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Abstract: The paper’s objective is to present the 
development of a recursive methodology which is based on 
Adomian Decompostion Method in order to evaluate the 
mechanical response of thin laminated plates in linear bending. 
By the equivalent layer concept, the linear relation between 
the equivalent stresses and the strains, namely ABD matrix, 
is established. When viewed by the Adomian Decompostion 
Method perspective, it generates an interesting idea: each 
layer influence on the plate’s response can be recursively 
inserted into a base solution by a rearrangement of the plate’s 
properties. This base solution is previously obtained and it is, 
in this paper, an isotropic plate response for the same loading 
and boundary conditions. This approach can significantly 
increase optimization and delamination studies, given the 
simplicity on the layers modification, both in fiber orientation 
and constitutive properties, as these are considered on 
the recursive procedure. The pb-2 Rayleigh-Ritz Method is 
used to approximate the solution space and to generate 
analytic response surfaces. The methodology is applied to 
symmetrical and unsymmetrical stacking cases for different 
boundary conditions sets and loading types and the obtained 
responses are compared to those found on the literature. 
A study of case complements the methodology analysis: a 
simplified landing gear door is modeled considering a set of 
loading conditions as well as different stacking configurations. 
Good correspondence was found in all studied cases.

Keywords: Recursive methodology, Adomian 
Decomposition Method, Sandwich plates and laminated 
plates, Thin plates in bending.
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the Mechanical Response of Thin 
Laminated Plates in Bending
Tales de Vargas Lisboa1, Filipe Paixão Geiger1, Rogério José Marczak1

INTRODUCTION

Nowadays and mainly in the aerospace, automotive, and 
marine industries, sandwich and laminated plates are applied 
in several types of structures due to their mechanical properties 
(Gay et al. 2003; Mangino et al. 2007). It is well-known that 
sandwich plates are designed either to protect the inner layer 
from the external environment/types of loading or to enhance 
the inertia of the structure, while laminated plates are designed 
to maximize the strength/weight ratio as well as to fit properly 
the structural element to the problem’s loading and boundary 
conditions. Despite the knowledge on sandwich and laminated 
plate mechanical behavior (Reddy 1997; Ferreira et al. 2011; 
Carrera 1996; Wang et al. 2002; Vel and Batra 2000; Altenbach 
1998), there is great interest in new methodologies which can 
not only solve the problem in a better fashion but also introduce 
new information about what is to be analyzed. 

Several authors have worked on the determination of 
sandwich and laminated plates’ mechanical behavior. Many 
mathematical models have been discussed and various physical 
phenomena have been added to them. Reddy (1997) has 
described many principles related to this topic, from the Classical 
Laminated Plates Theory (CLPT), herein used, to non-linear 
analysis of laminated shells. Ferreira et al. (2011) have analyzed 
thin and thick isotropic and cross-ply plates using a Unified 
Formulation, which has been developed by Carrera (1996), 
presented numerical results for plate static deflection and free 
vibration. Wang et al. (2002) have studied thick rectangular 
composite plates using the reproducing kernel particle method 
and shown good results for linear bending, free vibration, and 

doi: 10.5028/jatm.v9i4.761

1.Universidade Federal do Rio Grande do Sul – Escola de Engenharia – Departamento de Engenharia Mecânica – Porto Alegre/RS – Brazil.

Author for correspondence: Tales de Vargas Lisboa | Universidade Federal do Rio Grande do Sul – Escola de Engenharia – Departamento de Engenharia Mecânica | 
Rua Sarmento Leite, 425 | CEP: 90.050-170 – Porto Alegre/RS – Brazil | Email: taleslisboa@daad-alumni.de

Received: Aug. 10, 2016 | Accepted: Jan. 04, 2017



J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 4, pp.409-422, Oct.-Dec., 2017

410
Lisboa TV, Geiger FP, Marczak RJ

buckling loads for several boundary conditions sets. Vel and 
Batra (2000) have applied the Eshelby-Stroh formalism in order 
to analyze the generalized plain strain in anisotropic linear 
elastic laminated plates and presented normal and transverse 
stress distributions for clamped-clamped, cantilever (clamped-
free), and clamped-simply supported boundary conditions. 
Altenbach (1998) has presented a complete review in the 
state-of-art of theories for laminated and sandwich plates, 
prior to 1998. In spite of the years, his study is still relevant: 
not only the collection of several aspects and assumptions of 
analyzing inhomogeneous plates has been presented but also 
the advantages and disadvantages of using such structures in 
engineering have been widely discussed.

The Adomian Decomposition Method (ADM) (Adomian 
1994) is a recursive methodology which has been used in 
several scientific areas to solve linear and non-linear ordinary 
and partial differential equations. It is well-known that ADM is 
a special case of homotopy methods (Öziş and Yildirim 2008; 
Li 2009), which is basically the determination of the solution 
by applying perturbations to the response of a similar problem. 
Essentially, in ADM, the differential operator is decomposed 
into 2 or 3 terms — namely linear, remainder, and non-linear 
— and its solution is expanded in infinite series. Recursively, 
each solution term is determined by a correlation among the 
operators parts and previous results. Rao (2010) has determined 
the Ricatti generalized differential equation solution by applying 
the method. Karimpour and Ganji (2008) have employed the 
ADM and obtained the exact solution for lateral motion of 
thin plates subjected to lateral and in-plane loadings. Given the 
orthogonal nature of the basis functions, some of the obtained 
solutions are analytic. Biazar et al. (2004) have demonstrated 
that this decomposition can be applied to ordinary non-linear 
equations and they obtained good results. Cheniguel and Ayadi 
(2011) have used the method in order to solve the heat equation 
with non-local boundary conditions. For some problems, 
the authors have achieved the exact solution of the problem. 
Olivares (2003) has applied the method to partial differential 
equations and obtained excellent solutions, when compared to 
those found in the literature. As one can notice, the method 
was utilized in different types of problems, differing in their 
physical areas, and for all of them good results were obtained 
when compared to other methodologies.

The pb-2 Rayleigh-Ritz Method (pb-2 RRM) is widely 
used in the solution of the thin and thick plate’s differential 
equation. Basically, a weighted kinematically admissible 

interpolation basis is constructed to approximate the problem’s 
degrees-of-freedom. By the minimization of the Total Potential 
Energy, the weight of each function is determined. The pb-2 
modification eases the interpolation functions necessity of 
being kinematically admissible by multiplying the entire basis 
by specific monomials (Bhat’s beam functions; Bhat 1985). 
These functions insert zeros into the interpolation functions, 
forcing them to satisfy the boundary conditions set. Bhat 
(1985) and Liew (1992) used the method for obtaining the 
transverse displacement response of thin isotropic plates. 
Improved by Liew and Wang (1993), the methodology has 
been also considered to solve plate free vibration and to 
analyze buckling loads. Liew and Lam (1991) employed it in 
order to determine isotropic and anisotropic free vibration 
responses. The main objective of using pb-2 RRM is to ease 
the employment of boundary conditions sets and to obtain 
global semi-analytical solutions.

As aforementioned, one step of ADM is the decomposition 
of the differential operator into 2 (or 3) terms. Herein, this 
decomposition follows the idea of an additive decomposition 
of the constitutive tensor (Browaeys and Chevrot 2004) which 
is based on a constitutive hierarchy (Forte and Vianello 1996; 
Chadwick et al. 2001; Ting 2003). The concept of constitutive 
symmetry relies on the relationship between the set of planes 
of 2 different materials, for instance. If the union of such sets 
is complete, these materials belong to the same symmetry. 
Following a similar consideration, the idea of constitutive 
hierarchy is related to the set of planes of 2 different symmetries 
so that if one is a subgroup of another, a hierarchic relation 
(with lower and higher symmetries) can be devised. Thus, 
due to the fact that there is a finite number of constitutive 
symmetries, one can assembly a constitutive hierarchic tree 
(Chadwick et al. 2001; Ting 2003). Being the constitutive 
relationship reduced, in the case of classical plate’s theory, 
a new hierarchic tree is required and it is presented herein.

The additive decomposition extracts a lower symmetry 
(with more symmetric planes) from a higher one (with 
fewer symmetric planes) by applying projections into the 
reduced constitutive tensor. Basically, these projections insert 
symmetric planes into the set of the lower symmetry resulting 
into a new constitutive tensor which corresponds to a higher 
symmetry. The original symmetry then is reconstructed by 
adding the remainder and the projected tensor. Independently 
from the symmetry of the original tensor, an isotropic tensor 
can be always extracted. The reason is simple: the isotropic 
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symmetry is irreducible to any anisotropic symmetry by 
being the highest symmetry in terms of constitutive hierarchy 
(Forte and Vianello 1996; Chadwick et al. 2001; Ting 2003). 
Consequently, one can extract an isotropic portion from 
all laminae and the remainder tensor, for each laminated, 
concerns to anisotropic terms. 

This methodology can greatly accelerate optimization 
processes in laminated plates due to the fact that the resultant 
of the anisotropic tensor is not inversed in the recursive 
procedure, easing the development of the derivatives with 
respect either to the plate’s stacking or to the fiber orientation. 
The additive decomposition (Browaeys and Chevrot 2004) 
is developed to 3-D constitutive tensor. In order to apply 
this procedure to the reduced constitutive tensor, a new 
projector is presented.

The paper’s aim is to analyze a new methodology which 
solves the governing equation of laminated thin plate in 
bending by inserting the material’s heterogeneity in a 
recursive fashion. The thin laminated plate’s differential 
equation is derived and in the process, the well-known ABD 
matrix is developed. This matrix relates equivalent stresses 
and the plate’s strains. Further, the internal energy as well as
the external potential are determined to construct the 
structure total potential energy functional, necessary to pb-2 
RRM. A base solution — an isotropic one — is determined 
and any modification to the fiber orientation or/and to the 
lamina stacking is viewed as a modification on the plate’s 
stiffness (ABD matrix) and it is recursively inserted into the 
isotropic solution by ADM. 

This paper is divided in 5 sections. The second one 
describes the process to derive the diff erential equation for 
sandwich and laminated thin plates. Th e implementation 
of pb-2 Rayleigh-Ritz to the CLPT is presented in the third 
section. In the fourth one, Adomian Decomposition Method 
is described and applied to the pb-2 RRM, resulting in the 
recursive procedure. Aft erwards, the numeric results of 5 
examples are shown and discussed in the fi ft h section. Finally, 
the conclusions are presented. In this paper, both matrix and 
index notation are used. Th e summation with repeated indices 
are considered, otherwise written, as well as the ranges of 
Greek and small-caps Roman letters are from 1 to 2 and 1 to 
3, respectively. In case of high-caps Roman letters, the range 
is given at the fi rst opportunity. Vectors and matrices are 
written respectively in small-caps and high-caps bold letters 
and all vectors are column-vectors.

ANALYTIC PROCEDURES

Th e displacement fi eld of a thin plate (Fig. 1) described by 
the CLPT is written as (Reddy 1997):

...
...

Reference surface

n
hx1

x2

x3

q3

Ω
Λ

∂Λ

where xi represent the Cartesian coordinates; ui  denote the
plate’s displacement in i direction and x0 

α correspond to
the membrane displacement. 

In Fig. 1, h denotes the plate’s thickness, n the outwards 
normal vector of the plate’s boundary дΛ. Th e plate’s volume
and mid-surface are represented respectively by Ω and Λ, 
while the lateral loading corresponds to q3. Moreover, the 
plate’s stacking is shown, presenting the inhomogeneity in x3
direction.

Figure 1. Plate’s geometry and stacking confi guration.

By the equivalent layer concept hypothesis (Altenbach 
1998), the displacement field of a laminated plate is the 
same as a homogeneous one. Th us, the strain vector, ε, can 
be derived as:

(1)

(2)

where:
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noting that R is a 3 × 3 transformation matrix and θ(l)

is the directive angle between the global and local Cartesian 
coordinate systems of each lamina.

Th e stresses resultants, namely moments — M  and normals 
— N, are defi ned as:

ε0 and κ correspond to the membrane strains and the
plate’s curvatures, respectively. Th e stresses fi eld, σ, can be 
introduced as: 

where l is a positive integer which identifies the laminae 
(Fig. 1); Q(l) is the reduced constitutive tensor transformed 
to the global coordinates. Given the plate’s inhomogeneous 
nature, each lamina develops its own stress field. When 
described in the lamina’s principal coordinate system (local 
coordinates), the reduced constitutive tensor is written as:

(3)

(6)

(4)

(5)

(7)

(8)which represents an orthorhombic material. Being the ana-
lysis based on the plate’s coordinate axes, the constitutive 
tensor in Eq. 4 is transformed by the following rule (Reddy 
1997):

where L is the number of laminae; zl denotes the Euclidian 
distance between lth lamina’s base and the mid-surface. 
Equations 6 can be described in a compact and well-known 
form, which is:
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Th e laminated stiff ness matrix, P, or just ABD matrix, 
has some intrinsic properties: A and D are respectively the 
membrane and transverse stiff ness along with B, which is
the extensional-bending matrix.

With the stress resultants defi ned, the diff erential equations 
of classical laminated thin plates can be derived. Translating 
the equilibrium equations in the stress resultants, M and N, 
one can fi nd (Reddy 1997):

with the differential equations and its boundary conditions, 
one can choose the most appropriate method to solve 
the problem. The objective herein is to apply the ADM 
so as to improve the analysis of sandwich and laminated
plates.

The pb-2 RRM uses the Principle of Minimal Potential 
Energy (PMPE) in order to derive the structure’s equilibrium 
position. The Potential Energy, Π, is determined by the 
sum of the internal energy, U, and the external potential, 
Ve. The first is described as the inner-product between the 
stress and strain vectors. As a result, one can write:

and by Eqs. 2 and 7:

where qm = {q1    q2}T . 
In considering the coupled problem, the full diff erential 

equations system is determined as:

where

Th e external potential is determined as:

PB-2 RAYLEIGH-RITZ METHOD

By the pb-2 RRM, the plate displacement is interpolated 
using as base independent kinematic admissible functions.
The modification, named pb-2, simplifies the boundary 
conditions employment by the multiplication of special 
monomials over the entire base. So as to avoid the 
manipulation of different family functions and to use the 
Gaussian quadrature, polynomials are chosen to populate 
the interpolation basis. Given that, one can write the 
interpolated displacement field as:

(9)

(11)

(13)

(14)

(12)

(10)

The boundary conditions with respect to the displacement 
and the stress resultants are exactly the same as in CPT (Reddy 
1997), due to the equivalent layer concept. Consequently, 

where ω1, ω2 and ω3 group the interpolation functions,
already adjusted to satisfy their respective boundary condi-
tions; λ1, λ2 and λ3 are their respective weighting vectors. 
Moreover:
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logy, which might not be the best approach in this case, the 
remainder term can be used to modify either the plate’s stacking 
or the laminae fi ber orientation leading into improvements 
in optimization routines. Nevertheless, ADM is proposed to 
solve non-linear diff erential equations. By understanding its 
properties in the linear analysis as well as its requirements for 
convergence, one can propose further and better explanations 
over non-linear analysis of any type.

Th ree main characteristics of ADM play signifi cant role in 
the methodology. Given the linear diff erential L(д)u = f, these 
characteristics can be described as:

1. Th e decomposition of the diff erential operator:

The vectors’ size, n, is related to the basis enrichment and 
it is set in order to achieve the desired convergence degree. 
Furthermore, n is derived from the highest polynomial 
degree, np, in the interpolation functions by n = (np + 1)
(np + 2)/2. Concerning the pb-2 RRM,  corresponds to the 
variation on the functional. By applying Eq. 14 into the 
internal energy, Eq. 12, and the external potential, Eq. 13, 
one can obtain:

where B = ∂W
Via the PMPE, one can determine the equilibrium position 

in which the potential energy is minimal. Th is functional and 
its fi rst variation is determined by:

2. Th e expansion of the solution terms in an infi nite series:

3. Th e determination of each solution’s term in a recursive 
manner:(15)

(16)

(17)

Inserting Eq. 15 into Eq. 16, one can obtain:

ADOMIAN DECOMPOSITION METHOD

Many approaches are possible in the solution of Eq. 17.
One of them is the ADM. Despite being a recursive methodo-

Depending on how the decomposition of the differen-
tial operator is performed, the recursive system may have 
some physical meaning. The proposition is to decompose the 
constitutive tensor, in the lamina’s level, into 2 components: 
1 isotropic and 1 remainder. Then, considering it in the 
plate’s level, an isotropic and a remainder part is considered, 
which corresponds exactly to the ADM mathematical 
form. Thus, one can rewrite the reduced constitutive
tensor as:
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where T(1) and T(2) are the decomposed constitutive tensor. 
Consequently (proposition 1):

where P(1) is the base plate’s stiff ness; P(2) represents its possible 
variation (Eq. 7), both in fi ber orientation and stacking. 

As on can note, Eq. 19 is related to the diff erential operator 
decomposition of ADM, since the internal energy is linear to the 
constitutive properties. In Eq. 19, P(1) must be positive-defi nite 
in order to allow the matrix inversion. Th is is not required for
P(2). Actually, none of the properties are required on P(2)

for the procedure. Th e transverse displacement can be expanded 
as an infi nite series (proposition 2) as:

which, in other words, results in the pb-2 RRM constant vector 
expansion. 

Equation 20 is valid only if the same interpolation basis
is used for all expanded terms. Nonetheless, this is not a simpli-
fi cation: it is a requirement for all functions to obey the imposed 
boundary conditions. Lastly, the system is reassembled as:

Th e recursive procedure stops when the convergence is 
reached. It is easy to notice that the convergence criterion 
depends on the eigenvalues of [N(1)]–1 N(2) due to the fact that 
the system in Eq. 22 can be regarded as a pure stretching/
contraction of λ(m): by the singular value decomposition
(SVD), the eigenvectors transform spatially the constant 
vectors λ(m)  and λ(m–1), turning Eq. 22 into an independent 
ordinary system of  variables. As a result, the convergence 
can be reached if and only if the absolute value of each 
eigenvalue [N(1)]–1 N(2) of  is smaller than the unity. On other 
hand, if just one eigenvalue is larger than the unity, this value 
will tend to infi nity, leading the series into a divergent one. 
Furthermore, the closest the eigenvalue is to the unity, slower 
the convergence will be. Th e resultant matrix of [N(1)]–1 N(2) is 
not defective, given the properties of the interpolation basis 
and the positivity of N(1). Th is property is required so as to 
decompose the matrix in its singular values.

The plate’s stiffness decomposition is straightforward, 
as shown in Eq. 19. Noticing the necessity of P(1) being 
positive-definite, which results in N(1) positive-definite, 
and the restriction to the maximum absolute value of 
[N(1)]–1 N(2) eigenvalues, 3 conditions are essential to the 
recursive assignment convergence:

Th e fi rst and the second are directly related to the necessity 
of all eigenvalues of [N(1)]–1 N(2) to be lesser than the unity 
while the last comes from the requirement of [N(1)]–1 having 
an inverse. Th e fi rst requirement is readily satisfi ed due to the 
constitutive tensor positivity, despite the plate’s inhomogeneity. 
In order to ensure the second and third inequalities, an isotropic 
material is simulated with laminae elastic constants. Considering 
a slightly modifi ed version of the projectors (Browaeys and 
Chevrot 2004), M, one can write it as:

(18)

(19)

(20)

(21)

(23)

(24)

(22)

where each term of the expanded solution is recursively
obtained (proposition 3) as:
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so as to apply them to the reduced constitutive tensor in a 
vectorized form, described by:

as:

where POS denotes the spatial position of assessment. 
The material properties used in all numerical results 

are: E2 = 200 × 103 [Pa], E1 = 25 E2 [Pa], ν12 = 0.25 and
G12 = 0.5 E2 [Pa] and their correlation among the reduced 
constitutive tensor (Eq. 4) are:

Monoclinic Orthorhombic Cubic Isotropic

Figure 2.  Constitutive hierarchy for the reduced constitutive 
tensor.

(25)

(26)

where (H) and (L) denote higher and lower with respect to 
the symmetric hierarchy (Forte and Vianello 1996; Chadwick
et al. 2001; Ting 2003); it is possible to extract an isotropic part 
from each lamina. 

As aforementioned, the constitutive hierarchy is defi ned 
in the 3-D elasticity. For the reduced constitutive tensor, the 
hierarchy is simplifi ed as follows.

The projections of Eq. 24 extract an isotropic tensor of 
any anisotropic one (monoclinic, orthorhombic and cubic 
as in Fig. 2). Being isotropic, the last condition (Eq. 23) 
is fulfilled. The second condition must be always tested. 
However, given the large difference between the 2 main 
directions in laminated plates, this requirement is almost 
readily satisfied. 

NUMERIC RESULTS

In order to determine the accuracy and convergence of 
the proposed methodology and, therefore, if the ADM could 
be used to simulate laminated plates, 3 cases were compared 
to analytic/numeric solutions available in the literature. Th e 
results are made non-dimensional so as to ease the results 
comparison. Th ey are described by:

Th e recursive methodology is applied initially for a plate 
with all the fi bers aligned in the same direction with a uniform 
loading and boundary conditions as SSSS (Case 1), where the 
fi rst letter concerns the plate’s south edge, turning to right-
hand direction (Liew and Wang 1993; Liew 1992; Liew and 
Lam 1991). Th e results obtained are presented in Table 1. It 
is possible to notice the good agreement of the solution via 
ADM and the one from (Reddy 1997) using the CLPT.

It is also possible to analyze a second case (Case 2) having 
3 layers stacked with  with the same boundary conditions as 
the previous case. The stacking is symmetric what results in 
decoupling between transverse and membrane displacement. 
Once again the results correspond to each other, which 
indicates the validity of the method used. 

Figures 3a and 3b show the convergence curves for the 
proposed methodology, noticing that the vertical axis is 
non-dimensional and is set as the ratio between the i-th 
iteration and the converged value. The stopping criterion 
was defined as the difference between 2 subsequent steps, 
in an integral fashion (L2 distance between 2 subsequent 
solutions). The tolerance for all numeric results was set 
as 10–9. Despite appearing small, since the method is 
not computationally expensive this criterion is used to 
assure good results. For the first case the convergence is 
reached after 366 iterations. The points are plotted every
5 iterations in both cases. Figure 3b shows that the
method converges on the iteration 257. As one can note,
a good convergence was reached with approximately 75 
iterations, in both cases. 

(27)
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Figure 3. Convergence curves for (a) Case 1 (orientation 
angle  and (b) Case 2 (orientat ion angle) with the displacement 
normalized by the fi nal value.
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Figure 4. Stresses (a), (b)  and (c)  and (d) Convergence 
curve for case 2 concerning layers stacked with.

Another case of study was a plate with 9 layers so as to 
analyze the methodology for a larger number of laminae. Th e 
boundary conditions were set as SSSS with uniform loading. 
Stresses diagrams as well as the convergence are plotted in 
Fig. 3. Th e stresses, in this case, have dimension in MPa. 
Th ere are, in Figs. 4a and 4b, 2 main diagonals represented 
in the dashed line. Th is happens because the layer is rotated , 
which means that every 2 layers are in the same direction. Th e 
highest stress is, as expected, in the last plate perpendicular 
to the mid layer (σ1 and σ2). Convergence is presented in
Fig. 4d, which has been reached aft er 146 iterations.

In order to show that the methodology can be applied 
in non-symmetric stacking, aleatory fi ber orientations were 

No Angle Methodology w ˆ σ ˆxx σ ˆyy σ ˆxy

Case 1 0o
ADM 0.6497 0.7867 0.0244 0.0463

(Reddy 1997) 0.6497 0.7866 0.0244 0.0463

Case 2 0o/90o/0o
ADM 0.6666 0.8074 0.0306 0.0422

(Reddy 1997) 0.6660 0.8075 0.0306 0.0425

Table 1. Comparison between the CLPT and the ADM for displacements and stresses for 2 different angles of staking.

considered and compared to analytic solutions (Bhaskar and 
Dhaoya 2009) as well as to numeric results obtained by the Finite 

(a) (a)

(b)

(b)

(c)

(D)
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Element Model (FEM), according to (Ansys® 2016), which 
is constructed by  linear shell elements. As aforementioned, 
in these cases, there is coupling between the membrane and 
bending effects. The results are expressed in Table 2. For all 
cases, the boundary conditions are CCCC while the loading 
is uniform and unitary.

Table 3. Cases analyzed considering different types of 
staking together with laminae orientation.

No Stacking type Laminae orientation

Case 1 Symmetric [30o/45o/0o/45o/30o]

Case 2 Cross-ply [0o/90o/0o/90o/0o]

Case 3 Angle-ply [45o/–45o/–30o/30o]

Case 4 Anti-symmetric [45o/–30o/30o/–45o]

Case 5 Balanced [30o/60o/–45o/–30o/–60o/–45o]

Stacking Present
Bhaskar and 

Dhaoya (2009)
FEM

[0o/45o/– 45o/90o] 0.3421648 0.3422 0.3426

[45o/0o/– 45o/90o] 0.2930470 0.2926 0.2932

[45o/0o/90o/–45o] 0.3536621 0.3536 0.3543

[45o/–45o/0o/90o] 0.1784942 0.1776 0.1787

Table 2. Non-dimensional center transverse displacement in 
plates with non-symmetric stacking.

Figure 5. (a) Main landing door of an Airbus A350-900 (Sloan and Reque 2014); (b) Mathematical model with the restriction 
and the aerodynamic and dragging forces.

Design results:
Door designed with intentional warp provides stress against latches, to prevent rattling.
Door can restrain landing gear that is inadvertently deployed yet can be opened if door hydraylics fail.
Five of six stringers cobonded with door skin for maximum weight savings

height equal to 2m, 0.9m and 0.9m, respectively, 
spatially positioned at 45o from the main part.

•	 The curved part of the landing gear door is inserted 
into the problem as structural forces applied to the 
main part of the door.

In considering these simplifications, the geometry of 
the component is then reduced to a plate with dimensions 
2.2 m × 0.9m × 0.9m, respectively, height × length × thickness. 
The boundary conditions considered are FFCF as if the top 
edge of the door were rigid-connected to the plane’s fuselage 
while the curved part is connected to the bottom edge of the 
plate. Five cases of different stacking and fiber orientation are 
analyzed, as described in Table 3. These cases are chosen in 
order to embrace several types of stacking in laminated plates. 
The forces applied to the plate (Fig. 4) are:

•	 Aerodynamic in the plate, qa, which is uniform and 
applied in the out-plane direction.The last example, in which the methodology is used, concerns 

a landing gear door. The idea of this example is to develop some 
analytical solution for pre-analysis of this component. The 
model was based on the main landing gear door of an Airbus 
A350-900 (AIRBUS® 2015; Fig. 5a).

The geometry is simplified (Fig. 4b) by the following 
assumptions:

•	 The reinforcements are ignored.
•	 The curved part is viewed as a plane trapezoidal 

geometry, with the larger base, smaller base and the 

(a) (b)
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Case
P1 P1

u3 u3

1
Present −1.9629 −3.8354

FEM −1.9468 −4.1211

2
Present −1.1450 −1.0016

FEM −1.0026 −1.1461

3
Present −1.7874 −2.5666

FEM −1.7746 −2.6908

4
Present −1.5814 −1.5607

FEM −1.5391 −1.6208

5
Present −0.8991 −1.1986

FEM −0.8719 −1.2781

Case
P1 P2

u1 u2 u1 u2

1
Present 0.0005398 −0.0005346 0.0004462 0.0001209

FEM 0.0005425 −0.0005382 0.0004495 0.0001242

2
Present 0.001050 −0.0001019 0.0009573 0.00009760

FEM 0.001051 −0.0001027 0.0009756 0.00009875

3
Present 0.001247 0.0003356 0.0007590 0.001492

FEM 0.001225 0.0003522 0.0007428 0.001503

4
Present 0.002335 −0.001165 0.001967 0.0007895

FEM 0.002375 −0.001245 0.001959 0.0007330

5
Present 0.0007596 −0.0004707 0.0005101 −0.00003547

FEM 0.0007830 −0.0004858 0.0005454 −0.00003706

Table 4. Membrane displacements using the presented 
methodology and FEM.

Table 5. Transverse displacement using the presented 
methodology and FEM.

•	 Dragging force, qd , which depends on the door’s 
lateral area and the drag coefficient and it is applied 
in the in-plane direction.

•	 Consideration of the curved part equivalent forces: 
in-plane, out-plane and applied bending moments 
are considered and all depend on the plate’s area.

In total, there are different loadings: 6 come from the 
curved part of the landing gear door (a resultant of the 
dragging loading, 2 bending and 1 twisting moments as 
well as the 2 resultant forces applied to the plate) and 2 
forces are equivalent to the out-plane loading in that part. 
The analysis was developed both utilizing the presented 
methodology and FEM. Two points were assessed (K1 and 
K2) and they correspond to the vertices of the rectangle, in 
the free edge opposite to the clamped one (same edge which 
the curved part is connected). For the numeric results,  and  
are considered 1 N/m2 and 0.01 N/m2, respectively. These 
values were taken to combine both effects (aerodynamic 
and dragging) with same order. 

Tables 4 and 5 show the results for the membrane and 
transverse displacement respectively. Slightly differences 
can be observed due to the small differences in the way 
the forces are applied in each model. One example is the 
torsion resultant to the dragging loading in the curved 
part. In the presented methodology, there is no degree-of-
freedom which interpolates such behavior. Consequently, 
this effect was considered by an equivalent loading (in-plane 
forces). On the other hand, in the FEM model, this degree-
of-freedom could be directly considered. Despite the small 
differences, one can observe that the methodology can 
solve complex laminated problems, both in unsymmetrical 
stacking and complicated types of stacking and combination 

Figure 6. Displacement of Case 1: (a) Membrane displacement, x direction; (b) Membrane displacement, y direction; 
(c) Transverse displacement. 
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Figure 8. Displacement of Case 3: (a) Membrane displacement, x direction; (b) Membrane displacement, y direction; 
(c) Transverse displacement.

Figure 9. Displacement of Case 4: (a) Membrane displacement, x direction; (b) Membrane displacement, y direction; 
(c) Transverse displacement.

of loadings. Moreover, the solutions obtained have an 
analytical base, giving the possibility of analytic derivatives, 
which can definitely ease optimization processes as well as 
delamination analysis.

Figure 7. Displacement of Case 2: (a) Membrane displacement, x direction; (b) Membrane displacement, y direction; 
(c) Transverse displacement.
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Furthermore, the displacement shapes of u0 
1, u0 

2 and u0 
3 

are presented for each case in Figs. 6 to 10. They are all 
presented in the natural coordinates (s1 and s2, which varies 
from −1 to 1). As expected, the plate’s behavior highly changes 

(a)

(a)

(a)

(b)

(b)

(b)
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(c)
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Figure 10. Displacement of Case 5: (a) Membrane displacement, x direction; (b) Membrane displacement, y direction; 
(c) Transverse displacement.

with the stacking modification. In the analyzed plates, u0 
2 

was the mostly sensible to the stacking modification.

CONCLUSIONS

A new methodology to determine the behavior of 
laminated plates was proposed. The equations were derived 
according to the pb-2 Rayleigh-Ritz Method and the Adomian 
Decomposition Method in order to obtain the stresses and 
displacements of such structures. The results were then 
compared, for 2 cases, with analytic solutions available in 
the literature, showing good agreement. Another case was 
tested and 2 main diagonals appeared in the stress results, 
since there are 2 main directions on the laminated plate. 
The methodology was applied to unsymmetrical stacking 
and excellent correspondence with both analytic and 
numeric solutions was found. Furthermore, a case of study 
was presented and the landing gear door of A350-900 was 
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