containing multiple CTU) that can be 
processed in parallel without any data dependency [7]. Figure 2a 
presents an example of a 2x2 Video Tiles configuration (4-Tile 
scenario) for a video frame with 8x4 CTUs. 
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Figure 2. (a) Multiple Video Tiles in a video frame; 
(b) An example CTU partitioning. 

1.2 Motivational Case Studies  
We have performed an experimental analysis (see experimental setup 
in Section 4) for (1) memory pressure and access imbalance when 
processing multiple Video Tiles concurrently; (2) memory pressure 
and access correlations; and (3) Intra-Video Tile access behavior. 
These analyses provide a foundation for our novel contributions. 

1) Memory Pressure Analysis: We define memory pressure as the 
memory access requirement caused by a CTU processing during a 
specific time. When considering multiple processing cores, the 
memory pressure may be (1) core-specific, or (2) accumulated (sum 
of all core-specific pressures). Typically, the motion estimation is 
performed in the traditional raster scan order (i.e., from top-left to 
bottom-right corner in row-by-row order). However, this may lead to 
unbalanced external memory pressure, as depicted in the 4-Tile 
example of Figure 3a. The maximum and minimum memory 
pressure peaks can be seen in Figure 3b. There are significant 
memory access variations compared to the average access case (that 
typically does not happen). This unbalanced memory pressure leads 
to high power peak dissipations and high instant memory bandwidth 
requirements, which may surpass the maximum availability 
constraints. Moreover, such unbalancing also leads to inefficient 
memory power management due to (1) fluctuations in the sleep 
durations, (2) frequent PON-POFF switching, and (3) memory usage 
prediction errors due to sudden access variations. Therefore, the key 
is to leverage application specific-properties to adapt and re-
schedule the CTU processing in order to achieve the best possible 
memory pressure balancing. 

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Actual Average

0

3

6

9

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Tile 0 Tile 1 Tile 2 Tile 3

M
e

m
o

ry
P

re
ss

u
re

[M
b

yt
es

]

CTU Processing Time [raster scan order]

32% of maximum peak variation

27% of minimum peak variation

Conclusion: Non-adaptive CTU raster processing leads to
unbalancing memory pressure along the HEVC encoding time

(a) Core-Specific

(b) Accumulated

 
Figure 3. Memory pressure for (a) each processing core; and (b) 

accumulated and average cases for BasketballDrive. 

2) Spatial/Temporal Neighboring Analysis: If it is possible to 
accurately predict the memory requirements for a given CTU, it can 
be exploited by a power manager to balance the memory pressure in 
a very efficient way. In case of high frame rates (30-60 fps), 
significant temporal correlation exists, i.e. the neighboring frames 
have similar memory access behavior, as depicted in Figure 4. 
Additionally, high video frame resolutions (e.g., FullHD=1920x1080 
to 4K=3840x2160) increase the spatial correlations between 

neighboring CTUs within the same frame. Furthermore, we can note 
that the memory pressure for each CTU also depends upon their 
corresponding video content characteristic (like texture and motion 
content). Therefore, the key is to leverage the knowledge from the 
monitored memory pressure of spatially- and temporally-
neighboring CTUs to obtain a high quality prediction of the actual 
memory pressure for a given CTU. 

3) Intra-Video Tile Memory Analysis: While balancing the 
memory pressure is important from the external memory perspective, 
it is also crucial to take care of the core-private on-chip SVMs. In 
this case, long sleep durations (and consequently more leakage 
energy savings) can be achieved by consecutively encoding CTUs 
with similar video content properties (like texture and motion), thus 
similar memory pressure. Figure 5 shows Video Tiles with less 
memory requirements (like Video Tile 1) and more memory 
demands (like Video Tile 2). In this case, longer sleep durations and 
higher energy savings can be obtained for the SVM of core 
processing the Video Tile 1. Furthermore, re-scheduled CTU 
processing orders for a well-balanced memory pressure tends to 
group similar properties CTUs to be consecutively encoded, 
providing even higher sleep durations (as we will demonstrate in 
Section 3). Hence, the key challenge here is how to leverage the 
CTU re-schedule for memory pressure balancing and increased 
sleep durations for efficient SVM power management. 
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Figure 5. Intra-Tile memory pressure analysis for BasketballDrive. 

The goal of our work is to leverage application-specific properties 
for memory pressure balancing and SVM’s leakage energy reduction 
targeting parallelized HEVC encoding. 

1.3 Our Novel Contributions 
We propose content-driven memory pressure balancing along with 
SVM power management for HEVC parallelized on manycore 
processors. The key is to leverage the memory access correlation 
within and across different Video Tiles (i.e. Intra- and Inter- Video 
Tile correlation). Our scheme employs: 

 A Memory Pressure Prediction Algorithm (Section 2.1) that 
leverages the monitored memory pressure of Video Tiles in the 
previously encoded CTUs in order to accurately predict the memory 
requirements for Video Tiles in the current frame. 

 Run-Time Statistics-Based CTU Memory Classification 
(Section 2.2) that dynamically adapts the parameters involved in our 
memory power management scheme according to the predicted 
memory pressure statistics. 

 CTU Re-Scheduling for Memory Pressure Balancing 
(Section 2.3) our scheme groups the CTUs of a Video Tile into 



variable-size groups (called CTU-groups). The size of the CTU-
groups depends on the Video Tile-specific motion activity properties. 
Depending upon the predicted memory pressure, we schedule the 
CTU-groups to closely meet the target pressure. 

 Content-Driven Power Management of SVMs (Section 3): 
since the CTU-groups may also exhibit similar properties blocks, our 
scheme analyzes the predicted memory usage of different CTU to 
increase the potential of the sleep-duration of different SVM regions 
and thereby increasing the leakage energy savings. 

To the best of authors’ knowledge, this is the first work towards 
managing the memory pressure in parallel video processing that 
exploits the video content properties and memory access correlation. 

1.4 Overview of Our Memory System 
Figure 6 depicts the overall system with our content-driven memory 
power management. To support HEVC encoding parallelized using n 
Video Tiles, our system has (1) a multicore processor with n cores 
and (2) a memory infrastructure containing n SVMs, such that every 
core has its private on-chip SVM for search window storage used 
during the motion estimation process. The SVMs are connected to 
the external memory by data/address bus interfaces. Our content-
driven memory pressure balancing scheme is composed of the 
following three modules: (a) memory pressure prediction, (b) run-
time statistics-based CTU memory classification, and (c) CTU re-
scheduling for memory pressure balancing. Furthermore, our 
memory management system also employs a content-driven power 
management of SVMs. It leverages the run-time statistical analysis 
performed by (a) and (b). A memory monitoring unit feeds the 
statistics about the current memory requirements to our system. 
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Figure 6. n-Tile HEVC encoding system with our application-specific 

memory power management scheme. 

Although traditional scratchpad memories require programmer 
driven control, recent works have demonstrated run-time 
management of these memories where data allocation is managed by 
a virtual manager, like [8][9]. In our case, instead of explicitly 
passing the control to the programmer, we have an application-
specific hardware management of these SVMs (which is much 
simpler compared to the management circuitry of cache memories). 

2. CONTENT-DRIVEN MEMORY PRESSURE 
BALANCING SCHEME 

2.1 Memory Pressure Prediction 
As demonstrated in Section 1.2, highly correlated memory pressure 
may exist (1) among spatial neighboring CTUs (within the same 
frame); and (2) among CTUs of temporal neighboring frames. 
Therefore, based on the actual memory usage of previously processed 
CTUs (ActualMem), our prediction algorithm estimates the memory 
requirements of the CTUs in the current frame1. Figure 7 depicts an 
example of used CTU predictors in the current and reference frames. 
Four spatial predictors from the current frame and nine temporal 
predictors from each reference frame are selected as input to a 

                                                                 
1 A current frame refers to the frame being encoded at that moment. 

weighted prediction. Eq. (1)-(2) presents the spatial and temporal 
predictors selected for a given CTU: PredTemp and PredSpatial, 
respectively. The letters A-M correspond to the spatial and temporal 
predictors depicted in Figure 7. As statistical parameters for the 
prediction, we apply different weighting factors2 according to the 
spatial location of the predictor related to the current CTU position. 
Possible cases of CTU position are: center (αC), horizontal/vertical 
(αA), and diagonal (αD). Eq. (3)-(5) present the weighted prediction 
formula for predicting the memory pressure considering a given CTU. 
The weighting factors were statistically generated based on the 
memory access correlations of real video test sequences. First, the 
predicted memory pressure considering only the temporal references 
is estimated: PredMemTemp in Eq. (3). Then, the spatial predictors are 
used to calculate the PredMemSpatial, as in Eq. (4). Finally, both spatial 
and temporal predictions are used to derive the predicted memory 
pressure for the given CTU: PredMem in Eq. (5).  

PredTemp(FRef) := WP(ActualMem(FRef[A...I]),           ) (1) 

PredSpatial := WP(ActualMem(FCurr[J...M]),        ) (2) 

            ∑ {[∑ (  )
             (    )

]  
 

       
}

      

 (3) 

               ∑ (  )                
   (4) 

       (   )    (                                  ) (5)  

When some predictors are unavailable (e.g., in case of CTUs at the 
frame boundaries) the weighted prediction is performed only with 
the available predictors. 
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Figure 7. Example: spatial and temporal predictors selecting. 

The predicted memory requirements of the CTUs need to be 
analyzed to classify each video frame, Video Tile and CTU-groups 
to characterize their memory access behavior. 

2.2 Run-Time Statistics-Based CTU Memory 

Classification 
As motivated in Section 1.2, in order to avoid the memory pressure 
imbalance problem of traditional raster scan order processing, our 
scheme re-schedules the order of CTU evaluations for motion 
estimation. To achieve this, our scheme partitions the CTUs of a 
Video Tile into so-called CTU-groups, which are rectangular regions 
of CTUs such that, all CTUs of a given CTU-group are processed 
consequently; see an example in Figure 8. The goal is to assign 
CTUs with similar memory requirements/pressure into one group 
while balancing the overall memory pressure of Video Tiles. 

(a) 4 Video Tiles

 
Figure 8. Example: CTU-groups division for re-scheduling. 

The memory access distribution follows specific properties (i.e., 
motion and texture) of each video sequence. Hence, we use the video 

                                                                 
2 

Statistically defined parameters using the experimental methodology 
described in Section 4: αC=0.5, αA=0.3, αD=0.2, αS=0.5, and αT=0.5. 



properties to decide the number of CTU-groups. Our scheme adapts 
the number of CTU-groups at frame level according to the predicted 
memory access distribution of Video Tiles. At first, a base number of 
groups is defined, NB in Eq. (6). It is based on the Probability Density 
Function (PDF) of the predicted memory pressures at frame level (µF 

is the average, σF is the standard deviation) and the average number 
of CTUs per Video Tile (NCTUPerTile). Later on, we define the actual 
number of groups for each Video Tile (NG in Eq. (7)) by comparing 
the predicted memory access distribution of a given Video Tile (µT, 
σT) with that of the with the overall frame. Video Tiles with spread 
memory pressure distributions are divided into more CTU-groups to 
enable fine-grained management (first clause of Eq. (7)). The goal is 
to have a fine-grain management because we may have very diverse 
memory behaviors within a Video Tile. In contrast, Video Tiles with 
concentrated memory pressure distribution (second clause of Eq. (7)) 
lead to few (but large-sized) CTU-groups as their texture and motion 
properties tend to be correlated inside such a Video Tile. The 
decision of having smaller CTU-groups must be carefully taken 
because the SVM data reuse among adjacent CTUs is not available 
between each CTU-group processing, causing efficiency loss in the 
SVM data management. Due to the CTU order inside one CTU-
group (see Figure 8), the SVMs are more efficient for large-groups. 

   ⌈(     )            ⌉ 
where: {     }     (       (   )              ) 
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The predicted memory pressure distribution is used to classify the 
Video Tile in terms of motion property. By comparing the average 
behavior of each Video Tile-specific distribution to the overall frame 
distribution, Eq. (8) defines three categories: H-type (high motion), 
M-type (medium motion), and L-type (low motion). Moreover, each 
CTU-group also has its own PDF (given in Eq. (9)) that will be used 
for the re-scheduling decision during the memory pressure balancing. 
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Figure 9. Memory pressure statistics for each Video Tile of the 

BasketballDrive test sequence (PDFs and histogram). 

An Example: Figure 9 presents the run-time statistics of the 
predicted memory pressure of a frame in the HD1080 
BasketballDrive video encoded with 4-Tiles. The NBase value, which 
is only dependent on the overall frame statistics, is calculated using 
Eq. (6), i.e. NBase=6. Using Eq. (7), the number of CTU-groups at is 
calculated: NG(0)=6, NG(1)=2, NG(2)=8, NG(3)=4. Using Eq. (8), the 
motion classification of Video Tiles are: CTile(0)=M-type, CTile(1)=L-
type, CTile(2)=H-type, and CTile(3)=M-type. 

The above analysis and predicted memory pressure statistics are used 
by our CTU re-scheduling algorithm for memory pressure balancing 
and by the corresponding power management policy. 

2.3 CTU Re-Scheduling for Memory Pressure 
Balancing 
The goal of our CTU re-scheduling is to balance the accumulated 
memory pressure at the Video Tiles level, reducing the mean squared 
deviance (MSD) related to the average memory pressure (ideal case). 
Different number of CTU-groups leads to variable-sized groups, 
containing more or less CTUs within each Video Tile. Our scheme 
also classifies the Video Tiles according to the motion properties in 
three classifications CTile={H-type, M-type, L-type} using the Eq. (8). 
Different Video Tile types will contributes in different ways for the 
accumulated balancing: H-type Video Tiles start by occupying the 
most part of the memory bandwidth, M-type Video Tiles contribute 
by median memory occupation, and the L-type Video Tiles aim to 
alleviate the memory pressure. The main task of our scheme is to 
schedule the CTU-groups processing.  

Figure 10 depicts our CTU-groups scheduling functionality that is 
called at two points: (1) at the initial frame processing, when the 
decision about CTU-groups scheduling has not already taken, and (2) 
at the end of one CTU-group processing, when a new group must be 
scheduled. The call for this routine is performed at Video Tile-level, 
when the algorithm analyzes the current scenario to take the best 
decision. So, as input parameters we have the ID of the Video Tile 
TileID and the list of CTU-groups (LCTU-Groups) that are inside the 
target Video Tile (line 1). For the first frame of the video, there are 
no temporal references for memory predictors, so the traditional 
raster scan order is performed (lines 2-3). If it is not the first frame, 
all memory predictions and run-time memory-related classifications 
are performed at the beginning of the frame processing. In case of 
the first CTU-group scheduling, the algorithm takes the motion 
Video Tile classification CTile into account to decide the CTU-group 
that will be next coded (GToBeCoded) (lines 6-9). Otherwise, our 
adaptive scheme analyzes the gap (gapAccumPress) between the 
current memory pressure (currMemPress) and an approximate 
average case prediction (averageAccumPress in line 11). So, the 
algorithm selects the CTU-group which has the predicted memory 
pressure and that has the best fit to the predicted gap (lines 11-14). 
After this decision, the CTU-group is removed from the non-coded 
groups list and the CTUs according are encoded according to the 
CTU-groups internal processing order depicted in Figure 8 (line 17). 

1. scheduleCTUGroup(Video Tile: TileID, List of CTU-groups: LCTU-Groups) 
2. If first frame Then    
3.      GToBeCoded := LGroups.first();     //CTU-group equals to Video Tile  
4. Else     //not the first frame 
5.      If frame start Then   //run-time statistical knowledge of Video Tiles 
6.           Tileclass := CTile(TileID);   //Eq. (8) – statistical classification 
7.           Case(TileClass = L-type): GToBeCoded := LCTU-Groups.min(); 
8.           Case(TileClass = M-type): GToBeCoded := LCTU-Groups.median(); 
9.           Case(TileClass = H-type): GToBeCoded := LCTU-Groups.max(); 
10.      Else 
11.           averageAccumPress:= ∑ (𝜇 )

      
    ;  //sum of av. pressures 

12.           currAccumPress := getCurrentMemoryPressure();   //monitoring 
13.           gapAccumPress := averageAccumPress – currAccumPress; 
14.           GToBeCoded := (G  |  𝜇  has the best fit to gapAccPress); 
15.      End If; 
16. End If; 
17. LCTU-Groups .remove(GToBeCoded); encode(GToBeCoded); 

Figure 10. CTUs re-scheduling algorithm. 

Besides memory pressure balancing, we also develop an on-chip 
power management that controls the low-power states of different 
blocks of the SVMs while increasing their sleep durations. 

3. CONTENT-DRIVEN POWER MANAGEMENT 
Our power management policy monitors each core’s private SVM 
usage to capture the current video motion property and power-gate 
less-likely used sectors to save on-chip leakage energy. 

Memory Power Model: We consider a memory technology with 
three power states: PON, PDR (Data Retentive) and POFF, where: 



VON=Vdd, VDR=0.3*Vdd and VOFF=0, and the wake-up energies (WE) 
for power states transitions3 are WET0=1/2*CCircuit*Vdd

2, and 
WET1=0.65*WET0. Vdd is the memory supply voltage, and CCircuit is 
the total capacitance of the memory [5]. Our SVMs are divided into 
NSecs memory sectors that are power gated by the same sleep 
transistor. One memory sector supports a 16x16 search window 
block (SSector=16*16*8bits=2048bits). This sectors organization 
allows fine-grain memory management during the encoding, since 
variable blocks sizes are processed and very accurate memory power 
states assignment is required. The SVMs are sized to store one 
complete search window in a private way for each core. Hence, we 
have NSVM=NTiles=NCores number of SVMs and each SVM has 
SSVM=(SWH+64)*(SWV+64)*8 Kbits, where SWV and SWH are the 
search window vertical and horizontal dimensions.  

Run-Time SVM Usage Analysis: Our evaluations in Figure 11 
illustrate that we can increase the potential of long sleep durations 
once the memory pressure is balanced. For example, Figure 11a 
presents the SVM usage for the core 1 when encoding the 
BasketballDrive sequence. The SVM usage (SVMUsage) calculated as 
the percentage of accessed SVM memory positions (measured by our 
memory monitoring unit) during one ME operation (AccSVM), see 
Eq. (10). As shown in Figure 11(b), the SVM usage for the entire 
CTU can be determined as the Probability Density Function of the 
SWUsage values of all blocks within the CTU, see Eq. (11).  
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Figure 11. (a) Increased memory pressure correlation;  

(b) power states determination based on the SVM usage PDFs. 

Our Power Management Scheme: At the beginning of a CTU 
encoding, the algorithm predicts the number of the memory sectors 
that can be put into different power state (i.e., NON, NDR and NOFF). 
As basis for this prediction, we analyze (1) the actual search window 
usage for previously processed CTUs (e.g., CTUID-3, CTUID-2, and 
CTUID-1); (2) the predicted usage for the current CTUID and the next 
CTUID+1 and CTUID+2. The goal is to have the knowledge of the past, 
present and predicted future memory requirements to increase the 
on-chip leakage energy savings while minimizing the overhead for 
memory sectors waking-up. Figure 11(b) presents an example of 
SVM usage PDFs and the corresponding power states assignment. 

Figure 12 presents our power management policy. The actual SVM 
usage PDFs of the past CTUs (ListActualSVMUsagePDF) and the next 
predicted SVM usage PDFs (ListPredSVMUsagePDF) are used to 
determine the power states of the SVM sectors (lines 3-5). As in 
Figure 11, we define two thresholds (TH0 and TH1) based on the 
average and standard deviation of all cited PDFs (lines 6-7). 
Afterwards, the SVM sectors corresponding to each power states are 
derived (lines 8-9). The physical assignment of the power states to 
the SVM cells is performed at the beginning of every block 
processing within a CTU (lines 10-13). In the case data 
                                                                 
3 Power states transitions: T0 (POFFPON), and T1 (PDRPON). 

retransmission is required (SVM cells wake-up from the POFF state), 
the control unit inserts stalls in the execution pipeline. Still, this 
penalty implies a negligible energy/performance overhead since in 
our experiments the worst-case scenario is observed <0.2% times. 

1. managePowerSVM (Video Tile: TileID, CTU: CTUID)  
2. PowerMapSVM := Ф; NON := 0; NDR :=  0; NOFF := 0; 
3. ListActualSVMUsagePDF := (SVMUsagePDF (ActualMem(CTUID) | ID Є {-3..-1})); 
4. ListPredSVMUsagePDF := (SVMUsagePDF (PredMem(CTUID) | ID Є {0..2})); 
5. ListPDF.append(ListActualSVMUsagePDF, ListPredSVMUsagePDF); 
6. TH0 := max(µSVM+3.σSVM | (µSVM,σSVM) Є {ListPDF});   //TH’s definition 
7. TH1 := max(µSVM+1. σSVM | (µSVM,σSVM) Є { ListPDF}); 
8. NOFF := (1 – TH0)*NSec; NDR := (TH0–TH1) *NSec; NON := TH1 *NSec; 
9. PowerMapSVM.assignPowerStates(NON, NDR, NOFF); 
10. For all Block Є CTUID   
11.      SVM[TileID].powerGate(PowerMapSVM);   //apply power gating 
12.      encode(Block); 
13. End For; 

Figure 12. On-chip power management of SVMs. 

4. RESULTS AND DISCUSSIONS 

4.1 Experimental Methodology 
The experiments are performed using the HEVC software (HM 11.0) 
using the common test conditions adopted by the video coding 
community [6]. Four HD1080p (1920x1080) test video sequences 
with different properties were adopted: BasketballDrive (BDrive), 
BQTerrace (BQTerr), Cactus and Kimono. We consider 4-/16-Tile 
scenarios, 128x128 search window size (typical dimension for 
HD1080p [7]), GOP=8, FRExt, CABAC, and TZ Search algorithm 
for motion estimation. We use 4 and 16 threads (i. e., Video Tiles), 
each executing on a dedicated/specific processing core. Therefore, 
we use 4-, and 16-core x86 processor in our setup. Table 1 presents 
the on-chip SVM parameters as per the model defined in Section 3. 

Table 1. On-Chip SVMs Sizing Parameters 

SVM Sizing Parameter Value 

Number of SVMs 4, 8, 16 (one SVM per core) 

SVM Sector Size 2048 bits = 256 B 

SVM Size (128+64) * (128+64) * 1B = 36 KB 

Memory Size (4-Core) 114 KB 

Memory Size (16-Core) 576 KB 

We developed a custom simulator that takes the HM 11.0 memory 
traces for each thread (independent Video Tile) as input and 
estimates the accumulated memory pressure and the on-chip leakage 
energy. Our simulator contains memory models for the external 
memory and for the on-chip SVMs. For the external memory, we 
used a Low-Power DDR2 DRAM (LPDDR2) memory model (from 
Micron technical specification [14][15]) to derive the memory 
pressure. For the on-chip memory leakage energy estimation, we 
extracted the electrical parameters (for the 65nm SRAM technology 
node) using the CACTI 6.5 tool [11], as well as the multiple power 
states model described in Section 3. 

MSD metric: Let the Mem[0…m] be the discretized memory pressure 
measurements along the time. The mean squared deviance (MSD) 
calculates the squared different between each memory pressure 
measured point and the Mem average value (µMem), as in Eq. (12). 
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4.2 Memory Pressure Balancing Results 
Figure 13 presents a temporal evaluation of the memory pressure 
comparing (1) the traditional CTU raster processing order; (2) our 
application-specific memory pressure balancing scheme using CTU-
rescheduling; and (3) the optimal corner case where the memory 
pressure is continuously equals to the average pressure. The case (3) 
is a theoretical approximation used to evaluate the gaps of our and 
the traditional schemes related to the best possible balancing case. 
Figure 13 shows that our scheme balances the pressure for each 
processing core. Compared to the traditional raster order, the 



maximum-minimum peak variations are reduced from 27%-32% to 
9%-13%, respectively. Our scheme achieves this balancing by 
effectively predicting the memory requirements, capturing the Video 
Tile-specific properties, and managing the processing order. 

Figure 14 presents our results regarding the memory pressure 
balance. As already discussed, more Video Tiles potentially leads to 
more unbalanced accumulated memory pressure, since more 
concurrent memory accesses are performed during each time slot. In 
this scenario, there is a high probability of having very different 
motion properties being processed by different cores at the same 
time. So, the balancing gap when more Video Tiles are used is 
higher. Our scheme successfully exploits this potential, as shown in 
Figure 14. The MSD efficiency reduction ranges from, on average, 
37% to 83%, for 4 to 16 Video Tiles. Therefore, our application-
specific memory power management is efficiently scalable when 
working with an increased number of Video Tiles. 
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Figure 13. Accumulated memory pressure results of our scheme. 
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Figure 14. (a)(b) Memory pressure balancing analysis compared to 

the original raster scan order and (c) frame-by-frame analysis. 

Figure 14c depicts a frame-by-frame MSD reduction analysis. 
During the first frame processing, as only spatial references can be 
used as input for our memory pressure predictor, our scheme 
achieves results close to the original raster order. However, by 
acquiring the temporal knowledge, our scheme fits the CTU-Groups 
accordingly to capture the motion properties and achieves increased 
memory pressure balancing for the other remaining frames. Thus, we 
can increase the accumulated memory pressure balancing by up to 
49% in the case of 4-Tile BasketballDrive scenario (Figure 14c). 

4.3 On-Chip Leakage Energy Savings 
Figure 15a depicts the on-chip leakage energy savings of our 
content-driven SVM power management policy for different video 
sequences. On average, our scheme saves 56% of on-chip energy by 
power gating the unused and less-likely used memory sectors. The 
wake-up energies overhead is already included into the results of 
Figure 15. Our energy reductions are high in case of the low-motion 
Video Tiles by achieving longer sleep durations due to consecutive 
processing of CTU with similar texture and motion. This behavior is 
demonstrated in Figure 15b where the total energy savings are 
decomposed for each core-private SVM. The low-motion Video 
Tiles provide the highest savings while the medium- and high-
motion Video Tiles required more energy due to higher memory 
usage as a result of an extensive search. When considering SVMs, 
the energy/performance overhead of waking up the memory cells are 
negligible, since one block of the search window is continuously 

accessed during one ME operation over a given block of the CTU. 
Thus, the energy/performance penalty is completely amortized, not 
leading to significant overhead for the overall memory system. 
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Figure 15. On-chip static energy reduction due to our content-driven 

power management of SVMs. 

5. CONCLUSIONS 
This work presented a content-driven memory pressure balancing 
scheme with an integrated power management policy. Our scheme is 
composed of: (1) a prediction unit that estimates the memory 
pressure due to the monitoring of past CTUs encoding; (2) a run-time 
statistics-based CTU memory classification that adapts the involved 
parameters of our schemes to the current video content; (3) a 
memory pressure balancing strategy that adaptively changes the 
CTU processing order to reduce the accumulated memory pressure 
variations; and (4) a power management policy that analyzes the 
actual and predicted memory usage for the CTUs to accordingly 
power-gate unused (or less-likely used) video memory sectors. Our 
experimental results demonstrated that our scheme can reduce the 
memory pressure peak variation by 37%-83% compared to the state-
of-the-art raster processing order, for 4-/16-core processors. The 
SVM leakage energy is reduced by 56%. This work illustrates that 
the reducing memory pressure and on-chip SVM leakage energy are 
crucial for parallel HEVC on real-world embedded systems. 
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Abstract— An energy-efficient hybrid on-chip video memory 

architecture (enHyV) is presented that combines private and shared 

memories using a hybrid design (i.e., SRAM and emerging STT-

RAM). The key is to leverage the application-specific properties to 

efficiently design and manage the enHyV. To increase STT-RAM 

lifetime, we propose a data management technique that alleviates the 

bit-toggling write occurrences. An adaptive power management is 

also proposed for static-energy savings. Experimental results 

illustrate that enHyV reduces on-chip static memory energy 

compared to SRAM-only version of enHyV and to state-of-art 

AMBER hybrid video memory [9] by 66%-75% and 55%-76%, 

respectively. Furthermore, negligible external memory energy 

consumption is required for reference frames communication (98% 

lower than state-of-the-art Level C+ technique [18]). Our data 

management significantly improves the enHyV STT-RAM lifetime, 

achieving 0.83 of normalized lifetime (near to the optimal case). Our 

hybrid memory design and management incur low overhead in 

terms of latency and dynamic energy. 

I. INTRODUCTION  

Advanced video processing algorithms introduce very high 

pressure on the memory hierarchy, leading to undesirable energy 

and performance overheads [2][3]. Therefore, battery-powered 

applications incorporate dedicated video memories to provide 

enough data bandwidth while reducing energy consumption. 

Video codecs are among the most complex and widely deployed 

video processing applications. Recently, the next-generation High-

Efficiency Video Coding (HEVC) [1] has been released that 

provides double coding efficiency compared to the H.264/AVC. 

However, this comes at the cost of increased computation time by 

more than 40% [8]. Besides employing novel complex coding 

tools, an HEVC encoder requires a significant amount of data from 

the off-/on-chip memories due to more intensive reference frames 

transmission for the prediction. On average, the memory demand 

is 2x-3x higher compared to that of the H.264/AVC [8]. High off-

/on-chip memory bandwidth along with larger on-chip video 

memories (to support bigger resolutions) leads to increased energy 

consumption in HEVC encoders. Additionally, the HEVC has data 

parallelism support to provide high processing rates. However, 

parallel processing tightens the memory energy restrictions due to 

multiple cores accessing the same memory infrastructure 

simultaneously, which aggravates the memory pressure. 

Recently, the hybrid memory architectures for general purpose 

manycore processors have evolved that utilize emerging memory 

technologies (e.g., MRAM, STT-RAM [12]; see Section I.B) in 

combination with traditional SRAM cells [9][11]. Their goal is to 

reduce the impact of SRAM shortcomings like low density and 

high static energy consumption. Typically, for general purpose 

applications, the emerging technologies are desired for the last-

level cache due to the low-static-energy and high-density features 

[10]. However, due to lack of application-specific knowledge, 

these schemes are not efficient enough to support the high memory 

requirements of HEVC. 

Therefore, there is a need of application-driven design for 

energy-efficient and performance-aware hybrid memories tailored 

towards HEVC executing on manycore processors. 

Before we introduce our novel contributions, we will present 

our motivational memory analysis of HEVC encoders followed by 

a brief overview of the emerging memory technologies in 

comparison to the traditional SRAM. 

A. Memory Energy Bottleneck in HEVC 

The new coding structure of HEVC divides the video frame 

into flexible block sizes following a quad-tree structure called 

coding-tree unit (CTU) [7]. Typically the CTU partitioning starts 

from the maximum allowable block size of 64x64 pixels into 

several coding units (CU) of sizes 32x32, 16x16 and 8x8 pixels. 

Fig. 1(a) depicts an example of CTU partitioning. For each CU, 

the motion estimation searches the most similar block within a 

delimited squared portion of reference frames, called search 

window [7]. The motion estimation processes each possible CU 

inside a CTU, thus resulting in the most time and energy 

consuming module of an HEVC encoder. It requires 70%-80% of 

the encoding time and consumes 80%-90% of the total energy 

[2][3]. Furthermore, from the memory perspective, the reference 

frames fetching from the external memory and its on-chip storage 

lead to significant energy consumption (>92% of the motion 

estimation energy) [2][3]. 
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Fig. 1 (a) Example of CTU partitioning into variable-sized CUs; (b) 4-Tile 

partitioning of a video frame. 
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Fig. 2 SRAM on-chip static energy vs. DRAM off-chip energy analyses 

using reference-frame-on-chip strategy. 



To exploit multiple cores in a manycore system, the HEVC 

provides a light-weight data parallelism support that divides the 

video frame into rectangular regions called video Tiles [7]; see Fig. 

1(b). These video Tiles can be encoded independent to each other 

without any spatial dependencies, thus can be parallelized on 

multiple cores. The video Tile-parallelized HEVC aggravates the 

video memory bottleneck (as shown in Fig. 2 for a larger number 

of video Tiles), leading to large on-chip video memories and high 

static energy consumption. Typically, the entire reference frame 

for each video Tiles processing is fetched to the on-chip SRAM-

based video memories (i.e., reference-frame-on-chip scenario in 

Fig. 2). Fig. 2 illustrates a significant increase in the SRAM static 

energy when increasing the number of used video Tiles whereas 

the external memory bandwidth is not even reduced. An important 

observation can be made: the on-chip video memories based on 

SRAM have low energy efficiency when larger on-chip video 

memories are required for parallel video Tiles processing support. 

In general, this would also be valid for other multi-threaded video 

processing workloads. Hybrid memory design has emerged as a 

promising solution to address the SRAM limitations, i.e., low 

density and high static energy. 

B. SRAM and Emerging STT-RAM Memory Technologies 

As an emerging memory technology, the Spin-Transfer Torque 

SRAM (STT-RAM) [12] provides higher density, better scalability 

and low static power features compared to the SRAM. In other 

aspects SRAM is still much more efficient, like in terms of write 

power and overall performance. Table I presents a subjective 

comparison between SRAM and STT-RAM technologies1, where 

the dark-gray cells represent the best scenario of each parameter. 

TABLE I SRAM VS. STT-RAM TECHNOLOGIES [12] 

 
Energy Latency 

Volatility 
Static Read Write Read Write 

SRAM HH L L L L Volatile 

STT-

RAM 
L L HH L H 

Non-

Volatile 

The on-chip video memories have a particular property that 

facilitates the STT-RAM usage: they have a relatively low write 

intensity compared to a very high read intensity [8]. As the on-

chip video memories implement data-reuse schemes for the search 

window samples, only a few data of the reference frame would be 

written to start the next CTU prediction. Once the needed data is 

stored on chip, the motion estimation massively accesses the on-

chip video memory until the best match is found. As can be 

noticed in Table I, the STT-RAM energy and performance are 

poor for write operations compared to that of the SRAM. Thus, 

video coding is a promising application for STT-RAM based 

hybrid memories. 

STT-RAM is also known to be a non-volatile memory (NVM). 

This characteristic is very important for on-chip video memories, 

since parts of the memory may be switched-off (no static energy 

consumption) while keeping the data stored, leading to no extra 

external memory accesses to re-fetch the information. However, 

the NVM cells lifetime (aka. endurance property) highly depends 
                                                             

1 The terms L, H and HH are used for a subjective comparison between STT-

RAM and SRAM regarding its electrical characteristics: “L” means low, “H” 

means high, and “HH” means very high. 

 

on the bit-toggling activity of the writing operations [13]. If 

improperly balanced, the lifetime of a STT-RAM cell can be 

significantly reduced, compromising the overall memory system 

performance. Therefore, there is a need for memory data 

management policies to increase the NVM lifetime in a hybrid 

video memory design. 

In summary, the high bit-toggling writing operations need to 

be directed to the SRAM cells, while lower bit-toggling writes are 

the preferred ones for the NVM part. The knowledge of the bit-

toggling can be accurately predicted using the video content and 

application-specific properties. In our HEVC processing system, 

reference frames are read from/written to the on-chip video 

memory. Thus, the key is to exploit the application-specific 

properties of HEVC reference frames to write the data on either 

NVM or SRAM parts of the hybrid on-chip video memory to 

increase the NVM cells lifetime. 

C. Overview of Our Novel Concepts and Contributions 

In this work, we leverage the application-specific properties to 

design and manage an energy-efficient hybrid on-chip video 

memory architecture (enHyV, Fig. 3a) that is composed of several 

small hybrid memory modules (HyMs, Fig. 3b). To address 

SRAM limitations (low density and high static energy), enHyV 

integrates both SRAM and STT-RAM where the STT-RAM cells 

are intensively used to increase the overall energy efficiency. We 

demonstrate the applicability and benefits with the help of a 

parallel High Efficiency Video Coding (HEVC). 
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Fig. 3 Overview of our proposed enHyV architecture. 

Our novel contributions in a nutshell are: 

A Hybrid On-Chip Video Memory Architecture (enHyV; 

Section III): It is composed of multiple levels of private and 

shared HyMs, as shown in Fig. 3a. It consists of (1) private L12 

HyMs to store the search window samples required for each 

HEVC processing core, (2) private and shared L2 HyMs to 

implement the reference frame level data reuse. The HyMs are 

managed by our energy-efficient management units. Our design 

methodology is based on offline statistical analyses using 

recommended test video sequences (that are different from the 

ones used for evaluation to avoid data biasing) [19]. Moreover, the 
                                                             
2 L1 and L2 in this work do not refer to cache levels, but hybrid memory 

levels implemented as scratchpad memories. 



sizing and energy-efficient management of HyMs are proposed to 

determine how much SRAM and STT-RAM cells are used at each 

memory level. 

Energy-Efficient Management of enHyV (Section IV): It 

leverages application-specific properties to improve the STT-

RAM cells endurance and to manage the energy consumption. As 

the lifetime is directly correlated with the bit-toggling activity (see 

Fig. 3c, d) during the write operations, we propose a dynamic data 

management that dynamically decides if the incoming reference 

frame block will be stored in the SRAM or STT-RAM cells. 

Furthermore, an adaptive power management technique exploits 

the high-endurance STT-RAM cell to switch off less used portions 

of L2 HyMs to obtain increased on-chip energy savings. 

To the best of authors’ knowledge, this is the first work of 

exploiting hybrid memory for multi-threaded video processing. 

II. RELATED WORKS 

The hybrid memory design exploiting the development of 
emerging non-volatile memory technology has been research 
target during the last years [9]-[16]. These works provide a solid 
foundation to enable these emerging technologies feasible to be 
integrated with CMOS logic circuitry of nowadays embedded 
manycore processors. However, these works may not efficiently 
support the video coding high memory demand, since they did not 
take into account application-specific properties. During the past 
decade, multiple works developed dedicated memory architectures 
for the H.264/AVC [18] and contentdriven complexity and energy 
reduction for motion estimation [4][5]. The H.264/AVC-based 
memory architectures are not scalable enough to be energy 
efficient for HEVC encoders due to its novel coding tools and 
complex video processing flow. In another scenario, application-
specific properties were exploited to reduce computational 
complexity and energy consumption (both off/on-chip parts) 
targeting the video coding [2][3] . In video Tile parallelized HEVC 
encoders, multiple cores request data at the same time from the 
shared memory system. Thus, several other factors need to be 
taken into account, e.g., memory contention, coherence protocols, 
and memory access scheduling schemes. The work in [8] designed 
a SRAM-based distributed memory architecture. The additional 
SRAM to improve the data reuse brings extra static energy 
consumption. Therefore, merely using SRAM it becomes 
infeasible when using a large number of parallel cores. The first 
dedicated hybrid memory design for video coding (called 
AMBER) was presented in [9]. It uses SRAM only as a FIFO 
buffer to hide the high write latency of STT-RAM cells, but not 
effectively being part of the storage system that may provide a 
high potential of energy-/performance-efficient design. AMBER 
stores all reference frames in the on-chip STT-RAM memories 
that incur high frequent-write, thus performing inefficient 
management under such scenarios and may only be feasible for a 
certain set of video resolutions. In particular, AMBER has two key 
limitations: (1) it does not support parallel video processing, 
which is inevitable to achieve high throughput; and (2) it does not 
target lifetime improvements and all write accesses are performed 
in the STT-RAM part. 

III. HYBRID ON-CHIP VIDEO MEMORY ARCHITECTURE 

Fig. 4 depicts the block diagram of our hybrid on-chip video 

memory architecture (enHyV) and its energy-efficient 

management scheme for parallel video processing. Each video Tile 

is assigned to a specific processing core. The enHyV is designed 

to increase the energy efficiency of video frames management 

(off-chip fetching and on-chip storage). Note, as a case study, we 

use parallelized HEVC encoders but the concepts are equally 

beneficial for other multi-threaded video processing applications. 

Our enHyV architecture is organized as two levels of hybrid 

memories (HyMs): 

L1 Level: n private hybrid memories3 (PrivL1) that store the 

search window samples, allowing intra-Tile data reuse between 

each CU processing. 

L2 Level: n private HyMs (PrivL2) and m shared HyMs 

(SharedL2) that together can store one complete reference frame, 

providing combined intra-/inter-Tiles data reuse. The SharedL2 is 

connected to the PrivL1 by an interconnect bus and it is 

responsible for the overlapping regions storage (as in Fig. 3a). The 

PrivL2 stores the remaining data (accessed by only one core). 

Each HyM of PrivL2 has a direct connection to the corresponding 

PrivL1 HyM. 

In addition to two levels of HyMs, an Access Management 

Unit and a DRAM Access Generator are designed to jointly 

manage the off-/on-chip memories data interaction. The detailed 

data interaction is explained in the following. 
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Fig. 4 The block diagram of our enHyV architecture. 

A. enHyV Access Management 

The access management unit starts to execute when a 

processing core i requests data from enHyV. Depending on the CU 

size being processed, different sizes of data blocks must be 

requested. In this sense, our enHyV management splits the 

requested data into several fixed-size data blocks and, for each 

one, it starts checking each HyM level. If a PrivL1 HyMi hit is 

verified, the data is simply forwarded to the core i and no more 

action is required. Otherwise, if a miss occurs, the L2 memories 

must be verified. SharedL2 or PrivL2 HyMs are mutual-

exclusively accessed depending whether the requested data is in an 

overlap region or not. A L2 hit avoids external memory fetching 

and the data can be forwarded to the core i. Furthermore, the data 

is written into PrivL1 HyMi, increasing the intra-Tile data reuse. In 

case of L2 miss, the DRAM access generator is triggered to 

perform sequential external memory accesses to fetch reference 

frames data. The fetched data is then written into the 

corresponding SharedL2/PrivL2 and PrivL1 HyMs and passed to 

the requesting core. 

Next we present design space exploration results using 

statistical analysis of video properties to properly design and size 

the SRAM and STT-RAM arrays for each involved HyM of 

enHyV. 

                                                             
3 Let n be the number of Tiles and m be the number of Tiles boundaries. 



B. Design Space Exploration of Hybrid Memories (HyMs) 

As already discussed, STT-RAM presents low static energy 

consumption while having high density. It allows us to designate 

the most part of the HyM to be composed of the STT-RAM array. 

In the meantime, blocks from the reference frame that cause high 

bit-toggling activity strongly decrease the STT-RAM lifetime, 

minimizing its non-volatility advantage. Thus, a small portion of 

SRAM is used to handle with these blocks. Although SRAM does 

not degrade from bit-toggling activity, it costs a large area and a 

high static energy consumption. Therefore, the main challenge 

involved in the HyMs design is to leverage application-specific 

properties to design a well-balanced combination of SRAM and 

STT-RAM to minimize the static energy consumption whereas 

increasing the STT-RAM cells lifetime. We define the bit-toggling 

activity (BT) during a HyM write operation of a block Bo over an 

already stored block B1 as the number of bits that toggles during 

the operation divided by the total number of written bits, as in Eq. 

(1). BSize is the horizontal/vertical block size and NBSample the 

number of bits per sample. The toggling_bits function returns the 

number of collocated bits that are different between two numbers. 

  (     )  
∑ ∑              (  (   )    (   ))

     
   

     
   

     
          

 (1) 

Fig. 5 depicts the design space exploration controlled by an 
external parameter: the bit-toggling threshold (BTTH). Reference 
frame blocks that lead to bit-toggling activities lower than BTTH 
are assigned to STT-RAM, while higher values will direct the 
block to SRAM. Our exploration varies the BTTH from 0 (no 
activity) to 1 (maximum activity, all bits toggle) in steps of 0.01. 
We analyze our two optimization target variables: STT-RAM 
lifetime (Fig. 5a) and SRAM size (Fig. 5b), since we know that the 
static energy efficiency is limited by the amount of SRAM cells 
(as discussed in Section I.B). To find the best design point, we 
analyze an efficiency plot that relates both variables (see Fig. 5c). 
We run this exploration for a set of video test sequences following 
our evaluation methodology (described in Section V). The 
maximum efficiency point was discovered when BTTH=0.24. Using 
this design point, we have that the SRAM usage factor (αSRAM) is 
equal to 35% and the STT-RAM lifetime can be improved near to 
the optimal case (when no bit toggles): 0.83 normalized lifetime, 
as detailed in Section VI.C. From the enHyV perspective, 
αSRAM=36% means that the SRAM array will be sized as 36% of 
the STT-RAM capacity. Note that the αSRAM factor can be used for 
any type of HyM design (PrivL1, PrivL2 and SharedL2). 
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Fig. 5  (c) Design space exploration for joint (a) STT-RAM lifetime and (b) 
SRAM size optimization 

The toggling activity at bit level is also exploited in enHyV. 

Fig. 6 depicts the accumulated statistics for toggling occurrences 

for each bit position using ParkScene and NebutaFestival test 

video sequences [19]. It can be noticed that we have near-zero bit-

toggling activity for the two most significant bits (MSB) of the 

two sequences. Therefore, it means that even for blocks with high 

average bit-toggling activities, the two MSB toggle with a very 

low probability. We exploit this property by always storing the 

two MSB in the STT-RAM, this way reducing the SRAM size 

(saving further static energy) while not penalizing the STT-RAM 

cells lifetime. This enables us to realize a fine-grained hybrid 

memory organization. 
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Fig. 6 Bit-toggling activity of different bit positions. 

Another important aspect from Fig. 6 is that the bit range from 

b5 to b3 inherits the bit-toggling activity of the entire 8-bit sample. 

It means that we only need to compare these three specific bits of 

the two involved data to approximate the bit-toggling activity of 

this write operation. We exploit it by generating a bit-toggling key 

(BT_KEY) composed of only these three bits of some specific 

samples from reference frame blocks. This key aims to serve as an 

identifier that must be stored by the data management unit. Our 

goal is to design an energy-efficient way to estimate the bit-

toggling activity of each write operation. Details regarding this 

data management unit are given in Section IV.A. 

C. HyM Physical and Logical Organization 

Fig. 7 presents the physical organization of the HyMs. The size 

of the HyMs (SizeHyM) is different depending on the enHyV level, 

as in Eq. (2): PrivL1 HyMs must store a complete search window 

sized according to horizontal and vertical dimensions SWH and 

SWV; PrivL2 HyM size depends on the video dimensions (FrameH 

or FrameV, depending on the video Tiles direction) and the number 

of used video Tiles (NTiles); SharedL2 must support the overlapping 

region size, which varies according to the search window 

dimension (SWH or SWV) and the frame dimension. The BSize in Eq. 

(3) refers to the basic access unit used for every enHyV memory 

transaction. Our sizing methodology works for any value of BSize. 

It is interesting for our specific HEVC case to use BSize as 8, since 

8x8 is the smallest CU size allowed in the HEVC latest working 

draft [1]. 
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Fig. 7 Hybrid memory (HyM) organization.  

The sizing formulas of the STT-RAM part are expressed in Eq. 

(4)-(6). The STT-RAM array is designed as a scratchpad memory 

and each BSizexBSize reference frame block has a fixed and unique 



position. This part must be sized to store all possible reference 

blocks: (i) the entire search window for PrivL1 HyMs and (ii) the 

corresponding reference frame part for PrivL2 and SharedL2. 

Thus, the STT-RAM size (SizeSTT) follows the total size of the 

HyM, expressed by the already calculated HyMSize. The STT-RAM 

memory part is composed of BSize parallel banks. Each bank has 

NLSTT memory lines of NBSTT bits. The set of memory lines of the 

same row composes one reference frame block. With this design, 

one complete BSizexBSize block can be completely written/read in 

one clock cycle. Equations (7)-(9) present the sizing variables of 

the SRAM portion. Since only a few part of the data is assigned to 

SRAM (to alleviate STT-RAM from high bit-toggling activities), 

we design it as a fully-associative light-weight cache memory, as 

in Fig. 7. The data array size of SRAM cache (SizeSRAM) represents 

a fraction of the HyMSize, using the already calculated αSRAM factor.  

The header of each line is composed of the (x,y) spatial 

coordinates of the reference block. Similar to the STT-RAM 

design, one entire row of lines of the BSize banks stores one 

complete reference block. Since the two MSB are always stored in 

the STT-RAM array, the memory line size NLSRAM is smaller than 

the NLSTT, reducing by 25% the data array size. 
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               (           )  (6) 

         ⌈                  ⌉ (7) 

             (          )                 (8) 
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The logical organization of our HyMs is demonstrated in Fig. 

8, where a set of 3x3 reference blocks are taken as example. As 

decision from the data management unit, the blocks (0,0), (1,1) 

and (2,2) are considered to provoke high bit-toggling activity and 

must be partially stored in the SRAM cache; while the remaining 

blocks are completely stored in the STT-RAM scratchpad 

memory. For data management purposes, a Data Management 

Table (DMT in Fig. 7 and Fig. 8) was also designed. 
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Fig. 8 HyM data assignment example 

The DMT design is fully explained in Section IV along with 

our energy-efficient management of enHyV. 

IV. ENERGY-EFFICIENT MANAGEMENT OF ENHYV 

Besides the enHyV memory organization and access 

management unit, we also developed an energy-efficient 

management of the designed HyMs. The data management unit 

aims to increase the STT-RAM cells lifetime, allowing much more 

effective power management. Details about the schemes are given 

as follows. 

A. Data Management Unit 

To estimate as simple as possible the bit-toggling activity 

during a write operation, we define the bit-toggling key BT_KEY 

as in Eq. (10). This key is generated at the moment before the 

write operation and it consists in a set of wires getting the bits 

from b5 to b3 of eight specific samples resultant from the 

downsamplingTo8 operation from the reference frame block. The 

choice of these specific bits was taken due to the conclusion (2) 

from Fig. 6. The downsamplingTo8 function selects eight equally-

spaced samples of a block, reducing its representation resolution. 

In our case, due to the spatial correlation between near pixels of a 

video frame, it is possible to discard many ones and still maintain 

the bit-toggling activity property. Thus, the BT_KEY will have 

3x8=24 bits. The proposed estimated bit-toggling activity (EBT) 

calculates the number of bits that differs between the BT_KEY of 

the two involved blocks, as in Eq. (11). This strategy is developed 

to avoid a complete read operation to fetch the entire block to, just 

then, perform the bit-toggling activity evaluation. We store the 

BT_KEY of each stored reference block in a very fast special 

table, called Data Management Table (DMT). Besides the 

BT_KEY, the DMT also stores a flag indicating whether the 

corresponding reference block is stored in the STT-RAM or 

SRAM array (called presence bit). A practical example is depicted 

in and Fig. 8, where each one of the nine reference blocks has a 

DMT entry with its corresponding presence bit .value. Thus, the 

DMT line consists in BLDMT bits, as in Eq. (12). Fig. 9 presents 2D 

maps and histograms to show the high correlation between the 

actual bit-toggling activity (BT) and the estimated one (EBT). For 

a BSize equals to 8, we reduce the number of required bits to derive 

the toggling activity by ~22x using the EBT metric. The circuit to 

compute the number of bits that differ between two BT_KEY can 

be implemented with 24 1-bit XOR gates and a tree of 1-bit full 

adders, not representing neither energy nor performance 

significant penalty for the HyMs. 
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Fig. 9 Statistical correlation between BT and EBT metrics.  
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Fig. 10 presents the data management steps for a HyM write 

operation.  First, the BT_KEY for the block that is being written is 

generated (line 2). Then, the BT_KEY of the already stored block 

must be retrieved from the DMT (line 4) and the estimated activity 

αEBT is then calculated (line 5). The αEBT is then compared with the 

offline statistical defined threshold BTTH (line 6).  In the case that 



αEBT is higher than BTTH, the block to be written is divided to be 

partially stored in the SRAM and STT-RAM (lines 7-10). In this 

case, we sacrifice SRAM dynamic energy to increase the STT-

RAM cells lifetime. We demonstrate in the results section that this 

spent energy is very small compared to the overall savings 

provided by enHyV. For αEBT lower than BTTH, the block is 

completely written into the STT-RAM cells (line 13). The DMT is 

updated with the new BitPresence (lines 11-14) and with the BT_KEY 

of the written block (line 16). 

The HyM read operation is much simpler than the write case, 

since no decision must be taken. The DMT is just accessed to get 

the presence bit and, depending on this, STT-RAM or 

SRAM/STT-RAM will be accessed. Finally, the data is forwarded 

to the requesting core by the access management unit. As the data 

management unit increases the STT-RAM lifetime, the power 

management unit can power-gate unused cells with minimized risk 

of data re-fetching from external memory. 

1. manageWrite(Hybrid Memory: HyM; Data 8x8 Block: BlockToBeWritten;  
 8x8 Block Positions: x, y) 

2. KeyToBeWritten := BT_KEY(BlockToBeWritten);    //generate key - Eq. (10) 
3. AddressData := genPhysicalAddress(x, y);   //calculate physical address 
4. KeyToBeReplaced := DMT[AddressData][23..0]; //get already stored key 
5. αEBT := EBT(KeyToBeWritten, KeyToBeReplaced);    //estimate activity - Eq. (11) 
6. If (αEBT > BTTH) Then          //high bit-toggling data 
7.      BlockSTT-RAM := ((b[7..6] |   b Є BlockToBeWritten);  //2-bit split 
8.      BlockSRAM := (b[5..0] |   b Є BlockToBeWritten)         //6-bit split 
9.      HyMSTT-RAM[AddressData].write(BlockSTT-RAM);     //STT-RAM write 
10.      HyMSRAM.write(x, y, BlockSRAM);           //SRAM write 
11.      DMT[AData][25].write(‘0‘);                      //DMT update – Presence Bit 
12. Else                                   //low bit-toggling data 
13.      HyMSTT-RAM[AddressData].write(BlockToBeWritten);   //STT-RAM write 
14.      DMT[AddressData][25].write(‘1‘);        //DMT update – Presence Bit 
15. End If; 
16. DMT[AData][23..0].write(KeyToBeWritten);                        //DMT update 

Fig. 10 Data management for a HyM write operation. 

B. Power Management Unit 

Our HyMs were designed to be able to operate in two power 

states: ON (VON=VDD volts) and OFF (VOFF=0 volts). Due to the 

non-volatility characteristic of STT-RAM, the data is kept stored 

in the memory cell even when OFF state is assigned. This is not 

the case for SRAMs, leading to a data loss and requiring later an 

external memory re-fetching. Typically, the PrivL2 and SharedL2 

HyMs are very much larger than PrivL1 HyMs, leading to 

significantly higher on-chip energy consumption. In this sense, our 

power management concentrates effort in the L2 HyMs, resulting 

in a great impact in the enHyV overall static energy (as 

demonstrated by our experimental results in Section VI). 
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Fig. 11 Example: Power management for STT-RAM for a 2-Tile scenario. 

The STT-RAM power management is performed at CTU level 

and it is depicted in Fig. 11. At the beginning of a CTU 

processing, our scheme checks all STT-RAM positions against the 

search window limits. Note that the PrivL2 HyMs must be 

checked only against the search window of its corresponding core, 

while the SharedL2 HyMs must be analyzed considering all cores 

that share this overlapping region. For the intersecting area, all 

related STT-RAM cells are assigned as ON. Otherwise, the OFF 

state is assigned. This assignment can be observed in the Fig. 11 

example. It can be noted that all memory lines inside the search 

window limits are switched on, even not knowing if all data will 

be requested from PrivL1. It facilitates the control unit and 

provides low read latency when any of the reference blocks inside 

the search window limits are retrieved from the L2 HyMs. Since 

all CUs processing inside the CTU will perform memory access 

inside the search window limits, we guarantee long sleep durations 

to amortize the wake-up energy and latency overhead. 

We also developed a power management strategy for the 

SRAM part. Our scheme acts at frame-level for SRAM 

management. Since the bit-toggling activity can vary depending on 

the video, we may have different SRAM usages. In order to adapt 

to the video content, our scheme run-time analyzes the SRAM 

usage Probability Density Function (PDF) for previous frames to 

estimate the usage for the next reference frame fetching. The 

THSRAM threshold determines the amount of SRAM to be switched 

to the ON state, while the other parts are assigned to OFF state. 

The THSRAM is run-time calculated as THSRAM=μ+σ, where μ 

(average) and σ (standard deviation) are parameters from PDF of 

SRAM usage statistics during past frames processing. In case the 

SRAM usage surpasses the estimated THSRAM, wake-up energy and 

latency are required to assign ON power state. However, due to the 

very high similarity of consecutive frames, we also guarantee a 

long sleep duration and significant on-chip static energy savings. 

V. EVALUATION METHODOLOGY 

A custom simulator was developed to capture the video 

memory access traces. Based on adopted memory power models, 

it estimates the energy consumption for on- and off- chip memory 

parts, as well as the STT-RAM cells lifetime improvement and 

access latency overhead. Details regarding our memory electrical 

models and video coding configurations are given as follows. 

TABLE II SRAM AND STT-RAM CHARACTERIZATION FOR 65NM [12] 

Parameter SRAM STT-RAM STT-RAM Ratio 

Area (F=feature size) 146F2 37F2 3.94x smaller 

Static Power (mW/mm2) 25.2 2.7 9.33x lower 

Read Latency (ns) 2.795 2.795 - 

Write Latency (ns) 2.795 11.287 4x higher 

Read Dyn. Energy (nJ) 0.151 0.155 - 

Write Dyn. Energy (nJ) 0.151 2.942 15.5 higher 

A. On-Chip SRAM and STT-RAM Power Models 

The CACTI 6.5 tool [24] was used for SRAM energies/ 

latencies for 32nm memories. We adopt the static energy reduction 

and wake-up latencies/energies from the analytical model depicted 

in [23]. We adopted the STT-RAM memory characterization from 

[12]. This work evaluated STT-RAM and developed scaling 

factors to be compared with SRAM. Table II presents the used 

scaling factor in our work to evaluate the performance and energy 

efficiencies of enHyV different technologies. 



B. External LPDDR DRAM Memory Model 

The memory is composed of several banks. Each bank is a 

row-column matrix, where the number of rows (NRows) represents 

the addressing space and the number of columns (NColumns) is 

directly related to the page size (PSize). Each row-column 

intersection stores a memory word of size WSize. Each memory 

access will initially cause a page activation, to pass the activated 

data to the page buffer. If consecutive accesses are located in the 

same page, the memory controller needs just to address a specific 

column of the page buffer (called burst read/write operations). If 

other memory page is addressed, the current active page is 

precharged and a new page is activated.  

The 4-Gbit Low-Power DDR2 (LPDDR2) DRAM 

MT42L128M16D1GU-25WT [20] chip was used. The main 

specifications are: Vdd=1.2V, Freq=533MHz, WSize=32bits, 

PSize=512B, NRows=16K and NColumns=2K. The total energy is 

derived by the composition of six components: page activation 

energy, write energy, read energy, I/O pins energy, refresh energy 

and standby energy [21][22]. 

C. Video Coding Experimental Setup 

Our experimental setup for HEVC evaluation considers 

recommended test conditions [19] using the HEVC test model 

(HM 11.0) [6]. We execute our experiments for 4-Tile and 8-Tile 

scenarios (each video Tile executes on a dedicated processing 

core). As inputs for our experiments, we select six video test 

sequences from the JCT-VC recommended test video benchmark 

[19]: BasketballDrive (BDrive), BQTerrace, Cactus, and Kimono 

(HD1080: 1920x1080), and PeopleOnStreet (People) and Traffic 

(2K: 2560x1600). Note that we use different video sequences for 

the analysis and design space exploration of HyMs: ParkScene 

(HD1080); NebutaFestival and SteamLocomotive (2K).  By using 

different sets of video benchmarks in the design and evaluation 

parts, we guarantee that our results are not biased towards the 

design decisions using the same videos. Other encoder 

specifications are: 128x128 search window (default value in HM 

11.0), GOP=8, CABAC, FRExt, Random Access configuration, 

and TZ Search block matching for the motion estimation. 

For comparison purposes, we also implemented a SRAM-only 

version of enHyV, where the STT-RAM arrays are implemented 

as SRAM. Additionally, it is also used for comparison to the state-

of-the-art AMBER hybrid memory for non-parallelized HEVC 

[9]. In the case of AMBER, as their STT-RAM memory arrays do 

not support parallel access, we replicate the entire memory 

infrastructure according to the number of used video Tiles. For 

external memory energy evaluation, the Level C+ traditional data-

reuse scheme [9] was used to estimate our savings. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. On-Chip Energy Results 

Fig. 12 depicts the static energy consumption results of our 

enHyV architecture compared to the SRAM-only solution and to 

the state-of-the-art related works. Our hybrid design, even not 

taking into account the power management savings, is able to 

reduce the leakage energy by 50%-62%, compared to the SRAM-

only case for 4-Tile and 8-Tile scenarios, respectively. 

Furthermore, our power management unit is able to improve by 

33% the static energy reduction, achieving 66%-75% of savings 

related to SRAM-only. Also, as our power management is 

adaptive to the video content due to the proper analysis of the 

SRAM usage of already frames processing, it provides improved 

reductions when low motion videos are encoded, like Traffic (up 

to 80% of savings for the 4-Tile scenario). Considering the state-

of-the-art AMBER hybrid video memory architecture [9], the 

enHyV consumes 55%-76% less static energy consumption, on 

average. AMBER stores all reference frame on-chip, which leads 

to very large STT-RAM arrays. Even with the low leakage energy 

consumption of STT-RAM memory cells (around 90% lower than 

SRAM [12]), AMBER is not efficient when video Tiles are 

processed in parallel. For the 8-Tile scenario, AMBER consumes 

the highest static energy, which is up to 4.28x higher than enHyV. 
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Fig. 12 On-chip static energy comparison of enHyV with related works. 

B. Off-Chip Energy Results 

The external memory energy analysis is presented in Fig. 13. 

As enHyV can completely reuse the samples within the same 

reference frame, we can achieve huge savings compared to Level 

C+: 98% on average for the HD and 2K tested videos. As Level 

C+ employs search window data reuse, its gains are limited when 

parallelized video Tiles are processed, since inter-Tiles data reuse 

is not exploited. On the other hand, AMBER completely avoids 

the need of external memory communication to fetch the reference 

frames, since the complete decoding picture buffer is implemented 

as on-chip STT-RAM memories. Observing Fig. 13, enHyV 

architecture consumes near-zero off-chip energy for reference 

frames transmission. In the meantime, as already discussed, our 

well-balanced hybrid design of SRAM and STT-RAM, with the 

power management unit, can reduce the on-chip energy compared 

to AMBER. Furthermore, enHyV also improves STT-RAM 

lifetime, guaranteeing efficient STT-RAM power management. 
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Fig. 13 External memory energy consumption of enHyV compared to Level 

C+ [9] (average for 4-/8-Tile scenarios). 

C. STT-RAM Lifetime Results 

The data management unit of enHyV significantly improves 

the STT-RAM cells lifetime, as demonstrated in Fig. 14. In this 

analysis, we plot the normalized STT-RAM lifetime bordered by 

the lifetime of enHyV without any data management (zero value) 

and by the best case scenario, where no bit toggles occurs during 

write operations (1.0 value). On average, we have a normalized 



lifetime of 0.83, nearer to the best case than the enHyV basic 

approach without any management. Our data management of 

enHyV can achieve higher lifetime improvements for low-textured 

videos, like Kimono with 0.85 normalized lifetime. In another 

vein, highly detailed scenes lead to high bit-toggling activities, 

requiring high SRAM usage to alleviate STT-RAM cells. As we 

design enHyV for the average case, lifetime is less improved for 

this kind of videos. However, even for the worst case scenario, our 

scheme still can improve the lifetime (0.79 lifetime for Traffic). 
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Fig. 14 Normalized STT-RAM cells lifetime. 

D. enHyV Overhead: Access Latency and Dynamic Energy 

STT-RAM poor performance and energy efficiencies when 

writing along with our energy-efficient management scheme 

imposes overhead to the access latency and dynamic energy during 

the read/write operations. Fig. 15Erro! Fonte de referência não 

encontrada. depicts these overheads. As already discussed in the 

motivational section, video memories have the characteristic of 

being high read-intensity applications. Thus, the write overhead is 

amortized by the high amount of read operations. In terms of 

average access latency, we noticed 1.3% of increased latency on 

the average case. For the dynamic energy perspective, the 

overhead is 7.7% on average. Taking all these small overhead into 

account, our enHyV architecture still achieves the highest energy 

efficiency compared to state-of-the-art works with insignificant 

access latency overhead. 
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Fig. 15 enHyV overhead analysis: HyMs access latency and dynamic energy. 

VII. CONCLUSIONS 

This work presented an energy-efficient hybrid on-chip video 

memory (enHyV) architecture for advanced multi-threaded video 

processing applications and demonstrated the practical benefits 

using the next-generation parallelized High Efficiency Video 

Coding application. Small SRAM arrays were designed in 

combination with STT-RAM to alleviate the bit-toggling activity 

during write operations, increasing STT-RAM cells lifetime. For 

energy-efficient management, an adaptive data management unit 

selects either SRAM or STT-RAM to be written depending on the 

estimated bit-toggling activity of each write operation. We 

additionally employed a power management unit that saves static 

energy from both SRAM and STT-RAM parts. Our experimental 

results showed that enHyV design could achieve average static 

energy savings of 66%-75% and 55%-76% compared to SRAM-

only version of enHyV and state-of-the-art AMBER architecture, 

respectively. External energy consumption could be significantly 

minimized compared to traditional Level C+ scheme (98% 

reduced), resulting on negligible off-chip communication 

overhead. Our data management unit could significantly improve 

the STT-RAM cells lifetime, achieving 0.83 normalized lifetime. 

Our enHyV architecture enables energy-efficient implementations 

of parallelized video processing applications. 
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Approximation-Aware Multi-Level Cells STT-RAM  
Cache Architecture 

 
ABSTRACT 
Current manycore processors exhibit large on-chip last-level 

caches that may reach sizes of 32MB – 128MB and incur high 

power/energy consumption. The emerging Multi-Level Cells 

(MLC) STT-RAM memory technology improves the capacity and 

energy efficiency issues of large-sized memory banks. However, 

MLC STT-RAM incurs non-negligible protection overhead to 

ensure reliable operations when compared to the Single-Level 

Cells (SLC) STT-RAM.  

In this paper, we propose an approximation-aware MLC 

STT-RAM cache architecture, which is partially-protected to 

restrict the reliability overhead and in turn leverages variable 

resilience characteristics of different applications for adaptively 

curtailing the protection overhead under a given error tolerance 

level. It thereby improves the energy-efficiency of the cache while 

meeting the reliability requirements. Our cache architecture is 

equipped with a latency-aware hardware module for double-error 

correction. To achieve high energy efficiency, approximation-

aware read and write policies are proposed that perform 

approximate storage management while tolerating some errors 

bounded within the user-provided tolerance level. The architecture 

also facilitates run-time control on the quality of applications’ 

results. We perform a case study on the next-generation advanced 

video encoding applications that exhibit memory-intensive 

functional blocks with varying resilience properties and inherent 

support for parallelism. 

Experimental results demonstrate that our approximation-

aware MLC STT-RAM based cache architecture can improve the 

energy efficiency compared to state-of-the-art fully-protected 

caches (7%-19%, on average), while incurring minimal quality 

penalties in the output (-0.219% to -0.426%, on average). 

Furthermore, our architecture supports complete error protection 

coverage for all cache data when processing non-resilient 

application. The hardware overhead to implement our 

approximation-aware management negligibly affects the energy 

efficiency (0.15%-1.3% of overhead) and the access latency (only 

0.02%-1.56% of overhead) of our architecture.   

1. INTRODUCTION 
Advanced manycore processors have tight memory energy budget 

when processing massively parallel applications. The on-chip 

memory infrastructure (typically composed of cache memory 

hierarchy) must alleviate the main memory data communication 

by employing multiple levels (up to L4, in some cases) of caches. 

The landscape of recent on-chip systems (see Fig. 1) shows that 

the memory consumes a significant portion of the footprint, for 

instance, up to 128MB in IBM Power 8. 

Traditional 6T-SRAM cell based memories incur large area 

and high leakage power consumption [23][24]. Non-volatile 

memory technologies have emerged as an attractive alternative 

option for implementing large-sized on-chip memories. The Spin-

Transfer Torque RAM (STT-RAM) stands out as one of the most 

promising technologies. It provides high scalability, improved 

endurance and resilience to soft errors, and reduced leakage power 

consumption [20]. Due to its inherent shortcomings of asymmetric 

read/write behavior and poor write access efficiency, STT-RAM 

has been mostly preferred for implementing the last-level caches 

[23]. Typically, last-level caches require large memory banks and 

have low read/write intensity characteristic (compared to the other 

cache levels). Therefore, in STT-RAM based caches, in order to 

increase the density of memory cells, multi-level cells (MLC) 

design is a promising design alternative to single-level cell (SLC). 

In MLC STT-RAM, one physical memory cell is able to store 

more than one logic bit. Recent studies [7][10] have demonstrated 

the feasibility of MLC-based design of STT-RAM towards 

scalability for larger caches banks. 

For the MLC support in STT-RAM technology, the 

resistance range of the magnetic tunnel junction (MTJ) is further 

discretized to store more than 2 logic states. However, due to 

process variations, memory arrays based on MLC STT-RAM 

have tight sense margin(s) between adjacent resistance states [7]. 

It leads to more frequent error occurrences during memory read 

and write operations. Even though it is a more energy-efficient 

solution, MLC STT-RAM requires extra circuitry to guarantee the 

reliability of the memory system. Therefore, a key research 

challenge is to design energy-efficient fault-tolerant cache 

memories to enable multi-level cell STT-RAM usage in advanced 

manycore processors. 
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Fig. 1. Trend of cache memory size for practical case 

studies of manycore processors. 

1.1 State-of-the-Art and Key Research Challenges 
Several works during the past decade proposed reliability 

optimization schemes for SLC-based cache memories [12][13] 

[15]. The work [12] proposes a fault-tolerant cache architecture 

considering magnetic-RAM (MRAM) technology – first 

generation of STT-RAM. In work [15], fault tolerance techniques 

are proposed for management of voltage-scaled cache faults. A 

fault-tolerant scratchpad memory (FTSPM) is proposed by [13], 

using non-volatile memory technologies targeting the 

vulnerability to soft-errors for the application data. However, none 

of these works considers large-sized MLC-based memory designs. 

Furthermore, MLC-based memories require specialized errors 

handling due to their specific behavior on fault occurrences (as 

detailed in the background section). 

Recently reliability optimization for MLC STT-RAM based 

memories have gathered community’s interest as a major research 

challenge [7][8][9][10][11][14]. The works in [7][10] present an 

intensive design exploration (at the transistor level) for analysis of 

reliability characteristics of MLC cells. The proposals in [8][10] 

employ wear-rate leveling techniques to improve the reliability of 

STT-RAM cells by improving their endurance, leading to less 

frequent wear-out errors. In [14], the same endurance problem is 

targeted by assuming wear-out cells and applying error correction 



computation over this faulty data. The work in [9] is the most 

recent one to deal with MLC STT-RAM memories issues. 

However, the [9] strategy is implemented at memory-cell level 

and thereby incurs a significant (hardware and energy) overhead 

for large-sized cache memories as every MLC cell must require 

associated hardware for fault protection. 

The goal of this paper is to achieve energy-efficient 

reliability optimization in MLC STT-RAM based caches through 

selective approximations of the storage data depending upon the 

applications’ resilience level and user-provided error tolerance 

level. The concept of selective data approximation allows for sub-

optimal results that facilitates simplification of the error-

protection hardware. The key challenge is to maximize the quality 

of the applications’ results while at the same time minimizing the 

energy consumption. 

Recently, state-of-the-art have explored data approximations 

for energy reductions in DRAM-based main memories [2][3][4]. 

The works [3][4] extend the data refresh interval of DRAM 

memories to potentially saving energy consumption while 

assuming wear-out errors. In [2], approximate storage is used in 

PCM-based main memories by reducing write pulses and leading 

to wear-out errors.  To the best of authors’ knowledge, application 

of approximate computing in MLC STT-RAM based on-chip 

memories/caches and exploration of corresponding reliability–

energy–quality tradeoffs have yet not been explored.  

Definition – Approximate Storage: In this work, we use the 

term approximate storage for the memory access operations that 

are not protected against read/write errors in MLC STT-RAMs 

and may potentially exhibit bit errors.  

1.2 Our Novel Contributions and System Overview 

This paper addresses the above-discussed issues by introducing a 

novel design and management of approximation-aware MLC 

STT-RAM cache architecture. Fig. 2 illustrates the architectural 

overview of our cache architecture highlighting its key 

components along with its integration in an on-chip manycore 

system. We allow the programmer to insert source-code 

annotations for the identification of resilient and critical data (as 

and enabled through approximation-aware compilers [5][6]). 
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Fig. 2. Overview of our approximation-aware MLC STT-

RAM cache architecture and its integration in a manycore.  

Our key novel contributions in a nutshell are: 

1) A Partially-Protected MLC STT-RAM Cache Architecture 

(Section 4.1) that adopts a set-associative cache organization, 

where the first n-1 memory banks store the n-1 blocks of the 

cache sets. This part is implemented with 2-bit MLC STT-

RAM cell. The nth memory bank is dynamically selected to 

store either the last block of the cache set or the error correction 

codes (as part of the error protection system). To guarantee less 

intrinsic error occurrences, the nth memory bank is implemented 

by SLC cells. Our cache architecture is equipped with the 

following three key components. 

2) A Latency-Aware Error Correction Unit (Section 4.2) that 

ensures error free execution by protecting memory operations 

of application’s critical data. To avoid performance 

degradation, our design targets reduced critical delay. It is 

based on a double-error correction algorithm and it is composed 

of two parts: (i) the encoding part executed at the time of cache 

write operations, which generates the error correction codes; 

and (ii) the decoding part applied at the time of the cache read 

operations and it is responsible of correcting the cache block 

data when any fault is detected. 

3) An Approximation-Aware Cache Management Unit (Section 

4.3) that classifies a cache set as ‘reliable’ (i.e. this set needs to 

be stored with reliability) or ‘unreliable’ (i.e. this set does no 

necessarily require reliability and can tolerate approximation 

errors). It afterwards, exploits this knowledge to perform 

approximate storage on the ‘unreliable’ marked sets and 

thereby skipping the error correction functionality during the 

read/write for these sets. To enable this approximation-aware 

read and write access policies are developed to handle reliable 

and approximate data storage. 

4) An Application-Aware Quality Control Unit (Section 4.4) that 

monitors the objective quality of the application’s output to 

adapt the strength of the approximate storage, thus enabling a 

variable approximation control. Different applications may 

exhibit distinct approximate storage responses. Moreover, the 

same application may demonstrate different output quality 

profiles depending on the changing inputs. Our scheme adapts 

the error protection strength to ensure better output quality with 

an insignificant overhead. 

2. BACKGROUND: MLC STT-RAM MEMORY 
Spin-Transfer Torque RAM (STT-RAM) cell stores one logic bit 

in a magnetic tunneling junction (MTJ) – an oxide layer between 

two ferromagnetic layers (see Fig. 3). The resistance value of the 

MTJ is determined by the relative magnetic field direction 

between these two layers [25]. One layer has fixed magnetization 

(called reference layer). The other can have its magnetization 

changed due to a polarized programming current (called free 

layer). In a Single-Level Cell (SLC) design (as shown in Fig. 3a), 

‘low resistances’ due to parallel magnetization and ‘high 

resistances’ due to anti-parallel magnetization represent the logic 

bits ‘1’ and ‘0’, respectively. 
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design; resistance distributions of (c) SLC and (d) MLC cells. 

To compose a Multi-Level Cell (MLC), the read and write 

operations must realize four or more resistances states in the same 

device. In this work we consider the 2-bit MLC STT-RAM cells 



as proposed by [7][10]; see Fig. 3b. To obtain this, two MTJ with 

different sizes are vertically stacked along with one NMOS access 

transistor. The large MTJ stores the “hard-bit”, whereas the small 

MTJ has the “soft-bit”. As they are designed to have the same 

resistance-area product, the small MTJ will lead to higher 

resistances states than the larger MTJ. The four resistance states 

(to represent the four logic combinations “00”, “01”, “10” and 

“11”) are the combination of the magnetization direction of the 

two MTJ. Fig. 3c and Fig. 3d demonstrate the resistance range of 

each logic state, comparing SLC and MLC approaches. Due to 

process variations, tight sense margins in MLC cells between two 

adjacent resistance states have been observed. 

Process variations and thermal fluctuations affect the 

reliability of MLC STT-RAM memories [9]. When compared to 

SLC, MLC suffers from relatively more error occurrences. These 

errors can be classified into two categories: write errors and read 

errors. In an MLC cell, ‘write errors’ happen when a small 

programming current is applied to flip only the ‘soft-bit’, but due 

to process variability the ‘hard-bit’ accidentally changes at the 

same time. As this problem did not appear at SLC cells, ‘write 

error’ management is a critical issue only when designing MLC-

based memories. Furthermore, the ‘read errors’ are mainly caused 

by sensing errors, for example, when the resistance state cannot be 

correctly read. This type of error may also happen when using 

SLC cells. However, MLC aggravate this problem due to smaller 

sense margin between adjacent resistances states. As it can be 

seen in Fig. 3c and Fig. 3d, the resistance states that correspond to 

“0” and “1” in SLC cells are further partitioned in the MLC cells, 

to store the second logic bit. Due to variability, there are 

resistance values where an erroneous logic state may be 

interpreted, leading to a sensing error. The combination of write 

and read errors for an MLC STT-RAM cell may jointly lead to 

errors probabilities of 10-2 to 10-4 [9]. Thus, it becomes infeasible 

to protect every memory position, especially in case of large on-

chip caches where the protection overhead would be non-

negligible. 

3. CASE STUDY: RESILIENCE EVALUATION 

FOR A VIDEO ENCODING APPLICATION 
Several applications from image/video/vision processing and 

recognition/data mining domains contain resilient kernels (i.e. 

compute-intensive functional blocks) [1] that may tolerate data 

errors without violating their core functionality. Such errors in 

resilient kernels typically do not lead to critical failures during 

their execution. However, the quality of the final results may be 

deteriorated. In this work, we denote such a data set for a resilient 

kernel as resilient data. In the following, we perform a case study 

to evaluate the resilience nature of different kernels of an 

important advanced video encoding application called the High-

Efficiency Video Coding (HEVC). Video encoders have widely 

proliferated in various application domains, for instance, security, 

automotive, consumer, and internet streaming (predicted to cover 

up to 70%-80% of the internet traffic by 2017) [35].  

The HEVC encoder exhibits various memory-intensive 

functional blocks (leading to high energy consumption) with 

variable resilience characteristics, thus making it a well-suited 

benchmark application for our approximation-aware cache 

architecture. Furthermore, HEVC inherently supports parallelism, 

thus enabling parallel processing on multiple cores and creating 

simultaneous cache access patterns by different cores.  

3.1 HEVC Encoder Preliminaries 
The High-Efficiency Video Coding (HEVC) [22] has been 

developed to provide 2x better compression compared to 

H.264/AVC. It employs rate-distortion optimization (RDO) in 

order to maximize the compression rates with while minimizing 

the video objective quality drops (distortion) [28].  The RDO 

heuristics explore various coding configurations for each block in 

a video frame. Therefore, HEVC inherently supports a quality-

energy design space. 
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Fig. 4. Block diagram of an HEVC encoder illustrating the 

resilient kernels and data; white blocks are non-resilient. 

Each block in a video frame video can be encoded using the 

content information from already coded frames (inter prediction), 

or using the data from the same frame (intra prediction). These 

already-coded frames are called reference frames and require a 

significant amount of on-chip memory to realize fast energy-

efficient video coding architectures, especially in case of bigger 

resolutions like full-HD (1920x1080 pixels), 2K (2560x1600), 

and 4K (3840x2160) videos [33]. In case of inter-prediction, each 

block in the ‘current frame’ is searched in the ‘reference frames’ 

through a very compute- and memory-intensive operation called 

motion search. To achieve high compression rates HEVC tries to 

match the block structure according to the object shape through a 

recursive partitioning process which exponentially increases the 

motion search complexity as it has to be performed for every 

block partitioning. Therefore, to achieve high performance, 

HEVC supports a light-weight data-parallelism support by 

dividing the video frame into so-called Video Tiles (see Fig. 5), 

which are rectangular regions in a video frame that can be 

encoded independently (i.e. without any spatial dependencies) in 

parallel on different cores in a manycore system [28]. 
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Fig. 5. HEVC Video Tiles and multicore. 

3.2 HEVC Memory Access Analysis 
The memory operations required to access the reference frames’ 

data from the main memory represent the main memory 

bottleneck in HEVC (as depicted in Fig. 6), which is aggravated 

in case multiple cores are accessing the same memory 

simultaneously. This is concentrated in the inter prediction 

process, specifically during the motion search and can vary 

depending on the adopted motion search algorithm and the 

texture/motion properties of the input video content. Exhaustive 

search (for the best possible coding efficiency) and fast search 

(for higher performance with near-optimal coding efficiency) 

algorithms can be used depending upon the system constraints. In 



both scenarios, the reference frames transmission remains the 

main memory bottleneck in HEVC encoders. 
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Fig. 6 Memory access profiling of the HEVC encoder. 

3.3 HEVC Resilience Analysis 
Though reference frames are the most intensively accessed 

memory data, it is also primarily used by the most resilient 

functional blocks of the HEVC encoders. This means that errors 

can be tolerated during the reference frames accesses, leading 

only to drops in encoding efficiency (application’s results in terms 

of its core functionality of compression efficiency) and may not 

even affect the output correctness (user-visible output). At the 

same time, to ensure error free execution, the data required in 

other functional blocks (like transforms, quantization, entropy 

encoding and filtering operations – see Fig. 4) cannot tolerate 

faults (thus denoted as the critical data) and must be 

stored/processed with high reliability. 

Insight-1: The existence of critical and resilient data is an 

important characteristic of HEVC encoders, which is also 

common in different other optimization-based applications, like 

image and audio processing, graphical processing and 

classification algorithms [1][5][6]. In such applications, the 

memory infrastructure must ensure the correctness for the critical 

data. For resilient data, however, data approximations can be 

employed to save energy consumptions while tolerating errors 

bounded under the user-provided tolerance levels. Therefore, a 

memory infrastructure based on approximation storage for the 

resilient data must, at the same time, facilitate high reliability 

levels for the critical data so that it can be deployed in a real-

world scenario where cases of opportunities for variable 

approximations and requirements of correct data exist 

simultaneously. 

Fig. 7a depicts the quality drop in the resilient data in HEVC 

encoder applications in the presence of approximation errors 

(summary of numerous data approximation experiments). In this 

evaluation, the HM HEVC encoder [21] was used. The same trend 

was observed in the fast x265 encoding application [31]. Detailed 

description of our experimental setup is given in Section 5. 
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Fig. 7 Error injection evaluation over resilient data in 

HEVC encoders. 

Insight-2: It can be noted that, for the typical error 

probability of unprotected MLC STT-RAM cells (10-4 to 10-2), the 

data approximation errors for the resilient kernel affected the 

quality of the application results by 0.5%, on average. Fig. 7b 

presents example encoded frames of two video sequences: (1) the 

BQTerrace sequence representing the case of minimal quality 

drop of our analysis (0.2%); and (2) the BasketballDrive 

sequence, which leads to the highest quality loss (2.3% on 

average). Note, even for the worst case, the output quality loss is 

not significant. Therefore, an insight from this analysis is that it is 

possible to save energy by not protecting the memory operations 

related to the resilient data, with insignificant penalties on the 

application’s results. 

Insight-3: The potential and impact of approximate storage 

exploitation can vary depending on the applications’ specific 

characteristics. Even for the same application, when processing 

different inputs, a varied behavior in output quality degradation 

may be noticed. Hence, it is important to vary the approximation 

strength to facilitate run-time varying demands for distinct 

approximation strengths. We denote this as variable 

approximation control. Considering the knowledge of 

applications’ resilience, user has to specify a error tolerance level, 

as adopted by the approximate computing community [1] 

[2][3][4]. In summary, there is a need for dynamic adaptation of 

the approximation strength for different data storages due to 

diverse resilience properties of different applications and their 

varying nature for different input sets. 

4. OUR APPROXIMATION-AWARE MLC 

STT-RAM CACHE ARCHITECTURE 
Our approximation-aware MLC STT-RAM cache architecture 

adapts the error protection for different regions of the cache 

according with its data resilience properties. Once approximate 

storage can be applied, our architecture dynamically skips error 

protection routines for those cache sectors. As we motivated in 

Section 4, controlled approximate storage of resilient data does 

not necessarily affect the quality of applications’ results.  

In this section, we first present the architecture overview of 

our partially-protected cache architecture (Section 4.1) followed 

by the latency-aware error correction unit (Section 4.2). 

Furthermore, the approximation-aware cache management unit is 

proposed for energy-efficient read- and write- operations (Section 

4.3). An application-aware output quality control unit (Section 

4.4) is presented to adapt the approximate storage strength to 

improve the output quality.  

Example Parameters for the Ease-of-Concept Explanation: 
Without the loss in the generality, for the ease of explanation of 

our novel concepts with the help of example figures, we assume a 

cache organization with the following parameters: 8-way set 

associative cache; processor word size of 64 bits; cache block size 

of 64 bytes (512 bits); main memory address bus of 29 bits (which 

addresses 4 GB of data); last-level cache capacity of 64 MB 

(compliant with Fig. 1 cache size trend for recent manycore 

processors); 217 rows at each memory bank, supporting equally 217 

cache sets. Still, our strategies can be applied for any cache 

architectural configuration. 

4.1 Partially-Protected Cache Architecture 

As depicted in Fig. 8, our partially-protected cache architecture is 

based on a set-associative cache organization.  

According to our assumptions, we have 8 memory banks 

(from Bank-0 to Bank-7) to store all blocks of all cache sets (way-

0 to way-7). We use a memory array composed of 2-bit MLC 

STT-RAM to implement all fields of the cache line: valid bit, tag 

and data arrays. As explained in Section 2, MLC cells are more 



susceptible to errors during read or write operations, compared to 

traditional SLC ones. To ensure reliability for critical data, we 

designate the last memory bank to store error correction codes 

(ECCs) for error protection. This specific bank (Bank-7) is 

implemented as SLC cells (highlighted in red in Fig. 8), to 

provide better intrinsic reliability. In this special memory bank, 

the ECCs of each data of the seven other cache blocks are stored. 

Thus, at every read and write operation, these ECCs must be 

accessed to serve as input for the error correction unit. We realize 

approximate storage by avoiding error protection of applications’ 

resilient data. In this case, the memory position of Bank-7 is 

enabled for data storage, dynamically increasing the associativity 

of these cache sets (from 7 to 8).  
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Fig. 8. Our partially-protected cache architecture. 

At run-time, each set of the cache is classified according to 

its reliability support. A set is classified as reliable set (RSet) 

when its cache blocks must be protected (critical data). Otherwise, 

a set is classified as unreliable set (USet). In this case, no 

protection is ensured and the error correction unit is bypassed. In 

both cases, the first seven memory banks remain storing 

application data as common cache blocks. The Bank-7 cache 

blocks have different bit-organization depending on the set 

classification, as depicted in Fig. 9. First, we have an extra flag 

(called approximation enable bit - AE) which will determine if the 

whole set must be interpreted as RSet (AE=0) or USet (AE=1). If 

the set is classified as RSet, the corresponding row of Bank-7 

stores ECCs for error protection of the data inside the other 7 

cache blocks of this set. In our example, the ECCs have 64 bits to 

protect one cache block (512 bits). A simple logic is inserted for 

AE checking, where the data read from Bank-7 is skipped for the 

tag comparison when an RSet is accessed (AE Checking Logic in 

Fig. 8). In the other case, in a USet configuration, the Bank-7 

serves as the way-7 cache block of the set, which contains: valid 

bit, tag (19 bits) and data columns (8 columns of 64 bits). When a 

set is classified as a USet, we improve the average associativity of 

the cache. However, data stored in a USet is not protected against 

read and write errors. 

Additionally, our partially-protected cache architecture 

interacts with the management units using some control signals. 

The RSetToUSet flag indicates when a given cache set has more 

resilient data than critical data. This is required for dynamic 

reclassification of the sets (as properly descripted in Section 4.3). 

This signal is generated by the Majority Logic, as shown in Fig. 8. 

The signal ChangeToRel is an input that comes from the 

application-aware output quality control. This flag signalizes that 

an approximate storage must be converted into a reliable one, 

triggering the error correction unit to protect the memory 

operation. Details regarding this adaptive control are given in 

Section 4.4. 
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64 bits  
Fig. 9. Bit-level organization of cache line for reliable and 

unreliable sets. 

4.2 Latency-Aware Error Correction Unit 
Simple-error correction (SEC) schemes, like SEC Hamming, are 

not capable to support the error rates of MLC STT-RAM cells 

[9][30]. Thus, double-error correction (DEC) algorithms are 

required to ensure the protection for the applications’ critical data. 

We select the DEC Bose-Chandhuri-Hocquenghem (BCH) 

algorithm [32] to be integrated with our partially-protected cache 

architecture. BCH codes comprehend a class of powerful error-

correction cyclic algorithms and are typically employed in 

communication systems, but not being used for memory-based 

applications due to their data redundancy and latency overhead for 

the BCH decoder part. However, recent works, like [30], 

demonstrated several simplifications for binary BCH codes that 

make it practical for memory-based systems. In this case, most of 

the arithmetic operators can be reduced to 2-bit XOR logic gates. 

It allows for a fully combinational design and thereby reducing 

the intrinsic latency of cyclic-based coding algorithms. 

The BCH encoder generates the ECC from the input data. 

This part does not represent any bottleneck, since it can be simply 

implemented with a binary tree of XOR gates. The latency related 

problems are in the BCH decoder since it needs to re-generate the 

ECC from the input data and check this ECC with the old one 

already stored in the Bank-7. Fig. 10 depicts the architecture for 

the BCH decoder part. As can be noted, a BCH decoder contains 

one instance of a BCH encoder. After the re-computation of the 

ECC, it is compared with the old ECC (Comparator module), 

composing an error vector that will be matched with predefined 

error patterns (Error Locator module). As a result, a bit-vector 

representing the location of the errors is passed to the Error 

Corrector module, which will flip the faulty bits to obtain the 

corrected data. 
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Fig. 10 BCH-based error correction hardware design 

A binary logic (n, k) input block is a k-bit subspace of a 

binary n-bit input. Thus, an n-bit codeword contains k-bit of data 



and r (where r = k – n) bits for ECCs [30][32]. In our case, we 

have to protect the cache blocks (512 bits) of each set. The ECCs, 

in turn, must be stored in the Bank-7 (532 bits). In an RSet, we 

need to store ECCs for seven cache blocks, leading to a maximum 

of 76 bits for each ECC. The larger is the input data of a BCH 

encoder/decoder, the longer is the critical path due to deeper XOR 

trees to compute all bits. Since error protection must be applied in 

memory operation of all critical data, longer critical paths for 

BCH encoder/decoder may compromise the overall memory 

access latency. The best optimization point is the one that 

generates the larger ECC closer to the maximum allowed (76 bits) 

and, at the same time, reduces the critical path by splitting the 

error correction hardware into multiple BCH encoders/decoders 

with shorter critical paths. More BCH modules used lead to high 

leakage power. However, compared to the area occupied by the 

memory data array of typical last-level caches, the leakage of the 

complete error correction unit is insignificant (as demonstrated in 

Section 6.1). By exploring the design space of BCH algorithm for 

ECC generation, we can find the following solution as an efficient 

one: the block size division into 128-bit words, leading to 4 

parallel BCH encoders/decoders, generating 16-bit ECCs, each 

one (as depicted in Fig. 10). Thus, the ECC for one cache block is 

16x4=64 bits, and the ECC for the entire RSet is 64x7=448 bits. 

4.3 Approximation-Aware Cache Management Unit 
Fig. 11 depicts the proposed write policy, integrated in the 

approximation-aware cache management unit of our partially-

protected cache architecture. 
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Fig. 11. Write access management 

As the first step, the data of the entire set is activated and 

read (for hit/miss evaluation). Considering the AE flag (set 

classification) and the type of memory instruction (reliable or 

unreliable storage), four cases can be encountered: 

Case-1: Unreliable storage of resilient data (ALW or ASW) 

in a USet (AE=1). In this case, no protection is applied and the 

data is simply written in the cache, using the least-recently used 

(LRU) replacement policy. 

Case-2: Reliable storage of critical data (LW or SW) in a 

USet (AE=1). Reliable storage is not suitable to be performed in a 

USet, since Bank-7 is used as an extra cache block. Thus, our 

approximation management unit takes the following steps: (1) the 

entire cache set is flushed and (2) reclassified as an RSet (AE is 

assigned to 0). Bank-7 memory row is now responsible for storing 

the ECCs for error protection. Furthermore, the data is written in 

the cache, the ECCs are generated by the BCH encoder, and 

stored in Bank-7 (to ensure future reliable operations for the data). 

Case-3: Reliable storage of critical data (LW or SW) in an 

RSet (AE=0). The data is simply written in the cache, the BCH 

encoder computes the ECCs, to be stored in Bank-7. 

Case-4: Unreliable storage of resilient data (ALW or ASW) 

in an RSet (AE=0). As an RSet can support unreliable storages, 

our management does not immediately reclassify the set as a 

USet. The reclassification will only occur when the unreliable 

storages in a set surpassing the reliable storages. To capture this 

condition, we analyze the signal RSetToUSet, which is the result 

of the Majority Logic (see Fig. 8). There is no need of ECC 

generation, since unreliable storages skip error protection. When 

the approximate memory access does not lead to a reclassification 

to a USet, a special ECC is generated indicating that the given 

cache block of that set corresponds to resilient data. This special 

ECC signalizes that the error correction unit can be bypassed, 

even when the read set is classified as an RSet. 
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Fig. 12. Read access management. 

Fig. 12 presents our read access management policy for our 

partially-protected cache architecture. When a read request 

occurs, the corresponding set is activated and the corresponding 

rows of all memory banks are read. If the read access leads to a 

miss (the tag checking fails), a request is sent to the memory 

controller in order to fetch the required data from the main 

memory. Once the data is read from the main memory, it must be 

written to the cache. Our policy follows the already described 

write policy to properly store the incoming data. Then, the data is 

forward to the next cache levels. If a hit is verified, two cases 

need to be considered: (1) if it is an approximate memory 

instruction, the accessed data is simply forward to the next cache 

levels; otherwise, (2) if the memory access instruction requires a 

reliable access, then an extra step of error correction processing is 

required. This step is performed by the BCH decoder module, as 

already explained in Section 4.2. 
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Fig. 13. An example of different set configurations and 

allocation for resilient and critical data 

An Example: Fig. 13 depicts a data allocation example. We 

have three highlighted cache sets (#Set-A, #Set-B and #Set-C). 

The #Set-A and #Set-C are classified as RSet (AE=0), and the 

#Set-B is assigned as a USet. We can note two examples of RSet 

allocations: in the case of #Set-A, all cache blocks are storing 

reliable data, and Bank-7 is filled with the ECCs for the seven 

cache blocks of the set. In case of #Set-C, the approximate and 

reliable data are jointly stored in cache blocks of the same set. As 

already explained, the set is only reclassified to USet if the 

number of unreliable storages surpasses the number of reliable 

ones (inside the target set). In this case, as we skip error protection 

routines for the approximate data, and the ECC fields in Bank-7 

corresponding to the resilient data are set to a special ECC, 

identifying this fact. The #Set-B is an example of a USet, where 

Bank-7 is used as way-7 block of the cache. The USets are only 

suitable for unreliable storages, since we must have to ensure 

error free execution by increasing the reliability when managing 



application’s critical data. In this case, the average associativity of 

the cache is increased, improving the number of hits and, 

consequently, reducing main memory communication. 

To give a behavioral idea of the partial protection proposed 

in our approximation-aware MLC STT-RAM cache architecture, 

Fig. 14 depicts the system properties when a resilient kernel of an 

application starts running. As premise of our system, we must 

ensure high reliability when storing critical data. In this case, our 

partially-protected cache organization sacrifices the last memory 

bank to store ECCs to ensure the data reliability. As a result, the 

percentage of USets is near to 0% and the average associativity is 

7. Further, the latency-aware error correction unit is used for all 

read and write memory operations. When a resilient kernel starts 

processing, bursts of unreliable storages (ALW and ASW memory 

instructions) will fill the cache sets with resilient data. Hence, the 

existing RSets are gradually reclassified as USets. Following the 

same trend, the overall cache associativity will increase from 7 to 

8, as ECCs can be discarded due to bursts of unreliable storage. 

As the resilient kernel finishes, our cache architecture adaptively 

reclassifies the groups to RSets, activating the error correction 

hardware to protect the MLC cells against errors. This adaptive 

run-time reclassification is crucial to achieve energy-efficient 

error protection, while ensuring reliability for the critical data. 
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Fig. 14. Timing diagram of our approximation-aware 

partially-protected cache architecture. 

4.4 Application-Aware Output quality Control 

While saving energy is a crucial issue, the quality of 

application’s output results must also be taken into account. Thus, 

our cache architecture also employs an application-aware output 

quality control scheme. At design-time determined intervals, the 

quality level of application's output is forwarded by the 

application to the quality control unit. As different applications 

have different output characteristics, the application 

user/developer defines an objective quality measure for the 

application’s results. Under user-defined constraints, our 

architecture can adapt the error correction coverage. The strategy 

is to store a brief history of past registered objective quality levels. 

When a descendent trend is observed, the quality control unit acts 

by interpreting unreliable storages to reliable ones, thus trading 

off energy with the improved quality level. Otherwise, when the 

achieved quality level is above the quality constraint, the 

protection for more unreliable storages can be activated. 

The block diagram of our quality control unit is depicted in 

Fig. 15. The signal ChangeToRel is used as the interface between 

the output quality control and the cache architecture (see Fig. 8). 

By setting this signal to ‘1’, an unreliable storage will be 

protected. We define a THApp parameter, as the probability of 

protecting (becoming reliable) for an unreliable storage. Thus, at 

each application update with a new quality measurement, two 

signals can be generated: (1) IncTH, indicating that a decreasing 

trend is observed and more protection should be applied; and  

(2) DecTH, which alleviates the protection by capturing the 

increased quality case. As initial value, THApp is set to zero. We 

update the THApp with increments (if IncTH=1) or decrements (if 

DecTH=1) in steps of 0.05.  
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Fig. 15. Application-aware quality control unit. 

Hardware Overhead: This application-aware quality 

control unit requires a very simple implementation: three registers 

to store the brief history of objective qualities (Q0, Q1 and Q2 in 

Fig. 15), four subtractors to perform the comparisons, and two 

AND-2 logic gates. Furthermore, an accumulator stores the update 

value of THApp parameter. Finally, simple output logic, to translate 

the THApp to the signal ChangeToRel, is required. 

5.  EXPERIMENTAL METHODOLOGY / SETUP 
Two different HEVC encoders were used as benchmark:  

(1) the HEVC HM implementation [21] by the JCT-VC group; 

and (2) the x265 open-source application [31]. The resilient 

kernels in HEVC encoder are greatly affected by the motion 

search technique used during the inter-prediction step. In our 

experiments, we evaluated two different algorithms: exhaustive 

search and fast search (that adopts an heuristic evaluation choices 

to avoid local minima). The Full Search algorithm was used as the 

exhaustive search in both HM and x265. For the fast search, HM 

uses the TZ Search algorithm, whereas x265 implements the 

hexagonal search algorithm. As input test sequences, six different 

test videos (recommended by the standardization committee) in 

two different high definition resolutions were considered: 

BasketballDrive (BDrive), BQTerrace (BQTerr), Cactus and 

Kimono (full-HD: 1920x1080 pixels); Traffic and PeopleOnStreet 

(People) (2K: 2560x1600) [16]. For results objective quality 

evaluation of the selected video encoding applications, we 

considered the Bjontegaard Delta metric (BD-BR) [26] as 

recommended by the standardization committee and widely 

adopted in the video coding community. The results quality drop 

evaluation is done through error injection according to the MLC 

STT-RAM error model. Note that the wear-out errors evaluation 

is outside the scope of this work.  

Table I Hardware-Related Parameters Adopted in Our 

Experiments 

Manycore Processor Parameter 

Instruction Set Architecture x86 

Number of Cores 16 

Cache Parameters 

 
L1 Cache 

(Private) 

Last-Level Cache 

(Shared) 

Technology SRAM 2-bit MLC STT-RAM 

Design 4-way 8-way (ours) 

Size 32 KB 64 MB 

Read Latency (ns) 1.425 2.263 

Write Latency (ns) 1.425 15.095 

Leakage Power. (mW) 1.137 808.423 

Read En. (pJ/acc) 48 1.497 

Write En. (pJ/acc) 48 878 

Main Memory Parameters 

Model LPDDR2 - MT42L128M16D1GU-25WT 

Access Latency 300 ns 

Energy 

Components 

Refresh and Standby (fixed); Page Activate, 

Read, Write and I/O Pins (variable) 



For our experiments, we use the callgrind and cachegrind 

tools of valgrind simulator [29] to extract the memory access 

traces for each cache memory level and for the main memory. 

Table I illustrate the parameters used in our experiments for L1 

and last-level caches, such that, the selection of parameter values 

follow the prominent state-of-the-art works [11][12][14][15] and 

commercially available manycore processors. The cache latencies 

and energy parameters of Table I were extracted using CACTI 

(for SRAM) [27] and NVSim (for STT-RAM) [34]. Works in 

MLC STT-RAM cells physical exploitation were considered to 

derive the values for MLC design [7][10]. For the main memory, 

we consider one 4-Gbit Low-Power DDR2 module [17]. The 

energy components of a LPDDR2 were estimated using the main 

memory accesses of each application and the technology data 

from Micron [18][19]. All control-flow hardware blocks, 

including the error correction module based on BCH algorithm 

was synthesized using Cadence synthesis flow using ST 65nm 

standard-cells library. 

5.1 Resilience Characterization for HM and x265 

Before moving forward to the experimental results discussion, it is 

important to characterize the used benchmark applications in 

terms of resilience of their memory accesses operations. The 

characterization was performed for HM and x265 applications, 

when encoding videos with fast and exhaustive motion search 

engines.  Fig. 16 depicts the percentage of approximate memory 

access, when writing and reading resilient data. On average for 

our case-study applications, approximate storage operations 

represents 31%, 92%, 46% and 94%, for x265 and HM using fast 

and exhaustive motion search engines, respectively.  

6. RESULTS AND DISCUSSIONS 
For evaluation purpose, we define an alternate implementation 

that avoids approximation storage by assuming every cache 

memory access as a reliable operation. Thus, the latency and 

energy overhead of ensuring error protection is always observed. 

The goal is to evaluate the energy efficiency of our partially-

protected cache architecture against fully-protected memory 

designs, like [11]-[15]. 

6.1 Energy Efficiency Analysis 
Table 2 presents the synthesis results of the error correction 

module, in terms of delay and power consumption for BCH 

encoder and decoder modules. As explained in Section 4.2, the 

most complex part is the BCH decoder due to the internal BCH 

encoder and comparison logic. Therefore, the critical delay and 

the dynamic energy of the BCH encoder directly affect the write 

operations of our approximation-aware cache architecture. The 

BCH encoder, otherwise, increases the latency and dynamic 

energy of read operations. Due to our partially-protected 

approach, these overhead can be reduced when performing 

approximations for the resilient data through error skipping.  

Table 2 Error Correction Module Synthesis 

 BCH 

Encoder 

BCH 

Decoder 

Error 

Correction 

Technology ST 65nm  
Delay (ns) 0.47 1.49 - 

Leakage Power (mW) 0.045 1.129 1.174 

Dynamic Power (mW) 2.164 47.67 - 

Dynamic Energy (pJ/acc) 5.085 350.375 - 

To demonstrate the energy efficiency of the proposed 

approximation-aware cache architecture based on MLC STT-

RAM memory, we extract the energy consumption of each part, 

separately: on-chip energy (leakage and dynamic parts), off-chip 

energy (due to main memory accesses), and the overall energy. 

Table 3 summarizes the energy results for the benchmark 

applications averaged over all test video sequences when 

executing  fast search algorithm. 

Table 3 Energy-Efficiency Analysis of our  

Partially-Protected MLC STT-RAM Cache Architecture 

 HM Encoder x265 Encoder 

On-Chip Leakage Energy (mJ) 

Last-Level Cache 808.42 

Error Correction Unit 1.174 

Total 809.60 

On-Chip Dynamic Energy (mJ) 

Fully-Protected 15.01 1.06 

Ours – Partially-Protected 12.02 0.98 

Savings 20% 8% 

Off-Chip Energy (mJ) 

Fully-Protected 1,429.44 183.77 

Ours – Partially-Protected 1,000.61 113.94 

Savings 30% 38% 

Overall Energy (mJ) 

Fully-Protected 2,254.04 994.43 

Ours – Partially-Protected 2,093.81 974.13 

Overall Savings 19% 7% 

In terms of on-chip leakage energy, we can note an 

insignificant increase (+0.15%) when the error correction module 

is inserted to compose our partially-protected cache architecture. 

Although with core local L1 cache memory, the total L1 leakage 

energy is significantly smaller compared to the last-level cache 

(representing less than 1%). Fig. 17 depicts the leakage trend 

overhead for varied cache memory sizes (4MB-64MB): 0.15%-

1.3%, considering the average of used applications. 

Our partially-protected cache architecture can save dynamic 

energy by 8%-20% through avoiding error protection of memory 

operations for the resilient data, compared the fully-protected 

cache. Fig. 18 presents a detailed analysis of on-chip dynamic 

energy consumption of our cache architecture for all analyzed 

video test sequences: on average, our architecture achieves 21% 

and 30% dynamic energy savings for the tested applications when 

running fast search and exhaustive search, respectively.  

 
Fig. 16 Approximate-storage characterization for the used HEVC encoding applications (HM and x265). 
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Fig. 17 Leakage energy analysis. 
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Fig. 18 On-chip energy efficiency analysis for 

(a) dynamic energy; and (b) leakage energy. 

In the off-chip energy part, our architecture improves the 

energy efficiency by enabling cache sets with an extra block, 

compared with fully-protected cache. This leads to less last-level 

cache misses, incurring in the reduced off-chip energy 

consumption for main memory fetching and storage. In our 

experiments, our partially-protected cache architecture can reach 

savings of 30%-38% compared to the fully-protected architecture. 

Note, the main memory access operations are significantly more 

costly (in terms of latency and energy consumption) compared to 

the on-chip cache access operations. Thus, our approximation-

aware cache architecture takes care of this by leveraging resilient 

kernels of the applications to increase the cache sets associativity, 

assuming approximation storage in these sets. At the same time, 

we ensure error free execution by protecting the reliable memory 

operations. We discuss these aspects further in Section 6.3. 

On average, our approximation-aware cache architecture 

together with the external memory provides energy savings of 7% 

and 19% compared to full-protected cache, for HM and x265, 

respectively. 

6.2 Overhead Analysis: Access Latency 
Besides the demonstrated energy efficiency of our architecture, 

we also estimate the overhead of equipping the last-level cache 

with the proposed novel hardware modules. Fig. 19 depicts the 

latency and dynamic energy overhead of implementing extra 

hardware for error protection for reliable memory access 

operations. 

When the approximate storage is exploited, our 

approximation-aware read and write policies detect it and skip any 

error protection procedures. In this case, no overhead is paid for 

error correction, leading to no overhead in the access latency. For 

reliable memory operations, error protection is then applied. A 

reliable write operation incurs the following additional latencies: 

(1) BCH encoder latency to generate the ECC for the new cache 

block; (2) write access of MLC STT-RAM array to write the new 

data; and (3) an extra write access to the SLC STT-RAM Bank-7 

update the ECC of the modified cache set. Still, these accesses can 

be done in parallel, leading to reduced overhead. When a reliable 

read is performed, the access latency of our architecture 

comprehends: read access from MLC STT-RAM array to get the 

accessed data and the ECC from SLC-based Bank-7, and BCH 

decoder to ensure the corrected data in the cache memory output. 

The BCH encoder will add only 0.47 ns to the MLC STT-RAM 

cache write latency, leading to an overhead of just 3.1%. The 

BCH decoder, in turn, adds 1.49 ns to the cache read latency. In 

our experiments, the average overhead in terms of the memory 

access latency incurred by the insertion of our approximation-

aware management is 0.01%-0.72% and 0.02%-1.56%, 

considering x265 and HM benchmarks using exhausting search 

and fast search, respectively.  
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Fig. 19 Memory access latency overhead analysis. 

6.3 Quality Analysis of Application’s Results  
After demonstrating the energy efficiency of our approximation-

aware cache architecture due to reliability optimization exploiting 

resiliency properties, we must also evaluate the quality drops of 

applications’ results. For all tested applications and input video 

sequences, the increased reliability of our error protection engine 

for critical data ensured error-free execution for all experiments.  

Table 4 Quality Analysis of Applications’ Results. 

Video Sequence 
BD-BR Drops [%] 

x265 HM 
BasketballDrive -0.182 -0.536 

BQTerrace -0.067 -0.451 

Cactus -0.146 -0.482 

Kimono -0.297 -0.471 

ParkScene -0.177 -0.268 

PeopleOnStreet -0.357 -0.564 

AVERAGE -0.219 -0.426 
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Fig. 20 RD curves for quality analysis (HM application).  

Table 4 summarizes the evaluation of the quality loss of our 

partially-protection architecture. In Fig. 20, a more detailed rate-

distortion analysis using two complex test video sequences: 

BasketballDrive and BQTerrace. To improve the achieved quality 

results, we proposed an application-aware quality control unit that 

enables variable approximation control. The energy consumed by 



this module is already counted in the energy efficiency analysis, 

presented in Section 6.1. As already demonstrated, the overhead 

to implement this adaptive control is negligible. We can note from 

Table 4 that our variable approximation control minimizes the 

quality loss that even becomes insignificant when comparing to 

the best-case scenario: where all approximate read/write 

operations are protected. Our experiments show that quality drops 

varies from 0.173% to 0.485%, on average for x265 and HM 

applications. It can be noted in Fig. 20 where the rate-distortion 

curves are practically overlapped. 

Therefore, we accomplish our goal of maximizing energy 

efficiency when optimizing the reliability of MLC STT-RAM 

caches while maximizing the applications’ output quality. 

7. CONCLUSIONS 
This work proposed an approximation-aware cache architecture 

that leverages MLC STT-RAM density and low-power features to 

design large-sized caches for advanced manycore processors. To 

solve MLC STT-RAM reliability issues, our architecture is 

partially-protected to reduce reliability overhead by leveraging 

resilience properties of applications. The goal is to increase the 

energy efficiency while meeting the reliability requirements. Our 

architecture integrates a latency-aware double error-correction 

unit to guarantee error protection for applications’ critical data, 

ensuring error free execution. Approximation-aware read- and 

write policies exploit approximate storage and organize them 

along the reliable and unreliable cache positions. An adaptive 

control takes care of the applications’ output quality. We 

performed case studies on two next-generation advanced video 

encoding applications that exhibit memory-intensive functional 

blocks with variable resilience properties and parallelism support.  

Experimental results over various test videos demonstrated 

the improved energy efficiency (on average 7%-19%) of our 

approximate-aware MLC STT-RAM based cache architecture 

compared to fully-protected caches. At the same time, these gains 

incur in minimal quality penalties in the output (quality loss from 

-0.219% to -0.426%). The proposed error protection module 

ensured complete error-free execution by providing full coverage 

when processing non-resilient critical application function. 

Furthermore, the overhead of implementing our approximation-

aware management negligibly impacts the energy-efficiency 

(0.15%-1.3% of on-chip leakage) and the access latency (0.01%-

1.56%) of our cache architecture. 
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Abstract— A hybrid scratchpad video memory (Hy-SVM) for 

energy-efficient Tiles-parallelized High-Efficiency Video Coding 

(HEVC) is presented herein. The key ideas of Hy-SVM include: 

application-specific design and management; combined multiple 

levels of private and shared memories that jointly exploits intra-

Tile and inter-Tiles data reuse; scratchpad memories (SPMs) as 

on-chip data storage; SRAM and STT-RAM hybrid design. We 

propose a design methodology for Hy-SVM that leverages 

application-specific properties to properly define the SPMs 

parameters. The inter-Tiles data reuse potential of parallel HEVC 

is exploited by our run-time overlap prediction scheme, which 

identifies the redundant memory access behavior by analyzing 

monitored past frames encoding. Based on the predicted overlap 

characteristics, Hy-SVM integrates memory access management 

units (MAMUs) to control the access dynamics to the 

private/shared SPM levels. Furthermore, adaptive access 

management units (APMUs) can strongly reduce on-chip energy 

consumption due to the predicted overlap formation. The 

experimental results demonstrate Hy-SVM overall energy savings 

of 55%-92% (4-Tile) and 43%-94% (8-Tile) when compared to 

related works. From the external memory perspective, Hy-SVM 

can improve data reuse, resulting in 24%-35% of off-chip energy 

consumption. Additionally, our APMU contributes by reducing 

on-chip energy consumption of Hy-SVM by 83%, on average. 

Thus, compared to related works, Hy-SVM presents the lowest on-

chip energy consumption. Moreover, the overhead of 

implementing our management units insignificantly affects the 

performance- and energy-efficiency of Hy-SVM. 

 
Index Terms—Video Memory, Scratchpad, HEVC, 

Application-Specific Optimization, Energy Efficiency, Adaptivity. 

I. INTRODUCTION 

n multimedia processing systems, the video compression 

(aka. video coding) has a key role, being responsible for 

reducing the video data representation to enable efficient 

storage and transmission. The High Efficiency Video Coding 

(HEVC) is the state-of-the-art standard [1] that provides double 

compression compared to its predecessor H.264/AVC [2]. 

 
 

 

However, this comes with a cost of more than 40% 

computational effort increase when compared to H.264/AVC in 

the encoding part [3]. The increased complexity of HEVC 

results from the novel coding data structures and a plethora of 

new prediction modes, resulting in a wider decision space [4].  
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Fig. 1 - Memory requirements analysis for HEVC encoding. 

From memory perspective, these new coding features lead to 

2-3x more memory communication compared to H.264/AVC 

[3]. The memory bottleneck in HEVC encoders is related to the 

access to already processed (and reconstructed) video frames, 

called reference frames. In this aspect, up to 50% of off-/on-

chip memory accesses are required for reference frames reading 

and writing (Fig. 1a) leading to high memory-related energy 

consumption during HEVC encoding. To face the increased 

computational complexity, HEVC defines high-level 

parallelization strategies, such as Tiles partitioning [5], which 

divides the frame into rectangular regions that can be encoded 

in parallel. Whereas providing speedup to encoding 

applications, such tools aggravate the energy consumption of 

the memory infrastructure (on- and off-chip parts; see Fig. 1b), 

posing new challenges for multimedia systems. The main Tiles-

parallelized HEVC challenge is to efficiently exploit the inter-

Tiles data reuse potential, which significantly increases as more 

parallelism is exploited (Fig. 1c). In this work, we refer to this 

reference frame region that is redundantly accessed by more 

than one Tile processing as the overlap region. 

Thereby, there is a strong need for energy-efficient memory 

architectures which are able to exploit the data reuse potential 

stemming from parallel features of HEVC.  
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A. Key Research Challenges and Opportunities 

General-purpose memory hierarchies, like [6], [7], have 

compromised energy efficiency when facing the state-of-the-art 

HEVC encoding high memory requirements and specialized 

dynamics [3]. Application-specific video memories have been 

focus of research works since previous video coding standards, 

like MPEG-2 [8], [9]  and H.264/AVC [10]–[13]. The main 

goal is to increase the energy efficiency of video memories 

relying on video coding knowledge. However, these works lack 

support for parallel video coding, which is more memory 

restrictive and do not address memory contention in private vs. 

shared memories for data synchronization. Hence, the 

challenge is to leverage application-specific knowledge as 

opportunity for designing dedicated energy-efficient video 

memories for parallel video coding. 

As opportunity for application-specific applications, 

scratchpad memories (SPMs) overcome/alleviate the overhead 

of caches. In SPMs, instead of providing hardware support for 

mapping data/code from off-chip to on-chip memory, the 

designer and/or the compiler are responsible to perform access 

management. Due to application-specific knowledge 

exploitation, SPMs allows energy savings of up to 30% 

compared to complete cache memories [14]. SPMs are widely 

available to be used as performance- and energy-efficient on-

chip storage option in nowadays processor chips [13][14]. In 

this work, we utilize SPMs as opportunity for designing 

application-specific on-chip video memories, enabling energy 

savings by exploiting the knowledge from the HEVC encoder. 

In another perspective, hybrid memory design exploiting the 

industry advances of alternative memory technologies has been 

research target during the last decade [17]–[20]. In hybrid on-

chip memory design, emerging memory technologies are used 

in combination with traditional Static-RAM (SRAM) cells. The 

goal is to reduce the impact of SRAM shortcomings, like low 

density and high static energy consumption. In this context, the 

Spin-Transfer Torque RAM (STT-RAM) stands out as a 

promising technology. Recent academy and industry advances 

serve as a solid foundation to enable STT-RAM to be integrated 

with CMOS logic circuitry of nowadays general-purpose 

processors or ASIC-based implementations [19]–[21]. Still, as 

these works did not take into account application-specific 

properties, they may not efficiently support the video coding 

memory demand and data transmission characteristics. The 

challenge here is to exploit application-driven design of hybrid 

on-chip video memories tailored towards parallel HEVC. 

B. Overview of Our Main Contributions 

Considering previous discussions, the goal of this work is to 

provide energy efficiency for the memory infrastructure in 

Tiles-parallelized HEVC encoding.  

To this end, we designed a hybrid scratchpad video memory 

architecture (called Hy-SVM) that relies on joint inter- and 

intra-Tiles data reuse and hybrid memory design (based on 

combined SRAM and STT-RAM scratchpad memories) to 

 
1 L1 and L2 in this work are not related to cache levels, but scratchpad 

memories implemented using either SRAM (L1 level) or STT-RAM (L2 level). 

allow energy-efficient storage in HEVC encoders. Furthermore, 

a memory management layer that leverages application-specific 

knowledge is proposed. A key concept in this work is the 

overlap formation, representing the main characteristics of the 

reference frame region that is accessed by more than one Tile 

processing. This concept is properly defined in Section II.A.  
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Fig. 2 – Overview diagram of our main contributions 

An overview of Hy-SVM and their integration with Tiles-

parallelized HEVC encoder is depicted in Fig. 2. It employs: 

1) Hybrid Scratchpad Video Memory (Hy-SVM) Architecture 

(Section IV) that is composed of multiple levels of private and 

shared SPMs, as depicted in Fig. 2. It consists on (i) private 

L11 SPMs, implemented as SRAM arrays, to store the search 

window samples required for each HEVC processing unit; 

and (ii) private and shared L2 STT-RAM SPMs to provide 

reference frame level data reuse. The proposed design 

methodology leverages application-specific knowledge to 

define the hardware design parameters of SPMs. 

2) Run-Time Overlap Prediction (Section V) that relies on 

application-specific knowledge (e.g., monitored past 

overlaps, video content and HEVC parameters; see Fig. 2) to 

estimate the overlap characteristics for the next frame 

encoding, improving the inter-Tiles data reuse potential. The 

predicted overlap properties are related to its size, shape and 

displacement. 

3) On-Chip Hy-SVM Management (Section VI) that implements 

memory access management units (MAMUs) and adaptive 

power management units (APMUs) to manage the energy 

consumption of Hy-SVM (as in Fig. 2). Based on the overlap 

prediction output, the MAMUs implements read and write 

policies that manage the incoming Hy-SVM access to the 

corresponding SPM. Furthermore, APMUs can adapt the 

power gating strength according to the predicted overlap 

characteristics, which strongly depend on the video content. 
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Paper organization: Section II presents background 

concepts regarding HEVC and STT-RAM; Section III discusses 

the main advantages/shortcomings of state-of-the-art works; 

Section IV introduces our Hy-SVM architecture, as well as the 

adopted organization models and the design methodology of 

SPMs; Section V presents our run-time overlap prediction 

scheme; Section VI describes our on-chip management units: 

MAMU and APMU; Section VII shows the experimental 

methodology; Section VIII discusses the experimental results 

and compares our savings with related works and baseline 

implementations; and, finally, Section IX concludes this work. 

II. BACKGROUND 

This section introduces some preliminary concepts regarding 

HEVC and STT-RAM memory technology. 

A. HEVC Background and Overlap Concept 

The new coding structure of HEVC divides the video frame 

into flexible block sizes following a quad-tree structure called 

coding-tree unit (CTU) [4]. Typically the CTU partitioning 

starts from the maximum allowable block size of 64x64 pixels, 

and then explores breaking it into several coding units (CU) of 

sizes 32x32, 16x16 and 8x8 pixels. Fig. 3 depicts an example 

of CTU partitioning. For each CU, the encoder selects the best 

prediction unit generated by either intra or inter prediction 

steps. Inside the inter prediction, the motion estimation (ME) is 

the most complex and memory consuming module. The ME 

searches for the most similar block within a delimited portion 

of reference frames, called search window [4]. The ME 

processes each possible CU inside a CTU, thus resulting in the 

most time and energy consuming module of an HEVC encoder.  
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Fig. 3 - An example of HEC coding tree organization. 

To exploit multiple cores in a many-core system, the HEVC 

provides a light-weight data parallelism support that divides the 

video frame into rectangular regions called Tiles [5]. In Fig. 4b, 

the 8x4 CTUs video frame is partitioned into 4 Tiles (in a 2x2 

fashion). These Tiles can be encoded independent of each other 

without any spatial dependencies, thus can be parallelized on 

multiple processing units: either general-purpose processing 

cores or ASIC hardware accelerator encoding units. 

CTUA CTUB
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Tile 2 Tile 3 Overlapping region!

CTUC CTUD

Current Frame Reference Frame

Search Window (SW) of              
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SW of 
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Fig. 4 - (a) 4-Tile partitioning and (b) overlap formation in a reference frame. 

 
2 “L” means low, “H” means high, and “HH” means very high. 

The samples near to the Tiles boundaries in the reference 

frame must be fetched by multiple Tiles processing, leading to 

external memory contention, redundant memory access and 

extra on-chip storage (causing energy wasting). An example in 

Fig. 4b depicts the overlap formation being the reference frame 

region that is accessed for encoding more than one Tile. 

B. STT-RAM Background 

A Spin-Transfer Torque RAM (STT-RAM) cell stores one 

logic bit in a magnetic tunneling junction – a very thin oxide 

layer interposed between two ferromagnetic layers. The 

resistance value of this junction is determined by the relative 

magnetic field direction between these two layers [22]. One 

layer has fixed magnetization (reference layer), while the other 

can have its magnetization changed due to a polarized 

programming current (called free layer). Thus, low resistances 

due to parallel and high resistances due to anti-parallel 

magnetizations represent the logic bits ‘0’ and ‘1’, respectively. 

As an alternative to SRAM in the on-chip perspective, STT-

RAM provides higher density, better scalability, non-volatile 

behavior, and low static power features compared to the SRAM. 

In other aspects SRAM is still more efficient, by having a lower 

write power and by its overall performance. Table I presents a 

subjective comparison between SRAM and STT-RAM 

technologies2, where the dark-gray cells represent the best 

scenario of each parameter. 

TABLE I SRAM VS. STT-RAM TECHNOLOGIES [22] 

 
Energy Latency 

Volatility 
Static Read Write Read Write 

SRAM HH L L L L Volatile 

STT-

RAM 
L L HH L H 

Non-

Volatile 

On-chip video memories require large arrays to implement 

data reuse schemes, which is aggravated for parallel video 

coding. The most promising STT-RAM characteristic is the low 

static energy consumption, becoming a suitable memory 

technology to implement such on-chip memories. 

Another interesting property of on-chip video memories that 

facilitates the STT-RAM usage is: they have a relatively low 

write intensity compared to a very high read intensity. As the 

on-chip video memories implement data-reuse schemes for the 

search window samples, only a few data of the reference frame 

would be written to start the next CTU prediction. Once the 

needed data is stored on chip, the ME massively accesses the 

on-chip video memory until the best match is found. As can be 

noticed in Table I, the STT-RAM energy and performance are 

poor for write operations compared to that of the SRAM. Thus, 

video coding is a promising application for STT-RAM based 

hybrid memories. 

STT-RAM has the advantage of a non-volatile memory 

(NVM). This characteristic is also very important for on-chip 

video memories, since parts of the memory may be switched-

off (to eliminate static energy consumption) while keeping the 

data stored, leading to no extra external memory accesses to 

save and to re-fetch the data. 
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III. RELATED WORKS 

Since the HEVC release, several works were developed with 

the goal of exploiting its high-level parallelization features. In 

this context, different strategies have the goal of properly 

defining the best partitioning of the video frame into Tiles for 

parallel processing [23]–[27]. The proposed schemes typically 

take into account the workload of each processing unit to define 

the best tiling configuration. Only the strategy developed in 

[24] addresses the impacts of Tiles-based HEVC parallelization 

in the video memories. However, the proposed scheme focus on 

optimizing the memory design exploiting only intra-Tile data 

reuse, not considering the potential of inter-Tiles data reuse. 

Further, video memories characteristics of very high read 

intensity (compared to write operations) are not exploited in the 

work. Therefore, to address this gap this work focus on 

exploiting the inter-Tiles data reuse, as well as intrinsic video 

memories characteristics, namely their high read access 

intensity. 

Several recent works exploited application-specific 

knowledge to propose energy-efficient memory design and 

management for HEVC. Reference frame compressing 

strategies are exploited in HEVC by [28]–[30] focusing on 

reducing the data bandwidth from on-chip and off-chip 

memories by compressing the reference frames data. Even 

though these works can be applied to parallel video encoding, 

they do not exploit parallel memory accesses from different 

processing units, leading to compromised scalability for 

increased parallelism. Further, on-chip memory energy is even 

aggravated, since multiple on-chip logic circuits must be 

inserted to implement the compressing/decompressing steps for 

the stored/fetched data. Dedicated video memories for HEVC 

encoding were already proposed by [3], [31]–[33]. In dSVM [3] 

and [31], SRAM-based distributed memory architectures were 

designed. The additional SRAM to improve the data reuse 

brings extra static energy consumption. Therefore, merely 

adding more SRAM becomes unfeasible when using a large 

number of processing cores. Dedicated hybrid video memories 

for video coding were developed in [32] and [33]. AMBER [32] 

uses SRAM only as FIFO buffers to hide the high write latency 

of STT-RAM cells, but not effectively being part of the storage 

system that may provide a high potential of energy-efficient 

design. Additionally, AMBER does not support parallel video 

processing, which is inevitable to achieve high processing 

throughput. enHyV architecture [33] combines SRAM and 

STT-RAM using private and shared SPMs. A design space 

exploration was performed to find the best optimization point 

between energy efficiency and STT-RAM endurance. 

However, the inter-Tiles data reuse potential is not properly 

exploited in this work, since no adaptive management is 

performed depending on the video content. Depending on the 

video properties (like low/high motion), energy may be wasted 

by not properly managing the shared video memories. 

 
3 Let NTiles be the number of Tiles and NTilesBoundaries be the number of Tiles 

boundaries. 

IV. HYBRID SCRATCHPAD VIDEO MEMORY ARCHITECTURE 

(HY-SVM) 

Fig. 5 depicts our hybrid scratchpad video memory 

architecture (Hy-SVM) and its energy-efficient management 

layer for parallel HEVC encoding. Each Tile is assigned to a 

specific processing unit. The proposed memory organization 

increases the energy efficiency of reference frames 

management (off-chip fetching and on-chip storage). The 

coarser lines in Fig. 5 represent data connections, while finer 

lines illustrate the control flow between the modules.  
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Fig. 5 – Block diagram of our hybrid scratchpad video memory architecture. 

Our Hy-SVM architecture is organized as two levels of 

SPMs: 

L1 SPMs Level: NTiles private SPMs3 (PrivL1) that store the 

search window samples for a specific processing unit, allowing 

intra-Tile data reuse between each CU processing. At this level, 

the SPMs are implemented as SRAM arrays, providing equally 

high performance and energy efficiency for read and write 

operations. Since PrivL1 SPMs represent smaller memory cells 

arrays, SRAM static energy consumption does not significantly 

affect the overall energy efficiency. 

L2 SPMs Level: NTiles private SPMs (PrivL2) and 

NTilesBoundaries shared SPMs (SharedL2) that together can store 

one complete reference frame, providing combined intra- and 

inter-Tiles data reuse. All L2 level SPMs are designed using 

STT-RAM technology, exploiting its high density and low 

static power features to implement large L2 data arrays. The 

PrivL2 stores the Tiles-specific region of the reference frame 

(accessed privately by the corresponding processing unit). Each 

SPM of PrivL2 has a direct data connection to the 

corresponding PrivL1 SPM. The SharedL2 SPMs are connected 

to the PrivL1 SPMs by an interconnect bus and it is responsible 

for the overlapping regions storage. 

Along with SharedL2 SPMs, inter-Tiles data reuse is 

managed by a run-time overlap prediction that accurately 

estimates the redundant memory access behavior for the next 

ME. This prediction step is based on already monitored overlap 

formations from previous frames encoding. This knowledge is 

then forwarded to on-chip memory management hardware 

modules: (a) memory access management units (MAMUs) and 

(b) adaptive power management units (APMUs). They are 

responsible to effectively manage the SPMs by implementing a 
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read/write policy, as well as proper power gating control over 

SPM sectors. The goal is to achieve the best possible energy 

efficiency depending on the video content properties. Details 

regarding the energy-efficient memory management layer are 

presented in Sections V and VI. 

A. Adopted Memory Models and Notations Definition 

Fig. 6 depicts the adopted on- and off-chip memory models 

that support Hy-SVM design. Every data transmission between 

the SPM and the external memory is based on a fixed basic unit 

(BU), which corresponds to the squared BUDim x BUDim picture 

block of the reference frame (see Fig. 6a). The samples within 

a BU are organized in a serialized way, so that all rows of an 

entire BU can be stored in the same external memory page (see 

Fig. 6b). Since consecutive accesses to the same memory page 

lead to less page-activation overhead, improved energy 

efficiency can be achieved.  
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Fig. 6 – Adopted organization for the off- and on-chip memory parts. 

As on-chip SPM design, a multi-bank memory organization 

is adopted (see Fig. 6c). Each SPM is composed of NB memory 

banks. To facilitate parallel access, each row of a BU is stored 

in a specific SPM bank. Hence, one line of a memory bank can 

store SL bytes, equals to the size of one BU row (BUDim bytes) 

4. The exception is the first SPM bank, which additionally stores 

control information for memory access management (explained 

in Section IV.B). A Banki is composed of NL lines, grouped into 

NS memory sectors of SS bytes. The number of BUs per sector 

(NBUPerSector), which corresponds to the number of memory lines 

per sector (NLinesPerSector), defines the power management 

granularity applied to the SPMs. The BUDim and NBUsPerSector are 

design-time parameters and should be carefully decided by the 

hardware designer.  

B. Design of Hybrid Scratchpad Video Memories 

Eq. (1)-(2) define the Tiles overlap sizing formula for the 

overlap thickness (OvThickness) and length (OvLength). These 

formulas are used at design-time to properly derive the 

SharedL2 SPMs parameters. The OvThickness is calculated from 

the search window width or height, since it defines the 

 
4 In this work, we consider video sequences represented with 8-bit samples. 

maximum range ME can reach when searching in the reference 

frames. Additionally, ME start point can be displaced by prior 

analysis from neighboring motion predictors. Thus, the search 

window center can vary according to the motion field of Tiles 

boundaries. To represent that, an off-line statistical parameter 

ΔMotion is inserted to scale the overlap thickness to be adapted to 

the average case of test sequences5. The OvLength is related to the 

frame width or height, when overlaps are formed around 

horizontal or vertical Tiles Boundaries, respectively. 

OvThickness(TBID) = {
ΔMotion × SWW,   if vertical boundary

ΔMotion × SWH,   if horizontal boundary
 (1) 

OvLength(TBID) = {
FrameH,   if vertical boundary

FrameW,   if horizontal boundary
 (2) 

Based on the memory organization defined in Section IV.A, 

we determine the physical sizing for the SPMs Levels in the 

proposed Hy-SVM architecture. As already explained, all 

SPMs (PrivL1, PrivL2, and SharedL2 levels) are composed of 

BUDim memory banks as in Eq. (3), which allows parallel access 

of one entire BU. However, the other SPM parameters are 

different depending on the Hy-SVM level. 

PrivL1NB = PrivL2NB = SharedL2NB = BDim (3) 

The PrivL1 SPMs store Tile-specific search window 

samples, requiring PrivL1NL memory lines, as expressed by Eq. 

(4). The first memory bank of a PrivL1 SPM must store, besides 

the first BU row, three control data: the horizontal and vertical 

BU frame position, and a validate bit (as in Eq. (5)). This 

information is important for MAMU to properly manage hit and 

miss occurrences. The PrivL1 level does not have associated 

power management, thus not requiring the overhead of sleep-

transistors and memory sectors definition. 

PrivL1NL = NBUsPerPrivL1 = ⌈
SWW × SWH

BUSize
⌉ (4) 

PrivL1SL = {
(|BUXPos| + |BUYPos| + 1) + BUDim

BUDim
   

 if Bank0

    otherwise
 (5) 

The L2 level completely stores one reference frame, by 

having its samples distributed along the PrivL2 and SharedL2 

SPMs. The PrivL2 SPMs stores the Tile-specific reference 

frame region, while the SharedL2 SPMs must support the 

overlapping regions size. The PrivL2NL number of memory 

lines depends on the frame resolution and the number of Tiles, 

as expressed in Eq. (6). In another perspective, the SharedL2 

SPMs requires SharedL2NL lines, which is related to the 

OvThickness and OvLength overlap parameters; see Eq. (7). The 

PrivL2 SPMs of Hy-SVM are designed to guarantee that all 

BUs within the same reference frame have a specific associated 

memory line. Thus, it is not necessary to keep stored the frame 

position coordinates of the stored BU in a specific SPM line. To 

ensure correct hit/miss detection by MAMU, a validate bit is 

stored alongside the first BU row in Bank0. The same scheme 

is adopted for SharedL2 SPMs, as defined in Eq. (8). Still, as in 

PrivL2, only one validate bit must be stored for each BU. 

5 In this work we adopted the same statistical method to determine ΔMotion 

than [3]. 
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PrivL2NL = NBUsPerPrivL2 = ⌈
FrameW × FrameH

BUSize × NTiles
⌉ (6) 

SharedL2NL = NBUsPerSharedL2 = ⌈
OvThickness × OvLength

BUSize
⌉ (7) 

PrivL2SL = SharedL2SL = {
BUDim + 1

BUDim
   

 if Bank0

    otherwise
 (8) 

Our adaptive power management strongly acts on L2 level of 

Hy-SVM to reduce on-chip static energy consumption. Note 

that as L2 SPMs are implemented as STT-RAM arrays, the 

shutdown of specific memory sectors does not imply on off-

chip memory re-fetching, due to the non-volatile nature of STT-

RAM cells. The power gating is applied for each memory 

sector. The already defined NLinesPerSector parameter indicates the 

adopted management level (as already discussed in Section 

IV.A). In doing so, the values of PrivL2SS and SharedL2SS are 

defined according to this design-time parameter, as in Eq. (9). 

As result, the number of memory sectors (PrivL2NS and 

SharedL2NS), which directly affects the APMU design, is 

defined in Eq. (10) and (11), respectively.  

PrivL2SS = SharedL2SS = NLinesPerSector × BUSize (9) 

PrivL2NS =
PrivL2NL

L2SectorSize
 (10) 

SharedL2NS =
SharedL2NL

L2SectorSize
 (11) 

The following sections describe the memory management 

layer, which improves the energy efficiency of Hy-SVM 

architecture. First, the run-time overlap prediction scheme is 

presented. Then, the on-chip memory management units, 

MAMU and APMU, are explained. 

V. RUN-TIME OVERLAP PREDICTION 

We focus our evaluations and proposed overlap prediction 

scheme in the HEVC-defined Low Delay (LD) and Random 

Access (RA) prediction structures, as illustrated in Fig. 7. Each 

arrow denotes a prediction dependency evaluated by the ME, 

starting from the current frame and pointing to the used 

reference frame. We assign an overlap identification (OvID) for 

each prediction dependency. Further, another important 

parameter is the distance between the current and reference 

frame of each OvID, represented by the notation DME. It is 

defined as the absolute difference between the picture 

exhibition order number between the two frames: DME(OvID) =
|FCurr − FRef| (depicted in the bottom of Fig. 7). For example, 

the DME of the prediction RA2 is calculated as 𝐷𝑀𝐸(𝑅𝐴2) =
|4 − 8| = 4. 

0 1 2 3 4 5 6 7 8

LD2

LD0 LD1 LD3 LD5 LD7 LD9 LD11 LD13

LD4 LD6 LD10 LD12 LD14LD8

0 1 2 3 4 5 6 7 8

RA0
RA1 RA2

RA3 RA4 RA6 RA5

RA7 RA8 RA10 RA9 RA13 RA14 RA12 RA11

(a) Random Access (b) Low DelayOverlap Identification (OVID)
within a Group of Pictures

 
Fig. 7 - Overlap identification (OvID) in (a)  Random Access (RA) and (b) Low 
Delay (LD) HEVC encoder configurations. 

Note that each ME will lead to the formation of an 

overlapping region. The characteristics of the overlaps were 

evaluated to base our run-time overlap prediction scheme 

(Section V.A). An accurate estimation of such properties is 

important (a) to improve inter-Tiles data reuse (exploited by the 

SharedL2 SPMs), as well as (b) to provide less-frequent ON-

OFF switching activities, leading to higher energy savings for 

our adaptive power management scheme. To support the 

variability of the overlap characteristics, a light-weight overlap 

data representation is proposed (Section V.B). The overlap 

prediction scheme is described in Section V.C. 

A. Overlaps Correlation Evaluation 

Memory analyses were performed with the goal of 

identifying correlated parameters of overlap formations 

between consecutive MEs. The evaluations consider three 

important overlap characteristics: size, shape, and 

displacement. 

Analysis-1 (Overlap Size): Fig. 8 presents an evaluation of 

the overlap size by exploiting MEs with different DME 

parameters. In this case, we are interested in the number of 

redundant memory accesses within a reference frame 

depending on the absolute value of the distance DME. Thus, this 

analysis does not consider the prediction direction. We can note 

that the overlap size reduces when lower DME MEs are 

executed. Therefore, an insight is to leverage the size of past 

overlaps in our prediction scheme. In doing so, the relation 

between the DME factors must be taken into account to scale the 

predicted overlap accordingly. Our APMU can exploit it by 

dynamically applying relaxed or aggressive power gating to 

improve the SPMs energy efficiency according to predicted 

memory demand. 
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Fig. 8 – Example of overlap sizing variation for several temporal distances (D 

factor). 

Analysis-2 (Overlap Shape): Besides the size, another 

important aspect is the overlap shape, which may significantly 

change along the overlap length. We can note this dynamic 

behavior in Fig. 9, where the shape varies according to the video 

content. Not exploiting this variation may lead to inefficiency 

to memory energy consumption (on- and off-chip parts).  

Furthermore, there is a significant similarity between the shapes 

of overlaps when analyzing consecutive ME processing, as can 

be noted in Fig. 9. Therefore, the shape characteristics of 

previous formations can be used as reference to improve the 

prediction accuracy for the next overlaps. 

Analysis-3 (Overlap Displacement): Fig. 10 presents an 

analysis (Probability Density Function charts) comparing the 

overlap displacement for ME steps with different DME factors. 

The displacement, in this evaluation, was measured by the 

distance of the center of the actual overlap regarding the Tiles 
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boundary. When we compare the generated overlap between 

MEs with the same prediction direction (Fig. 10a), we can note 

that higher DME factors lead to higher and spreader overlap 

displacements. In another vein, ME operations with lower DME 

values lead overlaps centered nearer the Tiles boundary, as well 

with a more concentrated behavior. In Fig. 10b, comparing MEs 

with opposite prediction directions (DME values with different 

signals), we can observe opposite displacements in the formed 

overlaps. Therefore, regarding this aspect, our insight is to 

leverage the past overlap displacement weighted by the 

difference of DME factors.  
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Fig. 9 - Correlation between consecutive overlaps (RA7, RA3, RA1 and RA0), 

considering Random Access prediction structure. 
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Fig. 10 - Overlap displacement correlation analysis. 

To exploit the discussed overlaps correlation in our 

prediction unit, we implement an overlap representation that 

properly models the absolute size, and the variable shape and 

displacement properties. 

B. Overlap Representation 

Eq. (12) models an overlap as an ordered set of tuples, each 

one containing width (widthi) and displacement (displi) 

information of a specific basic unit line i within the overlap. The 

level of representation is based on the adopted BU dimension, 

being compliant to Hy-SVM organization.  

OvID = {(widthi, displi), ∀ 𝐵𝑈 𝑙𝑖𝑛𝑒 𝑖 |0 ≤ i < OvLength/BUDim}  (12) 

Fig. 11 illustrates an example of overlap representation. In 

the graphical view (Fig. 11a), we can observe the possibility of 

modeling the variations of width and displacement along the 

overlap length. For each BU line, the width is related to the 

overlap thickness (in number of BUs), while the displacement 

is expressed as the distance of the first BU from the Tiles 

boundary center. Hence, the design-time parameters OvLength 

and OvThickness related to the overlap thickness and length 

(previously defined in Section IV.B), utilized to design the 

SharedL2 SPMs, are refined to provide a more accurate 

representation of the actual formed overlap. The mapping 

between the graphical and the data representation is presented 

in Fig. 11b. We can note that each BU line within the overlap 

has associated width and displacement information. 
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Fig. 11 – (a) Graphical and (b) data representation of an overlap by our energy-

efficient management of Hy-SVM. 

Considering a 4-Tile HD1080p HEVC encoder, 256x256 

search window size, and BUDim=8, the overlap representation 

for the horizontal Tiles boundary requires 480 bytes, while the 

vertical overlap occupies 136 bytes. These values represent a 

negligible overhead, especially when comparing to the 

hardware resources required to implement L1 and L2 SPM 

Levels (as demonstrated in Section VIII.D). 

C. Overlap Prediction Scheme 

Our scheme is inspired on the video coding idea of selecting 

several references (past coded information) to predict the 

behavior of the data that is being processed. Therefore, for each 

overlap that is being predicted (called current overlap), the 

information of past monitored overlap formations (called 

reference overlaps) are exploited. As result, an estimation of 

the formation characteristics for the current overlap is generated 

(called predicted overlap). In this context, there are two key 

data structures: the Monitored Overlaps Table (MOT) and the 

Predicted Overlap Table (POT).  
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Fig. 12 – Flowchart of our run-time overlap prediction scheme and its relation 

to Hy-SVM on-chip management units. 

Fig. 12 depicts the flowchart of our overlap prediction 

scheme, as well as its integration with Hy-SVM on-chip 

management units (detailed presented in Section VI). During a 

ME processing, our Memory Monitoring Unit monitors the 

inter-Tiles redundant accesses. This unit utilizes one bitmap for 

each HEVC processing unit to identify the accessed BUs within 

a reference frame. As result, the bitmaps are combined, and the 
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monitored overlap representation (presented in the previous 

section) is generated and stored in the MOT. There is a specific 

MOTTB for each Tile boundary TB, which is responsible to store 

a historic of the past monitored overlap formations of this 

specific boundary. 

For each Tiles boundary within a frame, our scheme accesses 

the MOTTB to get the reference overlap RefOvID(TB) that will 

be used for the prediction of CurrOvID(TB). To minimize the 

MOTs size and guarantee the best possible correlation between 

current and reference overlaps, Table II proposes a prediction 

assignment based on the correlations of MEs, considering the 

Random Access and Low Delay configurations. The overlap 

identifications follow the notations defined in Fig. 7. Based on 

this assignment, a prediction operation is applied to estimate the 

predicted overlap based on the monitored information from the 

selected reference overlap. The prediction process is based on 

one of four possible operations: downscale, upscale, invert or 

copy; as defined in Eqs. (13)-(16), where the α and β are offline 

statistical factors that were extracted by experimental analysis 

using real-world video coding scenarios6. 

TABLE II  OVERLAP PREDICTION ASSIGNMENT FOR RANDOM ACCESS AND 

LOW DELAY HEVC ENCODER CONFIGURATIONS 

Random Access Low Delay 

Curr. 

 OvID 

Prediction 

Operation 

Ref.  

OvID 

Curr. 

 OvID 

Prediction 

Operation 

Ref.  

OvID 

RA0 

off-line stats. (if first 

frame) or copy RA0 

from previous GOP 

LD0 

off-line stats. (if first 

frame) or copy RA0 

from previous GOP 

RA1 downscale(α) RA0 LD1 copy LD0 

RA2 invert RA1 LD2 upscale(β) LD1 

RA3 downscale(α) RA1 LD3 copy LD1 

RA4 invert RA3 LD4 upscale(β) LD3 

RA5 downscale(α) RA2 LD5 copy LD3 

RA6 invert RA5 LD6 upscale(β) LD5 

RA7 downscale(α) RA3 LD7 copy LD5 

RA8 invert RA7 LD8 upscale(β) LD7 

RA9 downscale(α) RA4 LD9 copy LD7 

RA10 invert RA9 LD10 upscale(β) LD9 

RA11 downscale(α) RA5 LD11 copy LD9 

RA12 invert RA11 LD12 upscale(β) LD11 

RA13 downscale(α) RA6 LD13 copy LD11 

RA14 invert RA13 LD14 upscale(β) LD13 
 

downscale(PredOvID, RefOvID, α):  
PredOvID[i]. width ← ⌈RefOvID[i]. width × 𝛼⌉ and 
PredOvID[i]. displ ← RefOvID[i]. displ, 
∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 𝛼 < 0 

(13) 

upscale(PredOvID, RefOvID, β):  
PredOvID[i]. width ← ⌈RefOvID[i]. width × β⌉ and 
PredOvID[i]. displ ← RefOvID[i]. displ, 
, ∀ BU line i, 𝑤ℎ𝑒𝑟𝑒 β > 0 

(14) 

invert(PredOvID, RefOvID):  
PredOvID[i]. width ← RefOvID[i]. width and 

PredOvID[i]. displ ← −(RefOvID[i]. width +
                                        RefOvID[i]. displ), ∀ BU line i 

(15) 

copy(PredOvID, RefOvID):  
PredOvID[i]. width ← RefOvID[i]. width and 
PredOvID[i]. displ ← RefOvID[i]. displ, ∀ BU line i 

(16) 

Example: Consider the RA1 prediction dependency was 

processed by ME and the inter-Tiles redundant memory 

accesses was monitored, generating the RefOvRA1 (illustrated in 

 
6 We adopted: α=0.75 and β=0.8 in our experiments. 

Fig. 13a). From the proposed prediction assignment for 

Random Access configuration presented in Table II, the 

selected prediction operation for the next PredOvRA2 and 

PredOvRA3 are invert and downscale, respectively. In Fig. 13b 

we can observe the result of invert prediction operation, where 

the overlap is displaced from left to right part related to the Tiles 

boundary. In this case, the RA1 and RA2 have the same 

absolute value of DME, but with different signals: DME(RA1)=4 

and DME(RA2)=-4. In this case, due to the opposite motion 

directions, the overlap formations tends to be displaced (as 

motivated in Analysis-2 of Section V.A). The estimation of 

PredOvRA3, reduces the overlap width parameters by a α=0.75 

factor. The prediction dependencies RA1 and RA3 have same 

direction but different distances:  DME(RA1)=4 and 

DME(RA2)=2. In doing so, the overlap for RA3 tends to be 

smaller than RA1, since lower motion fields will be detected. 

(c) Predicted Overlap (RA3)

(a) Reference Overlap (RA1)
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Fig. 13 – Example of overlap prediction operations when estimating RA2 
(invert) and RA3 (downscale; using α=0.75) from RA1 reference overlap. 

The predicted overlap PredOvID(TB) is stored in the POTTB 

to become available for MAMUs and APMUs operations. 

Details regarding the implementation of Hy-SVM on-chip 

management units are given as follows. 

VI. ON-CHIP HY-SVM MANAGEMENT UNITS 

Fig. 14 presents the block diagram of the proposed on-chip 

Hy-SVM management units. As example, Fig. 14 illustrates 

hardware details of a 4-Tile HEVC case study, which has one 

horizontal (Hor) and one vertical (Ver) Tiles boundary. The 

main goal is to rely on accurate overlap prediction to employ 

energy-efficient memory access and power management to 

designed SPMs in Hy-SVM architecture. As previously 

explained, the overlap prediction leverages past overlap 

formations of past MEs, which are kept stored in the MOT. The 

proposed memory monitoring is the unit responsible for 

capturing the inter-Tiles redundant memory access behavior. 

The prediction unit stores the predicted overlap of a 

corresponding Tiles boundary in the POTs. 

Each HEVC processing unit i has an associated instance of 

memory access management unit (MAMUi) and of adaptive 

power management unit (APMUi). These modules utilize the 

predicted overlap, available in the POTs, to provide energy-
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efficient management of the PrivL1 and PrivL2 SPMs for the 

processing unit i. The MAMUi receives a memory access 

request and, based on a read/write policy, translates the address 

and forwards the operation to either PrivL1 or PrivL2. Further, 

if the incoming access is related to a basic unit inside any 

predicted overlap, the request is forwarded to a MAMUOv, 

responsible of managing the SharedL2 SPMs accesses. As the 

private MAMUs require the knowledge of the predicted 

overlaps, each unit has an instance of the POTs (as in Fig. 14). 

The APMUi analyzes the POT content and HEVC parameters 

to build the power maps for the PrivL2 SPMi. The power maps 

are directly connected to the sleep-transistors that control the 

power state of each sector of STT-RAM array. Additionally, a 

specific APMUOv module manages the power gating operation 

of SharedL2 SPMs. Details regarding MAMUs and APMUs 

implemented schemes are given as follows. 
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Fig. 14 – Block diagram of our on-chip Hy-SVM management units integrated 

to the run-time overlap prediction and memory monitoring units. 

A. Memory Access Management Unit (MAMU) 

Our MAMU implements a read/write policy (see flowchart 

of Fig. 15) that takes advantage from the Tiles overlap to 

increase the data-reuse of the reference frame samples. When 

HEVC processing unit i requests a BU of positions xBU and yBU 

to Hy-SVM, as first step, the MAMU translates the BU frame 

positions to PrivL1 SPM address space. Then, it performs a 

PrivL1 SPMi access to check for hit/miss occurrence. In case of 

a hit, the BU is forwarded to the processing unit. Otherwise, a 

miss leads to the access of L2 level SPMs. At this point, the 

MAMU checks along with the predicted overlaps if the 

requested BU belongs to one Tiles overlapping region. 

Assuming that the data is inside an overlap related to the Tiles 

intersection TB, the corresponding SharedL2 SPMTB is then 

accessed. In this case, inter-Tiles data reuse is exploited, since 

the processing of all Tiles that share the Tiles boundary TB may 

request the same data. For non-overlapping regions, the PrivL2 

SPMi is accessed, leading to intra-Tile data reuse. Note that for 

each core data request, either a ShreadL2 SPM or a PrivL2 SPM 

is accessed. If a L2 hit is verified, the data is forwarded to the 

processing unit and the PrivL1 SPMi is filled with the requested 

BU. In case of a L2 miss, the BU must be fetched from the 

external memory and written to either PrivL2i or SharedL2TB 

SPM (depending on the predicted overlap) and the PrivL1 

SPMi. After that, the data is forwarded to the Tiles-specific 

HEVC processing unit. 
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Fig. 15 – Flow of our memory access management unit with read/write policy. 
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Fig. 16 – An example of data interaction for a 2-Tile HEVC encoding. 

Case-study example: Fig. 16 depicts an example of data 

migration for our read/write policy in four different cases, 

considering a 2-Tile HEVC encoding system. 

(a) In the beginning, the on-chip SPMs are empty and each 

request will lead to external memory fetching (L1 and L2 

misses). Fig. 16 shows that predicted overlap is analyzed to 

determine whether the reference BU is stored in the PrivL2 

SPMi or in the SharedL2 SPMTB. The PrivL1 SPMi is always 

filled with the fetched data. During the frame encoding, due 

to the intra-Tile (PrivL1 and PrivL2 SPMs) and inter-Tiles 

(SharedL2 SPMs) reused data, more hits occur and even less 

external memory communication is needed.  

(b) The second case of Fig. 16 depicts Tiles-centering CTUs 

processing where only the PrivL2 SPMs are accessed (only 

intra-Tile data reuse). Note that all accesses inside this case 

are directed to reference frame BUs outside the predicted 

overlap. We can also observe some PrivL1 SPMs hits, which 

avoid L2 SPMs accessing and external memory fetching. 

(c) The third case illustrates accesses from CTUs located close 

to the Tiles boundary. In this scenario, L2 memory hits are 

verified for both PrivL2 and SharedL2 SPMs (i.e. combined 

intra- and inter-Tiles data reuse). This case represents the 

best energy efficiency when requiring L2 level access. 

(d) The last scenario of Fig. 16 presents the best case of energy 

efficiency, where all memory accesses result on PrivL1 hits. 
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B. Adaptive Power Management Unit (APMU) 

Our APMU leverages the predicted overlaps and the search 

limits of current CTUs to further reduce the static energy 

consumption of Hy-SVM. The SPMs in the L2 level of Hy-

SVM (implemented as STT-RAM) were designed to operate in 

two power states: ON (VON=VDD volts) and OFF (VOFF=0 

volts). Due to the non-volatility characteristic of STT-RAM, the 

data is kept stored in the memory cell even when OFF state is 

assigned (differently from SRAM cells). Further, L2 SPMs are 

typically significantly larger than L1 SPMs, leading to higher 

energy consumption. In doing so, our APMU concentrates 

effort in L2 SPMs, resulting in a great impact in the Hy-SVM 

overall on-chip energy (as demonstrated in Section VIII). 

In Hy-SVM, the L2 Level can store an entire reference frame, 

exploiting STT-RAM reduced leakage power and providing 

high intra-Tile and inter-Tiles data reuse, leading to reduced 

external memory energy. Besides, the ME required memory 

accesses for all CUs within a CTU is limited to a search 

window, which represents a small portion of the whole 

reference frame. Our APMU scheme relies on estimates the 

search limits for the entire CTU processing, which combines 

the search window of the ME for all CUs. The CTU search 

limits are defined as a squared region of BUs of ⌈(SLDim ×
SLDim)/BUSize⌉ size, where SLDim = CTUSize + SWDim.  

An example of the APMU operation is illustrated in Fig. 17. 

In the first part, the adopted 2-Tile HEVC encoding scenario is 

represented at reference frame perspective (Fig. 17a). The 

current CTU search limits of Tile 0 and Tile 1 are depicted, as 

well as the predicted overlap (stored in the POT using the 

proposed representation, as in in Fig. 17b).  
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Fig. 17 – Example: adaptive power management of STT-RAM L2 SPMs for a 

2-Tile scenario. 

At the beginning of frame processing, the APMU builds one 

frame-level power map for each L2 SPMs. For the PrivL2 

SPMs, the memory sectors outside the predicted overlap have 

associated power state set as ON. Otherwise, the OFF state is 

assigned. As previously discussed, L2 accesses are directed 

either to a PrivL2 SPM or a SharedL2 SPM, depending on the 

predicted formation of the overlap. The APMU frame-level 

power map building process is the opposite for the SharedL2 

SPMs, as presented in Fig. 17c. The frame-level power maps 

are not directly assigned to the sleep-transistors of the L2 SPMs, 

being start points to compose the CTU-level power maps. At 

CTU level, our scheme checks the frame-level power map 

against the search limits of the current CTUs. Note that the 

PrivL2 SPMs must be checked against the search limits of its 

corresponding Tile processing, while the SharedL2 SPMs must 

be analyzed considering the search limits of all HEVC 

processing units. The SPM sectors outside the search limits are 

set as OFF state, resulting on CTU-level power maps of Fig. 

17d. By assigning ON state for the STT-RAM sectors inside the 

CTU search limit, we ensure long sleep durations during one 

entire CTU processing. 

VII. EVALUATION METHODOLOGY 

A custom simulator was developed to capture the video 

memory access traces. Based on adopted memory power 

models, it estimates the energy consumption for on- and off-

chip parts, as well as the overhead of implementing our run-

time management schemes.  

Regarding the design-time parameters of Hy-SVM (defined 

in Section IV.A), we defined BUDim as 8 due to the smallest 

possible CU size defined by HEVC [1]. To provide balanced 

fine- and coarse-grain power management, the NBUsPerSector is set 

as 4. In doing so, each sleep transistor determine the power state 

of one 16x16 reference frame region stored in the SPM. 

A. Memory Power Models 

The CACTI 6.5 tool [34] was used for on-chip SRAM 

energies/latencies considering 32nm memory cells. The 32nm 

STT-RAM electrical parameters were extracted using the 

NVSim tool [35]. To estimate static energy reduction, as well 

as wake-up latencies/energies, we adopted the analytical model 

proposed in [36]. As external memory, the 4-Gbit Low-Power 

DDR2 (LPDDR2) DRAM MT42L128M16D1GU-25WT [37] 

chip was used. The main specifications are: VDD=1.2V, 

Freq=533MHz, word size of 32 bits, page size equals to 512 

bytes, 16K rows and 2K columns. The total energy is derived 

by the composition of six components: page activation energy, 

write energy, read energy, I/O pins energy, refresh energy and 

standby energy [38], [39].  

B. Video Coding Parameters 

The experimental evaluations are based on the recommended 

HEVC common test conditions [40] using the HEVC test model 

(HM 13.0) [41]. We perform analyses for 2, 4, 8 and 16 uniform 

Tile partitioning scenarios based on a 128x128 search window 

size. In total, fourteen different video sequences with distinct 

properties were evaluated: BasketballDrive (BDrive), Beauty, 

Bosphorus, BQTerrace (BQTerr), Cactus, Kimono, ParkScene 

(PScene), ReadySteadyGo (RSGo), ShakeNDry (SNDry) and 
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YachtRide (YRide) - HD1080 (1920x1080 pixels); 

NebutaFestival (NFest), PeopleOnStreet (People), 

SteamLocomotiveTrain (SLTrain) and Traffic (2K – 2560x1600 

pixels). Other HEVC settings are: GOP=8, CABAC, FRExt, 

Random Access configuration, and TZ Search algorithm. 

C. Comparison-Purpose Baseline Hy-SVM Architectures 

Besides the comparison with related works, we implemented 

baseline variations of Hy-SVM to measure the efficiency of our 

design decisions. Hence, three alternative comparison-purpose 

architectures were evaluated in our experiments: 

 All-SRAM: adopts the SRAM technology for all SPMs in 

Hy-SVM architecture. The goal is to evaluate the benefits 

(static energy consumption) and shortcomings (poor write 

efficiency) of using STT-RAM in L2 SPMs; 

 Priv-Only: avoids the usage of Shared SPMs, thus exploiting 

only intra-Tile data reuse. The main purpose is to evaluate 

the impacts of SharedL2 SPMs, as well as the overlap 

management efficiency; 

 No-APMU: avoids the proposed power management over L2 

SPMs. The goal is to evaluate the contributions of APMU in 

the on-chip energy savings of Hy-SVM. 

VIII. EXPERIMENTAL RESULTS  

The discussion of our experimental results is composed of 

four parts: initially, (in subsection A) the energy consumption 

regarding the external memory is analyzed; then, (in B) the on-

chip energy savings are evaluated; later, (in C) the overall 

energy is computed and compared with related works and 

baseline implementations; finally, (in D) an overhead analysis 

is presented in terms of access latency and dynamic energy, as 

well as required extra on-chip memory size. 

A. Off-Chip Energy Results 

Fig. 18 depicts the off-chip energy savings of Hy-SVM 

compared to related implementations. The analysis was 

performed for 4-Tile and 8-Tile HEVC encoding considering 

different video sequences.  

As first remark from the experiments, we observe that the 

off-chip energy savings may vary according to video content 

properties. HEVC encoding of high motion sequences (like 

Kimono and BasketballDrive in Fig. 18) lead to larger overlaps, 

since the motion search reaches more distant reference frame 

samples. In these cases, our Hy-SVM architecture is able to 

exploit this increased inter-Tiles data reuse potential and save 

external memory communication. 

Level-C [9] represents the upper bound results, since it only 

exploits intra-Tile data reuse in search window level. Hy-SVM 

can save up to 85% off-chip energy compared to Level-C, on 

average. Regarding dSVM [3] architecture, which also exploits 

joint intra-Tile and inter-Tiles data reuse, our Hy-SVM can 

achieve savings of up to 80% and 61%, for 4- and 8- Tiles 

respectively. The use of STT-RAM allows Hy-SVM the 

energy-efficient on-chip storage of entire reference frame 

samples. Hence, it strongly impacts in the external memory 

communication, since dSVM adopts intra-Tile data reuse in 

search window level. As we demonstrated in next section, the 

extra energy consumed by Hy-SVM larger on-chip SPMs is 

compensated by STT-RAM benefits and improved power 

management. AMBER [32] and enHyV [33] achieved 

increased off-chip energy savings when compared to Hy-SVM: 

up to 9% and 16% on average, respectively. AMBER fully 

exploits reference frame level data reuse, avoiding data re-

fetching from external memory during a frame processing. 

However, to support Tiles-parallelized HEVC, AMBER 

requires the multiplication of its on-chip video memories, 

which strongly affects its on-chip energy efficiency (as 

discussed in next sections). enHyV implements data-reuse 

schemes in the same levels of Hy-SVM, without a proper 

management of the overlap formation. In the external memory 

perspective, enHyV provides a more complete support for inter-

Tiles redundant accesses, leading to reduced SharedL2 misses. 

Still, Hy-SVM can achieve competitive off-chip energy results 

and, additionally, implements an overlap management that 

strongly reduces the SharedL2 SPMs on-chip energy. 

Compared to our Priv-Only baseline implementation, the 

SharedL2 SPMs contributes by reducing up to 24% (4-Tile) and 

35% (8-Tile) the external memory energy consumption, on 

average. Note that the achieved savings increase when more 

Tiles are used (higher parallelism), due to the well-exploited 

increased inter-Tiles data reuse potential by Hy-SVM. We 

demonstrate in the next sections that the on-chip energy 

required for SharedL2 SPMs is strongly reduced by our energy-

efficient management schemes, resulting on savings when 

compared to Priv-Only. 
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   Fig. 18 – Off-chip energy savings of Hy-SVM compared to related works (128x128 search window size). 
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B. On-Chip Energy Results 

Fig. 19 shows the on-chip energy analysis of Hy-SVM 

compared to related works and baseline. In this evaluation, 

AMBER represents the upper bound case, since it replicates the 

storage of the reference frame for each Tile processing. In this 

case, Hy-SVM consumes 97% less on-chip energy than 

AMBER. The authors of AMBER did not informed the on-chip 

static energy savings lead by the proposed power-gating 

scheme. In doing so, it is not possible to perform a fair 

comparison with Hy-SVM. However, when comparing with the 

No-APMU baseline version of Hy-SVM, we can also note 

savings of 69%-83% (4-Tile) and 82-89%% (8-Tile), on 

average, when processing HD1080 and 2K videos, respectively. 

From enHyV perspective, Hy-SVM achieves on-chip energy 

savings from 66% (HD1080/8-Tile) up to 87% (2K/4-Tile). The 

gains over enHyV are mostly due to an improved power 

management, which relies on overlap management, as well as 

to enHyV extra SRAM memory to improve STT-RAM cells 

lifetime. When compared to dSVM, our Hy-SVM architecture 

presents similar on-chip energy consumption: 28% lower for 

2K videos and 31% higher for HD1080 videos. Combining this 

with the previous off-chip energy results, Hy-SVM is able 

reduce the energy of external memory communication with 

similar on-chip energy consumption (demonstrated in next 

section). 
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Fig. 19 – On-chip energy consumption of Hy-SVM compared to related works. 

Compared to baseline All-SRAM and No-APMU 

implementations, our Hy-SVM can achieve up to 90% (4-Tile) 

and 83% (8-Tile) energy reduction. The savings related to All-

SRAM are related to the STT-RAM low leakage power 

dissipation. The savings compared to No-APMU represent the 

efficiency of our power management over L2 level of SPMs. 

C. Overall Energy Results 

Table III presents the overall energy savings of Hy-SVM for 

4-Tile and 8-Tile scenarios. The total energy is computed (fifth 

column of Table III) by the composition of off- and on-chip 

parts, including the control hardware that implements the 

management schemes.  

Compared to Level-C scheme, even this presenting the 

smallest on-chip video memory (i.e. lower on-chip energy), Hy-

SVM can reach overall energy savings of 69%-77%. These 

gains are mainly related to the reduction of 5.2 times in the 

external memory energy by exploiting inter-Tiles data reuse. 

Regarding the dSVM architecture, the multiple levels of SPMs 

allows Hy-SVM total memory energy savings of 43%-72%, for 

4- and 8-Tile respectively. When comparing to AMBER, which 

achieves the best off-chip energy results, Hy-SVM reaches up 

to 94% of total energy savings. If we do not consider the APMU 

and the overlap management of HySVM, the No-APMU 

baseline version can, still, achieve overall energy reduction 

compared to AMBER (55% for 4-Tile; and 51% for 8-Tile 

scenarios). As previously discussed, enHyV also achieves 

lower external memory energy consumption than Hy-SVM. 

However, in an off- and on-chip combined perspective, Hy-

SVM surpasses enHyV by achieving 58%-61% of improved 

energy efficiency. Finally, the proposed management layer, 

composed of overlap prediction, and on-chip MAMUs and 

AMPUs, can improve the energy efficiency of Hy-SVM by 

64% and 58% in 8-Tile and 4-Tile parallel HEVC, respectively. 

TABLE III OVERALL ENERGY SAVINGS OF HY-SVM COMPARED TO 

RELATED WORKS 

Solution 

On-

Chip 

Mem. 

[KB] 

On-

Chip 

Energy 

[mJ] 

Off-

Chip 

Energy 

[mJ] 

Total 

Energy 

[mJ] 

Savings  

Hy-SVM 

[%] 

Scenario 1: 4-Tile HD 1080, 128x128 search window 

Level-C [9] 144 68 1,379 1,447 77% 

dSVM [3] 519 107 1,072 1,179 72% 

AMBER [32] 8,100 4,072 183 4,255 
79%* 

92% 

enHyV [33] 3,384 542 198 740 55% 

Our No-APMU 2,544 711 198 908 64% 

Our Hy-SVM 2,544 124 206 330 - 

Scenario 2: 8-Tile HD 1080, 128x128 search window 

Level-C [9] 288 137 1,360 1,497 69% 

dSVM [3] 933 189 615 804 43% 

AMBER [32] 16,200 8,144 183 8,327 
87%* 

94% 

enHyV [33] 3,892 739 193 932 51% 

Our No-APMU 3,168 906 193 1,100 58% 

Our Hy-SVM 3,168 252 208 461 - 

*savings of No-APMU over AMBER 

D. Overhead Analysis 

Fig. 20 presents an overhead analysis of the implemented 

management techniques in Hy-SVM. We utilize the All-SRAM 

and Priv-Only baseline implementations to discuss the 

overhead in terms of access latency (Fig. 20a) and dynamic 

energy consumption (Fig. 20b). Compared to All-SRAM, the 

overhead of inefficient STT-RAM write operations represents 

(on average) only 0.3% in terms of latency, and 0.8% in 

dynamic energy. Since PrivL1 SPMs have high hit rates (more 

than 95%), combined to low write intensity of video memories 

(as discussed in Section II.B), STT-RAM write penalty in Hy-

SVM can be reduced. The comparison with Priv-Only version 

aims to evaluate the MAMU inserted overhead of analyzing the 

POTs to direct the incoming access either to PrivL2 or 

SharedL2 SPM. Still, the high L1 hit rates strongly reduces the 

overhead of overlap management, since it runs when L2 level 

access is required. Additionally, the hardware required for 

overlap management is composed of small tables and requires 

simple logic operations. As result, we can notice an overhead 

(on average) in the latency of only 4.7%, as well as 8.8% in the 

dynamic energy. Complementary, Fig. 20c shows the extra on-

chip memory size required to implement the proposed energy-

efficient management layer of Hy-SVM. In this analysis, we 
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compute the size of monitored and predicted overlap tables 

(POTs and MOTs), as well as the frame-level and CTU-level 

power maps. As result, the overhead achieves only 4% in the 

worst-case scenario (16-Tile). 
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Fig. 20 – Overhead analysis in terms of: (a) latency, (b) dynamic energy and (c) 

extra on-chip memory size. 

IX. CONCLUSIONS 

This work presented a hybrid scratchpad video memory 

architecture for parallelized High-Efficiency Video Coding. It 

exploits opportunities from application-specific memory access 

behavior, combining scratchpad memories and hybrid memory 

design to improve the energy efficiency w.r.t. the memory 

infrastructure of parallel HEVC video encoders. We designed 

multiple levels of private and shared on-chip SPMs to fully 

exploit intra-Tile and inter-Tiles data reuse. For the SPMs 

implementation, we proposed a design methodology based on 

extracted application-specific properties. To improve the 

energy savings, we propose a memory management layer, 

which exploits the existing overlapping regions within the 

reference frames. In this context, our management layer is 

composed of the run-time overlap prediction scheme, as well as 

on-chip control units: memory access management and 

adaptive power management units. Our architecture provides 

from 51% up to 94% of energy savings compared to recent 

related works. The proposed Hy-SVM enables energy-efficient 

multimedia processing supporting parallel execution in state-

of-the-art HEVC encoders. 
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