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Microbial biofilms are highly structured and dynamic communities in which phenotypic

diversification allows microorganisms to adapt to different environments under

distinct conditions. The environmentally ubiquitous pathogen Cryptococcus neoformans

colonizes many niches of the human body and implanted medical devices in the form

of biofilms, an important virulence factor. A new approach was used to characterize the

underlying geometrical distribution of C. neoformans cells during the adhesion stage

of biofilm formation. Geometrical aspects of adhered cells were calculated from the

Delaunay triangulation and Voronoi diagram obtained from scanning electron microscopy

images (SEM). A correlation between increased biofilm formation and higher ordering of

the underlying cell distribution was found. Mature biofilm aggregates were analyzed by

applying an adapted protocol developed for ultrastructure visualization of cryptococcal

cells by SEM. Flower-like clusters consisting of cells embedded in a dense layer of

extracellular matrix were observed as well as distinct levels of spatial organization:

adhered cells, clusters of cells and community of clusters. The results add insights into

yeast motility during the dispersion stage of biofilm formation. This study highlights the

importance of cellular organization for biofilm growth and presents a novel application of

the geometrical method of analysis.
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INTRODUCTION

Microorganisms have been traditionally analyzed using planktonic microbial cells; however, this
lifestyle is not necessarily related with the growth of microbes in their most prevalent habitat.
Recent approaches in confocal microscopy and molecular biology have provided evidence that
biofilm formation represents the most common mode of microbial growth in nature (Costerton
et al., 1995; Jabra-Rizk et al., 2004; Ramage et al., 2009; Martinez and Casadevall, 2015) and is
a response to ecological competition in the environment (Oliveira et al., 2015). A wide range of
microorganisms are able to switch from a planktonic to a colonial lifestyle in the form of a biofilm,
creating aggregated communities that are enclosed by an extracellular matrix (ECM) (Costerton
et al., 1995).
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Microbial biofilms are now recognized as highly structured
and dynamic communities, in which phenotypic diversification
allows microorganisms to adapt to diverse environments under
different conditions (Watnick and Kolter, 2000; Parsek and
Fuqua, 2004; Drescher et al., 2016; Gulati and Nobile, 2016;
Sheppard and Howell, 2016). Importantly, biofilms can be
composed of thousands of cells encased in a matrix and attached
to a surface, but they can also contain as few as tens of cells
arranged as small clusters or aggregates (Stacy et al., 2016).
Open channels interspersing the microcolonies allow water
and nutrients to reach their interior and contribute to the
nutrition and formation of mature biofilms, possibly mimicking
a primitive circulatory system. Waste products might also be
removed through this system (Flemming and Wingender, 2010).

Cells growing within biofilms exhibit unique phenotypic
features compared to their planktonic counterparts, with the
increased resistance to antimicrobial agents provided by biofilms
being the more drastic example (Martinez and Casadevall, 2006a;
Clatworthy et al., 2007; Lewis, 2008; Ramage et al., 2009).
Biofilm formation in the environment and in the host can be
induced by sub-lethal concentrations of antibiotics or secondary
metabolites, respectively (Kumar and Ting, 2013; Oliveira et al.,
2015). In this context, biofilm formation is an important feature
of Cryptococcus neoformans because it is an environmentally
ubiquitous fungal pathogen that causes cryptococcosis, a lethal
disease with a worldwide distribution related to bioclimatic
conditions as well as to soil characteristics and land use (Cogliati
et al., 2017). Almost 200,000 deaths per year are estimated to
be due to cryptococcal meningitis (Rajasingham et al., 2017).
The major virulence factor of this fungus is the polysaccharide
capsule that surrounds the cell wall and is responsible for
fungal attachment to surfaces and subsequent biofilm formation
(Martinez et al., 2010; de S Araújo et al., 2016). TheC. neoformans
capsule is composed mainly of glucuronoxylomannan (GXM),
a polysaccharide generated intracellularly and exported to the
extracellular space via vesicle-mediate secretion (Rodrigues et al.,
2007). GXM is also a constituent of the cryptococcal biofilm ECM
(Martinez and Casadevall, 2005; Park et al., 2009).

C. neoformans can form biofilms on medical devices,
including ventriculoatrial shunt catheters (used to manage
intracranial hypertension), peritoneal dialysis fistulae, cardiac
valves and prosthetic joints (Walsh et al., 1986; Braun et al.,
1994; Banerjee et al., 1997; Johannsson and Callaghan, 2009; Shah
et al., 2015). On biotic surfaces, after traversing the blood brain
barrier in meningoencephalitis, C. neoformans has the ability to
form biofilm-like structures known as cryptococcomas (Aslanyan
et al., 2017).

Although previous studies using confocal microscopy
provided initial insights into cryptococcal biofilm structure,
conventional scanning electron microscopy (SEM) techniques
do not preserve the mature biofilm ultrastructure (Martinez
and Casadevall, 2005, 2007). The highly hydrated matrix is
greatly deformed and the cell samples undergo distortion and
may present artifacts. Also, C. neoformans capsule is sensitive
to dehydration and is easily disrupted during routine sample
preparation (Edwards et al., 1967; Sakaguchi, 1993). As a
consequence, considerable effort is currently being spent on

the development of new methods and instrumentation for
its visualization. By applying an adapted protocol for SEM,
we characterized the underlying geometrical structure of cell
distribution during biofilm formation. The degree of order was
numerically quantified and we revealed a correlation between
higher levels of biofilm formation and more ordered underlying
structures. Order/disorder are very relevant in physical systems.
In crystals, for example, deformations can only occur near defects
due to the high energetic cost of their occurrence elsewhere.
Besides, some phase transitions are defect mediated. Moreover,
in the last decades the interplay among defects, geometry and
statistical physics has been highlighted (Nelson, 2002). Here
we propose the application of parameters designed to measure
order in physical systems (Nelson and Halperin, 1979; Aeppli
and Bruinsma, 1984; Okabe et al., 2000; Bernard and Krauth,
2011; Borba et al., 2013) to the microbial populations. We also
investigated the details of the ultrastructural organization of
cryptococcal biofilms and show that cryptococcal cells aggregate
with a specific ordered structure favoring biofilm formation as
compared to disorganized conglomerates.

MATERIALS AND METHODS

Microorganisms
C. neoformans var. neoformans B3501 strain, serotype D (ATCC
34873), is a strong biofilm former on different surfaces (Martinez
and Casadevall, 2005). This serotype has an increased risk of
infections for patients with skin lesions (Dromer et al., 1996).
C. neoformans var. grubii strain H99 serotype A (ATCC 208821)
is responsible for the vast majority of central nervous system
infections, particularly in HIV infected patients. The acapsular
cap67 mutant was obtained by chemical mutagenesis of B3501
(Fromtling et al., 1982). C. neoformans var. grubii strain H99
was employed as a recipient for creating the grasp hypocapsular
mutant involved in unconventional protein secretion (Kmetzsch
et al., 2011). All of the strains were kept frozen in glycerol and
subcultured at the time of the experiment. Standard biosecurity
safety procedures been carried out according to our institution
guidelines (www.cbiot.ufrgs.br/index.php/manual/).

Quantification of Cryptococcus
neoformans Biofilm Formation by XTT
Cells were grown for 24 h at 30◦C, in 25ml of Sabouraud broth
media in a rotary shaker at 150 rpm. Then, the cells were collected
by centrifugation at 3,000 g for 5min, washed three times
with phosphate-buffered saline pH 7.2 (PBS), counted using
a hemacytometer and suspended at 107 cells/ml in DMEM—
Dubelcco’s modified eagle media high glucose (GIBCO, USA)
at pH 7.4. After that, 500 µl of the suspension were added
into individual wells of polystyrene 24-well plates (Greiner Bio-
One, AUS) containing sterile glass coverslips and incubated
at 37◦C for 48 h. Following incubation, wells were washed
in triplicate with PBS to remove any planktonic cells. Then,
300 µl of XTT salt solution (1 mg/ml in PBS) and 24 µl of
menadione solution (1mM in acetone; Sigma-Aldrich) were
added to each well. Microtiter plates were incubated at 37◦C
for 5 h. Mitochondrial dehydrogenases in live cells reduce XTT
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tetrazolium salt to XTT formazan, resulting in a colorimetric
change, which was measured in a microtiter reader at 492 nm
(SpectraMax i3). Microtiter wells containing only culture media
but no C. neoformans cells were used as negative controls.

Scanning Electron Microscopy Preparation
An improved protocol developed for visualization of
C. neoformans planktonic cells by electron microscopy was
recently described (de S Araújo et al., 2016). Here, we modified
a few parameters in order to preserve the ultrastructure of
the biofilm stages. Briefly, after the incubation period (4 h for
adhesion or 48 h for mature biofilm) as previously described,
the wells containing the coverslips were washed three times
with PBS. After washing, cryptococcal adhered cells were fixed
with 500 µl of 2.5% glutaraldehyde type 1 (Sigma Aldrich,
USA) diluted in 0.1M sodium cacodylate buffer pH 7.2 and
for 15min at room temperature. Then, the wells were washed
three times in 0.1M sodium cacodylate buffer pH 7.2 containing
0.2M sucrose and 2mM MgCl2 with the aid of two pipettors,
which were used for addition and concurrent removal to avoid
air exposure. Adhered cells were dehydrated in a series of
freshly made solutions of graded ethanol (30, 50 and 70%, for
5 min/step, then 95% and twice 100%, for 10 min/step). The
dehydration was closely monitored to prevent biofilmmatrix and
capsule polysaccharide extraction. Samples were then subjected
to critical point drying (EM CPD 300, Leica) immediately
after dehydration, mounted on metallic stubs, sputter-coated
with a 15–20 nm gold-palladium layer and visualized in a
scanning electron microscope (Carl Zeiss EVO R© MA10 or
EVO R© −50 HV Carl, Oberkochen, Germany), operating at 10
kV. Microscopic fields were selected by random scanning and
photo documented. The experiment was performed in three
independent replicates.

Time-Lapse Microscopy
C. neoformans B3501 cells were prepared as described above
and suspended at 106 cells/ml in DMEM. After that, 1ml of the
suspension was added into individual wells of glass and incubated
for 4 h at 37◦C. Following incubation, wells were washed in
triplicate with PBS to remove planktonic cells. Then, 1ml of
DMEM was replaced and the wells incubated for 48 h at 37◦C on
an Espectral FV 1000 system. Time-lapse imaging was performed
at 30–60 s intervals.

Geometric Analysis
The strains were allowed to grow for 4 h (adhesion stage) in the
conditions described above. Following the incubation, the wells
were washed three times and prepared for SEM. Images were
treated with the software ImageJ (version1.48k, Java 1.8.0_65
(64-bit); National Institutes of Health, USA, [http://imagej.nih.
gov/ij]) to extract information for further statistical analysis. An
ellipse was fitted to each of the particles in the image and its area
was calculated. Since only the center coordinates of each ellipse
are necessary for the analysis of the neighboring cells network, we
represent particles with circles of fixed radius such that their areas
are equal to the average ellipse area. Once the centers are defined,
it is possible to establish the nearest neighbors of each cell ni by
means of a Delaunay triangulation andVoronoi tessellation using

Fortune’s algorithm (Fortune, 1987) with the software voronoi
(version 1, Steve J. Fortune, Bell Laboratories, USA [http://ect.
bell-labs.com/who/sjf/voronoi.tar]) With this information, it is
possible to obtain the number of nearest neighbors and distance
distributions, allowing one to calculate average parameters that
quantify order in the spatial distribution of cells for each sample
image.

To calculate the local variance in the number of neighbors
µi
2, first the average number of neighbors was calculated for the

sample

n = 〈ni〉 =
1

N

N
∑

i=1

ni, (1)

where N is the number of cells whose distance to any image
border is not within 5% of the system size. Cells close to the
border were not taken into account to calculate bulk properties.
The local variance was defined as

µi
2 = (ni − n)2, (2)

and the global variance was defined as its average

µ2 = µi
2 =

1

N

N
∑

i=1

µi
2. (3)

Following Borba et al. (2013) we calculate the local order
parameter

ψ i
6 =

1

ni

ni
∑

j=1

cos
(

6θijk
)

, (4)

where θijk are the angles formed by the two line segments joining
site i and two of its consecutive neighbors (Figure 1). A given
set of points (an image) can then be characterized by the average
value of this quantity

ψ6 = 〈ψ i
6〉 =

1

N

N
∑

i=1

ψ i
6. (5)

For a triangular lattice of points, every site will have ψ i
6 = 1,

since every site has six neighbors and six angles equal to 60◦.
Therefore, ψ6 = 1 characterizes a perfect hexagonal symmetry
(Borba et al., 2013). On the other hand, for a set of randomly
distributed points, a value of ψ6 close to 0 is expected.

In order to analyze the probability of generating a given value
of ψ6 from a random distribution of points, we generated 1,000
sets of randomly distributed non-overlapping disks with areas
equal to the average area of a cell in a box of the same size
as that of the image. For such an ensemble with Ne images
(sets of points), one can calculate the average of ψ6 and its
standard deviation. Then, it is possible to apply a Student-t test
to evaluate the possibility that the values of ψ6 for experimental
configurations of cells present the same distribution as those
for a random configuration generated by the deposition of non-
overlapping disks. The one-tailed test for samples with unequal
variance was calculated using LibreOffice (version 4.2.8.2 Build
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ID: 420m0 (Build: 2); LibreOffice, The Document Foundation,
[http://www.libreoffice.org]). The p-values of the test were
obtained for the 3 pairs of data: (a) 5 samples of B3501 with 1,000
sets of non-overlapping disks (p ≈ 3.7 × 10−7); (b) 5 samples
of H99 with 1,000 sets of non-overlapping disks (p ≈ 0.35); (c)
5 samples of B3501 with 5 samples of H99 (p ≈ 1.1 × 10−6).
In Figure S1 we show the corresponding network for a set of
randomly distributed non-overlapping disks and the distribution
of ψ6 for 1,000 random sets.

RESULTS

Biofilm Formation and Analysis of Cellular
Adhesion Geometry
To characterize the underlying geometric structure of cell
distribution in the initial steps of biofilm formation (after

incubation for 4 h), SEM images were examined. This analysis
considered the wild type strains C. neoformans B3501 and H99,
the hypocapsular grasp mutant (Kmetzsch et al., 2011) and the
acapsular cap67 mutant (Fromtling et al., 1982). To take into
account differences in adhesion of the cells to the substrate, we
analyzed conditions differing only in the presence or not of poly-
L-lysine (PLL). Pre-treatment with PLL increases the number
of adhered cells, as expected, but did not influence the cell
organization (Figure 2).

To classify the spatial distribution of cells, we used four
measures: average number of nearest neighbors n and its variance
µ2, intercellular distances, and the average degree of hexagonal
order ψ6. This last measure has been applied to study the
liquid-hexatic transition (Nelson and Halperin, 1979; Bernard
and Krauth, 2011) and also to the study of nanoporous alumina
arrays in which case the ordering and organization are crucial
for engineering applications (Borba et al., 2013). Among the

FIGURE 1 | Values of ψ i
6 for a site in a triangular lattice (left) and for a random distribution of neighbors (right).

FIGURE 2 | Geometric distribution of cells in the initial steps of biofilm formation, after incubation for 4 h. C. neoformans B3501, H99, hypocapsular grasp mutant and

acapsular cap67 mutant strains adhered in non-covered glass coverslips (Top) and PLL covered glass coverslips (Bottom).
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FIGURE 3 | Analysis of the local order parameter, ψ i
6, for samples with poly-L-lysine. Left column C. neoformans B3501. Right column C. neoformans H99. (A) SEM

image of cryptococcal cells after 4 h of adhesion. (B) Network of adhered cells; nearest neighbors were obtained by Delaunay triangulation (blue line segments). Red

circles represent cell centers in the bulk of the sample. Vertices without circles near the borders represent cells that were discarded from the analysis (distance to the

border within 5% of system size) to minimize border effects. (C) Voronoi diagram of the sample. The color code represents ψ i
6. (D) Distribution of ψ i

6. The blue curve is

a Gaussian fit to the data points, grouped into bins. The red vertical line displays the average value ψ6 of the local order parameter ψ i
6 (Left: ψ6 = 0.22, total number

of cells in the image Ntot = 1066, number of analyzed cells N = 837, average number of neighbors n = 6.01. Right: ψ6 = 0.06, Ntot = 885,N = 699, n = 6.01).
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parameters used, ψ6 was the one with more conclusive results
(Table S1).

The variance of the number of nearest neighbors µ2

(Equation 2) was found to be low, in the range 0.7–2.1, indicating
that the majority of cells have a number of nearest neighbors
very close or equal to the average n = 6 (see Figure S2 for
the local values µi

2). This fact reinforces that it is adequate to
use ψ6, a measure appropriate for hexagonal symmetry. For
its quantification, we first measure the local order parameter
ψ i
6 (Equation 4), that indicates how isotropically arranged the

nearest neighbors of the ith cell are. If the cells are found in
a perfect triangular lattice, all sites have six nearest neighbors
and the lines joining the ith cell with two of its consecutive
neighbors form an angle of 60◦. In this case of perfect hexagonal
symmetry, the average of ψ i

6 over the whole sample will attain
its maximum value ψ6 = 1. For a random distribution of cells,
with angles differing from one another, the local valuesψ i

6 will be
smaller and their average, ψ6, will be negative and close to zero
(Figure 1). In the case of partial ordering, one finds intermediate
values 0 < ψ6 < 1. In Figures 3A,B, we present the Delaunay
triangulation (Okabe et al., 2000), that determines the network
of nearest neighbors, combined with SEM of the adhesion stage
of biofilm formation with PLL biofunctionalization for B3501
and H99 (wild types). Acapsular cap67 mutant and hypocapsular
grasp mutant were not analyzed since they organize in 3D
aggregates.

In Figure 3C, cell color is related to ψ i
6. It also shows the

Voronoi diagram (Okabe et al., 2000), which separates the figure
into polygons such that every point in a polygon is closer to the
cell inside it than to any other cell. The distribution ofψ i

6 for each
image is presented in Figure 3D with a Gaussian fit to the data.
The red vertical line represents the average value ψ6.

The quantification of biofilm formed after 48 h of incubation
was based on 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-
[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT)
reduction assay measurements which determines the absorbance
(A (492 nm)) of metabolic activity and correlates with biofilm

FIGURE 4 | Correlation between biofilm formation measured by the XTT

reduction assay (A (492 nm)) and the order parameter ψ6 for the two strains

with and without PLL.

formation and fungal cell number. We found a correlation
(r2 = 0.98, Figure 4) between higher levels of biofilm formation
[A (492 nm)] and more orderly underlying structures < ψ6 >,
where the angled brackets represent an average over 5 images
in the early phase of biofilm formation, since the first layer
of cells on a substrate is not necessarily characteristic of a
random deposition. For instance, C. neoformans strain B3501,
known as a strong biofilm producer has < ψ6 > = 0.20 and
A (492 nm) = 1.38, while strain H99, a weak biofilm producer, has
< ψ6 >= −0.04 and A (492 nm) = 0.44 without PLL (Figure 5).

Special attention should be given to these two strains in
the presence of PLL; the better-known biofilm producer B3501
has a significantly more orderly disposal than H99, with an
approximately equal number of cells (Figure 2). These results
endorse that the difference in biofilm formation is not due simply
to different numbers of cells due to the low adhesion of H99
in the absence of PLL. For both mutants cap67 and grasp, it
was not possible to calculate ψ6 due to the formation of cell

FIGURE 5 | Poly-L-lysin influence on ψ6 is strain dependent. ψ6 is determined

for five independent images of C. neoformans H99 and B3501 incubated in

plates treated or not with Poly-L-Lysin. Data is presented as symbols and are

also represented by the Median and inter-quartile ranges. Statistically

significant differences were marked (***p < 0.001; ****p < 0.0001) according

to ANOVA test followed by Tukeys multiple comparison test.

TABLE 1 | Values of ψ6 for 5 samples of each of the strains B3501 and H99

(without PLL).

Biological replicate ψ6 values of C. neoformans strains

B3501 H99

1 0.213 −0.058

2 0.200 −0.029

3 0.200 −0.058

4 0.185 −0.039

5 0.199 0.006
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agglomerates that result in 3D structures. Nevertheless, this does
not weaken the conclusion that a non-random disposal with
a regular distance and number of neighbors between cells is
important for biofilm formation, given that the cells are closely
packed together in these agglomerates.

High values of ψ6 for C. neoformans B3501 in the range
0.18–0.21 (without PLL, Table S1) for the 5 biological replicates
analyzed are indeed representative of a non-random distribution
since a Student-t test to evaluate the possibility that such values
arise from a random deposition of non-overlapping disks with
the same average area as the cells yields a p-value p ≈ 3.7× 10−7

(Figure S1). For the five samples of C. neoformans H99, we
obtained p ≈ 0.35 when comparing its ψ6 values to those of
the randomly deposited non-overlapping disks. The same test
applied comparingC. neoformans B3501 withC. neoformansH99
yielded p ≈ 1.1 × 10−6. Therefore, it is plausible to conclude
that the C. neoformans H99 samples present an essentially
random distribution, whereas C. neoformans B3501 do not
(Table 1).

The orderly distribution of cells even during the detachment
stage of biofilm is a process that occurs dynamically (Figure 6,
Movie S1). From the snapshots, it can be seen that new cells
that flow into the already populated region do so by following
almost the same paths and tend tomaintain amore or less regular
distance from other cells. This suggests that the ordering stems
from some interaction between the cells: this behavior is similar

to equally charged spheres (not in electrolyte solutions), which
tend to auto-organize due to the electrical repulsion among
themselves (Figure 5). The nature of such interaction, however,
remains a point of further investigation (since the typical distance
between the cells is considerably larger than the Debye length
of an electrolyte solution as the cellular medium). On the other
hand, our results also suggest that this effective repulsion may
depend on the capsule integrity since both mutants with capsular
defects tend to agglomerate into compact clusters of cells.

C. neoformans Biofilms Are Organized in
Flower-Like Clusters
We believe that the organized geometrical structure is an
important factor for the next steps of biofilm formation. The
strain B3501 was used for ultrastructure analysis of biofilm
due to its significantly more orderly disposal during adhesion
stage (Figure 2) and strong biofilm formation (Martinez and
Casadevall, 2007). The applied protocol allowed the detailed
observation of preserved cryptococcal biofilms by SEM. Our
findings contrast with available data of confocal and optical
microscopy in which resolution and detail are limited, but
converge in biofilm thickness in the range of 50–76µm, as
well its complexity (Martinez and Casadevall, 2006a,b, 2007;
Robertson and Casadevall, 2009). The images showed the ECM
embedding cells organized into biofilm clusters with both
amorphous and organized flower-like structures of the mature

FIGURE 6 | Time-lapse microscopy of C. neoformans B3501 flow during various stages of biofilm formation. Initial steps of biofilm formation (A–C). From 24h

onwards, cells enter the vision field from the top (D) and auto-organize (E–F). Cells tend to follow similar trajectories. Snapshots from the Movie S1.
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biofilm (Figures 7A–D). The vertical growth seems to dominate
cluster expansion with regions of high ECM densities. Isolated
yeast cells were found both attached to the surface and cluster-
associated (Figures 7A,C,D).

Interestingly, an unexpected phenotype of a few cells located
at cluster boundaries, resembling bridges and involved in
anchoring the clusters, can be observed. These cells are elongated
and interconnect surface substrate and clusters (Figures 8A–C).
We found ECM micro channels displaying a well-designed
structure associated with cryptococcal cells (Figure 8D). For
some soil bacteria, the presence of ECM micro channels
are required for cell alignment and advancement on surfaces
(Berleman et al., 2016).

Cryptococcal Biofilms Form a Social
Community of Clusters
Even within a community composed of genetically identical
microbial cells, there exists high heterogeneity in morphology
and physiology of its sub-populations (Lidstrom and Konopka,
2010). Wang et al. (2013), discovered that C. neoformans
responds in a paracrine manner to a secreted protein responsible
for colony communication and morphology (Wang et al., 2013).

To synchronize social microbial behavior, extracellular signals
must disseminate across the community and reach adjacent
cells. Here, we speculate the existence of a hierarchical biofilm

organization composed of a cluster community. The SEM
images show that small clusters (Figures 9B–D) are adjacent
to the mature biofilm cluster (Figure 9A). We hypothesize
that a feedback response of mature clusters signaling leads
to the formation of small aggregates surrounded by ECM.
The clustering process may implement a secondary signaling
for functional or phenotypic switch in a paracrine manner,
as supported by Wang et al. (2013). This process seems to
trigger an autoinducer activity by stimulating neighboring cells
to phenocopy the mature cluster.

DISCUSSION

The hallmarks of this study were the use of a numerical measure
to quantify the geometrical order of the first layer of adhered cells
in the process of biofilm formation as well as the detection of
well-shaped ultrastructure of C. neoformans biofilms. To verify
the relation between cellular order and biofilm production, we
analyzed C. neoformans H99 and the mutants grasp and cap67,
and the usual model C. neoformans B3501. Once we showed
that there is indeed a correlation between increased order and
increased biofilm production, we focused on the standard strain
to further study the ultrastructure.

This analysis was made possible by the introduction of a
modified protocol for SEM visualization of microbial biofilms,

FIGURE 7 | SEM of C. neoformans B3501 displaying flower-like clusters. Biofilm presented complex structure and spatial organization. (A) The dotted square

indicates cryptococcal cells attached to the surface. (A,B) Biofilm clusters with amorphous and asymmetrical structure (red arrows) and mature biofilm with flower-like

shapes (green arrows). Flower-like cluster shown in higher magnification (C,D) with embedded cells in the ECM (pink arrows).
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FIGURE 8 | SEM of C. neoformans B3501 showing phenotypic cell change and biofilm channel. Anchoring cells (pink arrows) are observed located at the base of

some flower-like (A,B) and amorphous (C) clusters boundaries. Micro channels (yellow arrow) are found associated with cells (D).

due to the fact that standard protocols greatly distort the matrix.
To minimize artifacts, a shortened time of fixation and careful
dehydration is optimal for ultrastructural SEM analysis (Joubert
et al., 2015). The ultrastructure preservation was achieved
by combining appropriated techniques, a reduced period of
incubation during SEM preparation and good grade reagents.

Distinct levels of spatial organization were observed: adhered
cells, clusters of cells, as well as the community of clusters. The
affinity of attachment to different surfaces is strongly related to
the presence of the cryptococcal capsule. In fixed C. neoformans
cells, the fibers surrounding the cell (capsule filaments) directly
stretch and link cells to surface, promoting attachment (de S
Araújo et al., 2016).

Cryptococcal biofilm formation seems to be driven by a
communication system via adhesion/matrix protein signaling
(Wang et al., 2013) and directional proliferation of the original
adhered cells. Cfl1, the first prominent ECM secreted protein
of C. neoformans, is highly expressed in subpopulations located
at the periphery of a mating community and is concentrated
in the extracellular matrix boundary. This protein orchestrates
yeast-hypha morphotype transition, cell adhesion, and virulence.
This suggests that Cfl1 possibly serves as a signal regulating
morphotype transition in the cells enclosed or adjacent to the
ECM (Wang et al., 2012, 2013; Wang and Lin, 2015).

We hypothesize that the reversible cell attachment is mediated
by capsule interactions and the orderly distribution of cells, as

described above. As the capsule is primarily responsible for the
high negative zeta potential of C. neoformans cells, variations in
the structure of GXM could also influence the Zeta potential.
However, zeta potential determinations of C. neoformans H99
and B3501 strains did not reveal major differences (Kozel and
Gotschlich, 1982; Nosanchuk and Casadevall, 1997; Cordero
et al., 2011). In this way, we assume that biofilm formation
capability is a serotype-dependent process and is influenced by
either biological or environmental factors. Based on this, the
resulting patterns observed for H99 and B3501 strains cannot
be explained by charge distribution. The ordering reported
is due to an effective repulsion among cells, the nature of
which remains a mystery. It may be due to chemical sensing
or excluded volume that hinders the free motion of cells
(Movie S1), in which cells flow following similar paths and
tend to adhere at an approximately constant distance from one
another.

Our data supports that once irreversible attachment occurs,
cryptococcal cells may form a narrow ECM layer around the
cell body where cells rapidly proliferate, but the surface-attached
and peripheral anchored cryptococcal cells may restrict their
expansion to the plane. As initial small clusters proliferate,
their shape increasingly becomes anisotropic. At this point,
the biofilm consists of several layers of cells grouped into
clusters resembling extremely organized flower-like patterns.
After maturation, cells may detach as microcolonies or as isolated
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FIGURE 9 | SEM of C. neoformans B3501 organized in a community of clusters. (A) Higher magnification image of a mature biofilm. (B–D) Small amorphous clusters

(red arrows and dotted arc) surround the mature biofilm (green arrow).

FIGURE 10 | Scheme of C. neoformans B3501 biofilm formation. (1,2) Adhesion of planktonic cells follows an approximately hexagonal distribution. (3) Cluster

expansion and shaping. (4) Flower-like mature biofilm. (5) Detachment of microcolonies or planktonic cells. (a) SEM of biofilm development stages.
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planktonic cells, which auto-organize following an approximately
hexagonal distribution. Cells tend to follow similar trajectories
and may initiate the process again (Figure 10 and Movie S1).

Yan et al. (2016) discovered that the cluster ultrastructure of
Vibrio cholerae biofilm results from the combination of expansion
and confinement of surface-attached cells that generates an
effective anisotropic stress. Such stress overpowers the cell-to-
surface adhesion force for cells at the cluster center, causing
these cells to realign in the vertical direction and forcing
the transition from 2D expansion to 3D growth (Yan et al.,
2016). Moreover, if selection pressure is high, it has been
shown that clusters of Pseudomonas aeruginosa have higher
fitness than isolated cells because cells at the top of the
clusters have better access to nutrients (Kragh et al., 2016).
Cluster morphogenesis results from a great number of variables
capable of shaping the ultrastructure. Physical and demographic
processes are demonstrated to act as key factors in biofilm
architectures (Hödl et al., 2014). Cryptococcal cells are likely
most susceptible to the hydrodynamics constraints due to low
motility. In contrast, more motile microorganisms may escape
these constraints and develop biofilm morphogenesis related
to cellular migration and biofilm coalescence (Hödl et al.,
2014).

Mathematical studies have related that biofilm architecture
depends on the availability of nutrients, carbon and oxygen,
uptake processes linked to hydrodynamics and diffusion
limitation of substrate transport through the biofilm. More
generally, metabolic capabilities, genotypic and phenotypic
adaptations could result in different behaviors within the biofilm,
allowing organisms to choose between a number of strategies
(Klapper and Szomolay, 2011; Klapper, 2012).

Interestingly, for V. cholerae the presence of low cell number
in cluster biofilm results in increased volume when compared
to biofilms with a larger population. The hypothesis is that the
significant changes in cell–cell spacing between small and large
clusters in biofilms are due to strong temporal variation in ECM
composition or production levels per cell (Drescher et al., 2016).
In agreement, the flower-like clusters of C. neoformans present
a high volume of ECM and relatively low cell concentration, as
supported by our findings. For instance, the shunting procedures
used to treat cryptococcal meningitis hypertension are risk
associated and have historically discouraged surgeons due to its
complications (Liu et al., 2014; Cherian et al., 2016) since it can
provide a surface for cryptococcal attachment. It is common
knowledge that uropathogenic strains of Escherichia coli can
successfully adhere to and colonize the kidney, despite the
presence of high flow rates. Since kidney tubules are narrow
(<50µm), bacterial attachment patterns at even very small
spatial scales can easily block them, increasing the severity of
kidney infection (Melican et al., 2011).

The architectural flower-like cluster organization observed in
serotype D B3501 strain might provide the yeast cells with a
protected niche against antifungals, host defenses, environmental

predators and dehydration. Physical differences in C. neoformans
serotypes A and D biofilms may reflect the predilection of some
serotype D strains for peripheral tissue (e.g., skin) whereas the
structure of serotype A biofilms may select these strains in tissues
such as the lungs (Abdulkareem et al., 2015). As demonstrated,
cryptococcal cells may detach from the biofilm in an organized
manner. It is plausible to assume that organizationmay be needed
for the successful dissemination to the host. In fact, researchers
showed that Candida albicans detached cells from biofilms are
more metabolically active than planktonic cells (Uppuluri et al.,
2010).

Upon this scenario, special treatment of the devices or the
use of materials that hinder the initial organization may be used
clinically to avoid the development of infection, by disrupting the
initial organization. Moreover, the introduction of an objective
measure of order (ψ6) obtained from an image may facilitate the
analysis of whether a given surface is prone to biofilm formation.

Continued studies are required to provide a greater
understanding of the importance to investigate the complications
of cryptococcal meningoencephalitis associated to the spatial
distribution of clusters, as well as new methods of imaging for
helping the development of new anti-biofilm targets.
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