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“Don’t only practice your art, but force your way into its

secrets, for it and knowledge can raise men to the divine.”

— LUDWIG VAN BEETHOVEN
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ABSTRACT

Multiagent reinforcement learning (MARL) is a challenging task, where self-interested

agents concurrently learn a policy that maximise their utilities. Learning here is difficult

because agents must adapt to each other, which makes their objective a moving target.

As a side effect, no convergence guarantees exist for the general MARL setting. This

thesis exploits a particular MARL problem, namely route choice (where selfish drivers

aim at choosing routes that minimise their travel costs), to deliver convergence guarantees.

We are particularly interested in guaranteeing convergence to two fundamental solution

concepts: the user equilibrium (UE, when no agent benefits from unilaterally changing its

route) and the system optimum (SO, when average travel time is minimum).

The main goal of this thesis is to show that, in the context of route choice, MARL can be

guaranteed to converge to the UE as well as to the SO upon certain conditions. Firstly,

we introduce a regret-minimising Q-learning algorithm, which we prove that converges to

the UE. Our algorithm works by estimating the regret associated with agents’ actions and

using such information as reinforcement signal for updating the corresponding Q-values.

We also establish a bound on the agents’ regret. We then extend this algorithm to deal

with non-local information provided by a navigation service. Using such information,

agents can improve their regrets estimates, thus performing empirically better. Finally,

in order to mitigate the effects of selfishness, we also present a generalised marginal-cost

tolling scheme in which drivers are charged proportional to the cost imposed on others.

We then devise a toll-based Q-learning algorithm, which we prove that converges to the

SO and that is fairer than existing tolling schemes.

Keywords: Multiagent reinforcement learning. Route choice. User equilibrium. System

optimal. Regret minimisation. Action regret. Travel information. Marginal-cost tolling.





Minimização de Regret e Eficiência do Sistema em Escolha de Rotas

RESUMO

Aprendizagem por reforço multiagente (do inglês, MARL) é uma tarefa desafiadora em

que agentes buscam, concorrentemente, uma política capaz de maximizar sua utilidade.

Aprender neste tipo de cenário é difícil porque os agentes devem se adaptar uns aos outros,

tornando o objetivo um alvo em movimento. Consequentemente, não existem garantias

de convergência para problemas de MARL em geral. Esta tese explora um problema em

particular, denominado escolha de rotas (onde motoristas egoístas deve escolher rotas que

minimizem seus custos de viagem), em busca de garantias de convergência. Em particular,

esta tese busca garantir a convergência de algoritmos de MARL para o equilíbrio dos

usuários (onde nenhum motorista consegue melhorar seu desempenho mudando de rota)

e para o ótimo do sistema (onde o tempo médio de viagem é mínimo).

O principal objetivo desta tese é mostrar que, no contexto de escolha de rotas, é possível

garantir a convergência de algoritmos de MARL sob certas condições. Primeiramente,

introduzimos uma algoritmo de aprendizagem por reforço baseado em minimização de

arrependimento, o qual provamos ser capaz de convergir para o equilíbrio dos usuários.

Nosso algoritmo estima o arrependimento associado com as ações dos agentes e usa tal

informação como sinal de reforço dos agentes. Além do mais, estabelecemos um limite

superior no arrependimento dos agentes. Em seguida, estendemos o referido algoritmo

para lidar com informações não-locais, fornecidas por um serviço de navegação. Ao

usar tais informações, os agentes são capazes de estimar melhor o arrependimento de

suas ações, o que melhora seu desempenho. Finalmente, de modo a mitigar os efeitos

do egoísmo dos agentes, propomos ainda um método genérico de pedágios baseados em

custos marginais, onde os agentes são cobrados proporcionalmente ao custo imposto por

eles aos demais. Neste sentido, apresentamos ainda um algoritmo de aprendizagem por

reforço baseado em pedágios que, provamos, converge para o ótimo do sistema e é mais

justo que outros existentes na literatura.

Palavras-chave: Aprendizagem por reforço multiagente, Escolha de rotas, Equilíbrio

dos usuários, Ótimo do sistema, Minimização de regret, Regret da ação, Informação de

viagem, Pedágio de custo marginal.
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ȧti route actually taken by agent i at time t

∗
ati true best action (that with true highest reward) of agent i at time t

+
ati best action (that with highest Q-value) of agent i at time t

_
ati any non-best action (one that does not have the highest Q-value) of agent i at

time t

Bp pth Braess graph

BBp pth Bi-commodity Braess graph

CR cost of route R

Cl capacity of link l (only used in the BPR function)

cl cost on link l

D set of driver agents



d number of drivers, i.e., d = |D|

Fl free flow travel time on link l

fl travel time on link l (VDF function)

f ′l derivative of the VDF function for link l

G graph representation of a road network

Hi history of reward estimates of agent i

P instance of the route choice problem

K number of available routes

L set of links in the graph

l number of links

m number of OD pairs

N set of nodes in the graph

nu node u

P set of players (in the context of Markov games)

p′1 constant of the VDF

Q Q-value

Q(a) Q-value of action a

R route

RT
i external regret of agent i up to time T

R̃T
i estimated external regret of agent i up to time T

R̃T
i,a estimated action regret of agent’s i action a up to time T

r(s, a) reward received after taking action a in state s
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1 INTRODUCTION

Efficient urban mobility plays a major role in modern societies. Notwithstanding,

the fast-growing demand for mobility associated with the lack of appropriate investments

has compromised the efficiency of traffic systems, as evidenced by the increasing number

(and intensity) of traffic congestions. In fact, according to the Centre for Economics and

Business Research (2014), the cost imposed by traffic congestions on the economy of the

USA was around US$ 120 billion in 2013. Furthermore, as suggested by the same report,

such costs will increase by 50% until 2030.

Traditional approaches for dealing with arising traffic congestions include increas-

ing the physical capacity of existing traffic infrastructure. Such approaches, nonetheless,

have proven unsustainable from many perspectives (e.g., economic, environmental). Fur-

thermore, as stated by the Braess (1968)’s paradox, expanding the infrastructure’s capac-

ity may even deteriorate the traffic performance.

Against this background, ways of making a more efficient use of the existing in-

frastructure have been increasingly studied. In fact, the increasing cooperation of the

traffic engineering and computer science fields has brought insightful results. In par-

ticular, the use of artificial intelligence has leveraged the development of the so-called

intelligent transportation systems (ITS), which aim at promoting the use of technology to

gather and integrate information in order to improve the efficiency of the transportation

system (BAZZAN; KLÜGL, 2013). In the literature, several works put an effort on mod-

elling traffic as an optimisation problem and indeed succeeded in mitigating congestion

effects. However, recent advances in information and telecommunication paved the way

for autonomous, distributed solutions for dealing with traffic issues.

In this thesis, we approach traffic from the drivers’ viewpoint and investigate how

they decide on which route to take everyday. Observe that drivers’ decisions are intrin-

sically self-interested (i.e., regarding their own benefit) and affect the way other drivers

perceive traffic. In this context, explicitly saying which route a driver should choose in

what situation becomes pointless. Facing such challenges, we are interested in investi-

gating how drivers can effectively learn to make their decisions based on their previous

experiences. We can then approach the problem from the reinforcement learning perspec-

tive. By proceeding this way, we look forward to delivering simple traffic solutions that,

in a near future, could be easily deployed to enhance traffic as perceived by drivers.
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1.1 Motivation

Reinforcement learning (RL) in multiagent domains is a challenging task. An

RL agent must learn by trial-and-error how to behave within its environment in order to

maximise its utility. Precisely, the agent aims at learning an optimal behaviour. In the

basic, single-agent RL setting, several algorithms are guaranteed to converge to such an

optimal behaviour (KAELBLING; LITTMAN; MOORE, 1996). However, when multi-

ple, self-interested agents share a common environment, their utilities may be affected

by each others’ decisions (LITTMAN, 1994; CLAUS; BOUTILIER, 1998; BUŞONIU;

BABUSKA; SCHUTTER, 2008). In this regard, agents must adapt their behaviour to

each other, which makes their objective a moving target. Due to such dynamics, no con-

vergence guarantees exist for the general multiagent RL (MARL) setting, i.e., for an ar-

bitrary number of players and actions. In order to overcome such limitations, literature

on MARL has been focused on exploiting the structure of specific problems to investi-

gate convergence guarantees. In this thesis, we follow such a direction by considering a

particular MARL problem, namely the route choice problem, and exploit its structure to

deliver convergence guarantees.

The route choice problem concerns how self-interested drivers (agents1) behave

when choosing routes (actions) between their origins and destinations in order to minimise

their travel costs (e.g., time, money). Whenever a driver takes a route, it affects the traffic

conditions as perceived by other drivers. Consequently, learning plays a role in such

situation, since the agents must adapt their choices to account for the changing traffic

conditions. Thus, the route choice problem presents a challenging scenario for MARL.

In general terms, the performance of route choice can be described considering

both individual and global aspects. In this sense, the most typically studied solution con-

cepts are the user equilibrium (UE) and the system optimum (SO) (WARDROP, 1952).

The UE is achieved when no driver benefits from unilaterally changing its route. As such,

the UE can be seen as a consequence of the agents’ self-interested behaviour. The SO, on

the other hand, represents the system at its best operation (i.e., when the average travel

cost is minimum), and is only attainable if some agents take sub-optimal routes in favour

of the system’s performance. We emphasise, nonetheless, that considering that agents

act rationally to minimise their own costs, it is not realistic to assume that they will take

routes that would lead to the SO: whenever a better route is available, the agents shall pre-

1Henceforth, we use the terms agent and driver interchangeably.
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fer it. Such a deterioration in the system’s performance due to drivers’ selfish behaviour

is known as the Price of Anarchy (PoA) (PAPADIMITRIOU; TSITSIKLIS, 1987).

1.2 Research question and challenges

Motivated by the above discussion, this thesis is driven by the following question:

in the context of the route choice problem, is it possible to design a reinforcement learning

algorithm that is guaranteed to converge to the user equilibrium or to the system optimum?

In the MARL literature, some works have partially answered the this question. However,

existing guarantees are limited to specific cases and do not apply to the route choice

problem (a discussion on this topic is presented in Chapter 2).

In this thesis, we are interested in analysing how RL agents can learn on their

own with performance guarantees, and dropping usual assumptions made in the literature

(such as that agents have full knowledge about the reward functions, which we discuss

next). In this regard, we identify three challenges in the context of route choice that

need to be addressed to achieve the desired convergence guarantees. In order to enhance

presentation, we first formulate each challenge in general terms (as a question) and then

we delve into its details (presenting the possible means to handle it).

• Under what conditions can we guarantee that RL agents will converge to the UE?

As discussed above, when several agents compete for a common resource, the

learning objective becomes a moving target. This is the case of route choice,

where learning means finding the best route to take, and agents’ decisions affect

the reward received by others. In this regard, establishing a bound on the agents’

performance becomes challenging. The use of regret-minimising algorithms has

shown promising results (CESA-BIANCHI; LUGOSI, 2006). Roughly, regret

measures how much worse an agent performs on average in comparison to the

best fixed action in hindsight. Some progress has been made by employing regret

in the context of RL (BOWLING, 2005; ZINKEVICH et al., 2008; WAUGH et

al., 2015), congestion games (BLUM; EVEN-DAR; LIGETT, 2010), multi-armed

bandits (AUER et al., 2002; AWERBUCH; KLEINBERG, 2004). Nonetheless,

most works assume that the agents (or a central authority) have full knowledge

(about the cost functions) and can compute their regret. Hence, the challenge

here is twofold: providing means for the agents to estimate their regret locally
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(i.e., based exclusively on their experience), and ensuring that such regret-based

MARL approach converges to the UE.

• Under what conditions can we enhance the agents’ learning process using non-

local information? Building upon the previous question, a natural extension re-

gards investigating how the provision of travel information affects the agents’

learning process. Considering the increasing adoption of mobile navigation de-

vices, the impact of such devices on the system’s performance should not be ne-

glected (MITCHELL; BORRONI-BIRD; BURNS, 2010; NEW CITIES FOUN-

DATION, 2012). When such devices are available, the provided information may

be incorporated into the agents’ regret (e.g., agents may regret for taking—or

not—a suggested route). In this sense, combining an agent’s experience (local

information) with information provided by a navigation device (non-local infor-

mation) represents a promising direction. In general, however, existing works as-

sume either that agents have full knowledge about the cost functions (BEN-ELIA;

ISHAQ; SHIFTAN, 2013) or that a central authority (responsible for providing

non-local information) can observe agents’ actions a priori (KLÜGL; BAZZAN,

2004; VASSERMAN; FELDMAN; HASSIDIM, 2015). Therefore, the main chal-

lenges here refer to defining the nature of the non-local information (i.e., so that

full knowledge is not required), and to effectively combining the received infor-

mation with the agents’ perceptions.

• Under what conditions can we guarantee that RL agents will converge to the SO?

When agents seek to minimise their travel costs, the system converges to the UE.

However, recall that the UE is inefficient from the system’s perspective. Whereas

agents cannot be enforced to behave altruistically (FEHR; FISCHBACHER, 2003),

the use of tolls can achieve equivalent results (BECKMANN; MCGUIRE; WIN-

STEN, 1956). Building upon previous points, regret could be reformulated to ac-

count for the impact an agent causes on others. This is similar to tolling an agent

proportionally to such impact, which is called marginal-cost tolling (MCT), as

defined by Pigou (1920). We then concentrate on the case of tolls. It should be

noted, nonetheless, that the existing literature on tolls usually assume that a full-

knowledged central authority computes and charges such tolls (COLE; DODIS;

ROUGHGARDEN, 2003; CHEN; KEMPE, 2008; SHARON et al., 2017), which

relies on additional infrastructure. Thus, the challenge here concerns how to em-

ploy MCT in a decentralised way, without relying on full-knowledge assumptions.
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1.3 Proposal and contributions

In this thesis, we investigate the convergence properties of MARL (regarding the

UE and the SO) in the context of route choice. In this regard, we formulate the following

hypotheses to answer our research question: (i) the use of regret as reinforcement signal

leads reinforcement learning agents to converge to the user equilibrium, (ii) the provision

of non-local information to the agents improves their learning performance, and (iii) the

use of marginal-cost tolling leads reinforcement learning agents to converge to a system-

efficient equilibrium2 (i.e., the system optimum).

The main contributions of this thesis can be described as follows.

Learning from regret. We introduce a method through which agents can learn using

their regret. Specifically, we show how agents can estimate their regret locally

(i.e., based exclusively on their experience) and how such estimates can be em-

ployed to guide the RL process. In this regard, we introduce the notion of action

regret, which measures the regret associated with every single action. Agents can

estimate such action regret by keeping an internal history of observed rewards,

thus eliminating any assumption of full knowledge. The action regret can then be

used as reinforcement signal to update the agents’ policies. We provide a theoret-

ical analysis on the system’s convergence, showing that our approach minimises

the agents’ regret and reaches an approximate UE. Moreover, we validate our the-

oretical analysis by means of experimental evaluation. These results also appear

in Ramos, Silva and Bazzan (2017).

Using non-local information. We extend the above topic to deal with non-local infor-

mation. Precisely, we present a method for the agents to estimate their regret

using both local information (an internal history of observed rewards) and non-

local information (provided by means of a mobile navigation entity, henceforth

referred to as the app). The non-local information provided by the app is simply

the average travel times of the routes used by the agents. In this sense, we refor-

mulate an agent’s action regret as a linear combination of its experience (rewards

received in previous episodes) and information provided by the app. We perform

2Hereinafter, we employ the term system-efficient equilibrium to refer to an UE aligned to the SO, i.e., an
equilibrium point that is no longer inefficient from the system’s perspective. In such way, a system-efficient
equilibrium is clearly equivalent to the SO (i.e., the average travel times in both cases is minimum). The
distinction is necessary, however, to emphasise that in the former agents do not have any incentive to deviate,
whereas in the latter they do have such an incentive.
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an experimental evaluation, showing that the use of app-based information im-

proves the agents’ performance. These results are also reported in Ramos, Bazzan

and Silva (2018).

Finding system-efficient equilibria. We present a toll-based mechanism through which

drivers converge to a system-efficient equilibrium. We design tolls using the

marginal-cost tolling (MCT) scheme, where the cost of a link comprises two

terms: the travel time and the toll charged on it. We generalise the toll values

formulation for univariate, homogeneous polynomial cost functions, which com-

prises the most commonly-used cost functions in the literature. In contrast to

other methods in the literature, we assume that tolls are charged a posteriori (i.e.,

at the end of each trip). Furthermore, our toll formulation allows each agent to

compute the toll value it has to pay. In this sense, we can eliminate unnecessary

information (i.e., agents only need to know their travel times and their routes’ free

flow travel time) and unrealistic assumptions (i.e., no additional infrastructure is

required, since tolls can be computed and charged by mobile navigation devices).

We provide theoretical results showing that, in the limit, our method converges to

the UE and that, by using MCT, the UE corresponds to the SO. Thus, in the limit,

the PoA achieves its best ratio. Furthermore, we show that our mechanism is fairer

than a priori toll schemes.

The aforementioned contributions provide an answer to our initial question. In

particular, by employing the proposed methods, it is possible to formally guarantee that

RL agents will converge to the UE and to the SO. As a result, at least in the context of

route choice, MARL can achieve convergence guarantees. It should be noted, however,

that although this thesis focuses on a particular MARL problem, our approach is not

necessarily limited in that regard. Our analyses may apply to other MARL problems as

well. This topic is briefly discussed in the conclusions.

1.4 Publications

The research described in this thesis also appeared in a number papers.

• Gabriel de O. Ramos, Ana L. C. Bazzan, Bruno C. da Silva. Analysing the

impact of travel information for minimising the regret of route choice. Trans-

portation Research Part C: Emerging Technologies, v. 88, p. 257–271, Mar 2018.
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• Gabriel de O. Ramos, Bruno C. da Silva, Ana L. C. Bazzan. Learning to min-

imise regret in route choice. In: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017). São Paulo: IFAA-

MAS, 2017. p. 846–855.

• Gabriel de O. Ramos. Minimising regret in route choice (doctoral consortium).

In: Proc. of the 16th International Conference on Autonomous Agents and Multi-

agent Systems (AAMAS 2017). São Paulo: IFAAMAS, 2017. p. 1855–1856.

• Gabriel de O. Ramos, Ana L. C. Bazzan. On estimating action regret and learn-

ing from it in route choice. In: Proc. of the Ninth Workshop on Agents in Traffic

and Transportation (ATT-2016). New York: CEUR-WS.org, 2016. p. 1–8.

Some results of this thesis are also reported in papers that are still in preparation:

• Gabriel de O. Ramos, Bruno C. da Silva, Ana L. C. Bazzan. A regret-minimising

approach for learning (system-efficient) equilibria in route choice. Paper in prepa-

ration, title might change.

• Gabriel de O. Ramos, Bruno C. da Silva, Ana L. C. Bazzan. Learning system-

efficient equilibria in route choice using tolls. Paper in preparation, title might

change.

Finally, previous works related to this thesis also include:

• Gabriel de O. Ramos, Ana L. C. Bazzan. Efficient local search in traffic assign-

ment. In: 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver:

IEEE, 2016. p. 1493–1500.

• Gabriel de O. Ramos, Ana L. C. Bazzan. Towards the user equilibrium in traf-

fic assignment using GRASP with path relinking. In: Proc. of the 2015 Con-

ference on Genetic and Evolutionary Computation (GECCO). New York: ACM,

2015. p. 473–480.

• Gabriel de O. Ramos, Ricardo Grunitzki. An improved learning automata ap-

proach for the route choice problem. In: Agent Technology for Intelligent Mo-

bile Services and Smart Societies. Springer Berlin Heidelberg, 2015, (CCIS,

v. 498). p. 56–67.
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1.5 Thesis outline

Besides the present introduction (Chapter 1), this thesis is organised into five chap-

ters, as follows.

• Chapter 2 reviews the background on the topics relevant to this thesis.

• Chapter 3 introduces our investigations towards learning from regret.

• Chapter 4 extends the results of Chapter 3 to the case where non-local information

is available to the agents.

• Chapter 5 focuses on our MCT scheme to bias agents’ decisions towards a system-

efficient equilibrium.

• Chapter 6 concludes with the final remarks and discussions.
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2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we present a brief overview on the topics relevant to the present

thesis. These topics are divided into five groups: route choice (Section 2.1), reinforcement

learning (Section 2.2), regret minimisation (Section 2.3), use of non-local information

(Section 2.1.3), and system-efficient equilibria (Section 2.1.4).

2.1 Route choice problem

The route choice problem concerns how drivers behave when choosing routes be-

tween their origins and destinations (OD pair, henceforth). In this section, we introduce

the basic concepts related to route choice. For a more comprehensive overview, the in-

terested reader is referred to Bazzan and Klügl (2013) (for an agent-centred perspective)

and Ortúzar and Willumsen (2011) (for a traffic engineering perspective).

2.1.1 Problem modelling

An instance of the route choice problem can be defined as a tuple P = (G,D, f).

Let G = (N,L) be a directed graph representing a road network, where the set of nodes

N represents the intersections and the set of links L represents the roads between inter-

sections. An example graph is illustrated in Figure 2.1, with four nodes and five links.

Each driver i ∈ D (with |D| = d) has an OD pair, which corresponds to its origin and

destination nodes. A trip is made by means of a route1

R =
{
{nu, nv} ∈ L | ∀p ∈ [0, |R| − 1], npv = np+1

u

}
,

which is a sequence of links connecting an origin to a destination. For instance, in the

example of Figure 2.1, the OD pair (n4, n3) has two possible routes (ignoring cycles),

namely, {{n4, n2}, {n2, n3}} and {{n4, n2}, {n2, n1}, {n1, n3}}. The demand for trips

generates a flow of vehicles on the links, where xl is the flow on link l (i.e., the number

of vehicles using it). Each link l ∈ L has a cost2 cl : xl → R+ associated with crossing it,

1We abuse notation here and use npu (npv) to denote the start (end) node of the pth link of route R.
2In order to enhance presentation, we hereafter omit xl from the definition of cost and travel time on

link l, thus writing simply cl and fl rather than cl(xl) and fl(xl), respectively.
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Figure 2.1: Graph representation of an example road network. The graph contains four
nodes, representing intersections, and five links, representing roads. Links’ labels repre-
sent the free flow travel time on the links. One-way roads are represented by unidirectional
links and two-way roads by bidirectional links.

n1

n2

n3

n4

12

5

8

10

23

which is typically modelled as the travel time fl : xl → R+ on it, i.e.,

cl(xl) = fl(xl) (2.1)

The cost of a route R is then denoted by

CR =
∑
l∈R

cl (2.2)

Travel times are typically abstracted by means of volume-delay functions (VDFs),

which map the flow of vehicles on a link into the travel time on it (a.k.a. delay, usually

measured in minutes). In order to correctly formulate a VDF, one needs to take sev-

eral characteristics of the problem instance into account, which can be an arduous task.

Fortunately, different general VDF formulations are available in the literature. In traf-

fic engineering, the most used VDF was proposed by the American Bureau of Public

Roads (1964) and is thus known simply as BPR. The BPR function is formulated as

fl(xl) = Fl

(
1 + α

xl
Cl

β
)
, (2.3)

where Fl denotes the free flow travel time on link l (i.e., the minimum travel time, when

the link is empty), Cl is the capacity3 of link l, and α and β are constants (the same for

all links) of the road network instance. Except for the flow (xl), the other elements of the

3In the mathematical formulation of the route choice problem, the flow of vehicles on a link is not con-
strained to its capacity. Hence, VDFs are typically modelled as exponential functions to properly penalise
overloaded links. We refer the reader to Ortúzar and Willumsen (2011) for a more detailed discussion on
VDFs. A comparative analysis of the so-called macroscopic (i.e., our abstract mathematical formulation)
and microscopic (i.e., a more detailed formulation, where even vehicles’ speed, length, and position are
considered in the simulation) models is presented in (BAZZAN; KLÜGL, 2013).
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Figure 2.2: Example road network with two overlapping routes. In the example, the flow
on link {a, b} is obtained by summing up the flow on routes R1 and R2.
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R1 = {{o1, a}, {a, b}, {b, d1}}

R2 = {{o2, a}, {a, b}, {b, d2}}

VDF are part of the road network instance and do not change along time. This includes

Fl and Cl, which are fixed but each link has its own. A simpler, illustrative VDF is

fl(xl) = Fl + 0.02× xl, (2.4)

which increases the travel time on link l by 0.02 for each vehicle/hour of flow. We call

this the OW function, due to Ortúzar and Willumsen (2011). It should be noted, however,

that such a linear growth is not realistic: in general, traffic performance deteriorates faster

at higher congestion rates. The BPR function, in contrast, defines an exponential growth

for the delay, meaning that travel time increases faster as the flow of vehicles approaches

the link’s capacity.

At this point, considering that we name the problem as route choice, the eagle-eyed

reader may ask why not simplifying the modelling by ignoring the links and considering

just the routes themselves. In fact, this would be possible in simple scenarios, with disjoint

routes. In general, however, routes tend to share at least some, but frequently many, links

(e.g., arterial roads). Consequently, the flow of vehicles in a link is determined not only

by a group of drivers using a single route that includes such link, but by groups of drivers

using various routes that include such link at some point in their trips. This is illustrated

in Figure 2.2, where the flow of vehicles on link {a, b} is determined by the flow of

vehicles using route R1 and R2. Therefore, links need to be considered in particular when

modelling the route choice problem.

In the route choice process, drivers decide which route to take every day to reach

their destinations. Usually, this process is modelled as a commuting scenario, where

drivers’ daily trips occur under approximately the same conditions (i.e., the set of drivers
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and their objectives do not change). Here, the time of the day is irrelevant and days are

independent from each other. Each driver i ∈ D can then be modelled as a reinforcement

learning agent, which repeatedly deals with the problem of choosing the route (action)

that takes the least time to its destination. In this case, the reward r : R → R+ received

by driver i after taking route R is inversely associated with the cost of such route, i.e.,

r(R) = −CR. (2.5)

We highlight that routes’ costs may change from one day to another as a consequence

of the drivers’ adaptation to traffic conditions. This justifies the importance of learning

within this scenario. More details are presented in Section 2.2.

The solution to the route choice problem is intuitively described by the Wardrop’s

first principle: the cost “on all the routes actually used are equal, and less than those which

would be experienced by a single vehicle on any unused route” (WARDROP, 1952). Such

a solution concept is known as User Equilibrium (UE) and is equivalent to the Nash equi-

librium (NASH, 1950). The UE is a consequence of the usual game-theoretic assumption

that agents are rational and act selfishly. This way of behaving renders traffic as an in-

trinsically competitive environment. Observe, however, that the UE is inefficient from the

system’s perspective. In fact, the ideal outcome from the global perspective corresponds

to the minimum average travel time, which is referred to as the system optimum (SO).

The level of inefficiency due to selfish behaviour was formally defined by Papadimitriou

and Tsitsiklis (1987) and ever since known as the Price of Anarchy (PoA). Roughly, the

PoA is obtained by dividing the average travel time under the worst-case UE by that under

SO. The minimum value for this ratio is 1, which is only possible if the UE is completely

aligned to the SO.

Considering the inefficiency of the UE, there has been an increasing interest on

minimising the PoA by biasing the UE towards the SO. Several alternatives have been

proposed here (a more detailed discussion is presented in Section 2.1.4). In general,

however, most approaches are equivalent to charging tolls on the links. In this regard,

in this thesis we will refer to such variants as the toll-based route choice problem. An

instance of the toll-based route choice problem is defined as P = (G,D, f, τ). The

difference to the original route choice problem is that the cost4 associated with crossing

4The usual formulation of the toll-based route choice problem defines the travel time and toll value as
having the same weight. However, different weights could be easily defined by applying simple algebraic
manipulations on the toll value itself.



39

link l ∈ L is now given by

cl(xl) = fl(xl) + τl(xl), (2.6)

where fl : xl → R+ represents its travel time and τl : xl → R+ denotes the toll5 charged

for using it.

Toll values can be defined according to different objectives (e.g., maximising rev-

enue, minimising link usage). In this thesis, we are interested in biasing the UE towards

the SO. According to Pigou (1920), this can be achieved by means of marginal cost tolling

(MCT). Under MCT, each agent is charged proportionally to the cost it imposes on others.

Specifically, the marginal cost toll on link l is the product of its flow (i.e., the number of

vehicles on it) and the derivative of its VDF function (PIGOU, 1920), that is,

τl = xl · (fl(xl))′.

As shown later, in Theorem 5.1, MCT aligns the UE to the SO. It should be noted, on the

other hand, that charging tolls arbitrarily (e.g., charging a constant price on selected links)

does not necessarily lead to the SO (BECKMANN; MCGUIRE; WINSTEN, 1956).

In this thesis, we concentrate our initial efforts towards finding the UE. In this

regard, Chapters 3 and 4 address the basic route choice problem. Later on, Chapter 5

focuses on the convergence to a system-efficient equilibrium, in which case we use the

toll-based variant of the problem.

2.1.2 Related problems

In this section, we present some problems that are analogous (or similar) to the

route choice problems and comment on their differences. We highlight that this is a non-

exhaustive list, limited to the most representative problems (at least for our purpose).

In the transportation literature, route choice is approached from different perspec-

tives. Discrete choice models try to accurately approximate the behaviour of human trav-

ellers. An interesting overview of these methods is presented by McFadden (2001). As-

signment methods are centralised mechanisms employed to find an allocation of vehicles

into routes that satisfies a given solution concept, such as the UE. Examples of such mech-

anisms include Bar-Gera (2010) and Ramos and Bazzan (2015, 2016). We refer the reader

to Sheffi (1984) and Ortúzar and Willumsen (2011) for a more thorough overview of these

5We hereafter write τl(xl) simply as τl to enhance presentation.
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and other perspectives. In general, however, these lines of research focus on facilitating

the work of traffic managers in analysing different traffic patterns, policies, etc. On the

other hand, in this thesis we consider the drivers’ viewpoint. In particular, we investigate

how self-interested driver-agents learn (with very limited knowledge) and adapt (consid-

ering that each agent’s decisions affect other concurrently-learning agents) when trying

to maximise their rewards. We also remark that our approach is completely distributed.

For these reasons, our research is fundamentally different from that on discrete choice

and assignment both in terms of the assumptions of which agents are the focus of the

optimisation process (drivers or traffic managers), and in terms of the process by which

the optimisation process occurs (centralised or distributed). The interested reader is re-

ferred to Bazzan and Klügl (2013) for a more detailed overview of traffic systems from

the agents’ perspective.

Congestion games (ROSENTHAL, 1973) represent another common way of ap-

proaching route choice. In fact, congestion games represent a generalisation of the route

choice problem. In congestion games, the players’ strategies consist of a multiset of re-

sources (e.g., resources are links and strategies are routes), and the utility of a strategy

depends only on the number of players using its resources (e.g., the congestion level on

each of its links). We consider the specific case of (selfish) routing games (ROUGH-

GARDEN, 2005), in which strategies cannot be multisets of resources (after all, routes

with cycles6 are not reasonable from the route choice perspective). Routing games can

be modelled as atomic, i.e., each player represents a commodity and controls its whole

traffic, or non-atomic, i.e., each player controls a negligible, infinitesimally small amount

of traffic (ROUGHGARDEN, 2007). The non-atomic model can be solved in polynomial

time (BECKMANN; MCGUIRE; WINSTEN, 1956; FABRIKANT; PAPADIMITRIOU;

TALWAR, 2004), whilst such theoretical results are weaker in the case of the atomic

model (ROUGHGARDEN, 2005). The route choice problem can then be modelled as a

non-atomic (selfish) routing game. We observe that, however, in our settings we have a

finite set of players rather than an infinite set of infinitesimally small players (i.e., the flow

is represented as real values). Furthermore, our primary focus is on how agents interact

with each other and how their decisions affect each others’ perceptions.

The multi-armed bandit problem (ROBBINS, 1952) can also be used to model

route choice. In this problem, on each round the gambler (agent) selects one among

K ∈ N available arms (actions) and the environment selects a payoff (reward) vector

6Multisets generalise sets by allowing repeated elements. In the context of route choice, this translates
into routes with repeated links, which is only possible in the presence of cycles (loops).
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over the arms. The rewards are random, and their distributions are unknown to the agent.

The agent then needs to decide on which arms to play (and in which order) to max-

imise the its cumulative reward. The problem can be modelled with transparent feedback,

where the entire payoff vector is revealed to the agent (LITTLESTONE; WARMUTH,

1994); or opaque feedback, where the environment only reveals the payoff of the chosen

arm (AUER et al., 2002; AWERBUCH; KLEINBERG, 2004). The transparent model

has been more extensively investigated in the literature, but the opaque one is much more

challenging and better represents traffic settings (given that a driver only perceives the

cost of its current route). Despite their similarities, the multi-armed bandit and route

choice problems are conceptually different. Whereas in the former the rewards are simply

random variables, in the latter they are a function of the choices made by all drivers. Such

a dependence on what everyone else is doing poses an additional layer of complexity to

an agent’s decision process, thus making route choice more challenging.

Another variation of route choice is the dynamic shortest paths problem (a.k.a. en-

route trip building and link-based route selection) (AWERBUCH; KLEINBERG, 2004;

BAZZAN; KLÜGL, 2008; GRUNITZKI; RAMOS; BAZZAN, 2014). As opposed to

route choice, the set of routes here is not known a priori by the agents. In this sense,

starting at their origin nodes, agents need to explore the entire road network until a route

to their destination is found. In general, learning in this kind of scenario takes much longer

than when the set of routes is known a priori. Empirically, however, reasonable results

have been achieved here. Although interesting from the learning perspective, nonetheless,

we emphasise that this problem lacks realism. Assuming that drivers have no previous

knowledge at all about their routes is pointless: in reality, most drivers have at least an

idea on how to reach their destinations before they start their trips.

2.1.3 Using non-local information in route choice

As discussed in Section 2.1.1, drivers aim at minimising their travel costs. It is

worth noting, however, that drivers have limited knowledge, meaning that they are not

fully aware of the traffic conditions when making their decisions. Notwithstanding, as

drivers become experienced, they tend to take better decisions. Nevertheless, considering

the dynamic characteristic of traffic, it may take long for an agent to achieve a reasonable

knowledge level (i.e., one that permits the agent to take good decisions).
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The use of non-local7 information to overcome the aforementioned limitation has

shown promise. In fact, literature has shown that when drivers have a more complete

knowledge on their routes, they can better choose among them (HALL, 1996). The ra-

tionale behind providing non-local information to the agents is that it can improve the

confidence with which drivers choose their routes. For instance, if an agent’s route is

not used for a long time, then the estimated cost on that route may be outdated; conse-

quently, comparing a frequently used route and a non-frequently one may be misleading.

Therefore, the use of non-local information leads the agents to improve their policy faster.

There is a plethora of approaches concerned with providing and employing non-

local information into the agents’ decision process. We refer the reader to Zhang et al.

(2011) and Essen et al. (2016) for a more thorough review. Here we briefly comment on

two kinds of approaches based on the information source: from a central authority, and

by communicating with other agents.

Some approaches consider that a central authority recommends routes to the drivers,

such as Vasserman, Feldman and Hassidim (2015) and Klügl and Bazzan (2004). The idea

is that such a mechanism has a more complete overview of the network conditions, thus

being able to provide more accurate information to the agents. In general, however, such

approaches consider that the central authority has detailed information about the traf-

fic conditions. On the other hand, several works have considered the case where no such

central authority exist. Here, agents interact with each other in order to exchange informa-

tion. By doing so, these works usually drop the assumption of a full-knowledged authority

(HASAN et al., 2016). In general, however, such works make impractical assumptions on

agents’ knowledge. More details on these approaches are presented in Section 4.4.

In this thesis, we consider the use of non-local information as given by a central

authority. However, as opposed to other works, our assumptions regarding the authority’s

knowledge are very limited. In particular, we consider that the authority have estimates

on the routes travel times, which may be incorrect. Moreover, the received information

is not directly used, but encoded into the agents knowledge. The complete details are

presented in Chapter 4.

7We employ the term non-local instead of global because the information to which we refer here may
come from other agents, who also only have access to local information.
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2.1.4 System-efficient equilibria in route choice

Previously, we seen that the self-interested behaviour of drivers leads them to

choose actions that minimise their travel costs. Consequently, the system converges to

the UE, which is inefficient from the system’s performance. Recall that the level of in-

efficiency in the system’s performance due to drivers selfishness is referred as the Price

of Anarchy (PoA). In this section, we briefly discuss the literature focused on minimising

the PoA by biasing the UE towards the SO.

The SO is only attainable if the agents behave altruistically. Several works follow

this line by explicitly assuming that agents present altruistic behaviour, such as Chen and

Kempe (2008), Levy and Ben-Elia (2016), and Hoefer and Skopalik (2009). In fact, ac-

cording to Fehr and Fischbacher (2003), under certain conditions, real drivers are willing

to take altruistic decisions so as to improve the global performance. However, the higher

the price of such a social behaviour, the less frequent it is. Hence, altruism cannot be

imposed on the agents.

The use of route guidance mechanisms to bias drivers’ decisions towards the SO

has also been approached in the literature, including Lujak, Giordani and Ossowski (2015)

and Bazzan and Klügl (2005). A good review on the topic is provided by Essen et al.

(2016). In general, these works assume that a centralised mechanism makes such biased

suggestions to the drivers. As discussed by Jahn et al. (2005), some drivers are willing to

bear the cost of socially desired routes (up to certain limits) if the traffic system suggests

them to do so. However, experiments with human subjects evidence the adoption of such

mechanisms is low (ESSEN et al., 2016; RIETVELD, 2010). Moreover, such approaches

rely on a central authority with full knowledge.

Another particularly relevant way of enforcing system-efficient behaviour is the

use of tolls. In fact, the aforementioned approaches can usually be described in terms of

tolls. As opposed to other methods, however, tolls can be enforced on the agents. The

idea underlying such pricing mechanisms refers to tolling agents for using links so that

they are incentivised to take system-efficient decisions. As discussed in Section 2.1, a

fundamental approach here is the marginal-cost tolling (MCT), which is able to align the

UE to the SO by charging proportionally to the cost they impose on others.

In general, however, most existing tolling schemes charge drivers a priori, i.e.,

before they actually start their trips. Ideally, however, tolls should only be charged after

their real marginal costs are available, i.e., at the end of the trips. A priori tolling is
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indeed appealing from the agents’ perspective, since such agents know in advance the

toll associated with each of their possible actions. Nonetheless, these schemes usually

define the prices based on historical congestion levels, meaning that the agents may end

up paying a toll that is higher than their actual marginal costs. In particular, since MCT

is based on the impact an agent causes on others, one cannot assess such impact before

it happens (except if one can predict future drivers’ decisions along their trips). Hence,

we say that tolling agents a priori is unfair as compared to tolling a posteriori. A more

concrete discussion on this effect is presented in Example 5.1. Finally, we emphasise

that existing tolling schemes usually rely on a full-knowledged central authority, with the

ability of computing and charging the tolls.

In this thesis, by contrast, we assume that tolls are charged a posteriori and per

route, which results in a fairer toll scheme (a complete discussion on this topic is pre-

sented in Chapter 5). We then present a general toll formulation that can be computed

directly by the agents. In this way, we can simplify the infrastructure requirements for

deploying the tolling scheme by assuming that each vehicle has a navigation device re-

sponsible for charging the toll whenever a trip is finished. This makes the agents’ decision

process easier since the drivers can better understand the costs they are being charged,

as reported by the National Surface Transportation Infrastructure Financing Commission

(2009). Traditional tolling schemes could also benefit from connected navigation devices.

However, such approaches would strongly depend on stable communication (otherwise

tolls would not be available a priori), whereas our approach remains robust even under

precarious communication conditions (since tolls could be computed at any time after

each trip is finished).

2.2 Reinforcement learning

2.2.1 Fundamentals

Reinforcement learning (RL) is the problem of an agent learning its behaviour

by reward and punishment from interactions with its environment (SUTTON; BARTO,

1998). The basic RL cycle can be described as follows. Initially, an RL agent observes

the current state of the environment and chooses an action based on its knowledge. After-

wards, the agent executes the chosen action and receives a reward, which is then used to

update its knowledge base. An agent’s knowledge here refers to its policy, i.e., a mapping

from states to actions. A complete RL cycle is called an episode.
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Typically, the RL problem is described within the framework of Markov decision

processes (MDPs). An MDP is a tuple (S,A, T , r), where:

• S is the set of environment states where the agent may be situated in;

• A is the set of actions that the agent can execute (some actions may be available

only in specific states);

• T : S × A × S → [0, 1] is the transition function that determines the probability

P (s′ | s, a) with which the agent reaches state s′ after taking action a in state s;

• r : S×A → R is a function that specifies the reward r(s, a) that the agent receives

after taking action a in state s.

The objective of an RL agent is to learn a policy π : S → A that maximises its cumulative

reward over time. Intuitively, π(a | s) can be seen as the probability with which the agent

takes action a while in state s.

In the context of route choice, the actions of an agent can represent the choice of

routes between its origin and destination. We can define the reward8 received after taking

action a ∈ A in the same way as in Equation (2.5), i.e., r(a) = r(R), with a = R.

Recall that route choice represents a commuting scenario with daily trips occurring under

approximately the same conditions (as discussed in Section 2.1). We also remark that

drivers know their routes a priori (or at least a subset of them) and just need to decide on

which one to take everyday (as opposed to the dynamic shortest path problem, discussed

in Section 2.1.2). In this sense, whenever a driver takes a route, it will inevitably reach its

destination, thus rendering the state definition irrelevant here. Therefore, this problem is

typically modelled as a stateless MDP. Further details on this modelling are presented in

the next subsection.

Solving a stateless MDP involves finding a policy π (i.e., which route to take) that

maximises the agent’s average reward. When the model of the environment dynamics

(i.e., the reward function r) is known by the agent, finding such an optimal policy is

trivial. However, this is rarely the case. To tackle this limitation, the agent must repeatedly

interact with the environment to learn a model of its dynamics. A class of RL algorithms

particularly appropriate for this setting comprises the so-called temporal-difference (TD)

learning algorithms, through which an agent can learn without an explicit model of the

environment.

8Observe that, although the reward an agent receives is formulated as a function of its single route, it
actually depends on the flow (i.e., the number of vehicles) on the links that comprise that route. This is
expressed by means of the VDF function, as explained in Section 2.1.
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The Q-learning algorithm is a commonly-used TD-based method (WATKINS;

DAYAN, 1992). In the case of a stateless MDP, a Q-learning agent learns the expected

return Q(a) of selecting each action a by exploring the environment. Such a process

must balance exploration (gain of knowledge) and exploitation (use of knowledge). A

typical strategy to this end is known as ε-greedy exploration, in which the agent chooses

a random action with probability ε (exploration) or the best action according to its cur-

rent knowledge with probability 1 − ε (exploitation), with ε ∈ (0, 1]. After taking action

a and receiving reward r(a), the stateless Q-learning algorithm updates Q(a) using the

Q-learning update rule, as follows:

Q(a) = (1− α)Q(a) + αr(a), (2.7)

where the learning rate α ∈ (0, 1] weights how much of the previous estimate should be

retained. Roughly, the Q-learning update rule works by adjusting the expectation over

an action’s value (i.e., the previous Q-value) towards its actual value (i.e., the received

reward r) with an α step size. The Q-learning algorithm is guaranteed to converge to an

optimal policy if (i) all state-action pairs are experienced an infinite number of times and

(ii) the learning and exploration rates go to zero in the limit (WATKINS; DAYAN, 1992).

In this regard, the learning and exploration rates are typically multiplied by decay rates

λ ∈ (0, 1] and µ ∈ (0, 1], respectively, so that, at time t, α(t) = αλt and ε(t) = εµt.

2.2.2 Multiagent reinforcement learning

Observe that, up to this point, we considered the traditional single-agent RL set-

ting. When multiple agents share a common environment, their actions may affect the

reward received by others. As such, the agents need to adapt to each other. Although

such effect may seem unimportant, it invalidates the so-called Markov property, i.e., the

environment is no longer stationary (TUYLS; WEISS, 2012). Consequently, under these

settings, RL algorithms designed to solve MDPs may not work. We refer the interested

reader to Tuyls and Weiss (2012) and Buşoniu, Babuska and Schutter (2008) for insightful

reviews on multiagent reinforcement learning. Additionally, considering the connection

of this topic with game theory, we also recommend the works of Nowé, Vrancx and

Hauwere (2012), Leyton-Brown and Shoham (2008), and Nisan et al. (2007).

Multiagent RL (MARL) problems may be approached as stochastic (or Markov)
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games (LITTMAN, 1994). Stochastic games can be represented as a tuple (P ,S,A, T , r).

The main difference here to MDPs is that P represents the set of players (agents), and A

represents the joint action space, i.e.,A = A1× ...×An, withAi representing the actions

of agent i ∈ P . Naturally, the transition and reward functions are now given as a function

of the joint actions.

Several algorithms have been proposed for stochastic games. Littman (1994) de-

vised Minimax-Q algorithm, which only applies to zero-sum stochastic games. Hu and

Wellman (1998, 2003) introduced Nash-Q, which extends Minimax-Q to general-sum

games, but limited to two agents. Later on, Littman (2001) developed Friend-or-Foe-Q

(FFQ), which extends previous works to general-sum games. Nonetheless, FFQ only ap-

plies to coordination games (i.e., where agents benefit by coordinating their actions) or

zero-sum games (i.e., where the reward received by the agents always sum to zero). It

should be noted, however, that the route choice problem cannot be solved using these

formulations: neither all drivers cooperate (though some indeed can), nor all drivers are

better off if just one deviate (SANDHOLM, 2007). Verbeeck et al. (2007) and Vrancx,

Verbeeck and Nowé (2010) developed learning automata algorithms for coordination-

based games. However, again, traffic cannot be approached as a cooperative problem.

Gradient ascent algorithms were also proposed to handle multiagent learning sce-

narios. Zinkevich (2003) introduced the Generalised Infinitesimal Gradient Ascent (GIGA)

algorithm for two-player two-action general-sum repeated games. Bowling (2005) ex-

tended the GIGA algorithm with the “win or learn fast” principle (i.e., a variable learning

rate), thus delivering the GIGA-WoLF algorithm, which again only applies to 2-player 2-

action games. Abdallah and Lesser (2006) presented the Weighted Policy Learner (WPL)

algorithm, which outperform the others but whose convergence guarantees still apply to

2-player games, only.

Considering the above limitations, literature has also considered a simpler mod-

elling where each agent’s decision process is modelled as an individual MDP. Conse-

quently, an agent interprets the behaviour of other agents as the dynamics underlying its

environment. A particularly representative example of such approach was presented by

Claus and Boutilier (1998), and refers to such agents as independent learners.

In this thesis, we employ the latter aforementioned case, where each independent

Q-learner has its own MDP and ignores the other agents’ actions. The route choice prob-

lem can then be modelled as a stateless MDP, with actions representing routes and rewards

expressed as in Equation (2.5). In spite of its simplicity, this modelling properly repre-
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sents real traffic settings. The point is that, when a driver is deciding on which route to

take, it does not explicitly consider how others are deciding. In fact, drivers have a very

limited knowledge about what others are doing (not to mention their policies). Therefore,

the stateless modelling represents a suitable way of approaching route choice.

In terms of convergence, the stateless-based modelling of MARL tends to obtain

reasonable empirical results (e.g., Hennes, Kaisers and Tuyls (2010), Proper and Tumer

(2013), Ramos and Grunitzki (2015)). However, formal guarantees are not usually pro-

vided. In this sense, we advance the state of the art by investigating two situations where

such guarantees are attainable in the context of route choice. Firstly, in Chapter 3 we

show that, when agents use the regret associated with their actions as reinforcement sig-

nal, then they converge to the UE. Secondly, in Chapter 5 we consider the case where

MCT (discussed in Sections 2.1.1 and 2.1.4) leads the agents to the SO.

2.3 Regret minimisation

In this section, we present a succinct overview of the regret (minimisation) litera-

ture. The interested reader is referred to Blum and Mansour (2007) and Cesa-Bianchi and

Lugosi (2006) for a more detailed overview.

The notion of regret has been employed from different perspectives since the

1950s. From the decision theory perspective, the so-called regret theory (RT) was de-

veloped independently by Bell (1982), Fishburn (1982), and Loomes and Sugden (1982).

RT postulates that agents’ decisions are affected not only by the utility associated with

them, but also by the anticipated disutility (regret) for not taking a better decision. In

other words, RT claims that agents try to avoid regret when taking decisions. As a de-

scriptive behavioural model, RT represents a suitable approach to analyse route choice

behaviour. In contrast, in this thesis we consider another important perspective of regret,

namely that of game theory, which focuses on analysing not only the agents’ behaviour,

but also how they interact and how their decisions affect each other. This second per-

spective is the usual focus of regret minimising approaches (CESA-BIANCHI; LUGOSI,

2006; FOSTER; VOHRA, 1999).

The idea of minimising regret was introduced in the context of evaluating the per-

formance of learning rules (HANNAN, 1957). The so-called external regret9 of an agent

9Alternative regret formulations are also available in the literature. The most adopted formulation,
nonetheless, is that of external regret, which we also consider in this thesis. We refer the reader to Blum
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measures the difference between its average reward and the reward of the best fixed action

in hindsight. Precisely, the external regretRT
i of agent i up to time T is defined as

RT
i = max

ati∈Ai

1

T

T∑
t=1

r(ati)−
1

T

T∑
t=1

r(ȧti), (2.8)

where r(ati) represents the reward for taking action ati at time t and ȧti denotes the action

actually taken by agent i at time t. In the context of route choice, recall (see Section 2.1)

that the reward of an action (route) corresponds to the sum of its links’ rewards. In this

sense, considering that routes may overlap, the external regret of an agent is affected not

only by its particular decision (route it has taken), but also by all other agents (including

those from other OD pairs) whose routes share links with it. The notion of external regret

is presented more intuitively in the next example.

Example 2.1. Consider again the abstract road network presented in Figure 2.1. Sup-

pose a driver wants to travel from n4 to n3, which can be performed using either route

R1 = {{n4, n2}, {n2, n3}} or route R2 = {{n4, n2}, {n2, n1}, {n1, n3}}. For simplicity,

assume that travel times are fixed, e.g., the cost on link {n4, n2} is 8 (as shown in the fig-

ure) regardless on the number of agents using it. Moreover, let the reward associated with

a route be the negative of its travel time. In this sense, the reward on routesR1 andR2 are

−31 and −25, respectively. Additionally, assume that, as soon as the driver completes

its trip, it can magically observe the reward on both routes. If the driver takes route R1,

it receives a reward of −31. Consequently, when it realises that R2 has reward −25, its

regret will beR = −25− (−31) = 6. If the agent takes route R2, on the other hand, then

it experiences a regret of R = −25 − (−25) = 0. The agent, therefore, has an incentive

to always choose route R2, which has a lower regret and, consequently, a higher reward.

An algorithm satisfies the no-regret property (a.k.a. Hannan’s consistency) if it

learns a policy for which RT
i → 0 as T → ∞ (HANNAN, 1957). Along these lines,

regret minimisation can be seen as a natural definition of how rational agents behave over

time (BLUM; EVEN-DAR; LIGETT, 2010).

We highlight that regret cannot be computed without knowing the cost of all routes

along time (essential for computing the max operator of Equation (2.8)). For the original

purpose of simply evaluating an agent’s performance, knowing all costs along time is not

a restrictive assumption. On the other hand, in order for regret to be computable by agents,

and Mansour (2007) for a more complete discussion on this and alternative regret formulations.
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then the process is more tricky. In fact, part of this thesis (Chapter 3) tries to overcome

such limitation by keeping estimates of the actions’ rewards, which allow the agents to

obtain reasonable estimates relying only on their local knowledge.

In the RL context, regret has been mainly employed as a convergence measure

(SHOHAM; POWERS; GRENAGER, 2007; BUŞONIU; BABUSKA; SCHUTTER, 2008).

One of the first works to employ regret as the reinforcement signal was that of Hart and

Mas-Colell (2000). However, their approach was focused on the correlated equilibrium,

in which a mediator recommends actions to the agents (AUMANN, 1974). Other ap-

proaches considered regret minimisation in more general cases, but assuming a limited

number of agents (BOWLING, 2005) or even assuming they know their regret in ad-

vance (ZINKEVICH et al., 2008). In this thesis, we focus on employing regret to guide

the learning process but taking into account that, by definition, agents cannot compute

their regret exactly (given they can only observe the reward of taken routes). Thus, we

show how such values can be estimated by the agents.

Chorus and colleagues (2008, 2010) employed regret to improve predictions of

travellers’ behaviour in the context of discrete choice models. They proposed the random

regret minimisation (RRM) model, in which drivers are said to avoid regret when making

decisions. Importantly, though, the RRM model (unlike ours) do not take learning into

account and assumes that drivers have full knowledge regarding their regrets and/or travel

costs distributions. Furthermore, the travel costs are assumed to be fixed, whereas in

practice they change steadily as a consequence of the agents’ learning/adaptation process.

Regret has been of particular interest of the online optimisation and congestion

games literatures. In online optimisation, the problem can be modelled as multi-armed

bandits, and the focus is on minimising the regret associated with the arms (AUER et al.,

2002). Along these lines, the regret bound has been consistently refined by Dani, Kakade

and Hayes (2007), Abernethy, Hazan and Rakhlin (2012), and Agarwal, Dekel and Xiao

(2010), to mention a few. However, frequently assuming agents can observe more than

simply their own travel times. The congestion games formulation (ROSENTHAL, 1973;

ROUGHGARDEN, 2005) can also be used to approach route choice. In fact, important

results have been achieved by Blum, Even-Dar and Ligett (2010). Notwithstanding, as

discussed in Section 2.1.2, these models represent the drivers as a set of infinitesimally

small agents. In contrast, we assume a finite set of players.

Also important, alternative regret formulations have been proposed in the litera-

ture. The idea underlying such formulations is to consider particular aspects of the de-
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cision process in order to improve the agents’ performance. Some of such formulations

include policy regret, by Arora, Dekel and Tewari (2012), and counterfactual regret, by

Zinkevich et al. (2008). In this thesis, we also propose an alternative regret formulation

called action regret. In contrast to other approaches, however, our formulation enables

the agents to estimate their regret, thus being useful in their learning process.

In this thesis, we use the idea of regret to guide the RL process towards the UE.

This is the focus of Chapters 3 and 4. Precisely, we formulate the regret of actions and use

them as reinforcement signal. The underlying idea of using regret in the learning process

is that, as a natural definition on how self-interested agents behave overtime, regret can

guide them towards their objective, namely minimise their travel times.
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3 LEARNING TO MINIMISE REGRET

In this chapter, we introduce a regret-minimising method through which reinforce-

ment learning agents can learn to choose their best routes using regret. In particular,

agents use the regret (rather than reward) associated with their actions as reinforcement

signal. The objective is to show that, in the limit, such agents converge to an approximate

user equilibrium. In this regard, we develop a method for the agents to estimate their

regret locally, based on an internal history of observed rewards. Such regret estimates

are then used for updating the agents’ policies. We provide a theoretical analysis of the

system’s convergence, showing that our approach minimises the agents’ regret in the limit

and thus approximates the user equilibrium.

3.1 Motivation and contributions

As discussed in Chapter 2, reinforcement learning (RL) in multiagent settings is

challenging because self-interested agents must adapt to each others’ decisions. Regret-

minimising algorithms have shown promising here. In this chapter, we investigate how

agents can learn with performance guarantees by minimising their regret.

We emphasise that, as seen in Section 2.3, an agent cannot compute its real regret

(using Equation (2.8)) due to the lack of information regarding its routes rewards. This

is due to fact that regret is measured considering (i) the agent’s average reward resulting

from its sequence of actions and (ii) the average reward following the best fixed action in

hindsight. Calculating the latter requires knowing the rewards of all routes along time.

However, after each trip, an agent can observe the reward of the route taken, but cannot

observe the reward of the other routes. Such a full observability property would only be

possible under strong assumptions (e.g., a full-knowledged central authority broadcasting

such information), which can be unrealistic in traffic domains. Furthermore, investigat-

ing methods to accomplish such a task in the absence of any supporting service is more

challenging and is also relevant (STONE; VELOSO, 2000), especially in the highly com-

petitive settings considered here.

In this regard, in the context of route choice, we investigate how agents can es-

timate their regret based exclusively on local information (i.e., the rewards actually ob-

served by them). The idea underlying our approach is that, if agents can estimate the
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regret associated with particular actions, then such information could be used to guide

their learning process. After all, minimising regret in route choice can be intuitively seen

as choosing the best routes.

The main contributions of this chapter can be enumerated as follows.

• We define the estimated action regret, which measures the regret of single actions.

In this way, the Q-value of an action can be updated using the corresponding regret

(rather than reward) as reinforcement signal. Moreover, we prove that learning

with action regret minimises the agent’s external regret.

• We introduce a method for agents to estimate their action regret relying only on

their experience (i.e., travel time of current route). In this sense, we eliminate the

assumption of full information. We show that such estimates converge to the true

values in the limit and that they are useful in the learning process.

• We develop an RL algorithmic solution that employs action regret as the rein-

forcement signal for updating the agent’s policy. In this way, the agents learn to

choose the actions that minimise their external regret.

• We provide theoretical results bounding the system’s performance. Specifically,

we show that an agent’s average external regret is O
((

K−1
TK

)(
µT+1−µ
µ−1

))
after

T timesteps, where K is the number of available routes and µ is the decay rate

of the exploration parameter. Moreover, we show that the system converges to a

φ-approximate UE when all agents use our method, where φ corresponds to the

bound on the agents’ regret.

3.2 Learning to choose routes by minimising estimated regret

This section presents our method for the agents to learn to choose their best routes

by minimising regret. To be specific, we model the route choice problem as a stateless

MDP and represent drivers by means of Q-learning agents. At every episode, each such

agent chooses a route from its origin to its destination and observes the travel time on

it. Each agent then computes the regret associated with the chosen route and uses such

information to update its Q-table. Considering that agents have limited knowledge, we

firstly provide a mean for the agents to estimate the regret associated with their actions

based on their own experience (Section 3.2.1). Afterwards, we formulate the stateless

MDP and the Q-learning algorithm that uses previously calculated regret estimates to
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learn which are the best routes (Section 3.2.2). Later, we provide theoretical (Section 3.3)

and empirical (Section 3.4) analyses of our method, showing that it minimises regret and

converges to the user equilibrium.

3.2.1 Estimating regret

Let Ai ⊆ A denote the set of actions (i.e., routes) available to agent i. At time t,

agent i performs a given action1 ȧti ∈ Ai and receives a reward of r(ȧti). We represent the

history of estimates of agent i as

Hi = {r(ati) | ati ∈ Ai, t ∈ [1, T ]},

with r(ati) denoting the reward experience of driver i for taking action a at time t. Observe

that each agent has its own history of estimates. However, recall that an agent cannot

observe the reward of action ati on time t except if it has taken such action at that time, i.e.,

if ati = ȧti. In this sense, we assume that the reward of non-taken actions do not change2,

i.e., the expected reward associated with a non-taken action can be approximated by its

most recent observation. Let r̃(ati) represent the most recent reward estimate of agent i

for taking action a on time t (either the current reward or the last3 actually experienced

one), as given by Equation (3.1). The history of estimates of agent i can then be rewritten

as in Equation (3.2).

r̃(ati) =

r(a
t
i) if ati = ȧti

r̃(at−1i ) otherwise
(3.1)

Hi = {r̃(ati) | ati ∈ Ai, t ∈ [1, T ]} (3.2)

Given the above definitions, we can now formulate the estimated action regret of

action a for agent i up to time T as in Equation (3.3). The estimated action regret R̃T
i,a can

be seen as an estimate of the average amount lost by agent i up to time T for taking action

a (latter term) rather than the action with the highest estimated reward (former term).

1We use ȧti to distinguish the action taken by agent i at time t from any of its other actions ati in the
same time.

2This is not a restrictive assumption while computing reward estimates. Further ahead, in Theorem 3.4,
we show that our reward estimates indeed converge to their true values in the limit.

3As initial value, one can consider the minimum possible reward, i.e., the free flow travel times.
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Observe that each agent estimates the action regret associated with each of its actions,

i.e., the estimated action regret of a route varies from an agent to another.

R̃T
i,a = max

bti∈Ai

1

T

T∑
t=1

r̃(bti)−
1

T

T∑
t=1

r̃(ati) (3.3)

Similarly, we can reformulate Equation (2.8) to obtain the estimated external re-

gret of agent i, as in Equation (3.4). The estimated external regret R̃T
i of agent i expresses

how much worse it performed, on average, up to time T for not taking only the best fixed

action regarding its experience. The main advantage of this formulation over the real re-

gret (Equation (2.8)) is that it can be computed locally by the agents, thus eliminating the

need for a central authority. Moreover, as the required information is already available to

the agents, they can use such measure to guide their learning process.

R̃T
i = max

ati∈Ai

1

T

T∑
t=1

r̃(ati)−
1

T

T∑
t=1

r(ȧti) (3.4)

We highlight that action regret and external regret are fundamentally different de-

spite their similar formulations. Whereas the former considers the reward of a single,

fixed action, the latter considers reward of the sequence of actions actually taken by the

agent. An illustrative comparison of these two formulations is presented in Example 3.1.

The agents’ ultimate objective is to minimise their external regret (or, equivalently, max-

imise their reward), which is possible by employing action regret as reinforcement signal

(further details are discussed in Theorem 3.3 and the accompanying proof). Therefore,

action regret represents a mean for the agents to minimise their external regret.

Example 3.1. Consider the abstract road network presented in Figure 3.1, where a single

driver has three possible routes (R1, R2, and R3) for travelling from O to D. For simplicity,

assume that the routes’ rewards are fixed (though the agent does not know that) and that

regret is magically available (someone else—not the agent—computes regret and tells it

to the agent). Also assume that, in the first three episodes, for some reason the agent has

taken route R1 at the first episode, route R2 at the second episode, and route R3 at the

third episode. After this sequence of actions, the average reward received by the agents

was 9+16+11
3

= 12. Observe that the agent performed poorly as compared to if it has

taken only route R2 (which has the highest average reward). Hence, the external regret of

the agent at this point is 16-12=4. From this regret, the agent knows that it has performed

poorly, but it does not know which actions were responsible for that performance. That

is why action regret plays a role here. The action regret of route R1 is computed as the
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Figure 3.1: Illustrative comparison of external regret and action regret on a simple 3-route
network. The link’ labels represent the reward associated with them.

o d

r(R1) = 9

r(R2) = 16

r(R3) = 11

difference between its average reward and that of the best route (i.e., R2, with an average

reward of 16), thus accounting for 6. Similarly, the regret of routes R2 and R3 are 0 and

1, respectively. Therefore, using the action regret, the agent can conclude that choosing

route R2 translates into the smallest regret and, thus, highest reward.

At this point, the sharp-eyed reader will wonder why the regret formulation equally

weights old and recent rewards. In fact, several alternative formulations are possible here,

such as discounting old rewards or even considering a fixed time window, just to mention

a few. However, by definition, regret considers the overall performance of the agent (or

action) as compared to the best fixed action. Reducing the regret horizon would make the

agent ignore previous knowledge, which could lead to local optima. Consequently, the

system could get stuck in infinite loops among local optima. Notwithstanding, more so-

phisticated (and carefully designed) regret formulations could be useful for, e.g., ignoring

outdated information. Such a direction was left as future work. Nevertheless, our work

provides a building block towards more sophisticated regret formulations.

3.2.2 Learning to minimise estimated regret

Building upon the regret estimations from the previous section, we now present a

simple yet effective RL algorithm enabling the agents to learn a no-regret policy. An

overview of our method is presented in Algorithm 3.1. The problem is represented

as a stateless MDP and each driver i ∈ D as a Q-learning agent. The set of actions

Ai = {a1, . . . , aK} available to agent i corresponds to the routes it can use to reach its

destination from its origin. The set of all agents’ actions is denoted byA = {Ai | i ∈ D}.

Observe that if two agents i and j have the same OD pair, then Ai = Aj (i.e., they have



58

the same routes). Following Equation (2.5), the reward that agent i receives for taking

route ati at episode (or timestep) t is

r(ati) = −Cati ,

where Cati denotes the cost experienced in route ati, (as defined in Equation (2.2)). We

remark that, in the present (toll-free) setting, a route’s cost is based exclusively on the

travel time on it, i.e., using Equation (2.1). The drivers’ objective is to maximise their

cumulative reward.

The learning process works as follows. At every episode t ∈ [1, T ], each agent

i ∈ D chooses an action ȧti ∈ Ai using the ε-greedy exploration strategy (line 5 of

Algorithm 3.1). The exploration rate ε at time t is given by ε(t) = µt. After taking the

chosen action, the agent receives reward r(ȧti). Afterwards, the agent updates its history

Hi using Equation (3.1) (lines 8–10 of Algorithm 3.1) and calculates the estimated regret

of action ȧti using Equation (3.3) (line 11 of Algorithm 3.1; recall that the action regret

can be easily computed as soon as Hi was already updated). Finally, the agent updates

Q(ȧti) using the estimated action regret for that action as reinforcement signal, as in

Equation (3.5) (line 12 of Algorithm 3.1). The learning rate α at time t is given by

α(t) = λt.

Q(ȧti) = (1− α)Q(ȧti) + αR̃t
i,ȧti

(3.5)

Recall that the estimated action regret is used as reinforcement signal (i.e., for

updating an agent’s policy). The Q-table of an agent then encodes an expectation over its

actions’ regrets. Since the regret of an action is a function of its reward, we have that the

lower its regret, the higher its reward. Thus, using regret as reinforcement signal leads to

minimising an agent’s estimated external regret. A formal proof on this is presented in

Theorem 3.3.

We highlight that the original definition of external regret in Equation (2.8) consid-

ers the average reward of the agent over all actions it has taken. Specifically, it accounts

for actions with both high (exploitation) and low (exploration) rewards. The problem is

that the agent cannot identify which actions deteriorate its average reward, thus leading the

regret associated with good-performing actions to be penalised by that of bad-performing

ones. Moreover, the learning process works by adjusting the expected value (estimated

regret) of each action of the agent, which is not possible without knowing the contribution
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Algorithm 3.1: Regret-minimising Q-learning (for agent i)
input: set of actions Ai, learning decay rate λ, exploration decay rate µ,

number of episodes T

1 initialise Q-table: Q(ai)← 0 ∀ai ∈ Ai;
2 initialise history of estimates: Hi ← ∅;
3 for t ∈ {1, . . . , T} do
4 α← λt; ε← µt; // update learning and exploration rates

5 ȧti ← ε-greedy; // choose (and take) action using ε-greedy

6 fȧti ← observe travel time on ȧti;
7 r(ȧti)← −fȧti ; // compute the reward of ȧti
8 for ati ∈ Ai do

9 r̃(ati)←

{
r(ati) if ati = ȧti
r̃(at−1i ) otherwise

; // update estimate r̃(ati) ∈ Hi

10 end

11 R̃T
i,ȧti
← max

b∈Ai

1

T

T∑
u=1

r̃(bui )−
1

T

T∑
u=1

r̃((ȧti)
u
i ); //compute regret of ȧti

12 Q(ȧti)← (1− α)Q(ȧti) + αR̃t
i,ȧti

; // update Q-value of ȧti

13 end

of each action in particular. In other words, the external regret per se is not useful in the

learning process. To overcome such limitations, our estimated action regret formulation

decomposes the regret per action, i.e., it measures the regret of an action accounting for

none but its own rewards. In this sense, an action’s regret is not affected by the reward

associated with other actions. Using this formulation, an agent can evaluate how much

a particular action contributes to its regret. The estimated action regret is therefore more

suitable to evaluate how promising a given action is as compared to the others. Hence,

action regret can be used to guide the learning process.

We remark that Algorithm 3.1 is an abstract scheme of the algorithm from the

agent’s perspective. In order to effectively run our approach, one needs firstly to load the

problem instance and initialise the agents. Afterwards, for every episode (up to episode

T ), we can run once the main loop of each agent (i.e., where an agent chooses an action,

observes the reward, and updates its Q-table). The time and space complexity of our

approach are presented in the next proposition. We refer the reader to Appendix A for the

proof and for complete details on the simulation procedure.

Proposition 3.1. Our regret-minimising Q-learning approach hasO(T (dK+ld+lmK))

time complexity and O(dK) space complexity, for T episodes, d drivers, and K actions,

l links, and m OD pairs.
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3.3 Theoretical analysis

In this section, we analyse the theoretical aspects of our method. Specifically, our

objective is to prove that our method converges to an approximate UE. For simplicity and

without loss of generality, we assume that the actions’ rewards are in the interval [0, 1].

We begin with the big picture of our analysis. Initially, we show that the environ-

ment is stabilising, i.e., randomness is decreasing along time (Theorems 3.1 and 3.2). We

then analyse the expected reward and regret of the agents (Proposition 3.3). Afterwards,

we define a bound on the algorithm’s expected regret (Theorem 3.6). Building upon such

a bound, we prove that the algorithm is no-regret and converges to an approximate UE

(Theorem 3.7).

As a first step, the next proposition defines the probability that best4 and non-best

actions are chosen by a given agent i at episode t.

Proposition 3.2. Using ε-greedy exploration with ε(t) = µt, at episode t agent i chooses

its best action
+
ati = arg maxati∈Ai Q(ati) with probability ρ(

+
ati) = 1 − µt(K−1)

K
and any

other action
_
ati ∈ Ai \

+
ati with probability ρ(

_
ati) = µt(K−1)

K
.

Proof. In a given episode t, by definition, the ε-greedy strategy exploits the best action
+
ati = arg maxati∈Ai Q(ati) with probability 1 − ε or explores any action _

ati ∈ Ai with

probability ε. Observe that the best action can also be selected under exploration. In this

sense, the best action is selected with probability (1− ε) + ε
K

. A non-best action (i.e., any

action except for the best one), on the other hand, is selected with probability ε− ε
K

. Now,

considering that the value of ε at episode t is given by µt, we can rewrite the probability

of agent i selecting the best action at that given episode as follows:

ρ(
+
ati) = (1− µt) + µt

K

= 1 + µt−Kµt
K

= 1− µt(K−1)
K

.

(3.6)

Similarly, we can rewrite the probability of agent i selecting any non-best action as:
ρ(

_
ati) = µt − µt

K

= Kµt−µt
K

= µt(K−1)
K

,

(3.7)

which completes the proof.
4Hereafter, we refer to the action with highest Q-value as the best action and to the other actions as

non-best. Observe that the best action is not necessarily optimal.
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We can now formulate Theorem 3.1.

Theorem 3.1. The environment is stabilising.

Proof. We say the environment is stabilising if randomness is decreasing along time.

Observe that such a randomness is the result of agents exploration, i.e., the environment

is more stable when exploration is low.

As the agents are using the ε-greedy strategy, the exploration is defined in terms

of the ε parameter. Recall that ε is the same for all agents and it depends only on the

decay rate µ and current timestep, i.e., the value of ε at time t is given by ε(t) = µt.

From Proposition 3.2, we have that at episode t agent i chooses its best action
+
ati =

arg maxati∈Ai Q(ati) with probability ρ(
+
ati) = 1− µt(K−1)

K
and any other action _

ati ∈ Ai\
+
ati

with probability ρ(
_
ati) = µt(K−1)

K
. For simplicity, hereinafter we will refer to ρ(

+
ati) and

ρ(
_
ati) as

+
ρti and _

ρti, respectively, and even omit t and iwhen they are clear from the context.

We can formulate the change in the best action probability over time as the differ-

ence between any consecutive timesteps. Concretely,

∆
+
ρti =

+
ρti −

+
ρt−1i

= 1− µt(K−1)
K

− 1 + µt−1(K−1)
K

= (K−1)(µt−1−µt)
K

.

Based on Proposition 3.2, observe that as t→∞ and ε→ 0, we have that
+
ρti → 1

and _
ρti → 0, meaning that randomness is decreasing. Moreover, ∆

+
ρti → 0 at the same

rate, meaning that the environment is stabilising.

Additionally, observe that the learning rate α may also affect the environment’s

stability due to abrupt changes in the Q-table. The point is that the Q-value of the true

best action may be lowered so that it does not look the best anymore. To avoid this issue,

α needs to be low to properly deal with stochastic rewards, some of which may not be

representative of the average reward. Similarly to what was assumed for ε, α is the same

for all agents and it depends only on the decay rate λ and the current timestep t, i.e., the

value of α at time t is given by α(t) = λt. Therefore, the maximum change in the Q-

values goes to zero as α→ 0 and t→∞. Moreover, the probability of abrupt changes in

the best Q-values also goes to zero in the limit (as shown in Theorem 3.2).

Recall that, although the environment is stabilising, one of the key Q-learning

properties is that every action should be infinitely explored. The ε parameter ensures

this. In fact, the ε-greedy exploration strategy does not invalidate the no-regret property,
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given that it allows the agents to occasionally explore sub-optimal actions as soon as their

average performance is no-regret (BLUM; EVEN-DAR; LIGETT, 2010). It should be

noted, however, that even after experimenting every action enough, abrupt changes in

the Q-values may lead a so far optimal action to seem sub-optimal. In fact, even small

changes in the Q-values can have this effect. Nonetheless, as the environment is stabilising

(Theorem 3.1), the amplitude of such changes needs to be higher to affect the Q-values.

Hence, the probability of such abrupt changes goes to zero in the limit. The next theorem

demonstrates precisely that. We will refer to such changes as abrupt hereinafter.

Theorem 3.2. Suppose∇ agents decide to explore a non-best action. The probability that

such an event changes abruptly the Q-values of best actions (of any agent) is bounded by

O(
_
ρ∇(

+
ρ+

_
ρ)). Such a probability goes to zero as t→∞, α→ 0 and ε→ 0.

Proof. An abrupt change may occur in the Q-table if the agent receives a reward that leads

the Q-value of a non-best action to become better than that of the best one. Recall that,

in the case of Q-learning, only the currently taken action has its Q-value updated. In this

regard, an abrupt change is only relevant in two cases: (i) the Q-value of the best action

drops to below those of other actions, (ii) the Q-value of a non-best action rises to above

that of the best action.

Case (i): an abrupt drop of the best Q-value of agent i may occur if it decides to

exploit its best action
+
ati while, at the same time, ∇ agents (that so far consider any other

action
+
atj 6=

+
ati,∀j ∈ ∇ as their best one) decide to explore their non-best action _

atj =
+
ati,∀j ∈ ∇. Assume that, at this point, agent i receives a reward r(

+
ati) >

Q(
_
ati)−(1−α)Q(

+
ati)

α
,

and that ∇ > dQ(
_
ati)−(1−α)Q(

+
ati)

yα
e, with _

ati ∈ Ai \
+
ati and y representing the contribution

of each agent to the reward function (e.g., in Equation (2.4), each agent contributes with

−0.02 to the reward). Then, after the Q-value is updated, we have that ∃ _
ati ∈ Ai \

+
ati :

Q(
_
ati) > Q(

+
ati). In the following timestep, the agent shall exploit with probability

+
ρ

the action _
ati (whose value is Q(

_
ati)) and the ∇ agents back to their best action, making

the reward of
+
ati once again better than _

ati (indeed, some of them may not back, as the

explored action may be better; however, even one agent is enough so that the condition

holds). However, at this point, the agent shall exploit with probability
+
ρ the action _

ati,

whose value Q(
_
ati) became better than Q(

+
ati) in the previous step. Therefore, an abrupt

rise only occurs if the above scenario happens, whose probability is ρ̌ =
+
ρ× _

ρ∇ and goes

to zero as t→∞.

Case (ii): an abrupt rise of a non-best Q-value of agent i may occur if it decides

to explore a non-best action _
ati (rather than exploiting

+
ati) and∇ agents from _

ati (that were
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exploiting
_
ati) decide to explore any other action. Assuming that, at this point, the agent

receives a reward r( _
ati) >

Q(
+
ati)−(1−α)Q(

_
ati)

α
and that ∇ > dQ(

+
ati)−(1−α)Q(

_
ati)

yα
e, then, after

the Q-value is updated, we shall have Q(
_
ati) > Q(

+
ati). In the following timestep, the ∇

agents back to their best action (again, even one agent is enough), making the reward of
_
ati worse than of

+
ati, and thus leading the agent to believe this action is the best when it

actually is not. Therefore, an abrupt rise only occurs if the above scenario happens, whose

probability is ρ̂ =
_
ρ× _

ρ∇ =
_
ρ∇+1 and goes to zero as t→∞.

Putting altogether, we have that the probability of any of the above scenarios is

ρ̌+ ρ̂ =
+
ρ× _

ρ∇ +
_
ρ∇+1 ≤ O(

_
ρ∇(

+
ρ+

_
ρ)), as required.

The above theorems state that, when the agents are learning, as times goes to

infinity, the value of α and ε become so small that the probability of noisy observations

changing the Q-table (and, mainly, the best action) goes to zero. Observe that an agent

can, eventually, change its best action given it is learning. However, the agent should be

able to prevent its Q-values from reflecting unrealistic observations.

In the long run, we can say that a learning agent explores the available routes until

it is confident enough (environment is stable) about the best one (maximising reward). Of

course, stability does not imply that the Q-value estimates are correct and that the agents

are under UE. These are shown later in this section, in Theorems 3.4 and 3.7, respectively.

Having proved that the environment is stabilising, we can turn our attention to the

agents’ behaviour. Recall that, in our approach, the agents learn using the action regret

definition. However, the action and external regret definitions are not equivalent. The next

theorem shows that, if an agent employs the action regret in the learning process, then it

will minimise its external regret.

Theorem 3.3. Learning with action regret as reinforcement signal minimises the agent’s

external regret.

Proof. Recall that an agent’s Q-table provides an expectation over its actions’ regret.

Specifically, in a certain time t, the action with highest Q-value
+
ati = arg maxati∈Ai Q(ati)

is the one expected to incur agent i with the lowest action regret. Recall that the higher

an action’s reward, the lower its action regret. Whenever the agent exploits its best ac-

tion, it receives the highest reward, which decreases its external regret (as shown next, in

Lemma 3.1). On the other hand, if the agent decides to explore another action, its external

regret increases. However, considering the environment is stabilising and the probability

of exploration _
ρ is decreasing, then the agent’s external regret approaches zero in the limit.
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Therefore, the action that minimises the external regret is precisely the one with smallest

action regret.

Lemma 3.1. Consider an agent i at timestep t. If the agent exploits its best action (which

occurs with probability
+
ρ), then we have that RT+1

i ≤ RT
i , i.e., its external regret does

not increase.

Proof. Analysing the external regret formulation, it can only increase if the difference

between its terms increases. Considering the environment is stabilising, such change may

only occur in the following situations: (i) the agent is exploring, (ii) abrupt changes occur

in the Q-values. However, following Theorems 3.1 and 3.2, we have that, in the limit, the

probability of the above situations tends to zero. Moreover, even if situation (ii) occurs

in the limit, as all actions are infinitely explored, the agent will inevitably update its Q-

values so that they reflect the real expectation over its actions. In this case, after the best

action is finally found, the agent’s external regret stops to increase.

In Section 3.2.1, we presented a method for estimating the actions’ rewards based

on the agent’s experiences. When estimating values, accuracy matters. In our context,

a good precision in the reward estimations is fundamental to obtaining good regret esti-

mates. Empirically, we have observed that the higher the precision, the better the agents

learn. Thus, establishing bounds on the quality of the action regret estimates is desired.

Theorem 3.4. The error of any action’s estimated reward is δ ≤
√
− ln(β/2)

2S
in the

(1 − β) confidence interval after the action is sampled S times, with β denoting the

probability of the estimation error being at least δ. In other words, after an action is sam-

pled S times, the estimation error is lower than (or equal to) δ with probability greater

than (or equal to) 1− β.

Proof. Here we show that the estimation error tends to zero as time goes to infinity and

the environment becomes more stable. Consider an agent i and its set of actions Ai. To

analyse the precision of its estimations, we can apply the Hoeffding’s bound (HOEFFD-

ING, 1963), which states that:

P
(∣∣r̃(aSi )− r(aS)

∣∣ ≥ δ
)
≤ 2 exp

(
−2Sδ2

)
, (3.8)

where S is the number of times agent i has taken action a (i.e., the amount of reward sam-

ples for action a), r̃(aSi ) = 1
S

∑S
t=1 r̃(a

t
i) is the average estimated reward, and r(aS) =

1
S

∑S
t=1 r(a

t) is the true average reward. Let β denote the left-hand side P (·) of the above
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inequality. The intuition behind Hoeffding’s bound is that, after action a is sampled S

times, agent i’s estimation on a is no worse than δ with a high probability 1 − β. Ho-

effding’s bound assumes the samples are independent and identically distributed, which is

usually not the case, given such samples depend on what other agents are doing. However,

given the environment is stabilising and that agents typically have low α (Theorem 3.1),

we have that, locally in time, the environment is quasi-stationary. In other words, within

any short period of time, actions have similar rewards, meaning they are sampled inde-

pendently from approximately the same distribution.

Solving Equation (3.8) for S, the minimum amount of samples required for the

estimation errors being lower than δ with probability 1− β is given by Equation (3.9).

S ≥ − ln(β/2)

2δ2
(3.9)

Moreover, solving Equation (3.8) for δ yields the estimation error in the (1 − β)

confidence interval after S samples, as in Equation (3.10).

δ ≤
√
− ln(β/2)

2S
(3.10)

To prove this theorem, one needs to show that the agent chooses each action at

least S times so that the above bound holds. We highlight that, in the limit, all actions are

chosen infinitely. What remains is to estimate when each action will be sampled for the

S-th time. In the case of the best action, we have:

∑T
t=1

+
ρ ≥ S∑T

t=1

(
1− µt(K−1)

K

)
≥ S

T ≥ S + µ(K−1)(µT−1)
K(µ−1)

T ≥ S − µ(K−1)
K(µ−1) ,

considering µT → 0 as T →∞, and for each non-best action we have:

∑T
t=1

_
ρ
(

1
K−1

)
≥ S∑T

t=1
µt

K
≥ S

T ≥ log(SK(µ−1)+µ)
log µ

− 1.

From these inequalities, we conclude that every action is sampled enough in the

limit, thus completing the proof.
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Corollary 3.1. Following Theorem 3.4, if we want the estimation error of a given action

to be up to 0.05 with 95% confidence level then, from Equation (3.9), we would need

approximately 738 samples of that action.

Observe that the above bound is not tight, given that non-best actions only achieve

S samples asymptotically. A further step, left as future work, would be extending the

analysis by Auer, Cesa-Bianchi and Fischer (2002). Specifically, their third theorem could

be used by defining µ = t

√
cK
d2t

and setting c = d = 1, thus achieving stronger results.

We now provide a bound on the external regret of the agents, which is useful

for establishing the bound on the UE. We begin with the following proposition, which

defines the expected instantaneous reward and regret of the agents. We call these values

instantaneous because they refer to a single timestep (rather than the average over all

timesteps) and expected to account for the stochastic nature of the choices.

Proposition 3.3. The expected instantaneous reward E[rti ] of agent i at time t is

E[rti ] =

(
1− µt(K − 1)

K

)
r(

+
ati) +

µt

K

∑
_
ati∈Ai\

+
ati

r(
_
ati),

and the expected instantaneous regret E[Rt
i] of agent i at time t is given by

E[Rt
i] = r(

+
ati)− E[rti ].

Observe that E[rti ]→ r(
+
ati) as ε→ 0 and t→∞. Moreover, E[Rt

i]→ 0 as E[rti ]→ r(
+
ati).

The above proposition holds no matter whether the environment is stabilising or

not, given the instantaneous regret measures only the difference to the best action at that

specific time t. This proposition would not hold only if the best action changes, which

occurs with a small probability, as shown in Theorem 3.1. However, recall that we work

with estimates over the actions’ rewards. This point is discussed in the next theorem.

Theorem 3.5. Let
∗
bti = arg maxati∈Ai r(a

t
i) be the action with highest (true) reward and

b̃ti = arg maxati∈Ai r̃(a
t
i) be the action with highest estimated reward at time t for agent i.

If maxati∈Ai r̃(a
t
i) ≈ maxati∈Ai r(a

t
i) as t → ∞, then b̃ti =

∗
bti with high probability. Thus,

the instantaneous regret of agent i at time t is 0 with probability
(
1 − µt(K−1)

K

)
, which

approaches 1 as t→∞.

Proof. The agent selects its best estimated action (that with highest Q-value) with prob-

ability
+
ρ. Regret is measured considering the agent’s expectation over received rewards.

So, according to its current Q-values, selecting the best estimated action yields regret zero.
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Observe that having good accuracy is not enough for ensuring that the best esti-

mated action is indeed the best one. However, from Theorem 3.4, it follows that, in the

limit, r̃(ati) ≈ r(ati) with probability (1−β) for every action a ∈ A. Moreover, recall that

such a probability goes to 1 as t→∞.

Therefore, whenever the agent selects its best estimated action, its instantaneous

regret will be zero plus an estimation error δ with probability (1 − β). Such expected

instantaneous regret can be formalised as:

E[Rt
i] = r(

+
ati) + δ − (E[rti ] + δ)

= r(
+
ati)− E[rti ] + 2δ.

Finally, observe that
+
ρ→ 1 and δ → 0 as t→∞. Consequently, E[Rt

i]→ 0.

We now analyse the regret of our approach.

Theorem 3.6. The regret achieved by our approach up to time T is bounded by

O

((
K − 1

TK

)(
µT+1 − µ
µ− 1

))
.

Proof. To establish an upper bound on the regret of any agent i, we need to consider

the worst case scenario. Assume that there exists a single optimal action ∗
ai with (true)

reward always 1 and that every other (sub-optimal) action _
ai ∈ Ai has reward 0. In

such scenario, we can ignore the estimation error because the rewards are bounded in the

interval [0, 1]. In the worst case, the agent always chooses a sub-optimal action, which

yields an instantaneous regret of 1. However, recall that the agents tend to exploit their

best actions. Regret, then, needs to be analysed in expectation.

By employing Proposition 3.3, we can formulate the accumulated expected reward

E[rTi ] of agent i up to time T as

E[rTi ] = 1
T

T∑
t=1

E[rti ]

= 1
T

T∑
t=1

[(
1− µt(K−1)

K

)
r(
∗
ati) + µt

K

∑
_
ati∈Ai\

∗
ati

r(
_
ati)

]
≤ r(

∗
ati)

T

T∑
t=1

(
1− µt(K−1)

K

)
+

r(
_
ati)

T

T∑
t=1

(
µt(K−1)

K

)
=

r(
∗
ati)

T

(
T −

(
K−1
K

)(
µT+1−µ
µ−1

))
+

r(
_
ati)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
= r(

∗
ati)−

r(
∗
ati)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
+

r(
_
ati)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
= r(

∗
ati) +

(
1
T

)(
K−1
K

)(
µT+1−µ
µ−1

)
(r(

_
ati)− r(

∗
ati)).
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The third step of the above equation is a consequence of the worst-case assump-

tion that all sub-optimal actions have zero reward. Using the above formulation, we can

redefine agent’s i external regret up to time T as

E[RT
i ] = maxa∈Ai

1
T

∑T
t=1 r(a)− 1

T

∑T
t=1 r(ȧ

t
i)

≤ 1
T

∑T
t=1 r(

∗
ai)− E[rTi ]

= r(
∗
ai)− E[rTi ]

=
(

1
T

)(
K−1
K

)(
µT+1−µ
µ−1

)
(r(

∗
ati)− r(

_
ati)).

Again, the second step is a consequence of the worst-case assumption. Observe

that (r(
∗
ati)− r(

_
ati)) ∈ O(1). Therefore, the expected regret of any agent i up to time T is

O
((

K−1
TK

)(
µT+1−µ
µ−1

))
. Furthermore, since this expression goes to zero as time increases,

our algorithm is no-regret.

We now turn our attention to the final step of our proofs. As an intermediate step,

we observe that, under UE, all agents have zero regret.

Proposition 3.4. Under UE, all agents have zero regret.

Proof. Under UE, every agent uses its lowest cost route and no other available route has

a lower cost. Otherwise, the agent would deviate to such lower cost route. In such case,

as the difference between the current and best routes is always zero for all agents, we

have that the regret is also zero. Therefore, any set of strategies that reach the UE is

no-regret.

We remark that pure UE not always exist in route choice (ROUGHGARDEN,

2005). A more realistic objective then is to find an approximate UE, as in Definition 3.1.

Particularly, we show in Theorem 3.7 that the system converges to a φ-UE in that, on

average, no driver can increase its reward by more than φ after changing its route.

Definition 3.1 (φ-UE). The average cost on all routes actually being used by the agents

is within φ of the minimum cost route, i.e., no driver has more than φ incentive to deviate

from the route it has learned.

Theorem 3.7. The algorithm converges to a φ-UE, where φ is the regret bound of the

algorithm.

Proof. The key point to establish a convergence guarantee is to show that, in the limit, the

action with the highest Q-value is indeed the optimal one.



69

From Theorems 3.1 and 3.2, we have that the environment is stabilising and that

noisy rewards do not influence the Q-values in the limit. At this point, the agent may

have learned the optimal action or not. The latter case would only be possible if the

agent were not able to explore every action enough. However, recall that our learning and

exploration rates ensure that every action is infinitely explored. In the limit, exploration

ensures that the Q-value of the optimal action becomes the highest one. On the other hand,

if the optimal action is already learned, then Theorem 3.2 ensures that, in the limit, it will

remain with the highest Q-value with high probability. Observe that, even in the unlikely

event of an abrupt change in the Q-values, the exploration ensures that the optimal action

will eventually become the one with the highest Q-value. Thus, the highest Q-value is

that of the optimal action.

Regarding the learning process, recall that the agent takes the action with smallest

action regret with higher probability. Given that the agent finds the optimal action in the

limit, then such action yields the smallest action regret. Consequently, from Theorem 3.3,

the agent will minimise its external regret.

Observe that the external regret considers the average reward of the actions. To

this respect, as shown in Lemma 3.1 and considering the environment is stabilising, when-

ever the agent is exploiting its action with highest Q-value, then its external regret will

decrease. Moreover, considering the regret is bounded by φ = O
((

K−1
TK

)(
µT+1−µ
µ−1

))
(from Theorem 3.6), which goes to zero in the limit, we have that algorithm is no-regret.

We highlight that the estimation error of the rewards does not invalidate the no-regret

property, as δ → 0 in the limit.

Finally, considering that the algorithm is no-regret, observe that no driver has more

than φ incentive to deviate from its optimal action. As the environment is stable in the

limit, then such condition approximates the UE condition. An exception would be if the

agent discovers that a so far sub-optimal action became the optimal one (i.e., due to some

change in the environment). However, as the environment is stabilising, the Q-value of

that action will inevitably become the highest one in the limit, and the exploitation there-

after will decrease the agent’s regret (from Lemma 3.1). Therefore, the agents converge

to a φ-UE, which completes the proof.
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3.4 Experimental evaluation

In this section, we empirically analyse the performance of our method. The hy-

pothesis we want to validate is that the use of action regret as reinforcement signal leads

reinforcement learning agents to converge to the user equilibrium. Before going into the

experiments and results, recall that learning means finding the best route to take, which

becomes a moving target when the environment is shared by many agents. In this context,

convergence refers to the point at which the agents keep exploiting their knowledge most

of the time and the system is stable (i.e., agents observe only small fluctuations in their

costs). What we show is that, using our approach, such a stable point is close to the UE.

3.4.1 Methodology

In order to empirically validate our theoretical results, we simulate our approach as

described in Appendix A. Our approach is tested in the following road networks available

in the literature5. A summary on these networks is presented in Table 3.1. The most

representative such networks are illustrated in Appendix B.

Braess graphs: these are expanded versions (ROUGHGARDEN, 2006; STEFANELLO;

BAZZAN, 2016; STEFANELLO; SILVA; BAZZAN, 2016) of the network intro-

duced to explain the Braess (1968)’s paradox. Each such graph is denoted by Bp,

with p ∈ N∗, where B1 is equivalent to the original graph. The Bp graph has

|N | = 2p + 2 nodes, |L| = 4p + 1 links, and a single OD pair. As Stefanello and

Bazzan (2016), we use the p ∈ {1, . . . , 7} Braess graphs, and define a demand of

d = 4,200 drivers.

Bi-commodity Braess graphs: these are additional expansions of the Braess graphs, but

containing two OD pairs instead of one (LIN et al., 2005; STEFANELLO; BAZ-

ZAN, 2016). We refer to each such graph as BBp, with p ∈ N∗, |N | = 2p + 6

nodes, and |L| = 4p + 4 links. Following Stefanello and Bazzan (2016), here we

employ only the odd instances p ∈ {1, 3, 5, 7} of the graphs and set a demand of

d = 4,200 drivers.

OW: this is a synthetic network introduced by Ortúzar and Willumsen (2011, example

10.1). It comprises |N | = 13 nodes, |L| = 48 links, 4 OD pairs, and d = 1,700

5The road networks are available at <https://github.com/maslab-ufrgs/network-files>.

https://github.com/maslab-ufrgs/network-files
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Table 3.1: Characteristics of the networks used for validation of our approach.
Network Nodes Links OD pairs Number of drivers avg-tta under UE

B1 4 5 1 4,200 20.00
B2 6 9 1 4,200 30.00
B3 8 13 1 4,200 40.00
B4 10 17 1 4,200 50.00
B5 12 21 1 4,200 60.00
B6 14 25 1 4,200 70.00
B7 16 29 1 4,200 80.00
BB1 8 8 2 4,200 10.00
BB3 12 16 2 4,200 22.00
BB5 16 24 2 4,200 50.30
BB7 20 32 2 4,200 ≈123.84
OW 13 48 4 1,700 ≈67.16
SF 24 76 528 360,600 20.76

a Values reported in the literature (STEFANELLO; SILVA; BAZZAN, 2016; STE-
FANELLO; BAZZAN, 2016).

drivers. The main challenge here is that the OD pairs have overlapping routes.

SF: an abstract representation of the Sioux Falls city, USA (LEBLANC; MORLOK;

PIERSKALLA, 1975). It has |N | = 24 nodes, |L| = 76 links, 528 OD pairs, and

d = 360,600 drivers. This network is widely used in the literature because it is

realistic and presents all challenges of the other networks.

The number of possible routes in the above networks can be high. Following the

literature, we limit the number of available routes to the K shortest ones6. The set of K

shortest ones of each OD pair was computed using the KSP algorithm (YEN, 1971). The

best value for K (i.e., the one which produces the best results) varies among the different

networks, depending on their characteristics.

An experiment corresponds to a complete execution, with T =1,000 episodes

(except for the SF network, in which case we set T =10,000 episodes), of our method

on a single network. After an execution is completed, we measure (considering the last

episode) its performance by means of the average travel time (avg-tt hereafter, measured

in minutes), the average external regret, and the average proximity to the UE. The latter

is formulated as

proximity(x, x∗) = 1− |x
∗ − x|
x∗

, (3.11)

and refers to how close the average travel time (say, x) obtained by the agents is to that of

6In the case of the BB networks, among the shortest routes we also included the one with the least
number of links, otherwise the UE would not be possible (STEFANELLO; BAZZAN, 2016). This is a
particularity of the BB networks given their large number of possible routes.
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the UE (say, x∗; as reported in Table 3.1); the closer the value is to 1.0, the better.

We tested different value combinations for the Q-learning’s parameters. We ran

30 repetitions for each combination of values for these parameters. The complete tuning

process is described in Section 3.4.2. The best results were selected for further analyses in

Section 3.4.3. Our results are compared against standard Q-learning (stdQL, hereinafter),

which uses reward (rather than action regret) as reinforcement signal. In what follows,

any claim about whether one approach is better than the other is supported by Student’s

t-tests at the 5% significance level, except if otherwise stated.

The algorithms, data analysis and plots were all implemented in Python 2.7.

3.4.2 Parameter tuning

In this section, we present the experiments conducted to tune the parameters of

Q-learning. We tune three parameters: K (number of routes), λ (decay rate of α) and µ

(decay rate of ε). As for the number of routes, we usedK ∈ {4, 8, 12, 16}. We empirically

found that intermediate values for K pose no significant difference on the results. As for

the decay rates, we used the values {0.98, 0.99, 0.995, 0.999}, with λ = µ. Recall that

the learning and exploration rates, α and ε, are initialised with 1.0 and multiplied by their

decay rates after each episode. Thus, lower decay rates were not used to ensure the agents

keep learning/exploring for a longer time. The exception was the SF network, for which

we defined λ ∈ {0.9995, 0.9997, 0.9999} and µ ∈ {0.995, 0.997, 0.999} to account for

its higher demand (i.e., the number of vehicles on it is two orders of magnitude higher

than in the other networks), which makes the optimisation process more complex. In this

sense, the values used for λ were higher than for µ to ensure that agents keep learning

even after exploration is decreased. We ran 30 repetitions for each combination of values

for these parameters and compared such combinations using Student’s t-tests at the 5%

significance level, except if otherwise stated.

Table 3.2 presents the best-performing combinations of parameters. As seen,

larger networks tend to depend on a higher number of routes (i.e., a higher value for

K). The rationale here is that the number of possible routes increases with the size of

the network. Consequently, a higher value for K is necessary to efficiently spread the

traffic on these networks. We can observe the same trend in the case of the decay rates.

Recall that the learning and exploration rates, α and ε, are multiplied by their decay rates

after each episode. In this sense, higher decay rates ensure that the agents keep learn-
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Table 3.2: Parameters’ configuration that produced the best results for each network.
Network K λ µ

B1 3 0.99 0.99
B2 4 0.995 0.995
B3 4 0.99 0.99
B4 4 0.99 0.99
B5 8 0.995 0.995
B6 8 0.995 0.995
B7 8 0.995 0.995
BB1 4 0.98 0.98
BB3 4 0.995 0.995
BB5 4 0.995 0.995
BB7 4 0.995 0.995
OW 8 0.995 0.995
SF 4 0.9999 0.998

ing/exploring for a longer time. Hence, in larger networks (especially when demand is

higher), the values of λ and µ need to be higher (which translates into slower decays) to

ensure that agents explore their routes sufficiently. Such a relationship is illustrated in

Table 3.2 by the Braess graphs, where the parameters increase progressively with the size

of the network graphs. Of course, small fluctuations are possible here. An example is the

B2, for which the best decay rates are higher than for B3. Nevertheless, in this particular

network, the 0.99 and 0.995 decay rates achieved almost the same results. Also observe

the case of the SF network, where the larger number of vehicles makes the optimisation

problem harder than in the other networks. In this case, higher decay rates are necessary.

The results of the above configurations were selected for further analyses in the

next subsection.

3.4.3 Results

Table 3.3 presents the performance of our approach in terms of external regret and

proximity to the UE in all tested networks. In the table, results represent averages over 30

repetitions, with standard deviations shown in parentheses. The values of the algorithms’

parameters are those listed in Table 3.2.

As seen in Table 3.3, our approach outperformed standard Q-learning on aver-

age, producing solutions with lower regret and that are closer to the UE. To be specific,

our approach decreased the average external regret by 21.5% as compared to standard

Q-learning. We emphasise that, although improving regret does not necessarily trans-
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Table 3.3: Average performance (with standard deviation in parentheses) of our approach
(Ours) and of standard Q-learning (StdQL) on different networks in terms of proximity to
the UE and external regret.

Proximity to the UE External regret
Network Ours StdQL Ours StdQL

B1 1.0000 (0.000) 0.9250 (10−2) 0.0057 (10−5) 0.0121 (10−3)
B2 0.9981 (10−4) 0.9570 (10−2) 0.0034 (10−5) 0.0111 (10−3)
B3 0.9999 (10−5) 0.9974 (10−3) 0.0020 (10−4) 0.0041 (10−3)
B4 0.9999 (10−6) 0.9999 (10−6) 0.0004 (10−4) 0.0010 (10−4)
B5 0.9916 (10−4) 0.9889 (10−3) 0.0025 (10−4) 0.0039 (10−4)
B6 0.9994 (10−4) 0.9996 (10−4) 0.0020 (10−5) 0.0030 (10−5)
B7 0.9999 (10−4) 0.9999 (10−5) 0.0025 (10−4) 0.0019 (10−5)
BB1 1.0000 (0.000) 1.0000 (0.000) 0.0016 (10−5) 0.0016 (10−5)
BB3 0.9991 (10−4) 0.9941 (10−3) 0.0173 (10−5) 0.0178 (10−4)
BB5 0.9991 (10−4) 0.9959 (10−3) 0.0066 (10−5) 0.0063 (10−5)
BB7 0.9979 (10−4) 0.9986 (10−4) 0.0035 (10−5) 0.0029 (10−5)
OW 0.9997 (10−4) 0.9989 (10−4) 0.0161 (10−4) 0.0131 (10−5)
SF 0.9344 (10−4) 0.9887 (10−4) 1× 10−6 (0.0) 2× 10−6 (0.0)

Average 0.9938 (10−4) 0.9880 (10−3) 0.0049 (10−4) 0.0061 (10−4)

lates into better system’s performance, it leads to stronger results, given that it better fits

the no-regret property. In other words, decreasing regret means increasing convergence

probability. In terms of the (absolute) proximity to UE, our regret minimising approach

improved upon standard Q-learning by 0.55% on average. Although such an improvement

may seem insignificant, it translates into an average decrease in the relative distance to

the UE of 48% as compared to standard Q-learning, meaning that the gap to the UE was

cut by a half.

Another relevant aspect to consider here refers to the different parameter values

used in the networks. As discussed in Section 3.4.2, the larger the network, the higher

the values required for the parameters. We draw attention to the case of the SF net-

work, whose demand is considerably higher than in other networks. This characteristic

makes the optimisation problem much harder than in the other networks, which reflected

in the comparably worse results achieved for that network. In large scenarios like this,

the number of episodes should be increased as well. In fact, we empirically seen that a

5% improvement is easily obtained by increasing the number of episodes. As a proof of

concept, however, our results achieved the desired outcome, evidencing that our approach

converges to an approximate UE in the limit.

In order to understand how well agents learn when using our algorithm, we can

analyse how the average travel time varies along time. Figure 3.2 presents the average
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Figure 3.2: Average travel time along episodes in selected networks, with shaded lines
representing the standard deviation and dashed lines representing the UE (as reported in
Table 3.1).
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(c) SF network

travel time along episodes in selected networks. In the plots, each curve is an average over

30 repetitions (with standard deviation shown as shaded lines) and dashed lines present

the average travel times under UE (as reported in Table 3.1). We emphasise that the

apparent faster convergence seen in Figure 3.2 is actually due to the higher number of

episodes used for the SF network, which leads to a concentration of the curve in the left

side of the plot.

As seen in the plots, avg-tt is high in the beginning of the learning process. This is

an effect of the Q-table initialisation. As Q-values are initialised with zero, all routes are

equiprobable in the beginning. However, as agents explore different routes, the Q-values
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of such routes tend to represent their real costs progressively better, thus allowing the

agents to identify which routes are the best. Consequently, avg-tt decreases with episodes

and converges to an approximate UE. Observe that our algorithm seems to converge to a

lower value than that of the UE for the BB7 network (Figure 3.2a). The reason is that

the UE value reported in the literature for this network was computed using CPLEX, with

flows represented as real numbers. In our approach, however, the flows are integers (i.e.,

each agent controls a unit flow). Consequently, the UE in these two models may differ. In

spite of that, the values obtained by our approach are very similar to that of CPLEX in all

tested networks.

Convergence speed is strongly related with the network characteristics. One of

the key aspects here is the number of OD pairs. In general, the higher the number of OD

pairs, the longer it takes for the system to converge. The reason is that as the number

of OD pairs increases, the number of overlapping routes also increases. Consequently,

agents experiment a higher variability in their route costs estimates. The exploration rate

also affects convergence rate. Specifically, the higher the decay rates, the slower agents

learn. In reinforcement learning settings, agents must exploit their knowledge as they

become experienced. However, given that the environment may change, RL agents cannot

completely stop exploring, otherwise they may get stuck with sub-optimal actions. In this

regard, the decay rate employed here ensures that the exploration rate is never zero. This is

especially important in more complex networks, such as the SF, where agents take longer

to learn their routes. In such scenarios, agents need to explore longer before reasonable

results are achieved, as evidenced in Figure 3.2c.

Regarding regret, Figure 3.3 presents the average external regret over time in se-

lected networks. The plots present averages over 30 repetitions, with standard deviation

shown as shaded lines. We highlight that the non-smooth behaviour of regret in Fig-

ure 3.3c is due to the limited numeric precision used by Python.

From Figure 3.3, one can observe that agents’ regret goes to zero as time increases.

In fact, that is why the system approaches the UE, given that under UE all agents have

zero regret, as seen in Theorem 3.4. Note that regret decreases slightly faster in the OW

network than inBB7, even considering that the former has more OD pairs. The point here

is that theBB7 network has a higher number of agents, which leads to a higher variability

in the route cost estimates. Considering that regret measures how much reward an agent

loses for not taking the best action, we conclude that regret is sensitive to such variations

in route costs. On the other hand, recall that the µ decay rate ensures that exploration
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Figure 3.3: External regret along episodes in selected networks, with shaded lines repre-
senting the standard deviation.
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decreases along time. However, as regret is averaged over time, it takes time for old

reward observations to be diluted in the regret.

Last but not least, we can compare the regret bound of our algorithm to that

achieved by our approach. Such an upper bound can be computed by applying the pa-

rameters used in the experiments to the bound presented in Theorem 3.6. For instance,

in the case of the B1 network, we have7 that K = |A| = 3, µ = 0.99, and T = 10, 000,

7Observe that, in Theorem 3.6, the symbol K stands for |A| (i.e., the number of all possible actions) not
for the parameter used to run the KSP algorithm. In the road networks considered here, this number can be
arbitrarily high and. In fact, computing the set of all possible routes is a complex problem per se. In this
sense, here we compute the regret bound for each network using parameter K (i.e., one the used to limit the
number of routes). We remark that this is not a restrictive assumption however: the lower the value of K,
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which results in an upper bound of 0.0066. Similarly, we can obtain the following up-

per bounds for the other Braess networks: 0.0149 (for the B2 network), 0.0074 (for B3),

0.0074 (for B4), 0.0174 (for B5), 0.0174 (for B6), 0.0174 (for B7), 0.0024 (for BB1),

0.0149 (for BB3), 0.0149 (for BB5), 0.0149 (for BB7), 0.0174 (for OW), 0.0374 (for

SF). We remark that the regret bound is more sensitive to the µ decay rate than to the

other parameters. As a consequence, the regret bound is lower for the networks that fared

better with lower decays. Hence, as expected, the experimental results show that the regret

achieved by our method is consistent with the bound defined in Theorem 3.6.

Therefore, the experiments confirm our theoretical results, showing that our ap-

proach is no-regret and that it approaches the UE. Consequently, we can confirm our ini-

tial hypothesis, stating that the use of regret as reinforcement signal leads reinforcement

learning agents to converge to the user equilibrium.

3.5 Related work

According Blum and Mansour (2007), regret is useful for analysing the perfor-

mance of agents that repeatedly need to make decisions. In general terms, this applies

to game theory, learning theory, online optimisation, and so on. In the particular con-

text of reinforcement learning, regret has been typically used as a measure of conver-

gence (SHOHAM; POWERS; GRENAGER, 2007; BUŞONIU; BABUSKA; SCHUT-

TER, 2008). In contrast, in this chapter we used regret to explicitly guide the learning

process. So far, only a few works investigated such direction. Hart and Mas-Colell (2000)

proposed one of the first approaches to employ regret as the learning signal, but using an

alternative regret formulation aiming at the correlated equilibrium. Bowling (2005) de-

vised the no-regret GIGA-WoLF algorithm, but it only applies to 2-player-2-action games.

Banerjee and Peng (2005) proposed a no-regret algorithm with fewer assumptions on the

problem structure, but regret was not employed to guide the learning process. Zinke-

vich et al. (2008) and Waugh et al. (2015) minimised regret in extensive form games.

However, they assume that the regret of all possible actions is known by the agents in

advance. Recently, Prabuchandran, Bodas and Tulabandhula (2016) aimed at minimising

the cumulative regret, but they assumed that the optimal policy structure is known. In this

chapter, we considered another direction, employing regret to guide the learning process.

We remark that, by definition, computing regret exactly requires the reward of all actions

the lower the regret bound. Thus, the bounds computed using K are upper bounded by those using |A|.
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along time, which is not available to the agents. Thus, we have shown how such values

can be estimated by the agents.

Regret was also employed in discrete choice models to improve predictions of

travellers’ behaviour. Chorus and colleagues (2008, 2010) proposed the random regret

minimisation (RRM) model, which asserts that travellers try to avoid regret when mak-

ing decisions. Chorus (2012) revisited regret theory assumptions by considering that

choice behaviour is affected both by regret and utility. Later on, Ben-Elia, Ishaq and

Shiftan (2013) investigated how travellers’ experiences affect their regret and behaviour.

The regret theory model was also investigated in terms of the stochastic UE by Li and

Huang (2017). Importantly, though, these models (unlike ours) do not take adaptation

into account and assume that drivers have full knowledge regarding their regrets and/or

travel costs distributions. Moreover, the travel costs are frequently assumed to be fixed.

Notwithstanding, we remark that the costs change steadily as a consequence of the agents’

learning/adaptation process, which makes the agents’ objective a moving target. For these

reasons, such models are not suitable for investigating how individual agents interact and

learn to maximise their rewards.

Congestion games (ROSENTHAL, 1973; ROUGHGARDEN, 2005) is another

framework to address route choice. Chien and Sinclair (2007) and Fischer, Räcke and

Vöcking (2010) proposed methods for accelerating the equilibrium computation. How-

ever, they assumed that only a single agent can change its route per time step. Chan and

Jiang (2016) proposed a compact, tree-based representation of the problem. However,

their method’s efficiency strongly depends on the network topology. Blum, Even-Dar

and Ligett (2010) guaranteed the convergence of routing games to an approximate UE

when all agents are using no-regret strategies. However, in contrast to our work, they

neither investigate how agents can obtain such no-regret strategies nor if such strategies

indeed exist. In contrast, in this chapter, we proposed a regret-minimising RL approach

and formally proved its convergence to an approximate UE, without relying on previous

works’ assumptions. Furthermore, we represent flows as integers (which correspond to

agents), whereas congestion games literature assume infinitesimal flows (which simplify

the convergence analysis).

The regret of route choice has also been approached in the online optimisation lit-

erature. The agent’s feedback can be transparent (ZINKEVICH, 2003) or opaque (AUER

et al., 2002; AWERBUCH; KLEINBERG, 2004), where the environment reveals the

reward of all routes or of the taken route, respectively. The latter is equivalent to the
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route choice problem and was first investigated by Awerbuch and Kleinberg (2004), who

bounded the regret to O(T 2/3). However, they assumed the reward functions are con-

stant and defined a priori, regardless of the current environment state. Dani, Kakade

and Hayes (2007) later improved such a bound to O(
√
T ), but lacking an efficient al-

gorithm. Abernethy, Hazan and Rakhlin (2012) achieved a regret of O(
√
T log T ) with

an efficient algorithm, but assuming the reward functions are constant and defined a pri-

ori. Agarwal, Dekel and Xiao (2010) improved the bound to O(
√
T ) in expectation, but

for the multi-point version of the problem, in which the agent can observe its reward at

any point. Zhang et al. (2015) considered more general reward functions, but assum-

ing they are monotonically increasing (given the flow of vehicles). Here, we achieved a

bound of O
((

K−1
TK

)(
µT+1−µ
µ−1

))
without relying on the assumptions of previous works.

Moreover, we provided a simple, yet efficient algorithmic solution that provably approxi-

mates the UE.

Recent works proposed alternative regret formulations. Arora, Dekel and Tewari

(2012) presented the policy regret, which considers the effect of actions as if they were

taken. However, no one could potentially obtain such information in traffic domains.

Heidari, Kearns and Roth (2016) employed the concept of policy regret to address the

multi-armed bandit problem. Zinkevich et al. (2008) introduced counterfactual regret to

estimate the regret in extensive form games with imperfect information. In this chapter,

we presented the action regret, which measures the regret of individual actions. Further-

more, in contrast to previous approach, we have shown how such action regret can be

estimated by the agents using only local information. A similar formulation was pre-

sented by Baird (1994). However, their formulation can only be computed by the agents

if partial knowledge on the reward functions is available.

3.6 Discussion

We introduced a regret-minimising reinforcement learning approach through which

agents can learn how to choose their best routes. In route choice, agents can only observe

the reward of the taken actions. In our approach, agents estimate the reward of their ac-

tions based on previous observations and use such estimates to compute the (action) regret

associated with their actions. Using this formulation, we embodied each agent with the

Q-learning algorithm with decaying learning and exploration rates. The idea underlying

our approach is that agents can estimate the regret of their actions so as to choose the ones
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which present lower regret, which translates into choosing the ones with highest rewards.

We provided theoretical and experimental results. In the theoretical side, we

proven that our approach minimises the agents’ regret in the limit. Specifically, we

bounded the agents’ regret to O
((

K−1
TK

)(
µT+1−µ
µ−1

))
after T timesteps, where K is the

number of available routes and µ is the decay rate of the exploration parameter. Moreover,

we proved that the system converges to an approximate user equilibrium. On the experi-

mental side, we validated our theoretical results in several road networks available in the

literature, achieving an average proximity to the UE of 99.38% and an average regret of

only 0.0049. Together, our results confirm our initial hypothesis, showing that using the

actions’ estimated regret as reinforcement signal leads reinforcement learning agents to

converge to the UE.
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4 THE ROLE OF TRAVEL INFORMATION

In the previous chapter, we considered how agents can estimate their regret and use

it to guide their learning process. As a natural extension, this chapter presents an investi-

gation on how the agents’ performance is affected by the provision of travel information.

Specifically, we introduce a (mobile) navigation entity that provides travel information

to the agents, and extend the approach of previous chapter so that agents can compute

better estimates of their regret. Through experiments, we show that the travel information

improves the agents’ performance, should it be available.

4.1 Motivation and contributions

In general, as seen in Chapter 2, regret cannot be computed (and used) by agents

because its calculation requires observing the costs of all available routes (including the

non-taken ones). In order to use regret, most existing approaches assume that it is known

a priori by the agents. In contrast, in Chapter 3 we presented a method for the agents

to estimate such regret using only local knowledge. In this chapter, we go beyond and

consider the case where travel information is also available to the agents. The use of this

kind of information has become possible through the use of on-line services (e.g., Waze,

Google Maps), which provide travel information to end-users through mobile navigation

apps (VASSERMAN; FELDMAN; HASSIDIM, 2015; HASAN et al., 2016). Nonethe-

less, instead of assuming that such services have full knowledge and provide the real

regret to the agents, we simply assume that these services have a possibly more precise

information on the routes’ travel times than that of agents.

In this chapter, we extend the approach presented in Chapter 3 to take non-local

information into account. Specifically, we propose a method for agents to estimate their

regret using both local information (an internal history of observed rewards) and global

information (travel times provided by a mobile navigation entity, app henceforth). In

this sense, when estimating an action’s regret, the agent considers not only the action’s

estimated travel time, but also the travel time reported by the app. The rationale behind

using app information is that agents can better estimate the regret of their actions. As such,

our hypothesis is that the use of non-local information improves agents’ performance.
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In particular, the contributions of this chapter are:

• We define a (mobile) navigation entity (the app) that provides travel information1

to the agents. Information here is simply the average travel times of the routes

used by the agents. Such information is useful for the agents to estimate their

regret.

• We introduce a method for agents to estimate their action regret using a linear

combination of their experience (rewards received in previous episodes) and infor-

mation provided by the app. We show that such estimates can be used to improve

the learning process.

4.2 Learning with improved estimates of action regret

This section presents our method for the agents to learn to choose their best routes

by minimising regret. Initially, we introduce the app and its travel recommendations

(Section 4.2.1). Then we discuss how the agents can estimate the regret of their actions

using local and non-local information (Section 4.2.2) and present an algorithmic solution

for them to learn using such estimates (Section 4.2.3).

In our approach, apart of the drivers (which are represented as Q-learning agents),

we also model an entity (the app) responsible for providing travel information to the

agents. The travel information here is simply the average travel times (based on past

episodes) of an agent’s routes. We remark that the app is not necessarily an agent (indeed,

this is not relevant to the purposes of this work).

Our approach works as follows. At the beginning of a learning episode, the app

estimates the average travel time of every route based on previous episodes. This informa-

tion is provided to the agents (each driver receives the estimated travel time of its routes).

Afterwards, each agent takes an action and estimates its regret using the received reward

and the app information for that action. As an intermediate step, each agent also estimates

the costs of its non-taken routes, which is required for computing the regret of other ac-

tions. Observe that agents use the app information indirectly, i.e., for computing regret,

not for choosing the action. Algorithm 4.1 presents a sketch of the proposed method.

1We interchangeably refer to the app’s travel information as recommendations hereinafter.
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Algorithm 4.1: Regret-minimising Q-learning with app information (for
agent i)

input: set of actions Ai, learning decay rate λ, exploration decay rate µ,
number of episodes T

1 initialise Q-table: Q(ai)← 0 ∀ai ∈ Ai;
2 initialise history of estimates: Hi ← ∅;
3 for t ∈ {1, . . . , T} do
4 α← λt; ε← µt; // update learning and exploration rates

5 {r̂(ati) | ai ∈ Ai} ← receive app recomendations;
6 ȧti ← ε-greedy; // choose (and take) action using ε-greedy

7 fȧti ← observe travel time on ȧti;
8 r(ȧti)← −fȧti ; // compute the reward of ȧti
9 for ati ∈ Ai do

10 r̃(ati)←

{
r(ati) if ati = ȧti
r̃(at−1i ) otherwise

; // update estimate r̃(ati) ∈ Hi

11 end
// compute regret of ȧti

12 R̃T
i,ȧti
← maxb∈Ai

1
2

[
r̂(bti) + 1

T

∑T
u=1 r̃(b

u
i )
]
− 1

T

∑T
u=1 r̃((ȧ

t
i)
u
i );

13 Q(ȧti)← (1− α)Q(ȧti) + αR̃t
i,ȧti

; // update Q-value of ȧti

14 end

4.2.1 The app

The app is an entity responsible for providing travel information to the agents.

Travel information here refers to the average travel time associated with each route of

an agent. We assume the app has access to the true travel time2 of all routes within the

network. By employing such information, the app can compute the average travel time

of each route, which is then provided to the agents that could potentially use that given

route. We remark that although computing such information is not trivial, existing on-line

services already provide this kind of information to end-users through mobile apps, such

as Waze and Google Maps. In these apps, the user specifies a destination and, based on

its origin, the apps suggest the best routes at that given moment.

In our approach, the app suggestions are used in a slightly different way than in

existing mobile apps. We focus neither on how the app works nor on how much the

users adopt its suggestions (in fact, there are several works on this line, as seen in Sec-

2Recall that the travel time on a route is computed using Equation (2.2), which depends on the travel
time of the links comprising it. By assuming that the app has access to the true travel time of all routes,
it follows that it has access to the links’ travel times as well (where non-taken links have free flow travel
time). Hence, the app can even infer the travel times of non-taken routes.
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tion 2.1.3). Rather, we simply assume that agents do receive route information but take

their decisions based on their overall experience, which is encoded in their Q-tables. The

recommendation is only used to compute the agents’ regret. After all, the agents may

regret not following the recommendation. The rationale here is that, although the recom-

mended routes may be appealing, the users may prefer to follow their own knowledge.

Nevertheless, the app recommendations are indirectly considered in the agents’ decisions

process, since the regret is used to update the Q-tables. In other words, we are only

interested in how the app information may improve the agents’ regret.

Given a route a ∈ A, let r(at) be the reward for taking that route at time t, as

formulated in Equation (2.5). We assume the app can observe the reward of all actions at

the end of each episode3. Using such information, the app can compute the average reward

of each route. Precisely, the average reward of action a up to time t is computed as

r̂(at) =
1

t

t∑
u=1

r(au).

Then, at the beginning of each episode t, the app provides to agent i the average travel

time for all of its routes, i.e., the set {r̂(at) | a ∈ Ai}.

4.2.2 Estimating Regret

In this section, we detail how an agent can estimate its regret by combining local

information (i.e., the rewards it actually observed) and global information (i.e., the av-

erage estimated reward of all routes, as provided by the app). The local information is

computed in the same way as described in Section 3.2.1. The global information, on the

other hand, is simply obtained through the app, as detailed in Section 4.2.1.

The estimated action regret of action a for agent i up to time T can then be refor-

mulated as in Equation (4.1). The estimated action regret defined here is similar to the

one presented in Chapter 3. Intuitively, Equation (4.1) can also be seen as an estimate of

the average amount lost by agent i up to time T for taking action a (latter term) rather

than the best estimated action (former term). The difference is that the first term of the

3Recall that the route choice problem is modelled as a commuting scenario where daily (i.e., episodic)
trips are made under approximately the same conditions (i.e., same demand and OD pairs). Hence, only
episodes are relevant here, not time of the day. On the other hand, the travel time on links changes from one
day to another since drivers may change their route choices. This explains why agents need to learn which
route is the best.
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equation now comprises a linear combination of the local average cost (using r̃(a)) and

global average cost (using r̂(a) from the app). In this sense, the agent can now obtain

more precise estimates of the reward associated with non-taken actions.

R̃T
i,a = max

bti∈Ai

1

2

[
r̂(bti) +

1

T

T∑
t=1

r̃(bti)

]
− 1

T

T∑
t=1

r̃(ati) (4.1)

In the same way, we can reformulate Equation (2.8) to obtain the estimated ex-

ternal regret of agent i according to Equation (4.2). The estimated external regret R̃T
i of

agent i expresses how much worse it performed, on average, up to time T for not taking

only the best action regarding its experience.

R̃T
i = max

ati∈Ai

1

2

[
r̂(ati) +

1

T

T∑
t=1

r̃(ati)

]
− 1

T

T∑
t=1

r(ȧti) (4.2)

As discussed in Section 3.2.1, we remark that the above regret formulation could

be extended in several ways. For instance, a weighted (rather than linear) combination of

the local and global average costs could benefit the agents in the first episodes, when they

have less experience. In fact, investigating how such weight correlates with a possible im-

provement in the agents’ performance represents an interesting research direction. In this

thesis, however, we leave other formulations as future work and concentrate on the linear

combination case, which is simpler and paves the way to more elaborate formulations.

4.2.3 Learning to Minimise Regret

Building upon the regret estimations from the previous section, we now present an

RL algorithm enabling the agents to learn a no-regret policy. The sketch of our method is

presented in Algorithm 4.1. Every driver i ∈ D is represented by a Q-learning agent. The

route choice problem can then be modelled as a stateless MDP. Let Ai = {a1, . . . , aK} be

the set of routes of agent i. The set of agents’ actions is denoted by A = {Ai | i ∈ D}.

Observe that if two agents i and j have the same OD pair, then Ai = Aj . The reward for

taking action a at time t is r(at), as given by Equation (2.5). We remark that the reward

function r(at) is not deterministic. Instead, it varies on time depending on the current

state of the road network (i.e., which routes other agents are taking).

The learning process works as follows. At each episode t ∈ [1, T ], each agent
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i ∈ D receives4 recommendations {r̂(ati) | ai ∈ Ai} from the app (line 5 of Algo-

rithm 4.1). Agent i then chooses an action ȧti ∈ Ai using the ε-greedy strategy (based

on the actions’ Q-values). After taking the chosen action, the agent receives a reward of

r(ȧti). Afterwards, the agent updates its history Hi using Equation (3.1) (lines 9–11 of

Algorithm 4.1) and calculates the estimated regret of action ȧti using Equation (4.1) (line

12 of Algorithm 4.1). The recommendations received in the beginning of the episode are

used at this point. Finally, the agent updates Q(ȧti) using the estimated action regret for

that action (line 13 of Algorithm 4.1), as defined in Equation (4.3). The learning (α) and

exploration (ε) rates are initialised with value 1.0 and are multiplied by the decay rates (λ

and µ) at each episode so that their value at a given episode t is α(t) = λt and ε(t) = µt,

respectively. This process is repeated for each episode.

Q(ȧti) = (1− α)Q(ȧti) + αR̃t
i,ȧti

(4.3)

Recall that the estimated action regret guides the learning process (i.e., for updat-

ing an agent’s policy), which, as discussed in Section 3.2.2, leads an agent to minimising

its estimated external regret. Moreover, we emphasise that this is only possible because

the action regret formulation of Equation (4.3) decomposes the regret per action, thus

allowing an agent to evaluate how much a particular action contributes to its regret.

As in the previous chapter, we highlight that Algorithm 4.1 is an abstract scheme

of the algorithm from the agent’s perspective. We refer the reader to Appendix A for

the complete details on the simulation procedure. The time and space complexity of our

approach are presented in the next proposition. The proof is also detailed in the appendix.

Proposition 4.1. Our regret-minimising Q-learning with app information approach has

O(T (dK + ld+ lmK)) time complexity and O(dK) space complexity, for T episodes, d

drivers, and K actions, l links, and m OD pairs.

4.3 Experimental evaluation

This section provides empirical results and analysis regarding our method’s per-

formance. The main hypotheses to be validated here are that: (i) the use of action regret

(with app information) as reinforcement signal leads RL agents to converge to an approx-

4Note that the received recommendations are not necessarily used. Instead, as discussed in Section 4.2.2,
such recommendations are used by the agent to improve its estimates of the actions’ regret.
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Table 4.1: Characteristics of the networks used for validation of our approach.
Network Nodes Links OD pairs Number of drivers avg-tta under UE

B1 4 5 1 4,200 20.00
B2 6 9 1 4,200 30.00
B3 8 13 1 4,200 40.00
B4 10 17 1 4,200 50.00
B5 12 21 1 4,200 60.00
B6 14 25 1 4,200 70.00
B7 16 29 1 4,200 80.00
BB1 8 8 2 4,200 10.00
BB3 12 16 2 4,200 22.00
BB5 16 24 2 4,200 50.30
BB7 20 32 2 4,200 ≈123.84
OW 13 48 4 1,700 ≈67.16
SF 24 76 528 360,600 20.76

a Values reported in the literature (STEFANELLO; SILVA; BAZZAN, 2016; STE-
FANELLO; BAZZAN, 2016).

imate UE, and (ii) the agents’ regret is reduced when the app-based information is used.

Recall that learning means finding the best route to take and that convergence refers to a

point at which the agents keep exploiting their knowledge most of the time and the system

is somewhat stable (i.e., agents only observe small fluctuations in their costs). Our key

contributions is to show that, using our approach, such a stable point is close to the UE.

4.3.1 Methodology

We simulate our approach as described in Appendix A. In the simulations, we use

the same road networks5 used in Chapter 3. The reader is referred to Section 3.4.1 for

the complete description of these networks. In order presentation, nevertheless, here we

replicate the table summarising these networks in Table 4.1. The most representative such

networks are illustrated in Appendix B.

The methodology employed here is the same used in the previous chapter. In order

to avoid arbitrarily large sets of actions, we limit the routes to the K shortest ones6 using

the KSP algorithm (YEN, 1971). As before, the best value for K (i.e., the one which

produces the best results) depends on the networks characteristics, thus varying from one

5The road networks are available at <https://github.com/maslab-ufrgs/network-files>.
6As for the BB networks, among the shortest routes we included the one with the least number of

links, otherwise the UE would not be possible (STEFANELLO; BAZZAN, 2016). This is a limitation of
BB networks. However, we note that such a decision is realistic given that the shortest route is usually
considered by drivers even if it is not the fastest one.

https://github.com/maslab-ufrgs/network-files


90

instance to another.

An experiment corresponds to a complete execution, with T =1,000 episodes

(except for the SF network, in which case we set T =10,000 episodes) episodes of our

method on a single network. When an execution is completed, we measure its perfor-

mance by means of the average travel time (avg-tt hereinafter, measured in minutes),

the average external regret, and the average proximity to the UE (computed using Equa-

tion (3.11)). The results reported for each of the above measures are given considering

the last episode.

We tested different value combinations for the Q-learning parameters (the tuning

process is discussed in Section 4.3.2). For each such combination, 30 repetitions were

performed. Our results are compared against standard Q-learning (stdQL, hereinafter),

which uses reward (rather than action regret) as reinforcement signal. We also include

our algorithm without the app (i.e., the one presented in Chapter 3) in the comparisons. In

what follows, any claim about whether one approach is better than the other is supported

by Student’s t-tests at the 5% significance level, except if otherwise stated.

The algorithms, data analysis and plots were all implemented in Python 2.7.

4.3.2 Parameter tuning

The parameters of this approach were tuned here in the same way as in previous

chapter. We test different number of routes, namely, K ∈ {4, 8, 12, 16} (intermediate val-

ues forK pose no significant difference on the results). The learning and exploration rates,

α and ε, are initialised with 1.0 and multiplied by their decay rates after each episode. For

these decay rates, we tested values {0.98, 0.99, 0.995, 0.999}, with λ = µ. In the case of

the SF network, we tested λ ∈ {0.9995, 0.9997, 0.9999} and µ ∈ {0.995, 0.997, 0.999}

to account for its higher demand (i.e., its number of vehicles is two orders of magnitude

higher than in the other networks). Again, λ was tested with higher values than µ to

ensure that agents keep learning even after exploration is decreased.

Table 4.2 presents the best-performing combinations of parameters. As expected,

the best value for the parameters is not affected by the app information. The reason

is that this information is only used to improve agents’ estimates on their routes. The

optimisation process itself, on the other hand, remains the same. In general, therefore, the

larger the network, the higher the values required for the parameters. The results of the

above configurations were selected for further analyses in the next subsection.
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Table 4.2: Parameters’ configuration that produced the best results for each network.
Network K λ µ

B1 4 0.99 0.99
B2 4 0.995 0.995
B3 4 0.99 0.99
B4 4 0.99 0.99
B5 8 0.995 0.995
B6 8 0.995 0.995
B7 8 0.995 0.995
BB1 4 0.98 0.98
BB3 4 0.99 0.99
BB5 4 0.995 0.995
BB7 4 0.995 0.995
OW 8 0.995 0.995
SF 4 0.9999 0.998

4.3.3 Results

The performance of our approach in terms of proximity to the UE and external re-

gret in all evaluated road networks is presented in Tables 4.3 and 4.4, respectively. Results

represent averages over 30 repetitions, with standard deviations shown in parentheses.

The values of the algorithms’ parameters are those listed in Table 4.2. In order to better

evaluate our approach, we also show results for our approach using no app information

(ours–app) and for standard Q-learning (sdtQL).

As seen in the tables, our approach outperforms standard Q-learning on average. In

terms of (absolute) proximity to UE, our approach improves7 upon standard Q-learning by

0.55% (without the app) and 0.57% (using the app) on average. Such results account for

an average decrease in the relative distance to the UE of 48% (without the app) and 50%

(using the app) as compared to standard Q-learning. As for regret, our approach decreases

the average regret by 21.5% (without the app) and by 33.9% (using the app). We high-

light that, although improving regret does not necessarily translates into higher system’s

performance, it leads to stronger results, given that it better fits the no-regret property.

In other words, improving regret means increasing convergence probability. Therefore,

our results confirm one of our initial hypotheses, namely that learning to minimise regret

7We highlight that even a 1% improvement in the absolute proximity to the UE represents a signif-
icant result here. In fact, state-of-the-art traffic approaches frequently only achieve small improvements
as compared to previous works. A representative example here is that of Bar-Gera (2010)’s TAPAS algo-
rithm (which approaches a setting similar to ours, namely the traffic assignment problem), whose absolute
improvement in the UE was smaller (10−6%, as compared to previous works) than that achieved by our
approach (1.1%, as compared to standard Q-learning).
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Table 4.3: Average proximity to the UE (with standard deviation in parentheses) of our
approach, with (Ours + app) and without app (Ours – app), and of standard Q-learning
(StdQL) on different networks.

Proximity to the UE
Network Ours+app Ours–app StdQL

B1 0.9999 (10−5) 1.0000 (0.000) 0.9250 (10−2)
B2 0.9986 (10−4) 0.9981 (10−4) 0.9570 (10−2)
B3 0.9999 (10−5) 0.9999 (10−5) 0.9974 (10−3)
B4 0.9999 (10−5) 0.9999 (10−6) 0.9999 (10−6)
B5 0.9942 (10−4) 0.9916 (10−4) 0.9889 (10−3)
B6 0.9999 (10−4) 0.9994 (10−4) 0.9996 (10−4)
B7 0.9998 (10−4) 0.9999 (10−4) 0.9999 (10−5)
BB1 1.0000 (0.000) 1.0000 (0.000) 1.0000 (0.000)
BB3 0.9988 (10−4) 0.9991 (10−4) 0.9941 (10−3)
BB5 0.9985 (10−4) 0.9991 (10−4) 0.9959 (10−3)
BB7 0.9984 (10−4) 0.9979 (10−4) 0.9986 (10−4)
OW 0.9997 (10−4) 0.9997 (10−4) 0.9989 (10−4)
SF 0.9343 (10−4) 0.9344 (10−4) 0.9886 (10−4)

Average 0.9940 (10−2) 0.9938 (10−2) 0.9880 (10−2)

Table 4.4: Average external regret (with standard deviation in parentheses) of our ap-
proach, with (Ours + app) and without app (Ours – app), and of standard Q-learning
(StdQL) on different networks.

External regret
Network Ours+app Ours–app StdQL

B1 0.0057 (10−5) 0.0057 (10−5) 0.0121 (10−3)
B2 0.0033 (10−5) 0.0034 (10−5) 0.0111 (10−3)
B3 0.0021 (10−5) 0.0020 (10−4) 0.0041 (10−3)
B4 0.0002 (10−5) 0.0004 (10−4) 0.0010 (10−4)
B5 0.0019 (10−5) 0.0025 (10−4) 0.0039 (10−4)
B6 0.0019 (10−5) 0.0020 (10−5) 0.0030 (10−5)
B7 0.0011 (10−5) 0.0025 (10−4) 0.0019 (10−5)
BB1 0.0016 (10−5) 0.0016 (10−5) 0.0016 (10−5)
BB3 0.0089 (10−5) 0.0173 (10−5) 0.0178 (10−4)
BB5 0.0066 (10−5) 0.0066 (10−5) 0.0063 (10−5)
BB7 0.0034 (10−5) 0.0035 (10−5) 0.0029 (10−5)
OW 0.0152 (10−4) 0.0161 (10−4) 0.0131 (10−5)
SF 1× 10−6 (0.0) 1× 10−6 (0.0) 2× 10−6 (0.0)

Average 0.0040 (10−3) 0.0049 (10−3) 0.0061 (10−3)

leads the agents to an approximate UE, even when the app information are used.

We can analyse the agents’ learning behaviour in more detail by considering the

variation of average travel time and external regre along time, as shown in Figures 4.1 and

4.2, respectively. In the plots, each curve is an average over 30 repetitions (with standard
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Figure 4.1: Average travel time along episodes in selected networks, with shaded lines
representing the standard deviation and dashed lines representing the UE (as reported in
Table 4.1).
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(c) SF network

deviation shown as shaded lines) and dashed lines present the average travel times under

UE (as reported in Table 4.1). We highlight that the apparent faster convergence in the

SF network (Figures 4.1c and 4.2c) is actually due to the higher number of episodes used

for that network, thus concentrating the initial steps in the left side of the plot. As seen

in the plots, avg-tt is high in the beginning (because of the Q-values initialisation) and

decreases steadily as agents explore and learn their routes. In general, the use of the

app information pose no significant difference in the agents’ learning behaviour itself (as

compared the plots of the previous chapter, where no app information was used). In fact,

that similarity meets the expectations, given that the problem itself does not change: the
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Figure 4.2: External regret along episodes in selected networks, with shaded lines repre-
senting the standard deviation.
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only difference is that, by using the app, agents now obtain reasonable estimates on their

routes’ costs sooner.

Our remaining hypothesis states that agents benefit by considering the app’s rec-

ommendations when computing their regret estimates. The results of this analysis are

also presented in Tables 4.3 and 4.4. As seen, the app improves drivers’ performance in

most cases. When the app is being used, the (absolute) proximity to UE is improved, on

average, by only 0.02% as compared to the cases where the app is not used. This accounts

for an average decrease in the relative distance to the UE of 3.8%. Moreover, due to the

app information, the agents’ regret is reduced by 13.7% as compared to when agents are
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not using the app. The rationale here is simple: the information provided by the app is

more accurate than that estimated by the agents, especially in the initial episodes. Ob-

serve that the app’s recommendations are only implicitly taken into account when agents

make decisions. The point is that agents choose actions based on their Q-values. The

app’s recommendations, however, are used to improve regret estimates, which, in turn,

are used to update the agents’ Q-tables. In this sense, recommendations play an important

role while agents are learning and exploring. On the other hand, when agents’ estimates

are accurate, app recommendations may be irrelevant. We can then state that using app

recommendations lead to reasonable improvements in the agent’s performance.

Therefore, we conclude that agents are able to estimate their regret locally and to

use such information to learn their best routes. But mainly, we could observe that these

improvements are even higher when more accurate information is provided (in this case,

by means of the app) to the agents. The presented results thus validate our initial hypothe-

ses, namely that (i) the use of action regret (with app information) as reinforcement signal

leads RL agents to converge to an approximate UE, and that (ii) agents’ regret is reduced

when the app-based information is used.

4.4 Related work

The literature on providing and employing non-local information into the agents’

decision process is very broad. Here we discuss two kinds of approaches, where the

information an agent receives is obtained: from a central authority, and by communicating

with other agents. The interested reader is referred to Zhang et al. (2011) and Essen et al.

(2016) for a more detailed review.

In a setting similar to ours, Vasserman, Feldman and Hassidim (2015) proposed

the use of a Waze-like app that recommends different routes to drivers, aiming at effi-

ciently spreading traffic over a road network. They assumed that the app can observe the

agents’ routes before trips are actually taken. This allows the app to anticipate a recom-

mendation signal. Notwithstanding, assuming that drivers share their decisions in advance

may not be realistic. Furthermore, their analyses are limited to parallel-links networks.

The adoption of advanced traveller information systems (ATIS) has also drawn at-

tention (HALL, 1996). Dell’Orco and Marinelli (2017) considered that the agents’ com-

pliance level is proportional to the uncertainty associated with their knowledge. Gao, Fre-

jinger and Ben-Akiva (2010) employed prospect theory to investigate how agents adapt
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their routes (i.e., en route decision) when facing travel information. Rashidi et al. (2017)

reviewed works that employ social media information to improve transportation planning

and management. The impact of different levels of information in the route choice pro-

cess has also been investigated. The idea here is to understand how drivers react to traffic

information. Dia and Panwai (2007), Dia and Panwai (2014) employed neural networks

to predict the compliance level of drivers who receive traffic suggestions. Peeta and Yu

(2005) developed a fuzzy-based system to predict the behaviour of drivers who are pro-

vided with traffic information. Nonetheless, it should be noted that these approaches, as

opposed to ours, focus mainly on analysing the impact of the traffic information itself,

and neither technique is assessed in terms of the UE.

Klügl and Bazzan (2004) investigated how traffic forecasts impact drivers’ deci-

sion making in a two-route scenario. They assumed that a traffic control system observes

drivers’ decisions and use such information to compute a traffic forecast. Afterwards,

drivers can change their route choices before actually driving. However, they assume

that such control system can observe drivers’ actions. Later on, Bazzan and Klügl (2005)

investigated the impact of providing biased recommendations to drivers. Specifically, a

centralised service suggests routes aiming at a system efficient equilibrium, which may

deteriorate the performance of some drivers in favour of others. However, their approach

was only tested in the networks that undergo the (BRAESS, 1968)’s paradox.

Ben-Elia, Ishaq and Shiftan (2013) developed a regret-based discrete choice model.

In their work, regret is defined in terms of travellers perceptions (of previous trips) and

route travel times. However, they assumed that travel times do not change with time.

Chorus, Walker and Ben-Akiva (2013) investigated how agents behave when deciding to

acquire (or not) travel information and how such decisions (and information received) af-

fect their behaviour. They proposed a discrete choice model in which both aspects (when

to acquire information and how to use it) are considered by the agent. Wang, Ma and

Jia (2013) proposed a choice model that employs prospect theory and replicator dynam-

ics to describe how drivers’ decisions evolve under risk. The impact of inaccurate travel

information on choice behaviour was studied by Ben-Elia et al. (2013). Nonetheless, in

contrast to our work, all these methods focus on developing discrete choice models. As

discussed in Section 2.1.2, recall that such models aim at predicting travellers behaviour

to assist traffic managers (i.e., from a centralised perspective) on analysing traffic patterns.

Hasan et al. (2016) proposed a social network through which drivers can exchange

traffic information. Drivers participating in the social network (i) report congestion lev-
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els on their routes and (ii) use the report from their peers to compute the routes’ utility.

Notwithstanding, as opposed to our work, agents in their approach do not learn, but only

choose the route with the highest utility most of the time. Social networks were also the

object of study of Pathania and Karlapalem (2015) and He et al. (2013). In the former,

social networks are used to improve demand predictions for metro lines. A transport man-

ager agent then optimises the train schedule so as to meet the predicted demand. However,

their work was only applied to public transportation scheduling and did not take drivers’

behaviour into account. Following this line, He et al. (2013) proposed a framework for

extracting traffic indicators based on social media information. Nonetheless, their frame-

work was not applied to improve traffic conditions.

4.5 Discussion

In this chapter, we investigated how to improve the agent’s learning process by

providing travel information to them. In particular, we developed a navigation entity (the

app) that tells the agents the average travel time on their routes. We then extended the

work of Chapter 3 using the received information to enhance the agents’ estimates over

their actions’ regret. The idea behind such a formulation is that, when regret estimates are

more accurate, the agents tend to better choose their actions. We highlight, however, that

the assumptions underlying our app are weaker than those of previous works. Although

the app can observe the cost on all routes, the information provided to the agents is simply

the average travel time on the routes. Consequently, this information may not be fully

accurate. Nevertheless, it is still useful in the agents’ learning process.

Our approach was experimentally evaluated in several road networks available in

the literature. Based on the experiments, we observed that, when agents use the app

recommendation, the average distance to the user equilibrium decreases by 3.8%. More-

over, under these circumstances, the regret is reduced by 13.7%. These results are a

consequence of the improvement in the agents’ estimates over their regrets. Although

agents’ decisions are not explicitly related to the app’s recommendations, these are used

to estimate regret and, thus, to update their Q-tables. Recall that the app’s recommenda-

tions may not be fully accurate. Nonetheless, such information is usually more accurate

than the agent’s one, especially when they have not yet experienced enough their ac-

tions. Hence, the app’s recommendations are particularly important in the beginning of

the learning process, where agents knowledge is less accurate.



98



99

5 SYSTEM-EFFICIENT EQUILIBRIA

In the previous chapters, we considered how reinforcement learning agents can

learn to minimise their regret. Firstly, we have shown that, when agents use regret to guide

their learning process, they converge to an approximate user equilibrium (Chapter 3). We

then moved forward, analysing the impact of travel information in the learning process,

should it be available. However, as seen in Chapter 2, the user equilibrium is inefficient

from the system’s perspective.

In this regard, in this chapter we investigate under what conditions the system can

be guaranteed to convergence to a system-efficient equilibrium. Recall that we use the

term system-efficient equilibrium to refer to a user equilibrium that is aligned to the sys-

tem optimum. We advance towards this direction by incorporating some sort of system’s

performance measure into the agents’ utility. This problem can be approached in sev-

eral ways. Here, we consider a natural extension of regret. Specifically, in this chapter

we show how the impact an agent causes on others can be used to penalise its selfish

decisions. Incorporating such impact into the agent’s regret results in traditional tolling

schemes. In this regard, we simplify our approach, leaving the regret formulation aside

and focusing specifically on the tolling scheme.

5.1 Motivation and contributions

As discussed in Chapter 2, the self-interested behaviour of drivers trying to min-

imise their travel costs leads to the User Equilibrium (UE). However, although appealing

from the drivers’ perspective, the UE does not represent the system at its best operation

(i.e., when average travel costs are minimum). In fact, the average travel time under UE

can be considerably higher than the so-called system optimum (SO). Such a deterioration

in the system’s performance due to drivers’ selfish behaviour is known as the Price of

Anarchy (PoA) (PAPADIMITRIOU; TSITSIKLIS, 1987).

The system optimum is only attainable if some agents take sub-optimal routes

(from their perspective) in the benefit of the system’s performance. In general, however,

one cannot assume that agents behave altruistically with respect to the social welfare.

Specifically, given that agents act rationally to minimise their own costs, no agent would

take a route that improves the system’s performance in detriment of its own performance:

whenever a better route is available, the agent shall opt for it. Moreover, even if the
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agents were altruist, no agent would be able to evaluate how much its decisions impact

the system’s welfare due to its limited observability about such a performance measure.

Different approaches have been proposed in the literature to overcome the limita-

tions imposed by the agents’ selfish behaviour. One of such alternatives refers to assuming

that each road has a toll, whose value incentivises agents to take socially optimal routes

(BECKMANN; MCGUIRE; WINSTEN, 1956). A particularly relevant tolling scheme

here is the marginal-cost tolling (MCT), in which each agent is charged proportionally to

the cost (e.g., travel time) it imposes on others (PIGOU, 1920). By employing MCT, the

UE is guaranteed to converge to the SO.

In this chapter, we approach the toll-based route choice problem from the multi-

agent reinforcement learning (MARL) perspective and provide theoretical guarantees on

the agents’ convergence to a system-efficient equilibrium (i.e., aligning the UE to the SO).

As in Chapters 3 and 4, each driver is represented by a Q-learning agent whose objective

is to learn which route minimises its expected cost. We design tolls following the MCT

scheme, where the cost of a link comprises two terms: (i) the travel time and (ii) the

toll charged on it. We then propose a generalised toll formulation that charges an agent

only after it has completed its trip. Our a posteriori tolling scheme allows for the toll

values to be computed by the agents themselves. In this sense, as compared to existing

approaches—e.g., Sharon et al. (2017)—our formulation is more general (i.e., it applies

to most traffic scenarios), it is fairer (i.e., agents pay exactly their marginal costs), and it is

easier to deploy (i.e., it has fewer infrastructure requirements). To the best of our knowl-

edge, this is the first time that RL agents are proven to converge to a system-efficient

equilibrium without assuming they have full knowledge about the reward functions.

The main contributions of this chapter can be enumerated as follows:

• We generalise the toll values formulation for univariate, homogeneous polynomial

cost functions. We show that this formulation comprises the most commonly-used

cost functions in the literature.

• We formulate an MCT scheme in which drivers are charged a posteriori, whenever

they finish a trip. This formulation allows the tolls to be computed locally by the

agents. We show that this scheme is fairer and simpler than a priori schemes. An

example on this is presented later, in Section 5.3.2.

• We define an RL algorithmic solution through which each driver computes the toll

value it has to pay whenever it finishes its trip, and learns the best route to take.
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• We provide theoretical results showing that our method converges to the UE in

the limit (as opposed to existing works, which assume that the UE is given) and

that, by using MCT, the UE corresponds to the SO. Thus, in the limit, the PoA

achieves its best ratio. We also validate these results in different road networks

from literature.

5.2 Learning system-efficient equilibria using marginal-cost tolling

This section presents our reinforcement learning method through which agents can

compute the tolls associated with their routes and use that information to learn their best

routes. As before, we model the problem as a stateless MDP and represent drivers by

means of Q-learning agents. At every episode, each such agent chooses a route from its

origin to its destination and, once the trip is completed, the agent observes its travel time.

Building upon such observations, we propose a general tolling scheme through which

the toll values can be computed a posteriori by the agents themselves (Section 5.2.1).

Together, the travel time and toll value an agent experiences in a given route compose the

cost of such route. Using this cost, each agent then computes the regret associated with

the chosen route and uses such information to update its Q-table (Section 5.2.2).

Our generalised tolling scheme assumes that each agent can observe its travel

time and compute its toll a posteriori. In practical terms, this is equivalent to coupling

each driver with a mobile navigation device, which computes and provides such informa-

tion (PALMA; LINDSEY, 2011).

We remark that, by definition, travel times and tolls are defined per link, whereas

agents’ decisions are based on routes. In this sense, hereafter we refer to a route’s travel

time (and toll value) as the sum of its links’ travel times (and toll values).

5.2.1 Generalising toll values

Toll values are defined according to the marginal cost of the agents. Specifically,

the toll charged on link l is computed as the product of (i) its flow (i.e., the number of

vehicles on it) and (ii) its VDF’s derivative, as shown in Equation (5.1).

τl = xl · f ′l (xl) (5.1)
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The derivative of the link’s cost depends on the VDF being employed. Sharon et

al. (2017) have shown that, for the BPR function (Equation (2.3)), the resulting marginal

cost toll can be written as

τl = β(fl − Fl),

with, recall, fl and Fl representing the actual (i.e., as given by the VDF function) and free

flow (i.e., the lower bound when xl = 0) travel times on link l, and β denoting a constant

of the road network instance (as discussed in Section 2.1.1). Their formulation, however,

is limited to the BPR function. Notwithstanding, considering that several other VDFs are

available in the literature (ORTÚZAR; WILLUMSEN, 2011), we go beyond the work

of Sharon et al. (2017) and generalise the toll formulation according to the following

proposition.

Proposition 5.1. The marginal-cost toll value τl on any link l with a univariate, homo-

geneous polynomial VDF function is β(p1x
β
l ), where β and p1 represent VDF-specific

constants.

Proof. First we analyse the case of linear and polynomial functions. Then, we define the

general MCT formulation.

Linear functions are in the form fl(xl) = p1xl + p0. We consider two such exam-

ples from the literature. The OW function (ORTÚZAR; WILLUMSEN, 2011) is repre-

sented as fl(xl) = Fl + 0.02xl = p1xl + p0, with p0 = Fl and p1 = 0.02 representing

VDF-specific constants. The linear Braess functions (STEFANELLO; BAZZAN, 2016)

can be represented as fl(xl) =
(
kcil
d

)
xl = p1xl + p0, with p0 = 0 and p1 = kcil

d
represent-

ing VDF-specific constants.

Polynomial functions can be defined in the form fl(xl) =
∑n

β=0 pβx
β . In this

chapter we consider the specific case of univariate (single variable), homogeneous (all

terms with the same degree) polynomial functions, which can be written in the simpler

form fl(xl) = p1x
β
l + p0. Such a subclass of polynomial functions includes VDFs that

are well-known in the transportation literature, such as the BPR function (Equation (2.3)).

The BPR function is represented as fl(xl) = Fl

(
1 + α xl

Cl

β
)

= Fl + xβl

(
αFl
Cβl

)
= p1x

β
l +

p0, with p0 = Fl and p1 = αFl
Cβl

representing VDF-specific constants. Note that this

polynomial definition generalises over linear and constant functions. Specifically, linear

functions correspond to the special case where β = 1 and constant functions correspond

to the special case where p1 = 0.

The MCT of link l is defined as τl = xl · (fl(xl))′. By using the definition of
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univariate, homogeneous polynomial functions above, we have that τl = xl(p1x
β
l +p0)

′ =

xl(p1βx
β−1
l ) = β(p1x

β
l ), as required.

We emphasise that Proposition 5.1 only holds when the VDF is defined as an

univariate (i.e., with a single parameter, such as flow), homogeneous (i.e., all terms with

the same degree) polynomial. It should be noted, however, that this assumption is not

unrealistic, given that the most commonly-used VDF functions in the literature are in this

class, such as: BPR, OW, Braess, Pigou, etc. Moreover, the above proposition can be

extended to overcome these limitations. Such an extension is left as future work.

From Proposition 5.1, observe that computing toll values requires some parame-

ters, such as the flow of vehicles. Recall that this information may not be directly available

to the agents. Fortunately, however, such information can be obtained by means of the

agents’ travel times. In this regard, we can combine Proposition 5.1 with the formulation

of Sharon et al. (2017), thus obtaining the next corollary.

Corollary 5.1. The toll value on link l can be rewritten as τl = β(p1x
β
l ) = β(p1x

β
l +p0−

p0) = β(fl −Fl), considering Fl = p0 and fl(xl) = p1x
β
l + p0. In other words, whenever

an agent finishes its trip (i.e. a posteriori), it can compute the toll on the corresponding

route based on its actual and free flow travel times.

As seen, agents can compute the tolls associated with their routes knowing neither

the reward of all routes nor the actions taken by the other agents. Having defined the toll

values, we can rewrite the routes reward function as in Equation (5.2), which follows from

Proposition 5.1 and Equations (2.2) and (2.5).

r(ati) = −
∑

l∈ati
cl

= −
∑

l∈ati
fl + β(fl − Fl)

= −(fati + β(fati − Fati)).

(5.2)

5.2.2 Learning process

We can now present our RL algorithm. Again, the problem is represented as a

stateless MDP and each driver i ∈ D as a Q-learning agent. The set of routes of agent i is

denoted by Ai = {a1, . . . , aK}. The reward r(ati) that agent i receives for taking route ati
at episode (or timestep) t is given by Equation (5.2). The drivers’ objective is to maximise

their cumulative reward. An overview of our method is presented in Algorithm 5.1.
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Algorithm 5.1: Toll-based Q-learning (for agent i)
input: set of actions Ai, learning decay rate λ, exploration decay rate µ,

number of episodes T , free flow Fl for all l ∈ L, and β

1 initialise Q-table: Q(ai)← 0 ∀ai ∈ Ai;
2 for t ∈ {1, . . . , T} do
3 α← λt; ε← µt; // update learning and exploration rates

4 ȧti ← ε-greedy; // choose (and take) action using ε-greedy

5 fȧti ← observe travel time on ȧti;
6 r(ȧti)← −(fȧti + β(fȧti − Fȧti)); // compute the reward of ȧti
7 Q(ȧti)← (1− α)Q(ȧti) + αr(ȧti); // update Q-value of ȧti
8 end

The learning process works as follows. At every episode t ∈ [1, T ], each agent

i ∈ D chooses an action ȧti ∈ Ai using an ε-greedy exploration strategy (line 4 of Al-

gorithm 5.1). The exploration rate ε at episode t is given by ε(t) = µt. After taking the

chosen action, the agent observe its travel time fȧti (line 5 of Algorithm 5.1) and computes

its reward r(ȧti) following Equation (5.2) (line 6 of Algorithm 5.1). Note that, by com-

puting the toll only after the agent observes its travel time, we ensure that our mechanism

charges tolls a posteriori. Finally, the agent updates Q(ȧti) as in Equation (2.7) (line 7 of

Algorithm 5.1). The learning rate α at episode t is given by α(t) = λt.

Again, we remark that Algorithm 5.1 represents just an abstract scheme of the

algorithm from the agent’s perspective. In order to effectively run our approach, one

needs firstly to load the problem instance and initialise the agents. Afterwards, for every

episode (up to episode T ), we can run once the main loop of each agent (i.e., where an

agent chooses an action, observes the reward, and updates its Q-table). The time and space

complexity of our approach is presented in the next proposition. The reader is referred to

to Appendix A for the proof and for complete details on the simulation procedure.

Proposition 5.2. Our toll-based Q-learning approach has O(T (dK + ld + lmK)) time

complexity andO(dK) space complexity, for T episodes, d drivers, andK actions, l links

and m OD pairs.

5.3 Theoretical analysis

In this section, we provide a theoretical analysis of our approach. The main ob-

jective here is to show that our approach converges to a system-efficient equilibrium (i.e.,

the SO), as formulated in Theorem 5.1, adapted from Beckmann, McGuire and Winsten

(1956) and Roughgarden and Tardos (2002).
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Theorem 5.1 (Beckmann, McGuire and Winsten (1956)). Consider a toll-based instance

P ′ = (G,D, f, τ) of the route choice problem, where driver i ∈ D experiences a cost

cl = fl + τl after traversing link l, with fl and τl representing the travel time and toll

charged at that link, respectively. Under these settings, the average travel time under UE

for P ′ corresponds to that of the SO for P = (G,D, f).

Intuitively, Theorem 5.1 says that given an instance P of the route choice problem,

if we apply MCT to it (thus resulting in an instance P ′ of the toll-based route choice

problem), then the UE in P ′ will be equivalent to the SO in P . In other words, the UE

with MCT achieves the same average travel time of the SO of the original problem. We

refer the reader to Beckmann, McGuire and Winsten (1956) for the complete proofs. An

illustrative example on how this theorem applies to Pigou (1920)’s network is presented

in Example 5.1.

Example 5.1. Consider the network in Figure 5.1, adapted from Pigou (1920), which is

traversed by 10 agents. To traverse the network, each agent must take one out of two pos-

sible routes, A andB, whose travel times are given by fA(xA) = 10.0 and fB(xB) = xB,

respectively. By definition, the UE in this network is achieved when all vehicles choose

route B, which results in an average travel time of 10.0. The SO, on the other hand, corre-

sponds to the case where each route receives half of the flow, which results in an average

travel time of 7.5. Here, the PoA is 4/3. Now consider the same example, but adopting

the MCT scheme. The cost on each link now corresponds to the sum of its travel time (as

before) and the toll charged on it, i.e., cl = fl + τl. Specifically, for routes A and B we

have that cA = 10.0 + 0.0 = 10.0 and cB = xB + xB = 2xB, respectively. In this case,

the UE is achieved when each route receives half of the drivers, which corresponds to an

average cost of 10.0 and an average travel time of 7.5. This is precisely the SO. Hence,

under MCT, we have that SO=UE and that PoA is 1.

Note that Theorem 5.1 is about the equivalence of SO and UE under MCT. How-

ever, it does not consider how the UE can be achieved. In other words, Theorem 5.1 sim-

ply assumes that the UE is given. Indeed, this is a common assumption of other works in

the literature, such as in Sharon et al. (2017). However, since route choice is a multiagent

problem, guaranteeing convergence to the UE is not trivial (as discussed in Section 2.2).

Hence, in order for Theorem 5.1 to apply to our approach, we need first to show that our

approach indeed achieves the UE. In contrast to other works in the literature, we show

that our method converges to the UE, and then we show that such UE is aligned to the SO.

This is shown in Theorem 5.2. The complete proof is presented in the next subsection.
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Figure 5.1: Two-route example network adapted from Pigou (1920), with travel times and
toll values shown next to the corresponding routes.

o d

τA = 0
fA(xA) = 10

fB(xB) = xB
τB = xB

Theorem 5.2. Consider an instance P of the route choice problem. If all drivers use the

Q-learning algorithm with learning rate α(t) = λt and exploration rate ε(t) = µt, then

the system converges to the UE in the limit.

From Theorem 5.2, we can conclude that our algorithm can find the UE both in the

original problem (P ) as well as in the corresponding toll-based version (P ′). This means

that, by employing MCT, our algorithm achieves a system-efficient equilibrium (Theo-

rem 5.1). In other words, our approach reduces the PoA to its best ratio of 1. Therefore,

based on Theorems 5.1 and 5.2 we can formulate the following corollary.

Corollary 5.2. Consider an instance P of the route choice problem, where all drivers use

the Q-learning algorithm with learning rate α(t) = λt and exploration rate ε(t) = µt. By

employing marginal-cost tolling, the agents converge to a system-efficient equilibrium in

the limit, i.e., the average travel time under UE corresponds to that of the SO. Thus, the

price of anarchy converges to 1 in the limit.

5.3.1 Convergence to the user equilibrium

In this section, we prove Theorem 5.2 by showing that our approach converges to

the UE. Hereafter, by our approach we mean the settings presented in Section 5.2, i.e., a

stateless MDP with Q-learning agents using ε-greedy exploration, where α(t) = λt and

ε(t) = µt. For simplicity and without loss of generality, we assume that the actions’

rewards are in the interval [0, 1].

The intuition underlying the proof of Theorem 5.2 is that, given that learning (α)

and exploration (ε) rates are decreasing with time (using decays λ and µ, respectively),

then the system is becoming more stable (Theorem 5.3). We say that the environment

is stabilising if randomness (due to agents exploration) is decreasing along time. Conse-
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quently, we can show that, in the limit, the actions with the highest Q-values are precisely

the optimal ones (Lemma 5.3), which leads the agents to exploit only optimal actions in

the limit (Lemma 5.2), thus achieving the UE (Theorem 5.2).

Initially, we restate here Proposition 3.2, which defines the probability that best1

and non-best actions are chosen by a given agent i at episode t.

Proposition 3.2. Using ε-greedy exploration with ε(t) = µt, at episode t agent i chooses

its best action
+
ati = arg maxati∈Ai Q(ati) with probability ρ(

+
ati) = 1 − µt(K−1)

K
and any

other action
_
ati ∈ Ai \

+
ati with probability ρ(

_
ati) = µt(K−1)

K
.

From Proposition 3.2, we remark that
+
ρ → 1 and _

ρ → 0 as t → ∞ and ε → 0.

To this respect, as time goes to infinity, the values of α and ε become so small that the

probability of noisy observations changing the Q-table (and, mainly, the best action) goes

to zero. When the system behaves in this way, we say it is stabilising. Under such

circumstances, we can apply Theorem 5.3, adapted from Theorems 3.1 and 3.2.

Theorem 5.3 (adapted from Theorems 3.1 and 3.2). The environment is stabilising as

t → ∞. In this scenario, the probability that the Q-values of best actions (of any

agent) become non-best after ∇ agents decide to explore a non-best action is bounded

by O(
_
ρ∇(

+
ρ+

_
ρ)), which goes to zero as t→∞.

Observe that an agent can, eventually, change its best action given that it is learn-

ing. However, the agent should be able to prevent its Q-values from reflecting unrealistic

observations. Of course, stability does not imply that the Q-value estimates are correct

and that the agents are under UE. These are shown to be true, however, in Lemma 5.3 and

Theorem 5.2, respectively.

We can now advance to show that, in the limit, the action with highest estimated

Q-value is indeed the optimal action. To this regard, we firstly characterise the agent’s

behaviour in terms of the UE, as shown in the next lemma.

Lemma 5.1. Under UE, every agent i ∈ D using ε-greedy exploration exploits its best

route
+
ai = arg maxai∈Ai Q(ai).

Proof. By definition, under UE, for each pair of routes a′ and a′′ of the same OD pair,

with xa′ > 0, we have that r(a′) ≥ r(a′′). For the sake of contradiction, assume that

the system is under UE and that there exists a pair of routes a′ and a′′ belonging to the

1Hereafter, we refer to the action with highest Q-value as the best action and to the other actions as
non-best. Observe that the best action is not necessarily optimal.
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same OD pair for which xa′ > 0 but r(a′) < r(a′′). Recall that we model the problem

as a stateless MDP and agents as Q-learners with ε-greedy exploration. Consequently,

Q-values can be seen as estimates of the reward values of their corresponding actions.

Therefore, given that the reward on a′ is lower than on a′′, then all the xa′ vehicles using

a′ would deviate to a′′ (i.e., they would exploit a′′, not a′) as soon as their Q-values are

correct (which is the case in the limit, as shown next in Lemma 5.3). This contradicts the

initial assumption that the system is under UE, which completes the proof.

Observe that, in the UE definition, the notion of best refers to the value associated

with each action (route). In RL-settings, these values correspond to actions’ Q-values.

Therefore, now we need to show that agents actually choose actions with highest esti-

mated Q-values and that such actions are indeed the optimal ones. These are shown in

Lemmas 5.2 and 5.3, respectively.

Lemma 5.2. In the limit, agents exploit their knowledge most of the time, i.e., they tend

to choose the actions with highest estimated Q-values.

Proof. It follows from Proposition 3.2 and Theorem 5.3, since
+
ρti → 1 and _

ρti → 0 as

t→∞ and ε→ 0.

Lemma 5.3. In the limit, the action with highest estimated Q-value
+
ai = arg maxai∈Ai Q(ai)

is indeed the optimal action ∗
ai = arg maxai∈Ai r(ai), i.e.,

+
ai =

∗
ai as t→∞.

Proof. This lemma can be proved by contradiction. Assume that agent i has an action
+
ai = arg maxai∈Ai Q(ai) with highest estimated Q-value but that this action is not op-

timal, i.e.,
+
ai 6=

∗
ai = arg maxai∈Ai r(ai). In order for that be possible, we need that

r(
+
ai) < r(

∗
ai) and Q(

+
ai) > Q(

∗
ai) hold at the same time. Although counter-intuitive, this

behaviour often occurs in the initial episodes, given that the agents’ learning process leads

travel times to oscillate. In this case, some Q-values may not correspond to the most ac-

curate reward estimate of an action. However, due to exploration, agent i will eventually

take route ∗ai. Moreover, in the limit, all actions will be infinitely explored. Therefore, as

t→∞, we have that Q(
∗
ai) will increase until it eventually becomes the highest one, i.e.,

Q(
∗
ai) ≈ r(

∗
ai) > Q(

+
ai) ≈ r(

+
ai), which contradicts the initial assumption.

We highlight that one of the key requirements of Q-learning is that each action

should be infinitely explored. However, such exploration should not lead optimal actions

to seem sub-optimal. This is shown in the next lemma.
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Lemma 5.4. In the limit, agents using ε-greedy exploration with ε(t) = µt can still

explore non-best actions without invalidating the UE, i.e., agents’ exploration does not

destabilise the UE.

Proof. Suppose the system has converged to the UE in the limit (after a sufficiently large

number of episodes). At this point, all agents are using their best actions, i.e., the ones

with highest estimated Q-values (Lemmas 5.1 and 5.2). Observe that agents can still

explore other actions, though less frequently (Proposition 3.2 and Lemma 5.2). Thus, in

order to prove this lemma, one needs to show that, under UE, exploration will not generate

an abrupt change in the Q-values. An abrupt change occurs in an agent’s Q-table only if

it receives a reward that leads the Q-value of a non-best action to become better than that

of the best one. However, from Theorem 5.3, we have that such abrupt changes will not

affect the UE and that even if they do, a little amount of additional exploration is enough

to lead the Q-values back to their true values (Lemma 5.3).

We now have the required tools for proving Theorem 5.2. Recall that our final

objective is to show that our approach converges to a system-efficient equilibria (i.e., the

SO) as soon as MCT is employed. From Theorem 5.1, this is only attainable if our ap-

proach is guaranteed to converge to the UE. Therefore, proving Theorem 5.2 is sufficient

to show that, by employing MCT, our approach converges to the SO.

Proof of Theorem 5.2. According to Theorem 5.3, the system becomes stable in the limit

and abrupt changes do not affect the Q-values (i.e., non-best actions cannot become the

best ones). Moreover, from Lemma 5.2, we know that in the limit all agents keep ex-

ploiting most of the time. Remember that exploiting means choosing the action with the

highest estimated Q-value, which in the limit corresponds to the optimal one, according

to Lemma 5.3. Finally, from Lemma 5.4 we have that exploration does not affect the UE.

Therefore, our algorithm can be said to converge to the UE.

5.3.2 Fairness

In this section, we analyse the fairness of our approach. We begin with a more

precise definition of fairness, which is given as follows.

Definition 5.1 (MCT fairness). A marginal-cost tolling scheme is fair if the agents are

charged exactly their marginal costs (i.e., the cost they impose on others).
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Observe that tolls can be seen as a mean to penalise undesired (i.e., selfish) be-

haviour. In this sense, from Definition 5.1, we can conclude that if toll values do not

correspond to marginal costs, then such tolls may end up penalising the wrong agents

(i.e., those that are not acting selfishly). In other words, unfair tolling should be avoided.

In contrast to other works in the literature, our approach charges tolls a posteriori.

The next theorem shows that charging agents a posteriori translates into a fairer tolling

scheme, since agents only pay for the cost they are actually imposing on others. A more

concrete example comparing a priori and a posteriori tolling schemes in terms of fairness

is presented forward, in Example 5.2.

Theorem 5.4. Consider a toll-based instance P = (G,D, f, τ) of the route choice prob-

lem. Then, charging tolls in P a posteriori is fairer than charging a priori.

Proof. Building upon Definition 5.1, to show that a posteriori toll charging is fairer than

a priori toll charging, we need to show that the former charges exactly the marginal cost,

whereas the latter may not. For simplicity, we perform this analysis from the links per-

spective (although it easily extends to routes).

In general terms, the toll charged on link l is given by τl = β(p1x
β
l ) (as formulated

in Proposition 5.1). Assume, without loss of generality, that p1 = β = 1. In this case,

we have that τl = xl, which corresponds to one of the cost functions presented in Pigou

(1920)’s example. Abusing notation, assume that τ tl = xtl corresponds to the toll charged

on link l at episode t based on the flow on that link at that episode. Observe that the

flow on link l can change from one episode to another. This is especially true at the

beginning of the learning process, when the system is not yet stable. Such a difference

can be expressed as ∆t
l = |xt−1l − xtl | ≥ 0.

In the case of a priori toll charging, τ tl is computed based on previous steps. For

simplicity, assume that τ tl = xt−1l . On the one hand, if ∆t
l = 0, then the toll τ tl charged

on link l is precisely xtl , given that xt−1l = xtl . On the other hand, if the flow on link

l changes from one episode to another, then xt−1l 6= xtl and ∆t
l > 0. Observe that the

marginal cost for taking link l at episode t should be xtl , whereas a priori toll charging

considers xt−1l . Therefore, whenever ∆t
l > 0, agents using l would be charged above (or

below) the cost they are actually imposing on others. Consequently, a priori toll charging

is unfair whenever ∆t
l > 0. This cost can be even higher when τ tl is not based on the

flow of a single previous episodes, but on many previous episode (e.g., an average of

previous flows).

In contrast, a posteriori toll charging defines that τ tl = xtl , which corresponds
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precisely to the cost agents are imposing on others. Observe that ∆t
l does not affect the

toll values here. Thus, a posteriori toll charging (as used in our approach) can be said

fairer than a priori toll charging.

Example 5.2. Consider again the 10-agent network presented in Example 5.1 and Fig-

ure 5.1. In this extended example, we consider a hypothetical sequence of three episodes

(in which every agent chooses a route). Such a sequence is presented in Table 5.1. In

the table, we present the toll values for both routes (A and B) as generated by a priori

(as usual in the literature, assuming that tolls are initialised with zero, as in Sharon et

al. (2017)) and a posteriori (as in our approach) tolling schemes. In the case of a priori

tolling, assume that toll values are initialised with 0.0, as in Sharon et al. (2017). On

subsequent episodes, the toll of each route is defined as the marginal cost of such route

in the previous episode. The rationale behind such model is that agents can check the

tolls that they are going to pay on each route before they actually take any route. How-

ever, this leads to outdated toll values. We note that, by definition, MCT schemes should

charge each agent according to its marginal cost, which is not achieved by a priori tolling

schemes. As seen in Table 5.1, in the second episode, even though all agents are using

route B, the toll they are going to pay is only 6.0, which corresponds to 60% of their

actual marginal cost. Later on, in the third episode, half of the agents are using each

route, which corresponds to the SO. Nevertheless, agents using route B need to pay a toll

of 10.0. Therefore, the prices charged by a priori tolling may be (and often are, as shown

in this example) unfair. In the case of a posteriori tolling schemes, by contrast, tolls are

charged only after a route is taken. At this point, one could argue that our approach

prevents agents from analysing the costs of their decisions a priori. However, as tolls

are incorporated into agents’ utility functions, the effects of such a posteriori charges are

naturally captured by the learned Q-functions. As seen in Table 5.1, the tolls defined by

a posteriori tolling schemes always correspond to the actual flow of vehicles (and their

marginal costs). Consequently, a posteriori tolling schemes can be said to be fairer than

a priori tolling schemes.

5.4 Experimental evaluation

In this section, we provide an empirical analysis on the performance of our ap-

proach to validate the theoretical results from previous section. Again, recall that learn-
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Table 5.1: Comparison of a priori and a posteriori toll charging in the road network of
Figure 5.1, with three timesteps.

flow a priori tolling a posteriori tolling
episode xA xB τA τB τA τB

1 4 6 0.0 0.0 0.0 6.0
2 0 10 0.0 6.0 0.0 10.0
3 5 5 0.0 10.0 0.0 5.0

ing here translates into finding the best routes to take, a target that changes steadily due to

the presence of multiple agents with possibly conflicting interests. In this sense, the term

convergence refers to a point where agents keep exploiting their knowledge (encoded by

means of their Q-tables) most of the time and the system is stable (so that agents only

observe small fluctuations in their costs). Our aim is to show that, by using our approach,

such a stable point corresponds to a system-efficient equilibrium (i.e., the SO).

5.4.1 Methodology

We empirically validate our theoretical results by simulating our approach as de-

scribed in Appendix A. We employ the same road networks2 used in the previous chapters.

The reader is referred to Section 3.4.1 for the detailed description of each such network.

To enhance presentation, here we replicate the table summarising these networks, but now

also showing the SO solution of each, as presented in Table 5.2. The most representative

such networks are illustrated in Appendix B.

Following previous chapters, we limit the number of available routes to the K

shortest ones in order to avoid arbitrarily large sets of routes. The set of K shortest routes

of each OD pair was computed using the KSP algorithm (YEN, 1971), where the best

value for K varies among the different networks, depending on their characteristics.

As usual, an experiment corresponds to a complete execution, with T =1,000

episodes (except for the SF network, in which case we set T =10,000 episodes), of our

method on a single network. After an execution is completed, we measure (considering

the last episode) its performance by means of the average travel time (avg-tt hereafter,

measured in minutes),and the average proximity to the SO. The latter is formulated as

proximity(x, x∗) = 1− |x
∗ − x|
x∗

, (5.3)

2The road networks are available at <https://github.com/maslab-ufrgs/network-files>.

https://github.com/maslab-ufrgs/network-files
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Table 5.2: Characteristics of the networks used for validation of our approach.
Network Nodes Links OD pairs Total demand avg-tta under SO

B1 4 5 1 4,200 15.00
B2 6 9 1 4,200 ≈23.33
B3 8 13 1 4,200 32.50
B4 10 17 1 4,200 42.00
B5 12 21 1 4,200 ≈51.66
B6 14 25 1 4,200 ≈61.43
B7 16 29 1 4,200 71.25
BB1 8 8 2 4,200 7.50
BB3 12 16 2 4,200 19.00
BB5 16 24 2 4,200 47.00
BB7 20 32 2 4,200 120.50
OW 13 48 4 1,700 66.92
SF 24 76 528 360,600 19.95

a Values reported in the literature (STEFANELLO; SILVA; BAZZAN, 2016;
STEFANELLO; BAZZAN, 2016).

and refers to how close the average travel time (say, x) obtained by the agents is to that of

the SO (say, x∗; as reported in Table 5.2); the higher the value is to 1.0, the better.

We tested different value for the Q-learning’s parameters. The tuning process is

described in detail in Section 5.4.2. The results of the best configurations were then

selected for further analyses in Section 5.4.3.

The algorithms, data analysis and plots were all implemented in Python 2.7.

5.4.2 Parameter tuning

Our toll-based Q-learning approach has three parameters: K (number of routes),

λ (decay rate of α) and µ (decay rate of ε). In order to better assess our approach,

we tested different values for these parameters. For the number of routes, we used

K ∈ {4, 8, 12, 16}. After extensive tests, we found that intermediate values for K

pose no significant difference on the results. In the case of the decay rates, we tested

the values {0.98, 0.99, 0.995, 0.999}, with λ = µ. Recall that the learning and explo-

ration rates, α and ε, are initialised with 1.0 and multiplied by their decay rates after

each episode. Thus, lower decay rates were not used to ensure the agents keep learn-

ing/exploring for a longer time. As for the SF network, considering the high number of

vehicles using it (i.e., two orders of magnitude higher than in the other networks), we

tested λ ∈ {0.9995, 0.9997, 0.9999} and µ ∈ {0.995, 0.997, 0.999}. Observe that, in
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Table 5.3: Parameters’ configuration that produced the best results for each network.
Network K λ µ

B1 3 0.99 0.99
B2 5 0.99 0.99
B3 7 0.99 0.99
B4 9 0.99 0.99
B5 11 0.99 0.99
B6 13 0.99 0.99
B7 15 0.99 0.99
BB1 3 0.98 0.98
BB3 8 0.99 0.99
BB5 4 0.99 0.99
BB7 4 0.99 0.99
OW 8 0.99 0.99
SF 10 0.9997 0.999

the SF network, the values used for λ were higher than for µ to ensure that agents keep

learning even after exploration is decreased. We ran 30 repetitions for each combination

of values for these parameters and compared such combinations using Student’s t-tests at

the 5% significance level, except if otherwise stated. The best performing combination of

parameters for each network is presented in Table 5.3.

As seen in Table 5.3, in general, the larger the network, the higher the value re-

quired for K. This is because the number of possible routes increases with the size of

the network. Consequently, a higher value for K is necessary to efficiently spread the

traffic on these networks. Observe that, as compared to our regret-minimising approach,

here the Braess networks depend more strongly on a high number of routes to converge

properly. The rationale here is that these networks have two kinds of routes: those with

and those without the zero-cost link (the one that causes the Braess paradox). The routes

of the former kind are the shortest ones, but they are more sensitive to congestions and,

thus, have higher marginal-costs. Consequently, agents can only spread efficiently across

these networks if the low marginal-cost routes are present as well. This explains the

need for higher values for K. Interestingly, this was not a problem in the case of our

regret-minimising approach (Chapters 3 and 4) because, without tolls, drivers focus on

minimising their travel times, thus rendering non-shortest routes unnecessary. Also con-

sidering the number of routes, observe that the bi-commodity version of the Braess graphs

required fewer routes (in spite of their larger size) as compared to the single-commodity

ones. The point is that, in these networks, the routes with the zero-cost link are much less

sensitive to congestions, thus having a lower marginal cost. We refer the reader to Ste-



115

Table 5.4: Average performance (with standard deviation in parentheses) of our approach
(Ours) on different networks in terms of proximity to the SO.

Network Proximity to the SO

B1 0.9999 (10−6)
B2 0.9998 (10−5)
B3 0.9999 (10−5)
B4 0.9999 (10−5)
B5 0.9999 (10−5)
B6 0.9999 (10−5)
B7 0.9999 (10−5)
BB1 1.0000 (0.000)
BB3 0.9999 (10−4)
BB5 0.9999 (10−5)
BB7 0.9996 (10−4)
OW 0.9990 (10−5)
SF 0.9954 (10−4)

Average 0.9995 (10−3)

fanello and Bazzan (2016) for a more detailed discussion on the particular characteristics

of the Braess graphs.

Regarding the decay rates, in general, the same values achieved the best results in

all networks. This is a consequence of networks’ size and demand (number of agents).

In general, as discussed in previous chapters, the larger the number of agents, the longer

it takes for them to learn their best routes. As a result, the values of λ and µ need to

be higher (which translates into slower decays) to ensure that agents explore their routes

sufficiently.

The results of the above best configurations were selected for further analyses in

the next subsection.

5.4.3 Results

The average performance of our approach in different networks in terms of prox-

imity to the SO is presented in Table 5.4. Results represent averages over 30 repetitions,

with standard deviations shown in parentheses. The values of the algorithms’ parameters

are those listed in Table 3.2.

As seen in the table, our approach obtains good approximations of the SO in the

tested networks. On average, our results are within 99.95% of the SO, with a standard

deviation of 0.13%. We remark that this resulting solution concept corresponds either to
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Figure 5.2: Average travel time along episodes in selected networks, with shaded lines
representing the standard deviation and dashed lines representing the SO (as reported in
Table 5.2).
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(c) SF network

the UE and to the SO. In other words, the average travel times achieved here are min-

imum and, due to the toll values, no agent have an incentive to deviate. Therefore, as

expected, the experimental results are consistent with the theoretical analysis presented in

Section 5.3, showing that our approach converges to a system-efficient equilibrium.

In order to better analyse the agents’ learning behaviour, Figure 5.2 presents the

average travel time along episodes in selected networks. In the plots, each curve is an

average over 30 repetitions (with standard deviation shown as shaded lines) and dashed

lines present the average travel times under SO (as reported in Table 5.2). We remark that

the SF network was run for more episodes than the other networks, which justifies the
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high concentration in the left side of the plot in Figure 5.2c.

The plots show that, as for our regret-minimising approaches (Chapters 3 and 4),

the average travel time here is high in the beginning as a consequence of the Q-table

initialisation. In spite of the presence of the tolls, however, we can see that agents were

able to learn their best routes reasonably fast as they become more experienced. Note

that, as compared to our regret-minimising approaches, the average travel time here is is

much higher in the first episodes. This is a direct consequence of the tolls. In the very

beginning, agents that take shortest routes fare better than the others. However, the other

agents start to prefer such routes as well, thus increasing their marginal costs (i.e., the

peak in Figure 5.2c is higher than 2,000, whereas in Figure 3.2c it is lower than 700).

As a consequence, the shortest routes rapidly become unattractive to all agents. Such a

phenomenon is particularly evident when the number of agents is higher, as is the case of

the SF network.

Thus, our results are consistent with the theoretical analysis presented in Sec-

tion 5.3, which confirms our initial hypothesis, namely that our reinforcement learning,

MCT-based approach converges to the SO.

5.5 Related work

In this section we discuss representative literature on system-efficient equilibria

in route choice (and related problems). The reader is referred to Essen et al. (2016) and

Ortúzar and Willumsen (2011) for a more detailed overview.

The use of tolls to enforce system-efficient behaviour has been widely explored in

the literature. There is a plethora of works in this line, considering drivers with hetero-

geneous utility (COLE; DODIS; ROUGHGARDEN, 2003), toll information mechanisms

(KOBAYASHI; DO, 2005), tolls with bounded values (BONIFACI; SALEK; SCHÄFER,

2011), RL-based tolls (TAVARES; BAZZAN, 2014), and so on. We concentrate, how-

ever, in the MCT scheme (PIGOU, 1920). The concept of MCT has been investigated

in several works, such as Sharon et al. (2017), Ye, Yang and Tan (2015), Yang, Meng

and Lee (2004), and Meir and Parkes (2016). As opposed to our approach, nonetheless,

these works neither investigate how drivers react to tolls nor ensure convergence to the

UE (which, by using MCT, is then aligned to the SO). Furthermore, these tolling schemes

charge tolls a priori, i.e., before the agents start their trips. Ideally, however, tolls should

only be charged after their real marginal costs are available (i.e., at the end of the trips).
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A priori tolling is indeed appealing from the agents’ perspective, since such agents can

see in advance the toll associated with each of their possible actions. Nonetheless, these

schemes usually define the prices based on historical congestion levels, meaning that the

agents may end up paying a toll that is higher than their marginal costs. In particular, since

MCT is based on the impact an agent causes on others, one cannot assess such impact be-

fore it happens (except if one can predict drivers decisions along their trips). Hence, we

say that these schemes are unfair, as discussed in Section 5.3.2.

In this work, by contrast, we assumed that tolls are charged a posteriori and per

route. We then presented a general toll formulation that can be computed directly by

the agents. In this way, we can simplify the infrastructure requirements for deploying

the tolling scheme by assuming that each vehicle has a navigation device responsible for

charging the toll whenever a trip is finished. As reported by the National Surface Trans-

portation Infrastructure Financing Commission (2009), this makes the agents’ decision

process easier since the drivers can better understand the costs they are being charged.

Traditional tolling schemes could also benefit from connected navigation devices. How-

ever, such approaches would strongly depend on stable communication (otherwise tolls

would not be available a priori), whereas our approach remains robust even under pre-

carious communication conditions (since tolls could be computed at any time after each

trip is finished).

Other works investigate the SO by explicitly assuming that agents behave altru-

istically. Chen and Kempe (2008) and Hoefer and Skopalik (2009) investigated routing

games assuming that agents can present altruistic behaviour. In these approaches, an

agent’s perceived cost is a linear combination of its travel time (selfish objective) and of

how much its decision deteriorates others’ travel times (altruistic objective). This formu-

lation is equivalent to MCT, except for the fact that the contribution of each term (self-

ishness/altruism) is controlled by a parameter β, which is known as the altruism level.

Altruism was also the focus of Levy and Ben-Elia (2016)’s work, which employed an

agent-based model where drivers choose their routes based on subjective estimates over

their costs. According to Fehr and Fischbacher (2003), under certain conditions, real

drivers are indeed willing to take altruistic decisions so as to improve the global perfor-

mance. However, the higher the price of such a social behaviour, the less frequent it is.

Therefore, altruism cannot be explicitly imposed on the agents. Furthermore, these works

assume that agents know each others’ payoff to compute their utilities.

The use of route guidance mechanisms to bias drivers’ decisions towards the SO
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has also been approached in the literature. A good review on the topic is provided by

Essen et al. (2016). Lujak, Giordani and Ossowski (2015) proposed a negotiation mecha-

nism where several types of agents negotiate the traffic assignment as a whole. However,

they assume that additional infrastructure (e.g., agents to control origins and intersec-

tions) exist. Bazzan and Klügl (2005) investigated the impact of providing biased rec-

ommendations to drivers. Specifically, a centralised service suggests routes aiming at a

system-efficient equilibrium. Notwithstanding, biasing the provided suggestions may lead

to unfair assignments. Moreover, in general, these works assume that a centralised mech-

anism makes such biased suggestions to the drivers. As discussed by Jahn et al. (2005),

some drivers are willing to bear the cost of socially desired routes (up to certain limits) if

the traffic system suggests them to do so. However, experiments with human subjects ev-

idence the adoption of such mechanisms is low (ESSEN et al., 2016; RIETVELD, 2010).

Wolpert and Tumer (1999, 2002) introduced the idea of difference rewards, which

also relates to our approach. Basically, the difference reward an agent receives for taking

an action corresponds to the amount the system’s performance deteriorates considering

his action. Precisely, it is measured as the difference between the system’s performance

with and without it. Using difference rewards, the agents’ reward signal is aligned with

the system’s utility so that they converge to the SO. However, difference rewards can

only be computed upon strong, full observability assumptions. Later on, methods for

approximating the difference reward signals were proposed, as in the work of Agogino

and Tumer (2004), for instance. However, this kind of approach still depend on some sort

of global information.

Christodoulou, Mehlhorn and Pyrga (2014) introduced a coordination mechanism

through which links’ cost functions are adjusted to account for agents selfish behaviour.

Specifically, cost functions remain unchanged up to a flow threshold, after which the cost

is set to infinity. The idea is to bias agents’ decisions towards the SO. Nonetheless, the

cost functions must be defined by a central authority. Additionally, that method is only

applicable to simple, parallel links scenarios.

Finding system-efficient equilibria has also been approached with metaheuristics.

Dias et al. (2014) employed an ant colony optimization algorithm in which vehicles de-

posit pheromone into the roads they travel to repel other vehicles. A genetic algorithm

was used by Cagara, Bazzan and Scheuermann (2014) to optimise the assignment of vehi-

cles. Buriol et al. (2010) considered the toll booth problem, in which one aims at selecting

a subset of links to charge tolls, and employed a biased random-key genetic algorithm.
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However, these approaches rely on centralised mechanisms (either for generating the as-

signment or for aggregating the drivers’ knowledge), and the individual agents’ decision

processes are not modelled or taken into account.

5.6 Discussion

In this chapter, we proposed an a posteriori tolling scheme through which rein-

forcement learning (RL) agents are guaranteed to converge to a system efficient equilib-

rium (i.e., the system optimum—SO). In the route choice problem, driver-agents minimise

their travel costs, which leads to the user equilibrium (UE). In order to bias the UE to-

wards the SO, we employed the concept of marginal-cost tolling (MCT), where agents

are charged proportionally to the cost they impose on others. In our approach, agents

are charged a posteriori (as opposed to the literature, where agents are charged a priori),

thus allowing the tolls to be computed by the agents themselves, and eliminating the need

for additional infrastructure. We generalised the toll values formulation for univariate,

homogeneous polynomial cost functions (which encompasses the most commonly-used

cost functions in the literature). Our toll formulation allows the agents to compute the toll

associated with their routes using only their own knowledge.

We provided theoretical and experimental results. Specifically, we proved that

agents converge to the UE in the limit, and that such UE corresponds to the SO. As a

consequence, in the limit, the price of anarchy achieved by our approach achieves its

best ratio. Moreover, we have shown that, as compared to the existing literature, our

MCT scheme is more general (it applies to most traffic scenarios), fairer (agents pay for

their actual marginal costs), it can be computed by the agents themselves (it does no rely

on a central authority), it is easier to deploy (it has fewer infrastructure requirements).

On the experimental side, we validated our theoretical results in several road networks

available in the literature, achieving an average proximity to the SO of 99.95%. Our

results confirm our initial hypothesis, showing that our reinforcement learning, MCT-

based approach converges to the SO.
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6 CONCLUSIONS

In this thesis, we investigated the performance of reinforcement learning (RL)

agents in the context of route choice, and delivered formal convergence guarantees. Mul-

tiagent reinforcement learning (MARL) is challenging because agents’ decisions affect

the utility of each other, which makes their objective a moving target. Route choice is a

MARL problem that concerns how drivers behave when choosing routes so as to minimise

their travel costs, and thus represents a particularly relevant scenario for MARL. The main

challenge in route choice is that the route chosen by a driver may affect the travel times

perceived by other drivers. We highlight that such complex dynamics represent the main

challenge of MARL in general (i.e., not only in the context of route choice). In this sense,

formal analyses regarding the system’s performance using MARL are typically limited to

specific scenarios.

The performance of route choice is commonly analysed in relation to two funda-

mental solution concepts: the user equilibrium (UE, where no agent benefits from unilat-

erally changing its route) and the system optimum (SO, which represents the system at

its best operation). The main goal of this thesis is to show that MARL can be guaran-

teed to converge to the UE and to the SO (though not necessarily at the same time) upon

certain conditions. In this regard, this thesis contributes to advancing the state-of-the-art

literature on MARL in three ways.

The first contribution of this thesis consists in a regret-minimising Q-learning al-

gorithm, through which agents are guaranteed to converge to the UE. In this front, agents

employ the regret associated with their actions to guide their learning process. Roughly,

an action’s regret measures how bad it performs as compared to the other actions. We

call this the action regret, which can be estimated by the agents using only their previous

experiences. Building upon this formulation, we showed that employing such regret as

reinforcement signal leads the agents to minimise their regret. Consequently, we proven

that the system converges to an approximate UE. Additionally, we tested our approach in

several instance of the route choice problem, thus confirming our theoretical results.

As the second contribution of this thesis, we extended the previous method to

deal with non-local information. We defined a (mobile) navigation service (which we

call the app) that provides non-local information (here, simply the routes average travel

times) to the agents. The agents employ the app’s information to improve the estimated

regret of their actions. We validated our approach in several instances of the problem,
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and empirically found that drivers’ performance is enhanced when agents use the app

informations to estimate their actions’ regret.

The third contribution of this thesis refers to a toll-based Q-learning algorithm,

through which the system is guaranteed to converge to a system-efficient equilibrium, i.e.,

an UE aligned to the SO. We developed a marginal-cost tolling (MCT) scheme, where the

toll an agent pays on a link is proportional to the cost it imposes on others. We then gener-

alised the toll values formulation for univariate, homogeneous polynomial cost functions,

which comprises the most commonly-used cost functions in the literature. Using our for-

mulation, tolls can be computed by the agents themselves and can be charged a posteriori

(i.e., when the trip ends). We provided theoretical results, showing that our approach con-

verges to the SO and that our tolling scheme is fairer than a priori schemes. As for the

other fronts, we empirically validated our approach in several route choice instances, thus

achieving results that corroborate with our theoretical analysis.

Together, the aforementioned fronts of this thesis provide an answer to our initial

question (as presented in the introduction of this thesis). Specifically, we have shown

that, using the proposed methods, it is possible to formally guarantee that reinforcement

learning agents will converge to the UE and to the SO (though not necessarily at the

same time). In this regard, at least in the context of route choice, MARL can achieve

convergence guarantees.

Finally, we highlight that, although this thesis has considered the route choice

problem in particular, our approach is not necessarily limited in this respect. In fact,

our analyses may apply to other MARL problems as well. In principle, our regret-based

analyses (Chapters 3 and 4) may be applied to any problem representable as a stateless

MDP, with a finite set of agents and actions, where agents can keep the history of rewards

received on previous episodes. In the case of our toll-based analyses (Chapter 5), apart

of the previous characteristics, the problem should also present univariate, homogeneous

polynomial cost functions. Furthermore, given that tolls are defined as a function of the

marginal costs, rewards need to correspond precisely to an agent’s actual action (e.g.,

proportional to travel time on the chosen route) not to the system’s overall state (e.g.,

proportional to average travel time of all agents).
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6.1 Future work

As future work, we outline the following research directions:

• Investigate alternative regret formulations to accelerate the learning process. As

discussed in Chapter 3, when evaluating an action, our regret formulation consid-

ers the average of all rewards of that action (i.e., since the first episode). As an

undesired effect, outdated rewards may lead an action to seem better or worse than

it actually is, thus making the learning process slower. Building upon our regret

formulation, a promising alternative consists in progressively discounting old re-

wards so as to put more weight on recent rewards. Additionally, we could design

a mechanism that actively detects relevant changes in the rewards and eliminates

only outdated rewards.

• Extend our results to consider mixed strategies and complement our convergence

proofs with convergence rate analyses. In this thesis, agents’ strategies are deter-

ministic, although exploration adds a level of stochasticity to them. Using mixed

strategies adds another level of complexity to the theoretical analysis, but results

in stronger results. Furthermore, observe that although we prove that agents con-

verge to the desired solution concepts, the rate at which such converge takes place

is not contemplated by our analyses. As a consequence, when agents are learn-

ing, we cannot anticipate when convergence will be reached. Such analysis is

important to better asses the kinds of problems to which our approach is suitable.

• Enhance the tolling scheme so that the agents can anticipate the routes’ tolls. The

tolling scheme presented in Chapter 5 allows tolls to be computed a posteriori in a

distributed way. The drawback of this mechanism is that, in the worst case, agents

may end up paying a cost arbitrarily higher than expected. The most straight-

forward approach to overcome such problem would be to keep, for each agent,

an internal estimate of tolls based on previous episodes. Such estimates could

then be represented probabilistically based on the exploration rate of other agents

(i.e., estimates tend to be more precise when exploration is lower). Furthermore,

such probabilities could be used to establish a bound on the worst possible loss

associated with each route.

• Reformulate the use of app information to improve learning efficiency. The exper-

iments of Chapter 4 shown that the app information improves agents’ estimates on
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their rewards. We seen that such information is particularly useful in the begin-

ning of the learning process, when agents have not enough experience to take their

decisions. In this sense, our approach could be changed to weigh app information

based on the agents’ uncertainty regarding each action. In this way, agents could

use app information only when indeed needed, thus improving learning efficiency.

Also important, we could extend our experimental analysis to investigate how the

weight given to the app information correlate with performance improvements.

• Extend our algorithms and analyses to the dynamic shortest paths problem. As

outlined in Section 2.1.2, this problem is more challenging than route choice be-

cause drivers do not know their possible routes a priori. Hence, agents must learn

their routes by exploring the entire network. Although unrealistic from the traffic

perspective, this problem can provide insightful results that could then be extended

to other problems. In fact, we consider this work as our first step towards more

general MARL convergence guarantees. In this regard, we also plan to extend our

analyses to more general classes of MARL problems.

• Study the impact of multiple, competitive objectives. This line of research has

been widely considered in the literature. Here, one investigates what happens

when agents have multiple objectives that may burden each other. As a typical

example, think of a driver that needs to decide between travelling faster or saving

fuel. In this case, one tries to improve one objective only if it does not deteriorates

the other. The set of such possible improvements delineates the Pareto frontier.

Hence, extending our analyses to deal with multi-objectives represents another

interesting direction.

• Investigate the effect of alternative communication models. In Chapter 4, we used

an app to provide information to the agents. Nonetheless, several other alterna-

tives can be seen as information sources. In particular, drivers can communicate

with each other to exchange traffic advices. We consider this a relevant research

direction because, apart of the travel times, such kind of communication could be

useful for the agents to anticipate undesired traffic conditions, such as congestions

close to a concert or flooded lanes after heavy rain.



125

REFERENCES

ABDALLAH, S.; LESSER, V. Learning the task allocation game. In: Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS06). Hakodate, Japan: New York: ACM Press, 2006. p. 850–857.

ABERNETHY, J. D.; HAZAN, E.; RAKHLIN, A. Interior-point methods for full-
information and bandit online learning. IEEE Transactions on Information Theory,
v. 58, n. 7, p. 4164–4175, jul 2012. ISSN 0018-9448.

AGARWAL, A.; DEKEL, O.; XIAO, L. Optimal algorithms for online convex optimiza-
tion with multi-point bandit feedback. In: KALAI, A. T.; MOHRI, M. (Ed.). The 23rd
Conference on Learning Theory. Haifa: [s.n.], 2010. p. 28–40. ISBN 9780982252925.

AGOGINO, A. K.; TUMER, K. Unifying temporal and structural credit assignment prob-
lems. In: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 2. New York: IEEE Computer Society, 2004.
(AAMAS ’04), p. 980–987.

ARORA, R.; DEKEL, O.; TEWARI, A. Online bandit learning against an adaptive adver-
sary: from regret to policy regret. In: LANGFORD, J.; PINEAU, J. (Ed.). Proceedings
of the 29th International Conference on Machine Learning (ICML 2012). Edinburgh:
[s.n.], 2012. p. 1503–1510. ISBN 9781450312851.

AUER, P.; CESA-BIANCHI, N.; FISCHER, P. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, v. 47, n. 2/3, p. 235–256, 2002. ISSN 08856125.

AUER, P. et al. The nonstochastic multiarmed bandit problem. SIAM Journal on Com-
puting, v. 32, n. 1, p. 48–77, 2002.

AUMANN, R. J. Subjectivity and correlation in randomized strategies. Journal of math-
ematical Economics, v. 1, n. 1, p. 67–96, 1974.

AWERBUCH, B.; KLEINBERG, R. D. Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In: Proceedings of the Thirty-sixth Annual
ACM Symposium on Theory of Computing. New York: ACM, 2004. (STOC ’04), p.
45–53. ISBN 1-58113-852-0.

BAIRD, L. C. Reinforcement learning in continuous time: advantage updating. In: Inter-
national Conference on Neural Networks. [S.l.]: IEEE, 1994. v. 4, p. 2448–2453.

BANERJEE, B.; PENG, J. Efficient no-regret multiagent learning. In: Proceedings of the
Twentieth National Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2005. p.
41–46.

BAR-GERA, H. Traffic assignment by paired alternative segments. Transportation Re-
search Part B: Methodological, v. 44, n. 8-9, p. 1022–1046, sep 2010. ISSN 01912615.

BAZZAN, A. L. C.; KLÜGL, F. Case studies on the Braess paradox: simulating route
recommendation and learning in abstract and microscopic models. Transportation Re-
search C, v. 13, n. 4, p. 299—319, August 2005.



126

BAZZAN, A. L. C.; KLÜGL, F. Re-routing agents in an abstract traffic scenario. In:
ZAVERUCHA, G.; COSTA, A. L. da (Ed.). Advances in artificial intelligence. Berlin:
Springer-Verlag, 2008. (Lecture Notes in Artificial Intelligence, 5249), p. 63–72.

BAZZAN, A. L. C.; KLÜGL, F. Introduction to Intelligent Systems in Traffic and
Transportation. [S.l.]: Morgan and Claypool, 2013. 1-137 p. (Synthesis Lectures on
Artificial Intelligence and Machine Learning, 3).

BECKMANN, M.; MCGUIRE, C. B.; WINSTEN, C. B. Studies in the Economics of
Transportation. New Haven: Yale University Press, 1956.

BELL, D. E. Regret in decision making under uncertainty. Operations Research, v. 30,
n. 5, p. 961–981, 1982.

BEN-ELIA, E. et al. The impact of travel information’s accuracy on route-choice. Trans-
portation Research Part C: Emerging Technologies, v. 26, p. 146–159, Jan 2013.

BEN-ELIA, E.; ISHAQ, R.; SHIFTAN, Y. “If only I had taken the other road...”: regret,
risk and reinforced learning in informed route-choice. Transportation, v. 40, n. 2, p.
269–293, Feb 2013.

BLUM, A.; EVEN-DAR, E.; LIGETT, K. Routing without regret: On convergence to
nash equilibria of regret-minimizing algorithms in routing games. Theory of Computing,
v. 6, n. 1, p. 179–199, 2010. ISSN 1557-2862.

BLUM, A.; MANSOUR, Y. Learning, regret minimization, and equilibria. In: NISAN,
N. et al. (Ed.). Algorithmic game theory. [S.l.]: Cambridge University Press, 2007. p.
79–102. ISBN 9780521872829.

BONIFACI, V.; SALEK, M.; SCHÄFER, G. Efficiency of restricted tolls in non-atomic
network routing games. In: PERSIANO, G. (Ed.). Algorithmic Game Theory: Pro-
ceedings of the 4th International Symposium (SAGT 2011). Amalfi: Springer Berlin
Heidelberg, 2011. p. 302–313. ISBN 978-3-642-24829-0.

BOWLING, M. Convergence and no-regret in multiagent learning. In: SAUL, L. K.;
WEISS, Y.; BOTTOU, L. (Ed.). Advances in Neural Information Processing Systems
17: Proceedings of the 2004 Conference. [S.l.]: MIT Press, 2005. p. 209–216.

BRAESS, D. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,
v. 12, p. 258, 1968.

BUREAU OF PUBLIC ROADS. Traffic Assignment Manual. Washington, D.C., 1964.

BURIOL, L. S. et al. A biased random-key genetic algorithm for road congestion mini-
mization. Optimization Letters, v. 4, p. 619–633, 2010.
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APPENDIX A — COMPLEXITY ANALYSIS OF THE ALGORITHMS

In this appendix, we present the procedure used to simulate our algorithms and

analyse its complexity. As input, this procedure receives an instance of the P of the

route choice problem, the set of the K shortest routes for each OD pair, and some pa-

rameters (i.e., the number of episodes to run T and the learning and exploration decay

rates λ and µ). Firstly, the procedure initialises all agents’ Q-tables and, in the case of

Algorithms 3.1 and 4.1, their history of reward estimates. Afterwards, the procedure sim-

ulates one episode a time, up to episode T . Simulating an episode involves the three

steps: (i) letting agents choose their routes, (ii) updating the travel time on the routes,

and (iii) providing the travel time to the agents so that they can update their policies. The

complete procedure is presented in Algorithm A.1.

The second step of the algorithm updates the travel time of all routes according to

the current choices of the agents. The complexity analysis of this process and some of

its implementation details are presented in the next proposition. To enhance presentation,

hereafter we use d = |D|, l = |L|, and m to denote the number of drivers, links, and OD

pairs, respectively.

Algorithm A.1: Simulation procedure
input: instance P = (G,D, f) of the route choice problem,

set of K shortest routes Ai for all agents with A = {Ai | i ∈ D},
number of episodes T ,
learning decay rate λ,
exploration decay rate µ

1 for i ∈ D do
2 initialise Q-table of agent i as: Q(ai)← 0 ∀ai ∈ Ai;
3 end
4 for t ∈ {1, . . . , T} do

// step (i): agents choose their actions

5 for i ∈ D do
6 ȧti ← agent i chooses its action;
7 end

// step (ii): update routes’ travel time

8 update travel time on all links (and routes);
// step (iii): agents observe travel time and update

their policies

9 for i ∈ D do
10 inform agent i about its travel time fȧti ;
11 end
12 end
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Proposition A.1. Updating the travel time of all routes, i.e., step (ii) of Algorithm A.1,

has O(l(d + mK)) time complexity, for d drivers, l links, m OD pairs, and K routes per

OD pair.

Proof. Given the problem instance P = (G,D, f), we represent each link by means of

its ID, which we assume that is provided with the graph G. Considering that the set of

routes is also given as input, the links themselves are irrelevant here (i.e., only their IDs

are necessary). We also assume that the links’ current flow and travel time are represented

by means of two arrays, whose space complexity is O(|L|).

Updating the travel time of all routes involves the following steps: (a) updating

the flow on all links, (b) updating the travel time on all links, and (c) updating the travel

time on all routes.

Step (a) involves two parts. Initially, we need to set the flow on all links to zero,

which involves O(l) updates. Then, we need to set the current flow on all links. To this

end, we need to iterate over all agents and, for each agent, iterate over all links of its

current route, adding 1 unit to the flow of that link. A route has at most O(l) links, so this

second part takes O(dl). The complete step then has a complexity of O(dl).

Step (b) iterates over all links, updating the travel time on that link using the VDF

f provided with the problem instance P . This process has a time complexity of O(l).

Step (c) iterates over all routes and, for each route, sums the travel time of the

links comprising it. Every route has at most O(l) links and we have K routes for each of

the m OD pairs. The time complexity here is O(mKl).

Summing all steps, we obtain a time complexity of O(dl + l + mKl) or simply

O(l(d+mK)).

The other steps of Algorithm A.1 are performed in different ways, depending on

which approach we want to simulate, i.e., Algorithm 3.1 or Algorithm 4.1 or and Algo-

rithm 5.1. To be precise, the differences are:

• When simulating our regret-minimising Q-learning algorithm without the app in-

formation (from Chapter 3), step (i) corresponds to lines 4–5 of Algorithm 3.1 and

step (iii) corresponds to lines 6–12 of Algorithm 3.1.

• When simulating our regret-minimising Q-learning algorithm with the app infor-

mation (from Chapter 4), step (i) corresponds to lines 4–6 of Algorithm 4.1 and

step (iii) corresponds to lines 7–13 of Algorithm 4.1.

• When simulation our toll-based Q-learning (from Chapter 5), step (i) corresponds
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to lines 3–4 of Algorithm 5.1 and step (iii) corresponds to lines 5–7 of Algo-

rithm 5.1.

We can now analyse the complexity of our approaches. In what follows, we restate

and prove Propositions 3.1, 4.1, and 5.2.

Proposition 3.1. Our regret-minimising Q-learning approach hasO(T (dK+ld+lmK))

time complexity and O(dK) space complexity, for T episodes, d drivers, and K actions,

l links, and m OD pairs.

Proof. In order to analyse our algorithm, we firstly analyse the complexity of the agents’

initialisation. Afterwards, we analyse the episode loop of the simulation procedure (lines

4–12 of Algorithm A.1) and then sum all up to obtain the overall complexity.

We implement an agent’s Q-table using an array. In this sense, all Q-tables are

initialised in O(dK) time complexity and, in total, they have O(dK) space complexity.

An agent’s history of estimates, on the other hand, can be implemented more efficiently by

means of two arrays: one for the accumulated estimated reward of each action and another

for the most recent reward observation of each action. In this way, we eliminate the need

for storing all reward estimates for every action along time. Considering that d agents are

being simulated, these histories demand a O(dK) time complexity for initialisation and

O(dK) space complexity. Observe that, using these data structures, an agent’s Q-table

and history of estimates remain fixed throughout the simulation.

Step (i) of Algorithm A.1 corresponds to lines 4–5 of Algorithm 3.1. We firstly

consider the complexity associated with each agent. The learning and exploration rates

are updated in constant time. The ε-greedy exploration scheme involves generating a

random number in O(1) time and then selecting the best action (if the random number is

larger than ε) or a random action (if the random number is lower than ε). The ε-greedy

scheme receives a Q-table as input, which we implemented as an array (as described in

the beginning of this proof). In this sense, an action can be drawn uniformly at random in

constant time and the best one can be selected in O(K), and thus ε-greedy has O(K) time

complexity and constant space complexity. Hence, for each agent, step (i) has a O(K)

time complexity and O(1) space complexity, which, considering that there are d agents,

becomes O(dK) time complexity and O(d) space complexity (just to store their choices).

Step (ii) has a time complexity of O(l(d+mK)), as given by Proposition A.1.

Step (iii) of Algorithm A.1 corresponds to lines 6–12 of Algorithm 3.1. The reward

estimate of an action can be updated in constant time, which accounts for a O(K) time
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complexity for all actions of the agent. Using the data structures defined in the beginning

of this proof, the action regret of the selected action of each agent can be computed in

O(K) time for the first term and O(1) time for the second term, thus summing to O(K)

for each agent. The other lines of step (iii) can be computer in constant time. Due to

the data structures used, no additional space is required here. Hence, considering the

existence of d agents, step (iii) translates into O(dK) time complexity and O(1) space

complexity.

A complete episode has then a time complexity of O(dK + l(d+mK) + dK) ∈

O(dK+ ld+ lmK) and a space complexity of O(d). Putting all together, and considering

T episodes, the complete algorithm has a time complexity of O(dK + T (dK + ld +

lmK)) ∈ O(T (dK + ld+ lmK)). As for the space complexity, considering that the data

structures used for the Q-table and history of estimates remain constant along time, the

space complexity is O(dK + d) ∈ O(dK).

Proposition 4.1. Our regret-minimising Q-learning with app information approach has

O(T (dK + ld+ lmK)) time complexity and O(dK) space complexity, for T episodes, d

drivers, and K actions, l links, and m OD pairs.

Proof. The analysis here is basically the same as in the proof of Proposition 3.1 above.

The only difference is that we have the app informations. The app information can be

stored in an array with space complexity of O(mK). Observe that this single array is

enough to store the recommendations for all drivers, regardless of their OD pairs. This

array can be populated during the step (ii) of Algorithm A.1 without affecting Proposi-

tion A.1.

On the agents’ side, the app information is used only for updating the action regret

of the currently chosen action. In this sense, it does not affect the time complexity of the

agents. The space complexity also remains unaffected, since the app information are not

stored by the agent.

So far, by using the app, the only difference to Proposition 3.1 is the presence

of an additional mK term in the space complexity, i.e., O(mK + dK). Nevertheless,

observe that the number of OD pairs m cannot be higher than the number of drivers. By

definition, a driver has exactly one OD pair and an OD pair has multiple drivers. In this

sense, m ≤ d and, thus, O(mK + dK) ∈ O(dK).

Therefore, when the app is used, the time and space complexity of our approach

remain O(T (dK + ld+ lmK)) and O(dK), respectively.
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Proposition 5.2. Our toll-based Q-learning approach has O(T (dK + ld + lmK)) time

complexity andO(dK) space complexity, for T episodes, d drivers, andK actions, l links

and m OD pairs.

Proof. The complexity analysis of the toll-based Q-learning is similar to that of previous

algorithms. Again, we implement an agent’s Q-table using an array so that all Q-tables

can be initialised in O(dK) time complexity. The Q-tables have a fixed size and, in total,

they have a O(dK) space complexity.

As in the previous proofs, we first analyse the complexity of the episode loop of

the simulation procedure (lines 4–12 of Algorithm A.1) and then sum all up to obtain the

overall complexity.

Step (i) of Algorithm A.1 corresponds to lines 3–4 of Algorithm 5.1. This step is

exactly the same as in Algorithm 3.1. Hence, it has O(dK) time complexity and O(d)

space complexity (which is required for storing the agents’ choices).

Step (ii) has a time complexity of O(l(d+mK)), as given by Proposition A.1.

Step (iii) of Algorithm A.1 corresponds to lines 5–7 of Algorithm 5.1. These lines

are executed in constant time, which, considering that this step is performed by d agents,

translates into O(d) time complexity. As for space, considering that the Q-table has a

constant size, the space complexity of this step remains constant.

A complete episode has then a time complexity of O(dK + l(d + mK) + d) ∈

O(dK+ ld+ lmK) and a space complexity of O(d). Putting all together, and considering

T episodes, the complete algorithm has a time complexity of O(dK + T (dK + ld +

lmK)) ∈ O(T (dK + ld+ lmK)). As for space, considering that the Q-table has a fixed

size, we have O(dk + d) ∈ O(dk) space complexity.
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APPENDIX B — FIGURES OF THE ROAD NETWORKS

In this appendix, we present the topology of the road networks used in our ex-

periments. The complete description of these networks, including VDFs, is available at

<https://github.com/maslab-ufrgs/network-files>. Considering that some routes are very

similar (e.g., Braess graphs), here we only present the most representative ones. Specifi-

cally, we present the following networks: B3 (Figure B.1), BB3 (Figure B.2), OW (Fig-

ure B.3), and SF (Figure B.4).

Figure B.1: B3 network
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Figure B.3: OW network
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APPENDIX C — RESUMO ESTENDIDO EM PORTUGUÊS

C.1 Motivação

Mobilidade urbana eficiente desempenha um papel fundamental na sociedade mo-

derna. No entanto, a crescente demanda por tal mobilidade associada à ausência de

investimentos adequados na oferta (infraestrutura viária) têm comprometido a eficiên-

cia dos sistemas viários existentes, como evidenciado pelos crescentes (em número e

intensidade) congestionamentos. Segundo o Centre for Economics and Business Re-

search (2014), o impacto de congestionamentos na economia dos Estados Unidos su-

perou a marca de US$ 120 bilhões em 2013. Além do mais, tais custos devem crescer

cerca de 50% até 2030.

Tradicionalmente, uma das práticas mais comuns para minimizar congestiona-

mentos consiste em expandir a infraestrutura viária existente. Entretanto, tal abordagem

tem se mostrado insustentável sob diversas perspectivas. Além do mais, como descrito

pelo paradoxo de Braess (1968), a expansão da capacidade da infraestrutura viária pode

até mesmo piorar o desempenho do tráfego. Desta forma, abordagens que fazem um uso

mais eficiente da infraestrutura já existente têm se mostrado cada vez mais importantes.

Esta tese aborda o tráfego sob a perspectiva de motoristas que devem escolher

as rotas que minimizam seus custos de viagem. Este é o chamado problema de escolha

de rotas. Vale ressaltar que, neste contexto, os motoristas possuem um comportamento

tipicamente egoísta, buscando escolher as rotas que melhoram seu desempenho indepen-

dente do prejuízo que tais escolhas possam gerar aos demais. Neste trabalho, investigamos

como tais motoristas podem aprender a escolher suas rotas de uma maneira eficiente, com

base na experiência adquirida ao longo do tempo. Desta forma, o problema é abordado

do ponto de vista de aprendizagem por reforço multiagente.

Aprendizagem por reforço multiagente (do inglês, MARL) é uma tarefa desafia-

dora em que agentes buscam, concorrentemente, aprender um comportamento (política)

capaz de maximizar sua utilidade. Aprender neste tipo de cenário é difícil porque os

agentes devem se adaptar uns aos outros, tornando o objetivo um alvo em movimento

(BUŞONIU; BABUSKA; SCHUTTER, 2008; TUYLS; WEISS, 2012). Consequente-

mente, não existem garantias de convergência para problemas de MARL em geral. Por

outro lado, resultados promissores têm sido alcançados para problemas específicos. A

presente tese segue justamente esta direção, buscando fornecer garantias de convergên-
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cia para o caso específico do problema de escolha de rotas. Em particular, esta tese busca

garantir a convergência de algoritmos de MARL para o equilíbrio dos usuários (onde nen-

hum motorista consegue melhorar seu desempenho mudando de rota) e para o ótimo do

sistema (onde o tempo médio de viagem é mínimo) (WARDROP, 1952).

C.2 Desafios

O principal objetivo desta tese é mostrar que, no contexto de escolha de rotas,

é possível garantir a convergência de algoritmos de MARL, sob certas condições, tanto

para o equilíbrio dos usuários quanto para o ótimo do sistema. Em particular, busca-se

investigar como os agentes (motoristas) podem aprender por conta própria, eliminando

certas suposições tipicamente feitas na literatura. Neste sentido, é possível identificar três

desafios, no contexto de escolha de rotas, conforme abordado a seguir.

• Sob quais circunstâncias é possível garantir que agentes convergirão para o equi-

líbrio dos usuários utilizando aprendizagem por reforço? Conforme discutido

anteriormente, quando diversos agentes precisam aprender uma política ótima si-

multaneamente em um ambiente compartilhado, temos que seu objetivo se torna

um alvo em movimento. Este é justamente o caso do problema de escolha de ro-

tas. Uma alternativa para lidar com este tipo de problema é através de algoritmos

de minimização de arrependimento, que têm obtido resultados promissores em

cenários multiagente (CESA-BIANCHI; LUGOSI, 2006). O arrependimento de

um agente mede seu desempenho médio em comparação com o da melhor ação

(rota) fixa. Um motorista que minimiza seu arrependimento acaba escolhendo a

rota que minimiza seu custo de viagem. Trabalhos anteriores têm obtido bons

resultados no contexto de aprendizagem por reforço (BOWLING, 2005; ZINKE-

VICH et al., 2008; WAUGH et al., 2015), congestion games (BLUM; EVEN-

DAR; LIGETT, 2010), e multi-armed bandits (AUER et al., 2002; AWERBUCH;

KLEINBERG, 2004). No entanto, tais trabalhos geralmente assumem que os

agentes possuem conhecimento completo sobre as funções de custo. O desafio

aqui, portanto, consiste em fornecer meios para que os agentes possam estimar

seu arrependimento baseando-se exclusivamente em informações locais (ou seja,

seu próprio conhecimento) e encontrar meios de garantir a convergência de tal

abordagem para o equilíbrio dos usuários.
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• Sob quais circunstâncias é possível melhorar o desempenho dos agentes através

do fornecimento de informações não-locais? Uma extensão natural para o desafio

anterior consiste em entender o efeito de informações não-locais no processo de

aprendizagem do agente. De fato, tais informações podem ser facilmente obtidas

atualmente (através de dispositivos de navegação, por exemplo) e poderiam ser

utilizadas para estimar o arrependimento com mais precisão. Existem diversas

pesquisas nesta linha. No entanto, geralmente assume-se que os agentes possuem

conhecimento completo sobre as funções de custo (BEN-ELIA; ISHAQ; SHIF-

TAN, 2013) ou ainda que uma entidade central pode observar antecipadamente

as decisões dos agentes (KLÜGL; BAZZAN, 2004; VASSERMAN; FELDMAN;

HASSIDIM, 2015). Desta forma, o maior desafio neste sentido consiste em definir

adequadamente a natureza das informações não-locais, bem como como combinar

efetivamente informações locais e não-locais.

• Sob quais circunstâncias é possível garantir que agentes convergirão para o ótimo

do sistema utilizando aprendizagem por reforço? Quando os agentes buscam mi-

nimizar seus custos de viagem, o sistema tende a convergir para um equilíbrio dos

usuários. Porém, tal equilíbrio é ineficiente do ponto de vista global. Um compor-

tamento altruísta por parte dos agentes poderia resolver este problema, porém não

é possível forçar os agentes a se comportar desta forma (FEHR; FISCHBACHER,

2003). O uso de pedágios, por outro lado, pode ser utilizado justamente para esta

finalidade (BECKMANN; MCGUIRE; WINSTEN, 1956). Um dos mecanismos

mais conhecidos para tal é o pedágio de custo marginal, onde um agente é cobrado

proporcionalmente ao custo que ele impõe nos demais (PIGOU, 1920). De fato,

este mecanismo tem sido amplamente utilizado na literatura. Todavia, costuma-se

assumir que os pedágios são computados por uma entidade central com conhe-

cimento completo sobre o estado atual da rede viária (COLE; DODIS; ROUGH-

GARDEN, 2003; CHEN; KEMPE, 2008; SHARON et al., 2017). Portanto, o

desafio aqui corresponde a definir tais mecanismos de uma forma decentralizada,

eliminando as suposições de conhecimento completo.

C.3 Principais contribuições

Nesta tese, o problema de aprendizagem por reforço multiagente é analisado sob

uma perspectiva teórica, no contexto de escolha de rotas. De modo a superar os desa-
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fios elencados na seção anterior, são formuladas as seguintes hipóteses: (i) utilizar o

arrependimento como sinal de reforço leva os agentes a convergir para o equilíbrio dos

usuários, (ii) fornecer informações não-locais para os agentes melhora seu aprendizado,

e (iii) cobrar pedágios de custo marginal leva os agentes a convergir para o ótimo do sis-

tema. Com base nestas hipóteses, as contribuições desta tese são definidas em três frentes,

descritas nas subseções a seguir.

C.3.1 Aprendizagem com base no arrependimento

Esta frente introduz uma variação do algoritmo Q-learning capaz de minimizar

o arrependimento dos agentes. Em linhas gerais, o algoritmo estima o arrependimento

associado com cada ação do agente e utiliza tal informação como sinal de reforço para

atualizar os valores Q correspondentes. Diferentemente de outras abordagens disponíveis

na literatura, nosso método depende apenas das recompensas observadas pelo agente.

Com base neste algoritmo, foi realizada uma análise teórica do desempenho dos agentes,

sendo possível estabelecer um limite superior no arrependimento e, consequentemente,

garantir a convergência para um equilíbrio dos usuários aproximado, conforme detalhado

nos teoremas a seguir.

Teorema 1 (adaptado do Theorem 3.6). O arrependimento do algoritmo até o tempo T é

limitado superiormente por O
((

K−1
TK

)(
µT+1−µ
µ−1

))
, onde K corresponde ao número de

ações possíveis e µ denota o decaimento da taxa de exploração.

Teorema 2 (adaptado do Theorem 3.7). O algoritmo converge para um equilíbrio dos

usuários aproximado em φ, onde φ é o limite superior do arrependimento do algoritmo.

De modo a validar os resultados teóricos, foram realizados ainda diversos de ex-

perimentos. Em particular, o algoritmo foi testado em diferentes instâncias do problema

de escolha de rotas disponíveis na literatura e comparado com o algoritmo Q-learning

padrão (que utiliza recompensas, ao invés do arrependimento, como sinal de reforço).

Em suma, observou-se que nosso método foi capaz de reduzir o arrependimento em 21,5%

(em média) quando comparado ao Q-learning padrão. Além do mais, constatou-se que o

arrependimento obtido foi compatível com a análise teórica. Em relação à proximidade

do equilíbrio, nosso método alcançou 99,38% do mesmo, enquanto o Q-learning padrão

obteve 98,8%, ou seja, nosso método reduziu pela metade a distância para o equilíbrio.
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C.3.2 Uso de informações não-locais

Dando continuidade à frente anterior, o algoritmo foi estendido para lidar com

informações não-locais, ou seja, informações de viagem que podem ser fornecidas por

dispositivos de navegação. Desta forma, foi definida uma entidade capaz de fornecer tais

informações, chamada simplesmente de app. A noção de arrependimento foi então ajus-

tada para considerar não apenas a informação local do agente, mas também a informação

fornecida pelo app. Novamente, foram realizados diversos experimentos, mas desta vez

para avaliar o desempenho dos agentes na presença do app. A partir destes experimen-

tos, observou-se uma redução de 13,7% no arrependimento médio, significando que, ao

usar as informações fornecidas pelo app, os agentes são capazes de estimar com maior

precisão o arrependimento de suas ações, o que melhora seu desempenho. Em termos de

proximidade do equilíbrio, o uso do app não trouxe melhoras significativas, dado que os

resultados sem o app já estavam consideravelmente próximos do mesmo.

C.3.3 Aprendizagem com base em pedágios de custo marginal

Nas frentes anteriores, o objetivo foi analisar a convergência para um equilíbrio

dos usuários. Porém, do ponto de vista global, tal resultado pode ser consideravelmente

pior que o ótimo do sistema. Esta deterioração do desempenho global é uma consequência

do comportamento egoísta dos agentes, sendo assim denominado preço da anarquia (PA-

PADIMITRIOU; TSITSIKLIS, 1987). De modo a reduzir o impacto do comportamento

egoísta dos agentes, a terceira frente desta tese introduz um mecanismo de pedágios de

custo marginal, onde os agentes são cobrados proporcionalmente ao custo imposto por

eles aos demais (PIGOU, 1920). O mecanismo de pedágios proposto é genérico (com-

preendendo as principais funções de custo utilizadas na literatura) e é cobrado apenas ao

término de cada viagem (podendo ser computado pelos próprios agentes e utilizado como

parte do sinal de reforço para atualizar os valores Q). Através de uma análise teórica do al-

goritmo, foi possível provar que o mesmo converge para o ótimo do sistema e que o valor

dos pedágios é mais justo que o definido por outros métodos disponíveis na literatura,

Teorema 3 (adaptado do Theorem 5.2 e do Corollary 5.2). O algoritmo converge para o

ótimo do sistema no limite, minimizando assim o preço da anarquia.

Teorema 4 (adaptado do Theorem 5.4). O mecanismo de pedágio a posteriori proposto é

mais justo que mecanismos a priori existentes na literatura.
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Bem como nas frentes anteriores, diversos experimentos foram conduzidos para

testar o método proposto. Em suma, constatou-se que o mesmo alcançou 99,95% do

ótimo do sistema, em média, corroborando com a análise teórica de convergência.

C.4 Conclusões

Esta tese investigou o problema de escolha de rotas sob a perspectiva de apren-

dizagem por reforço multiagente. Este tipo de abordagem é bastante complexa, dado que

os agentes precisam aprender uma política ótima concorrentemente em um ambiente com

recursos limitados e compartilhados. Considerando este aspecto não-estacionário, não

existem garantias de convergência para o problema geral de aprendizagem por reforço

multiagente. Desta forma, esta tese buscou estabelecer tais garantias de convergência

para o caso específico do problema de escolha de rotas.

Foram consideradas duas faces do problema: o equilíbrio dos usuários (que re-

sulta do comportamento egoísta dos motoristas) e o ótimo do sistema (que corresponde

ao melhor resultado possível do ponto de vista global). Para o primeiro caso, foi intro-

duzido um algoritmo de minimização do arrependimento que estima o arrependimento

associado com cada ação do agente e utiliza tal informação para atualizar os valores Q

correspondentes. Para o segundo caso, foi introduzido um mecanismo de pedágios por

custo marginal, que pode ser computado pelos próprios agentes e utilizado como parte

do seu sinal de reforço. Em ambos os casos, foram realizadas extensas análises teóricas,

permitindo estabelecer garantias de convergência. Além do mais, os resultados teóricos

foram validados experimentalmente em diversas instâncias do problema de escolha de

rotas disponíveis na literatura.

Como trabalhos futuros, diversas possibilidades se mostram promissoras. Primeira-

mente, formulações de arrependimento mais sofisticadas podem ser definidas para uti-

lizar mais eficientemente o conhecimento dos agentes, acelerando assim o processo de

aprendizagem. Em termos de análises, o próximo passo consiste em analisar a taxa de

convergência dos algoritmos, permitindo entender melhor o processo de aprendizagem

em diferentes instâncias do problema. No que se refere ao mecanismo de pedágios, se-

ria interessante projetar mecanismos que permitam aos agentes antecipar o pedágio de-

vido antes de suas viagens. Finalmente, almeja-se ainda estender as análises atuais para

problemas mais genéricos considerando, por exemplo, situações em que os agentes não

conhecem suas rotas antecipadamente.
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