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The paper investigates the nonlinear coupling of envelope modes of oscillation for intense bunched

beams. Initially, the analysis concentrates on the case of spherically symmetric beams for which

longitudinal and transverse focusing forces are assumed to be the same. It is investigated how

externally induced spherically symmetric breathing oscillations may nonlinearly drive the growth

of ellipsoidal modes which can break the spherical beam symmetry. Next, a more general case in

which the focusing forces are not symmetric such that the matched beam already presents an

ellipsoidal shape is studied. It is found that depending on the parameters of the system, even a very

small mismatch amplitude can drive an instability, which leads to an effective coupling of

longitudinal and transversal envelope oscillations by means of the space-charge forces. Use is

made of Poincar�e plots and the stability index of periodic orbits to perform a detailed analysis of

the location of the instability in the parameter space and how it affects the beam transport. Self-

consistent numerical simulations are performed in order to verify the onset of the nonlinear insta-

bility and its effect on the evolution of the RMS size and emittance of the beam. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4967708]

I. INTRODUCTION

Nonlinear dynamics effects play a major role in the

transport of intense charged particle beams. This is so

because for such systems the space charge forces are strong

enough to couple the dynamics of different beam particles,

leading to a possible onset of a very complex behavior. An

example is the occurrence of nonlinear resonances and chaos

driven by periodic focusing fields acting on the envelope

oscillations of nearly matched beams.1–8

In many practical situations, however, the beam is not

even close to the equilibrium (matched) condition. The mis-

match is caused by the experimental difficulties in the beam

launching process, by the intrinsic current oscillations in the

system,9 or by design to minimize the extent of the beam

halo.10 In such cases, the beam tends to relax to a stationary

state along its trajectory.11 The length scale for the full relax-

ation to occur in the beam transport depends heavily on the

specific situation but may take from a few to more than 103

betatron oscillations.12,13 Again, the nonlinear effects play a

major role, being the main mechanism leading to the relaxa-

tion. For instance, for initially RMS mismatched beams, the

relaxation occurs as some of the particles are nonlinearly

driven by the envelope oscillations to form a halo in a pro-

cess similar to the evaporative cooling.12,14–25 Another

example is when the initial particle distribution does not cor-

respond to a stationary state and density waves appear in the

system. The relaxation is then achieved through a nonlinear

growth of the density wave amplitude which eventually leads

to wave breaking.13,26–32

In both cases discussed above, the relaxation is accom-

panied by the emittance growth. However, depending on the

time scales of the different phenomena, other nonlinear

effects may become important much before there is any siz-

able emittance growth, and while the system is still far from

the final stationary state. A particular example is the nonlin-

ear coupling between breathing and quadrupole envelope

modes for continuous beams. It has been shown that if the

breathing oscillation amplitude exceeds a certain threshold,

it drives the quadrupole mode unstable, breaking the initial

axial symmetry of the particle distribution.33 The beam

develops an elliptical shape with increase in its size along

one direction, which may induce beam losses. Curiously, a

similar behavior is found for self gravitating systems.34

In this paper, we extend the analysis of the nonlinear

coupling of envelope modes to the case of bunched beams.

Initially, we consider the case of spherically symmetric

beams where longitudinal and transversal (with respect to

the direction of propagation) focusing forces are assumed to

be the same25 and investigate how spherically symmetric

breathing oscillations may nonlinearly induce the growth of

ellipsoidal modes which can break the beam symmetry. It is

found that above a certain mismatch amplitude threshold,

there is, indeed, such coupling with an effective exchange of

energy between the modes. However, in comparison to the

continuous beam case, it is found that for bunched beams

this nonlinear instability only takes place for much larger ini-

tial mismatch. This happens because for spherical beams, the

linear eigenfrequencies of symmetric and antisymmetric

oscillations around the matched solution are far from being

commensurate. Therefore, a large oscillating amplitude is

necessary in order to lock the frequencies and generate a res-

onance that causes the instability. We next consider a more

general case in which the focusing forces along the longitu-

dinal and transverse directions are not the same so that the

matched beam already presents an ellipsoidal shape. In this

case, and depending on the parameters of the system, one

may find a commensurate relation between the linear eigen-

frequencies of oscillation which may facilitate the onset of
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instabilities.35 In fact, we find that for such parameters very

small mismatch amplitudes are necessary to drive the fre-

quency lock and the instability which causes an effective

coupling between longitudinal and transversal envelope

oscillations. Using Poincar�e plots,36 we are able to identify

the instability as connected to a period doubling bifurcation

of a given orbit. From the Poincar�e plots, we can also deter-

mine which trajectories are most affected by the instability.

By calculating the stability index using a Newton-Raphson

method,37 we construct parameter space plots showing in

detail where the instability occurs. Finally, we use self-

consistent N-body simulations in order to verify the onset of

the nonlinear instability and its effect on the evolution of the

RMS size and emittance of the beam.

II. MODEL

Let us consider a beam of nonrelativistic particles uni-

formly distributed in an ellipsoid of semi-axis qm and zm. The

center of the beam is propagating with a constant axial veloc-

ity Vb along the z-axis of a laboratory frame. The beam par-

ticles are subject to an external linear focusing force which

tends to balance the Coulomb self-repulsion. Although in real

devices the focusing force generally varies along the transport

channel, the nonlinear effects investigated here are expected

to occur at a length scale that is long compared to the focusing

force variation. Hence, we assume an average uniform focus-

ing field—the so-called smooth beam approximation. The

dynamics of each particle is governed by

d2q

ds2
¼ �k2

qq�r?w; (1a)

d2~z

ds2
¼ �k2

z ~z � @w
@~z
; (1b)

where s ¼ Vbt is the beam central axis position that plays the

role of a scaled time variable, q ¼ ðx; yÞ is the transverse dis-

placement from the beam center, ~z ¼ z� s is the axial dis-

placement, and kq and kz are the vacuum phase advances that

measure the strength of the transverse and axial focusing

force, respectively. In Eq. (1), w is the self-field potential

that satisfies the Poisson equation

r2w ¼ � 4pK

N
n r; sð Þ; (2)

where r ¼ ðx; y; ~zÞ is the displacement vector from the beam

center, nðr; sÞ is the beam density, K ¼ q2N=mV2
b is a param-

eter that measures the beam intensity, and N ¼
Ð

ndr is the

constant number of particles in the bunch.

The bulk oscillations of the beam can be studied using

envelope equations. The beam envelope is a measure of the

beam size along a given direction. It is conveniently defined

as qb ¼ ½5hq2i=2�1=2
, for the transverse envelope, and zb

¼ ½5h~z2i�1=2
, for the longitudinal envelope, where h:::i

¼ ð1=NÞ
Ð
:::ndr. The “5/2” and “5” factors are introduced

so that qb ¼ qm and zb¼ zm at s¼ 0 for a beam with a uni-

form density. Taking two derivatives of qb and zb with

respect to s, using Eq. (1) and conveniently rearranging the

terms, we can write

d2qb

ds2
¼ �k2

qqb �
5

2qb

hq � r?wi þ
�2
q

q3
b

; (3a)

d2zb

ds2
¼ �k2

z zb �
5

zb
~z
@w
@~z

� �
þ �

2
z

z3
b

; (3b)

where

�q ¼
5

2
hq2ih _q2i � hq � _qi2
� �1=2

; (4a)

�z ¼ 5 h~z2ih_~z2i � h~z _~zi2
h i1=2

; (4b)

are transverse and axial (longitudinal) beam emittances,

respectively. Generally, the emittance varies as the beam

propagates. However, as mentioned in the Introduction, we

will assume that the nonlinear coupling occurs on a time

scale that is shorter than that of the variation of emittance.

Hence, we will consider �q and �z to be constants. In order to

calculate the self-field contribution to the envelope equations

[second term of the right side of both Eqs. (3a) and (3b)], we

need to specify the beam density. For the sake of simplicity,

we assume that the distribution remains uniform inside the

ellipsoid as the beam propagates. Namely,

n r; sð Þ ¼
3N

4pq2
bzb

; if
q2

q2
b

þ z2

z2
b

� 1; (5)

and n¼ 0 outside the ellipsoid. If we use this density in Eq.

(2), the self-field potential inside the ellipsoid becomes38

w ¼ 3K

4

ð1
0

du

q2
b þ u

� �
z2

b þ u
� �1=2

� 1� q2

q2
b þ u

� z2

z2
b þ u

 !
: (6)

Substituting Eqs. (5) and (6) in Eq. (3), one obtains a set of

coupled equations for the envelope dynamics given by

d2qb

ds2
¼ �k2

qqb þ
3K

2
hq qb; zbð Þ þ

�2
q

q3
b

; (7a)

d2zb

ds2
¼ �k2

z zb þ 3Khz qb; zbð Þ þ
�2

z

z3
b

; (7b)

where

hq q; zð Þ ¼
q arccos

z

q

� 	
q2 � z2ð Þ3=2

� z

q q2 � z2ð Þ

2
64

3
75
; (8a)

hz q; zð Þ ¼
1

q2 � z2ð Þ �
z arccos

z

q

� 	
q2 � z2ð Þ3=2

2
64

3
75
: (8b)
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We can reduce the number of parameters on which the

model depends by conveniently scaling qb, zb, and s to

ð�q=kqÞ1=2; ð�q=kqÞ1=2
, and k�1

q , respectively. The envelope

equations (7) then become

d2qb

ds2
¼ �qb þ

3f
2

hq qb; zbð Þ þ
1

q3
b

; (9a)

d2zb

ds2
¼ �azb þ 3fhz qb; zbð Þ þ

b2

z3
b

; (9b)

where a ¼ k2
z =k2

q and b ¼ �z=�q are the ratios between the

axial and transverse vacuum phase advances and of emittan-

ces, respectively, and f ¼ K=ðkq�
3
qÞ

1=2
is a dimensionless

parameter that measures the beam intensity. It is interesting

to note that the envelope equations (9) can be derived from a

Hamiltonian

H pqb
; pzb

; qb; zbð Þ ¼
p2

qb

4
þ

p2
zb

2
þ q2

b þ a
z2

b

2

þ 1

q2
b

þ b2

2z2
b

þ 3f

arccos
zb

qb

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

b � z2
b

q ; (10)

where pqb
and pzb

play the role of the conjugate momenta

such that to dqb=ds¼@H=@pqb
;dpqb

=ds¼�@H=@qb; dzb=ds
¼@H=@pzb

;dpzb
=ds¼�@H=@zb. Since the Hamiltonian does

not explicitly depend on time, s, it is a constant of motion

along the envelope evolution. The identification of the con-

served quantity Hðpqb
;pzb

;qb;zbÞ is important since it allows

us to construct Poincar�e plots which are a very useful tool for

studying the nonlinear dynamics.36

III. SPHERICAL BEAM

Let us first consider the particular case where the exter-

nal focusing is isotropic along the transverse and longitudi-

nal directions, and the beam has spherical symmetry. This is

a simplifying assumption but may well describe some sys-

tems of practical relevance.39 It corresponds to taking a¼ 1,

b¼ 1, and qb ¼ zb ¼ rb, where rb is the envelope radius of a

spherical beam. Taking the proper limit of Eq. (9), we find

that the evolution of the beam envelope is given by

d2rb

ds2
¼ �rb þ

f
r2

b

þ 1

r3
b

: (11)

A matched solution corresponds to a perfect balance

between the focusing and defocusing forces which act on the

beam as it propagates so that rbðsÞ ¼ rbm ¼ const. Equating

d2rb=ds2 ¼ 0 in Eq. (11), we find that the matched radius

satisfies

rbm �
f

r2
bm

� 1

r3
bm

¼ 0: (12)

For any given value of the parameter f, the above equation

presents only one physical solution for rbm. If we consider a

matched beam with a uniform distribution and substitute the

corresponding self-field potential (2) in Eq. (1), we observe

that a given particle that stays inside the beam will have

motion equation given by dr=ds2 ¼ ��2r, in the normalized

variables, where � ¼ r�2
bm is the tune depression. We see that

the tune depression and the dimensionless parameter f have

a one to one relation and are both quantities that are used as

a measure of the space charge intensity in beams. We choose

to base our discussions on the parameter f. Despite the exis-

tence of a matched solution, in practice, the initial beam size

may largely vary from the matched so that rbð0Þ ¼ lrbm,

where l is a dimensionless parameter that measures the mis-

match amplitude. The beam will then present a breathing

mode with its envelope oscillating according to Eq. (11).

Furthermore, one can also expect the launched beam to pre-

sent small asymmetries in its shape, such that qb and zb are

not exactly the same. Given that these quantities are nonli-

nearly coupled by the space charge forces, the asymmetry

may grow at the expense of the breathing oscillations. In

fact, this is the case for unbunched beams, for which it was

found that the asymmetric mode can become unstable for

mismatches of the order of 100% (Ref. 33) (l � 2), which is

a realistic value in some applications.40 Our first aim here is

to determine if and when an analogous symmetry breaking

instability occurs for bunched beams.

We begin our investigation by analyzing the envelope

phase space described by the Hamiltonian Hðpqb
; pzb

; qb; zbÞ
of Eq. (10). Because this is a two-degrees-of-freedom sys-

tem, Poincar�e plots are a useful tool.36,41 Here, we choose to

plot qb vs. pqb
each time zb hits a local maximum. In the

Poincar�e plot, all the trajectories must have the same value

of the Hamiltonian. Therefore, for a given set of parameters

f and l, we evaluate the corresponding value for the spheri-

cal mismatched beam as given by Hð0; 0; lrbm; lrbmÞ and

determine a group of initial conditions that lead to the same

Hðpqb
; pzb

; qb; zbÞ. In Fig. 1(a), we show the Poincar�e plot

obtained for f¼ 1 and l¼ 2. We should emphasize that each

trajectory in the Poincar�e plot corresponds to a different mis-

match along the longitudinal and transverse directions, but

such that all belong to the same set with Hðpqb
; pzb

; qb; zbÞ ¼
Hð0; 0; lrbm; lrbmÞ for a single value of parameter l. We

notice the presence of a single stable (elliptic) fixed point at

qb � 2:44 and pqb
¼ 0. This point corresponds to a spherical

beam breathing mode for which zbðsÞ and qbðsÞ oscillate at

the same frequency. This should not be confused with the

matched solution zb ¼ qb ¼ rbm, for which the envelope

does not evolve in time. For all the other trajectories shown

in the plot, there is an incommensurate relation between the

longitudinal and the transverse frequencies leading to KAM

curves that circulate around the fixed point. The fact that the

fixed point is stable means that any small asymmetry will not

grow along the propagation, and the beam will maintain its

nearly spherical shape.

As the parameters are varied, however, the fixed point

may loose its stability and become hyperbolic. In this case,

the energy of the breathing mode oscillation will be

exchanged with the asymmetric mode, with the beam devel-

oping an ellipsoidal shape. In order to explore this possibil-

ity, we take advantage of the nonlinear dynamical techniques

and evaluate the stability index K of a spherically symmetric

breathing oscillation, i.e., of the fixed point of the

113102-3 Corrêa da Silva et al. Phys. Plasmas 23, 113102 (2016)



corresponding Poincar�e plot. We define K ¼ cosð/fixÞ,
where /fix is the phase that a trajectory corresponding to a

small perturbation around the fixed point advances between

two consecutive plots obtained by integrating Eq. (9). Both

the location of the fixed point and its stability index are

numerically calculated using a Newton-Raphson method.3,37

If the fixed point is elliptic, then /fix is real and jKj < 1. On

the other hand, if the point is hyperbolic, /fix becomes imag-

inary—trajectories move away exponentially from the

point—and jKj > 1. Note that the bifurcation (transition

between stability and instability) occurs when /fix is a multi-

ple of p, which means that there is a resonance between the

plotting frequency and the fixed point rotating frequency. In

Fig. 2, we show the results obtained for K as the mismatch

amplitude is varied for f¼ 1. We see that K increases mono-

tonically with l. For small mismatches, the fixed point is sta-

ble with jKj < 1. Approximately at l¼ 5, the stability index

crosses the K¼ 1 line and the fixed point becomes unstable.

This can be verified in the Poincar�e Plot of Fig. 1(b) which

shows the vicinity of the now unstable fixed point located at

qb � 7:35 and pqb
¼ 0 that corresponds to the spherically

symmetric breathing mode. It is neighbored by two resonant

islands, a smaller one to the right and a larger one to the left

(just partially shown due to its size). We have performed the

stability analysis for other values of the intensity parameter f
and found that the symmetry breaking always occurs for

l � 5. Therefore, this effect is much less pronounced for 3D

spherical beams than for 2D continuous beams, for which

the mismatch amplitudes of l � 2 were sufficient to induce

symmetry breaking.33 A closer inspection of Fig. 2 may give

us a hint of why such large mismatch amplitudes are neces-

sary in the case of bunched beams. In particular, we note that

when l! 1 the stability index is rather far from the bifurca-

tion values K ¼ 61, meaning that the linear oscillating fre-

quencies for the matched solution are also far from being

commensurate. Hence, a large oscillating amplitude is neces-

sary in order to lock the frequencies and to generate an

instability.

IV. ELLIPSOIDAL BEAM

In Section III, we investigated a particular case where

both focusing forces and emittances are the same along the

transverse and longitudinal directions, such that the equilib-

rium corresponds to a spherical beam of radius rbm. However,

in many applications, these quantities are different and the

equilibrium beam will have an ellipsoidal shape with varying

ratios between transverse and longitudinal dimensions. The

matched envelopes qbm and zbm are determined from the sta-

tionary solutions of Eq. (9), leading to

2q4
bm � 3fq3

bmhqðqbm; zbmÞ � 2 ¼ 0; (13a)

az4
bm � 3fz3

bmhzðqbm; zbmÞ � b2 ¼ 0; (13b)

which must be solved numerically as a function of the

dimensionless parameter a, b, and f. Analogous to the spher-

ical case, by looking at the force of a given particle that stays

inside a matched ellipsoidal beam with uniform density, we

can define tune depression parameters, which read �q ¼ q�2
bm

and �z ¼ bz�2
bma�1=2 for the transverse and longitudinal direc-

tions, respectively. We note that the tune depressions are

completely determined once the parameters a, b, and f are

given. We choose to base our discussions on the latter set of

parameters. Clearly, in such cases, there is no point of dis-

cussing symmetry breaking, since the matched beam is

already asymmetric. Nevertheless, nonlinear effects can still

be relevant as they can cause a strong coupling and energy

exchange between oscillations in the different directions.35

In fact, differently from the spherical case of Sec. III

where large oscillating amplitudes were found to be neces-

sary to induce frequency lock and instability, by varying the

FIG. 2. Stability index K as a function of the mismatch amplitude l for the

spherically symmetric breathing mode of oscillation. Only for a mismatch of

the order l � 5, this mode becomes unstable. The space-charge parameter

used is f¼ 1.

FIG. 1. Poincar�e plot of the envelope dynamics in Eq. (9) for 2 different val-

ues of the mismatch parameter: (a) l¼ 2 and (b) l¼ 6. The remaining

parameters are a¼ 1, b¼ 1, and f¼ 1.
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parameters a and b, one may find certain conditions for

which even small amplitude mismatch can lead to an

instability.

To verify this, we look at the linear stability of Eq. (9)

around the matched solution of Eq. (13). Substituting qb ¼
qbm þ dqbeixt and zb ¼ zbm þ dzbeixt in Eq. (9) and retaining

only the linear terms in dqb and dzb, we obtain equations for

the eigenfrequencies x.

We find two pairs of solutions: 6xS associated with a

symmetric mode where dqb and dzb oscillate in phase and

6xA associated with an antisymmetric mode where dqb and

dzb oscillate in opposite phases. In Fig. 3(a), we show the

solutions of the dispersion relation for b¼ 1, f¼ 5, and vary-

ing a � k2
z =k2

q. We notice that the branches of the symmetric

and antisymmetric modes never touch each other; therefore,

there is no value of a for which there is a direct 1:1 reso-

nance between these modes. While this was shown for just

one set of parameters, we find that the same is true for any

value of a, b, and f. Hence the system is always linearly sta-

ble, as was also predicted in Ref. 42. However, as shown in

Fig. 3(b), there is a 1:2 resonance between the symmetric

and antisymmetric modes for two values of a—one for a < 1

and the other for a > 1. Near where this condition is met,

one may expect a strong nonlinear coupling between the dif-

ferent dynamical degrees of freedom.

To investigate this issue and to see how finite amplitude

mismatches affect the nonlinear envelope dynamics, we

once again take advantage of the Poincar�e plots and stability

index. We focus on the situations for which a < 1, but the

analogous results are found for a > 1. We start by using the

Newton-Raphson method to locate and determine the stabil-

ity index K of the trajectory for which qbðsÞ and zbðsÞ oscil-

late with the same frequency. In Fig. 4, we show stability

diagrams for the parameter space a vs. l. In analogy to the

case of spherical beams, for a given mismatch parameter, we

consider the trajectories that belong to the set that satisfies

Hðpqb
; pzb

; qb; zbÞ ¼ Hð0; 0; lqbm; lzbmÞ for a single value of

l. The remaining parameters are b¼ 1 and f¼ 5. In the dia-

grams, the light (dark) gray region corresponds to a stable

(unstable) solution with jKj < 1 (jKj > 1). In panel (a), we

show in detail a low mismatch parameter region for b¼ 1

and f¼ 5. We notice that the unstable region does not touch

the l¼ 1 axis—as expected from the linear stability analysis.

But, it gets very close to it near a ¼ 0:361 where the 2:1 res-

onance condition is satisfied and mismatch amplitudes as

small as 0.1% are sufficient to drive the mode unstable. In

fact, it is worth noting that differently from the spherical

case of Sec. III, in the ellipsoidal case, the bifurcation occurs

for K ¼ �1, characterizing a period-doubling bifurcation

typical of 2:1 resonances.37 As the mismatch amplitude is

increased, the region of instability gets wider and more val-

ues of a are affected, as can be seen in Fig. 4(b).

To further analyze the nonlinear stability and its effect

on the envelope dynamics, we now investigate the phase

space using Poincar�e plots. We construct these in the same

way as was explained in Sec. III, with the exception that we

choose to plot zb vs. pzb
every time that qb hits a maximum.

FIG. 3. Dispersion relation for the linearized envelope equations as a func-

tion of a � k2
z =k2

q. In (a), the solid curves for xS and xA represent the sym-

metric and antisymmetric eigenfrequencies, respectively, for b¼ 1 and

f¼ 5. In (b), we plot 2xA to show the 1:2 resonance conditions which are

a � 0:361 and a � 3:983 for the same parameters.

FIG. 4. Stability diagram of the mismatch l vs. a. The symmetric mode of

oscillation is stable in the light gray areas and unstable in the dark gray. This

instability is a period-doubling bifurcation of the mode. (a) is a zoom of (b)

near l � 1. The remaining parameters are b¼ 1 and f¼ 5.
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This is done for convenience to make the plot features more

apparent. Figure 5 shows the plots obtained for b¼ 1, f¼ 5,

and l ¼ 1:2 for three different values of a. For the sake of

illustration, we highlight two distinct initial conditions in the

Poincar�e plot. The red one represents the case where zbð0Þ ¼
zbm and all the initial mismatch is placed in qb, whereas the

blue is the opposite in the sense that qbð0Þ ¼ qbm and all the

initial mismatch is in zb. In panel (a) for a ¼ 0:41, we notice

a stable fixed point at zb � 3:05 and pzb
¼ 0. This point cor-

responds to the trajectory for which qðsÞ and z(s) oscillate

with the same frequency and whose stability is given in Fig.

4(b). The red trajectory is close to the fixed point and

presents a small amplitude oscillation because most of the

oscillation energy is in qb. On the other hand, the blue one is

far from the fixed point and already presents a large ampli-

tude oscillation with a large variation between zbmin � 2:0
and zbmax � 4:0. In panel (b), for a ¼ 0:364, inside the unsta-

ble region of Fig. 4(b), the fixed point at zb � 3:22 and pzb
¼

0 suffers a period-doubling bifurcation and becomes hyper-

bolic with the appearance of two neighboring resonant

islands. Initial conditions near the fixed point are heavily

affected by the bifurcation and largely increase their oscilla-

tion amplitudes. In particular, note that for the red trajectory,

the difference between zbmax and zbmin increases significantly

compared to the stable case of panel (a).

This means that there is a gain of energy for the longitu-

dinal envelope zb, which must come at the expense of a

decrease of energy of the transverse envelope qb. This shows

a strong coupling between the modes governed by the unsta-

ble fixed point. Note, however, that the same is not true for

the blue trajectory whose amplitude of variation, zbmax �zbmin,

has not changed much, as compared to panel (a). For com-

pleteness, we show in panel (c), for a ¼ 0:3, what happens if

we further decrease the value of a until it reaches the lower

stable region of Fig. 4(b). We note that the two islands that

arise from the period-doubling bifurcation are still present,

but between them the fixed point, located at zb � 3:52 and

pzb
¼ 0, becomes stable once again. The variation zbmax �

zbmin for the red curve near the fixed point decreases to values

similar to those found in panel (a), whereas for the blue curve

it remains nearly the same large value as those found in pan-

els (a) and (b). Hence, overall we notice that the bifurcations

of the fixed point can lead to big changes in the envelope

dynamics. These changes tend to affect much more certain

mismatched solutions than others. Poincar�e plots are found to

be a useful tool to discriminate those trajectories that are more

or less affected. We have also investigated the Poincar�e plots

for the qb vs. pqb
phase-space and have found that the results

agree with the ones discussed above.

V. SELF-CONSISTENT NUMERICAL SIMULATIONS

In the derivation of the envelope equations, two major

assumptions were used, namely, that the emittance is pre-

served and that the particle density remains uniform and

ellipsoidal throughout the transport. In order to test the valid-

ity of these assumptions and to verify the results obtained in

Section IV regarding the role of nonlinear stability in the

beam transport, we have also performed molecular dynamics

simulations.

Taking advantage of the azimuthal symmetry of the par-

ticle distribution, in the simulation, we describe the beam as

formed by a series of concentric charged rings of different

radii. This dramatically decreases the computation time com-

pared to explicit point particle simulations. The potential at a

position (x, y, z) generated by a charged ring of radius qi,

charge K=NR, located at zi and centered on the z-axis is given

by43

FIG. 5. Poincar�e plot of the envelope dynamics in Eq. (9). We plot zb vs. pzb

at each maximum of qb. In (a), for a ¼ 0:41, the breathing mode is stable. In

(b), for a ¼ 0:364, the fixed point that represents this mode becomes unsta-

ble via period doubling bifurcation. In (c), for a ¼ 0:3, the breathing mode

becomes stable once again. The remaining parameters are b¼ 1, f¼ 5, and

l ¼ 1:2.
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wi q; zð Þ ¼
2

p
K=NRð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qþ qið Þ2 þ z� zið Þ2
q

� �K
4qqi

qþ qið Þ2 þ z� zið Þ2

 !
; (14)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, NR is the number of rings in the simu-

lation, and �KðmÞ is the complete elliptic integral of the first

kind. Hence, the radial and axial evolution of each ring are

given by

d2qi

ds2
¼ �k2

qqi þ
p2

u

q3
i

�
XNR

j¼1;j 6¼i

@wj qi; zið Þ
@qi

; (15a)

d2zi

ds2
¼ �k2

z zi �
XNR

j¼1;j 6¼i

@wj qi; zið Þ
@zi

; (15b)

where pu is the angular momentum associated with the azi-

muthal coordinate, which is a conserved quantity.

In the simulations, we used NR¼ 4225 rings, which was

found to be sufficient to guarantee the convergence of

results. The rings were uniformly distributed inside an ellip-

soid of semi-axis radius qb and zb. In analogy with a KV dis-

tribution for continuous beams,44 the velocity distribution

was chosen to have a parabolic dependence on the tempera-

ture with the distance from the beam center, with a vanishing

velocity dispersion at the beam boundary.

In Fig. 6, we compare the envelope evolution predicted

by Eq. (9) (solid curves) against the RMS sizes obtained

from the simulations (symbols). We choose the same param-

eters as in Fig. 5, namely, b¼ 1, f¼ 5, and l ¼ 1:2. In Fig.

6(a), we show the results for a ¼ 0:41 and an initial condi-

tion with zbð0Þ ¼ zbm, such that all the mismatch is in the

transverse direction—this corresponds to the red trajectory

of Fig. 5(a). It is clear from Fig. 6(a) that the coupling

between qb and zb is weak, since there is little or no

exchange of energy between their oscillations. We see that

the results from the simulation for the transverse size qb are

very accurately described by the envelope model. For the

longitudinal direction zb, we also find a good agreement, par-

ticularly regarding the amplitude of oscillation.

In Fig. 6(b), we show the results for an unstable case with

a ¼ 0:364, with the same parameters as in Fig. 5(b). Again,

we consider the solution for which zbð0Þ ¼ zbm and all the

mismatch is in the transverse direction—analogous to the red

curve in Fig. 5(b). We clearly see the exchange of energy

between the degrees-of-freedom, as the amplitude of zb

increases significantly, reaching its pick at s � 80, at expense

of a decrease of the oscillation amplitude of qb. The compari-

son with simulation shows again an excellent agreement for

FIG. 6. Comparison between a molecular dynamics simulation and the enve-

lope model from Eq. (9). We see a general good agreement across the board.

While in (a), for a ¼ 0:41, which is a stable situation, there is almost no cou-

pling between the degrees-of-freedom; in (b), for a ¼ 0:364, the instability

generates a strong coupling and a large exchange of energy between qb and

zb. The remaining parameters are b¼ 1, f¼ 5, and l ¼ 1:2, and the initial

condition in both cases is zbð0Þ ¼ zbm.

FIG. 7. Emittance as a function of the normalized time obtained from the

simulation. The initial emittance in both longitudinal and transverse direc-

tions at s¼ 0 is normalized to one. In panel (a), we show the longitudinal

emittance, which behaves very similarly in both stable and unstable situa-

tions. However, the transverse emittance, shown in panel (b), presents a dis-

tinct behavior: for the stable case, solid red curve, the emittance oscillates

around a fixed value; for the unstable case, dashed blue curve, there is an

increase in the emittance. The parameters are the same as in Fig. 6.
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qb. For zb, we see that the behavior of the complete system is

well described by the envelope equation, even though the

increase of the amplitude caused by the instability is not as

large as predicted by the model.

Since in the molecular dynamics simulations the emit-

tance evolves self-consistently, we can use it to investigate

how the envelope instability may affect the emittance

dynamics. Particularly, we consider the stable and unstable

cases of Figs. 6(a) and 6(b), respectively. Since the beams

are mismatched, it is natural to expect that the emittance will

grow as the system evolves. In fact, we find in the simula-

tions that the longitudinal emittance presents a steady
increase which is similar in both stable and unstable cases,

being just a little slower in the latter case, as shown in Fig.

7(a). However, the transverse emittance presents a very dis-

tinct and somewhat unexpected behavior, as shown in Fig.

7(b). Although all the initial mismatch is imposed on qb, the

transverse emittance shows a rapid decrease at the start of

the evolution. This is probably caused by a quick particle

redistribution from its uniform initial condition. From there

on, the instability seems to have an important role. While for

the stable case (red solid line) there is no emittance growth

with �q just oscillating around a fixed average which is

smaller than its initial value, for the unstable case (dashed

blue line) there is a clear increase of �q. This increase is an

indication of the effective coupling between longitudinal and

transverse degrees of freedom and explains the slower

growth of �z seen for the unstable case in Fig. 7(a).

VI. CONCLUSION

In this paper, we have investigated the nonlinear cou-

pling between the envelope modes of oscillation of intense

bunched beams. In contrast to previous investigations which

consider a perturbative analysis to determine the linear sta-

bility of beams with vanishingly small mismatches,1,3,5–8,45

here, we adopted a nonperturbative analysis of the envelope

equations which takes into account finite mismatches of

arbitrary amplitude. We first considered a case of spheri-

cally symmetric beams and investigated how breathing

mode oscillations may nonlinearly induce a growth of ellip-

soidal modes. It was found that above a certain mismatch

amplitude there is an effective exchange of energy between

the modes which results in beam symmetry breaking. In

comparison with continuous beams,33 however, we find that

for bunched beams the nonlinear instability only takes place

for much larger mismatches. We then considered a more

general case in which the focusing forces along the longitu-

dinal and transverse directions are not the same, such that

the matched beam already presents an ellipsoidal shape. In

this case, we found that depending on the parameters of the

system even a very small mismatch amplitude can already

drive an instability which effectively couples longitudinal

and transversal envelope oscillations. Using Poincar�e plots,

we identified the instability as a period doubling bifurcation

and determined which orbits are most affected by the insta-

bility. Evaluating the stability index, we constructed a phase

diagram showing where the instability will occur. Molecular

dynamics simulations were performed to verify the onset of

the nonlinear instability and to demonstrate its effect on the

evolution of the RMS size and on emittance of the beam.
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