
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCO AURÉLIO WEHRMEISTER

An Aspect-Oriented Model-Driven
Engineering Approach for Distributed

Embedded Real-Time Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Carlos Eduardo Pereira
Advisor

Prof. Dr. Franz Josef Rammig
Co-advisor

Porto Alegre, September 2009

CIP – CATALOGING-IN-PUBLICATION

Wehrmeister, Marco Aurélio

An Aspect-Oriented Model-Driven Engineering Approach
for Distributed Embedded Real-Time Systems / Marco Aurélio
Wehrmeister. – Porto Alegre: PPGC da UFRGS, 2009.

206 p.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2009. Advisor: Carlos Eduardo Pereira; Co-advisor: Franz
Josef Rammig.

1. Model-Driven Engineering (MDE). 2. Aspect Oriented De-
velopment (AOD). 3. UML. 4. Code Generation. 5. Aspects
Weaving. 6. Real-Time Embedded Systems. I. Pereira, Carlos
Eduardo. II. Rammig, Franz Josef. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: BeatrizRegina Bastos Haro

To Jo, my lovely wife, for her love, huge patience, support,
and understanding at the moments I was absent.

ACKNOWLEDGMENTS

I have a noticeable improvement in my professional/personal life after these six years
working in the Embedded Systems Lab at the Federal University of Rio Grande do Sul. I
have been with many people that contributed directly or indirectly to this improvement. I
would like to express gratitude to all of them.

First of all, I would like to thank Dr. Carlos Eduardo Pereira. He is not only my
advisor but also a friend. His help along two years of master and four years of Ph.D. did
strongly contribute to several aspects of my professional and personal life in Porto Alegre.
Our discussions have been a fundamental piece for the accomplishment of this work. I
tried to learn the maximum I could from his example.

Other important part of my Ph.D. was my “sandwich” stage at the University of Pader-
born, Germany. For this, I would like to thank Dr. Franz JosefRammig for accepting me
as member in his working group, for the discussions, criticsand suggestions on my work,
and more specially, for the opportunity to do the bi-national Ph.D. I do not have words to
describe how this stay in Germany opened my horizons concerning personal and profes-
sional aspects.

From home, I would like to thank my wife, Josi, for her support, encouraging, and
comprehension in the last six years. She was and still is a fundamental piece during
all phases of my life. I am also thankful to my parents, Nelsonand Berta, my brothers
Fernando and Leonardo, and my sister-in-law Thaize for the encouragement and support.
Specially, I would like to thank my uncle Vendelino, aunt Janete, and cousins Rudolf,
Priscilla, Bárbara, and Júlia for their support in Porto Alegre, decreasing the yearning for
the family of Blumenau. In special, I would like to thank Bárbara for the English review
of some chapters of this thesis.

I would also like to acknowledge all professors and administrative staff of the Infor-
matics Institute, which somehow contributed for the conclusion of my Ph.D. Specially, I
would like to thank Dr. Flávio Rech Wagner, Dr. Luigi Carro, and Dr. Marcelo Soares
Pimenta for the valuable discussions, critics, and suggestions during all this time.

I am thankful to all colleagues and friends from the EmbeddedSystems Lab who
directly or indirectly contributed to this work. I cannot name all of them because I will
certainly forget many names. However, I should mention those that provide remarkable
contributions to this work: Edison Pignaton Freitas, Marcio Oliveira, and Elias Teodoro
da Silva Jr. Additionally, I would like to thank two undergrad students: William Silva
for the help with some case studies in ORCOS platform; and Ronaldo Rodrigues Ferreira
(a.k.a. Bixo) for the English review of this text’s first draft.

Considering my stay in Germany, I would like to express my gratitude to Marcelo
Götz, which actually came back to Brazil when I arrive at Paderborn, for all help and
hints about the life in Germany, and specially for letting meto “inherit” his house in

Paderborn. From there, I must also mention Vera Kühne for allhelp with the bureaucracy
at the university, the colleagues of the working group, and specially Tales and Carolina
Heimfahrt, Dalimír Orfánus, Fahad Bin Tariq for various moments we spend together.

Finally, I would like to thank the Conselho Nacional Científico e Tecnológico (CNPq)
for both regular and “sandwich” scholarships, and also the Deutscher Akademischer Aus-
tausch Dienst (DAAD) for the financial support during part ofthe stay in Germany.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 11

LIST OF FIGURES . 13

LIST OF TABLES . 15

ABSTRACT . 17

RESUMO . 19

1 INTRODUCTION . 21
1.1 Motivation .21
1.2 Goals and Scope Delimitation. 24
1.3 Thesis Contributions . 26
1.4 Text Organization . 27

2 THEORETICAL BACKGROUND . 29
2.1 Introduction .29
2.2 Distributed Embedded Real-Time Systems. 29
2.2.1 Introduction .29
2.2.2 Real-Time Systems .29
2.2.3 Embedded Systems .30
2.2.4 Distributed Systems .. 31
2.3 Requirements in Embedded Systems Domain. 31
2.4 Embedded Systems Design Approaches. 35
2.4.1 Introduction .35
2.4.2 Object-Oriented Paradigm .. . 35
2.4.3 Aspect-Oriented Paradigm .. . 37
2.4.4 Evaluating the Design with Metrics 39
2.5 Model-Driven Engineering . 42
2.5.1 Overview .42
2.5.2 MARTE UML profile .43

3 STATE OF THE ART ANALYSIS . 47
3.1 Introduction .47
3.2 Design and Modeling Approaches. 47
3.2.1 Overview of Related-Work .. 47
3.2.2 Discussion .51
3.3 Separation of Concerns in Requirements Handling. 52

3.3.1 Introduction .52
3.3.2 Separation of Concerns in General Systems Development 52
3.3.3 The Use of AOD in the Design of DERTS56
3.3.4 Discussion .60
3.4 Code Generation . 61
3.4.1 Introduction .61
3.4.2 Code Generation from UML Models 61
3.4.3 Commercial Tools .64
3.4.4 Discussion .66
3.5 Discussion on the Open Problems. 66

4 MDE PROCESS FOR DERTS DESIGN 69
4.1 Introduction .69
4.2 Aspect-Oriented Model-Driven Engineering for DERTS 69
4.3 Adaptations in the SEEP design flow. 73

5 SPECIFYING DERTS USING UML AND ASPECTS 75
5.1 Introduction .75
5.2 Functional Requirements Handling Elements 75
5.2.1 Introduction .75
5.2.2 Specification of System Expected Functionalities 77
5.2.3 Specification of System Structure 77
5.2.4 System Behavior Specification 80
5.3 Non-Functional Requirements Handling Elements 88
5.3.1 Introduction .88
5.3.2 Distributed Embedded Real-time Aspects Framework 89
5.3.3 Aspects Crosscutting Overview Diagram 95
5.3.4 Join Points: Selecting Model Elements Affected by Aspects 97
5.4 Final Remarks . 99

6 TOOL SUPPORT FOR THE PROPOSED APPROACH 101
6.1 Introduction .101
6.2 A Platform Independent Model for Code Generation 102
6.3 UML-to-DERCS Transformation .106
6.4 Mapping Rules .111
6.4.1 Overview .111
6.4.2 Application Code .112
6.4.3 Platform Configuration .. 118
6.5 Code Generation Process .119
6.6 Final Remarks .121

7 VALIDATION . 123
7.1 Introduction .123
7.2 Toolset Overview .123
7.2.1 RT-FemtoJava Platform .. 123
7.2.2 ORCOS Platform .124
7.2.3 Case Studies Assessment .. 125
7.3 Case Studies. .126
7.3.1 Unmanned Aerial Vehicle .. 126
7.3.2 Industrial Packing System 134

7.3.3 Wheelchair Automation .. 139
7.4 Final Remarks .141

8 CONCLUSIONS AND FUTURE WORK 145

REFERENCES . 149

APPENDIX A DERAF DETAILED DESCRIPTION 159
A.1 Timing Package. .159
A.2 Precision Package .161
A.3 Synchronization Package .162
A.4 Communication Package. .163
A.5 TaskAllocation Package .164
A.6 Embedded Package. .166

APPENDIX B UML MODELS FOR THE UAV CASE STUDY 169

APPENDIX C MAPPING RULES . 185
C.1 Application .185
C.2 Platform Configuration .196
C.3 Source Code Generated by GenERTiCA.199

APPENDIX D LIST OF PUBLICATIONS 203

LIST OF ABBREVIATIONS AND ACRONYMS

AAM Aspect-oriented Architecture Model

ABS Anti-lock Bracking System

AMoDE-RT Aspect-oriented Model-Driven Engineering for Real-Time systems

API Application Programming Interface

AADL Architecture Analysis & Design Language

AO Aspect-Orientation

AOD Aspect-Oriented Design

AODM Aspect-Oriented Design Modeling

ASIP Application Specific Instruction Processor

CWM Common Warehouse Meta-model

DERAF Distributed Embedded Real-time Aspects Framework

DERCS Distributed Embedded Real-time Compact Specification

DERTS Distributed Embedded and Real-Time System

DREAMS DistRibuted Extensible Application Management System

DSML Domain-Specific Modeling Languages

GenERTiCA Generation of Embedded Real-Time Code based on Aspects

HDL Hardware Description Language

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JPDD Join Point Designation Diagrams

MAC Media Access Control

MARTE Modeling and Analysis of Real-time and Embedded systems

MDA Model-Driven Architecture

MDD Model-Driven Design

MDE Model-Driven Engineering

MOF Meta-Objects Facilities

OMG Object Management Group

OO Object-Orientation

ORCOS Organic Reconfigurable Operating System

PIM Platform Independent Model

PSM Platform Specific Model]

QoS Quality of Service

QVT MOF Query/View/Transformation

RTSJ Real-Time Specification for Java

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SCL Skeleton Customization Language

SEEP Sistema Eletrônicos Embarcados baseados em Plataformas

SoC System-on-Chip

SPT UML profile for Schedulability, Performance and Time

SW Software

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time

XMI XML Metadata Interchange

XML eXtensible Markup Language

LIST OF FIGURES

Figure 1.1: Hardware and software design gap 22
Figure 1.2: Using higher abstraction levels in embedded system design 22
Figure 1.3: Most important tools in embedded system design 24

Figure 2.1: Non-Functional Requirements Classification 33
Figure 2.2: Scattering: same code in multiple places 38
Figure 2.3: Quality model proposed in Sant’anna et al. (2003) 41
Figure 2.4: Overall MARTE architecture 44
Figure 2.5: Stereotypes of Time profile 45
Figure 2.6: Stereotypes of GRM profile 46

Figure 3.1: Methodology for Multimedia Systems available in Metropolis 50
Figure 3.2: SEEP design flow .51
Figure 3.3: Aspects and join points modeling in AODM 53
Figure 3.4: Examples of Theme/UML models 54
Figure 3.5: CAM model represented as a class diagram 55
Figure 3.6: AO modeling: (a) aspects modeling; (b) advice modeling; (c) point-

cut specification .56
Figure 3.7: Specification using atime aspect. 57
Figure 3.8: AO modeling: (a) functional and non-functionalconcerns; (b) aspects

model; (c) inter-aspects relations rules 58

Figure 4.1: Overview of the AMoDE-RT design approach 69
Figure 4.2: Overview of RT-Frida .. . 70
Figure 4.3: RT-FRIDA templates for requirements specification 71
Figure 4.4: Other tools provided by RT-FRIDA 72
Figure 4.5: Adaptations proposed to SEED design flow 74

Figure 5.1: Graphical representation of system requirements 77
Figure 5.2: Specification of the static structure 78
Figure 5.3: Specification of the dynamic structure 79
Figure 5.4: Specification of objects deployment 80
Figure 5.5: Specification of the behavior in terms of actionsperformed by objects 81
Figure 5.6: Invalid behavior specification using sequence diagram 82
Figure 5.7: System behavior overview specified using activity diagram 86
Figure 5.8: Behavior of classes specified using state diagrams 87
Figure 5.9: Conceptual AO model .. 88
Figure 5.10: All aspects provided by DERAF 90

Figure 5.11: Aspects specification using ACOD 95
Figure 5.12: JPDD for structural elements selection 98
Figure 5.13: JPDD for behavioral elements selection 99

Figure 6.1: GenERTiCA mains features overview 101
Figure 6.2: DERCS meta-model: structural elements 103
Figure 6.3: DERCS meta-model: behavioral elements 104
Figure 6.4: DERCS meta-model: AO-related elements 105
Figure 6.5: Mapping rules XML organization 112
Figure 6.6: Mapping rules:<SourceOptions>and<PrimaryElements>branches 113
Figure 6.7: Mapping rules:<Attributes>node114
Figure 6.8: Mapping rules:<SendMessage>node114
Figure 6.9: Mapping rules:PeriodicTimingaspect implementation116
Figure 6.10: Source code fragment with modifications performed by aspect adap-

tations .117
Figure 6.11: Platform configuration XML structure 118
Figure 6.12: GenERTiCA: application code generation flowchart 120
Figure 6.13: GenERTiCA: platform configuration generationflowchart 120

Figure 7.1: Reusability quality model 126
Figure 7.2: UAV movement control use case diagram 127
Figure 7.3: UAV movement control class diagram 128
Figure 7.4: Fragments of UAV movement control sequence diagram 129
Figure 7.5: UAV non-functional requirements handling: (A)ACOD, and (B) JPDD130
Figure 7.6: Calculated metrics for the UAV control system 132
Figure 7.7: Comparison of UAV’sMovementController classes132
Figure 7.8: Industrial packing system use case diagram 134
Figure 7.9: Industrial packing system class diagram 136
Figure 7.10: Industrial packing system sequence diagram 136
Figure 7.11: Industrial packing system: reused elements in(A) ACOD, and (B)

JPDD .137
Figure 7.12: Calculated metrics for the industrial packingsystem138
Figure 7.13: Calculated metrics for the wheelchair movement control system . . .140

LIST OF TABLES

Table 2.1: Metrics influence in quality attributes 40

Table 5.1: Reserved words for actions specification 84
Table 5.2: Naming pattern for elements selection in JPDD 97
Table 5.3: Summary of MARTE stereotypes used in AMoDE-RT 100

Table 6.1: UML-to-DERCS mapping table 106
Table 6.2: UML-to-DERCS behavior elements relationships 110

Table 7.1: UAV: Statistics of the UML model of AO version 133
Table 7.2: UAV: Statistics of the generated source code 133
Table 7.3: Industrial packing system: Statistics of the UMLmodel of AO ver-

sion .138
Table 7.4: Industrial packing system: Statistics of the generated source code . .139
Table 7.5: Wheelchair: Statistics of the UML model of AO version 140
Table 7.6: Wheelchair: Statistics of the generated source code141
Table 7.7: AO elements reused in the different case studies 143

ABSTRACT

Currently, the design of distributed embedded real-time systems is growing in com-
plexity due to the increasing amount of distinct functionalities that a single system must
perform, and also to concerns related to designing different kinds of components. Indus-
trial automation systems, embedded electronics systems inautomobiles or aerial vehicles,
medical equipments and others are examples of such systems,which includes distinct
components (e.g. hardware and software ones) that are usually designed concurrently
using distinct models, tools, specification, and implementation languages. Moreover,
these systems have domain specific and important requirements, which do not represent
by themselves the expected functionalities, but can affectboth the way that the system
performs its functionalities as well as the overall design success. The so-called non-
functional requirements are difficult to deal with during the whole design because usually
a single non-functional requirement affects several distinct components.

This thesis proposes an automated integration of distributed embedded real-time sys-
tems design phases focusing on automation systems. The proposed approach uses Model-
Driven Engineering (MDE) techniques together with Aspect-Oriented Design (AOD) and
previously developed (or third party) hardware and software platforms to design the com-
ponents of distributed embedded real-time systems. Additionally, AOD concepts allow a
separate handling of requirement with distinct natures (i.e. functional and non-functional
requirements), improving the produced artifacts modularization (e.g. specification model,
source code, etc.). In addition, this thesis proposes a codegeneration tool, which supports
an automatic transition from the initial specification phases to the following implemen-
tation phases. This tool uses a set of mapping rules, describing how elements at higher
abstraction levels are mapped (or transformed) into lower abstraction level elements. In
other words, such mapping rules allow an automatic transformation of the initial specifica-
tion, which is closer to the application domain, in source code for software and hardware
components that can be compiled or synthesized by other tools, obtaining the realiza-
tion/implementation of the distributed embedded real-time system.

Keywords: Model-Driven Engineering (MDE), Aspect Oriented Development (AOD),
UML, Code Generation, Aspects Weaving, Real-Time EmbeddedSystems.

RESUMO

Uma Abordagem de Engenharia Guiada por Modelos para o Projeto de Sistemas
Tempo-Real Embarcados e Distribuídos

Atualmente, o projeto de sistemas tempo-real embarcados e distribuídos está cres-
cendo em complexidade devido à sua natureza heterogênea e aocrescente número e di-
versidade de funções que um único sistema desempenha. Sistemas de automação indus-
trial, sistemas eletrônicos em automóveis e veículos aéreos, equipamentos médicos, entre
outros, são exemplos de tais sistemas. Tais sistemas são compostos por componentes
distintos (blocos de hardware e software), os quais geralmente são projetados concorren-
temente utilizando modelos, ferramentas e linguagens de especificação e implementação
diferentes. Além disso, estes sistemas tem requisitos específicos e importantes, os quais
não representam (por si só) as funcionalidades esperadas dosistema, mas podem afetar a
forma como o sistema executa suas funcionalidades e são muito importantes para a reali-
zação do projeto com sucesso. Os chamados requisitos não-funcionais são difíceis de tra-
tar durante todo o ciclo de projeto porque normalmente um único requisito não-funcional
afeta vários componentes diferentes.

A presente tese de doutorado propõe a integração automatizada das fases de projeto
de sistemas tempo-real embarcados e distribuídos focando em aplicações na área da au-
tomação. A abordagem proposta usa técnicas de engenharia guiada por modelos (do
inglês Model Driven Engineeringou MDE) e projeto orientado a aspectos (do inglês
Aspect-Oriented Designou AOD) juntamente com o uso de plataformas previamente de-
senvolvidas (ou desenvolvida por terceiros) para projetaros componentes de sistemas
tempo-real embarcados e distribuídos. Adicionalmente, osconceitos de AOD permitem a
separação no tratamento dos requisitos de naturezas diferentes (i.e. requisitos funcionais
e não-funcionais), melhorando a modularização dos artefatos produzidos (e.g. modelos
de especificação, código fonte, etc.). Além disso, esta tesepropõe uma ferramenta de
geração de código, que suporta a transição automática das fases iniciais de especificação
para as fases seguintes de implementação. Esta ferramenta usa um conjunto de regras de
mapeamento, que descrevem como elementos nos níveis mais altos de abstração são ma-
peados (ou transformados) em elementos dos níveis mais baixos de abstração. Em outras
palavras, tais regras de mapeamento permitem a transformação automática da especifica-
ção inicial, as quais estão mais próximo do domínio da aplicação, em código fonte para
os componentes de hardware e software, os quais podem ser compilados e sintetizados
por outras ferramentas para se obter a realização/implementação do sistema tempo-real
embarcado e distribuído.

Palavras-chave:Engenharia Guiada por Modelos, Desenvolvimento Orientadoà Aspec-
tos, UML, Geração de Código, Entrelaçamento de Aspectos, Sistemas Embarcados e de
Tempo-Real.

21

1 INTRODUCTION

1.1 Motivation

The use of specialized electronic devices to assist in dailyactivities is increasing
rapidly. The so-called embedded systems are hardly perceived as computing systems.
Currently, at least 20-30 embedded systems can be found in a common household, e.g.
cell phones, digital cameras, DVD players, microwave ovens, car’s electronic systems
and others. On the other hand, the same household has only 1 or2 desktop computers or
laptops (VASSILIADIS et al., 2005). Moreover, many of thesesystems have several tasks
distributed in multiple processing units (deployed eitherlocally or physically distant from
each other) that must cooperate to accomplish a common goal,while respecting stringent
application’s real-time requirements. For example, in a modern middle-range car, it is
possible to find over 50 embedded systems controlling several functions ranging from
anti-lock braking (ABS) and fuel injection systems to infotainment systems such as GPS
navigator or a music/video player (VASSILIADIS et al., 2005). To meet this high demand
from industry, many researchers propose/develop methodologies, standards, architectures
and tools to assist the systematic development of such special kind of distributed, cooper-
ative and real-time embedded systems.

As technology advances faster, there is an increasing demand for new embedded sys-
tems capable of performing a large amount of complex functionalities, which impact
strongly in their design time and complexity. Such growing complexity is partially caused
due to the distinct nature of elements involved in the designof these systems, i.e. design-
ers must produce, usually concurrently, hardware (HW) and software (SW) components.
However, as one can see in figure 1.1, there is a productivity gap between the software
and hardware teams: the first one needs 5 years to increase productivity twice, while the
later improves it a little faster but still not in the same rate as the increase in technology
capabilities. In addition, the non-functional nature of some important requirements have
a great influence in design complexity. The embedded systemsdomain has characteris-
tics that constrain system design, such as fewer availability of computational resources
(e.g. memory and processing power), restrictions on low energy consumption without
performance degradation, and also a tight time-to-market (CARRO; WAGNER, 2003).

To deal with the above mentioned problems, researchers and designers propose to
raise the abstraction level used during system design. Figure 1.2 shows a chart from a
recent embedded systems market survey (NASS, 2008), in which it can be seen that ap-
proximately 43% of embedded systems designers use higher levels of abstraction, such as
UML, Simulink or SystemC, in their projects. In this context, the Object-Oriented (OO)
paradigm appears as an interesting choice due to some characteristics, such as abstraction
and hierarchy, which are pointed since the 70’s as key concepts to manage complexity

22

log

time

Moore’s Law

Additional SW required for HW

2x/10 months

Technology capabilities

2x/36 months

HW design productivity

Filling with IP and memory

HW design productivity

SW productivity

2x/5 years

1
9

8
1

1
9

8
5

1
9

8
9

1
9

9
3

1
9

9
7

2
0

0
1

2
0

0
5

2
0

0
9

2
0

1
7

2
0

1
3

LoC SW/Chip

Gates/Chip

Gates/Day

LoC/Day

HW including

SW design gap

HW

design

gap

Figure 1.1: Hardware and software design gap (ITRS, 2007)

growth and the increasing design effort (HABERMANN; FLON; COOPRIDER, 1976).
Over the last years, the use of OO in the design of distributedembedded real-time system
is the focus of several works, as can be seen in important conferences and publications, as
for example the IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC), (MARTIN; MÜLLER, 2005), or (CHEN et al.,2003). However,
not all issues involved in the design of distributed embedded real-time systems are well
handled only by using OO concepts. The crosscutting nature of some important require-
ments impacts in different parts of a system (i.e. non-functional requirements crosscut
functional requirements), hindering the reuse of producedartifacts (e.g. models, source
code, IPs, etc.) (FILMAN et al., 2005).

In the literature there are some proposals, e.g. (STANKOVICet al., 2003) and (TSANG;
CLARKE; BANIASSAD, 2004), that suggest the use of aspects todeal with the problem
of crosscutting non-functional requirements in embedded systems design. The Aspect-
Oriented (AO) paradigm (FILMAN et al., 2005) allows a separated specification of sys-
tem’s functional and non-functional requirements. Additionally, it allows designers to
concentrate efforts on important concerns, such as the handling of real-time, performance
and energy consumption constraints. Additional AO helps indecoupling the produced ar-
tifact allowing their reuse in the same or further projects.Thus, the achieved separation of
concerns in requirements handling can improve the design ofdistributed embedded real-
time systems, opening room for reusing the produced artifacts. Usually, non-functional
requirements affect (i.e. crosscut) functional requirements in different ways, in different
design phases and/or in different system modules (FILMAN etal., 2005). Traditional OO

Figure 1.2: Using higher abstraction levels in embedded system design (NASS, 2008)

23

approaches do not handle these requirements in a satisfactory form. To illustrate the this
situation, let’s consider the control of concurrent accessto a shared resource. The code
responsible for handling this requirement must be added each time some task needs to use
a shared resource, and hence, it is scattered within different modules.

Another way to decrease the gap between hardware and software designs, and also
the design time, is the adoption of a common language to specify both the structure and
behavior of a distributed embedded real-time system (VASSILIADIS et al., 2005). Thus,
the information exchange between design teams (i.e. teams that develop hardware and
software components) is facilitated, minimizing possiblemisunderstandings in the speci-
fication (CHEN et al., 2003). In the last years, it can be observed the increasing use of the
Unified Modeling Language (UML) (OMG, 2008) in the design of embedded systems.
Such claim can be confirmed in the book “UML for SoC design” (MARTIN; MÜLLER,
2005), which describes different research works that proposed the use of UML to design
Systems-on-Chip (SoC).

The idea of using models to design complex systems is becoming stronger because
models help in the understanding of complex problems and their potential solution through
higher levels of abstract in the specification (SELIC, 2003a). Based on the fact that models
are essential for traditional engineering projects (e.g. the construction of buildings, the
aerodynamic design of an aircraft or the construction of an electromechanical engine),
several researchers and industry professionals advocate that models produced during the
design of computational systems must play the main role during the whole design cycle
(SELIC; MOTUS, 2003b).

The so-called Model-Driven Engineering (MDE) (SELIC, 2003a; SCHMIDT, 2006)
defines that the design should mainly focus on the creation ofgraphical models instead
of writing source code for computer programs. Hence, modelsare the most important
artifacts in the design of computational systems because they are easier to specify, un-
derstand and maintain. Besides, they are less sensitive to changes in the implementation
technology, in other words, models are intended to be platform and technology inde-
pendent. To support this idea, a fundamental premise of MDE is that system imple-
mentation (e.g. source code) must be automatically generated from models, avoiding
discrepancies among models and the actual system implementation. One example of
standardization for MDE is the Model-Driven Architecture (MDA) (OMG, 2004), which
offers a conceptual framework and a set of standards to be used in the development of
general-purpose systems, and proposes the use of UML for thespecification modeling
language. The transition from a Platform Independent Model(PIM) to a Platform Spe-
cific Model (PSM) is performed through standardized models transformations specified
using the MOF Query/View/ Transformation (QVT) language (OMG, 2008a). However,
in spite of this infrastructure, UML and MDA do not have elements to deal with functional
and non-functional requirements in a separated manner because they only use OO-based
concepts.

Despite all work done in academy, the use of high-level models/languages is not a
common practice in current industry projects as can be seen in figure 1.3 also from (NASS,
2008). Analyzing together figures 1.2 and 1.3, one can infer that designers want to use
higher abstractions levels during design, however the mostimportant used tools are those
that deal with low-level artifacts, such as compilers or debuggers. One possible reason
for this situation is due to the fact that low level tools, such as compilers and debuggers,
are much more mature. Other relevant reason for this situation might also be that cur-
rent available tools and methodologies do not fulfill the (critical) needs of actual designs.

24

Figure 1.3: Most important tools in embedded system design (NASS, 2008)

Therefore, it is clear that there is a need for improved toolssupporting high-level tech-
niques. Tool support is key to allow the use of MDE to cope withthe complexity of the
embedded systems design (SELIC; MOTUS, 2003b).

1.2 Goals and Scope Delimitation

Considering the mentioned shortcomings in the design of distributed embedded real-
time systems, this research work has looked for solutions for the following problems:
(i) manage the complexity to handle requirement of distributedembedded real-time sys-
tem;(ii) support for separation of concerns in the handling of functional and non-functional
requirements;(iii) the use of a common language to describe the initial specification (i.e.
model) of system structure and behavior; and(iv) productivity increasing through an au-
tomatic transition from initial design phase, e.g. modeling, to further phases, e.g. imple-
mentation.

As embedded systems are used in very distinct application domains, applying systems
with a broad range of different characteristics and capabilities, this work restricts itself to
distributed embedded real-time systems applied to automation systems, such as industrial
and home automation, or electronic control systems of vehicles and aircrafts. Thus, to
overcome the mentioned problems in the design of such applications, this work advocate
the increase of the abstraction level by using models as the main artifact used during the
whole design. As a result, the produced high-level models can be successively refined
until a system implementation is obtained.

To specify models for distributed embedded real-time systems, this work recommends
the use of a standard modeling language, such as UML. Its diagrams are used to describe
functional requirements, as well as those requirements related to the Quality of Service
(QoS) required/offered from/by system elements, which arespecified using stereotypes
from the recently approved UML Profile forModeling and Analysis of Real-time and

25

Embedded Systems(MARTE) (OMG, 2008b). Furthermore, it is proposed to handlenon-
functional requirements already in earlier phases, separating these requirements handling
from functional ones. Thus, to handle non-functional requirements, this work proposes
that AO concepts must be applied combined with UML models. Toachieve such goal,
aspects must deal with real-time, performance and distribution requirements, as well as
energy consumption, memory and area usage. It is important to highlight that there are
other equally important requirements in the domain of distributed embedded real-time
systems, e.g. fault tolerance, which are complex enough (bythemselves) to be dealt
within the scope of other thesis. Consequently, for scope delimitation, this work does not
consider them.

According to Selic (2003a), models can be considered only project’s documentation
for requirements (functional and non-functional) of distributed embedded real-time sys-
tems. In such situation, designers might consider their real value too small because mod-
els may easily diverge from the system real implementation.To overcome this problem,
a fundamental premise of MDE is to have adequate tool supportto allow automatic gen-
eration of system implementation from their high level models. Hence, other goal of this
work is to provide a tool capable of generating code from UML’s structural and behavioral
diagrams. Moreover, it must be aware of AO concepts specifiedwithin the model, i.e. it
must identify the used aspects, as well as the functional elements affected by them. The
adaptation performed by the aspect must be woven in the generated source code. Addi-
tionally, this code generation tool must be flexible, i.e. itmust not constraint the generated
source code to a specific target language. To achieve these goals, the tool can use scripts
to generate code fragments for each element in the UML model.

According to the motivations described until here, this work has the following goals:

• To propose a design flow, which allows the use of MDE and AOD techniques,
improving and increasing the reuse of previously developedand tested artifacts
(e.g. models, libraries, mapping rules, code generation scripts, etc.);

• To advocate for the use of UML diagrams decorated with MARTE profile stereo-
types in combination with aspects (from a high-level aspects framework) for the
specification of the structure, behavior and non-functional requirements handling
in the design of distributed embedded real-time systems. This will put together
initial system specification using a well-know and acceptedstandard, which helps
in information exchange about system characteristics and expected functionalities
among design teams (i.e. hardware and software teams);

• To improve separation of concerns in the handling of requirements, i.e. functional
requirements are handled apart from the non-functional ones;

• To propose modeling guidelines, as well as UML diagram interpretation semantics
to eliminate or at least decrease the ambiguity in diagrams interpretation. This al-
lows the transformation from the UML meta-model to a defined meta-model, whose
semantics is more suitable for code generation due to its accuracy in the specifica-
tion of system structure and behavior;

• To create a tool for code generation to support the automatictransition from spec-
ification to implementation phases. The tool must support means for specifying
mapping rules to transform model elements into source code constructions in the
chosen target language. The generated code must be as complete as possible, mean-
ing that the code should not contain only class skeletons;

26

• Mapping rules must allow their further reuse. In other words, they must be de-
scribed in such a way that it might be possible to create a repository of created
mapping rules. However, it is important to highlight that the definition of such
repository is out of the scope of this Ph.D. thesis;

• To evaluate - using software engineering metrics - if the proposed approach and, in
particular, the use of AO positively impacts in the system specification, and also in
the automatic generation of source code.

1.3 Thesis Contributions

This work was developed within the context of the SEEP project (SEEP stands for
Platform-based Embedded Systemsor “Sistemas Elerônicos Embarcados baseados em
Plataformas”). Following SEEP ideas, the main goal is to provide mechanisms to manage
the increasing design complexity by using MDE techniques and separation of concerns
in the handling of functional and non-functional requirements. Therefore, this work’s
contributions are as follow:

Use of MDE techniques in embedded systems design:The use of models to assist in
the development of software for general purpose computes isnot a new research topic. In
addition, there are already some works on the “model-drivenengineering” topic propos-
ing solutions to some problems. However, the employment of MDE in the design of
distributed embedded real-time systems can be considered arecent research topic, which
still has several gaps to be fulfilled. Thus, it can be stated that the study and assess-
ment of model-driven methodologies and techniques appliedto the design of distributed
embedded real-time systems is a relevant contribution.

Platform independent modeling of embedded systems:This work suggests the use
of UML and the recently approved MARTE profile together with concepts of AOD. This
can also be considered a contribution in the design of distributed embedded real-time
systems because they allow initial system description without considering its implemen-
tation. In other words, it is possible to specify structure,behavior, as well as crosscutting
non-functional requirements without concerning if an element will be implemented as
software or hardware, allowing a unified system specification that can be understood by
both software and hardware design teams.

Handling of crosscutting non-functional requirements in embedded systems design:
Other remarkable contribution is the aspect framework created to handle non-functional
requirements of distributed embedded real-time systems domain. To the best of our
knowledge, up to now there is no work in the literature reporting the creation/ devel-
opment of a high-level aspects framework that can be used in both modeling and imple-
mentation levels.

Tool support for the proposed design flow: The code generation tool proposed in this
work is also an important contribution because it provides an automatic transition from
the modeling phase to the implementation of distribution embedded real-time systems.
Again, to the best of our knowledge, there is no other tool providing the same flexibility
allowed in the specification of the mapping rules scripts. These small scripts concentrate
only on one or few model elements, which facilitates the specification of mapping rules.
It is important to highlight that it is expected that the toolcould also generate HDL code
from the UML model. Other functionality provided by this tool is the generation of plat-

27

form configuration, in term of either configuration files, or platform source code tailoring.
In other words, besides generating configuration files, the target platform can be config-
ured by means of removing source code lines (related to unused platform services) from
its source code files.

Tool support for aspects weaving: A very important contribution of the code genera-
tion tool is the ability to weave aspects adaptations. It is possible to modify the generated
code fragment using aspects (i.e. aspects weaving in the source code), as well as modify
the high-level model (i.e. aspects model weaving). Such feature was not found in any
tool available in industry or academy. Moreover, aspects specified within the UML model
steer the platform customization, meaning that platform services are included depending
on which aspect have been specified in the model.

1.4 Text Organization

The remainder of this text is structured as follows:Chapter 2presents an overview
on the basic concepts used in this text. It includes key concepts related to embedded
real-time systems, as well as requirements present in this domain; concepts of OO and
AO paradigm; MDE and platform-based approaches, and also a short overview of the
MARTE UML profile.

In Chapter 3, the state of the art is discussed. Following topics are covered: design
and modeling approaches for embedded systems; handling of embedded systems require-
ments; and code generation techniques.

Chapter 4presents the design flow proposed in this work, namedAspect-oriented
Model-Driven Engineering for Real-Time systems(AMoDE-RT), which supports activi-
ties from requirements analysis to system realization using a target platform.

Chapter 5discusses guidelines for using UML to specify system structure and be-
havior. It also introduces an aspects framework, namedDistributed Embedded Real-time
Aspects Framework(DERAF), which provides aspects with high-level semanticsto spec-
ify the handling of crosscutting non-functional requirements within UML models.

Chapter 6 introduces the code generation tool named GenERTiCA (Generation of
Embedded Real-Time Code based on Aspects) created to support the AMoDE-RT design
flow. Further, this chapter presents an intermediate PIM named Distributed Embedded
Real-time Compact Specification(DERCS), discussing how to transform UML models
into DERCS models. The code generation and aspects weaving approaches used by Gen-
ERTiCA, as well as the specification of mapping rules to produce source code from the
UML model, are also discussed in this chapter.

Three case studies, that illustrate the proposed approach and GenERTiCA usage, are
presented inChapter 7. The case studies are: the movement control of an Unmanned
Aerial Vehicle (UAV), the movement control of a wheelchair,and the control systems for
an automated packing system. Additionally, this chapter provides an evaluation of the
AMoDE-RT approach based on a set of software engineering metrics.

Finalizing,Chapter 8presents the conclusions of this work, and also draws directions
for future work.

28

29

2 THEORETICAL BACKGROUND

2.1 Introduction

This chapter presents some concepts used within the contextof this text. The goal here
is to provide basic understanding and some references for relevant concepts addressed
in this text. For a more detailed discussion on them, interested readers are referred to
text books and tutorials such as: (BURNS; WELLINGS, 1997), (LAPLANTE, 1997),
(CARRO; WAGNER, 2003), (WOLF, 2001), (SOMMERVILLE, 2001),(BOOCH, 1994),
(FILMAN et al., 2005), (LAMPORT, 1978), (TANENBAUM; STEEN,2007) and (STAHL;
VOELTER, 2006).

2.2 Distributed Embedded Real-Time Systems

2.2.1 Introduction

Distributed Embedded Real-Time Systems can be defined as systems that must pre-
cisely meet time requirements in spite of their running tasks be distributed in different pro-
cessing units, having few available physical resources (TANENBAUM; STEEN, 2007).
They must provide temporal predictability while performing multiple concurrent and
communicating tasks, which are deployed on different resource constrained processing
units (sometimes physically distributed over different locations), e.g. processing power,
amount of available memory, or energy consumption restrictions. In the sequence, details
on each characteristic that defines a distributed embedded real-time system are presented.

2.2.2 Real-Time Systems

Real-time systems are a special kind of computational systems on which the correct
processing of an algorithm is not enough to ensure correct system behavior, i.e. the algo-
rithm worst case execution time must be predictable, as wellas algorithm results must be
delivered in predefined time instants, meeting the application’s time requirements. Thus,
real-time systems are considered deterministic systems (LAPLANTE, 1997). The ability
to process data in milliseconds or even in nanoseconds does not define a computational
system as a real-time system; what really matters is that system response times are limited
and predictable. Stankovic (1988) presents several misconceptions and misunderstand-
ings on real-time systems and their definition.

When considering the accomplishment of real-time requirements, real-time systems
can be classified in two categories:Hard Real-Time SystemandSoft Real-Time System.
The former represents systems that will have critical failures, which can cause catas-
trophic losses, if any time constraint is not fulfilled (BURNS; WELLINGS, 1997). On

30

the other hand, the later represents systems that can continue their execution, in a de-
graded operation mode, even when some time requirements aremissed. Hard real-time
systems are commonly found interacting with the environment, such as embedded control
systems. For example, a car’s engine supervisory system is an embedded hard real-time
system because a late response can damage the engine and the passenger. Consequently,
such situation can lead to losses of car’s occupants’ lives.Other examples are medical
devices or industrial control systems, whose malfunctioning can cause, respectively, life
and monetary losses. Soft real-time systems are commonly applied in systems that re-
ceive data streams that need to be processed. The processed result is than delivered to
other components or systems connected to the soft-real timesystem. As an example,
entertainment audio/video broadcast systems can be mentioned. In this system, the not
fulfillment of time requirements decreases the video and audio quality but the system
remains operating.

Furthermore, real-time systems domain has some important concepts that should be
highlighted (BURNS; WELLINGS, 1997):

• Deadline is the maximal time instant at which a task must provide its results, i.e.
the system has to finish execution of a given algorithm withina maximal time limit.
Deadlines are key issues in hard real-time systems.

• Worst Case Execution Time(WCET) is the maximal time spent for an algorithm
to finish its execution and deliver the computed results.

• Period is the time interval between two consecutive executions of an activity.

• Predictability is a key characteristic for real-time systems because theirbehavior
must be know. Latency and jitter must be guaranteed within a known maximal
time interval. Latencyindicates the time spent from the stimulus detection until
the execution of the code responsible to handle such stimulus. Jitter is a random
variation in the timing of a signal, especially a clock.

• Exception handling can be performed to overcome the problems caused by dead-
lines misses, or unexpected latency or jitter. Hence, corrective actions are per-
formed in order to alleviate or even to eliminate the effectsof a temporal failure.

2.2.3 Embedded Systems

There are many definitions for embedded systems, some are contradictory while oth-
ers are complementary (VASSILIADIS et al., 2005). However,there is an important
characteristic that is shared among all definitions and allows separating embedded sys-
tems from general-purpose systems: the ability to perform specialized tasks for specific
purposes within the context of a larger system. Usually, these specific purpose systems
have less processing power than general-purpose systems (WOLF, 2001).

The current processors market share indicates that more than 90% of the sold pro-
cessors are used in embedded systems (VASSILIADIS et al., 2005). Almost all modern
electronic devices, from toys and cell phones to vehicles orindustrial embedded control
systems, use microprocessors or microcontrollers to deliver their expected functionality.
As can be noted, the proportion between the usage of general-purpose processors and
embedded processors is huge.

31

Usually, embedded systems should use processors with lowerenergy consumption,
given that in many application they impact in the processingpower delivered to the soft-
ware application. Embedded systems are often built with limited memory resources due
to other constraints such as components cost, physical size, or energy consumption, re-
quiring very optimized operating systems or even their elimination. Hence such operating
system must provide only the amount of services required by the application software. In
spite of all these constraints, the requirements of the target application lead the decision
on which processor or memory amount to use, or if the systems will use an operating
system (CARRO; WAGNER, 2003).

Many embedded systems are developed assuming they must be used for a long period
of time without maintenance. The fact is that the intention is to produce an embedded sys-
tem for a given application domain, letting it operate autonomously for its entire expected
lifetime (WOLF, 2001). For that reason, many embedded systems do not own mechanical
parts, e.g. fans, magnetic disks, etc. These sorts of components are affected by natural
harm caused by their use, thus these components need to be replaced or fixed. Besides,
there are alternative components that provide the same functionality, e.g. ROM and flash
memory components can store both the operating system and application software.

2.2.4 Distributed Systems

Distributed systems are systems composed by a collection ofprocessors with their
own local memory, i.e. they do not share memory. These processors are usually spatially
distributed and are connected through a communication infrastructure. In a distributed
system, the goal is to decentralize processing among the processors in a transparent way
without given indications of this split to the final user, forwhich the system does not
appear to be distributed (TANENBAUM; STEEN, 2007).

Besides providing cooperation among multiple processors aiming at increasing the
whole processing power, distributed systems are also applied in applications requiring
decentralization due to special needs, such as steer-by-wire systems, which have inter-
connected sensors and actuators deployed in each wheel and also in the steering wheel in
order to improve the overall performance of the system.

The most remarkable characteristics of distributed systems are related to their techni-
cal issues (SCHMIDT; LEVINE; MUNGEE, 1998):

• The architecture can adopt the following approaches:(i) client-server;(ii) publisher-
subscriber;(iii) peer-to-peer;

• There is a mechanism to control how, when and where concurrent processes should
execute;

• There is a mechanism to control concurrent access to shared resources. In other
words, concurrent processes should synchronize their access to such shared re-
sources in order to guarantee data integrity; and

• As processes communicate with each other, there is a communication control mech-
anism. It should allow correct messages delivery to their destinations.

2.3 Requirements in Embedded Systems Domain

In software industry, there is no common definition on what the termrequirementre-
ally means (SOMMERVILLE, 2001). There are two extremes: on one hand, it represents

32

high level and abstract statements of services provided by the system or constraints that
it must fulfill; on the other hand, it represents detailed, mathematically formal definition
of system functions. According to Sommerville (2001), there is different level of system
specification, which are intended to different types of readers:

• User requirementsare statements, usually in natural language, for client andcon-
tract managers that do not have a detailed technical knowledge;

• System requirementsare detailed statements on system services and constraints.
The system requirements document is intended to senior technical staff and project
managers;

• Software design specificationis an abstract definition of the software design, which
is the base for the following design and implementation phases. Thus, it is intended
to software engineers who will, in fact, develop the system.

In this text, the termrequirementsis used to refer to system requirements. An impor-
tant sub-classification is the separation of system requirements in:

• Functional requirements specify services provided by a system, along with how
it should react to certain inputs, and how it should behave inparticular situations.
Functional requirements specification must be complete (i.e. all services required
by users should be provided) and consistent (i.e. requirements should not have
contradictions). For large and complex systems, it is almost unfeasible to achieve
functional requirements consistency and completeness (SOMMERVILLE, 2001);

• Non-functional requirements, as the name suggests, are not concerned with func-
tions delivered by the system. Rather, they are constraintson the services or func-
tions, or supporting elements that assist the execution of such services and functions
(CONROW; SHISHIDO, 1997);

• Domain requirementsare obtained from characteristics of the target domain rather
than user needs. They can be functional or non-functional, representing the funda-
mentals of the application domain, e.g. a requirement for the deceleration of a train
in an automated train protection system.

Concerning the design of distributed embedded real-time systems, non-functional re-
quirements are as important as functional requirements. Inembedded systems domain,
it is not uncommon to have non-functional requirements thatare (in some sense) contra-
dictory, such as for instance performance and energy consumption. Thus, non-functional
requirements must be classified in order to help in their handling during design. Even
though not particularly intended to distributed embedded real-time system, a good ex-
ample of non-functional requirements classification is theone presented by Bertagnolli
(2004), which describes, in details, a classification for non-functional requirements re-
lated to fault-tolerant systems. As one can suppose, some ofthese requirements can
be found in the distributed embedded real-time system domain. However, according to
Freitas (2007), there are other important non-functional requirements that are commonly
found in this domain, as follows:(i) time; (ii) performance;(iii) distribution; and(iv) em-
bedded issues. The classification of such requirements is shown in figure 2.1.

Time issues, such as real-time constraints and characteristics, are depicted under the
time branch, which was also divided in two sub-branches:

33

Non-Functional

Requirements

Generic Specific

Time

Timing

Deadline

Period

Cost

Release Time

Activation Latency

Start and End

Precision

Jitter

Tolerated Delay

Laxity

Freshness

Resolution

Drift

Performance
Response Time

Throughput

Distribution

Tasks Allocation

Hosts

Communication

Synchronization

Embedded

Area

Power Consumption

Total Energy

Memory Allocation

Figure 2.1: Non-Functional Requirements Classification (FREITAS, 2007)

• Timing: in this branch, it can be seen typical elements of a real-timesystem such as
deadlines, activation period and cost (i.e. WCET); these were discussed in section
2.2.2. However, there are other important requirements:

– Release timerepresents the moment at which an activity is ready to be exe-
cuted;

– Activation latencyis the delay to start an activity execution, i.e. differencebe-
tween the instant at which an activity became ready to execute and the instant
of the beginning of its real execution;

– Start is the time instant at which an activity begins its execution; and
– End is the time instant at which an activity finishes its execution.

• Precision: under this sub-branch, one can see requirements related to QoS in the
accomplishment of real-time constraints, such as jitter that was also discussed in
section 2.2.2. Following, there are other requirements:

– Tolerated delayrepresents the maximum latency the can be admitted;
– Laxity is obtained by calculating the deadline minus the WCET of an activity,

representing this activity’s maximum idleness.
– Freshnessis the time interval on which the associated data is considered valid;
– Resolutiondefines the lowest time granularity (e.g. nanoseconds, millisec-

onds, etc.) in which the system can operate.
– Drift represents deviation of system’s logical time from physical time.

Non-functional requirements under theperformance branch represent constraints re-
lated to both time and distribution non-functional requirements. For this reason, they
received a separated classification (FREITAS, 2007). Basically, throughputrefers to the
rate an element can deliver its results, be them results froman algorithm execution or mes-
sages sent/received.Response timerepresents the delay after which the system delivers a
result, which depends on the execution of both local and remote activities.

The classification related to distribution non-functionalrequirements is not complete.
Figure 2.1 show only the most relevant ones. As can be seen in thedistribution branch,

34

there are four most common non-functional requirements:

• Task allocationrefers to deployment of activities on different processingunits that
compose the distributed embedded real-time system. Associated with other non-
functional requirements, it is also related with allocation such activities in nodes
with different capabilities, aiming at meeting real-time constraints;

• Hostsis related to node monitoring. The status of all nodes, whichparticipate in
the accomplishment of system activities, need to be regularly checked, in oder to
evaluate if they are working as expected. Usually, it is associated with the task
allocation requirement;

• Communicationis associated with communication features, such as networktopol-
ogy, connection type among nodes (e.g. connection-oriented, connectionless), if
communication should use an acknowledgment mechanism or not, if messages
should be encrypted or not, among other communication characteristics;

• Synchronizationdefines policies for concurrent access to shared resources.This
affects the form concurrent activities perform their actions, which, depending on
the adopted policy, can affect the overall system performance.

The last branch is related toembedded non-functional requirements. These require-
ments are closer related to design constraints, i.e. they represent constraints that can in-
fluence directly in the performance, and hence, the fulfillment of other constraints. They
were divided in three features:

• Area constrains the system physical size and/or the amount of hardware.This re-
quirement can demand monitoring and management activitiesin order to optimize
the usage of system hardware, or even migration of activities from software to hard-
ware, and vice-versa;

• Energyrequirements constrain system runtime in terms of energy and power con-
sumption. Such constraints have more impact in distributedembedded real-time
systems that use batteries as power supply, due to the fact that the system stops
if batteries run out of charge. Additionally, power dissipation can also be a prob-
lem in portable systems due to devices overheating. Such issues must be carefully
considered during design;

• Memorynon-functional requirements, similar to the previous ones, constrain the
memory usage during system runtime. They can also demand monitoring and man-
agement activities in order to improve their usage.

It is important to highlight that requirements in this classification are not independent
from each other, meaning they have conflicting aims, e.g. task migrationvs. processing
power or remaining energy. Moreover, some of them are related to system-wide charac-
teristics and constraints, while others have a more limitedscope. A detailed discussion
on requirements analysis is out of the scope of this text. Interested readers can refer to
(FREITAS, 2007), in order to obtain a detailed discussion.

35

2.4 Embedded Systems Design Approaches

2.4.1 Introduction

There are several approaches to design embedded systems. They vary from ad-hoc
design flows to more formal and rigorous methodologies. In the same way, there are
several different abstractions used to specify system architecture and expected behavior.
Looking at the literature, there are approaches that see thesystem as a set of data struc-
tures, operations and functions, while others try to encapsulate them in single elements.
Some of them use rigorous mathematical formulations while others use more informal
specifications, which are most commonly found in current industry practices, specially in
initial design phases (CHEN et al., 2003).

Current practices for designing distributed embedded real-time systems deal, in an
acceptable form, with some problems that appear during design. However, the increas-
ing number of stringent requirements (e.g. energy consumption, performance, portability,
dependability, and time-to-market) demands new methodologies, tools and abstractions
to assist designer to cope with the growing design complexity. According to Carro and
Wagner (2003), embedded systems are becoming more softwareintensive, thus innova-
tion depends more on software than on hardware. The design ofembedded software
should essentially follow some of the principles of hardware design, i.e. reuse of previ-
ously developed and validated/certified source code.

A design flow consists in capturing requirements at a well defined abstraction level
that allows several refinements towards an efficient realization of the specified system
(BALARIN et al., 2003). Sometimes, these steps from requirements to implementation
are not as smooth as designers expected. Requirements must be translated to a system
level architecture, which represents the conceptual structure and expected system func-
tional behavior. Following, this architecture is translated into an implementation, defining
the system logical organization. At the last step, implementation is realized as the system
physical structure (VASSILIADIS et al., 2005).

Therefore, it is important to use a suitable abstraction when designing distributed em-
bedded real-time systems. As previously stated, software is becoming more important in
such design. Hence, it makes sense to use approaches from thesoftware engineering do-
main, even though the project of embedded systems comprehends hardware and software
designs, in order to close the gap presented in figure 1.1. In this context, approaches such
as Object-Orientation (OO) and Aspect-Orientation (AO) appear as interesting options.
The following sections will present more details on each paradigm.

2.4.2 Object-Oriented Paradigm

The object-oriented paradigm allows designers to reason onthe problem in term of
entities instead of operations and functions. In fact, these entities in OO are calledobjects,
which have their own local state, and operations that can change this state. In other
words, objects encapsulate data and behavior to manipulatethese data (BOOCH, 1994).
Consequently, a system is composed of several interacting objects that maintain their own
local state, while providing operations on this information. The direct access to object’s
data is not allowed to other objects, i.e. there is no external access to such information,
only object’s operations can access it.

Using OO based system analysis, classes and objects are extracted from functional
requirements and non-functional ones. Further, in OO design, these objects and classes
are refined by including additional details into them. If needed, new classes can be cre-

36

ated. During modeling design phase, designers must identify data types to represent ob-
ject’s state as well as operations that make objects behave as expected (SOMMERVILLE,
2001).

According to Armstrong (2006), despite the fact that OO concepts were introduce
in late 1960s with Simula programming language (DAHL; NYGAARD, 1966), there is
no thoroughly understanding on the fundamental concepts that define the OO approach.
In that work, she has identified the following concepts as thequarks1 of object-oriented
paradigm:

• Classis a description of structural characteristics (attributes) and behavior (meth-
ods) shared by one or more similar objects;

• Object is an individual or identifiable element in a OO system. It canrepresent
either a real or abstract system element. As mentioned it contains data representing
its state in a given time instant;

• Inheritance is the mechanism that allows characteristics to be reused among classes,
i.e. attributes and behavior (methods) of one class can be included in other classes;

• Encapsulation is a technique to restrict the access to data and behavior of classes
and objects through a pre-defined set of messages that objects of a given class can
receive;

• Abstraction is the act of creating classes to simplify the problem(s) by means of
using different levels of details;

• Attribute is an remarkable characteristic of an elements class. The set of attributes
represent a class’ structure;

• Method represents object’s behavior. It is a way to access, set or manipulate ob-
ject’s information;

• Message passingis the process through which objects can exchange information
or trigger the execution of a behavior of the message’s receiver object;

• Polymorphism is the ability of different classes (from the same hierarchy) to re-
spond to the same message through a different behavior, which is more appropriate
to each class;

• Instantiation is the act of creating objects from a given class;

• Relationship are associations2 among classes or objects. There are the following
types of relationships:

– Plain associationsindicate that classes or objects are related through message
passing, i.e. they do not represent any structural characteristic, even though
the implementation could require an attribute of the same type as the other
association end, in order to respect theencapsulation

1A quark is a fundamental particle that represents the smallest known unit of matter. Hence they are the
basic building blocks for everything in the universe (GELL-MANN, 1995).

2It is important to mention thatinheritanceis also considered a relationship among classes.

37

– Aggregationsindicate that other classes or objects make part of the structure
of the aggregator class/object. Parts can exist without theaggregator element;

– Compositionsrepresents a stronger aggregation relationship, where thein-
volved classes or objects are dependent from each other, i.e. there is no com-
posite without its parts and vice-versa.

2.4.3 Aspect-Oriented Paradigm

Before starting the description of concepts important in the aspect-oriented paradigm,
it is important to highlight some more fundamental conceptsfrom software engineering.
Such concepts were extracted mainly from (CLARKE; BANIASSAD, 2005), (ISO/IEC,
2007) and (SOMMERVILLE, 2001)

• Concerns, according to ISO/IEC (2007), are “. . . interests which pertain to the sys-
tem’s development, its operation or any other aspects that are critical or otherwise
important to one or mode stakeholders. . . ”. Concerns are related to both functional
and non-functional requirements;

• Separation of concernsmeans to deal with each concern in isolation, in order to
allow the creation of modular artifacts that handle them. However, in the literature
of embedded systems, it is usual to find the termseparation of concernsmeaning
the separation of functional and architectural concerns, as well as the separation
of computation and communication. This text uses this term as the separation of
functional concerns from non-functional ones;

• Modularization means the ability to group or partition artifacts into entities called
Modules(i.e. an abstraction unit in the adopted language) that ideally must be
loosely coupled and highly cohesive;

• Composition is the ability of integrating several modular artifacts into a coherent
whole;

• Decompositionis the division of a larger problem into smaller ones, which may be
handled apart from each other;

• Tangling indicates that multiple concerns are mixed together in one module;

• Scattering indicates that one concern is spread over multiple modules;

• Crosscutting represents the occurrence oftangling and scatteringthat happens
when the selected decomposition is unable to modularize concerns effectively;

• Crosscutting concernsare concerns that cannot be mapped to unique modules,
thus leading to tangling and scattering. Non-functional requirements can be viewed
as crosscutting concerns, because they are usually intermixed with functional re-
quirements inside several modules. Figure 2.2 depict the crosscutting concerns
related to transaction management presented in (CLARKE; BANIASSAD, 2005).

Some authors, such as (CLARKE; BANIASSAD, 2005), state thatAO is the natural
evolution of OO. Traditional approaches like OO do not deal with crosscutting concerns
in a suitable way. In other words, OO decomposition is unableto encapsulate crosscutting
non-functional requirements, leading to tangling and scattering in the handling of these

38

Figure 2.2: Scattering: same code in multiple places (CLARKE; BANIASSAD, 2005)

requirements. AO analysis and design have emerged from theaspect-oriented program-
ming(KICZALES et al., 1997). According to Clarke and Baniassad (2005) there are two
different approaches in AO, which follow the software composition presented in (HAR-
RISON; OSSHER; TARR, 2002):(i) asymmetric, which separates aspects from the core
functionality; and(ii) symmetric, which treats separated concerns at the same hierarchy
level, i.e. aspects and base concerns have the same importance. This work follows the
asymmetric approach for AOD.

Following, the basic AO concepts, which are based in (SCHAUERHUBER et al.,
2006) and (BERG; CONEJERO; CHITCHYAN, 2005), are presented. These concepts
have a broader scope compared with those presented in (KICZALES et al., 1997), which
are closer to programming languages than to general concepts. This work is based on the
following AO concepts:

• Aspectsrepresent units of modularization for crosscutting concerns, i.e. they can
encapsulate into a single entity all structural and/or behavioral element of a cross-
cutting concern;

• Adaptations specify how concerns are adapted (i.e. enhanced, replaced,or even
deleted) when an aspect affects them. There are two kinds of adaptations:

– Structural adaptationsrepresent modifications in the structure of a concern,
e.g. adding a new attribute or method to a class, or modifyingthe formal
parameters list or the return type of a method;

– Behavioral adaptationsspecify changes in the behavior of a concern, e.g. in-
serting a specific behavior before or after a message passing, or replacing an
entire behavior for another one;

• Aspects weavingis the composition process that spreads aspects adaptations in
affected concerns. In other words, aspect adaptations are applied at specific join
points of the affected concerns;

• Join points are well-defined places in the structure or behavior of concerns where
an aspect can perform adaptations;

• Pointcuts are links between aspects adaptations and join points, i.e.they are spec-
ified within an aspect to indicate the places where the aspectmust perform a given

39

adaptation. Usually, this relationship betweenadaptationandjoin pointsis one-to-
many, that means, oneadaptationto one or manyjoin points. In addition, pointcuts
also specify arelative positionthat indicates if the adaptation should be applied
before, after or aroundthe join point.

2.4.4 Evaluating the Design with Metrics

2.4.4.1 Introduction

A high quality systems is the goal of all designs. Hence, it isimportant to have mech-
anisms to allow the assessment of a design in order to verify its quality in terms of a
given set of characteristics. Such mechanisms should provide quantitative information
to permit a more precise evaluation (SOMMERVILLE, 2001). Particularly, considering
distributed embedded real-time systems design, measurement mechanisms must derive
numeric values for some attributes of both hardware and software designs. As previously
stated, the design of distributed embedded real-time systems is becoming software dom-
inated, shifting the costs in development, validation and test from hardware to software.
For this reason, despite the importance of metrics extraction for hardware designs, this
section will only discuss software metrics.

In the software engineering literature, there are several metrics and evaluation frame-
works to extract quantitative information from software. Each of these works aims at the
evaluation of different system characteristics. This textpresents a brief description of two
of these works:(i) the C&K metrics suite; and(ii) the assessment framework for AO
systems from Sant’anna et al. (2003).

2.4.4.2 C&K Metrics Suite

The C&K metrics suite (CHIDAMBER; KEMERER, 1994) was proposed to measure
the main factors affecting OO software quality, i.e. abstraction, encapsulation, and inheri-
tance. These metrics have been used in many works, includingthe evaluation of software
for NASA’s aerospace systems (ROSENBERG, 2003). C&K metrics are composed from
six measurements:

• Weighted Methods per Class (WMC)counts the number of methods implemented
within a class;

• Depth of Inheritance Tree (DIT) indicates the maximum depth in the classes hi-
erarchy tree, i.e. the number of levels from a class to the inheritance tree top;

• Number of Children (NOC) represents the number of immediate sub-classes that
have the same parent class;

• Coupling Between Object Classes (CBO)counts the number of other classes as-
sociated to a given class;

• Response for a Class (RFC)indicates the number of methods that can be poten-
tially invoked in response to a message received by an objectof a given class;

• Lack of Cohesion in Methods (LCOM)uses the degree of similarity among method
pairs of a class. It uses the set of attributes, which are shared between two methods,
to calculate class cohesion. It counts the number of empty sets (i.e. the number of
method pairs that do not share the same attributes set) minusthe number of non-
empty sets (i.e. number of method pairs that share at least one attribute).

40

Table 2.1: Metrics influence in quality attributes

WMC DIT NOC CBO RFC LCOM
Comprehension X X X X
Maintainability X X X
Reusability X X X X X
Testability X X X X

Only the numbers provided by the measurement of system characteristics are not
enough to assess the quality of a design. These metrics should be related with each other
in order to allow their analysis, and hence, to determine design quality. Table 2.1 repre-
sents the relationship among C&K metrics and quality attributes that are being evaluated.
Marked cells indicate that a metric influences the quality attribute.

Although the goal is usually to minimize metrics values, it should be highlighted
that DIT and NOC metrics do not follow this goal. A higher DIT increases complexity,
however it improves reuse. Likewise, a higher NOC leads to anincrease in the effort for
testing (because more classes should be tested) but also improves reuse. Therefore, it is
not useful to read metric values or quality attributes in isolation. They should be analyzed
along with other metrics or quality attributes in order to assess which are more important
to design goals, and consequently, to make trade-offs to achieve the desired quality.

2.4.4.3 Assessment Framework for AO systems

Sant’anna et al. (2003) have proposed an extension for C&K metrics to allow the
evaluation of OO and AO systems. Additionally, an assessment framework was proposed
to assist in the analysis of metrics values extracted from the system. To allow the use
of the same metrics set to evaluate systems developed using different paradigms, it is
necessary to homogenize the way to obtain these metrics values in order to take into
account abstractions provided by such paradigms. Thus, Sant’anna et al. (2003) treat
aspects, classes and interfaces ascomponents, while methods and aspects adaptations are
calledoperations. Following, the metrics set is presented:

• Separation of Concerns metricsmeasure the ability to encapsulate the handling
of a concern. They are divided in the following metrics:

– Concern Diffusion over Components (CDC)counts the number of components
(i.e. aspects or classes) engaged in the handling of a certain concern;

– Concern Diffusion over Operations (CDO)counts the number of operations
(i.e. methods or aspect adaptations) related to the handling of a concern;

– Concern Diffusion over LOC (CDLOC)counts the number of transition points
for each concern in the source code, i.e. code lines are divided in fragments
(where each fragment handles only one concern), thus transitions from one
fragment to another are counted;

• Coupling metrics measure how dependent an element is regarding other system’s
elements. Two metrics compose this group:

– Coupling between Components (CBC)is an extension to CBO from C&K
metrics. It counts the number of other components that are coupled with a
given component. For classes, CBC is similar to CBO, howeverfor aspects

41

Quality Factors Internal Attributes Metrics

Reusability

Understandability

Flexibility

Size

Separation

of Concerns

Coupling

Cohesion

CBC

DIT

LCOO

CDC

CDO

CDLOC

VS

LOC

NOA

WOC

Maintainability

Figure 2.3: Quality model proposed in Sant’anna et al. (2003)

CBC counts other classes that are specified within adaptations. If a component
is coupled more than once with other component, it is countedonly once;

– Depth of Inheritance Tree (DIT)is an extension to DIT from C&K metrics by
means of including the aspects inheritance tree;

• Cohesion metrics. Cohesion is the closeness measure for the relationship of a
component with its internal elements. It is translated by the following metric:

– Lack of Cohesion in Operations (LCOO)is similar to LCOM of C&K metrics.
The difference is that, in addition to methods, adaptationsare also taken into
account;

• Size metricsmeasure the size of the model:

– Vocabulary Size (VS)counts the number of system components, i.e. the amount
of classes and aspects;

– Lines of Code (LOC)counts the number of lines of code;
– Number of Attributes (NOA)counts the internal vocabulary of each compo-

nent, i.e. the number of attributes of each class or aspect;
– Weighted Operations per Component (WOC)measures the complexity of a

component in terms of its operations, i.e. the sum of complexity of each
method and/or adaptation. The measure for operation complexity is obtained
by counting the number of parameters of the operation, assuming that an oper-
ation with more parameters than another is likely to be more complex. WOC
extends C&K metrics’ WMC because WMC considers the complexity for all
method being equal to “1”;

In addition to the presented metrics set, Sant’anna et al. (2003) define relationships
among metrics to assess the quality of reusability and maintainability for a system. The
assessment framework definesqualitiesthat are divided infactors, which in turn are split
into internal attributesassociated withmetrics. Figure 2.3 shows these relationships.

Reusability and maintainability qualities of a system can be defined by two factors:
understandability and flexibility. The understandabilityfactor is obtained through separa-
tion of concerns, coupling, cohesion and size attributes. Separation of concerns directly
affects the understandability of a system, because the morelocalized concerns are, the
easier is to find and to understand them. Cohesion and coupling indicate the level of in-
dependency of one element regarding others. The more independent an element is, the
easier is to understand it. Model size impacts on understandability due to the amount of

42

elements that should be understood. For the flexibility factor, the key attributes are cou-
pling, cohesion, and separation of concerns. A component isflexible if it is independent
or almost independent of the rest of the system, meaning thatit represents a specialized
part of the system with a specific and well-defined mission. These characteristics are
translated into low coupling and high cohesion (i.e. it has alow dependence on other
parts of the system) and a good separation of concerns (i.e. the component is responsible
for a well defined mission).

2.5 Model-Driven Engineering

2.5.1 Overview

To start the discussion on Model-Driven Engineering (MDE),it should be stated what
“model” means. According to Bézivin (2005), there are many different, and also contra-
dictory, definitions for the word “model”, which depends on the context in which the term
is used. For computing related systems, a consensual definition of model was given by
Rothenberg (1989) as follows:

“. . . Modeling, in the broadest sense, is the cost-effectiveuse of
something in place of something else for some cognitive purpose.
It allows us to use something that is simpler, safer or cheaper than
reality for some purpose. A model represents reality for thegiven
purpose; the model is an abstraction of reality in the sense that it
cannot represent all aspects of reality. This allows us to deal with
the world in a simplified manner, avoiding the complexity, danger
and irreversibility of reality. . . ”

MDE is an approach that proposes the use of generative and transformational tech-
niques for computing systems design where system implementations are (semi-) auto-
matically derived from models or specifications. In such approach,modelsare used as
primary engineering artifact throughout the production lifecycle (SELIC, 2003a). Ac-
cording to Schmidt (2006), MDE is a promising approach to deal with the complexity
of platforms (which is not effectively decreased by using third-generation languages), as
well as express domain-specific concepts. Thus MDE combines:

• Domain-Specific Modeling Languages (DSML)formalize the application struc-
ture, behavior and requirements of a particular domain. Moreover, they define re-
lationships among concepts of the target domain, as well as specify key constraints
and semantics related to them. DSML are described in terms ofmeta-models, whose
elements represent concepts of the domain. Instances of meta-models represent the
use of domain concepts within a design;

• Transformation engines and generatorswhose purpose is to “understand” the
information contained in the model in order to produce (semi-)automatically other
types of artifacts, such as more detailed models, source code, simulation inputs,
components configuration files, and others. Such tools help ensure consistency
between the specification of the system and its implementation;

An already mentioned example of standard for MDE approachesis the Model-Driven
Architecture (MDA) (OMG, 2004), which was proposed by the Object Management
Group (OMG). The set of standards supporting MDA is:

43

• Meta-Objects Facility (MOF) (OMG, 2006a), a standard for meta-models speci-
fication;

• Unified Modeling Language (UML) (OMG, 2008), a general purpose modeling
language for systems specification. It was built upon MOF andrepresents ade facto
standard for modeling languages;

• MOF Query/View/Transformation (QVT) (OMG, 2008a), a standard defining
transformation languages requirements and operational mappings to allow transfor-
mations of source models into other target models that should conform to MOF
meta-models

• XML Metadata Interchange (XMI) (OMG, 2007), a standard for metadata infor-
mation exchange, specified using a XML dialect, to allow the information exchange
on MOF-based specifications, such as interchange of UML models among different
tools;

• Common Warehouse Meta-model (CWM)(OMG, 2003), which provides stan-
dard interfaces that can be used to enable interchange of warehouse and business in-
telligence metadata between warehouse tools, warehouse platforms and warehouse
metadata repositories in distributed heterogeneous environments.

The principle of MDA is to specify system functionality using aPlatform-Independent
Model (PIM) using an appropriate DSML. PIM provides a system specification that is
suitable for deriving system implementation for differenttarget platforms. Further, this
PIM is translated to aPlatform-Specific Model(PSM), which, on the other hand, provides
a platform specific viewpoint of the system, i.e. it combinesthe specifications in the PIM
with the details specifying how that system uses a particular type of platform. In order
to enable this transformation (or mapping), aPlatform Model(PM) must be provided.
The PM provides a set of technical concepts, representing the different kinds of parts that
make up a platform and the services provided by that platform. It also provides concepts
representing the different kinds of elements to be used in the specification of how platform
should be used by the application.

2.5.2 MARTE UML profile

UML was created to be a general purpose modeling language forsoftware develop-
ment. Its wide acceptance makes it an interesting option also to design distributed embed-
ded real-time systems. However, UML lacks suitable constructions/abstractions to repre-
sent specific concepts of embedded and also real-time systems domains. The first attempt
to overcome such deficiencies was the UML profile for Schedulability, Performance, and
Time (SPT) (OMG, 2005b). SPT provides concepts to allow bothmodel-based schedula-
bility and performance analysis, and also a rich framework to model time and time-related
mechanisms. However, according to Gérard and Selic (2008),experiences in applying
SPT revealed shortcomings within the profile in terms of its expressiveness for modeling
real-time and embedded phenomena. The amount of issues in the SPT profile resulted
in a Request for Proposals (RFP) for a new UML profile for specifying embedded and
real-time systems. Consequently, a new profile namedModeling and Analysis of Real-
Time and Embedded systems(MARTE) (OMG, 2008b) was proposed. It was accepted by
OMG in July 2007 and is in the finalization process.

44

MARTE Foundation

<<profile>>

Generic Resources
Modeling

(GRM)

<<profile>>

Non−Functional
Properties

(NFP)

<<profile>>

Time
<<profile>>

Allocation

MARTE Annexes

<<profile>>

Repetitive Structure
Modelin

(RSM)

<<profile>>

Value Specification
Language

(VSL)

<<modelLibrary>>

MARTE Library

Real−Time and Embedded Analysis

<<profile>>

Generic Quantitative Analysis Model
(GQAM)

<<profile>>

Schedulability
Analysis Modeling

(SAM)

<<profile>>

Performance
Analysis Modeling

(PAM)

MARTE Design Model

<<profile>>

High−Level
Application Modeling

(HLAM)

<<profile>>

Hardware Resource
Modeling

(HRM)

<<profile>>

Software Resource
Modeling

(SRM)

<<profile>>

Generic
Component Model

(GCM)
<<use>> <<use>>

<<use>>
<<use>>

Figure 2.4: Overall MARTE architecture (OMG, 2008b)

The MARTE profile addresses:(i) new elements to UML 2.x are proposed;(ii) design
of both software and hardware aspects of embedded system;(iii) broader schedulability
and performance analysis capabilities;(iv) specification of embedded systems characteris-
tics, such as memory capacity and energy consumption;(v) support to component-based
architectures;(vi) other computational paradigms, such as asynchronous, synchronous,
and timed; and(vii) compliance with the UML profile for Quality of Service and Fault
Tolerance (OMG, 2008c). An overview of MARTE profile is presented in figure 2.4.

As can be seen, MARTE profile is composed by four packages:(i) MARTE Founda-
tion; (ii) MARTE Design Model;(iii) Real-Time and Embedded Analysis; and(iv) MARTE
Annexes. TheMARTE Foundationpackage provides a domain-specific meta-model for
core concepts MARTE, as well as their characteristics and relationships among such con-
cepts, i.e. it defines the semantics base for the DSML provided by the profile. Elements
of this package are shared among other packages.

In fact, MARTE is intended to cope with two concerns: modeling of real-time and
embedded systems features, and to support analysis of system properties.MARTE Design
Modelpackage provides first-order language constructs to specify model expressing spe-
cific phenomena of real-time and embedded systems. It allowsplatform modeling in terms
of software (seeSoftware Resource Modeling(SRM) package) or hardware (seeHardware
Resource Modeling (HRM) package) platforms. According to Gérard and Selic (2008),
MARTE sees platforms as a set of resources, possibly comprising finer-grained resources
into a hierarchical manner, in which each resource offers atleast one service. A resource
is seen as a service provider with finite capacity, which usually comes from physical lim-
itations of the underlying hardware (e.g. memory capacity,bandwidth, processing power,
etc.). Considering software platforms, SRM package provides a model-based view for
concepts provided by RTOS API, such as semaphores and concurrent tasks (or processes).
On the other hand, regarding hardware platforms, HRM package provides concepts to as-
sist software design and allocation by providing a high-level hardware description model
instead of using block diagrams. Additionally, concepts provided by HRM assist in the

45

package Time []

<<metaclass>>

UML Standard Profile::UML2 Metamodel::CommonBehaviors::Communications::

Event

<<metaclass>>

UML Standard Profile::UML2 Metamodel::Classes::Kernel::

ValueSpecification

<<stereotype>>

TimedValueSpecification

−interpretation : TimeInterpretationKind [0..1]

<<stereotype>>

TimedConstraints

−interpretation : TimeInterpretationKind [0..1]

<<stereotype>>

Clock

−standard : TimeStandardKind [0..1]

−nature : TimeNatureKind [1]
−unitType : Enumeration [0..1]
−isLogical : Boolean [1] = false
−resolAttr : Property [0..1]
−maxValAttr : Property [0..1]
−offsetAttr : Property [0..1]
−getTime : Operation [0..1]
−setTime1 : Operation [0..1]
−indexToValue : Operation [0..1]

<<stereotype>>

ClockType

<<stereotype>>

TimedDurationObservation

−obsKind : EventKind [0..2]

<<stereotype>>

MARTE_Profile::NFP::

NfpConstraint

−kind : ConstraintKind [0..1]

<<stereotype>>

TimedInstantObservation

−obsKind : EventKind [0..1]

<<stereotype>>

TimedEvent

−repetition : Integer [0..1]

<<stereotype>>

MARTE_Profile::NFP::

Unit

−convFactor : Real [0..1]
−confOffset : Real [0..1]
−baseUnit [0..1]

<<stereotype>>

TimedDomain

<<stereotype>>

TimedObservation<<stereotype>>

TimedProcessing<<stereotype>>

ClockConstraints

<<stereotype>>

TimedElement

−every

0..1

0..1

−Start
0..1 −Finish0..1

−On 1..*

−Unit

0..1

−Duration

0..1

0..1

Type
1

Figure 2.5: Stereotypes of Time profile (OMG, 2008b)

analysis of real-time and embedded properties, and also in hardware models simulation,
which depends on the description detail level and simulation accuracy.

Model-based analysis is supported by theReal-Time and Embedded Analysispackage,
which provides a foundation for applying transformations from UML models into a wide
variety of analysis models. According to OMG (2008b), theGeneric Quantitative Anal-
ysis Modeling(GQAM) defines basic UML extensions needed to decorate UML models,
in order to perform any kind of analysis. Currently, two kinds of analysis packages are
provided, namelySchedulability Analysis Modeling(SAM) and Performance Analysis
Modeling(PAM) packages. The former provides stereotypes to allow schedulability anal-
ysis, while the later provides stereotypes for performanceanalysis.

Due to their importance to this work, two packages of theMARTE Foundationpackage
need to be detailed. The first one is theTimepackage, which provides a general framework
for representing time and time-related concepts. MARTE adopts time models that rely on
partial ordering of time instants. The temporal ordering ofbehavior activities can be repre-
sented in many ways, depending on the level of precision required. There are three main
classes of time abstraction:(i) causal/temporal, which concerns only about instruction
precedence/dependency;(ii) clocked/synchronous, which adds the notion of simultaneity
and divides the time scale in a discrete succession of instants; (iii) physical/real-time,
which demands accurate modeling of real-time duration values. Stereotypes available in
Timepackage are shown in figure 2.5.

A Clock exists in aTimeDomain and gives access to time at a certain resolution.
TimedConstraint represents a constraint (instant or duration value) associated with
a model element bound to aClock, while TimedEvent represents an event whose
occurrence is explicitly bound to aClock. Theevery property specifies the duration
between successive occurrences, thus indicating a periodic event.TimedProcessing
represents activities having known start and finish times, or a known duration, which are
bound to aClock. For a detailed description of the other stereotypes, readers are referred
to (OMG, 2008b).

Another important package is theGeneric Resources Modeling(GRM), which offers

46

Generic Resources Modeling (GRM)package []

<<stereotype>>

MutualExclusionResource

−protectKind : ProtectProtocolKind = PriorityInheritance
−ceiling : Integer
−otherProtectProtocol : String
−isProtected : Boolean = true{readOnly}

<<stereotype>>

Scheduler

−isPreemptible : Boolean = true
−schedPolicy : SchedPolicyKind = FixedPriority
−otherSchedPolicy : String
−schedule : OpaqueExpression

<<stereotype>>

ResourceUsage

−execTime : NFP_Duration [*]{ordered}
−msgSize : NFP_DataSize [*]{ordered}
−allocatedMemory : NFP_DataSize [*]{ordered}
−usedMemory : NFP_DataSize [*]{ordered}
−powerPeak : NFP_Power [*]{ordered}
 : NFP_Energy [*]{ordered}

<<stereotype>>

SchedulableResource

−schedParams : SchedParameters
−isActive : Boolean = true{readOnly}

<<stereotype>>

SynchronizationResource

−packetSize : Integer

<<stereotype>>

CommunicationEndPoint

<<stereotype>>

TimerResource

−duration : NFP_Duration
−isPeriodic : Boolean

<<stereotype>>

ProcessingResource

−speedFactor : NFP_Real

<<stereotype>>

GRService

−owner : Resource [0..1]

<<stereotype>>

Resource

−resMult : Integer [0..1]
−isProtected : Boolean
−isActive : Boolean

<<stereotype>>

CommunicationMedia

−elementSize : Integer

<<stereotype>>

ConcurrencyResource

<<stereotype>>

StorageResource

−elementSize : Integer

<<stereotype>>

ComputingResource

<<stereotype>>

SecondaryScheduler

<<stereotype>>

Acquire

−isBloking : Boolean

<<stereotype>>

Release

<<stereotype>>

DeviceResource

<<stereotype>>

ClockResource

<<stereotype>>

TimingResource

−protectedSharedResources
*

−Scheduler
0..1

−Virtual
Processing
Units

0..*

−Dependent
Scheduler

0..1

−mainScheduler

0..1

−ProcessingUnits

0..*

−UsedResources
*

−SchedulableResources
0..*

−Host
0..1

−Host

0..1

−SubUsages

*

Figure 2.6: Stereotypes of GRM profile (OMG, 2008b)

concepts to model a general platform for executing real-time embedded applications. Ac-
cording to OMG (2008b), this package allows the modeling of executing platforms at
different levels of details. Figure 2.6 depicts the stereotypes available in GRM package.

The central concept of the GRM package is the notion of aResource, which repre-
sents a physically or logically persistent entity that offers one or more services. There are
many types of resources such as,TimingResource representing a hardware or soft-
ware entity that is capable of following and evidencing the pace of time.Concurrency
Resource andSchedulableResource represent protected active resources that can
perform their activities concurrently with others. The former indicates resources, which
take their processing capacity from a potentially different Computing Resource en-
abling physical or logical concurrency. On the other hand, the later only allow logical con-
currency because it competes for processing capacity of aProcessing Resource
with otherSchedulableResource elements. AScheduler coordinates the access
to theProcessingResource from all SchedulableResource elements associ-
ated to it. A resource makes use of a service from other resource by means ofAcquire
andRelease. The former represents the allocation of or the access to some "amount"
from the resource, while the later represents the de-allocation or liberation of the allo-
cated resource. The control of concurrent accesses to common resources at run-time is
performed by aMutualExclusiveResource. Other kinds of resources can be rep-
resented using the GRM package. For more details see (OMG, 2008b)

47

3 STATE OF THE ART ANALYSIS

3.1 Introduction

According to SANGIOVANNI-VINCENTELLI (2003), to raise theabstraction level
used during design of digital systems is fundamental to manage the increasing design
complexity, leading to costs decrease and designers productivity improvements. In em-
bedded system projects, many languages considered as “high-level” languages (e.g. Sys-
temC or System Verilog) cannot suitably deal with importantrequirements such as tem-
poral predictability of an application. To increase designers’ productivity and also de-
crease the amount of eventual errors caused by inconsistentspecifications or require-
ments misunderstanding, project focus should move from intermediate levels to higher
levels of abstraction, as well as to separate the handling offunctional requirements from
non-functional ones.

Many researchers propose to rise the abstraction level by using models as first-class
elements during whole design of distributed embedded real-time systems. However, only
using models does not assure an improvement on design or designers productivity. There-
fore, to achieve the benefits from using model-driven techniques, a methodology is very
important. Hence, some side effects, such as lack of synchrony between models and im-
plementation, can be decreased or even avoided. Additionally, the methodology must
provide a smooth transition from high level specification (i.e. model) to implementation
of the distributed embedded real-time system, and also allows the reuse of artifacts created
and tested in previous designs.

This chapter discusses the state of the art in the design of distributed embedded real-
time systems. It presents methodologies and modeling techniques, as well as code gener-
ation approaches to produce source code from model, and the employment of separation
of concerns in the handling of requirements.

3.2 Design and Modeling Approaches

3.2.1 Overview of Related-Work

This section discusses traditional methodologies (i.e. those methodologies using OO)
applied to the design of distributed embedded real-time systems. The presented ap-
proaches use a higher abstraction level in terms of UML models to produce the initial
specification of the structure and behavior of distributed embedded real-time systems.

Schattkowsky and Mueller (2004) have proposed a MDA-based method to specify
and execute embedded real-time systems. Their approach supports system specification
using class diagrams, state diagrams, and sequence diagrams from UML 2.0. In the class

48

diagram, designers specify classes, as well as their attributes and operations. Each class’
operation is considered a state machine. Different sequence diagrams are associated with
different states of a state machine in order to describe the behavior (i.e. actions sequence)
that must be executed within a state of the state machine. Theexecution environment sup-
ports state machines composed of simple or composite states, however, concurrent states
are not supported. Asynchronous calls to methods lead to theinstantiation of a new state
machine, which executes its behavior concurrently with other state machines. Another re-
markable feature of that work is that interruptions and exceptions can be specified within
state machines, i.e. external devices such as sensors can generate external signals that are
perceived by the runtime environment. In order to execute models, that work proposed
theAbstract Execution Platform(AEP) (SCHATTKOWSKY; MUELLER; RETTBERG,
2005), which is a stack-based machine with instruction to manipulate OO constructions
expressed in the UML model. The produced models are “compiled”, generating a binary
code that runs in the AEP. In fact, according to the authors, AEP is a virtual machine that
can be implemented in both software and hardware, similarlyto a Java Virtual Machine.

Arpinen et al. (2006) present a technique to execute embedded applications spec-
ified with UML 2.0 in configurable multiprocessor systems. Application is specified
using UML 2.0 diagrams, which are decorated with stereotypefrom the TUT-profile
(KUKKALA et al., 2005) providing concepts of embedded real-time systems to support
automatic transition from UML models to the SoC implementation. The design flow
starts with the application architectural description, specified with class and composite
structure diagrams, defining system elements in terms of components interconnected by
ports. System behavior is expressed in terms of state machines, which represent applica-
tion tasks. The next step is the architectural exploration,which is responsible to allocate,
map and schedule tasks into different processors. Following, the design flow is split into
two branches: code generation of application software and platform synthesis. State ma-
chines are transformed intoExtended Finite State Machines(EFSM) in order to allow
C code generation. Composite structure and class diagrams are used to configure the
platform, allowing the needed VHDL code generation. Arpinen et al. (2006) presents a
case study, which shows the implementation of a MAC protocolfor wireless networks.
That application has been implemented using four Altera’s Nios II processors and three
hardware accelerators interconnected through a HIBI communication architecture.

Other work that uses UML as modeling language is presented in(NGUYEN et al.,
2004). That work presented an approach to transform UML models into SystemC code,
allowing system simulation. For system description, classdiagrams and state diagrams
decorated with stereotypes indicating SystemC constructions are used. According to
Nguyen et al. (2004), class diagrams represent a system in terms of components, and
how these components should be interconnected with each other to provide system archi-
tecture. Thus, classes are used to describe computational entities having a runtime state
and an associated behavior that modifies their state. In thissense, classes within a class
diagram are decorated with stereotypes representing SystemC elements, such as modules,
interfaces, ports and channels. Each state diagram describes the behavior of a single com-
ponent (i.e. a class), in which composite states (withand-stateregions) are used to model
concurrency. Actions can be associated with the entry or exit of a state, as well as with
state transitions. That approach follows the semantics of the UML specification for state
machines, i.e. a state transition is triggered by an event only if all guard conditions are
true. As a consequence, within a system UML model, all actions and guard conditions
are textual descriptions using SystemC syntax.

49

Riccobene et al. (2005) presented a proposal to modify the SoC design flow used by
STMicroelectronics. The original design flow starts with requirements specification using
natural language. These requirements guide the specification of executable models, which
capture all expected behavior in a platform independent fashion. After this step, the design
flow is split into two concurrent phases: hardware and software designs. Although their
concurrent nature, these separate designs must interact insome steps to achieve system
final implementation. Riccobene et al. (2005) argue that, byusing UML, it is possible to
improve the process in the sense of standardizing executable PIMs, and hence, improving
communication between designers teams, which can share theknowledge about system
functionalities and requirements. Therefore, from the design flow splitting, each team
can decorate the executable PIM with profiles suitable to itsdomain: the hardware team
use a SystemC profile proposed in (RICCOBENE et al., 2005) to map UML constructs
into synthesizable code; while the software team can use a profile more suitable to the
programming language used to implement functionalities that will run on hardware units
created by the hardware team. Adopting this approach, it is possible to use code gen-
eration tools for both designs. To model the system, the following UML diagrams are
employed:(i) class diagram to describe components types, as well as theirattributes and
operations;(ii) composite structure diagram to specify used components, their ports and
interfaces;(iii) sequence diagram to create testbenches; and(iv) state diagrams to repre-
sent the behavior of each operation. In that paper, a small case study has been presented,
consisting of a FIFO-based producer/consumer, which is implemented as hardware using
a UML 2.0 model decorated with stereotype of authors’ SystemC profile.

Other interesting work is the Metropolis project (BALARIN et al., 2003), which pro-
vides an infrastructure, a toolset, and a design method to allow a uniform representa-
tion for heterogeneous components of an embedded system. Inorder to accomplish such
approach, Balarin et al. (2003) propose the separation of computation and communica-
tion specification, by means of isolating computation element from communication ones.
Hence, elements reuse can be improved. The infrastructure core is a meta-model allowing
the representation of several computation and communication semantics at different ab-
straction levels, using different computation models. In this way, a meta-model represents
a set of processes interconnected by interfaces communicating through different medias.
Processes have their own properties and constraints. Theirexecution is controlled by a
scheduling policy. Furthermore, Metropolis methodology suggests an approach that uses
successive refinements, in which more details are incorporated, to depart from higher
abstraction levels until arrive to system implementation.According to GSRC (2002),
Metropolis project has different methodologies applicable to different domains, which
are concerned with special characteristics of their own domain, being very different from
other domains. By December 2008, there are five domains having their own methodology:
fault tolerant data flows in automotive systems; multimedia; wireless communication and
sensor networks; microprocessor modeling and analog/mixed signal systems. In order to
support such diversity of methodologies, some principles must be followed:(i) functional
decomposition, i.e. in the highest abstraction level, the system is considered a single
process, which is decomposed in a set of concurrent processes; (ii) between two commu-
nicating processes, there is always an extra process, whichis responsible to transform (or
adapt) the values from the output of one process to the input of the other one;(iii) for each
communicating process, a media, which defines communication semantics, is associated;
(iv) in addition, each communicating process is enclosed by a wrapper, connecting it to
the media;(v) at each refinement step, a media is replaced by a set of processes and me-

50

Design Problem

Formulation
(Use Case Diagram)

Funtional Specification
(Class, State Machine,

Activity, Sequence Diagram)

Simulation

HW/SW

Synthesis

Platform Specification
(Class, Components,

Deployment Diagram)

Communication

Refinement

Mapping

Metropolis

Metamodel

Figure 3.1: Methodology for Multimedia Systems available in Metropolis (CHEN et al.,
2003)

dias, adding more details on the communication;(vi) finally, the specified elements are
mapped into architectural components (i.e. hardware or software components) of the cho-
sen platform. Figure 3.1 shows the methodology used in the multimedia domain. In such
methodology, UML diagrams are decorated with stereotypes from UML platform profile
(CHEN et al., 2003), which defines elements of Metropolis infrastructure and also some
models of computation. Thus, model elements represent different concepts of the selected
model of computation. Further, model refinement is performed to map model element into
platform elements that are available in a repository. Recently, in Davare et al. (2007), an
extension named Metro II has been proposed. It involves the improvement of Metropo-
lis framework in terms of three features: heterogeneous IP import, orthogonalization of
performance from behavior, and design space exploration.

HASoC (Hardware and Software Objects on Chip) (EDWARDS; GREEN, 2003) is
an OO methodology, which is partially based on RUP (KRUCHTEN, 2000) and provides
an incremental and iterative design flow for embedded real-time systems. It suggests the
design must start with the specification of a UML model validated using anuncommit-
ted model, which represents an abstract execution model where objects are not associated
with a given implementation, be it as hardware or software. Requirements are specified
by means of use case diagrams, in which each use case is associated with at least one
sequence diagram that indicates an execution scenario. Static and dynamic system struc-
tures are specified using, respectively, class and objects diagrams. Once system specifica-
tion is finished, the produced model is partitioned into hardware and software components
producing the so-calledcommitted model. These components are mapped into implemen-
tation platforms, which are reused from a platforms repository previously developed and
tested. Further, this model is refined in order to include additional implementation details,
which must respect design constraints. In this step, the following platforms are selected:
interfaces between hardware and software objects, i.e. device drivers; and available hard-
ware components, e.g. processors, memories, communication buses. At the end, selected
components integration is performed, leading to the final system implementation.

An iterative MDE method, which combines semi-formal and formal notations, for
fault-tolerant distributed embedded real-time systems, called Method C, is presented in
(PERSEIL; PAUTET, 2008). The aim of this method is to keep thedevelopment “con-
tinuum”, whose concept is defined as “. . . the continuity between different software de-
velopment lifecycle steps without any logic or semantic break so that they are at an ef-
fective level of automation. . . . ” Method C proposes that gaps between abstraction levels

51

High-level Model

validation
Requirements

Specification

Functional

Specification

System

Exploration
Algorithms &

Models Library

Architectural

Exploration

Component

Library

Estimation Platform

Library
Macro-architecture

with Functional

Mapping

mapping
SW compilation

and RTOS

Generation

Communication

Synthesis
Micro-architecture

Synthesis

Software Micro-architecutre

validation

validation

Test

Planning

High-level Executable

Description validation

Figure 3.2: SEEP design flow

should be fulfilled by means of model transformations using meta-models of the adopted
languages. Languages supported in this method are UML and MARTE profile, AADL
(SAE, 2006), and +CAL (LAMPORT, 2007). UML diagrams decorated with MARTE
profile stereotypes are used to specify application elements that may also be related with
real-time domain concepts (e.g. tasks, timers, semaphores, etc.). On the other hand, be-
havior is specified using formal semantics (e.g. Petri Nets)provided by both AADL and
+CAL. The former allows the description of software and hardware parts of the system,
while the later is a formal action language to be used within state or activity diagrams.

The SEEP project (portuguese acronym forSistemas Eletrônicos Embarcados basea-
dos em Plataformas) (LSE, 2003) proposes a methodology that integrates designand test
of embedded systems considering a wide range of requirements. The proposed methodol-
ogy encompasses the whole design cycle, from system modeling using UML to the gener-
ation of embedded hardware and software components. Figure3.2 shows the design flow
proposed in SEEP. Design starts with requirements specification as well as description of
expected functions using high abstraction level UML models. The next step is system
exploration, in which designers can select different algorithms to perform the expected
functionalities meeting application and design requirements. Following, an architectural
space exploration phase takes place. In this phase, designed functions are mapped to dif-
ferent hardware components that must also respect requirements. The automatic genera-
tion of hardware and software components, which is based on the functionalities partition
performed in previous phases, happens in the next step. At the end of the design cycle,
the embedded real-time system, which performs the application for which it has been
designed, is obtained.

3.2.2 Discussion

Works presented in this section advocate the use of standardlanguages as UML to
specify the structure and behavior of embedded systems. Using class diagram for spec-
ification of system static structure is a well-established approach, as well as using state
diagrams to specify behavior. Most of the presented works douse such diagrams. How-

52

ever, sometimes the use of state machines is not a suitable form to specify behavior be-
cause it is not that easy, for example, to understand concurrent activities or non-reactive
system behavior. Furthermore, other issue, which is not suitable to behavior specification
in models, is the use of textualaction languagesto describe actions performed within
each state. This makes the behavior description closer to a computer program (written
using a programming language) than to a graphical representation that may be easier to
understand.

Each of these approaches, excluding Perseil and Pautet (2008), proposes their own
profile to decorate UML diagrams in order to provide specific semantics to modeled el-
ements. Such situation hinders the exchange of informationon the modeled system be-
tween design teams, mainly if one of the involved teams does not know the proprietary
profile. This problem also happens during code generation. Code generation tools must
be aware of the profile semantics in order to produce source code representing the pro-
file’s stereotypes semantics. Semantics standardization in terms of UML profiles is a good
approach to deal with the mentioned problems.

As can be observed, most of the presented works do not deal specifically with the
design of distributed embedded real-time systems or separates the handling of functional
requirements from non-functional ones. Although not clearly stated, the work proposed
by Balarin et al. (2003) may deal with distributed functionalities due to their proposal for
using higher abstraction levels to specify communication apart from computation. Addi-
tionally, considering the other mentioned approaches, that work was the only approach
separating requirements from distinct natures, i.e. computation and communication.

As this work is inserted in the context of the SEEP project, one of its goals is to
support a mechanism for separation of concerns in the handling of requirements from
initial design phases, while in the same time supporting thedistribution of functionalities
over different processing units. To accomplish this goal, this work proposes adaptations
in SEEP design flow as described in the Chapter 4.

3.3 Separation of Concerns in Requirements Handling

3.3.1 Introduction

This section discusses methods and techniques for modularization in requirements
handling, focusing on the separation of the handling of functional requirements from
non-functional ones during the whole development cycle. Atthe beginning, this section
presents some proposals applied to general-purpose systems, i.e. non-embedded systems.
Afterwards, other approaches that apply such separation ofconcern in the design of em-
bedded real-time systems are also discussed.

3.3.2 Separation of Concerns in General Systems Development

Stein et al. (2002) propose theAspect-Oriented Design Modeling(AODM) approach
to represent concepts of AspectJ, an AO programming language proposed by Kiczales
et al. (1997), within UML diagrams. Aspects are representedas classes annotated with
«aspect» stereotype, as shown in figure 3.3a, and can specifyadvices, introductions
andpointcuts. Two kinds of adaptations are supported: structural and behavioral adapta-
tions. Structural adaptations, which are calledintroductionsin AspectJ terminology, are
specified in the class diagram by means of attributes or operations specification, which
will be inserted in classes whose structure is affected by the aspect. As can be seen in

53

registerUser

(* : String,

* : String)

* : * * :

AuthServer

* : *

<?jp>:

addUser

(* : String,

* : String)

* :

DbServer

«execution»

 ?jp

remotePointcut

[0..*]

(a) (b)

(c)

Figure 3.3: Aspects and join points modeling in AODM (STEIN et al., 2002, 2006)

figure 3.3b, anintroductionis specified, within the context of an aspect, as a dashed el-
lipse decorated with«introduction» stereotype, e.g.BookCopyinserts the method
getState()in affected classes. On the other hand, behavioral adaptations, which are called
advicesin AspectJ terminology, are specified in sequence diagrams,which shows how a
given interaction is affected by the aspect, e.g. insertinga method call into another object
before or after the affected interaction. Anadviceis represented as a method decorated
with the«advice» stereotype (see figure 3.3a). An important part is the specification of
the elements affected by aspects, i.e. the specification ofjoin points. This is done using
Join Point Designation Diagrams(JPDD) (STEIN et al., 2006), which is a sequence dia-
gram or a class diagram that indicates model elements may be affected by aspects. Figure
3.3c depicts an example of JPDD that selects all method callsto DbServer.addUser()per-
formed from any object after the user registration in the authentication server. The link
between aspect adaptations and the selection of affected elements (JPDD) is described
by pointcuts, which are specified as an attribute decorated with the«pointcut» stereo-
type. In other words, apointcutindicates which model elements (by means of JPDD) must
be modified by which adaptation (advice) at which moment (before, after, or around). It
is important to highlight that, as the AODM follows AspectJ semantics, structural adapta-
tions (introductions) are tightly coupled with the classes it affects, hinderingthe reuse of
such structural adaptations.

Theme/UML (CLARKE; WALKER, 2002; CLARKE; BANIASSAD, 2005)is an ap-
proach to support separation of concerns by means of conceptual constructions called
themes. According to Clarke and Baniassad (2005), Theme/UML is an AO approach that
supportssymmetricseparation of concerns rather thanasymmetricseparation, which is
supported by most of AO approaches (e.g. AODM, AspectJ, AspectC++, and others). In
this sense, athemeis more general than an aspect because it can represent fragments of
behavior and/or structure representing a concern. In otherwords, all elements related with
the handling of a concern are specified within only onetheme. One interesting characteris-

54

«subject»

Observer

bind[<BookCopy, {meta:isQuery=false}>,

<BookManager, updateStatus()>]

+ name
+ author
+ ISBN

+ getISBN()

+ getAuthor()

+ getName()

Book

BookCopy

+ borrow()

+ return()

+ add(Book)
+ remove(Book)
+ search(Book)
+ addView(BookCopy)
+ removeView(BookCopy)
+ updateStatus(BookCopy)

BookManager

+ roomNumber

+ shelfNumber

+ addBook()

+ removeBook()

Location

<Subject, _aStateChange(..)>

<Observer, update()>

«subject»

Library

+ aStateChange()

_aStateChange()

− notify()

Subject
+ update()

Observer

Vector

<Subject, _aStateChange(..)>

<Observer, update()>

«subject»

Observer

subjects

observers

1

*

anObserver : Observer

update()

aSubject : Subject

aStateChange()

_aStateChange()

notify()

action aSubject.notify()

post all observers in aSubject::observers

 are sent updade() event(a) (b)

Figure 3.4: Examples of Theme/UML models (CLARKE; WALKER, 2002)

tic of that approach is that it is common to find different views of the same element in dif-
ferentthemes, i.e. certain elements and behaviors are shared among more than onetheme.
To allow the representation ofthemeswithin UML diagrams, the UML meta-model has
been extended in (CLARKE, 2002). That work proposes the concept of composite pat-
terns, which supports the composition/decomposition ability required by symmetric sep-
aration of concerns. Making an analogy,composite patternscan be compared to UML
templates, which allow model elements be partially defined.In Theme/UML,themesare
specified as packages containing all concepts related to a concern that are specified using
class and sequence diagrams, as depicted in figure 3.4a. In addition, integration between
themesis defined by means of a binding, which indicates which elements of athemeare
affected by elements of othertheme. This integration is depicted in figure 3.4b. Compar-
ing to the asymmetric approach, this is similar to the relation between functional elements
that are affected by aspects. There are two kinds of integration (i.e. aspect weaving): to
override and to merge concepts. In the former approach, elements (structural and/or be-
havioral) passed as parameters override associated elements in the affectedtheme. On
the other hand, in the later approach, concepts of the affecting themeare merged with
elements of the affectedthemeat the points indicated as parameters.

The AO modeling approach proposed by France et al. (2004) addresses concerns dur-
ing modeling step, aiming exploring different design alternatives in a platform-independent
fashion. Such approach produces Aspect-oriented Architecture Models (AAM), which
consist in a base architecture model namedprimary modelto specify the application
model, and a set of aspect models. Both kinds of elements are specified as UML dia-
grams. In this way, aspects models describe how the primary model is affected by non-
functional requirements. The composition of aspects models in the primary model (i.e.
aspect weaving) may cause conflicts of interests leading to the emergence of undesired
system properties. Such situation, according to France et al. (2004), can be minimized
(or solved) by means of adapting the aspects model. Furthermore, aspects provide struc-

55

<ApplicationArchitecture>
 <components>
 <component role="c1"> ... </component>
 </components>
 <aspects>
 <aspect role="trace"> ... </aspect>
 </aspects>
 <compositionConstraints>
 <componentCompositionRules>
 ...

 </componentCompositionRules>
 <aspectEvaluationRules>
 <sendMessage>
 <source-comp role="c1"/>
 <message name="foo"/>
 <BEFORE_SEND>
 <concurrent>
 <aspectList>trace</aspectList>
 </concurrent>
 </BEFORE_SEND>
 </sendMessage>

 </aspectEvaluationRules>
 </compositionConstraints>
</ApplicationArchitecture>

-joinpoint = ANY

TraceEvaluatedInterface

<<EvaluatedInterface>>

+foo()

<<ProvidedInterface>>

C1ProvidedInterface

<<Component>>

C1

-name = "trace"

<<Role>>

TraceRole

<<Message>>

foo

-name = "c1"

<<Role>>

C1Role

<<Aspect>>

Trace

<<sends>>

{join point=BEFORE_SEND}

<<applies to>>

fulfills

fulfills

<<provides>>

<<evaluates>>

Figure 3.5: CAM model represented as a class diagram (PINTO;FUENTES; TROYA,
2005)

tural and behavioral adaptations in the primary model specified with templates in class
diagrams (for structural adaptations) and collaboration diagrams (for behavioral adap-
tations). It is important to highlight that, in that work, there is no mention about how
elements of the primary model are selected (i.e. join pointsspecification) to be adapted
by aspects.

Pinto, Fuentes and Troya (2005) propose an aspect- and component-based approach
to separate the handling of non-functional requirements from functional ones from early
specification to implementation phases during software development. This approach de-
fines transformations from UML models, which are decorated with stereotypes from the
Com ponent-Aspect Model(CAM) profile, to CAM models, which describes a system in
terms of components, aspects, and composition rules to weave aspect into components.
According to Pinto, Fuentes and Troya (2005), behavior specification is realized using
standard mechanisms of UML, i.e. state, activities, and/orinteraction diagrams. Al-
though important, that work does not discuss how behavior isrepresented in CAM mod-
els. Further, the information described in a CAM model is specified with the DAOP-ADL
language (PINTO; FUENTES; TROYA, 2003), which uses theeXtensible Markup Lan-
guage(XML) (W3C, 2006a) format to describe components and aspects of a system, and
also their relationships. An example of such XML file is givenin figure 3.5. DAOP-ADL
specifications are interpreted by a middleware platform called Dynamic Aspect-Oriented
Platform (DAOP) (PINTO; FUENTES; TROYA, 2003), which provides a composition
mechanism that performs aspects weaving dynamically at runtime, i.e. it performs as-
pects adaptation in the affected components while running the application. In this sense,
during the weaving process, aspects see components as “black boxes”. Such approach
constraints aspects adaptations to modify component behavior by means of intercepting
operation calls or event occurrences, in other words, it is not possible to define join points,
and hence, modify internal behavior of a component.

An approach to specify Aspect-Oriented Executable Models (AOEM) has been pro-
posed in (FUENTES; SáNCHEZ, 2007). This work provides a UML profile to describe

56

<<CallBehavior>>

GetReference

<<GetTarget>>

GetSettedComp

<<CallOperation>>

persist

object

target<<Literal>>

Persister

<<component>>

Persister

<<aspect>>

Persistence

<<advice>>+persist() IPersistence

add*(..)

<<pointcut>>

sd ShoppingCartUpdate

:ShoppingCart

<<joinpoint>> {point =RECEIVE,

time=AFTER}

{advice=Persistence .persist()}

(a)

(b) (c)

Figure 3.6: AO modeling (FUENTES; SáNCHEZ, 2007): (a) aspects modeling; (b) ad-
vice modeling; (c) pointcut specification

AO-related concept within UML models. Three different models are produced:(i) abase
modelspecifying system functional concerns;(ii) anaspects modelspecifying crosscut-
ting concerns, including their precise and complete behavior, in terms of AO elements
using the AOEM profile;(iii) apointcut modeldescribing (using the AOEM profile) how
crosscutting concerns are composed in the base model in terms of pointcuts. Further, a
weaver is used to transform the produced models into a plain UML model, which can
be executed using Pópulo UML virtual machine (FUENTES; MANRIQUE; SáNCHEZ,
2008). Additionally, the AOEM profile provides stereotypesto specify the action lan-
guage defined in the UML 2.x specification. To allow the specification of AO-related
actions, the AOEM profile extends the standard UML action language by means of al-
lowing, for example, getting the intercepted message name,or target or source object.
For more information on this AO extension for the UML actionslanguage, readers are
referred to (FUENTES; SáNCHEZ, 2006). Furthermore, aspectadvices are specified as
activities diagrams (see figure 3.6b), whose actions are decorated with stereotypes of the
AOEM profile. These advices are related to pointcuts, which are specified with sequence
diagrams (see figure 3.6c), showing the link between the joinpoint selection and the ad-
vice. That work allows only the interception of sent messages, i.e. only message-related
events can be selected as join points. However, Sánchez et al. (2008) propose a modifi-
cation in the specification of pointcuts and join points by means of using JPDDs (STEIN
et al., 2006).

3.3.3 The Use of AOD in the Design of DERTS

Zhang and Liu (2005) use UML diagrams and AO concepts to separate the handling
of timing requirements from other non-functional requirements in the design of real-time
systems. That work proposed the use of only one aspect, in which all timing informa-
tion of a system is contained. A UML profile is defined to decorate elements in a class
diagram in order to represent both AO and real-time concepts. Such profile provides
language level concepts of AO, e.g. aspects, advices, join points, crosscut, and control.
However, it is important to highlight that the last two concepts, i.e. crosscut and control,
are not defined in AO languages.Crosscutis used to model the weaving relationship
between classes and aspects, whilecontrol models the weaving relationship between be-
havior and aspects. Although system behavior is modeled with state diagrams and also
proposing the control relationship, that work does not showhow the modification in the
base behavior will eventually happens, neither how to specify join point to select element
in the base classes and behavior. Figure 3.7 depicts an example of timing handling spec-
ification. As can be seen, time values description is done by means of notes (i.e. UML
text boxes) associated to a time aspect in the class diagram.Moreover, there are other

57

-t : Time

+set(time : TimeValue)

+get() : TimeValue

+reset()

+start()

+pause()

<<Aspect>>

TimeAspect

ElevatorButton

ControlSystem RequestQueue

DirectionLamp

Sensor

ElevatorLamp

FloorButton FloorLamp

Elevator

Floor

MotorDoor

1..*1..*

1

<<Crosscut>>

1..*

1

1..*

1

1..*

1

1..*1

1..*

1

1..*1..*

1

1

{[1] : ∀ i ∃ j @(↑door.open, j) = @(↓stop, i) ≥

OPEN_MIN_TIME ^ @(↓door.open, j) –

@(↓stop, i) ≤ OPEN_MAX_TIME

[2] :. ∀ i ∃ j(¬(@(↑button, j) - @(↓door.open, j) ≤

STAY_OPEN_NORMAL_TIME) → (@(↑door.close, i)

= @(↓door.open, i)+STAY_OPEN_MIN_TIME))

(@(↑door.close, i) = @(↓door.open, i) +

STAY_OPEN_NORMAL_TIME))

[3] :. ∀ i ∃ j(↑move, j) - @(↓door.close, i) ≥

OPEN_MIN_TIME ^ @(↑move, i) –

@(↓door.close, j) ≤ CLOSE_MAX_TIME}

Figure 3.7: Specification using atime aspect(ZHANG; LIU, 2005)

stereotypes representing real-time domain concepts, suchas clocks and timers. However,
they are very similar to stereotypes from the UML SPT profile (OMG, 2005b). Partic-
ularly, the approach presented in (ZHANG; LIU, 2005) is not adequate to describe such
key requirements as timing constraints and requirements inreal-time system design.

Noda and Kishi (2007) have proposed an approach for using AO concept to model em-
bedded software. More specifically, they propose to use AO tomodel the context in which
the embedded system operates. That work uses the symmetric approach for aspects, sim-
ilarly to (CLARKE; BANIASSAD, 2005). Functional and non-functional concerns are
modeled as aspects, which are related to each other by means of two types of inter-aspect
relations:(i) trigger and(ii) refer. The former indicates that one aspect triggers the be-
havior of other aspect, while the later means that an aspect refers to properties of another
aspect to determine its behavior. Such relation can be seen in figure 3.8a. Aspects are
modeled as a class diagram and one or more state diagrams, andthus, each class in the
class diagram has its behavior specified in a state diagram. Figure 3.8b depicts an aspect
concerning the role of front doors in the vehicle illumination system that was used as case
study in (NODA; KISHI, 2007). In addition, to define details of inter-aspect relations, a
rules-based language has been proposed. Basically, this language describes inter-aspects
relations in term of events, transitions, and guard conditions for transition in state dia-
grams. Therefore, this can be seen as a complement to system behavior specification.
Figure 3.8c shows a fragment of relation rules.

Lohmann et al. (2006) propose the initial ideas for the CiAO operating system, which
is the successor in the operating systems family called PURE(BEUCHE et al., 1999) for
deeply embedded systems, i.e. those embedded systems with very restricted processing
power and memory availability. The main goal of CiAO is to provide a very fine grain
configurable operating system. Such granularity is obtained by using concepts of AO
programming supported in the AspectC++ language (SPINCZYK; LOHMANN, 2007).
In this sense, CiAO separates non-functional handling codefrom application components
code by means of using aspects that are woven into the application code at the configura-
tion phase. According to Lohmann et al. (2006), such separation improves the reusability
of application components. In (LOHMANN et al., 2007), the authors reported their expe-
rience on using AO programming to design and implement the interrupt synchronization
as a configurable property in the CiAO operating system.

AO concepts are used in theVirginia Embedded Systems Toolkit(VEST) (STANKOVIC

58

(a) (b) (c)

Figure 3.8: AO modeling (NODA; KISHI, 2007): (a) functionaland non-functional con-
cerns; (b) aspects model; (c) inter-aspects relations rules

et al., 2003) in order to separate and check non-functional properties in the analysis and
composition of component-based embedded real-time systems. Two kinds of concepts
were identified:prescriptive aspectsandaspects checks. Prescriptive aspectsare, in fact,
advices (or adaptations) that modify the information of model elements (e.g. tasks pri-
ority or the replication level of a component). Such adaptations are described using a
proprietary language calledVEST Prescriptive Aspect Language(VPAL). On the other
hand,aspect checksindicate the dependency check among components of a embedded
real-time system. Such checking is performed using the information from the system
model. Sometimes, component characteristics can influenceother components behav-
ior, e.g. tasks priorities and/or activation periods together with communication latency
may influence the end-to-end scheduling of activities. Hence, VEST provides automatic
check of components offered/required QoS that considers modifications in components
performed by the aspects weaving process. That work has performed two case studies
that lead to the conclusion that using aspects one can improve the analysis and composi-
tion of components in the design of embedded real-time systems.

Tsang, Clarke and Baniassad (2004) present an interesting work comparing two im-
plementations of a traffic simulator, which represents vehicles equipped with speed sen-
sors as well as sensors capable to measure the distance from other surrounding vehicles,
allowing vehicles be self-driven through four track streets. The first version is imple-
mented using pure OO concepts and the Real-Time Specification for Java (RTSJ) (BOL-
LELLA et al., 2001), while the second version uses AO concepts and AspectJ (KICZA-
LES et al., 1997) in order to refactor RTSJ constructions (e.g. the creation of threads,
memory management, synchronization, and others) that are encapsulated in aspects. The
evaluation was made using an adapted version of the C&K metrics (CHIDAMBER; KE-
MERER, 1994) to deal with AO constructions. That work has shown that using AO leads
to the improvement of modularity because many RTSJ elementsand constructions can
be encapsulated in separated entities (i.e. aspects). However, according to (TSANG;
CLARKE; BANIASSAD, 2004), there are some metrics that are worse in AO compared
to the OO version, e.g. number of methods per class, which hinders the understandability
and maintainability. As conclusion, Tsang, Clarke and Baniassad (2004) pointed that one
can achieve more benefits from using AO if the relation aspect/application is broad and
generic, meaning that maximizing encapsulation of redundant application code into as-
pects, one can have an overall improvement of the application code. The more redundant
code a application has, better is the application code modularity provided by aspects to
encapsulate such redundant code.

59

The AspeCtual COmponent-based Real-time system Development(ACCORD) ap-
proach (TESANOVIC et al., 2005) proposes the integration ofcomponent-based tech-
niques with AO concepts for software development of real-time systems. In that work, a
Real-Time COmponent Model (RT-COM) has been proposed. It supports the notion of
time and temporal constraints, space and resource management constraints, and compos-
ability semantics. Additionally, the RT-COM provides the concept of gray box compo-
nents that preserve some of the main features of a black box component, such as well-
defined interfaces as access points to the component, and they also allow aspect weaving
to change component behavior and internal state. Tesanovicet al. (2005) define three
kinds of aspects:(i) application aspectscan change internal behavior of components,
e.g. security, synchronization, real-time policy handling, etc.;(ii) runtime aspectsrefer
to concerns related to system integration with the run time environment, e.g. resource
demand, platforms to which components are compatible, WCETof components behavior
in each platform, and others;(iii) composition aspectsdescribe with which components a
component can be combined, respecting component’s versionand offered and demanded
QoS. Although ACCORD provides a component model that could allow the use of AO
concepts at higher abstraction levels, that work specifies both components and aspects
using the AspectC++ programming language (SPINCZYK; LOHMANN, 2007).

The SysWeaver approach (RAJKUMAR, 2007) uses different tools to generate code
from models. The proposed approach separates functional requirements, which are mod-
eled using Mathlab Simulink, from requirements the authorshave calledpara-functional
requirements, e.g. timing, replication, security, jitter, and others. In fact,para-functional
requirements have the same meaning of non-functional requirements as used in this work.
Para-functionalrequirements are modeled using the SysWeaver tool, which interacts with
other complementary tools to provide toolchain integration, allowing domain-specific
analysis such as schedulability or model checking of other system properties. Moreover,
according to Rajkumar (2007), that approach uses the concept of components, whose en-
capsulation mechanism combined with system properties model checking enable the con-
struction of “systems-of-systems” that are “correct by construction”. In (RAJKUMAR,
2007), the SysWeaver approach has been used to design an ABS system for vehicles.

Balasubramanian et al. (2006) present an approach to address crosscutting concerns
in component-based MDE usingAspect-Oriented Domain Modeling(AODM). An AO
model weaving technique is used to spread crosscutting concerns encapsulated in as-
pects. The tool calledConstraint-Specification Aspect Weaver(C-SAW) performs this
aspects weaving in the context ofPlatform-Independent Component Modeling Language
(PICML) (BALASUBRAMANIAN et al., 2005), which is a DSML for developing com-
ponent-based systems that has been developed using theGeneric Modeling Environment
(GME) (LéDECZI et al., 2001). PICML provides a proprietary modeling syntax for cre-
ating models of component-based distributed systems, which includes information on
interfaces, components properties and system software building rules. C-SAW is a model
transformation engine, which has been implemented as a plug-in to the GME. It takes
as input the created PICML model and a text file describing aspects and transformations
that must be performed in the PICML model. Such model transformations are described
using theEmbedded Constraint Language(ECL), which is an extended subset of the
OMG’s Object Constraint Language (OMG, 2006b). Particularly, ECL provides two im-
portant concepts:(i) modeling aspects, providing modular constructions to specify cross-
cutting concerns; and(ii) strategies, specifying transformations logic that will be applied
in PICML model elements affected by modeling aspects. The approach proposed by Bal-

60

asubramanian et al. (2006) was intended to be applied in the development of large-scale
component-based distributed system, in order to improve model scalability, and also the
handling of crosscutting concerns. Thus, they presented a surveying system that uses
many Unmanned Aerial Vehicles(UAV) to help in disaster recovery efforts stemming
from floods, earthquakes, or hurricanes. UAV transmits videos from the surveyed area to
a control center, where rescue teams can decide rescue actions. C-SAW has been used to
perform modifications in several components of different modeled UAV.

3.3.4 Discussion

The use of AO paradigm in initial computing system design phases is recent and has
not achieved the maturity level of approaches using the OO paradigm. Such claim is
supported by the diversity of proposals for AO modeling thatcan be found in the litera-
ture, i.e. there are several approaches to specify the same concepts using their own form,
repeating what happened before the UML creation. However, the same cannot be said
for AO implementation, which has achieved a certain degree of maturity as can be seen
by the wide use of languages, such as the AspectJ or AspectC++. Although there are
proposals to apply AO in early phases, there is no standard form to separate functional
requirements handling from non-functional requirements.In particular, (STEIN et al.,
2002), (CLARKE; WALKER, 2002), and (FUENTES; PINTO; TROYA,2007) are the
most remarkable works. The first one is an approach being refined to support other AO
languages in addition to AspectJ. The second one proposes aninteresting approach, but
the specification of how a theme affects other themes is not adequate due to the lack of
scalability, i.e. in systems with large amount of crosscutting themes, the specification of
bind relationship to express weaving hinders model maintainability and evolution. Fi-
nally, the third approach proposes extensions to UML in order to allow the specification
of AO concepts and also to perform AO model weaving.

To the best of our knowledge, the use of AO concepts in the domain of distributed
embedded systems is still low. There are few approaches suggesting their use in the im-
plementation or configuration of embedded software, and even fewer that try to apply
these concepts in design or modeling. For example, the approach proposed by Zhang
and Liu (2005) suggests the use of only one aspect to deal withall time related non-
functional requirements. The time requirements specification proposed by that approach
is not appropriate because time requirements can have different viewpoints (e.g. peri-
odic activations, deadlines or WCET for algorithms execution, latency measurements,
and others) that can be misunderstood by designers. In addition, the use of UML notes
to specify important information is not appropriate due to the lack of representation in
the UML meta-model. Besides, there are other important requirements from the domain
of distributed embedded real-time systems whose handling can be improved if aspects
are used. The approach proposed by Noda and Kishi (2007) usesonly aspects to model
all concerns in embedded systems design. However, that workdoes not deal specifically
with timing, embedded, or distribution non-functional requirements. They can be handled
separately from functional requirements but this must be done specifically from design to
design because of the textual specification of aspects composition. Moreover, Tesanovic
et al. (2005), Rajkumar (2007) and Balasubramanian et al. (2006) propose component-
based design approaches that specify aspect in terms of textual descriptions instead of
graphically modeling them.

61

3.4 Code Generation

3.4.1 Introduction

Code generation means to use a computer program to assist in production of source
code, be it application source code, HDL source code, code for platform configuration,
and others. Commonly, a code generator program takes as input a high level specification
in addition to a set of templates in order to create one or moresource code files as output.
According to Herrington (2003), code generation is not constrained to be only a quick
way to produce source code. Other benefits can be achieved as follows:

• Quality: code generator tools use templates to produce code (for a target platform)
from elements specified in high level models. The more complete a set of templates
is, the better is the quality of the obtained generated source code. If the templates
describe an optimized code generation based on designers quality and optimization
criteria, a quality increase is reflected in the final generated source code;

• Consistency: the naming standardization for classes, methods, and attributes is
fully consistent in the generated code. Hence, the application of naming standard-
ization facilitates classes interfacing and use because such standards are defined
within the templates;

• Productivity: code generation increases productivity gains due to their ability to
adapt quickly to changes during design. In other words, modifications in the spec-
ification can be automatically propagated to system implementation. In addition,
code generation allows the inclusion or exclusion of big portions of source code;

• Abstraction: advantages in terms of design abstraction level can be achieved using
code generation tools that work with input specifications (e.g. models of the system
structure and behavior, database schemes, or user interface designs) in a neutral
form, i.e. using platform independent languages. In other words, it is possible to
generate source code for different programming languages (such as Java, Smalltalk,
or C++) from the same abstract model.

This section presents some proposals to generate code from UML models, as well as
commercial tools that implement such code generation. Additionally, some works that
produce HDL code from UML are also presented.

3.4.2 Code Generation from UML Models

Many different approaches to generate source code from UML models can be found
in the literature. Some of them use only one diagram (e.g. class diagram), while others
use a combination of different diagrams (e.g. class diagrams with state, sequence and/or
activities diagrams) to generate code ranging from classesskeletons to code containing
system elements behavior. This subsection present the someapproaches.

The work presented in (HARRISON; BARTON; RAGHAVACHARI, 2000) demon-
strates the mapping from class diagrams to Java source code.This approach allows the
generation of high-level class skeletons, which allows abstraction of details on attributes
implementation, i.e. attributes data type, from the class implementation point of view. In
other words, the implementation does not need to know the attributes existence because
their stored values are accessed only through get/set methods. The code generation pro-
cess only considers classes from the UML model decorated with «Entity» stereotype.

62

Each entity is mapped to an interface and a pair of classes that implement this interface,
i.e. for each entityX, the following Java elements are generated:(i) an interface namedX;
(ii) an abstract class namedXAbst; and(iii) a concrete class namedXInst. The created in-
terface contains the operations defined in the UML model for the entity. The abstract class
implements the interface and specifies attributes, as well as their data types (e.g. integer
or string attributes) and auxiliary methods that access theses attributes, which are gener-
ated automatically by the code generator. Finally, the concrete class extends the abstract
class by means of adding the methods that must be implementedto support the operations
from the entity interface. In fact, the code generator produces empty methods that must
be filled by the programmer in order to provide the entity behavior. The concrete class ac-
cesses class attributes by means of the auxiliary get/set methods specified in the abstract
class. Additionally, associations among classes in the UMLmodel are represented by
cursors, which are entities encapsulating the complexity of associations navigation and
updates. The concept ofcursorshas been proposed to separate the associations semantics
from their real representation and implementation.

Burmester, Giese and Schäfer (2005) have presented a code generation approach
that uses the FUJABA (From UML to Java And Back Again) Real-Time Tool Suite
(BURMESTER et al., 2005) to generate code for RTSJ applications. System structure
is modeled using the components diagram from UML, while behavior is specified with
an extended version of the UML state diagram calledReal-Time Statechart. The PIM of
the system is transformed into a PSM that uses the SPT profile (OMG, 2005b) to specify
real-time concerns. Every Real-Time Statechart is transformed into, at least, one active
object, which represents the main thread and is implementedas periodicRealtimeThread.
At each period, all transitions that can be triggered are checked, and those that passed
some conditions (see (BURMESTER; GIESE; SCHäFER, 2005)) are executed. Orthog-
onal states are not implemented as multiple concurrent periodic threads, but by exactly
one periodic thread (the main thread) and multiple concurrent aperiodic threads. It is
important to highlight that, depending on the deployment information of Real-Time Stat-
echarts, a JVM can have multiple periodic threads, i.e. one for each Real-Time Statechart
deployed in the JVM.

Bordin and Vardanega (2007) propose a source code generation strategy for multiple
target OO languages from HRT-UML models, i.e. UML models annotated with the FW
profile (CECHTICKY et al., 2006) that specifies HRT-HOOD (BURNS; WELLINGS,
1994) concepts. In that work, the RTSJ has been assessed in order to check (regarding
some requirements proposed by that authors) its potential to be used by code generation
tools. RTSJ source code with Java annotations has been generated from HRT-UML mod-
els. Such annotations allow traceability of HRT-HOOD concepts (e.g. cyclic or sporadic
execution of methods, or protected or unprotected method execution) between model and
source code, and also, decreases the size of the generated code because it hides infor-
mation from the programmer (BORDIN; VARDANEGA, 2007). Hence, a pre-processor,
which converts these annotations into plain RTSJ code, is required to be used before the
generated source code compilation.

A code generation approach based on MDA concepts was presented by Hausmann
and Kent (2003). In order to generate skeleton source code from class diagrams, the pro-
posed approach uses transformations based on meta-models.For each target language, a
meta-model, as well as the mapping rules from the PIM to the PSM, must be specified.
The process of creating mapping rules is based on pairs of elements, their relationships,
domains and constraints. A pair represents two elements, indifferent models, that are

63

related through a relationship, which specifies relation constraints, and in which domain
elements are linked. The mapping between PIM and PSM is specified in class diagrams,
in which meta-model elements of different models are linkedby means of class diagram
associations. Additional OCL constraints can be included in the associations. Besides
not showing the final generated source code, mapping rules from UML to Java language
has been depicted in (HAUSMANN; KENT, 2003). It can be seen that this graphical ap-
proach to describe mapping rules can assist in the overall visualization of the transforma-
tion, however, it can hinder the creation of more complex mappings among meta-model
elements of different models.

Generation of AO source code is the focus of the work presented in (HECHT et al.,
2006). The goal is to allow automatic generation of AspectJ source code from extended
UML diagrams by using the Theme/UML approach. Theme/UML models are exported to
XMI files which are taken as input to a code generation tool developed with theeXtensible
Stylesheet Language Transformations(XSLT) (W3C, 2006b). The generated code is not
complete, i.e. only skeletons of classes and aspects are provided. However, for aspects,
the code includes the pointcuts that link advices with join points that were specified in
the Theme/UML model. Furthermore, Hecht et al. (2006) statethat it is possible to gen-
erate code for the body of advices, since created Theme/UML diagrams provide enough
information on the modification of system elements, which will be executing during the
aspects weaving process.

Nitto et al. (2002) use UML as a language to describe processes and also to validate
modeled processes. To allow the intended validation, UML models are translated toOR-
CHESTRA Process Support System(OPSS) models (CUGOLA; NITTO; FUGGETTA,
2001), which are executable models with formal semantics. In an OPSS description,
one process is divided into activities performed by agents.Elements in class, activities
and state diagrams are transformed to OPSS elements. The application structure, which
is specified in the class diagram, is translated directly in Java classes (skeleton source
code) of the OPSS framework. State diagrams represent the lifecycle of an object, and are
translated to Java code representing objects behavior. Finally, activities diagram describes
activities flow of a process, as well as associations among activities and agents. It is used
to produce Java code that represents the precedence relationship of activities execution.

The formalization of class and sequence diagrams has been proposed by Long et al.
(2005) in order to allow code generation from UML 2.0 models.The proposed model se-
mantics is based on theRelational Calculus of Object Systems(rCOS) semantics, which
was devised to design OO systems. That work generates skeleton code from class di-
agrams, and code for methods body from the sequence diagram.The code generation
algorithm interprets sequence diagrams as a composition ofmessages sequences, allow-
ing its use for creation of code from separated fragments of sequence diagrams. Source
code can be generated only if the model passes a consistency checking. In that work,
the code generation for rCOS language is demonstrated, showing how class skeletons,
containing attributes and empty methods, are created. Considering the behavior, each
message in sequence diagrams is transformed to a method callin rCOS. Nested messages
are mapped to method calls in the body of the parent method.

The generation of SystemC code from UML models is investigated in (ANDERS-
SON; HöST, 2008). Initially, that works assesses constructions of UML 2 and those of
SystemC 2.2, comparing them in order to create a mapping between concepts of both
languages. Considering structural specification, UML packages are mapped to SystemC
name spaces, and UML active classes and classes with ports are mapped to SystemC

64

modules. However, other types of non-mentioned classes aremapped to standard C++
classes. Ports in UML have a required and a provided interface. On the other hand, in
SystemC asc_port must have exactly one interface, which corresponds to the required
interface of UML port. Provided interface of UML ports is equivalent tosc_export
construct of a SystemC module. Regarding the specification of communication among
elements, UML communication can be modeled as signals, i.e.asynchronous messages,
that are sent through ports. The destination is specified using connectors. At the receiv-
ing object, the signal is stored in a queue and will eventually be consumed. In SystemC,
ports are connected through channels, whose reference is stored in the port during system
initialization. Therefore, to map the mentioned semanticsfrom UML to SystemC, UML
connectors are mapped to SystemCsc_fifo channels that connectsc_export of a
module tosc_port of another one. Furthermore, to produce SystemC source codefrom
UML models, the mapping process is composed by three steps:(i) the initial UML de-
scription is manually annotated with the SystemC profile;(ii) the model is automatically
transformed into a new UML description that includes directrepresentation of SystemC
construction, e.g. state diagrams are translated to classes, in which each method imple-
ments the behavior performed in a state. Additionally, UML concepts without SystemC
correspondence are removed from the model; and(iii) the UML model produced in the
previous step is transformed to the corresponding SystemC code. This transformation
is an one-to-one transformation. This SystemC code generation approach has been im-
plemented as a plugin to the Telelogic Tau tool (IBM, 2008a),using its the C++ code
generation facilities.

There is an interesting on-going research in the Embedded Systems Lab of the Federal
University of Rio Grande do Sul, whose initial results were published in (NASCIMENTO
et al., 2006). That work proposes a meta-modeling infrastructure, calledModel-Driven
Embedded System design(MoDES), to represent distributed embedded real-time systems
in higher level of abstraction. The goal of MoDES is to provide a common infrastruc-
ture to various MDE tools, as for example, high-level designspace exploration or code
generation tools. That approach suggests a methodology that applies successive refine-
ments from an initial specification, which is a PIM, to an implementation model of the
system using a selected target platform. The initial PIM (which can be specified using
UML, Simulink, or other modeling language) is transformed into an application model
that is an instance of theInternal Application Meta-Model(IAMM), which represents ap-
plication functionalities in a uniform manner. Likewise, models of many implementation
platforms (e.g. SystemC, Java, VHDL, and others) are specified using a uniform platform
representation calledInternal Platform Meta-Model(IPMM). The set of mapping rules is
described using theMapping Meta-Model(MMM), which is used to guide the transfor-
mation of IAMM and IPMM model in a system realization model namedImplementation
Meta-ModelIMM. The IMM represents the implementation of the initial model (i.e. the
one specified using UML, Simulink, etc.) using a selected target platform (e.g. Java,
VHDL, SystemC, etc.). Hence, it is possible to generate codefrom the IMM.

3.4.3 Commercial Tools

This section presents some commercial CASE tools that allowcode generation from
UML diagrams. During the study of the state of the art in code generation, many tools
with different automatic code generation capabilities were found: from code skeleton for
classes to tools that are capable of generate configuration files for server of distributed
components such as CORBA or Enterprise Java Beans.

65

Rational Rose (IBM, 2008b) CASE tool has many different versions with different
code generation capabilities. All of them work on the previous version of UML, i.e. the
version 1.4. The tool Rational Rose Technical Developer (previously called Rational Rose
Realtime) allows the automatic creation of Java, C and C++ source code. It generates code
skeletons for classes. However, if any code was informed in the Codetab of methods
specification, this text is also included in method’s body. Additionally, behavioral code
can be generated from state diagrams. This code generation follows the same approach,
i.e. code is typed in theCodetab of states.

Rhapsody (IBM, 2008c) and Tau (IBM, 2008a) are modeling tools from Telelogic,
which was recently acquired by IBM. Both tools supported thespecification of UML 2.1
models. In addition, Tau also supports SysML. Rhapsody can generate code for Ada, C,
C++ and Java, while Tau for C, C#, C++ and Java. The approach toproduce code is similar
to the Rational Rose tool, i.e. both Rhapsody and Tau generate code skeletons for classes,
and the body of methods must be written in a special field in methods specification.

Borland’s Together (BORLAND, 2008) CASE tool allows the generation of code
skeletons for class, and also methods body. It uses the last version of UML (version
2.1) to automatically create code for Java, J2EE, C++ and C#.Code skeletons are gener-
ated from the class diagram, while methods body from the sequence diagram. The code
generation can be customized by means of changing the generation templates.

Artisan Studio (ARTISAN, 2008) (previously called ArtisanReal-time Studio) sup-
ports UML 2.0 and SysML modeling, and also automatic generation of C, C++, C#, Java
and Ada source code using external tools. It also generates code skeletons from class
diagrams. In addition, source code for classes behavior is generated from state diagrams.
Actions performed in each state must be written (in the selected target language) in special
fields in states specification. To allow code generation, UMLelements must be decorated
with stereotypes of the target language, and hence, external code generators can produce
the right constructions in the selected target language. Furthermore, C/C++ code genera-
tion tool uses templates allowing some customization of thegenerated code.

Poseidon for UML (GENTLEWARE, 2008) is a CASE tool that supports UML 2
modeling, and implements a script-based code generation, which uses the Velocity Tem-
plate Engine (APACHE, 2008). There are pre-defined scripts for the following languages:
C#, C++, CORBA IDL, Delphi, Perl, PHP4, SQL DDL, and VB.net. The designer can
create its own code generation script that accesses information of the UML model to gen-
erate code for other target languages. However, only the class diagram can be accessed,
and thus only code skeletons can be created.

Other tool is the ObjectiF (MICROTOOL, 2008), which also uses a template-based
code generation approach to produce code skeletons from class diagrams. This tool uses
stereotypes to assist in Java, C# and C++ source code generation. ObjectiF can generate
automaticallyget()andset()methods (with the corresponding behavior) for attributes that
are decorated with a specific stereotype. Additionally, it generates attributes and methods
representing composition, aggregation, and plain associations among classes. Moreover,
it can also create the implementation of unit tests for classes using NUnit or JUnit.

The CodeGenie MDD toolset (DOMAINSOLUTIONS, 2008) provides a code gen-
eration tool that takes as input XMI files from executable UMLmodels. Three levels of
code generation are supported:(i) code skeletons for classesrepresenting only software
static structure;(ii) code skeletons with architectural mechanismincluding architectural
mechanisms (e.g. event queues, stacks, circular buffers, etc.) in addition to classes struc-
ture; and(iii) code skeletons with architectural mechanism and behavior complementing

66

the previous level by adding behavioral code generated fromthe state diagram.

3.4.4 Discussion

Code generation from UML model is not a new topic. As one can see, generation of
code skeletons from class diagrams is a well-defined approach due to the large number
of tools that can generate this kind of code. Some of the presented works can generate
behavioral code from state diagrams. However, a drawback can be pointed: depending
on the target application, state machines are not the most suitable model of computation
to describe the developed application behavior. Besides, the specification of actions per-
formed in state diagrams is neither standardized nor a common consensus. It can be done
using programming languages or more abstract textual action languages. Thus, proposals
that use other UML behavioral diagrams can be seen as an interesting option to specify
actions in an UML model. Although sequence diagrams are usedin some works, there
is no mention on the use of new constructions available in theUML 2.x, such as those to
specify “ifs”, “loops” and others. In other words, only method calls are generated that is
not sufficient to generate the complete code from the UML model.

Other open problem is the interpretation of UML diagrams andtheir combination.
Different viewpoints offered by different model elements provide remarkable information,
which can be combined to obtain the complete description of system structure and behav-
ior. However, there is no defined semantics for different diagrams integration. There-
fore, interpretation rules must be created to allow the extraction of a concise specification
which, for code generation purposes, must be unambiguous and simple.

Finally, it was observed that most of the approaches proposethe mapping 1-to-1 be-
tween model and source code, i.e. the more detailed a model is, bigger is the amount
of code lines that can be generated from it. However, the specification of excessive de-
tails in the model decreases a key advantage of using models:the visualization facility
of the structure and behavior of the modeled system. Including details in excess hinders
model understandability, and also decreases the reuse of its elements. In order to avoid
unnecessary details in the model, a code generation tool could infer missing information
on model elements based on modeling guidelines. Hence, using 1-to-N mapping rules
between model elements and lines of code, this tool could generate code as complete as
the completeness of the mapping rules specification. Other way to keep models without
unnecessary details is the use of AO concepts. Details that are not directly related to the
desired functionalities can be encapsulated in aspects. Crosscutting behavior can also be
represented in this way. Therefore, the code generation tool could be aware of the adap-
tations performed by aspects, which would modify the generated code. In other words,
the code generation tool could also perform aspects weaving. Thus, using AO concepts at
modeling level allows the use of non-AO target languages.

3.5 Discussion on the Open Problems

This section discusses open problem identified in the works previously cited in this
chapter. UML is broadly used and well accepted in the domain of software engineering
for modeling “general purpose” computing systems. Such situation has been drawing the
attention of professionals of other computing domains, such as embedded systems and
hardware designers. One feature that is desired by great part of designer, in all computing
domains, is the capability of automatic source code generation from high-level specifica-
tions, in order to decrease design effort and avoid error prone manual coding activities.

67

Related work presented in section 3.2 compared some approaches that use UML in
the design of systems whose functionalities are implemented in either software of hard-
ware. Every approach uses different diagrams to structure and behavior specification.
This shows that there is no consensus on which diagrams must be used to specify a dis-
tributed embedded real-time system. Additionally, it can be observed that many of these
approaches, e.g. (ARPINEN et al., 2006), (NGUYEN et al., 2004), (RICCOBENE et al.,
2005) and (BALARIN et al., 2003), use proprietary profiles toextend UML semantics
according to their needs. Given that UML does provide mechanisms to extend its se-
mantics, doing that with non-standard (i.e. proprietary) profiles is not a good approach
because this hinders the specification understanding by stakeholders outside the design
task. The use of standardized profiles, as in (PERSEIL; PAUTET, 2008), overcomes
the mentioned problem. Thus using standard profiles provided by organizations such as
OMG (the group that maintains UML standard) is a very important issue that must be ap-
proached by new modeling techniques. Besides, excluding the work presented by Balarin
et al. (2003), none of the presented approaches separate thehandling of crosscutting con-
cerns, which decreases the modularity of artifacts (e.g. models or source code) created in
previous projects, hindering their reuse in new projects.

Approaches that separate the handling of functional and non-functional requirements
are presented in section 3.3. The majority of the cited work aims at the design of software
for “general purpose” computing systems, i.e. not embeddedsoftware, whose developer
do not have to worry about constraints that are intrinsic to embedded real-time systems
domains, such as timing constraints, restricted processing power, limited memory amount,
or energy consumption. The mentioned separation of concerns is becoming popular in
that domain by means of using concepts of the AO paradigm. Using aspects to handle
crosscutting non-functional requirements improves the modularity and the encapsulation
of concerns. There are many attempts to adapt the UML for representing AO concepts
in models. The main drawback of approaches, such as (STEIN etal., 2002), is that they
propose changes in the UML graphical syntax instead of usingthe UML extensibility
mechanism as (FUENTES; PINTO; TROYA, 2007) and (PINTO; FUENTES; TROYA,
2005) propose. Such heavyweight extensions hinder the language standardization. The
use of lightweight extensions (i.e. UML profiles) is preferable, since they allow the use
of any modeling tool that supports the standard extensibility mechanism of the UML
specification. Furthermore, the use ofcomposite patterns, which is proposed by Clarke
and Walker (2002), allows the use of UML standard graphical representation without
modifications. However, the problem of this approach is thatthe specification of the
affected elements is not scalable, i.e. it is not suitable tospecify composition relationships
of crosscutting concerns that affect a huge amount of other concerns, leading to problems
in the specification of large systems.

Considering the design of distributed embedded real-time systems, there is little dis-
cussion on the use of AO concepts. Few works can be found in theliterature. Most of them
are related to the implementation phase of such systems instead of earlier design phases.
(ZHANG; LIU, 2005) and (NODA; KISHI, 2007) are exceptions. Zhang and Liu (2005)
propose the use of a single aspect to specify the handling of timing requirements within
UML models. Other important non-functional requirements of embedded systems domain
are neglected. Additionally, the specification of timing properties (as notes in the class
diagram) is hard to understand and also not suitable due to the weak relation with UML
meta-model elements. Noda and Kishi (2007) uses the symmetric approach for modeling
crosscutting concerns likewise (CLARKE; WALKER, 2002). Although it is an interest-

68

ing approach, it suffers the same drawback of (CLARKE; WALKER, 2002) approach, i.e.
the lack of scalability. Moreover, mixed specification using graphical elements and textual
descriptions is not desirable, because it is not easy to visualize aspects composition, i.e.
which aspect crosscuts other aspects. (TESANOVIC et al., 2005), (BALASUBRAMA-
NIAN et al., 2006), (RAJKUMAR, 2007), and (STANKOVIC et al.,2003) propose the use
of AO in component-based MDE of embedded systems. The first three approaches pro-
pose the specification of aspects and their adaptations in terms of proprietary text-based
languages. Moreover, (TESANOVIC et al., 2005) and (BALASUBRAMANIAN et al.,
2006) use proprietary modeling syntax to model system components, while (RAJKU-
MAR, 2007) uses Simulink syntax. Although the mentioned modeling syntaxes provide
DSML to specify embedded system components, they lack standardization for specifica-
tion. Going towards the approaches that use AO for implementing embedded systems,
(STANKOVIC et al., 2003) use aspects to check if there is a matching of required/offered
information by components that are related with each other.(LOHMANN et al., 2006)
and (TSANG; CLARKE; BANIASSAD, 2004) are implementation related approaches,
i.e. they use AO programming languages to deal with crosscutting non-functional re-
quirements. Analyzing the results reported by both works, one could conclude that there
are a lot of open issues that can be investigated. Other crosscutting non-functional re-
quirements, such as access synchronization of shared resources, memory management,
or communication issues, could be handled with aspects at application implementation
and target platform tailoring. Moreover, the creation of a set of aspects to deal with non-
functional requirements from higher abstraction levels (i.e. requirements specification
and modeling) to more concrete levels (i.e. implementationand platform tailoring) is a
very interesting research topic.

Analyzing the mentioned code generation approaches, it canbe stated that there is no
formalization or even consensus for UML diagrams interpretation or integration of dif-
ferent diagrams. Such problem hinders the generation of complete code for computing
systems. However, one exception is the class diagram, for which there is a “well-defined
interpretation”. All presented works can at least generatecode skeleton for specified
classes. Although useful, code skeletons are a small fraction of all code that could be
generated from the entire UML model. The problem is that there is no consolidated ap-
proach to generate behavioral code from elements of other diagrams. Some works propose
the use of state diagrams, whose actions are specified using the target programming lan-
guage or any other kind of textual action language. Others propose the use of sequence or
activities diagrams but not all constructions can be translated to code in a given platform.
Anyway, the generation of code containing the behavior specified in the UML model is
still not well defined compared to the generation of code skeletons from class diagrams.

Some directions for MDE of distributed embedded real-time system were pointed,
however there are many open problems that can be addressed from the research point of
view. Those open problems go from the formalization of models interpretation semantics
to the empirical use of mappings to transform models into source code. In addition, using
AO concepts would allow a better modularization and handling of crosscutting concerns
and non-functional requirements. Code generation approaches could consider AO con-
cepts specified within UML models in order to allow code generation for both AO and
non-AO programming languages. Hence, besides code generation, the tool could per-
form aspects weaving in the generated code, and also tailor the target platform based on
the aspects specified in the model. Additionally, optimization could be performed while
reading the UML model or generating code.

69

4 MDE PROCESS FOR DERTS DESIGN

4.1 Introduction

One of the goals of this thesis is to propose a design flow that increases the abstrac-
tion level during design of distributed embedded real-timesystems, in order to address its
complexity. The proposed design flow must allow a smooth transition from initial spec-
ification phases to implementation/coding phases. For that, theAspect-oriented Model-
Driven Engineering for Real-Time systems(AMoDE-RT) design flow has been created.
AMoDE-RT uses MDE techniques combined with AO concepts to accomplish the men-
tioned goals. It is important to highlight that, to be effective, AMoDE-RT needs adequate
tool support (which is also provided by this work) in order toassist its use in the de-
sign of distributed embedded real-time systems. Figure 4.1depicts an overview of the
AMoDE-RT design flow.

4.2 Aspect-Oriented Model-Driven Engineering for DERTS

The first step in AMoDE-RT is gathering requirements and constraints of the dis-
tributed embedded real-time system. This is performed using the RT-FRIDA approach,
which is an extension to the FRIDA (BERTAGNOLLI, 2004) requirements analysis ap-
proach aiming at applying it into the distributed embedded real-time systems domain. RT-
FRIDA is the result of a cooperative work performed togetherwith the colleague Edison
Pignaton de Freitas for his M.Sc. dissertation (FREITAS, 2007). In addition to require-
ments analysis, the RT-FRIDA also shares the modeling step with AMoDE-RT. A brief
discussion of both steps is given in the following paragraphs, and an in depth discus-

Libraries

Mapping Rules

(XML)

Sw/Hw Platforms

Aspects

Implementation

(8)

RT-UML Model

Transformation
(5)

DERCS

Model

(6)

Generated

Source Code

(9)

Code Compilation

and Synthesis
(10)

Distributed Embedded

Real-Time System
(11)

Modeling
(3)

Requirements
(2)

Requirements

Analysis (1)

(4)

RT-UML

Specification

(7)

Code

Generation

Aspects

Weaving
+

GenERTiCA

Figure 4.1: Overview of the AMoDE-RT design approach

70

Functional

Requirements
Specification

Non-Functional

Requirements
Specification

Automatic

Identification

Requirements Identification

Mapping

Mapping Table Construction

Concepts Modeling

UML Diagrams Drawing

Functional Non-Functional

Class / Object

Sequence / Activity
State Machine

 ACOD

 JPDD

DERAF
Functional Concepts

Extraction

Aspects

Extraction

Figure 4.2: Overview of RT-Frida

sion on AMoDE-RT modeling approach is presented in the next chapter. For details on
RT-FRIDA, readers should refer to (FREITAS, 2007).

An overview of RT-FRIDA steps is depicted in figure 4.2. The requirements iden-
tification step is the first step and is divided in two activities that can be performed in
parallel: functional requirementsspecification andnon-functional requirementsspecifi-
cation. Firstly, a use case diagram is created. It depicts all expected functionalities for
the distributed embedded real time system, and also the external elements that interact
with these functionalities. For each use case specified in this diagram, a functional re-
quirements template (see figure 4.3a) must be filled. After that, the filled templates of
functional requirements are analyzed regarding possible conflicts. Thus a conflicts res-
olution matrix is created, in which the first row and first column are filled with the IDs
of functional requirements. If a functional requirement conflicts with other one, a “X” is
marked in the cell that intersects row and column of conflicting requirements.

For non-functional requirements specification, additional steps are then performed.
RT-FRIDA provides checklists (see an example in figure 4.4a)that assist in identifying
the non-functional requirements that have been presented in section 2.3. Answering these
checklists’ questions helps in the identification on which non-functional requirements af-
fect functional requirements. As performed for functionalrequirements specification, a
template must be filled for each non-functional requirement(see figure 4.3b). In addition
to checklists, there is also a parser that can be used to identify key words in documents
written in natural language, indicating the presence of unspecified non-functional require-
ments (FREITAS, 2007). After that, there is also a conflicts resolution step similar to the
one in functional requirements specification, i.e. designers fill a conflicts resolution ma-
trix indicating which non-functional requirements affectothers.

The second step of RT-FRIDA approach is the mapping of requirements to (candidate)
design elements. This is done using a mapping table as the onedepicted in figure 4.4b. As
it can be observed, rows indicate functional requirements,while columns non-functional
requirements. If any non-functional requirement affects any functional requirement, a
“X” is marked in the cell that intersects row and column of involved requirements. Fur-
thermore, this mapping table links requirements to (candidate) design elements, allowing
requirements traceability from requirements analysis to system design. Hence, the last
column indicates which (candidate) classes in the design model are responsible to handle
functional requirement. Similarly, the last row indicateswhich aspects are used to handle
crosscutting non-functional requirements. Aspects are provided by a predefined aspects

71

Item Description

ID This identifier allows requirements traceability over the whole project.

Name Use case name.

Goal Description of the use case goals.

Author The person that is responsible for the use case description.

Pre-

condition
A condition that must hold before the execution of the use case.

Post-

condition
A condition that must hold after the execution of the use case.

Primary

Actor
Actors that are the source of the events for the main scenario stimuli

Secondary

Actor

Passive actors that interact with the use case, but do not execute

any action within its context.

Priority
Used to decide the relative importance among use cases. There are

three levels: Maximum, Medium, Minimum.

Situation

A requirement can be in one of the following situations:

0 - Identified;
1 - Analyzed; 3 - Approved;

Main

(Normal)

Describes the main flow of the use case, as well as its results,

without condiser error conditions.

Alternate Describes the alternate flow to the use case.

Exception Describes a exceptional situation in the use case flow.

Main Describes the main steps of the use case scenario.

Variations Describes steps that modify one or more steps within the scenario.

Paths

Scenario

G
e

n
e

ra
l

Id
e

n
ti

fi
c

a
ti

o
n

C
o

n
te

x
t

A
c

to
rs

D
e

c
is

io
n

a
n

d

E
v

o
lu

ti
o

n

2 - Specified; 4 - Canceled;
5 - Finished;

Item Description

ID
This identifier permits the requirement

traceability over the whole project.

Name Crosscutting concern's name.

Autor
The person that is responsible for the

corsscuting concern specification.

Classification Classification in which the concern belongs.

Description
Description of how the concern afect system

functionalities.

Afected Use

Cases
List of the use cases afected by the concern.

Context
Determines in which situation a use case is

affected by the concern.

Scope

(Global/Partial) The requirement is global if it

affects the whole system, and is partial if

afects only part(s) of the system.

Priority

Concern's importance regarding other non-

functional concerns. Higher numbers

represent higher importance.

Status

0 - Identifyed; 3 - Approved;

1 - Analysed; 4 - Canceled;

2 - Specifyed; 5 - Finished;

Id
e

n
ti

fi
c

a
ti

o
n

S
p

e
c

if
ic

a
ti

o
n

D
e

c
is

io
n

a

n
d

E
v

o
lu

ti
o

n

(a) Funtional requirements template (b) Non-funtional requirements template

Figure 4.3: RT-FRIDA templates for requirements specification

framework namedDistributed Embedded Real-time Aspects Framework(DERAF), which
is discussed in details in the section 5.2 of the next chapter. It is important to highlight
that this table is initially filled with candidate handling element and, during the whole
design phase, it can be modified/updated with new elements that will be included to the
design model. Consequently, it is important to keep this table updated in order to maintain
traceability of requirements to design elements and vice-versa.

At the end of these two steps, designers have produced a set ofdocuments specifying
functional and non-functional requirements that the system under development must deal
with, and also the relationships among these requirements.

These documents are then used in the next phase: system modeling. UML diagrams
annotated with the stereotype of the MARTE profile (OMG, 2008b) are used to model the
structure and behavior of distributed embedded real-time systems. In this phase, UML
models are created and successively refined up to achieve thedesired level of detail, pro-
viding sufficient information to allow system realization.In the initial UML model, el-
ements describe concepts that are closer to the target application domain, e.g. sensors,
steering devices, turbines, speed and trajectory information, robot arms, etc. These el-
ements represent problem domain concepts, hiding details about their implementation.
Higher abstraction levels are easier to understand, and allow designer to focus on appli-
cations foundations instead of concerning about implementation issues. Thus, they rep-
resent the handling of functional requirements. Application elements can be reused from
previous designs, and hence, it is possible to create repositories of application domain
elements. Such elements can be made up of many different UML elements and/or dia-
grams. For instance a robot arm can be compound of three joints and a gripper. To reuse
this domain-level element, at least five classes (three for the joints, one for the gripper,
and the composite class for the robot arm) are reused. Additionally, behavioral diagrams
describing robot arm’s behavior could also be reused.

The specification of non-functional requirements handlingis done with assistance of
aspects provided by DERAF. They are used in two moments:(i) in modeling phase (see
section 5.3.2);(ii) in implementation phase, more specifically, in code generation/aspects

72

(a) Checklist example

(b) Requirements mapping table

Relevance Priority Restrictions / Conditions / Description

Time

 Timing

Is there any periodic activity or data sampling? X 8
Movement Control; Environment Sensing; Main

Rotor Sensing; Back Rotor Sensing;

Is there any sporadic activities?

Is there any aperiodic activity?

Is there any restriction in relation to the latency

to start an execution of a system activity?
X 9 Corrective Action

Is there any specific instant to start or finish an

execution of a system activity?

Was any WCET specified? Or at least, is there

any concern about this?
X 10

The smapled data of both rotors must be ready at a

maximum of 10 ms.

NFR-1 NFR-2 ... NFR-n

FR-1 Class1, Class3

FR-2 Class2

... ...

FR-n X ClassN

Aspect1
Aspect2

Aspect3
... AspectN

FR handling

elements

NFR handing

elements

Non-Functional Requirements

F
u

n
c

ti
o

n
a

l

R
e

q
u

ir
e

m
e

n
ts

ID

Figure 4.4: Other tools provided by RT-FRIDA

weaving step (see chapter 6). During modeling phase, aspects are chosen based on their
high level semantics to handle crosscutting non-functional requirements. For instance, the
ConcurrentAccessControlaspect deals with issues on concurrent access control of shared
resources. Hence, if the system has this non-functional requirement,ConcurrentAccess-
Control aspect is selected and specified in theAspects Crosscutting Overview Diagram
(ACOD). Moreover, based on information of the mapping tablecreated previously, de-
signers must specify which UML model’s elements are affected by this aspect. For that,
designers createJoin Point Designation Diagrams(JPDD), which are special diagrams
that specify model elements selection. JPDD, which can be stored in a repository and
reused in further designs likewise DERAF aspects, are specified using common UML
modeling tools with support to profiles. Details on modelingboth functional and non-
functional requirements are given in the next chapter.

At the end of modeling phase, designers have created a UML model that specifies
elements to deal with the functional and non-functional requirements, using, respectively,
OO and AO concepts.

Although increasing abstraction level during design is good for managing complex-
ity, the higher the abstraction level is, more are the chances of ambiguous or even erro-
neous interpretations of the same specification. Usually, high level specifications cannot
be executed in computational devices (e.g. microprocessors, integrated circuits, or Pro-
grammable Logic Controllers (PLC)) due to their incompletesemantics and/or lack of
sufficient details. To overcome these issues, specificationambiguities must be removed,
and also computational elements (e.g. FIFO queues, scheduler, synchronization mecha-
nisms, and others) must be included into these high-level specifications. A transformation
of the initial model into a more concise one must happen. AMoDE-RT’s third step per-
forms the transformation of the UML model annotated with MARTE profile stereotypes
into an instance of theDistributed Embedded Real-time Compact Specification(DERCS),
which is a PIM suitable to code generation and model execution purposes. By transform-
ing UML into DERCS, the information on system structure, behavior and non-functional
requirements handling, which is spread over different UML diagrams whose information
may overlap each other, is combined in fewer and concise elements in DERCS represen-

73

tation. For more information on UML to DERCS transformationsee section 6.2.
The next step is source code generation from the DERCS model.As mentioned, one

of the goals of this work is to provide a smooth transition from high-level models to
the implementation of distributed embedded real-time systems. Thus, a code generation
tool calledGeneration of Embedded Real-Time Code based on Aspects(GenERTiCA)
has been developed. In fact, GenERTiCA performs not only code generation, but also
aspects weaving. The code generation process executes a setof scripts (mapping rules)
to perform model-to-text transformations from DERCS elements to constructions in the
target platform.

Mapping rules are specified as small scripts that create source code fragments (rep-
resenting target platform constructions) for elements in the DERCS model. Source code
files are made up of these generated code fragments. Scripts are stored and organized
in mapping rules files specified using the eXtensible Markup Language (XML) (W3C,
2006a) format. Therefore, it is possible to create a repository to allow the reuse of pre-
viously created scripts and mapping rules for platforms. The code generation process
iterates all elements looking for the script that defines themapping from the element be-
ing evaluated into suitable construct(s) in the target platform.

Additionally, if the element under evaluation is affected by any DERAF aspect, the
aspects weaving process is performed after the generation of the code fragment. GenER-
TiCA uses aspects implementations to modify code fragments, i.e. changes in generated
code fragments are performed by implementations of aspectsadaptations. There is also
the possibility to perform adaptations in DERCS model elements before generating code.
Thus, GenERTiCA provides code and model aspects weaving. Itimportant to highlight
that implementations of aspects adaptations are scripts similar to “normal” mapping rules
scripts. Hence, it is also possible to create repositories of different implementations for
the same aspect adaptation, depending on the target platform. Moreover, DERAF aspects
are also used to tailor platforms, in the sense of configuringthe selected target platform by
adding only services that are required by the application. More details on GenERTiCA,
and also the code generation and aspects weaving processes are given in chapter 6.

The last step of AMoDE-RT is the use of a third party tool to compile and synthesize
the generated application code. In addition, the generatedplatform configuration files are
used to configure the final platform that will be deployed. After that, the realization of
distributed embedded real-time system being designed is ready to be executed or tested.

4.3 Adaptations in the SEEP design flow

As already mentioned, this work was developed within the scope of the SEEP project.
Thus it proposes adaptations to the original SEEP design flow, in order to accommodate
the proposed AMoDE-RT design flow, as depicted in figure 4.5. The start of SEEP flow
has been extended to incorporate steps 1, 2 and 3 of AMoDE-RT (see figure 4.5a). Thus,
in the original “High-level Model” step, “Requirements Specification” and “Functional
Specification” were substituted by, respectively, “Functional Requirements Specification”
and “Non-Functional Requirements Specification”. A “System Model Specification” step
has been included after requirements specification. In thisstep, designers can reuse appli-
cation elements and DERAF aspect in the UML model, as mentioned above. The result of
this step is the “Complete System Specification”, which is the created UML model whose
diagrams are decorated with stereotypes of the MARTE profile. After that, a “Remove
Ambiguities from Model” step was added. It represents the transformation of the UML

74

validation

validation

validation

System

Exploration
Algorithms &

models Library

Architectural

Exploration
Estimation

Macro-architecture

with functional

mapping

SW and RTOS

compilation

Communication

synthesis

Micro-architecture

synthesis

Software Micro-architecture

Test

planning

High-level Executable

Description

HW Source

Code

validation

Mapping

Rules

DERAF
Implement.

Library

Code Generation +

Aspects Weaving

SW and RTOS

Source Code

Component

Library

Platform

Library

Non-Functional

Requirements

Specification

Remove Ambiguities

from Model

Compact System

Specification

High-Level Model

DERAF

High-Level

Aspects

Application

Elements

Functional

Requirements

Specification

System Model

Specification

Complete System

Specification

(a)

(c)

(b)

(d)

Figure 4.5: Adaptations proposed to SEED design flow

model created in the previous step into a DERCS model, which is represented by the
“Compact System Specification” box. It is important to highlight that the DERCS model
can be used as input to the system exploration activity, which incorporate the platform-
independent computational elements mentioned in the previous section. Thus, different
implementation of these elements can be evaluated and the one that best fits system re-
quirements can be selected.

Other proposed extension to the original SEEP design flow is depicted in figure 4.5b.
After the “Architectural Exploration”, a “Code Generation+ Aspects Weaving” activity
has been included – it appears after the “Macro-Architecture with Functional mapping”
box in figure 4.5. This code generation activity represents the forth step of AMoDE-RT
design flow, and is performed by the GenERTiCA code generation tool. Repositories of
mapping rules and DERAF aspects implementations were included in SEEP design flow
(see figure 4.5c). Both mapping rules and aspects implementation rely on the platforms
available in the platforms library (see figure 4.5d). GenERTiCA reuses elements of these
repositories to perform the code generation and aspects weaving processes. As result of
this activity, source code files for both software and hardware are created. Further, these
source code files are used in the compilation and synthesis step, and can also be tested
using the SEEP test approach. Finally, real implementationof the distributed embedded
real-time system being designed is obtained.

75

5 SPECIFYING DERTS USING UML AND ASPECTS

5.1 Introduction

This chapter discusses the distributed embedded real-timesystems specification, in
terms of modeling their structure, behavior, and non-functional requirements handling.
The word “model” has very different meanings, which are related to context in which
it is used. In the context of this work, models are simplified descriptions of computing
elements that are being developed to provide the expected functionalities for a computing
system, which must cope with application/domain requirements.

As stated in chapter 4, this work uses UML to specify models ofdistributed embed-
ded real-time systems. However, as UML lacks specific syntaxand/or sufficient seman-
tics to describe embedded and real-time system domain concepts (VANDERPERREN;
MUELLER; DEHAENE, 2008), a subset of the MARTE profile stereotypes is used to
complement the system’s features specification.

This chapter discusses guidelines to create UML models, which must be followed
to allow the transformation of UML models into DERCS models for code generation
purposes. In fact, in addition to suggestions on the diagrams selection, these modeling
guidelines define some restrictions in modeling activities, allowing a correct system spec-
ification interpretation and transformation. Hence, the information on structure, behavior
and non-functional requirements handling that is spread over different diagrams can be
combined in the DERCS model. The discussion is divided in twoparts:(i) specification
of functional requirements handling, which approaches theuse of some UML diagrams
to specify the structure and behavior of systems; and(ii) specification of non-functional
requirements handling, which explains how to specify AO concepts in UML models.

5.2 Functional Requirements Handling Elements

5.2.1 Introduction

The current version of UML specification, namely version 2.2(OMG, 2008), supports
14 diagrams, whose brief description is given as follows:

• Structural Diagrams show a complete or partial view of system’s structure. Avail-
able diagrams are:

– Class Diagramshows system static structure in terms of classes and interfaces,
their attributes and operations, as well as relationships among them;

– Composite Structure Diagramdepicts the system structure as hierarchically
linked blocks. The internal structure of a structured classifier is shown as

76

parts interconnected by ports, which are linked to interfaces;

– Component Diagramprovides a component view of system structure, i.e. it
shows classes and their instances as components. Relationships are repre-
sented as provided/required interfaces;

– Deployment Diagramdescribes the system architecture, by means of assign-
ing objects onto execution platforms;

– Object Diagramdepicts the dynamic structure, i.e. class instances and their
relationships, at a specific instant;

– Package Diagramshow the system as a set of packages that represent the
logical grouping of classifiers; and

– Profile Diagramis very similar to the class diagram, but instead of showing
classes, this diagram depicts stereotypes.

• Behavior Diagramsdepict complete or partial expected system behavior:

– Use Case Diagramshows system’s main functionalities in a very abstract fash-
ion, as well as external actors that interact with the system;

– State Machine Diagramdisplays hierarchical finite state machines, which are
composed of composite states with one or more orthogonal states. These states
machines are an extended version of Harel’s statecharts (HAREL, 1987);

– Activity Diagramdepicts system behavior in terms of activities and control
flow. Activities use a Petri net-like semantic, i.e. its execution semantics is
based on tokens. Additionally, there are special kinds of nodes that represent
forks, joins, branches, and others;

– Interaction Diagramsshows the communication among concurrent objects.
There are four kinds:

∗ Sequence Diagramshow multiple objects exchanging messages during
their lifetime. Objects are represented as lifelines. Messages, which can
be synchronous or asynchronous, are represented as horizontal lines from
one lifeline to another one. There are also special constructions that rep-
resent loops, branches, concurrent messages exchanges, and others;

∗ Communication Diagramis similar to the sequence diagram, but instead
of showing messages exchanged over time, it shows only the messages
order without any special control flow element;

∗ Interaction Overview Diagramis a special kind of activity diagram, in
which the nodes represent sequence diagrams instead of activities; and

∗ Timing Diagramrepresents discrete values or states changing while time
passes. It is similar to continuous waveforms.

For more details on UML diagrams, interested readers are referred to (BOOCH; RUM-
BAUGH; JACOBSON, 2005) and (OMG, 2008).

According to Vanderperren, Mueller and Dehaene (2008), information captured in
UML models is often redundant and overlaps. Consequently, it is not necessary to use
all of these diagrams to model a distributed embedded real-time system. Depending on
the used design method and project goals, only some of them are useful. Moreover,
some diagrams are more suitable (or clear) than others to specify system characteristics

77

<<NFR_Timing>>

Control Wheelchair
Movement

<<NFR_Embedded>>

Sample Movement
Information

Left Wheel
Actuator

<<include>>

Figure 5.1: Graphical representation of system requirements

in a given target application domain. For instance, although activity, state and sequence
diagrams are behavior diagrams, sequence diagrams show thebehavior related to objects
exchanging messages in a better way than activity or state diagrams allow, in spite of all
of them could express such actions.

In this sense, AMoDE-RT modeling approach restricts UML usage to eight diagrams:
(i) use case diagram;(ii) class diagram;(iii) sequence diagram;(iv) composite structure
diagram;(v) deployment diagram;(vi) activity diagram;(vii) state diagram. However,
only (i), (ii) and (iii) are mandatory, the other diagrams are optional. As mentioned, to
allow information contained in these diagrams to be correctly extracted, and transformed
into a DERCS model, a set of modeling guidelines for each diagram has been created,
and must be followed. The following subsections discuss these guidelines, providing
examples on how to create the supported diagrams.

5.2.2 Specification of System Expected Functionalities

As mentioned in chapter 4, the use case diagram is used to showthe main function-
alities of the distributed embedded real-time system beingdesigned. Figure 5.1 depicts
a sketch showing elements that are important in the AMoDE-RTapproach. The “stick
man” is the graphical representation of an actor, which represents a role played by a user,
thing, or any other system that interacts with the system. Ellipses represent use cases,
which indicate a set of actions performed by the system that yields an observable result to
associated actors. In other words, use cases represent the main expected functionalities.
It is important to highlight that crosscutting non-functional requirements, which affect
system functionality, are also represented in the use case diagram. Therefore, the infor-
mation of the mapping table, which has been created in the requirements analysis (see
chapter 4 and (FREITAS, 2007)), is used to decorate uses cases with stereotype indicat-
ing the first-level of non-functional requirements classification presented in figure 2.1 of
section 2.3. These stereotypes are shown in figure 5.1 as«NFR_*» stereotypes. Hence,
the traceability between requirements and model elements is reinforced.

5.2.3 Specification of System Structure

5.2.3.1 Class Diagram

The main diagram to describe system structure is the class diagram. As expected, this
diagram describes the static structure of the distributed embedded real-time system under
design. It shows all classes that are responsible or relatedto the handling of functional
requirements. Figure 5.2 shows an example of such diagram.

The proposed modeling approach assumes the common and wide use of this diagram,
i.e. classes are depicted with their attributes and method signatures, as well as their re-
lationships with other classes. Names of classes and attributes must be substantives to
represent elements, which are relevant to the system or their characteristics. On the other
hand, method names must be verbs to represent activities performed by objects of such
classes. This naming convention must be also followed in interfaces specification. Fur-

78

-newActuationValue : float

<<getter>>+getActuationValue(){Attribute = newActuationValue}

<<setter>>+setActuationValue(){Attribute = newActuationValue}

+run()

+savePreviousMode()

<<SchedulableResource>>

MovementController

#processInfo(speed : int, angle : int) : float

AbstractController

-Mode : int

+setMode(newMode : int) : void

+getSpeed() : float

+getMode() : int

+processDate(newData : int)

+storeDate(newData : int)

<<MutualExclusionResource>>

MovementInformation

+shutdown()

MovementControlSystem

+setActValue(value : float)

+getActValue() : float

Actuator

-movInfo

1 1

-info 1

1

-rightWheel

1 1

-leftWheel

1 1

-act *

1

-ctrl 1

1

Figure 5.2: Specification of the static structure

thermore, class names are used to fill the mapping table of RT-FRIDA in order to allow
traceability between design elements and requirements specification.

One important feature to be observed in figure 5.2 is the use ofstereotypes decorat-
ing certain elements. As mentioned in section 2.4.2, encapsulation restricts the access
to class attributed by means of providing access methods. Hence, if a class needs to
access an attribute of other class, the designer must include get and/orsetmethods for
that purpose. Such methods are specified as in the classMovementController, i.e. a
«getter» or «setter» stereotype must decorate, respectively,get andsetmethods.
The attribute that is accessed by them is specified using the tagged valueAttribute. Later,
in the transformation of the UML model into a DERCS model, this information is used to
automatically generate the corresponding behavior of suchmethods.

Taking into account the specification of concepts that are specific to the real-time
domain, the UML model can represent active and passive objects. Active objects are re-
sources that are able to perform actions concurrently with other active objects (BURNS;
WELLINGS, 1997; OMG, 2008b). Hence, the proposed approach assumes that active
objects include their own thread of control. Classes that represent active objects are deco-
rated with the stereotype«SchedulableResource» from the MARTE profile, as the
classMovementControllerin figure 5.2. On the other hand, passive objects are resources
that perform actions in response to stimuli of both active orpassive objects, meaning
that a passive object can eventually be accessed concurrently in the context of more than
one active object execution flow (i.e. thread). If the concurrent access of such objects
needs to be synchronized, classes that represent this kind of object must be annotated
with the «MutualExclusionResource» stereotype of the MARTE profile. The
MovementInformationclass in figure 5.2 is an example of controlled shared passiveob-
ject class. Classes without any stereotype or decorated with«Resource» stereotype are
interpreted as passive objects with concurrent access synchronization.

Multiple inheritance is not allowed, i.e. one class can haveonly one parent class as
specified in the generalization relationship betweenMovementControllerandAbstract-
Controller. If classes, which are children of different parent classes, need to share some
features, an interface specifying these features should becreated. Then, those classes
should be linked to this interface by means of the interface realization relationship. Other
three relationships are supported:(i) association;(ii) composition; and(iii) aggregation.
In all of these relationship at least one association end must be1 (one), i.e. only the fol-
lowing cardinalities are allowed: 1-to-1, 1-to-n, 1-to-n..*, and 1-to-* (wheren is a positive
natural number). Hence, many-to-many relationships cannot be specified. Additionally,
at least one association end must have a name, and must be navigable, indicating that
objects of the class represented by one association end can communicate with objects of

79

<<MutualExclusionResource>>

info : MovementInformation [1]

<<SchedulableResource>>

ctrl : MovementController [1]

<<MutualExclusionResource>>

movInfo : MovementInformation [1]

leftWheel : Actuator [1]

rightWheel : Actuator [1]

MovementControlSystem

act[0]

act[1]

info

Figure 5.3: Specification of the dynamic structure

the class represented by the navigable association end, e.g. in figure 5.2,act indicates that
MovementController’s objects can interact withActuator’s objects. During the transfor-
mation of the UML model, information of the navigable association end is used to create
an attribute in the class of the other association end. Theseconstraints were imposed in
order to provide a precise interpretation of these relationships during the transformation
of the UML model into the DERCS model (for details see section6.2).

5.2.3.2 Composite Structure Diagram

Besides the specification of the static structure of the distributed embedded real-time
system, designers can also specify the dynamic structure (or part of it) using the com-
posite structure diagram. In the context of this work, dynamic structure means the set
of active and passive objects (i.e. class instances) that compose the system. As already
mentioned, the use of composite structure diagram is not mandatory. The information on
system objects can also be extracted from the sequence diagram by means of its lifelines.
However, using this diagram is particularly interesting inthe design of systems that do not
create new class instances after the initialization phase,as usual in hard-real time control
system, due to system constraint or application requirements. Thus, all objects required
in the system execution phase could be specified in a single composite structure diagram.
Figure 5.3 shows an example of composite structure diagram.

As can be seen, the whole system under design is represented as a class (Movement-
ControlSystem) that encloses its set of active and passive objects, which are depicted
as rectangles likewise classes in the class diagram, e.g.ctrl (active object),leftWheel,
rightWheel, andmovInfo(passive objects). The difference is the syntax for name spec-
ification in such classifiers: “object_name : class_name [amount_of_objects]”. For ob-
jects that make up other objects,object_namemust be the name of the navigable as-
sociation end of the respective composite/aggregation relationship in the class diagram,
e.g. instances ofActuatorinsideMovementControlSystemthat refers to “leftWheel” and
“rightWheel” compositions depicted in figure 5.2. Moreover, amount_of_objectsdefines
the amount of instances of a given class, e.g. “movInfo : MovementInformation [1]” rep-
resents one object of theMovementInformationclass. Two or more instances of the same
class can be indicated using numbers inside brackets, or different rectangles (each one
having a unique name) as demonstrated in “leftWheel” and “rightWheel” objects.

As one can see in figure 5.3, composite relationships are specified as solid lines rect-
angles, and aggregation relationships as dashed lines, e.g. “info” object insideMove-
mentControllerthat refers to “info” aggregation depicted in figure 5.2. On the other hand,
normal associations are depicted as lines linking objects,e.g. “act[0]”, “act[1]” that rep-
resent the association with the same name in figure 5.2.

Composite structure diagrams also depict MARTE stereotypes, which were used in the
class diagram to refine classes’ semantics according to concepts of real-time and embed-

80

Node_2

<<artifact>>

C++

<<artifact>>

Java

MCS : MovementControlSystem

<<MutualExclusionResource>>

movInfo :
MovementInformation

<<SchedulableResource>>

ctrl :
MovementController

Node_1

<<artifact>>

Java

rightWheel :
Actuator

leftWheel :
Actuator

<<manifest>>

<<manifest>>

<<manifest>>
<<manifest>>

<<manifest>>

Figure 5.4: Specification of objects deployment

ded domains, facilitating the differentiation of active objects from passive ones. However,
it is important to highlight that, as this information is represented as instances of UML
meta-model elements, it does not need to be specified twice. Hence, there is no need to
re-annotate objects with the same stereotypes used in the class diagram. During the trans-
formation of the UML model into the DERCS model, such information is obtained from
the meta-model elements of the class diagram.

5.2.3.3 Deployment Diagram

Other structural diagram used in AMoDE-RT modeling approach is the deployment
diagram, which specifies on which computing device (e.g. devices with processors and
memory, ASIC or FPGA hardware devices, or hybrid devices) objects execute their be-
havior, as well as in which kind of platform they are implemented. Figure 5.4 shows
an example of such diagram. Different computing devices arespecified asnodesin de-
ployment diagrams, while different platforms asartifactsplaced inside these nodes, e.g.
Node_1andNode_2are computing nodes, andJavaandC++ are platforms representing
node’s implementation. Objects are specified as instances linked with artifacts through
manifest relationships. Therefore, objects are deployed in the node (or computing device)
that owns the artifact associated to them, e.g.ctrl is an active object implemented as
software using a Java platform; andleftWheelandrightWheelare implemented in C++.

Objects that are linked with artifacts in the same node representlocal objects. On the
other hand, objects linked with artifacts residing in different nodes are consideredremote
objects. At modeling level, the semantics of the communication among local objects is
the same as remote objects, i.e. one object sends a message toanother, waiting or not
for a response. The same is true for objects modelled as implemented as software and/or
hardware. The differentiation among messages sent to localor remote objects is done
during code generation phase by GenERTiCA that evaluates nodes on which source and
target objects (related to sending message actions) are deployed. However, it is impor-
tant to highlight that there are some non-functional requirements related to distributed
objects communication. They are handled by aspects of DERAF, allowing designers to
focus on concepts of the target application domain instead of on implementation issues,
as explained in the section 5.3.

5.2.4 System Behavior Specification

5.2.4.1 Sequence Diagram

System behavior is specified as a combination of different UML 2.2 behavior dia-
grams, i.e. different diagrams of the same type, such as different sequence diagrams, as
well as different kinds of diagrams, such as a combination ofdifferent sequence diagrams

81

<<SchedulableResource>>

ctrl : MovementController

<<MutualExclusionResource>>

info : MovementInformation

<<Scheduler>>

sched : Scheduler

tmpAct : Actuator

act : Actuator

[speed > 100]

opt

[i = 0; i < 10]

[(i % 2) == 0]

[else]

alt

loop

setActValue(value="0")2:

processInfo(speed=, angle=)10:

setMode(newMode=10)11:

ASSIGN(int var1, angle*0.9)12:

getSpeed()13:

speed14:

<<TimedEvent>>

run()1:

{every = "(15,ms)”}

result5:

result8:

3:

getActValue()4:

getActValue()7:

setActValue(value=result)6:

ASSIGN(i, i+1)9:

Figure 5.5: Specification of the behavior in terms of actionsperformed by objects

with state and/or activity diagrams. In AMoDE-RT modeling approach, the sequence dia-
gram plays the main role for describing the behavior of a distributed embedded real-time
system. It was chosen due to its intuitive syntax to depict objects communicating with
each other (i.e. message exchanges), as well as its capability of controlling the execu-
tion flow within the diagram. As explained in the following paragraphs, a set of reserved
words has been created to represent other kinds of actions, such as value assignment to
variables or object attributes, evaluation of expressions, and objects state changes. Con-
sequently, it is possible to specify most actions a distributed embedded real-time system
needs to perform as its behavior.

There are some modeling rules that must be followed in order to allow the combi-
nation of the behavior information spread into different sequence diagrams. Figure 5.5
depicts an example of a valid behavior specification using a sequence diagram. All life-
lines represent active or passive objects, whose name must be either the name of an at-
tribute or a variable. Therefore, an object that sends a message to other object must be
related to it through either a relationship between both class (specified in the class dia-
gram), or the creation of this object (as a local variable) within the context of its methods’
behavior. For example, the third lifeline (from left to right) represents the association
relationship betweenMovementControllerandActuatorclasses, whose association end
has been named as “act” (see class diagram depicted in figure 5.2). As mentioned in
the previous section, this association end represents an attribute with the same name in
theMovementController, allowing the communication between objects of this class and
objects of theActuatorclass.

However, there is an exception of this naming rule: the first lifeline does not need to
represent any specific object. Hence, it can have any name (including the “*” wildcard
character, as depicted in figure 5.6), and does not require any associated object. This is
possible because the transformation algorithm usually interprets messages departing from
the first lifeline as the beginning of an actions’ execution flow. For example, in figure

82

<<MutualExclusionResource>>

info : MovementInformation

<<SchedulableResource>>

ctrl : MovementController

act : Actuator*

[proc_1]

[proc_2]

par

savePreviousMode()4:

savePreviousMode()7:

getMode()2:

invalid()5:

setActValue(value=150)8:

setMode(newMode=10)3:

processInfo(speed=, angle=)1:

setMode(newMode=)6:

Figure 5.6: Invalid behavior specification using sequence diagram

5.5, “message 1” indicates the beginning of the behavior ofMovementController.run()
method. The same is valid for messages “1” and “6” in figure 5.6that represent start
of, respectively,MovementController.processInfo()andMovementInformation.setMode()
methods’ behavior Although the relaxed naming rule, there is a pitfall in the specification
of messages sent to the first lifeline: if the message is sent from other lifeline to the first
one, e.g. “message 5” in figure 5.6, it means a sending messageaction, and hence, the
first lifeline must represent an object to allow the correct interpretation of this action. The
transformation algorithm will try to find the method associated with the message (in this
case, the methodinvalid()), but will succeed due to the lack of associated object. In other
words, the situation presented in figure 5.6 represents an invalid message flow due to the
lack of any object and/or class associated to the first lifeline, i.e. the name “*” indicates
that the lifeline can represent any object.

Furthermore, considering the execution flow depicted in sequence diagrams, messages
must be specified according a nesting constraint: it is expected that the next message de-
parts either from the lifeline that has received the previous message, or from one of the
lifelines that had sent any previous message. In this sense,the diagram presented in fig-
ure 5.5 represents a valid flow, because all messages have been specified according such
constraint. Considering this sequence diagram, let’s assume a “imaginary” execution flow
that passes a control token from thesched : Schedulerlifeline to ctrl : MovementCon-
troller lifeline in “message 1”. This token is forwarded from this lifeline toact : Actuator
(“message 2”), which, in turn, passes it to thetmpAct : Actuatorlifeline (“message 3”).
After the instantiation ofActuatorclass, the token is returned to theact : Actuatorlife-
line. Following, the token is passed again totmpAct : Actuatorin either “message 4”
or “message 7”, returning back to the previous lifeline (i.e. act : Actuator) after the ex-
ecution of the behavior specified within the corresponding alternative in the combined
fragment. Finally, after the execution of the assignment action specified in “message 9”
(explained in the following paragraphs), the token is returned toctrl : MovementCon-
troller lifeline. Further, “message 10” specifies a recursive message, which indicates the
beginning ofMovementController.processInfo()method behavior (the darker part in the
lifeline). Thus, all messages sent from this lifeline part belong toprocessInfo()’s behavior.
Likewise explained previously, the execution token flows among lifelines respecting the
message nesting order. In this example, it is important to note that almost all messages
(e.g. messages 1, 2, 4, 6, 7, 10, 11, and 14) have been specifiedas synchronous call oper-
ation messages, meaning that the execution of the calling method’s behavior must be held
until the called method returns the execution control token.

On the other hand, figure 5.6 shows an invalid behavior specification using sequence

83

diagrams. It describes a broken execution flow due to “message 3”. Once reading this dia-
gram according to the mentioned messages nesting constraint, it is expected that “message
3” departs frominfo : MovementInformation, ctrl : MovementController, or “*” lifelines
rather than fromact : Actuator. Hence, the specified execution flow violates the expected
messages nesting order. Nevertheless, if “message 3” and “message 5” (as explained in
previous paragraphs) are removed, the sequence diagram depicted in figure 5.6 becomes
a valid behavior specification, due to the compliance with the mentioned constraints.

As mentioned, sequence diagrams are key diagrams to system behavior specifica-
tion. They are intended to depict objects interactions in terms of messages exchanged
among them. However, behavior of distributed embedded real-time systems cannot be
fully specified using only sending messages actions. There are other equally important
actions:(i) values assignment to object attributes or variables;(ii) evaluation (or execu-
tion) of mathematical or boolean expression;(iii) explicit changes in the object state1;
(iv) array-related actions, such as insert/remove elements, get/set element values, or get
the array length. The problem is that there is no available construction in sequence dia-
grams to specify such actions. Thus a set of reserved words was created to specify these
actions. Table 5.1 presents the created reserved words, which are used in the specification
of message names to represent the mentioned actions. In order to allow the correct inter-
pretation of such names during the transformation phase, the syntax depicted in table 5.1
must be followed.

Other important feature in behavior specification is the control of execution flow using
constructions such as branches or loops. Since the approvalof UML 2.0 superstructure
specification, sequence diagrams allow the specification ofcontrol constructions, named
combined fragments, which operate on an interaction fragment. Thus it is possible to
specify alternative or optional execution of interaction fragments, parallel execution of
interaction fragments, repetition of interaction fragments execution, and others. The pro-
posed modeling approach allows using a subset of all combined fragments kinds:

• Alternatives (alt) designates different choices for execution of actions sequences.
To use this construction, designers must specify at least two alternatives. Each
alternative sequence is guarded by a boolean expression, which must hold in order
to deviate the execution flow to the alternative interactionfragment. If an alternative
does not have a guard expression, the actions sequence of this alternative is executed
if and only if guard conditions of all other alternatives do not hold. In the case of
two or more guard conditions hold, the action sequence specified within the first
alternative (considering the alternatives order depictedin the sequence diagram) is
executed; other action sequences are ignored. In other words, the actions specified
in an alt fragment are not concurrent. Figure 5.5 depicts an example of such
combined fragment;
• Option (opt) defines an optional sequence of action that are executed whether the

guard expression holds. It is similar toalt combined fragment, but it specifies
only a single alternative. Thereforeopt combined fragment must always have a
guard condition. Figure 5.5 shows an example of this combined fragment;
• Parallel (par) represents parallel execution of action sequences, whichexecute

concurrently and independently from the other parallel parts. As sequences of ac-
tions could terminate in different instants, designers must not specify any action

1The term “state” in the context of OO can interpreted as two complementary definitions:(i) values
of object’s attributes at a given instant; and/or(ii) a explicit state, which is generally specified in a state
machine. In this work, “object state”, “state of the object”, or simple “state” refers to (ii).

84

Table 5.1: Reserved words for actions specification

Syntax Description
ASSIGN([data type]
target, value)

Represent an assignment action of a value to a variable or
object attribute, where:
data type is optional, and indicates the variable data
type;
target specifies the name of the target variable or at-
tribute, in which the value is stored. The naming constraint
(i.e. lifeline naming) must be respected;
value is the value to be assigned.

EXPRESSION([[data type]
target,] expr)

Represent the evaluation (or execution) action of a mathe-
matical or boolean expression, where:
data type is optional, and indicates the variable data
type;
target is optional, and specifies the name of a variable
or attribute in which the expression result is stored. The
naming constraint (i.e. lifeline naming) must be respected;
expr is the expression to be evaluated.

MODIFY_STATE(newState) Represent the action that changes explicitly the object
state, where:
newState represent the new state in which the object will
be after the execution of this action.

INSERT_ELEMENT(target,
[pos,] value)

Represent the action of inserting a value in a given array,
which can be a variable or attribute:
target specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected;
pos is optional, and specifies the array position after which
the value is inserted. If it is omitted, the element is added
at array’s end;
value is the value to be inserted.

REMOVE_ELEMENT(target,
pos)

Represent the action of removing a value from a given ar-
ray, which can be a variable or attribute.
target specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected;
pos specifies the array position that must be removed.

ARRAY_LENGTH(target) Represent the action of reading the length of a given array,
which can be a variable or attribute.
target specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected.

85

after apar combined fragment. Figure 5.6 also shows an example of this com-
bined fragment;
• Loop combined fragment (loop) represents the repetition of the actions sequence

execution. The actions sequence is repeated while the guardexpression holds.
Loops can also have a fixed number of repetitions, which is specified using the
syntax “var = minNumber; var < maxNumber”, wherevar is the name
of the repetition counter;minNumber is the initialization value for the counter;
andmaxNumber is the number of repetitions. Figure 5.5 shows an example of a
loop combine fragment that has a fixed number of repetitions.

To conclude the discussion on behavior specification using sequence diagrams, it is
important to consider the specification of real-time features. Similar to the specifica-
tion of the dynamic structure, stereotypes that decorate classes of active and passive ob-
jects are also depicted in sequence diagrams, due to the availability of this information
in instances of UML meta-model element previously specified. In this sense, MARTE
stereotypes do not need to be specified twice for the description of same system el-
ement, e.g. «SchedulableResource», «MutualExclusionResource» and
«Scheduler» stereotypes have already been used in the class diagram, andcould be
depicted in sequence diagram elements of figure 5.5.

An important view of system behavior is the specification of active objects’ concurrent
behavior that need to be periodically executed at a certain frequency. This kind of active
object must have only one periodic behavior, i.e. only one method can have its behavior
triggered periodically. Thus, designers must create at least one sequence diagram for each
periodic active object, showing the activation pattern forits periodic behavior. An exam-
ple of such diagram is presented in figure 5.5. This diagram must always start with a mes-
sage sent from the scheduler object to the active object, indicating the start of the periodic
behavior execution. Such message must be decorated with MARTE’s «TimedEvent»
stereotype. The time interval between two consecutive executions of the behavior must
be specified using theevery tag, whose value must follow MARTE’sValue Specifica-
tion Language(VSL) (OMG, 2008b) syntax: “(n, timeUnit)”, wheren is a number
andtimeUnit is the time unit. For instance, in figure 5.5, “message 1” is annotated
as “every = (15, ms)”, indicating that the interval between two consecutive execu-
tions of this behavior is 15 milliseconds.

5.2.4.2 Activity Diagram

Another diagram to specify system behavior that is supported by AMoDE-RT mod-
eling approach is the activity diagram. Although optional in the proposed modeling ap-
proach, this kind of diagram may be used in combination with sequence diagrams to
specify the overall view of system behavior in terms of runtime phases.

Distributed embedded real-time system runtime can be divided in three distinct phases:
(i) initialization;(ii) execution; and(iii) shutdown. The activity diagram is used to specify
these phases as shown in figure 5.7. Each activity is associated with a sequence diagram,
which details actions performed in the activity. AMoDE-RT modeling approach uses se-
quence diagrams rather than textual action languages (MELLOR et al., 1999) to specify
complex behavior and/or actions sequence, due to graphicalspecifications are consid-
ered easier to understand than textual descriptions. Besides, diagrams are more intuitive
and technology independent, facilitating the informationexchange among different de-
sign teams. Additionally, textual languages are considered very similar to conventional

86

<<TimedEvent>>
<<RTFeature>>

JoystickDriver.
run()

{every = "(10,ms)",

relDeadline = "(10,ms)",

wcet = "(3,ms)"}

<<TimedEvent>>
<<RTFeature>>

MovementController.
run()

{every = "(50,ms)",

relDeadline = "(50,ms)",

wcet = "(10,ms)"}

<<TimedEvent>>
<<RTFeature>>

MovementEncoder.
run()

{every = "(10,ms)",

relDeadline = "(10,ms)",

wcet = "(2,ms)"}

System
Initialization

System
Shutdown

Figure 5.7: System behavior overview specified using activity diagram

programming languages (e.g. Java or C/C++), and hence, theyare not the most suitable
form to specify system behavior in high-level models.

System initialization and shutdown activities describe all actions that need to be per-
formed, respectively, before and after the core functionalities provide by the system. As it
can be seen in figure 5.7, after the initialization activity the execution flow is split in sev-
eral concurrent activities. Usually, these activities indicate periodic behaviors executed
by active objects. If this overview of system behavior is provided, it is expected that the
amount of sequence diagrams provided in the UML model is at least equal to the amount
of activities specified in the activity diagram.

Activities’ timing information are specified by MARTE stereotypes and tagged val-
ues, indicating the activation period (every tag of «TimedEvent»), deadline, and
WCET (respectively,relDeadline andwcet tags of«RealTimeFeature») for
activities execution. Figure 5.7 depicts three activitiesthat are annotated with the men-
tioned MARTE stereotypes and tagged values, e.g.JoystickDriver.run(), MovementCon-
troller.run() and MovementEncoder.run(). As mentioned, this information is specified
once, i.e. one or more instances of UML meta-model elements related to system ele-
ments, and reused in many different diagrams that depict thesame elements, such as
class diagram, sequence diagram, activity diagram, and/orany other diagram supported
by AMoDE-RT modeling approach.

It is important to highlight that runtime phases can also be specified using state dia-
grams, in which each state represents a phase. Although sequence diagrams could also
be linked to states (in a state diagram) to indicate the behavior executed when the system
is in a given state, the activity diagram is considered more suitable for depicting such
viewpoint due to its sequential execution flow semantics, and also to the clearer visual-
ization of concurrent behavior. Furthermore, AMoDE-RT modeling approach binds state
diagrams to classes to specify explicitly states in which object can be during different
system runtime. Consequently, using state diagrams to specify system-level states may
cause problems in the model’s information interpretation and transformation.

5.2.4.3 State Diagram

Although sequence and activity diagram are considered sufficiently complete to spec-
ify the distributed embedded real-time systems behavior, there are application domains
in which this view of system behavior is not the most suitableone. Usually, in reactive
systems, behavior is usually specified in term of events and actions performed in response
to these events. To support this specification viewpoint, AMoDE-RT modeling approach
uses state diagrams, which are associated with classes specified in the class diagram. In
this sense, state diagrams represent both explicit states,in which a class instance (i.e. ob-
ject) can be at a given instant, and the behavior performed while it stays in these states. It

87

Reading Joystick
Position

Reading
Movement
Information Calculating

Actuation
Values

Applying
Actuation

Values

Triggering
Alarm

Stopping

Triggering
Alarm Stopping

Storing
Processed Data

Processing Data

Reading Speed
Sensor

Running

Initialization

Shutdown

low battery level

low battery level

low battery level

setActuationValue()

shutdown()

getSpeed() : float
processInfo(speed : int,

 angle : int)

low

battery

level

next activation

low battery level

next activation

low battery level

processDate(newData : int) storeDate(newData : int)

low battery level

shutdown()

Figure 5.8: Behavior of classes specified using state diagrams

is important to highlight that one state diagram is associated with only one class, and vice-
versa. Figure 5.8 shows an example of state diagram constructions, which are allowed in
the proposed modeling approach.

State diagrams show behavior as states, transitions, and events. Actions are associated
with states indicating their execution in three moments:(i) on entering the state;(ii) dur-
ing the stay on that state; and(iii) on exiting the state. Similarly to activity diagrams,
actions must be specified using sequence diagrams, which areassociated to states in the
mentioned moments. Moreover, state transitions are fired byevents, which may be inter-
nal or external. Internal events are logical events from theapplication domain, e.g. the
detection of a certain kind of threat in a surveillance system. Other example of internal
event is the instant in which a method call action is performed,e.g. transitions from “Read-
ing Joystick Position” to “Reading Movement Information”,or from “Processing Data”
to “Storing Processed Data” as depicted in figure 5.8. External events indicate remarkable
occurrences, which happened in the external environment inwhich the system is embed-
ded, e.g. signals issued by presence sensors. Such events are specified as substantives
in the transitions name, e.g. “low battery level” transitions in figure 5.8. Furthermore,
deep and shallow history pseudo-states (OMG, 2008) are not supported by AMoDE-RT
modeling approach. Consequently, the only way to start/finish a state machine is passing
through, respectively, initial and final states.

Orthogonal states are also supported. Designers can specify one sub-state machine
in each orthogonal region, meaning that once entering in a orthogonal state, objects can
be in severalAND-states(OMG, 2008) at the same time, e.g. “Running” state in figure
5.8. A transition from these orthogonal states to any other state is possible only if all sub-
state machines arrive in their final state. Hence, if the exitevent (which triggers the exit
transition from an orthogonal state) happens, and one or more sub-state machine are not in
their final state, the event is passed to all sub-state machines which remain active. On the
other hand, if there is no active sub-state machine, the exittransition from the orthogonal
state happens. For instance, let’s assume that the state machine depicted in figure 5.8 is
in “Running” orthogonal state. The first sub-state machine (upper orthogonal region) is
in the final state, and the other one is in “Storing Processed Data”. When a “shutdown”
event occurs, it is passed only to the second sub-state machine, causing the transition from
“Storing Processed Data” to the final state, and thus, from “Running” to “Shutdown”. It
is also possible to specify a transition from orthogonal states without triggering events,
indicating that, once all sub-state machine arrive the finalstate, the exit transition from
the orthogonal state is triggered automatically.

88

{overlapping}

superaspect

subaspect

dynamicity

RelativePositionKind

before
around
after

representedElement1

1

ownedElement

1..*

*

fOstsisnocfOstsisnoc

ownedJP

inConflictWith

implementedBy

Poincut

*

formalizedBy

relPos[0..1]:RelativePositionKind

RelativePosition

selectedJP*

* selectedBy

1..*

owner

owner

composedOf

dynamicity

composedOf

1..*

implementedBy

<<enumeration>>

Figure 5.9: Conceptual AO model (SCHAUERHUBER et al., 2006)

5.3 Non-Functional Requirements Handling Elements

5.3.1 Introduction

As already mentioned, AMoDE-RT modeling approach uses aspects to specify non-
functional requirements handling in UML models. Given thatUML does not have con-
structions to depict AO concepts in its diagrams, a lightweight extension to UML in terms
of a UML profile has been proposed. The concepts represented by the created profile
stereotypes are based on the AO concepts presented in section 2.4.3, and also the AO
conceptual model proposed by Schauerhuber et al. (2006) (see figure 5.9). That model
provides more general AO concepts compared to the ones discussed in section 3.3, which
are simply adaptations of specific AO languages concepts. From this model, the following
stereotypes have been derived:

• «Aspect»: used in ACOD (see section 5.3.3) to specify which DERAF aspects
(see next section) are selected in the current design. It must be used to decorate
UML’s class meta-model element, extending its semantics torepresent aspects;
• «BehavioralAdaptation»: used in ACOD to decorate aspects “methods” to

specify behavioral adaptations performed in system functional elements. It must be
used to decorate UML’s operation meta-model element extending its semantics to
represent behavioral adaptations;
• «StructuralAdaptation»: used in ACOD to specify structural adaptations

performed in system functional elements. It is also used to decorate UML’s opera-
tion meta-model element;
• «Crosscut»: used in ACOD to decorate associations between classes and as-

pects. In ACOD,crosscut associationsdo not represent by themselves a relation-
ship between aspects and classes. Instead, they represent information that is in-

89

serted by aspects in affected classes. Thus, this stereotype extends UML’s associa-
tion relationship using the mentioned semantics;
• «Pointcut»: used in ACOD to decorate aspects “methods” to specify the link

between join points and aspect adaptations. It must be used to decorate UML’s
operation meta-model element extending its semantics to represent pointcuts. In
the decorated methods, parameters represent pointcut information as explained in
section 5.3.3;
• «JoinPoint»: used in JPPDs (see section 5.3.4) to decorate the point in which

aspects can perform adaptations. It only indicates which (kind of) model element is
affected by aspect adaptations, instead of modifying theirsemantics;
• «JPDD»: used to decorate sequence or class diagrams indicating that they represent

join point selections rather than a functional diagram.

The following sections discuss how to use AO concepts to dealwith non-functional
requirements in the distributed embedded real-time systems design. Firstly, an aspects
framework to handle the mentioned requirements is presented. These aspects are used in
theAspects Crosscutting Overview Diagram(ACOD), which is proposed in this work and
discussed in section 5.3.3. Finally, join point specification is presented in section 5.3.4,
which discusses the use ofJoin Point Designation Diagrams(JPDD).

5.3.2 Distributed Embedded Real-time Aspects Framework

5.3.2.1 Overview

To provide modularized handling for non-functional requirements, a framework of
aspects namedDistributed Embedded Real-time Aspects Framework(DERAF) has been
created. In this sense, DERAF aspects encapsulate in a single element all issues related
to the handling of non-functional requirements.

Based on the AO conceptual model presented in the previous section, DERAF is an
extensible high-level aspects framework to be used in earlier design, as well as implemen-
tation phases. The main idea is to provide aspects that enhance the modeled system by
means of adding specific behavior and structure to specify non-functional requirements
handling. These “new” behavior and structure are independent from any specific imple-
mentation technology.

More specifically, DERAF was intended to be used together with UML and MARTE
profile. To achieve this goal, details about how to implementaspect adaptations have been
abstracted, i.e. designers choose which aspects are used tospecify the non-functional re-
quirements handling based on aspects adaptations high-level semantics. Thus, in UML
model, DERAF aspects are used as “black boxes”. In addition,designers must indicate
which functional elements are affected by the selected aspects using join points specifica-
tion, as discussed in section 5.3.4

Considering the non-functional requirements presented insection 2.3, each require-
ment can be handled by one or more DERAF aspects. Figure 5.10 shows an overview of
the DERAF aspects. As it can be seen, DERAF provides six packages grouping aspect
based on their goals. The following sub-sections provide a brief discuss on the seman-
tics of each available aspect. In addition, a more comprehensive description of DERAF
aspects is presented in appendix A.

90

<<Non−Functional>>

Embedded

<<Aspect>>

HwAreaMonitoring

<<Aspect>>

EnergyMonitoring

<<Aspect>>

HwAreaControl

<<Aspect>>

EnergyControl

<<Aspect>>

MemoryUsage
Control

<<Aspect>>

MemoryUsage
Monitoring

<<Non−Functional>>

Timing

<<Aspect>>

TimeBoundedActivity <<Aspect>>

SchedulingSupport

<<Aspect>>

TimingAttributes
<<Aspect>>

PeriodicTiming

<<Non−Functional>>

Communication

<<Aspect>>

MessageCompression

<<Aspect>>

MessageIntegrity

<<Aspect>>

MessageAck

<<Non−Functional>>

TaskAllocation

<<Aspect>>

NodeStatusRetrieval

<<Aspect>>

TaskMigration

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<Aspect>>

DataFreshness

<<Aspect>>

ClockDrift

<<Aspect>>

Jitter

<<Non−Functional>>

Synchronization

<<Aspect>>

ConcurrentAccessControl

<<Aspect>>

MessageSynchronization

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>> <<use>>

<<use>>

<<use>><<use>>

<<use>>

Figure 5.10: All aspects provided by DERAF

5.3.2.2 Timing Package

This package contains aspects to handle time-related requirements, such as deadlines
for activities execution, WCET information, periodic tasks activation, and others.

TimingAttributesaspect is responsible to deal with active objects characteristics such
deadline, priority, WCET, and absolute time instants on which their behavior must start
and finish the execution. Attributes representing the mentioned characteristics are inserted
in the affected active object classes, as well as methods andbehavior to initialize and
handle these attributes. As mentioned, the handling of these timing issues is delegated to
the target platform that must provide support to this aspectsemantics.

PeriodicTimingaspect provides means to trigger periodically an active object behavior
execution. Thus, besides adding an attribute indicating the execution frequency in the
affected active object class, this aspect must also enclosethe affected behavior with a
repetition mechanism, whose execution is controlled according the information stored in
the mentioned new attribute. In other words, this aspect is used to deal with the handling
of periodic active objects (or threads).

SchedulingSupportaspect inserts a scheduler object in the affected computingnodes.
This object is responsible to control active objects execution, indicating instants at which
they must start performing their behavior.

TimeBoundedActivityaspect controls the execution time duration of an activity or ac-
tion by counting the time elapsed since the start time instant. If maximum allowed dura-
tion is surpassed, this aspect provides means to abort the affected activity/action execu-

91

tion. Examples of this aspect use are: to restrict the maximum time a shared resource can
be in exclusive access mode, or the maximal time amount an active object can wait for
the reply of a remote objects.

5.3.2.3 Precision Package

Precision in meeting time requirements are handled by the aspects of this package,
which concentrates efforts in features such as the maximum tolerated delay in starting
activities, variance in activities timeliness, information’s validity duration, or the deviation
of local clock reference compared with the global one.

Jitter aspect measures the accuracy variance in activities performed by the system.
This aspect provides means to measure the time before (or after) an observed activity
happen, storing this information (the history must provideinformation of at least one
time sample) to calculate the variance among the observed time instants. This aspect
can be used, for example, to calculate the jitter in an periodic active object activation or
execution, or to compute the time variance of a periodic message sending.

ToleratedDelayaspect controls the maximum tolerated latency to the actualstart of
a given system activity. Thus, the time between the command and the execution of the
observed activity must be measured and calculated. If the observed duration is greater
than the maximum allowed latency, this aspect provides means to handle this exception.

ClockDrift aspect controls the clock deviation between the local time source and the
global one. Assuming that the target platform provides means to allow clock synchroniza-
tion, this aspect uses the global clock as reference to calculate the local clock deviation.
Thus, designers must specify time instants (or system events, e.g. the starting of an behav-
ior execution) at which the local clock must be compared withthe global clock reference
in order to check if there is a difference between the two measured values.

DataFreshnessaspect is responsible to deal with the validity duration (orutility) of
different system information (BURNS et al., 2000). For that, this aspect associates times-
tamps to affected data by adding new attributes to representing such information, as well
as inserting behavior to control these data use. In other words, each time a controlled
data needs to be read, its validity must be checked and, if it is out of validity, a corrective
behavior must be performed, e.g. wait until the date to be updated, read data directly
from its source, decrease the frequency at which periodic behaviors (which read the con-
trolled data) are executed. Analogously, each time a controlled data is updated, its validity
duration must also be updated.

5.3.2.4 Synchronization Package

Synchronization and the concurrent access control to shared resources requirements
are dealt by this package’s aspects.

ConcurrentAccessControlaspect provides means to control the concurrent access to
objects, which share their attributes information with other objects. The access to ob-
ject’s different elements can be controlled:(i) the object itself;(ii) their attributes; and/or
(iii) their methods. Therefore, depending on the controlled element, one or more arbiters
(i.e. concurrency controller instances) are created. Every time an (active or passive) ob-
ject needs to access controlled shared elements, it must request the access to them (i.e.
request a lock) that are granted or not by the arbiter. Depending on the arbiter imple-
mentation (e.g. mutex, semaphore, monitors), and also to the number of objects that are
accessing the shared resource at the moment, the access request can be authorized or not.
Similarly, after the use of the shared resource, the object that had the access permission

92

must notify the arbiter, indicating that it is leaving the shared resource and does not need
to use it anymore.

MessageSynchronizationaspect deals with holding behaviors execution until the ar-
rival of an acknowledgement message (or a reply message) indicating that the (remote)
object has received the message sent. It provides a waiting mechanism that could be
implemented as either(i) a busy wait, i.e. a loop that waits until the acknowledgement
message arrives; or(ii) using the system scheduler, which preempts the execution ofthe
current active object, marking it as blocked, and thus, opening room for other active ob-
jects execution. Later, when the expected acknowledgementmessage arrives, the blocked
active object is marked as ready to execute, and its execution is resumed following the
scheduler’s decision.

5.3.2.5 Communication Package

This package provides aspects to deal with objects communication in terms of mes-
sages sending. The first intention was to cover the communication between objects that
are located in computing devices that are physically separated. However, depending on
application requirements, this package’s aspects can alsobe used for specifying the com-
munication of objects located in the same computing device.

MessageAckaspect provides an acknowledgment mechanism to notify reception of a
message to its sender. In this sense, this aspect affects both sides of a message exchange:
sender and destination objects. On one side, the sender object sends a messages and waits
for an acknowledgement of message reception. On the other side, the receiver objects
needs to send an acknowledgement message after each received message.MessageAckis
related withMessageSynchronizationaspect.

MessageIntegrityaspect is responsible for handling messages integrity by providing
checking information within a message. Similarly toMessageAck, this aspect also af-
fects both message’s sender and receiver objects. Sender objects must generate integrity
checking information, appending it in the message to be sent, while receiver objects must
generate checking information from the received message, comparing it with the infor-
mation that came with the received message. The acknowledgment mechanism must be
notified whether the checking information match or not.

MessageCompressionaspect is in charge to compress/decompress messages in or-
der to improve bandwidth utilization. Like the other aspects of this package, this as-
pect affects both message’s sender and receiver objects. Atsender side, the message is
compressed using a compression algorithm, while at receiver side the message is decom-
pressed using the same algorithm.

5.3.2.6 TaskAllocation Package

Aspects provided by this package handle non-functional requirements related to ob-
jects distribution on different computing devices at runtime. These aspects are typically
related to distributed system nodes that are physically separated.

NodeStatusRetrievalaspect includes a mechanism to gather information on the system
dynamic characteristics, such as processing load, messagesending and reception rates,
and if the computing device is running.

TaskMigrationaspect adds a migration mechanism to move active objects from one
computing device to another one. Therefore, active objectscan migrate from one node to

93

another, as well as from software to hardware, or vice-versa2.

5.3.2.7 Embedded Package

Non-functional requirements related to physical resources availability, which are very
common concerns in embedded systems design, are handle by this package’s aspects.
Energy consumption, memory usage, and hardware reconfigurable area can be cited as
examples of such concerns. Basically, the available aspects are concerned in monitor-
ing and controlling the mentioned physical resources. Thus, depending on the physical
resource being controlled, the control policy, and platform capabilities, different actions
can be performed by these aspects as, for instance:(i) depending on the system require-
ments and runtime state, to remove objects related to non-critical activities; (ii) active
objects migration;(iii) to loosen timing constraints;(iv) to decrease processor operation
frequency;(v) to turn off unnecessary hardware components; It is important to highlight
that this aspects are dependent on target platform capabilities, meaning that the platform
must provide means to monitor and control system physical resources.

HwAreaMonitoringaspect is related to systems that use reconfigurable hardware de-
vices, such as FPGAs. It provides a mechanism to monitor the reconfigurable area
by which the remaining reconfigurable area (in terms of configurable logic blocks) is
(re)calculated at each reconfiguration command.

HwAreaControlaspect controls the hardware reconfigurable device usage byadding
an arbiter to allow or deny every reconfiguration based on theinformation of this package
monitoring aspects.

EnergyMonitoringaspect relies on the target platform to provide a mechanism to mon-
itor energy consumed by system activities. This mechanism must measure the remaining
energy level before the observed activities start, and after their completion. Further, it
calculates the amount of energy that was consumed by these activities.

EnergyControlaspect provides an object that uses information provided bythe mon-
itoring aspects to control the energy consumption. To accomplish such goal, this object
could perform the actions mentioned in the beginning of thissubsection.

MemoryUsageMonitoringaspect is similar to the other two monitoring aspects but it
is related to software rather than to hardware. It provides amechanism that must calculate
the overall memory usage of a computing device at every object allocation/deallocation.

MemoryControlaspect uses the information provided byMemoryUsageMonitoring
and HwAreaMonitoringaspects to control the memory allocation requests for objects
allocation following an adopted memory control policy.

5.3.2.8 Discussion

As one can conclude from the DERAF aspects description, someaspects deal with the
same non-functional requirements, such asMessageSynchronization, MessageAck, Mes-
sageIntegrity, andMessageCompressionthat handle objects message sending; orMemo-
ryUsageMonitoringandMemoryUsageControlaspects that handle memory non-functional
requirements. There are aspects that access resources provided by other aspects, such as
theSchedulingSupportaspect that uses resources provided byTimingAttributesandPeri-
odicTimingaspects adaptations; or control-related aspects that use information provided

2Objects migration between software and hardware (at runtime) is usually known as “reconfiguration”.
However, in embedded systems domain, “reconfiguration” usually means to upload a bitstream into a FPGA
device. Thus, in order to avoid misunderstandings, this text uses the term “reconfiguration” to refer to the
later, while reconfiguration between software and hardwareare called “migration”

94

by monitoring aspects to control the use of embedded system physical resources.
However, it is important to note the conflicting nature of some aspects adaptations.

The behavior that handles a non-functional requirement canaffect the handling behavior
of other non-functional requirements, e.g. the energy controller (inserted by theEner-
gyControlaspect) decides to migrate an active object from software tohardware to save
energy, but the hardware area controller (inserted by theHwAreaControl) aborts this mi-
gration activity due to insufficient available reconfigurable area. These conflicts must be
solved at design time. RT-FRIDA provides tools to enable requirements conflicts reso-
lution by assigning an importance value to each requirement(FREITAS, 2007). Hence,
this information must be taken into account in aspects implementation, so that, problems
related to requirements conflicts can be minimized.

The key factor that motivated DERAF creation was to provide aset of high-level as-
pects, which offer well-defined adaptations semantics, to be used in UML models. How-
ever, to allow its practical use, it is also necessary to provide the realization of these
aspects in terms of application or platform source code, or platform configuration code.
Additionally, aspects implementation must follow the pre-defined semantics on “how”
and “where” aspects adaptation can be applied. Keeping the coherency between high-
level adaptations semantics and their implementation, it is possible to increase the reuse
of aspects implementation previously created, reducing the effort necessary to handle
non-functional requirements in further projects.

In this sense, it is important to highlight that, although timing information is specified
by Timing Package’s aspects within ACOD context, specific details on how to handle
timing are delegated to the target platform, in order to keepDERAF aspects platform-
independent. In other words, the implementation of aspectsadaptations defines exactly
how to deal with each timing feature using constructions available in the target platform,
and respecting DERAF’s high-level semantics as specified inUML model. An example
of such aspect implementation can be seen in figure 6.9 of the Chapter 6 that shows how
periodic timing is handled using constructions available in an RT-Java based platform.
Other timing issues (e.g. deadline, WCET, etc.) are handledin a similar form: DERAF
defines high-level semantics to these non-functional requirements handling, which are
further implemented using constructions and services available in the target platform.
Consequently, the exact handling of timing features depends on the target platform.

It should be stated that there are two kinds of possible implementations to aspect
adaptations:(i) those that adapt application code; and(ii) adaptations that tailor platform
source code, or produce platform configuration files. The former represents modification
in the application code itself, e.g.PeriodicTimingaspect’sLoopMechanismadaptation,
DataFreshnessaspect’sVerifyFreshnessadaptation, orConcurrentAccessControlaspect’s
AcquireAccessadaptation. On the other hand, the other kind enables or disables a feature
in the target implementation platform, e.g.MessageAck, MessageIntegrity, andMessage-
Compressionaspects adaptations. The most important thing is to note that, to provide the
expected aspects adaptations according to the pre-defined semantics, the target platform
must offer the required services. It is not the intention of the described DERAF semantics
to provide a definitive solution for the handling of each non-functional requirements ad-
dressed by its aspects, they are suggestions to address withthese requirements handling.

Finally, it is worth mentioning that the aspects set provided by DERAF does not
cover all non-functional requirements present in the distributed embedded systems do-
main. Currently, non-functional requirements such as fault tolerance are not addressed by
DERAF aspects. However, it is an extensible framework, meaning that it is not difficult

95

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)

. . .
<<StructuralAdaptation>>+Deadline()
<<BehavioralAdaptation>>+SetTimingAttributes()

. . .

<<Aspect>>

TimingAttributes

<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
. . .

<<BehavioralAdaptation>>+VerifyFreshness()
. . .

<<Aspect>>

DataFreshness

<<MutualExclusionResource>>

MovementInformation

<<SchedulableResource>>

MovementController

<<Crosscut>>

Angle

{Validity = "20ms"}

<<Crosscut>>

Speed

{Validity = "50ms"}

<<Crosscut>>

{Deadline = "20ms",
Priority = "1",
WCET = "8ms"}

Figure 5.11: Aspects specification using ACOD

to include other aspects. It is only necessary to follow two rules:

1. High-level semantics, indicating “how” and “where” aspects adaptations are ap-
plied, must be pre-defined; and

2. To respect aspects’ pre-defined semantics in their implementation using services
and constructions of a given target platform.

5.3.3 Aspects Crosscutting Overview Diagram

As UML does not provide any meta-model element or graphical construction to rep-
resent aspects, this works has proposed theAspects Crosscutting Overview Diagram
(ACOD), which is an extended version of the standard class diagram. ACOD is based
on the concepts presented by Stein et al. (2002) and Schauerhuber et al. (2006), and
shows DERAF aspects affecting or not functional elements. There are two ACOD ver-
sions with different levels of detail:(i) overview ACOD presents all aspects affecting
classes without depicting details about aspects’ information; and(ii) detailed ACOD de-
picts all aspects specified in the UML model along with their adaptations and pointcuts,
and all classes that receive new information from aspects. Detailed ACOD is the main
information source for aspects specification. Thus, designers must always create this di-
agram to specify AO-related elements. Overview ACOD can be generated automatically
by evaluating all pointcuts specified in the detailed ACOD (using the join points indi-
cated in these pointcuts) to discover which aspects affect which classes. Hence, overview
ACOD is considered an informative diagram rather than an aspects specification.

AO-related stereotypes proposed in this work are used to annotate UML meta-model
elements depicted in ACOD to represent AO concepts as presented in figure 5.11.Aspects
are represented as classes decorated with the«Aspect» stereotype. Aspect’sbehavioral
adaptationsare specified as methods decorated with the«BehavioralAdaptation»
stereotype, whilestructural adaptationsas methods decorated with the«Structural-
Adaptation» stereotype. Similarly,pointcutsare specified as methods decorated with
«Pointcut» stereotype. As pointcuts specify the link between join points selection and
aspect adaptations, this information is specified as methodparameters as follows:

• The first parameter represents the join point name, and indicates which model ele-
ments are selected by these JPDD, e.g.JPDD_InfoAttributeReadin DataFreshness;
• The second parameter indicates which adaptations are performed in selected model

elements, e.g.DeadlineandSetTimingAttributesin TimingAttributes. If more than
one adaptation of the same aspect modify the same join point,adaptations names

96

can be combined in the same pointcut, using the “+” characterto separate each
adaptation name, e.g. “Deadline+Priority+WCET”;
• The third parameter specifies position (related to the join point) at which associated

adaptations are applied. For structural adaptations, thisparameter is optional. The
following relative positions are supported:

– BEFORE: used for behavioral adaptations to indicate that they are appliedbe-
fore join point occurrences, e.g.pcReadAttrValuein DataFreshness;

– AFTER: used for behavioral adaptations to indicate that they are appliedafter
join point occurrences, e.g.pcActObjInitin TimingAttributes;

– AROUND: used for behavioral adaptations to indicate that theyenclose(i.e.
adaptations are done before and after) join point occurrences;

– REPLACE: used for behavioral or structural adaptations to indicatethat join
point occurrencesare replacedby these adaptations;

– MODIFY_STRUCTURE: used for structural adaptations to indicate that they
modifyelements selected by join points;

– ADD_NEW_FEATURE: used for structural adaptations to indicate that new
features (e.g. attributes) are added in affected elements,e.g. pcActClassin
TimingAttributes.

An important ACOD feature must be highlighted: associations between aspects and
classes, which are decorated with the«Crosscut» stereotype. If an aspect structural
adaptation inserts new attributes in classes, the affectedclasses must be included in ACOD
specification. For each affected class, an unilateral one-to-one association decorated with
the«Crosscut» stereotype must be created from the aspect to the affected class. Values
for the new attributes are specified as tagged values in thecrosscut associationas depicted
in figure 5.11. As one can see,TimingAttributesinserts three attributes (i.e.Deadline,
Priority, andWCET) into MovementController. Thecrosscut associationspecifies that
Deadlinemust be initialized with 20 ms,Priority with 1, andWCETwith 8 ms. Simi-
larly, DataFreshnessaspect adds a new attribute associated withMovementInformation’s
SpeedandAngleattributes. A different value to each attribute is specifiedin crosscut as-
sociations. However, it is important to highlight thatcrosscut associationsare not “real”
associations between aspects and classes in terms of UML association semantics. Instead,
they are interpreted as informative relationships that do not produce any meta-model ele-
ment in the associated elements.

Considering timing requirements handled by DERAF aspects,the form to specify
such information is demonstrated in figure 5.11. For instance, deadlines are handled by
TimingAttributes, and thus, they are specified ascrosscut associationsbetween this aspect
and the affected active object classes. As DERAF defines high-level adaptation seman-
tics (see Appendix A), the exact handling of deadlines is delegated to the target platform,
which implements the pre-defined semantics of this aspect. In this sense, the UML model
specifies that active objects behaviors are constrained by deadlines, which are dealt by
TimingAttributes. However, there is no definition if this handling must be performed
using timers, special APIs, or other programming abstractions. The target platform is
responsible for this handling. Consequently, aspects adaptations must be map to con-
structions in such platform, defining the mentioned non-functional requirement handling.
The same is valid to the other aspects that deal with timing issues, e.g.PeriodicTiming,
DataFreshness, and other.

Additional examples of ACOD specification are provided in the case studies presented
in Chapter 7, and also in Appendix B.

97

Table 5.2: Naming pattern for elements selection in JPDD

Naming Pattern Description

* Indicate that any name matches with the pattern

*Ending Indicate that any name that ends with the character se-
quence “Ending” matches with the pattern

Start* Indicate that any name that starts with the character se-
quence “Start” matches with the pattern

mthName ’(’ [parName
[, parName]*] ’)’ ’:’
retTypeName

This special naming pattern is used in sending message ac-
tions selection, where
mthNameis the message name pattern as described above;
parNameis the message parameter name pattern. It is an
optional part. If method parameters should not be consid-
ered, the string “..” must be used. Otherwise, parameters
naming pattern follows the above mentioned patterns;
retTypeNameindicates the method return type name, as de-
scribed above.

[local. | remote.]
objName ’:’
className

This special naming pattern is used in objects, classes or
nodes selection. They are used to name lifelines in se-
quence diagram JPDD, where
local or remoteis a reserved word to indicate if the element
communicates with, respectively, local or remote elements;
objNameis the object name, as described above;class-
Nameis the class name, as described above.

5.3.4 Join Points: Selecting Model Elements Affected by Aspects

Although the aspects specification is an important part of non-functional handling
specification, equally important is the specification of which model elements are affected
by aspects adaptations. Therefore, join points selection are specified using a subset of
Join Point Designation Diagrams(JPDD) (STEIN et al., 2006). The main reason for
using JPDD is the possibility to specify join points graphically, which facilitates the un-
derstanding about which element kind is selected. Additionally, JPDDs are considered
more suitable to use in UML models than join points textual descriptions.

JPDD can capture model elements based on three different models: (i) control flow;
(ii) data flow; and(iii) state. The first model allows elements selection based on theexe-
cution control flow depicted in sequence or activity diagrams, e.g. a JPDD selects actions
performed in the behavior of a given method “a”, which is called inside the behavior of a
method “b”. The second model allows the elements selection based on data passed from
one method to other one, e.g. a JPDD selects a method behaviorthat has received a string
starting with “s” character as parameter. The last model allows elements selection base
on their explicit state described in a state diagram, e.g. a JPDD selects all objects that
are in “state_A”. As one can infer, elements selection can beperformed statically or dy-
namically. The first model allows both dynamic and static selection; the other two only
dynamic. Additionally, JPDDs can select elements (e.g. classes, attributes, and others)
based their names rather than using the mentioned models.

AMoDE-RT modeling approach supports both control flow JPDDs, and elements se-
lection based on naming patterns. However, there is a constraint: control flow JPDDs
cannot specify multiple calling levels, i.e. only actions performed in the method behavior
context can be selected. Furthermore, to specify which elements should be selected by

98

<<MutualExclusionResource>>

*

<<JoinPoint>>−sensor* : *

*

<<JoinPoint>>+set*()

<<SchedulableResource>>

<<JoinPoint>>

*

<<JoinPoint>>

local.* : *

{Class}

remote.* : *

1: *(..):*

<<JoinPoint>>

.

<<SchedulableResource>>

* : *

* : *

<<JoinPoint>>

1:

{MessageDefinition}

(d)

(e) (f)

(a) (b)

(c)

Figure 5.12: JPDD for structural elements selection

JPDDs, this work follows the naming patterns presented in Stein et al. (2006), as shown
in table 5.2.

Elements selection is performed during the transformationof UML model into a
DERCS model. JPDDs are evaluated using elements’ static information, and hence, dy-
namic evaluation of JPDD is not supported. In this sense, thefollowing model elements
can be selected:(i) classes;(ii) attributes;(iii) methods;(iv) nodes;(v) sending message
actions;(vi) object creation actions;(vii) object destruction actions;(viii) method return
actions; and(ix) methods behavior. Structural elements (i – iv) are selectedusing the sort
of JPDDs presented in figure 5.12. On the other hand, behavioral elements (v – ix) are
selected by JPDDs depicted in figure 5.13.

Sequence diagrams and class diagrams are decorated with the«JPDD» stereotype to
indicate that they are, in fact, the specification of join point selection rather than sys-
tem specification. Additionally, elements selected by the join point are decorated with
the«JoinPoint» stereotype, which defines some tags to identify precisely which el-
ements are considered. The available tags are:(i) Classes; (ii) Object; (iii) Node;
(iv) MessageDefinition; and(v) Behavior.

To illustrate the specification of model elements selection, a brief discussion on which
elements are selected by JPDDs depicted in figures 5.12 and 5.13 is provided. Structural
elements are selected by JPDDs presented in figure 5.12:

• JPDDs in figures 5.12a and 5.12e select classes. The former selects all active object
classes, while the later selects all classes whose objects send messages to remote
objects;
• Figure 5.12b depicts the selection of all attributes, whosename starts with “sensor”,

from all passive objects that are accessed exclusively;
• The selection of all system nodes is shown in figure 5.12c;
• Figure 5.12d depicts a JPDD that selects all methods, whose name start with “set”;
• All constructors of all active object classes are selected by the JPDD presented in

figure 5.12f.

Regarding the selection of behavioral elements, the following elements are gathered
by JPDDs depicted in figure 5.13:

• All actions related to messages whose name starts with “set”, which are sent from
any object to any passive object, are selected by the JPDD presented in figure 5.13a.

99

<<Scheduler>>

* : Scheduler

<<SchedulableResource>>

* : *

<<TimedEvent>>

<<JoinPoint>>

1: *(..): *

{ every = “”,

Behavior }

* : * * : *

<<JoinPoint>>

1:

<<Resource>>

* : *Information

*

<<JoinPoint>>

2:

1: * (..) : float

<<MutualExclusion

 Resource>>

* : *

* : *

<<JoinPoint>>

1:

local.* : * remote.* : *

<<JoinPoint>>

1: get*(..):*

<<MutualExclusionResource>>

* : *

* : *

<<JoinPoint>>

1: set*(..) : *

(a)

(c)

(b)

(d)

(f)(e)

Figure 5.13: JPDD for behavioral elements selection

• JPDD presented in figure 5.13b selects all actions representing messages, whose
name starts with “get”, and are sent to any remote object.
• Figure 5.13c presents a JPDD that selects the periodic behavior («Join Point»

stereotype’sBehavior tag) executed by any active object. Thus, this JPDD selects
all messages sent from the scheduler to any active object, that are, in addition, are
annotated with«TimedEvent» stereotype andevery tagged value.
• All return actions from methods of all passive object classes whose name ends with

“Information” are selected by the JPDD shown in figure 5.13d.
• Figure 5.13e depicts the selection of all actions that create passive objects.
• JPDD presented in figure 5.13f selects all actions that destroy any object.

5.4 Final Remarks

During the study to identify which diagrams are important tospecify structure and
behavior of distributed embedded real-time systems, the proposed modeling approach
selects UML diagrams that have been considered more intuitive, in order to facilitate the
interpretation of design intentions performed by different design teams. In this sense,
modeling guidelines are defined (and must be followed) to enable system specification
to be automatically extracted from UML models. Other goal isto use UML diagrams
in its standard form, i.e. using the standardized graphicalsyntax without proposing any
graphical extension. Hence, off-the-shelf UML modeling tools can be used to support
AMoDE-RT modeling approach without any constraints.

In AMoDE-RT, the class diagram is the most important diagramto describe system’s
static structure. It provides all structural information for system objects. The activity
diagram has been chosen to depict an overall view of system runtime phases, in which
active objects’ concurrent behavior can be seen with their timing constraints expressed
using standard MARTE stereotypes. However, in AMoDE-RT modeling approach, the
most important behavior diagram is the sequence diagram. Due to its intuitive graphical
syntax, sequence diagram has been chosen to specify actionssequence execution instead
of a textual actions language. In this sense, elements in activity and state diagrams are

100

Table 5.3: Summary of MARTE stereotypes used in AMoDE-RT

MARTE stereotypes UML elements Usage
«SchedulableResource» Class Specifies active object classes
«Resource» or
«MutualExclusionResource»

Class Specifies passive object classes

«Scheduler» Class Specifies the scheduler of a com-
puting node

«TimedEvent» Operation,
Message,
Activity

Specifies behaviors that are trig-
gered periodically

every Indicates the time interval be-
tween two consecutive execu-
tions of the behavior

«RTFeature» Activity Specifies behaviors’ timing
characteristics

relDeadline Indicates behaviors’ relative
deadline

wcet Indicates behaviors’ WCET

liked with sequence diagrams to indicate the behavior executed by classes associated these
elements. Considering the subset of MARTE stereotypes usedin AMoDE-RT modeling
guidelines, table 5.3 shows all stereotypes that can be usedto annotate UML diagrams’
elements, along with a brief description of their usage.

Also with regard to the specification of non-functional requirements handling , this
work does not propose any new UML graphical extensions to model AO concepts. As
mentioned, the intention is to use UML standard diagrams, thus a lightweight extension
in terms of a UML profile has been proposed. Commercial off-the-shelf modeling tools
are able to specify both ACOD and JPDD diagrams. JPDD has beenchosen due to its
expressiveness to specify join points selection, and also to the lack of a consolidated
standard for AO concepts modeling.

Finally, although DERAF aspects’ pre-defined high-level semantics define non-func-
tional requirements handling, aspects realization must beprovided in further design phases
using services provided by available platforms. Therefore, aspects adaptations must be
implemented using constructions of a target platform, or reused from previous projects
that had implemented these adaptations using the target platform. In this sense, platform
support is crucial to allow the DERAF effective use. Although this is not the focus of this
thesis, some DERAF aspects implementations are provided using platforms available in
our research group. Empirically, we believe that all aspects are fully, or at least partially,
implementable using platforms that are already available in industry or academy.

101

6 TOOL SUPPORT FOR THE PROPOSED APPROACH

6.1 Introduction

Tool support is essential to improve a design method usage effectiveness. In MDE ap-
proaches, one important tool is the code generation one, which uses the produced models
to create source code respecting system specification. Therefore,Generation of Embed-
ded Real-Time Code based on Aspects(GenERTiCA) has been created to support the
AMoDE-RT approach. As stated in chapter 4, GenERTiCA is a script-based code gen-
eration tool, which executes small scripts to produce code fragments that are merged to
produce the expected source code files for a target platform.Figure 6.1 shows the three
main features involved in the code generation approach implemented by GenERTiCA:
(i) transformation of system specification from UML to DERCS model, which is more
suitable than UML for code generation purposes;(ii) model-to-text mapping rules defini-
tion; and(iii) code generation and aspects weaving algorithm.

This chapter discusses GenERTiCA’s features. Firstly, it will discuss the DERCS
meta-model, and heuristics created to transform UML model elements into DERCS el-
ements. Next, mapping rules specification is discussed, focusing on mapping rules file
structure and scripts organization using the XML format. Additionally, mapping rules
scripts are detailed. Finally, the algorithm used to produce code from model elements is
discussed. Aspects weaving performed by GenERTiCA is also detailed.

Code Generation
+

Aspects Weaving

Model

Transformation

XML

Mapping
Rules

DERCS

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

public class MovementControler

extends RealtimeThread {

...
 private static RelativeTime _Period

= new RelativeTime(0,0,0);

 private static PeriodicParameters

_PeriodicParams =

 new PeriodicParameters
(null, null, null, null, null);

...

 public void run() {

 // Variables

 int newMRRotation;
 ...

 // Actions

 while (isRunning()) {

 mrRotation =

MRInfo.getRotation();
 mrPace = MRInfo.getPace();

 ...

 waitForNextPeriod();

 }

 }
...

}

Source
Code

Figure 6.1: GenERTiCA mains features overview

102

6.2 A Platform Independent Model for Code Generation

UML is a complex modeling language, which allows system elements specification
using different views. In its version 2.2, UML provides thirteen different diagrams: six
for system structure specification, and seven for behavior specification. Although these
different diagrams facilitate visualization of system features from different viewpoints,
this diversity of diagrams may lead to an ambiguous specification, due to information
overlapping and duplication. Furthermore, UML is considered a semi-formal language,
due to the lack of formal semantics to define the interpretation of system specification in-
formation, which is usually spread in several diagrams. Consequently, computers cannot
perform UML models automatic interpretation (or execution).

A candidate solution to these problems is to transform UML diagrams elements, which
represent embedded system information, into elements of other model, providing the same
abstraction level without binding system specification to any implementation platform.
However, this transformation makes sense only if this othermodel can provide a more
concise meta-model compared to the UML one. Hence, this works proposes the use of
the so-calledDistributed Embedded Real-Time Compact Specification(DERCS), aiming
at providing a PIM suitable for code generation purposes. DERCS is based on a subset of
both the UML meta-model and MARTE profile meta-model, and also the AO conceptual
model (SCHAUERHUBER et al., 2006), providing a model that includes OO and AO
concepts. The main intention is to precisely and unambiguously represent the informa-
tion on distributed embedded real-time system’s structure, behavior and non-functional
requirements handling.

DERCS meta-model defines a distributed embedded real-time system as set of com-
municating objects, which interact among each other to provide the expected system func-
tionality. In other words, objects are the key elements in system specification, representing
hardware and software components. System behavior is represented by both actions per-
formed sequentially by objects, and objects interaction. There are two object types: active
and passive. Active objects are autonomous entities that have their own flow of control
(i.e. a particular thread), allowing concurrent actions tobe executed in parallel with other
active objects. Additionally, these objects can be compared to concurrent processes in
multitask operating system, having characteristics, suchas activation patterns (e.g. peri-
odic, aperiodic, or sporadic), deadlines, WCET, priorities, and others. On the other hand,
passive objects are those that execute actions sequentially in response to messages re-
ceived from other objects (active or passive). Passive objects can be seen as entities that
provide useful information and services to active objects.

Likewise the UML meta-model, DERCS meta-model represents system structure el-
ements using OO concepts. Figure 6.2 shows DERCS meta-modelstructural elements.
An objectis aclassinstance, which, in turn, represents elements structure interms of at-
tributes and methods.Attributeshold values to represent objects’ state at a given instant,
while methodsrepresent messages signatures that can be received from other objects.
Both can be inherited from the so-called superclasses. Concerning thedata types, DERCS
defines almost the same data types as UML. It is important to mention that classes can also
define a set of explicit possiblestates, in which their instances can be during their lifetime.
Class explicit states are represented by attributes whose data type isStateDataType. Each
state is associated withtransitions, representing state changes. Further, more than one
incoming/outgoing transitions can be associated to the state. Concluding the discussion
about system structure representation, as one can infer, there is no major difference from
DERCS structural meta-model elements to UML ones.

103

FloatingPointDataTypesCharacterDataType

<<enumeration>>

ParameterKind

inout

out

in

<<enumeration>>

Visibility

protected

private

public

NamedElement

IntegerDataType

RuntimeElement

Class

StateTransition

ClassDataType

State

StateDataType

PassiveObject

Method

DataType

Enumeration

ActiveObject

Attribute

BaseElement

Object

Parameter

DateTime

Boolean

DoubleInteger String

Node

Char

Array

FloatLongByte Short

Void

−ReturnType

1

1

−DataType1

1

−InstanceOf

1

0..*

−ParameterKind

1

1

−DataType
1

1

−Methods

0..*

1

−Parameters

0..*

1

−Visibility1 1

−Represent

1..*

1

−Represent

1

1

−Attributes

0..*

1

−Deployed
 Objects

0..*

1

−FromState

1

1..*

−ToState

1

1..*

−Visibility

1

1

−DataType

1

1

1

−References *

−SuperClass

0..11

Figure 6.2: DERCS meta-model: structural elements

System behavior is represented by elements presented in figure 6.3. Abehaviorcon-
sists of behavioral elements, which can be eitheractionsor other behaviors, andlocal
variables. Basically, behaviors can be triggered in response to messages received from
other objects (i.e. a behavior is associated to a method bodyof a given class). In other
words, behaviors can be seen as the execution of actions sequences that start in response
to method calls. DERCS defines its actions model based on the UML meta-model, pro-
viding platform independent actions as follows:

• AssignmentAction represents a value assignment to an attribute or local vari-
able;
• ExpressionAction represents mathematical or boolean expressions evalua-

tion;
• SendMessageAction indicates the action of an object sending a message to

another object;
• ModifyStateAction represents the action of changing object’s explicit state;
• CreateObjectAction indicates an object creation, whileDestroyObject-
Action an object destruction;
• ReturnAction represents a method value return action;
• InsertArrayAction represent the action of inserting a new element in an ar-

ray, whileRemoveArrayAction represents the opposite, i.e. the action of re-
moving an element from an array. In addition,ArrayLengthAction represents
the array size information retrieval.

Moreover, DERCS defines that behaviors have pre- and post-conditions that must
hold, respectively, before and after actions sequence execution. Pre-conditionsindicate
that behaviors start their actions execution only if the boolean expression holds. Like-
wise,post-conditionsindicate that behaviors repeat actions sequence executionuntil the
boolean expression become valid.

104

ReceiveMessageEvent

DestroyObjectAction

RemoveArrayAction

SendMessageActionCreateObjectAction

SendMessageEvent

BehavioralElement

SEQUENTIAL

PARALLEL

<<enumeration>>

TriggerKind

ArrayLengthAction

AssignmentAction

ModifyStateAction

ActionWithOutput

InterruptionEvent

InsertArrayAction

ExpressionAction

RuntimeElement

EntryStateEvent

StateTransition

NamedElement

MessageEvent

ExitStateEvent

LocalVariable

DataType

ReturnAction

ObjectAction

BaseElement

ArrayAction

Behavior

Object

Method

StateEvent

Event

Attribute

Action

−ReturnType1

1

#TriggeredBehavior1

1

1

1

−AssociatedObject

1..*

1

−TriggeredAction

1..*

1

#RelatedObject1

1

−fromElement

1

1

−toElement1

1

1

1

−Related
Transition

1

1
1 1

1

1

−DestinationVariable

1

1

−ResultOfAction

11

11

0..*

1

0..*

1

−DestinationAttribute

1

1

1

Figure 6.3: DERCS meta-model: behavioral elements

Behaviors can also be executed in response to events occurrences. In fact, an event
is associated with an object that contains methods capable of handling this event. Thus,
when an event occurs, it triggers a sending message action toone of the associated ob-
ject’s methods. DERCS defines two event types: internal and external. Internal events
are detectable occurrences during system runtime, such asmessages sending/reception,
enteringin an explicit state, andexitingfrom an explicit state. On the other hand,external
eventsare occurrences which happened in the external environmentin which the system
is embedded. Furthermore, events specifysequentialandparallel triggers. The former
indicates that the triggered object’s behavior must hold the execution until the execut-
ing behavior finishes. On the other hand, the later indicatesthat the associated object’s
behavior can start its execution concurrently with other executing behaviors.

Other important DERCS feature is objects distribution. Objects reside in computing
devices (e.g. devices with general purpose processors and memory, or dedicates hardware
devices), upon which their behavior is performed.Node element represents such devices,
whose implementation represents either software or hardware platforms. Additionally, it
can represent physically separated computing devices, making objects to be considered
as local or remote objects (depending on the objects/devicereference). However, it is
important to highlight that, independently of objects implementation (i.e. software or
hardware) or their deployment (i.e. local or remote), behavior semantics proposed in
DERCS remain the same. Thus, actions are executed (behavior) in response to either
messages received from other objects, or event occurrences. In other words, messages
exchanged by objects implemented as software or hardware and/or deployed in different
devices, at DERCS abstraction level, have the same semantics. The implementation of
these different message exchange types is defined in the chosen target platform that will
realize the distributed embedded real-time system elements.

The most noticeable difference between DERCS and UML meta-models is the ca-
pability of representing AO concepts, as depicted in figure 6.4. Aspectsconsist of an

105

BehavioralAdaptationStructuralAdaptation

<<enumeration>>

RelativePosition

MODIFY_STRUCTURE

ADD_NEW_FEATURE

AROUND

BEFORE

AFTER

AspectAdaptation

NamedElement

Crosscutting

Aspect

Crosscutting
Information

BaseElement

Pointcut

Joinpoint

−StructuralAdaptations

0..*

1

−BehavioralAdaptations

0..*

1

−SelectedElements
0..*

1

−AffectedElement

1

0..*

−RelativePosition

11

−Crosscuting

0..*

−Pointcuts

0..*

1

−AspectAdaptation

1

1

−CrosscutingInfo

1

0..*

1..*

1

Figure 6.4: DERCS meta-model: AO-related elements

aspect adaptationsset, which contain bothstructural or behavioral adaptations, and a
set ofpointcuts. In essence, DERCS represents DERAF aspects specified in theACOD
(as discussed section 5.3.3); similarly, aspect adaptations represent specified adaptations
provided by the selected DERAF aspects. In addition, thecrosscutting informationspec-
ified in ACOD’s crosscut associations (between aspects and classes) is represented by
Crosscutting andCrosscuttingInformation elements.Pointcutsrepresent
the link betweenAspectAdaptations andJoinpoint elements, indicating therel-
ative positionin which adaptations must be performed.RelativePosition enumer-
ation specifies one of the following options:

• BEFORE indicates that adaptations are performedbefore join point occurrences.
It is used in pointcuts that link join points representing behavioral element (e.g.
actions) selection with aspect adaptations;
• AFTER indicates that adaptations are performedafter join point occurrences. It is

also used in pointcuts related to behavioral join points;
• AROUND specifies that adaptations are performed in bothbeforeandafter join point

occurrences. It is used in pointcuts that link join points that select behavioral ele-
ments (e.g. actions or behaviors) with aspect’s behavioraladaptations;
• ADD_NEW_FEATURE specifies that new features (e.g. an attribute in a class, or

a parameter in a method) are included by the aspect adaptation in the structural
elements selected by the join point;
• MODIFY_STRUCTURE indicates that structural features of the selected elements

are modified by the aspect adaptation. Likewise the previousrelative position, this
is used in pointcuts related to join points selecting structural elements.

Join pointsare represented by theJoinpoint element, which contains a list of
selected base elements, i.e. those elements that extend theBaseElement class. In
other words, the selected elements list consists of: instances ofClass, Attribute,
Method, andNode, in addition to all behavior-related elements, i.e. instances of all
Action subclasses, andBehavior class. As it will be explained in the next section,

106

Table 6.1: UML-to-DERCS mapping table
UML meta-model DERCS meta-model
Kernel.Class Class
Kernel.Property Attribute
Kernel.Type or
Kernel.PrimaryType

DataType subclass

Kernel.Operation Method
decorated with«getter» Method, Behavior, ReturnAction
decorated with«setter» Method, Parameter, Behavior, AssignmentAction

Kernel.Parameter Parameter
Kernel.ParameterDirectionKind ParameterKind
Kernel.Association Attribute, Method, Parameter, Behavior,

AssignmentAction, ReturnAction
if any association end defines
AggregationKind as composite

Attribute, Method, Parameter, Behavior,
AssignmentAction, ReturnAction,
CreateObjectAction,DestroyObjectAction

Kernel.InstanceSpecification or
BasicInteractions.Lifeline

related to class decorated with
«SchedulableResource»

ActiveObject

related to class decorated with
«MutualExclusionResource»
or «Resource»

PassiveObject

the selection query specified in JPDD is evaluated, and all DERCS elements instances that
match with the selection criteria are included in theJoinpoint’s elements selection list.

6.3 UML-to-DERCS Transformation

Based on the information provided in the previous section, it can be claimed that
DERCS meta-model can represent structure and behavior in a more concise way than
UML meta-model. DERCS uses fewer meta-model elements to represent the same in-
formation (i.e. system structure and behavior) compared toUML, which, in turn, has
different element to represent similar features. In this sense, there is no direct one-to-one
relationship among many DERCS elements and their similar counterpart in UML meta-
model. Hence, to transform a UML model into a DERCS model, some transformation
heuristics had to be defined.

Considering the structural elements, the majority of them have a direct counterpart
in the UML meta-model, as show in table 6.1. Thus, when GenERTiCA’s transforma-
tion engine reads the UML model, and one of these elements is found, it does not need
to interpret the UML meta-model element semantic regardingany transformation heuris-
tic, i.e. it just creates the DERCS element that matches withthe UML one. However,
there are two exceptions:(i) method signatures; and(ii) associations between classes.
An UML’s Kernel.Operation element decorated with«getter» or «setter»
stereotypes indicates an access method to a given attribute. Thus, the transformation
heuristic understands such role, and creates not only one DERCS’Method element, but
also its associatedBehavior element, in which actions corresponding to the specified
semantics (i.e. get/set attributes values) are inserted.

Associations among classes have also a special transformation heuristic. As stated
in chapter 5, all associations must have at least one end specifying multiplicity equals
to “1”, and the navigable property set to true; the class representing this association end
will receive elements related to the association. For “normal” associations, the transfor-
mation engine inserts a newAttribute element (related to the other association end),
along with aParameter element in class constructor, and anAssignmentAction

107

to represent this new attribute initialization. Access methods, i.e. get/set methods, for
the new attribute are also created as described in the previous paragraph. For aggregation
relationships, the same transformation heuristic is applied. However, for composition re-
lationships, the class receives two additional methods instead of the new parameter and its
assignment action:(i) one method to create composite class parts; and(ii) another one to
remove (or destroy) composite class parts. For both methods, the corresponding behavior
is also created. To illustrate the mentioned heuristics, let’s consider theleftWheelcompos-
ite relationship betweenMovementControlSystemandActuatordepicted in figure 5.2. As
one can see,Actuatorassociation end is the navigable end (indicated by the arrowhead).
Consequently,MovementControlSystemreceives a new attribute, whose name isleftWheel
and the type is theActuatorclass and, as this association is a composition, the mentioned
methods are also added inMovementControlSysteminstead of the new parameter and its
assignment action inMovementControlSystem’s contructor.

As mentioned, UML has very different ways to specify system behavior. DERCS pro-
poses a more simplified form for behavior representation (compared to UML meta-model
elements). For that reason, there is no direct one-to-one mapping from UML behavior-
related elements to DERCS ones. Thus some UML behavior diagrams interpretation
heuristics have been created.

In AMoDE-RT approach, sequence diagram is the most important diagram to specify
objects behavior, due to its capability of showing objects interactions, execution flow
control (usingcombined fragments(OMG, 2008)), and also actions (using the reserved
words presented in section 5.2, table 5.1). The whole behavior of a distributed embedded
real-time system is specified using different sequence diagrams, i.e. behavior information
must be extracted from more than one diagram. Additionally,there is no one-to-one
relation between sequence diagrams meta-model elements and DERCS behavioral ones.
Thus, to accomplish the UML-to-DERCS transformation, an interpretation heuristic has
been defined. Sequence diagram messages are statically analyzed using a stack-based
algorithm, which pushes messages (i.e. method calls) on thetop of a “call stack” to
discover which messages (i.e. actions) are nested inside the behavior of other methods.
Algorithm 1 shows this static analysis.

For each message, a tuplem = (Sender, Target, Behavior)is created, whereSenderis
the message’s sender lifeline1; Targetis the message’s target lifeline; andBehavioris the
behavior associated to the method represented by the message. The algorithm analyzes
all messages (respecting messages order depicted in the sequence diagram) to create the
corresponding action, e.g. sending message, assignment, expression, etc. If the message
represents a sending message action, this message’s tuple is pushed on top of the call
stack. If the following messages are sent from the same lifeline (i.e. same object) as tu-
ple’s target on stack’s top, these messages represent actions performed within the context
of the calling message’s behavior.

It is important to highlight that combined fragments are also considered in sequence
diagrams analysis. Combined fragments represent execution control flow in objects in-
teractions, i.e. they can specify both conditional, or repeating interactions (as described
in section 5.2.4). For each combined fragment, a behavior with pre-conditions (for com-
bined fragments whoseinteractionOperator property is set toalt or opt), or
post-conditions (for those specified withloop operator) is created. Therefore, mes-
sages enclosed by combined fragments represent actions performed within the context

1Lifelines are vertical lines depicted in sequence diagramsthat represent objects and/or classes. The
proposed transformation heuristics interprets lifelinesas system’s objects.

108

Algorithm 1 Extract behavioral information from sequence diagrams
1: stack ← ∅
2:

3: for all m = message in Sequence Diagramdo
4: if stack = ∅ then
5: PUSH(stack, m)
6: else
7: if stack.Top.Target= m.Senderthen
8: // Action must be inserted into the method’s behavior on the stack’s top
9: action← create an action fromm

10: else
11: // Action must be inserted into other method’s behavior.
12: POP(stack)
13:

14: // Looking for the “right” method’s behavior according the call stack. . .
15: while (stack 6= ∅) ∧ (stack.Top.Target6= m.Sender) do
16: POP(stack)
17: end while
18:

19: if stack 6= ∅ then
20: // The “right” method behavior could be found
21: action← create an action fromm
22: else
23: // Message order violates call stack order, i.e. it is sent bya lifeline
24: // (i.e. object) that have not sent any message before, breaking the
25: // execution flow
26: throw an exception
27: end if
28: end if
29:

30: insertaction in stack.Top.behavior
31:

32: // Potentially, all send message actions (including messages to the lifeline itself)
33: // trigger different behaviors, and hence, they must be pushed on the stack
34: if ((action is a send message action) ∧ (m.Sender6= m.Target))

∨ (m is a recursive message) then
35: PUSH(stack, m)
36: end if
37: end if
38: end for

109

of branches (i.e. “ifs”) or loops. When a combined fragment is detected, a new behavior
is created, and inserted in the tuple’s behavior on stack’s top. Hence, actions created from
messages enclosed by this combined fragment are inserted into theBehavior element
related to the combined fragment.

The behavior transformation heuristic allows merging information from different se-
quence diagrams. For a given messagem, if the following messages are nested mes-
sages (i.e. departing fromm’s target lifeline), a DERCSBehavior element is created,
and associated with the method represented bym. To illustrate this heuristic, let’s con-
sider the sequence diagram depicted in figure 5.5.MovementController.run()method has
two nested messagesActuator.setActValueandMovementController.processInfo. Hence,
a Behavior element containing twoSendMessageActions is created and associ-
ated withMovementController.run()method. Similarly,Actuator.setActValue()method
has five nested messages (e.g. messages 3, 4, 6, 7, 8, and 9), and also two combined frag-
ments enclosing its nested messages. Thus,Actuator.setActValue()’s Behavior contains
oneBehavior representing the “loop” combined fragment, which, in turn,contains a
CreateObjectAction and aAssignmentAction (related to message 3), another
Behavior2 (related to the “alt” combined fragment), and otherAssignmentAction
(related to message 9).MovementController.processInfo()method’s behavior is extracted
using the same heuristics.

As one case see, from a single sequence diagrams it is possible to extract different
method behaviors, eliminating the need of creating one sequence diagram to each method
behavior. However, if not carefully used, such approach canproduce duplicated specifi-
cation, e.g. the same method behavior specified twice, leading to ambiguities in behavior
specification. To overcome this problem, a simple ambiguitydetection heuristic has been
created: if there is already aBehavior element associated with am method (created
from other sequence diagram), and there are messages nestedto m in the current sequence
diagram, this situation indicates thatm’s behavior was specified twice. When this situa-
tion occurs, the transformation engine reports the detected ambiguity to system designers.
To illustrate this situation, let’s consider that sequencediagrams of figures 5.5 and 5.6 are
specified in the same UML model.MovementController.processInfo()method has nested
messages in both diagrams. The transformation engine will create aBehavior element
to this method during the interpretation of figure 5.5’s sequence diagram and, when the
transformation engine tries interpret figure 5.6’s sequence diagram, it will discover that
there is already aBehavior element associated toMovementController.processInfo().
Consequently, the ambiguity is detected.

To summarize sequence diagram to DERCS elements transformation, table 6.2 presents
the relationships among UML meta-model elements with DERCSones.

State diagrams are used in AMoDE-RT modeling approach, and thus, need also trans-
formation heuristics to derive DERCS behavioral elements from them. Two heuristics
have been defined:(i) straightforward state machine mapping; and(ii) applying theob-
jects for statesdesign pattern (GAMMA et al., 1995). The first heuristic producesif-
then-elsestate machine implementations. More specifically, DERCSStateDataType
elements are created to each state machine. Every UMLBehaviorStateMachines.
State element in the state machine is transformed to a DERCSState element, which is
associated with the createdStateDataType. Similarly,BehaviorStateMachines.
Transition elements are transformed intoStateTransition elements, whose
guard condition, and from/to states are also obtained fromBehaviorStateMachines.

2ThisBehavior element contains actions related to messages 4–8

110

Table 6.2: UML-to-DERCS behavior elements relationships
UML meta-model DERCS meta-model
BasicInteractions.Lifeline,
BasicInteractions.Message,
BasicInteractions.MessageOccurrenceSpecification,
Kernel.Operation

Behavior,
AssignmentAction,
ExpressionAction,
InsertArrayAction,
RemoveArrayAction,
ModifyStateAction

BasicInteractions.CallEvent, SendMessageAction,
BasicInteractions.CreationEvent, CreateObjectAction
BasicInteractions.DestructionEvent, DestroyObjectAction
BasicInteractions.Lifeline,
BasicInteractions.CombinedFragment,
BasicInteractions.InteractionFragment

Behavior

Transition. Moreover, the same transformation heuristics are appliedto orthogonal
state: oneStateDataType element is created to each orthogonal state region, and thus,
DERCSState elements are created to eachAND-states(i.e. concurrent sub-state).

According to AMoDE-RT guidelines, one state diagram is associated with only one
class. Hence, an attribute (whose type is this state diagram’s StateDataType element)
and a method (which is responsible to execute different actions depending on the actual
state) are created and added to the associated class. It is important to highlight that it
is assumed that associations between state diagrams and classes represent the following
execution semantics: instances of this class are active objects that execute the method
related to the state machine. This method is triggered periodically, and its behavior exe-
cutes concurrently with other active objects’ behaviors. In this sense, the behavior related
to this method performs a “common”if-then-elsestate machine implementation. Consid-
ering the state machines with orthogonalAND-states, additional attributes are created to
each sub-state machine. However, instead of representingStateDataType elements,
they represent sub-state machines’ active objects. Therefore, when an object enters in a
orthogonal state, sub-state machine active objects start to execute their behavior.

On the other hand, the second heuristic implements theobjects for statesdesign pat-
tern (GAMMA et al., 1995), in which each state is representedas an object that imple-
ments behavior related to the state.Objects for statesdesign pattern involves the following
elements:context; state; andconcrete state subclasses. To summarize, the context object
has an attribute representing the state object, which is an instance of one state’s subclass.
The context delegates its methods execution to the state object. In the proposed trans-
formation heuristic, the class associated with the state diagram is thecontext. This class
receives a method representing the state diagram execution, and an attribute represent-
ing its state object, similarly to the first transformation heuristic. This method behavior
has only oneSendMessageAction action, representing the delegation of this method
execution to the state object.

An abstract class is created to represent the state machine,and is used as the new at-
tribute’s type. This abstract class also has a method representing state machine execution,
which is overridden by states’ concrete subclasses. For each state, aClass element is
created to represent the state’s concrete subclass. This class extends the state diagram’s
abstract class, overriding its abstract method using the behavior extracted from the se-
quence diagram associated with the state. At the end of this method behavior, additional
Behavior elements with pre-conditions (representing theif-then-elsestatements) are
inserted to represent state’s outgoing transitions. Actions executed in these behaviors rep-
resent the destruction of context’s current state object, and the creation of the next state

111

object. For orthogonalAND-state, this heuristic follows the same approach as the first
one: creates active object classes for each sub-state machine as explained earlier.

Both approaches have pros and cons. For example, (i) allows less memory usage but
leads to extra runtime overhead because objects need to discover which actions must be
performed in the actual state, by means of comparing all state machine’s possible states
(in the worst-case), in order to execute the correct actionsfor the current state. On the
other hand, (ii) uses more memory because states are themselves objects (not only at-
tributes representing states as enumerations or integer numbers), but allows less runtime
overhead caused by the search for the correct actions to be executed when the object is in
a specific state. The decision on which heuristic is applied depends on system constraints,
and is made by designers before the UML-to-DERCS transformation process. Although
important, none of these state diagrams transformation heuristics are implemented in the
initial version of GenERTiCA’s transformation engine prototype. In fact their implemen-
tation was not considered one of this thesis’ main contributions, and thus, it was left to
future work.

6.4 Mapping Rules

6.4.1 Overview

To generate code from the UML model, GenERTiCA adopts a script-based approach,
in which small scripts define how to map model elements into target platform construc-
tions, generating source code fragments that are merged to produce source code files. The
proposed script-based code generation improves separation of concerns in mapping rules
specification, because each script is concerned with the transformation of a single model
element (or few of them) into source code fragment.

Mapping rules are described as XML (W3C, 2006a) files, whose format is portable,
and allows the specification of self-described content organized in a tree structure. These
characteristics, and also because XML is ade-factostandard, have influenced its choice
as the language used to describe GenERTiCA mapping rules. Furthermore, XML tree
organization facilitates scripts storage in terms of platform mapping rules repositories,
allowing scripts to be reused in further projects that use the same target platform. Hence,
the design effort to derive system implementation from an UML model is decreased.

Leaf nodes of the mapping rules’ tree contain scripts executed to generate code from a
specific DERCS element (representing the correlated UML element). As mentioned, each
script concentrates on generating a source code fragment related to a single DERCS ele-
ment. The correct script is selected based on which element is being accessed by the code
generation algorithm (see next section), i.e. the leaf nodemust match with the DERCS
element. These scripts have complete access to DERCS model information, in order to be
able to generate source code as complete as possible. Consequently, the more complete
code generation scripts are, more source code is generated,and less effort is required to
manually write additional code. One of GenERTiCA’s aims is to allow code generation as
complete as possible, decreasing (or even eliminating) theneed of manual coding. How-
ever, this work does not define a new script language or scriptexecution engine. It rather
uses a well-known open source scripting framework calledVelocity (APACHE, 2008),
which defines theVelocity Template Language(VTL) that provides all functionalities re-
quired to assist the GenERTiCA code generation approach implementation. VTL is a
Java-like scripting language, which returns a string as result of script execution. Thus,
the generated source code fragment is obtained by means of accessing model information

112

Software

Hardware

Aspect1
Declaration

Adaptations
Structural

Behavioral

Class

Attributes

Messages

Assigment

Expression

Stage Change

Message Sending

Object

Same organization as Software

Declaration

Platforms

Platform1

Platformn

Application

Platform Configuration

Source Options

Primary Elements

Behavior

File Name Convention

Package

Source References

Source Organization

Declaration File

Implementation File

Data Types

Visibilities

Parameter Kind

Implementation

Declaration

Implementation

Variable Declaration

Branch

Loop

Destruction

Return

To Local Object

To Remote Object

Aspectn

Aspects

Software

Hardware

Component1

Creation

Array Remove Element

Insert Element

Array Length

…

…

Servicen

Service1

…

Componentn

…

Figure 6.5: Mapping rules XML organization

through DERCS API.
Considering the mapping rules organization, one can see in figure 6.5 that the XML

file root is divided into a set of different target platforms,whose child trees represent map-
ping rules for constructions in the target platform. There are two source code categories
defined in a platform mapping rules:(i) application code; and(ii) platform code. Both are
divided in software and hardware source code. In theapplicationbranch, software and
hardware sub-trees have the same structure, i.e. they have the same script types to gen-
erate code from DERCS elements; inplatform configurationbranch the difference is that
platform software elements provide services instead of components as in the hardware
ones.

6.4.2 Application Code

Applicationbranch is subdivided in:(i) source code options;(ii) primary elements
scripts;(iii) scripts for class-related elements;(iv) scripts for behavior-related elements;
and(v) script specifying DERAF aspects implementation. Considering (i), figure 6.6 lines
01-29 show an excerpt from a XML file with mapping rules to Java. The<SourceOp-

113

01 <SourceOptions
02 isAspectLanguage="no"
03 ClassesPerFile="1"
04 hasClassesDeclaration="no"
05 Indentation="5"
06 BlockStart="{" BlockEnd="}">
07 <FileNameConvention>
08 $Class.Name
09 </FileNameConvention>
10 <Package>
11 package $Class.Package;
12 </Package>
13 <SourceReference>
14 import $ReferencedClass.Package
15 .$ReferencedClass.Name;
16 </SourceReference>
17 <SourceOrganization>
18 <DeclarationFile
19 FileExtension="">
20 $SourceCode.ClassesDeclaration
21 </DeclarationFile>
22 <ImplementationFile
23 FileExtension=".java">
24 $SourceCode.PackagesDeclaration
25 $SourceCode.ReferencesDeclaration
26 $SourceCode.ClassesImplementation
27 </ImplementationFile>
28 </SourceOrganization>
29 </SourceOptions>

30 <PrimaryElements>
31 <DataTypes>
32 <Array>$DataType.DataType[]</Array>
33 <Boolean>boolean</Boolean>
34 <Byte>byte</Byte>
35 <Char>char</Char>
36 <Class>
37 $DataType.Represent.Name
38 </Class>
39 <DateTime>DateTime</DateTime>
40 <Enumeration></Enumeration>
41 <Integer>int</Integer>
42 <Long>long</Long>
43 <Short>short</Short>
44 <String>String</String>
45 <Void>void</Void>
46 <Double>double</Double>
47 <Float>float</Float>
48 </DataTypes>
49 <Visibilities>
50 <Private>private</Private>
51 <Protected>protected</Protected>
52 <Public>public</Public>
53 </Visibilities>
54 <ParameterKinds>
55 <In></In>
56 <Out></Out>
57 <InOut></InOut>
58 </ParameterKinds>
59 </PrimaryElements>

Figure 6.6: Mapping rules:<SourceOptions>and<PrimaryElements>branches

tions>node manages issues related to source code files creation, defining the source code
file naming convention (<FileNameConvention>node) and organization (<SourceOrga-
nization>node). GenERTiCA assumes that a target language may have both a declaration
and an implementation file, such as in C/C++ which defines header and implementation
source code files. Thus,<SourceOrganization>node defines how each of them is struc-
tured. If there are dependencies among source code files, the<SourceReference>node
indicates target language constructions to specify sourcecode file references. It is impor-
tant to note two attributes in<SourceOrganization>node: isAspectLanguageandhas-
ClassesDeclaration. The former indicates if the target language is an AO-language or
not. GenERTiCA will not perform aspects weaving if the attribute value is “yes”. It will
interpret scripts in theAspectbranch as aspects constructions in the target AO-language.
hasClassesDeclarationattribute indicates if the target language requires a classdeclara-
tion before describing class implementation, such as in C/C++ languages.

Taking into account (ii), the<PrimaryElements>node (figure 6.6 lines 30-59) pro-
vides scripts representing straightforward mappings fromDERCS elements to primary
elements constructions in the target language. On the otherhand, considering (iii), the
classbranch provides more complex scripts, which need to retrieve information on the
DERCS element being evaluated, in order to generate the correct code fragment for that
element.<Class> node defines, in the<Implementation>node, how to use target lan-
guage constructions to describe the class implementation,in terms of attributes and meth-
ods. Additionally, if the target languages requires a classdeclaration construction, this
node also provides means to specify this in the<Declaration> node.

However,<Class>node’s most important children nodes are<Attributes>and<Mes-
sages>nodes. The later provides scripts to generate methods declaration and implementa-
tion based on information contained in a DERCSMethod element. The former provides
a script to transform a DERCSAttribute element into an attribute construction in

114

01 <Attributes>
02 $VisibilityStr
03 #if ($Attribute.isStatic()) static #end
04 $DataTypeStr $Attribute.Name;
05 </Attributes>

private int windSpeed;

Figure 6.7: Mapping rules:<Attributes> node

01 <SendMessage>
02 <ToLocal>
03 <Software>
04 #if ($Action.ToObject !=
05 $Action.FromObject)
06 $Action.ToObject.Name.
07 #end
08 $Action.RelatedMethod.Name(
09 #if($Action.ParametersValuesCount >
10 0)
11 #foreach($param in
12 $Action.ParametersValues)
13 #if ($velocityCount > 1), #end
14 #set($x = $velocityCount - 1)
15 #if($Action.isParameterValue($x))
16 $param
17 #else
18 $param.Name
19 #end
20 #end
21 #end
22);
23 </Software>
24 <Hardware></Hardware>
25 </ToLocal>

26 <ToRemote>
27 <Software>
28 #set($x=$Action.ParametersValuesCount
29 + 1)
30 myMsg.setNrBytes($x);
31 myMsg.addByte(
32 $Action.RelatedMethod.ID);
33 #foreach($v in
34 $action.getParametersValues())
35 myMsg.AddByte((byte)$v);
36 #end
37 localTp.sendMsg(conectionNumber,
38 myMsg,
39 timeOutParam.getmsgSendTime());
40 </Software>
41 <Hardware></Hardware>
42 </ToRemote>
43 </SendMessage>

envInfo.getWindSpeed()
myMsg.setNrBytes(1);
myMsg.addByte(49);
localTp.sendMsg(conectionNumber, myMsg,
timeOutParam.getmsgSendTime());

Figure 6.8: Mapping rules:<SendMessage>node

the target platform language. A script to generate attribute declarations for a Java target
platform is presented in figure 6.7. The code fragment produced by this script is shown
in this figure’s lower part. As one can see, this script is highly cohesive because it deals
with only one element, i.e. the attribute, from which information is obtained by accessing
context variables (those identifiers starting with a “$” character), or directly calling one
of DERCS API methods of theAttributeelement (e.g. line 03). It is important to note
here that all methods (of all elements) available in the DERCS API can be used within the
context of script.

Behaviorbranch (iv) provides key scripts to map DERCS behavioral elements into
constructions in the target language. There is one node to specify a script to each action
available in the DERCS actions model, and also to behaviors with pre- (branch) and post-
conditions (loop). Designers must only specify how to map individual DERCS actions
into equivalent constructions in the target language. Codefragments related to actions
are generated by these scripts, and merged to compose a behavior. This approach fa-
cilitates the specification of behavior mapping rules, because designers do not need to
specify complex scripts that deal with all action types in the same script. Scripts have
full access to actions information, as well as the behavior containing them. Thus, it

115

is possible to create very specialized and elaborated scripts, as the mapping rules for
SendMessageAction elements shown in figure 6.8. As mentioned, DERCS sending
message semantics is the same for any kind of target object, i.e. local or remote objects,
and/or objects implemented as software or hardware. The target platform is in charge
to implement these sending message variations. In figure 6.8, lines 04-22 (left column)
show the script to map actions that send messages to local objects in a Java platform.
On the other hand, lines 28-39 (right side) depict the mapping of actions that send mes-
sages to remote objects using a communication API (SILVA JR., 2008) in the same Java
platform. GenERTiCA decides which script should be executed based on the information
contained in theSendMessageAction, i.e. GenERTiCA compare theNode in which
both sender and target objects have been deployed. If theNode is the same, GenERTiCA
executes the script related to local messages, otherwise itexecutes the script related to
remote messages. Examples of code fragments generated by both scripts are presented in
the lower part of this figure 6.8.

The most important part of the application mapping rules specification is the set of
scripts to describe DERAF aspects implementations. As stated in section 5.3.2, DERAF
aspects high-level semantics do not define how to implement aspect adaptations; it must
be done in implementation phase considering the target platform. Thus, in the proposed
code generation and aspects weaving approach, DERAF aspects implementation is spec-
ified via scripts within theaspectsbranch (v). For each aspect, scripts representing its
structural and behavioral adaptations are defined. GenERTiCA executes aspect adapta-
tion scripts upon elements selected by the join points. Morespecifically, information
contained in aspects’ pointcuts specification is used to select which adaptations scripts
must be executed to modify the elements gathered by join points. In other words, when
the code generation algorithm analyzes a DERCS element (e.g. class, attribute, behavior,
action, etc.) to generate its source code fragment, it also checks if this element is selected
by any JPDD. If it is the case, scripts of aspects adaptationsrelated to these JPDDs (as
indicated in aspects’ pointcuts specification) are executed, modifying either the generated
code fragment, or the element itself. Thus, besides code generation, GenERTiCA also
performs aspects weaving in both generated code fragments and DERCS elements.

There are two kinds of aspect adaptation implementations: one that modifies the gen-
erated code fragment; and one that modifies the selected element. The former is executed
after the script defined in<Class> of <Behavior> branches for the selected element,
modifying the generated code fragment to include changes promoted by the aspect adap-
tation. The later is executed before the mentioned branches’ scripts, modifying the se-
lected element at model level, i.e. the input DERCS model element is modified. Thereby,
GenERTiCA is able to perform aspects model weaving. To illustrate these two types of
aspect adaptation implementations, figure 6.9 presents theimplementation of thePeri-
odicTimingaspect (see section 5.3.2) for the RT-FemtoJava platform (ITO et al., 2001;
WEHRMEISTER, 2005).

In this example, six adaptations have been created: the firstfour modifying the gen-
erated source code fragment, and the two last modifying directly the affected element
(indicated by theModelLevel attribute). PeriodicTimingaspect affects active object
classes that need to execute its behavior cyclically at a given frequency. Hence, adapta-
tions affected these classes’ attributes and behavior.Periodstructural adaptation adds two
attributes in affected classes, as depicted in figure 6.10 lines 07-09; initialization code
for these attributes is inserted in the class constructor bySetPeriodbehavioral adapta-
tion, as shown in lines 19-21.FrequencyControlappends code (after the last action) that

116

01 <PeriodicTiming>
02 <Declaration></Declaration>
03 <Adaptations>
04 <Structural Name="Period" Order="1" ModelLevel="no">
05 private static RelativeTime _Period = new RelativeTime(0,0,0);
06 private static PeriodicParameters _PeriodicParams =
07 new PeriodicParameters(null, null, null, null, null);
08 </Structural>
09 <Behavioral Name="SetPeriod" Order="2" ModelLevel="no">
10 _Period.set(0,pPeriod,0);
11 _PeriodicParams.setPeriod(_Period);
12 setReleaseParameters(_PeriodicParams);
13 </Behavioral>
14 <Behavioral Name="FrequencyControl" Order="3" ModelLevel="no">
15 waitForNextPeriod();
16 </Behavioral>
17 <Behavioral Name="LoopMechanism" Order="4" ModelLevel="no">
18 while (isRunning()) $Options.BlockStart
19 $CodeGenerator.getGeneratedCodeFragment(1)
20 $Options.BlockEnd
21 </Behavioral>
22 <Structural Name="ModifyConstructor" Order="1" ModelLevel="yes">
23 $Message.addParameter("pPeriod", $DERCSFactory.newInteger(false),
24 $DERCSFactory.getParameterIn());
25 </Structural>
26 <Behavioral Name="AdaptObjectConstruction" Order="1"
27 ModelLevel="yes">
28 $Action.addParameterValue($Crosscutting.getValueOf("Period"))
29 </Behavioral>
30 </Adaptations>
31 </PeriodicTiming>

Figure 6.9: Mapping rules:PeriodicTimingaspect implementation

controls the execution frequency of active objects’ periodic behavior using RT-FemtoJava
platform constructions, as presented in line 33. Similarly, LoopMechanismadaptation
encloses the periodic behavior (and the code inserted byFrequencyControl) in a while
construction, as depicted in lines 27 and 36. It is importantto note that, to enable the
expected behavior,FrequencyControladaptation must be performed beforeLoopMecha-
nism. GenERTiCA uses theOrder attribute to control the execution order of adaptations
scripts (lower numbers have higher execution priority). Inthis example,FrequencyCon-
trol order is 3 andLoopMechanismis 4, causingFrequencyControlscript to be executed
beforeLoopMechanismone, forcing the code inserted by the first script (line 33) tobe
enclosed by thewhileconstruction inserted byLoopMechanismscript (lines 27 and 36).

Moreover, as one can see, source code fragments inserted by the mentioned adap-
tations are exactly equal to their script in the mapping rules XML file, indicating that
these adaptations are independent of affected elements information. However, although
these scripts do not use any information of affected elements, designers need to be aware
that both scripts could be applied only to behavior-relatedelements (e.g.Behavior or
Action subclass). However, if these adaptations need to be appliedto other DERCS
elements (e.g.Class, Method, etc.), their script must be changed to provide additional
modifications. On the other hand, there are adaptations scripts that are close related to af-
fected elements, e.g.ModifyConstructoror AdaptObjectConstruction. These adaptations
modify affected elements’ DERCS specification rather than their generated source code
fragment. Adaptations changing model elements are always executed before any other
aspect adaptation, allowing model-level modifications to be visible for the non-aspect
scripts (i.e. “normal” code generation scripts). Consequently, aspects model weaving
occurs prior to code generation, and also aspects weaving inthe generated fragments.

Considering model level aspect adaptations,ModifyConstructorstructural adaptation

117

01 public class MovementControler extends RealtimeThread {
02 ...
03 protected EnviromentInformation envInfo;
04 protected int windSpeed;
05 ...
06 // PeriodicTiming.Period - Begin
07 private static RelativeTime _Period = new RelativeTime(0,0,0);
08 private static PeriodicParameters _PeriodicParams =
09 new PeriodicParameters(null, null, null, null, null);
10 // PeriodicTiming.Period - End
11 public void MovementControler(EnviromentInformation new_envInfo,
12 MovementInformation new_mMovInfo, MovementInformation new_bMovInfo,
13 MainRotorActuator new_mRAct, BackRotorActuator new_bRAct, int pDeadline,
14 // PeriodicTiming.ModifyConstructor - Begin
15 int pPeriod) {
16 // PeriodicTiming.ModifyConstructor - End
17 ...
18 // PeriodicTiming.SetPeriod - Begin
19 _Period.set(0,pPeriod,0);
20 _PeriodicParams.setPeriod(_Period);
21 setReleaseParameters(_PeriodicParams);
22 // PeriodicTiming.SetPeriod - End
23 }
24 ...
25 public void run() {
26 // PeriodicTiming.LoopMechanism (1) - Begin
27 while (isRunning()) {
28 // PeriodicTiming.LoopMechanism (1) - End
29 ...
30 windSpeed = envInfo.getWindSpeed();
31 ...
32 // PeriodicTiming.FrequencyControl - Begin
33 waitForNextPeriod();
34 // PeriodicTiming.FrequencyControl - End
35 // PeriodicTiming.LoopMechanism (2) - Begin
36 }
37 // PeriodicTiming.LoopMechanism (2) - End
38 }
39 }

Figure 6.10: Source code fragment with modifications performed by aspect adaptations

uses DERCS API to modify the constructor of affected classesto include a new parameter
that represents initialization value of theperiod attribute inserted byPeriod adaptation.
Moreover,SetPeriodadaptation adds the code in selected constructors’ behavior to assign
this new parameter’s value to theperiod attribute. As aspects model weaving occur be-
fore code generation, the code generation script is able to include the new parameter in
affected constructors’ code fragment, as shown in line 15 offigure 6.10. Similarly, as the
constructor of affected classes has been modified, actions that create objects from these
classes must also be modified. Therefore,AdaptObjectConstructionadaptation script per-
forms a model level adaptation in the mentioned actions. This adaptation uses the period
information specified in ACOD’scrosscuttingrelationships to include the correct infor-
mation in the right object creation action.

As one can infer, this difference in aspect adaptation typesallows flexibility in aspect
implementation specification. Designers can choose the most suitable manner to imple-
ment DERAF aspects adaptations, taking into account the target platform. Additionally,
the combination of aspects model and source code weaving opens room for new forms
to describe aspects implementation, as well as allows new ways to explore how aspects
modifications (performed on system functional (or base) elements) are implemented.

118

01 <PlatformConfiguration>
02 <Software>
03 <General OutputDirectory="./platform"></General>
04 <File Name="PlatFile_1.java" OutputDirectory="realtime"
05 Aspects="SchedulingSupport">
06 <Part>
07 ...
08 Configuration statements or source code fragment
09 ...
10 </Part>
11 <Part Aspects="TimingAttributes, PeriodicTiming">
12 ...
13 Configuration statements or source code fragment
14 ...
15 </Part>
16 </File>
17 <File> ... </File>
18 ...
19 </Software>
20 </PlatformConfiguration>

Figure 6.11: Platform configuration XML structure

6.4.3 Platform Configuration

Platform configurationbranch provides script to generate platform configuration files,
or tailored source code files of frameworks, libraries, or APIs, which are generated based
on services or components needed by application source code. GenERTiCA assumes that
the target platform provides means (i.e. software servicesand hardware components) to
support platform constructions described in application scripts. Considering the usually
constrained execution environment of embedded systems, itmakes sense to tailor the tar-
get platform, in order to provide only services and components required by the embedded
application. In this sense, it is essential that target platforms provide means to allow their
configuration in one of the following alternatives:

• Configuration files, which turn on/off services or compomponents. GenERTiCA
can generate configuration files, allowing platform-specific tools to configure them,
e.g. removing unused elements, or optimizing provided services;

• Source codeavailability. GenERTiCA can generate tailored source codebased on
the original code, optimizing the final target platform in terms of required footprint.

GenERTiCA platform configuration approach integrates DERAF aspects with plat-
form configuration. More specifically, DERAF aspects are related to platform services
and/or components, and thus, if an aspect is specified in the model, the service(s) and
component(s) related to this aspect must be included in the final platform. The platform
configuration specification is very pragmatic:softwareor hardwarebranches are divided
in several files, which, in turn, are divided in parts (or fragments), as depicted in the ex-
ample in figure 6.11. Platform configuration or source code files are, in fact, specified
as a sequence of text fragments within<Part> nodes. Hence, GenERTiCA creates plat-
form configuration files from these fragments. Both<File> and<Part> nodes have an
Aspects attribute indicating which DERAF aspects are related to, respectively, plat-
form configuration (or source code) files and/or its text fragments. They are included in
the generated platform configuration only if the model specifies any aspect in the list. On
the other hand, if any<File> and/or<Part> node do not specify theAspects attribute
(or its value is an empty string), it means that the node’s content must always be included
in the generated configuration file.

119

6.5 Code Generation Process

As mentioned in the previous section, GenERTiCA adopts a script-based approach to
produce source code and/or configuration files, for both application and target platform.
Besides code generation, GenERTiCA also performs aspects weaving using aspects spec-
ified in the UML model, as well as their adaptations’ implementation in form of scripts
described in the mapping rules XML file.

Therefore, GenERTiCA’s generation process involves two main phases: code gener-
ation/aspects weaving of application level elements, and configuration files generation
or source code tailoring of the target platform. The former analyzes all elements in the
model, trying to find the script in the mapping rules XML file that matches with each of
them. On the other hand, the later reads all XML nodes relatedto platform configura-
tion, checking if the associated aspects have been specifiedin the model, to generate the
configuration file according to the specification.

To provide more details on the process followed by GenERTiCAto generated appli-
cation code, figure 6.12 depicts the activity diagram representing this process. Source
code is directly generated from the DERCS model, which is obtained from the original
UML model via model transformations, due to its capability of representing structure,
behavior, and non-functional requirements handling in a more precise and unambiguous
fashion than compared to UML. Thus, as can be seen, there are some DERCS key ele-
ments driving the code generation process:(i) Class; (ii) Attribute; (iii) Method;
(iv) Behavior; (v) Action; (vi) Aspects; and(vii) Joinpoint.

Classes are the main elements in the code generation/aspects weaving process, due
to their importance to the distributed embedded real-time system specification itself i.e.
they represent structure and behavior of system objects, which, in turn, represent system
elements. Therefore, GenERTiCA applies the code generation/aspects weaving algorithm
to each class in the DERCS model classes list. For each class,its attributes, methods,
as well as their associated behavior and actions list, are also used by the algorithm. As
one can see, an activities execution pattern can be extracted (for each of these elements),
representing this algorithm’s kernel as follows:

1. Check if the element is affected by any model-level aspect adaptation, using point-
cut and join points information. If it is the case, the adaptation is performed.

2. Try to find and execute the script that matches with the element being evaluated,
e.g. if the element is aAssignmentAction the script in the<Assignment>is
found and executed.

3. Check if the element is affected by any other aspect adaptation (i.e. those that
modify the generated code fragment), and if so, execute all associated adaptations.

On the other hand, the platform configuration generation takes an inverse path, as
shown in figure 6.13: the<PlatformConfiguration>branch drives the generation process,
and the information on DERAF aspects is obtained from the model. Thus, for each<File>
and<Path> node in this branch, at least one aspect in the associated aspects list must be
found in the model to allow the generation of the file or the inclusion any of its parts.

120

Is

Class affected by any
Aspect?

Is it affected

by model level aspect

adaptations?

Is it affected

by model level aspect

adaptations?

Is it affected

by model level aspect

adaptations?

Is it affected
by model level aspect

adaptations?

Is there
any Class to

analyse?

Search mapping
rule that fits with the

selected Class

Select next Message

Is there

any Attibute to

analyse?

Select next Attribute

Is there
any Message to

analyse?

Is it

Aspect?

Select next Action

Is there
any Action to

analyse?

Select next Class Combine source
code fragments

Generate
source code file

Execute script

Execute script

Search script
to execute

Search script
to execute

Search script
to execute

Initialization

Apply
adaptations

Apply
adaptations Apply

adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

Apply
adaptations

No

No

No

Yes

Yes

No

No

No

No

No

Yes Yes

No

No

Yes

Yes

Yes
No

No

Yes

Yes

Yes

Yes Yes

affected by any
Is it

Aspect?
affected by any

Execute script

Is it

Aspect?
affected by any

selected

Figure 6.12: GenERTiCA: application code generation flowchart

Read Aspects List

Is any
Aspect found in

model?

Is there
any Part to
analyse?

Select Part Node
Is any

Aspect found in
model?

Is
there any File
 to analyse?

Read Aspects
List

Has
associated
Aspects?

Has
associated
Aspects?

Include Part
in File

Initialization
Select File

Node

No

No

No

No

No

Yes

No

Yes

Yes

Yes Yes

Yes

Figure 6.13: GenERTiCA: platform configuration generationflowchart

121

6.6 Final Remarks

UML is not the most suitable modeling language to allow complete code generation,
due to its various intentional semantic variation points. Therefore, GenERTiCA code
generation approach transforms UML into the proposed DERCSmodel, trying to simplify
the access to system specification information. Moreover, DERCS meta-model allows the
same specification level as UML for describing structure andbehavior, but using fewer
meta-model elements, facilitating the mapping of model elements into constructions in
the target platform language. However, more important is the separation of concerns in
requirements handling specification provided by DERCS. DERCS AO concepts allow
using AO-related elements at modeling level that can be further realized in both AO and
non-AO target languages.

Regarding mapping rules description, the main reason for the choice of XML is be-
cause it represents a well-structured and self-described specification for organizing code
generation scripts. Thus, other tools can use the mapping rules files for other purposes,
such as evaluating different target platform constructions mapping rules to represent the
same model element. Additionally, the XML format facilitates the creation of mapping
rules repositories, from which tools can read their information to decide which file (or
fragment) should be selected and reused.

GenERTiCA approach of using small scripts improves separation of concern in map-
ping rules specification because designers need only to takeinto account few elements
for transforming a concepts in the model into constructionsin the target language. More-
over, scripts allow aspects weaving at two levels: model andsource code. In other words,
aspects adaptations can modify both model elements and the source code fragment gener-
ated from them. Designers can choose the implementation form that better fits their needs.
To the best of our knowledge, there is no other aspect weavingapproach that allows both
model and source code level aspects weaving.

Furthermore, aspect adaptation implementations are highly dependent on the target
platform, i.e. the target platform must provide means to allow DERAF aspects semantics
realization. However, it must be stated that this work does not intend to provide imple-
mentations for all aspects available in DERAF. Even so, the ones provided represent good
examples on how to implement other DERAF aspects. Besides, the proposed code gen-
eration/aspects weaving approach enables the use of both AOand non-AO languages as
the target language in scripts specification, enabling moreflexibility in the target platform
selection.

Finally, it is important to highlight that, after code generation/aspects weaving pro-
cess, separation in the handling of functional from non-functional requirements is missed,
i.e. code representing non-functional requirements is intermixed with the code related to
functional ones. However, it is not a problem since the RT-FRIDA approach (used in
requirements specification) and also the mapping rules structure organization allow trace-
ability in handling elements/construction from requirements to code, and vice-versa.

122

123

7 VALIDATION

7.1 Introduction

This chapter presents three case studies to illustrate and validate the AMoDE-RT ap-
proach, as well as the GenERTiCA code generation and aspectsweaving tool. The first
case study presents the movement control system of an unmanned aerial vehicle; the sec-
ond one the control system of an industrial packing system; finally, the third one the
movement control of an automated wheelchair. For each case study, two versions have
been created: object-oriented and aspect-oriented. In addition, they have been compared
using a subset of the software engineering metrics for AO systems presented in section
2.4.4.3. Mapping rules for two different platforms, namelythe RT-FemtoJava and OR-
COS platforms, have been specified to generate source code from the AO version of these
systems examples.

7.2 Toolset Overview

In order to facilitate the understanding of the presented case studies, a brief description
on the technologies used in implementation is presented. RT-FemtoJava and ORCOS
platforms, which have been used to implement the AO version of these case studies, are
presented. Thereafter, the assessment framework used to evaluate both versions of each
case study is also presented.

7.2.1 RT-FemtoJava Platform

RT-FemtoJava platform is composed by a customizable Java processor (ITO et al.,
2001), and a set of APIs to support real-time applications (WEHRMEISTER, 2005).
RT-FemtoJava processor implements a Java execution engineas hardware by means of
a stack-based machine compatible with the Java Virtual Machine (JVM) specification
(LINDHOLM; YELLIN, 1999). Moreover, it adopts the Harvard organization, i.e. dif-
ferent memories for code (ROM) and data (RAM). There are different versions available
for the RT-FemtoJava processor: 8, 16, 32-bits with different architectures (multicycle,
pipeline, VLIW). The choice of which version should be selected is made according to
application requirements and constraints.

As RT-FemtoJava is a customizable processor, it is generated by the SASHIMI envi-
ronment (ITO et al., 2001), which takes the compiled Javabytecodesas input to produce a
VHDL description of the customized RT-FemtoJava, optimized for that Java binary code.
In other words, SASHIMI analyses the compiled Java code, andautomatically synthe-
sizes anApplication Specific Instruction Processor(ASIP), using only the instructions

124

subset used by the target application. Hence, the synthesized processor control unit size
is directly proportional to the number of different Javaopcodesneeded by the application
software, optimizing the final footprint based on application requirements.

In addition to RT-FemtoJava processor, an API (WEHRMEISTER, 2005) based on the
Real-Time Specification for Java(RTSJ) (BOLLELLA et al., 2001) was developed to fa-
cilitate application software development by raising the abstraction level of programming
constructs. Thereby programmers do not have to worry about low-level details. This API
covers the most important aspects of real-time programminglike multithreading, real-
time scheduling, and specification of timing issues. To clearly express timing and other
constraints in the real-time application source code, thisAPI introduces the concept of
schedulable objects (i.e. active object), which are instances of classes that implement the
RTSJSchedulableinterface (asRealtimeThreadclass). It also specifies a set of classes to
store parameters that represent particular resource demands from one or more schedulable
objects. For example, theReleaseParametersclass (super class fromAperiodicParame-
tersandPeriodicParameters) includes several useful parameters for the specification of
real-time requirements, e.g. deadlines, activation period, and others. Moreover, it sup-
ports the expression of the following elements:(i) time values (absolute and relative
time); (ii) clocks; (iii) periodic, sporadic and aperiodic tasks;(iv) scheduling policies;
(v) timers;(vi) asynchronous events and their handlers; and(vii) pooling servers to min-
imize the disturbance caused by asynchronous events handlers execution. For details on
the RTSJ-based API, interested readers are referred to (WEHRMEISTER, 2005)

As mentioned, RT-FemtoJava platform also has a communication API (SILVA JR.,
2008) that allows the establishment of a communication channel upon a network, in
which objects residing in different processing nodes can exchange messages. Two com-
munication models are supported by the communication API: client-server and publisher-
subscriber. The former allows connection oriented and point-to-point communication,
while the later connectionless and multicast communication. Additionally, distinct pri-
orities and timing constraints can be associated with messages, improving the real-time
constraints management. Moreover, the communication API is divided in transport, net-
work, and data link layers, following the OSI/ISO referencemodel. In the current version,
it implements a communication infrastructure following the CAN-bus (BOSCH, 1991)
communication protocol.

7.2.2 ORCOS Platform

Organic Reconfigurable Operating System(ORCOS) platform provides a customiz-
able RTOS, whose aim is to run it upon any kind of embedded hardware (UPB, 2008).
ORCOS implements a fully object-oriented hybrid kernel (using C++ language), rep-
resenting the evolution of theDistRibuted Extensible Application Management System
(DREAMS) (DITZE, 2000), a library-based construction set for operating system ser-
vices. A remarkable feature of ORCOS/DREAMS is the ability to separate mandatory
operating systems source code parts from optional ones by using a configuration mech-
anism. Thus, ORCOS can achieve small binary footprint usinga configuration mech-
anism that uses an XML-based configuration language, namedSkeleton Customization
Language(SCL).

ORCOS kernel is divided in several independent modules, which are selected and
integrated by means of the SCL. The following services are provided by ORCOS:

• Memory managementis one of the most important modules, and is mandatory in
any system configuration. There are separated memory spacesfor each application

125

task, and also for the ORCOS kernel. In addition, each task has its own memory
manager, which is responsible for task’s memory managementstrategy. Moreover,
if the embedded hardware supports virtual memory, ORCOS is able to use it;

• System callsprovide a manner for applications task to communicate with the OR-
COS kernel. Thus, when a task needs to use any kernel functionality, it must use
syscallAPI functions to trigger a hardware interrupt, which, in turn, is recognized
by the kernel that executes the desired kernel functionality;

• File systemuses the same approach as the Unix file system, i.e. all file system
entries can be accessed through a unique path. Resources areregistered inside the
file system structure, and accessed through a POSIX-like setof kernel functions;

• Processes, in ORCOS, represent tasks and their set of executing threads. Real-
time support is provided by ORCOS through real-time threadsand real-time sched-
ulers. Moreover, there are special kernel tasks/thread called workerthreadsto sup-
port asynchronous interrupts for hardware devices I/O, timed functions calls, or
periodic functions calls (likewise periodic threads but with the option of stopping
function execution to allocate theworkerthreadto other purpose);

• Scheduling is other important module in ORCOS, and is divided in two steps:
dispatching and scheduling. The later comprehends the set of rules to determine
the order in which threads are executed, while the former executes instructions to
allocate CPU to the thread selected to execute. The following scheduling policies
are available:Earliest Deadline First(EDF), Rate Monotonic(RM), Round Robin
(RR), and a priority-based scheduler;

• Hardware Abstraction Layer (HAL) provides an abstraction layer to access the
real hardware, avoiding the ORCOS kernel to access it directly;

• Power managementallows energy savings. The current ORCOS version allows
only to halt the CPU execution every time the idle task is going to execute;

• Communicationmodule allows inter-node and inter-process communication, defin-
ing a socket communication interface that uses different protocols to communicate.
Each socket can be explicitly configured (at runtime) to define which protocol stack
(OSI/ISO reference model’s transport and network layers) need to be used.

A detailed discussion on ORCOS is beyond the scope of this text. Thus, interested
readers are addressed to (UPB, 2008) and (DITZE, 2000).

7.2.3 Case Studies Assessment

Case studies presented in this chapter aim at assessing design improvements achieved
by using the proposed AMoDE-RT design flow. Thus, for each case study, two versions
have been designed: one using only OO concepts to specify both functional and non-
functional requirements handling, and another one applying AO concepts to deal with
non-functional requirements.

To compare the suitability of OO and AO concepts for distributed embedded real-
time systems development, a set of quality metrics is calculated for each version. This
work uses the assessment framework presented by Sant’anna et al. (2003) (see section
2.4.4.3) to infer the reusability quality of the produced UML models. Not all available

126

Quality Factors Internal Attributes Metrics

Reusability

Understandability

Flexibility

Size

Separation

of Concerns

Coupling

Cohesion

VS

NOA

CDC

CDO

CBC

DIT

LCOO

Figure 7.1: Reusability quality model

metrics have been used to provide the qualitative assessment of both models. A subset
of metrics had to be chosen and adapted based on their suitability for modeling instead
of coding phase. Hence, implementation related metrics, such asLines of Code, have not
been used. Additionally, it is important to highlight that this assessment concentrates only
on “reusability” instead of “reusability and maintainability” as proposed in the original
assessment framework (SANT’ANNA et al., 2003). Figure 7.1 shows the selected metrics
and their relations to provide the reusability quality assessment. For more details on each
metric, readers are referred to section 2.4.4.3. In addition, to assist in metrics extraction,
a plug-in for the MagicDraw modeling tool (NOMAGIC, 2008) has been developed and
used to automatically calculate the metrics set.

Moreover, in order to be able to do a fair comparison between OO and AO models, the
development of these models were done by two different persons, one person has modeled
the OO version of all case studies, while the other one has modeled the AO version. The
intention of this approach is to decrease the occurrence of any bias that may happen if the
same person designs both versions of the same system.

Besides model assessment, other point evaluated in these case studies is the source
code generated from UML models. Statics about the amount of source code files, as well
as generated lines of code, for each mentioned target platform are presented.

7.3 Case Studies

7.3.1 Unmanned Aerial Vehicle

Unmanned Aerial Vehicle(UAV) is an aircraft that flies without having an onboard
pilot, and is used in activities where the human presence is avoided due to inherited risks,
or simply to decrease operational costs. UAVs can fly a pre-programmed route or be
remotely operated by a ground station. Reconnaissance support in natural disasters, mon-
itoring and defect detection of transmission lines locatedin inhospitable places, and area
surveillance and vigilance are some examples of UAV applications. An UAV is com-
pounded of several subsystems, such as video recording and transmission, navigation,
mission management, collision avoidance, self-diagnostic, and movement control.

This work focuses on the movement control subsystem of an unmanned helicopter,
modifying the UAV movement control case study presented in (FREITAS, 2007) by
means of providing a more detailed design. Summarizing, thehelicopter control system
is divided three different modules:

• Sampling subsystemis responsible to sample helicopter information (e.g. main
and tail rotors pace), as well as environmental information(e.g. humidity, tem-

127

<<NFR_Timing>>

<<NFR_Embedded>>

<<NFR_Distribution>>

Helicopter

Movement Control

extension points

UAV in danger

<<NFR_Timing>>

<<NFR_Embedded>>

<<NFR_Distribution>>
Rotor

Sensing

<<NFR_Timing>>

<<NFR_Embedded>>

Enviroment

Sensing

<<NFR_Distribution>>
Back Rotor

Sensing

<<NFR_Distribution>>
Piloting

Special Condition

Movement Control

Temperature

Sensing

Control Alarm

Humidity Sensor

Main Rotor

Sensing

Maintenance

System

Wind

Sensing

Guidance

Humidity

Sensing

Temperature

Sensor

DataTransfer

System

Wind Sensor

Main Rotor

Sensor

Main Rotor

Actuator

Back Rotor

Actuator

Back Rotor

Sensor

Navigation

Control

<<extend>>

(UAV in danger)

<<include>>

<<include>>

<<include>> <<include>>

Figure 7.2: UAV movement control use case diagram

perature, wind speed and direction). Sampled data have different utility lifetimes
depending on the information kind, operation mode, and/or mission;

• Control subsystemuses the sampled data to control both helicopter main and tail
rotors, allowing helicopter guidance and piloting. Basically, it implements a control
system based on the method proposed by Seibel (2001);

• Actuation subsystemtakes the control values produced by the control subsystem,
applying them in helicopter rotor engines.

Further, the helicopter control system has two interconnected real-time processing
nodes: one is located close to the main rotor and the other oneclose to the back rotor.
In other words, the designed control system is distributed over these two communicat-
ing nodes, employing both remote and local objects. For a complete description on this
system’s requirements, interested readers should refer to(FREITAS, 2007).

Figure 7.2 shows functionalities expected from the mentioned subsystem. Following
AMoDE-RT modeling guidelines, functionalities affected by non-functional requirements
(e.g. “Helicopter Movement Control”) are decorated with non-functional stereotype an-
notations, e.g. such as«NFR_Timing». The following subsections provide more details
on the modeled subsystem using AO and OO concepts.

7.3.1.1 Object-Oriented Version

The static structure of UAV movement control system is depicted with a class diagram.
This diagram shows classes, their attributes and methods, and the relationships among
classes. Figure 7.3-A depicts the UML class diagram createdfor the OO version. As
suggested in AMoDE-RT modeling guidelines, classes representing active objects are
decorated with the«SchedulableResource» stereotype from the MARTE profile,
and passive objects with«MutualExclusionResource» stereotype.

Some classes depicted in figure 7.3-A (those with different filling color) are responsi-
ble to handle non-functional requirements as, for example,Semaphore class that is re-
sponsible to control the simultaneous access to shared passive objects,Timer that deals
with timing requirements, orEnergyController that deals with energy consumption.

128

(A) Object-Oriented Version

SpecialConditionMovementControl

<<MutualExclusionResource>>

MovementInformation

<<MutualExclusionResource>>

EnviromentInformation

EnviromentSensingSubSystem

EnergyMonitoringSubSystem

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

BackRotorSensorDriver

<<SchedulableResource>>

EnergyControler

<<SchedulableResource>>

EnviromentDataSampler

<<SchedulableResource>>

Alarm
<<SchedulableResource>>

BackRotorActuator

<<SchedulableResource>>

MovementControler

TemperatureSensorDriver

EnviromentSensorDriverMainRotorSensorDriver

MovementSensorDriver

HumiditySensorDriver

CommunicationDriver

MainRotorActuator

MovementSensing
SubSystem

WindSensorDriver

ControlSubSystem

<<Scheduler>>

Scheduler

RotorActuator

<<RTclock>>

Timer

TaskMigrator
SensorDriver

RemoteTask

Semaphore

Observer

Message

Subject

1..*

1

−rotors

1..2

1

1

1

1 1

1..2

1

1

1

1

1

11 1

<<MutualExclusionResource>>

EnviromentInformation

<<MutualExclusionResource>>

MovementInformation

TemperatureSensorDriver

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

BackRotorSensorDriver

<<SchedulableResource>>

EnviromentDataSampler

<<SchedulableResource>>

Alarm

<<SchedulableResource>>

MovementControler

<<SchedulableResource>>

BackRotorActuator

EnviromentSensorDriver

MovementSensorDriver

HumiditySensorDriver

MainRotorActuator

EnviromentSensing
SubSystem

ControlSubSystem

WindSensorDriver

SpecialCondition
MovementControl

MovementSensing
SubSystem

RotorActuator

SensorDriver

MainRotor
SensorDriver

1

1

1

1

1..*

1

1

1

1

1..*

1

1..*

1

11

(B) Aspect-Oriented Version

Figure 7.3: UAV movement control class diagram

UAV control system’s behavior was specified using only sequence diagrams, showing
the behavior in terms of interactions among objects. Thirteen different sequence diagrams
were created:(i) Helicopter movement control;(ii) Back rotor control;(iii) Main rotor
movement encoder;(iv) Back rotor movement encoder;(v) Environment data acquisition;
(vi) General Behavior(vii) General Behavior 2(viii) General Behavior 3(ix) Control Sub-
System Initialization(x) Environment Sub-System Initialization(xi) Movement Sensing
Sub-System Initialization(xii) Energy control; and(xiii) Task migration. Figure 7.4-A
shows two fragments of the helicopter movement control sequence diagram: (A1) the
start ofMovementController’s periodic behavior responsible for controlling the he-
licopter movement, and (A2) the end of this active object method behavior.

In this diagram, theScheduler object sends periodically an activation message
(each 20 ms), which is annotated with the«TimedEvent» stereotype, to theMov-
ementController object. A loop combined fragment, indicating the repetitive na-
ture of the control task, encloses all performed actions. Timing and distribution re-
quirements handling is performed by, respectivelyTimer andSemaphore classes (see
figure 7.4-A1). Timer’s timeout value is the value of the activation period assigned to
MovementController object. At the end of the controller method (figure 7.4-A2),
the execution is held until the timeout occurrence (message40) to control the execution
frequency. Figure 7.4-A1 also depicts the synchronized access (using a semaphore, as de-
picted in message 11) toMovementInformation object, whose attributes values are
written byMovement- Encoder active object, and read byMovementController
active object. Therefore, before every access to theMovementInformation object,
an permission must be requested, and after its use, the exclusive access must be released.

As stated before, the control system has one processing nodeat the main rotor and
another one at the back rotor. The control task runs in the main rotor node while the back
rotor actuation task runs in its own node. Thus, the movementcontrol task must send
the calculated actuation values to the back rotor node. Figure 7.4-A2 shows the handling

129

<<Acquire>>
11: acquire()

<<MutualExclusionresource

MRInfo:MovementIn

(A) Object-Oriented Version

..
.

(A1)

(A2)

2: getRotation()

3: mrRotation

4: getPace()

5: mrPace

<<Scheduler>>

sched:Scheduler

<<SchedulableResource>>

mCtrl:MovementController

<<TimedEvent>>
1: run()

loop
<<TimerResource>>

freq : Timer

2:

3: setDelay(delay=20)

4: start()
<<Acquire>>
5: acquire()

10:

34: send()

35:

36: setPace(”newValue=newMRPace”)

37: setRotation(”newValue=newMRRotation”)

38: applyParameters()

39: decreaseEnergyLevel()

40: waitForTimeout(timer=freqCtrl)

41:

20: setRotation(”newValue=newM

19: setPace(”newValue=newMRPact

16: getTemperature()

25:applyPa

BRAct:BackRotorActuator

(B) Aspect-Oriented Version

<<Scheduler>>

sched:Scheduler

<<SchedulableResource>>

mCtrl:MovementController

<<MutualExclusionResource>>

MRInfo:MovementInformation

<<SchedulableResourc

par <<TimeEvent>>
{every = (20,ms)}

1: run()

<<TimedEvent>>
{every = (20,ms)}

24: run()

[]

[]

2: getRotation()

3: mrRotation

4: getPace()

5: mrPace

6: getRotation()

7: brRotation

8: getPace()

9: brPace

10: getWindSpeed()

11: windSpeed

12: getWindDir()

13: windDirection

14: getHumidity()

15: humidity

17: temperature

18: processMovementInfo()

21: applyParameters()

22: setPace(”newValue=newBRPace”)

23: setRotation(”newValue=newBRRotation”)

Figure 7.4: Fragments of UAV movement control sequence diagram

of this communication non-functional requirement (messages 34 and 35), and also the
application of calculated actuation values to the main rotor actuator. Furthermore, this
diagram also shows other method related to control energy consumption (message 39).

7.3.1.2 Aspect-Oriented Version

The AO version uses DERAF aspects to specify the handling of non-functional re-
quirements, i.e. the handling of each non-functional requirement is enclosed within the
scope of a single element instead of being spread over several different elements.

Figure 7.3-B depicts the class diagram for the AO version. Ascan be observed, this
diagram is simpler to visualize compared to the one in OO version, due to the elimination
of classes that are not related with the application itself (i.e. classes that handle non-
functional requirements). In other words, in AO version thehandling of non-functional
requirements is done using aspects from DERAF, which are specified in the ACOD. One
may argue that the same visual simplification is achieved by means of separating func-
tional from non-functional requirements handling classesinto two different class dia-
grams. This claim is true, however, the use of aspects bringsother advantages, such as a
decrease in coupling among classes, reduction in the amountof model elements related
to non-functional requirements handling, and others.

Considering the behavior specification, the number of required sequence diagrams
was also reduced to nine. In AO version the following sequence diagrams of OO ver-
sion have been eliminated:(i) Back rotor actuation;(ii) Back rotor movement encoder;
(iii) Energy control; and(iv) Task migration. The last two diagrams (iii and iv) are not
necessary anymore because the handling of energy control and task migration require-
ments have been delegated to, respectively,EnergyControl andTaskMigration
aspects of DERAF (see section 5.3.2). Actions in the other two eliminated diagrams, i.e.
(i) and (ii), were merged with, respectively, “Helicopter Movement Control” and “Main
Rotor Movement Encoder” sequence diagrams. Figure 7.4-B shows the movement con-
trol diagram, which is equivalent to the same diagram in OO version. As can be observed,
all non-functional requirements handling elements have been removed, reducing consid-

130

(A) (B)

(B1)

(B2)

(B3)

(B4)

(B5)

<<Aspect>>

<<Aspect>>

<<Aspect>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Distribution>>

TimingAttributes

PeridicTiming

ConcurrencyControl

<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupTimingAttributes,AFTER)

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<Pointcut>>+pcActClass(ActiveClass, Period)

<<Pointcut>>+pcActObjInit(ActObjConstructor, SetupPeriod, AFTER)

<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(PeriodicActivation, FrequencyControl, AFTER)

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<Pointcut>>+pcInfoClass(InfoObjCreation, ConcurrencyControlMechanism)

<<Pointcut>>+pcBeforeWriteInfo(SetInfoValue, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterWriteInfo(SetInfoValue, ReleaseAccess, AFTER)

<<StructuralAdaptation>>+ConcurrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Crosscut>>

{Period = “15ms”}
<<Crosscut>>

{Period = “10ms”}

<<Crosscut>>
{Period = “20ms”}

<<Crosscut>>
{Period = “15ms”}

<<Schedulable

 Resource>>

MovementController

MovementEncoder

EnvironmentDataSampler
BackRotorActuator

Alarm

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>

<<Crosscut>>
{Dealine = “15ms”,

 Priority = “1”,

 WCET = “8ms”}

{Dealine = “10ms”,

 Priority = “1”,

 WCET = “5ms”}

{Dealine = “20ms”,

 Priority = “1”,

 WCET = “7ms”}

{Dealine = “5ms”,

 Priority = “1”,

 WCET = “2ms”}

{Dealine = “15ms”,

 Priority = “1”,

 WCET = “8ms”}

{Name = “ActiveClass”}

*

* : *
<<JoinPoint>>

{Name = “ActObjConstructor”}

* : *
1: *(..):*

* : *

<<Scheduler>>

* : Scheduler

<<TimedEvent>>

<<JoinPoint>>

{Name = “periodicActivation”}

1: *(..):*

* : *
<<JoinPoint>>

{Name = “InfoObjCreation”}

1: *(..):* * : *Information

<<MutexExclusion

 Resource>>
* : *Information* : *

<<JoinPoint>>

{Name = “setInfoValue”}

1: set*(..):*

<<JoinPoint>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<MutexExclusion

 Resource>>

Figure 7.5: UAV non-functional requirements handling: (A)ACOD, and (B) JPDD

erably the size of diagrams in terms of number of messages (40% reduction) and lifelines.

Additionally, figure 7.4-B also shows the union of “Helicopter Movement Control”
and “Back Rotor Actuation” sequence diagrams, which is represented by the parallel
combined fragment (“par”), meaning that both interactionsoccur concurrently. Due to
elimination of messages related to non-functional handling, only two messages remained
from the original “Back Rotor Actuation”. Thus, these messages were included into the
“Helicopter Movement Control” sequence diagram (see messages 24 and 25) and, conse-
quently, the “Back Rotor Actuation” could be eliminated in the AO version.

According to AMoDE-RT, DERAF aspects and join points are specified using a com-
bination of ACOD and JPDD (see section 5.3). Figure 7.5-A shows a fragment of the
UAV’s ACOD, showing three aspects:TimingAttributes, PeriodicTiming
andConcurrencyControl. The first two aspects insert new attributes to active ob-
jects classes (those annotated with«SchedulableResource» stereotype). Attributes
related to deadline, priority and WCET are inserted byTimingAttributes, and the
activation period byPeriodicTiming aspect. Values for this new attributes are spec-
ified in crosscut associations. It is important to emphasizethat crosscutting associations
do not insert by themselves new attributes into participating elements (class or aspect) as
normal associations. Hence, they do not bind classes with aspects, and vice-versa.

As mentioned, the real link between aspects adaptations andaffected elements (whose
selection is specified with JPDDs) is specified by pointcuts description within aspects.
Figure 7.5-B shows five examples of all JPDDs created in this case study:

131

1. ActiveClass join point (B1) represents the selection of all classes annotated
with «SchedulableResource» stereotype;

2. ActObjContructor join point (B2) selects all actions that construct all active
objects;

3. PeriodicActivation join point (B3) represents the selection of all messages,
which are annotated with«TimedEvent» stereotype, sent by the scheduler to any
active object;

4. InfoObjCreation join point (B4) selects all actions that construct passive ob-
jects (i.e. classes annotated with«MutualExclusionResource»), whose name
ends with “Information”;

5. SetInfoValue join point (B5) selects all messages with name starting with
“set”, which are sent to passive objects whose name ends with“Information”.

As shown in figure 7.5-A,PeriodicTiming aspect uses JPDDs numbers 1–3,
while TimingAttributes aspect uses only JPDDs numbers 1 and 2.

ConcurrencyControlaspect affects passive objects, which store information that
can be simultaneously accessed by more than one active object. It assigns a concurrency
control mechanism to each affected object during their instantiation, whose join point is
captured by theInfoObjCreation JPDD. Additionally, before every access (read or
write) to a protected object, an access permission must be requested to this control mech-
anism. Similarly, the control mechanism should be informedthat the object is no longer
in use. Writing accesses are captured bySetInfoValue JPDD. It is important to high-
light that according to DERAF premises of high-level aspects, at modeling level, it does
not matter if this inserted control mechanism is a new attribute for each affected classes or
simply an new global object, which is associated with the protected shared object. These
are implementation specific issues, which should be decidedat implementation phase.

As a first impression, one can think that the specification of ACOD and JPDD seems
to require more effort but it is not true. The generic nature of JPDDs allows their re-
use from previous modeled projects, as demonstrated in these case studies. Hence, many
JPDDs have been simply reused without modification in the other case studies.

7.3.1.3 Results

Considering separation of concerns metrics, figure 7.6-A shows how effective was
the application of DERAF aspects to handle time, distribution and embedded concerns.
All non-functional requirements have better handling separation in the AO model com-
pared to the OO one, i.e. the smaller amount of elements (classes and/or aspects) han-
dling a concern, better separation of concerns is achieved,leading to a decrease in the
scattering problem. The numbers presented confirm the simplification observed in the
diagrams of AO version. The reduction ranges from 55% to 83% for the CDC and from
75% to 92% for the CDO metric. CDC/CDO became smaller in AO version because
the way they are calculated (see section 2.4.4.3). For instance, in AO version, CDC
for timing non-functional requirements considers only thefollowing DERAF aspects:
PeriodicTiming, SchedulingSupport, TimingAtributes and TimePa-
rametersAdapter. On the other hand, in OO version, CDC takes into account classes
specifically related to timing non-functional requirements handling (Scheduler and
Timer) plus those related to functional requirements, which alsodeal with time issues

132

9

59

14

29

12

38

4

12

4
7

2 3

0

10

20

30

40

50

60

70

CDC CDO CDC CDO CDC CDO

Timing Distribution Embedded

OO AO

164

2

614

217

32

105
72

2
53 53 32 50

0

100

200

300

400

500

600

700

CBC DIT LCOO LCOO* VS NOA

Coupling Cohesion Size

OO AO

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.6: Calculated metrics for the UAV control system

+getPriority()
+setPriority()
+getDeadline()
+setDeadline()
+getPeriod()
+setPeriod()
+getWCET()
+setWCET()
+getEnergyLevel()
+decreaseEnergyLevel()
+resetEnergyLevel()
+waitForTimeout(timer)
+changeControlPolicy()
+run() : void
+processInfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

<<SchedulableResource>>

MovementController_OO

. . .

+run() : void
+processInfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

<<SchedulableResource>>

MovementController_AO

. . .

Figure 7.7: Comparison of UAV’sMovementController classes

(MovementController, MovementEncoder, EnvironmentDataSampler,
BackRotorSensorDriver, BackRotorActuator, Alarm and EnergyCon-
troller). Consequently, in OO model, functional and non-functional requirements
handling intermixing cause the inclusion of some functional elements/methods as non-
functional elements/methods.

Considering the other metrics, figure 7.6-B depicts the results obtained. Analyzing
coupling metrics, DIT results show that the use of aspect didnot modified the inheri-
tance tree. CBC results show, again, a decrease of more than 55% in the AO model.
CBC takes into account each reference (e.g. attribute, method call, parameter) to other
classes/aspects. Consequently, classes/aspects in AO version are more modular than in
OO version, mainly, due also to the intermixed treatment of functional and non-functional
requirements that happens in OO version. Observing the sizemetric, VS did not change,
while NOA has a decrease of 52%. This happened because several non-functional-related
attributes were moved from classes to aspects, which are woven into all affected classes
in implementation phase.

Regarding cohesion, the difference of LCOO between AO and OOmodels is more
than 91%. This decrease is primarily caused by elimination of get/setmethods for at-
tributes related to non-functional requirements handling. To illustrate this difference, fig-
ure 7.7 presentsMovementController class for OO and AO versions. Moreover,
LCOO metric does not distinguish the two kinds ofget/setmethods: (i) “raw” which
have minimum impact on real cohesion; (ii) with computations, which have significant
impact on real cohesion. As one can see, OO version’sMovementController has

133

Table 7.1: UAV: Statistics of the UML model of AO version

Diagrams Amount
Structural 2
Behavioral 10
ACOD 1
JPDD 16

DERAF aspects 10
Structural adaptations 15
Behavioral adaptations 18

Table 7.2: UAV: Statistics of the generated source code

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 21 42
Lines of Code 1264 1385
Binary Size (Kb) 5.41 (32) 147

Platform
Source code files 21/38* 01/01
Lines of Code 2931* 480
Binary Size (Kb) 5.93 (50) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* Considering RTSJ API (WEHRMEISTER, 2005) + API COM (SILVA JR., 2008)

nine “raw” get/setmethods related to non-functional requirements. Therefore, to provide
a fair assessment, LCOO for OO has been recalculated excluding “raw” get/setmethods
(LCOO* in figure 7.6-B). Even in this situation, LCOO decrease is 75% in AO model.
The obtained results show that using aspects improves modelcohesion.

Besides the modeling approach, AMoDE-RT also supports codegeneration using the
produced UML model as input. Mapping rules for two differentplatforms, i.e. RT-
FemtoJava and ORCOS, have been created and used to produce the system source code
in Java and C++. Tables 7.1 and 7.2 present some statistics about, respectively, the UAV
movement control UML model and the generated source code.

The size of mapping rules XML files, in terms of code lines, is 803 lines for the
RT-FemtoJava, and 749 lines for ORCOS platform. However, ifthe lines related to XML
markup are not considered, the amount of lines for the mapping rules script is 388 and 332,
respectively. These scripts represent theApplicationbranch. ORCOS mapping rules file
is smaller than the RT-FemtoJava one due to the later has moreaspect adaptations scripts
than the former. In fact, in ORCOS platform, several expected behaviors of aspect adap-
tations (e.g.PeriodicTiming’s LoopMechanism andFrequencyControl) are
implicitly executed within platform context, and hence, they do not need extra lines of
code in application code, only the correct configuration to enable such behavior. Further-
more, as some aspects used in the UML model are not supported by both target platforms,
their adaptations insert only a comment (one line) indicating that aspects have performed
adaptations in generated source code fragments. Despite not implementing real code,
these scripts serve as demonstration of aspects weaving performed by GenERTiCA.

134

<<include>>

<<include>>
<<include>>

<<include>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>

<<NFR_Timing>>
<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Distribution>>

<<NFR_Embedded>>

<<NFR_Embedded>>

Robot Arm

Storage Unit

Input Parts

Conveyor

Output

Products

Conveyor

Item Reader

Robotic Arm

Control

Gripper Control

Arm Joints

Control

Assembly Cell

Control

Conveyor Movement

Control

Items Detection

Parts Detection
Empty Boxes

DetectionStorage Unit

Control

Figure 7.8: Industrial packing system use case diagram

Considering generated platform configuration, the difference in amount of lines is
even greater. RT-FemtoJava configuration has 2931 lines, and ORCOS 480 lines. This
happened because ORCOS has already a configuration mechanism, and RT-FemtoJava
none. Hence, on one hand, a configuration file is generated forORCOS, and on the other
hand, the entire RT-FemtoJava API code is tailored to include only lines that provide
services required by aspects. In other words, by using this RT-FemtoJava configuration
approach, GenERTiCA provides a preprocessor mechanism to Java, likewise the one na-
tively supported in C/C++.

Regarding the generated source code for the UAV movement control system, all be-
haviors/actions specified with sequence diagrams have beenmapped to source code con-
structions. Thus, for the RT-FemtoJava platform, the amount of application code lines is
almost 3.3 times the amount of mapping rules scripts lines. For ORCOS, the rate is almost
4.2 times, demonstrating the effort reduction in application coding, and the importance of
code generation tools in MDE approaches. In the other case studies, the mapping rules
have been used without modification, and hence, the effort toobtain system implementa-
tion was even lower than in this case study.

Considering the size of compiled source code, a considerable difference between both
platforms can be perceived. This is caused by the differencebetween instructions size of
both target processors. ORCOS code has been compiled to a 32-bits PowerPC processor,
whose instructions size is 4 bytes. On the other hand, RT-FemtoJava is a hardware im-
plementation of the JVM specification and, according to Lindholm and Yellin (1999), the
size of JVM instructions is 1, 2 or 3 bytes. Consequently, PowerPC’s binary size could be
(in the worst-case) almost four times greater than RT-FemtoJava’s binary size.

7.3.2 Industrial Packing System

This case study was inspired on the packing system presentedin (HODGES et al.,
2003) and (BRUSEY et al., 2003). The system is composed of a robotic arm with a
gripper, two conveyors, a storage unit and several sensors.The input conveyor brings
individual parts, which are combined to form products. The conveyor stops when the
sensor detects the presence of a part. Then the robotic arm will either put it in the storage
unit or use it to assembly a product. The second conveyor brings empty boxes into which
parts are inserted. This conveyor remains operating until its sensor detects an empty
box at the expected position. When the product is completelyassembled, the controller
sends a command to the conveyor and it starts to move forward again. The controller

135

is a periodic active object that verifies whether there are products to be assembly and/or
parts to be place into the storage unit. When the new product requires a part, which is
physically located at the parts conveyor, this part is takenfrom there, and used to mount
the product; otherwise, the part is taken from the storage unit. This system was intended
to be distributed, i.e. there are four different processingnodes: one responsible to control
the products assembly process and the robotic arm; two nodesto control, respectively, the
input parts conveyor and the assembled products output conveyor; and one to control the
amount of parts in the storage unit.

The discussion starts exactly as in the UAV case study: firstly, the packing system
functionalities are specified with an use case diagram, as depicted in figure 7.8. Once
again, one can see that several use cases are annotated with stereotypes related to non-
functional requirements. Although this case study has moreuse cases decorated with
“NFR_” stereotypes, it has fewer non-functional requirements. More specifically, there
are fewer embedded non-functional requirements (if compared to the UAV case study),
due to system size and absence of energy constraints in products packing system.

This case study have been performed as previous the previousone: i.e. object-
and aspect-oriented modeling approaches are shown and compared with the assessment
framework. Source code have also been generated for the two mentioned platforms, and
their statistics are presented.

7.3.2.1 Object-Oriented Version

Following the approach adopted in the UAV case study, the static structure of the
packing system is specified using the class diagram, as depicted in figure 7.9-A. The
same MARTE profile stereotypes have been used, i.e.«SchedulableResource»and
«MutualExclusionResource», to specify, respectively, active and passive objects.
Non-functional requirements related classes are also emphasized with different colors.

For behavior specification, eleven sequence diagrams have been created:(i) Prod-
ucts assembly control;(ii) Conveyor control;(iii) Item detection;(iv) Robotic arm joints
control;(v) Gripper control;(vi) Robotic arm movements control;(vii) Storage unit con-
trol; (viii) Controller sub-system initialization;(ix) Conveyor sub-system initialization;
(x) Storage unit sub-system initialization; and(xi) Memory management and tasks migra-
tion. Figure 7.10-A shows two fragments of (i), as in the UAV case study: (a) the start of
products assembly control execution, and (b) the end of thisbehavior. Repeating the UAV
case study modeling pattern, the scheduler object sends a periodic message (annotated
with «TimedEvent») to theAssemblyCellController active object, triggering
its behavior execution at each 5 seconds. Classes specifying non-functional requirements
handling can also be seen in these fragments, e.g.Timer andMessage classes.

As stated before, active objects are spread into four nodes.The main control task
(i.e. AssemblyCellController object) runs in the main node, and must access
information from conveyors and storage objects located in other nodes. Thus, this object
must send messages to these other objects, in order to collaborate with them to proceed
with the products assembly and parts storage. For instance,figure 7.10-A shows the
message sending that requests the position of the storage unit, into which a part should
be placed (messages 45-48). Additionally, other messages related to other non-functional
requirements handling, e.g. the memory control (message 51and 55), are also depicted.

136

(A) Object-Oriented Version (B) Aspect-Oriented Version

<<SchedulableResource>>

RobotArmJoint

WristJoint ShoulderJoint RotaryShoulderJoint ArmJoint

RobotArm AssemblyCellController

Gripper

Conveyor

<<MutualExclusion

 Resource>>

ItemReader

RFIDReader

StorageUnit

StoagerCompartment

RobotArmPosition

Item

Recipe

ProductPart

Product

1

0..*

1..*
0..*

1 1

1

1

1 4

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

111

1 1

1

1

1

1

1

Recipe
ProductPart Product

Item

StoagerCompartment

StorageUnit

RobotArmPosition
Conveyor

RFIDReader

ItemReader

Gripper AssemblyCellController

RobotArm

WristJoint ShoulderJoint RotaryShoulderJoint ArmJoint

RobotArmJoint

1 1

0..*
1..*1

0..*

1

1 4

1

1 1

1

11

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1
1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1
1

11
1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

1 1

1

1

<<Scheduler>>

TaskMigration
MemoryController MemoryManager

Scheduler
Semaphore

Timer

CommunicationInterface Message

<<TimerSource>>

<<SchedulableResource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<SchedulableResource>>

<<SchedulableResource>>

<<SchedulableResource>>
<<Schedulable

 Resource>>

<<Schedulable

 Resource>>
<<Schedulable

 Resource>>

<<SchedulableResource>>

<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

<<Mutual

 Exclusion

 Resource>>

<<MutualExclusion

 Resource>>
<<MutualExclusion

 Resource>>

<<MutualExclusion

 Resource>>

Figure 7.9: Industrial packing system class diagram

55: free(amount=Msg.size())

6: allocate(amount-Msg

2: allocate(amount=Tim

8: getRecipe(

11: part

(A) Object-Oriented Version

(A1)

(A2)

<<Scheduler>>

sched:Scheduler
acc:AssemblyCellController

<<SchedulableResource>> robotArm:RobotArm

<<NFR_Timing>>

<<TimedEvent>>
1: run()

loop

loop

alt

<<TimerResource>>

freq:Timer

<<NFR_Timing>>
3:

4: setTimeout(t=Period)

5: start()

7: <<NFR_Distribution

Msg:Message

[(hasProductsToBuild() == True) &&

 (MixedPartsOut.isItemDetected() == TRUE)]

[i=0; i < receita.getPartsCount()]

9: recipe

10: getPart(index=i)

45: clear()

46: set(Value=GET_ITEM_POSITION)

47: sendSync(msg=Msg)

48: Msg

49: moveTo(newPos=Msg.get(1))

50: openGripper()

51:

52: free(amount=Msg.size())

53: waitForTimeout()

54:

32: getPosition(part=)

[else]

ProdToAssembly:Product

<<MutualExclusionReso

(B) Aspect-Oriented Version

(B2)

(B1)

<<Scheduler>>

sched:Scheduler acc:AssemblyCellController

<<SchedulableResource>> robotArm:RobotArm

<<TimedEvent>>
{every = (5,s)}

1: run()

alt

loop

alt

[(hasProductsToBuild() == True) &&

 (MixedPartsOut.isItemDetected() == TRUE)]

[i=0; i < receita.getPartsCount()]

[(ProductsIn.isItemDetected() == TRUE) &&

 (part == Productsin.getItem())]

2: getRecipe()

3: recipe

4: getPart(index=i)

5: part

6: getPosition()

7: pos

8: openGripper()

9: moveTo(newPos=pos)

10: closeGripper()

11: getPosition()

12: pos

13: moveTo(newPos=pos)

14: openGripper()

27: openGripper()

28: moveTo(newPos=pos)

29: closeGripper()

30: getItem()

31: item

33: pos

34: moveTo(newPos=pos)

35: openGripper()

..
.

Figure 7.10: Industrial packing system sequence diagram

137

(B)

(B1)

(B2)

(B3)

{Name = “ActiveClass”}

*

* : *
<<JoinPoint>>

{Name = “ActObjConstructor”}

* : *
1: *(..):*

* : *

<<Scheduler>>

* : Scheduler

<<TimedEvent>>

<<JoinPoint>>

{Name = “periodicActivation”}

1: *(..):*

<<JoinPoint>>
<<SchedulableResource>>

<<Schedulable

 Resource>>

<<SchedulableResource>>

<<Aspect>>

<<NFR_Timing>>

PeridicTiming

<<Pointcut>>+pcActClass(ActiveClass, Period)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupPeriod,AFTER)

<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(PeriodicActivation,FrequencyControl,AFTER)

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<Aspect>>
<<NFR_Timing>>

TimingAttributes

<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET)

<<Pointcut>>+pcActObjInit(ActObjConstructor,SetupTimingAttributes,AFTER)

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>
{Period = “350ms”}

<<Crosscut>>
{Period = “300ms”}

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>

{Period = “500ms”}

<<Crosscut>>

{Period = “5s”}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>

{Dealine=350ms,

 Priority=5,

 WCET=150ms}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>

{Dealine=500ms,

 Priority=5,

 WCET=100ms}

<<Crosscut>>
{Dealine=5s,

 Priority=5,

 WCET=3.5s}

<<Crosscut>>
{Dealine=300ms,

 Priority=5,

 WCET=150ms}

<<SAschedRes>>
<<SAresource>>

Conveyor

<<SAschedRes>>

RobotArmJoint

<<SAschedRes>>

ItemReader

<<SAschedRes>>

StorageCompartment

<<SAschedRes>>

Gripper

<<SAschedRes>>

AssemblyCellController

(A)

Figure 7.11: Industrial packing system: reused elements in(A) ACOD, and (B) JPDD

7.3.2.2 Aspect-Oriented Version

DERAF was also used in the AO version of the industrial packing system to specify
non-functional requirements handling. Figure 7.9-B showsthe class diagram specifying
the static structure. Again, the amount of classes, as well as the relations among them,
have decreased. Thus the complexity of this diagram decreases in AO version, just like in
the previous case study. Hence, the same statements made in the previous section hold in
this case study.

In AO version, system behavior has been specified using less diagrams than the OO
version, however, for the industrial packing system case study, the decrease happened
only in one case: “Memory control and tasks migration” was removed due to the han-
dling of memory control and task migration requirements to be delegated to, respectively,
MemoryUsageControl andTaskMigration aspects. Figure 7.10-B shows two
fragments of the products assembler control diagram, whichare equivalent to those pre-
sented in figure 7.10-A. The amount of messages in this diagram is 36% smaller than
the OO version one. As happened in the UAV case study, the complexity decrease for
describing the same system features can be clearly perceived.

Considering the specification of non-functional requirements handling, figure 7.11
shows a fragment of ACOD, showing the reuse ofTimingParameters and Per-
iodicParameters aspects. Not only aspects have been reused. As one can see, join
points (i.e. JPDD) used in pointcuts specification are also reused from the UAV case
study. This shows the generality of DERAF and the AMoDE-RT approach, demonstrating
that aspects can be reused at modeling level in different distributed embedded systems
designs, due to their high-level semantics. It is importantto highlight that, for aspects
implementation, the mapping rules have also been reused without modifications, due to
the fact that the target platform is the same, and the implementation follows the high-level

138

9

12
13

19

11
12

3

10

4

10

2
3

0

5

10

15

20

25

CDC CDO CDC CDO CDC CDO

Time Distribution Embedded

OO AO

203

1

193

96

27

89
108

1

80 80

28
48

0

40

80

120

160

200

240

CBC DIT LCOO LCOO* VS NOA

Coupling Cohesion Size

OO AO

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.12: Calculated metrics for the industrial packingsystem

Table 7.3: Industrial packing system: Statistics of the UMLmodel of AO version

Diagrams Amount
Structural 2
Behavioral 12
ACOD 1
JPDD 13*

DERAF aspects 9
Structural adaptations 14
Behavioral adaptations 15

* 11 JPDDs have been reused from UAV

pre-defined semantics of each aspect.

7.3.2.3 Results

Separation of concerns metrics depicted in figure 7.12-A shows that the same improve-
ment achieved in UAV case study is obtained in the AO version of the industrial packing
system. CDC metrics have been reduced at least 66% up to 81%, while CDO from 16%
up to 75%. Although there is an improvement of concerns separation, it was not in the
same degree as in the UAV case study, due to the amount of timing non-functional re-
quirements present in both systems, as for example freshness requirements in UAV case
study that do not exist in the industrial packing system.

The other metrics exhibit similar improvements.:(i) DIT did not change, i.e. aspects
do not modify classes hierarchy;(ii) AO model is again more cohesive, as pointed by the
decrease of 47% in CBC metric;(iii) VS in AO version indicates a small increase (i.e.
one element), because in this version memory requirements are handled by two elements
(MemoryUsageControl andMemoryUsageMonitoring aspects) instead of one
element as specified in OO version;(iv) NOA, on the other hand, decrease almost 46%
in AO version, showing that in spite of the increase in VS metric, the number of classes’
internal elements has decreased. Regarding model cohesion, in AO version, LCOO de-
creases 58% when considering all kinds of methods, and 16% if“raw” get/setmethods
are excluded, showing that, in spite of the good cohesion in the OO version, the use of
AO concepts improve system cohesion.

Considering the created UML model, and the implementation generated from it, tables
7.3 and 7.4 show the statistics on the produced artifacts. Inthis case study, the reuse of

139

Table 7.4: Industrial packing system: Statistics of the generated source code

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 22 42
Lines of Code 1144 1343
Binary Size (Kb) 4.64 (29) 139

Platform
Source code files 21/38* 01/01
Lines of Code 2931* 480
Binary Size (Kb) 6.12 (50) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* Considering RTSJ API (WEHRMEISTER, 2005) + API COM (SILVA JR., 2008)

previously created artifacts is highlighted in both AO-related elements specification and
mapping rules. Considering the former, in addition to DERAFaspects reuse, JPDDs also
have been reused. From the 13 JPDDs used in this case study, 11have been reused from
the UAV case study without any modification. The same happened with the mapping
rules specification. Thus, none effort was necessary to generate 1144 and 1343 source
code lines for, respectively, RT-FemtoJava and ORCOS platforms.

7.3.3 Wheelchair Automation

The third case study was an automation system for an electric-actuated wheelchair.
Therefore, AMoDE-RT approach has been applied in the wheelchair’s movement control
system. Summarizing, the wheelchair movement control includes two engines (one for
each wheel), a joystick to steer the wheelchair in terms of speed and direction, and two
sensors to sample wheel rotation speed. Therefore, the system must perform the following
concurrent activities:

• To sample the wheel sensors every 10 milliseconds to determine the movement
speed and direction;

• To sample the current joystick position at the same period, i.e. 10 ms;

• To perform the wheelchair control algorithm every 50 ms, applying the calculated
actuation value to left and right wheel engines;

• To monitor changes in the operation mode. The operation modeinfluences in the
way of deadlines misses are treated:(i) signal the occurrence of missed deadlines;
(ii) signal the occurrence of missed deadlines, and apply the last valid actuation
value; or(iii) signal the occurrence of missed deadlines, and stop the wheelchair
movement.

UML models of this case study have already been presented, aswell as discussed, in
(WEHRMEISTER, 2005) (OO version) and (FREITAS, 2007) (AO version). Thus, in this
text, the goal of this case study is to discuss the calculatedmetrics for both version, and
in addition, present results concerning the generated source code from the UML model
of AO version. Moreover, this case study is slightly different from the one presented in

140

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

10

23

8

17

7 8
5

8

4
7

2 3

0

5

10

15

20

25

CDC CDO CDC CDO CDC CDO

Timing Distribution Embedded

OO AO

39

1

87

18

48

35

1

62

23 25

0

20

40

60

80

100

CBC DIT LCOO VS NOA

Coupling Cohesion Size

OO AO

Figure 7.13: Calculated metrics for the wheelchair movement control system

Table 7.5: Wheelchair: Statistics of the UML model of AO version
Diagrams Amount

Structural 1
Behavioral 6
ACOD 1
JPDD 14*

DERAF aspects 5
Structural adaptations 10
Behavioral adaptations 12

* all JPDDs have been reused from UAV

(FREITAS, 2007) because AMoDE-RT modeling guidelines require some small modifi-
cations in diagrams, in order to allow code generation from the produced UML model.

Figure 7.13 shows the calculated metrics for the wheelchaircase study. As occurred
in the other cases studies, AO version has increased the separation of concern: CDC de-
creased 50% for timing and distribution and 71% for embeddednon-functional require-
ments, and CDO from 58% to 65%. As it can be noted, comparing with the other case
studies, the improvement obtained for CDC metric in this case study is not the same one
obtained in UAV and industrial packing system. This situation happens due to the fewer
amount of non-functional requirements that exist in wheelchair case study compared to
the ones present in the other case studies. This can be also confirmed by CBC metric that
decreased only 10%. In addition, the lower CBC absolute value in both versions indicates
that the wheelchair movement control case study has a good degree of decoupling. Com-
bining the later metric value with the lower LCOO absolute value, it can be stated that
both OO and AO versions are well designed, due to, mainly, itssmall size in comparison
with the other case studies. Moreover, one can see that, although NOA decreases almost
48%, the VS metric increases 27% in the AO version. As in the industrial packing system,
the reason for this increase is that there are no one-to-one relation between non-functional
requirements handling classes in OO version and aspects in AO version. Hence, as the
system size is small, the relative impact of extra elements is greater than in the other case
studies. However, as the other metrics have a significant improvement, this increase in
vocabulary size is still acceptable.

Compared to the wheelchair case study presented in (FREITAS, 2007), the real con-
tribution of this case study is the generation of source code. As the other two case studies,

141

Table 7.6: Wheelchair: Statistics of the generated source code

RT-FemtoJava+ ORCOS
Mapping Rules (lines) 388/803 332/749
Application

Source code files 12 24
Lines of Code 672 712
Binary Size (Kb) 2.81 (19) 133

Platform
Source code files 13/30* 01/01
Lines of Code 1021* 480
Binary Size (Kb) 3.00 (28) 462

+ Numbers inside parentheses represent the bytecodes size generated by java compiler

* only RTSJ API (WEHRMEISTER, 2005)

two tables presents some statistics: table 7.5 considers the produced UML model for the
AO version; and table 7.6 considers the source code generated for the RT-FemtoJava and
ORCOS platform.

Again, this case study emphasizes the reuse of previously created artifacts. In this
case study, 100% of JPDDs could be reused from the UAV case study. Considering that
both DERAF aspects and JPDDs have been reused, one can state that, by using AMoDE-
RT, designers need only to concern with functional requirements specification, letting
non-functional requirements handling specification to be composed by already created
elements. Moreover, as experience is acquired in the development of others projects,
the model elements repository grows in amount of elements, increasing the possibility of
reusing more elements.

Considering the wheelchair control system implementationin this case study, GenER-
TiCA has generated 672 and 712 source code lines for, respectively, RT-FemtoJava and
ORCOS platforms. Rates of generated source code lines per mapping rules scripts lines
are 1.73 and 2.14, respectively. As one can conclude, implementation gains in this case
study are not the same as the other cases studies mainly due toits size, i.e. wheelchair
case study has 12 classes while the UAV and the industrial packing system have 22 classes
each. In the same sense, this case study specified 6 behavioral diagrams, while the other
ones 10 and 12 different diagrams each. However, in wheelchair case study, no additional
mapping rules had to be defined, i.e. as the mapping rules fileshave already been speci-
fied in the first case study, it was necessary only to reuse themwithout modifications to
obtain the mentioned amount of source code files.

7.4 Final Remarks

Taking into account the results obtained for all case studies, it can be stated that the
use of AO concepts improves the reusability quality, even for small embedded real-time
systems, as the case of the wheelchair movement control system. Almost all metrics have
better values for AO model compared to OO one, ranging from 37% to 66% in average.
Considering the understandability factor, key issues suchas separation of concerns, cohe-
sion and coupling improved around 45% in average. Although the number of components
has increased a little bit (10% in average), the number of attributes decreased ca. 48%.
For flexibility factor, AO model elements are more cohesive and decoupled compared to

142

OO model. Separations of concerns results show that elements in AO model have more
specific and well-defined roles than in OO model.

The difference in the absolute metrics values leads to the conclusion that improve-
ments achieved with the use of AO concepts increase with the number of crosscutting
non-functional requirements. Additionally, these case studies’ metrics confirm that, using
AO, the same benefits achieved in traditional information systems can be obtained in the
design of distributed embedded real-time systems.

Further, as one can see in table 7.7, using DERAF aspects at modeling level allows
their reuse in different designs. If the implementation follows the aspect adaptations
high-level semantics, the aspects implementation can alsobe reused, as occurred in all
presented the case studies. AMoDE-RT approach to specify join points selection also
allows the reuse of JPDD (52% of all created JPDDs have been used in all case studies).
However, it is worth to comment that JPDDs must specify generic selection of elements
(e.g. JPDD_ActiveObjectClass or JPDD_PeriodicBehavior) to allow their
reuse. Usually, JPDDs selecting specific elements (e.g.JPDD_InfoAttributeRead)
are harder to reuse, due to their close relation with application specific elements (the
mentioned JPDD, select attributes of classes whose name ends with “Information”).

Considering the use of GenERTiCA, it must be stated that the amount of generated
code is directly proportional to mapping rules scripts and diagrams specification com-
pleteness. In other words, if the UML model can provide complete information about
system structure and behavior (following AMoDE-RT modeling guidelines), and map-
ping rules specification can map all elements available in the model into constructions
available in a given target platform, it is likely that GenERTiCA can generate a large
amount of source code. Considering the source code generated in presented case studies,
one can see that it is possible to generate an amount of sourcecode lines from 1.73 to 4.2
times the amount of mapping rules scripts lines1.

Regarding the generated source code, source code files obtained after the code gen-
eration process are more complete than the ones obtained using available commercial or
academic code generation tools, which usually only provideclass skeletons and/or simple
state machine related code. In addition, the aspects weaving performed by GenERTiCA
allows the use of aspect adaptations in non-AO languages. Even considering these advan-
tages, it must be highlighted that the generated code is not complete. There are several
small issues that are highly dependent on the target platform, which cannot be solved us-
ing general approaches like GenERTiCA’s one. For example, in all case studies, there is
a need of filling the gap between the software objects representing hardware components
(e.g.WindSensorDriver in UAV case study) and the real hardware. This kind of code
is too specific to be specified in UML models or mapping rules, implying unnecessary de-
tails for a single element. Thus, programmers must code manually the corresponding
methods in the generated source code files. Other example of platform-specific problems
is the circular cross-reference problem in C++ source code files. This situation has oc-
curred in the performed case studies, due to GenERTiCA’s approach to specify references,
which is strongly based on the Java language. A solution for this problem would be to
pre-declare referenced classes inside class source code files. Thus, GenERTiCA code
generation algorithm must be extended to include this option.

There is another small technical problem in the code generation process implemented

1Mapping rules script’s amount of lines for RT-FemtoJava andORCOS platforms are, respectively, 388
and 332 lines. These numbers only represent script lines without considering XML marks, which, in fact,
do not influence code generation

143

Table 7.7: AO elements reused in the different case studies

UAV IPS* Wheelchair
DERAF aspects
TimingAttributes X X X
PeriodicTiming X X X
TimeBoundedActivity
SchedulingSupport X X X
Jitter
DataFreshness X X
ToleratedDelay
ClockDrift
ConcurrentAccessControl X X X
MessageSynchronization X X
MessageAck X X
MessageIntegrity
MessageCompression
TaskMigration X X
NodeStatusRetrieval
HwAreaMonitoring
HwAreaControl
EnergyMonitoring X
EnergyControl X
MemoryUsageMonitoring X
MemoryUsageControl X
JPDD
JPDD_ActiveObjectClass X X X
JPDD_ActiveObjectConstruction X X X
JPDD_ActiveObjectConstruction_Action X X X
JPDD_ActiveObjectConstructor X X X
JPDD_ExclusiveGet X X X
JPDD_ExclusiveObjectClass X X X
JPDD_ExclusiveSet X X X
JPDD_InfoAttributeRead X X
JPDD_InfoAttributeWrite X X
JPDD_InfoClassAttribute X X
JPDD_InfoObjectConstruction_2 X
JPDD_InfoObjectConstruction_Action X X
JPDD_ObjectConstruction_Action X
JPDD_ObjectDestruction_Action X
JPDD_PeriodicBehavior X X X
JPDD_SendMsgToRemoteObject X X
JPDD_SubSystemClass X X X
JPDD_SubSystemConstruction
JPDD_SubSystemConstruction_2 X X X
* Industrial Packing System

144

in the initial version of GenERTiCA: the expressions used inside the UML model must
be specified using the target platform syntax. In other words, GenERTiCA reads expres-
sions in the model, using them as they are (i.e. a text fragment) in the generated code.
Consequently, if the target language changes, and the expressions syntax is not the same,
expressions in the model must be fixed, otherwise the generated code incur to compilation
errors. A solution to this problem would be to parse expressions specified in the UML
model, converting them to the target platform syntax. A generic expressions language
must be used for specifying expressions in UML diagrams. In this sense, OCL could
be a reasonable option, but its characteristics and suitability for this purpose need to be
evaluated before choosing it as this generic expressions language.

To conclude this chapter, it is worth to mention that the UAV case study is completely
provided in the appendices. Interested readers can see the complete UML model, along
with mapping rules files for the RT-FemtoJava platform.

145

8 CONCLUSIONS AND FUTURE WORK

This work has proposed an approach to design distributed embedded real-time systems
using MDE techniques along with concepts of AO paradigm to cope with the increasing
complexity associated with the design of modern systems. More specifically, the proposed
approach has addressed the following topics:(i) manage the complexity of functional and
non-functional requirements handling;(ii) support for separation of concerns;(iii) spec-
ification of system structure and behavior using a common language;(iv) improvement
in design phases transition by providing adequate tool support. All ideas and elements
involved in the proposed approach have been presented throughout this text.

AMoDE-RT design flow proposes solutions for all these issues, supporting a smooth
transition from requirements specification to source code implementation, in order to ful-
fill gaps usually found in the design flow. Such quest is achieved using a combination of
elements:(i) RT-FRIDA for requirements analysis;(ii) UML as specification language;
(iii) DERAF aspects to handle non-functional requirements;(iv) modeling guidelines to
homogenize the specification of system structure, behavior, and non-functional require-
ments handling;(v) DERCS as intermediate representation of such modeled information;
(vi) transformation heuristics to convert UML model elements into DERCS elements; and
(vii) GenERTiCA code generation tool to support the AMoDE-RT approach.

Besides requirements gathering, RT-FRIDA assists in linking requirements specifica-
tion with design elements, improving requirements traceability. Further, traceability is
still preserved in implementation, due to GenERTiCA approach that uses mapping rules
to generated code fragments from model elemets. In other words, it is possible to compare
generated source code lines with code generation/aspect adaptation scripts, relating them
with model elements, to discover which requirements are handled by these code lines. In
this sense, the effort to check if the system meets the requirements can be decreased.

This work has shown that UML and MARTE profile can be used to specify system
expected functionalities in terms of structure, behavior,and also non-functional require-
ments handling. As MARTE provides stereotypes with standard semantics to express
real-time and embedded systems features, its usage is preferable rather than “home-made”
profiles, due to its already accepted concepts and constructions that passed through a rig-
orous review process. Using a common and standard specification language facilitates the
communication of design intention, reducing possible misunderstandings in specification
interpretation. Further, UML raises the abstraction levelused in design by shifting the fo-
cus from expected functions to system elements and their roles to accomplish the desired
functionalities, representing abstractions closer to real world elements.

However, as UML has many variation semantic points, it is also important to de-
fine modeling guidelines and also interpretation semanticsto minimize (or even remove)
model specification ambiguities. AMoDE-RT modeling guidelines intend to provide flex-

146

ibility in UML diagrams creation, but defining, at the same time, an interpretation se-
mantic for modeled elements, allowing the integration of information specified in distinct
diagrams (mainly in behavior diagrams).

UML sequence diagrams have been successfully used to describe actions performed
within behaviors, eliminating the need of using textual action languages as current ap-
proaches suggest. AMoDE-RT transformation heuristics allow actions sequence extrac-
tion from several different sequence diagrams, enabling their association with other be-
havior diagrams, such as state diagrams, to provide graphical behavior specification.

Furthermore, this work results have shown that using AO concept in distributed em-
bedded real-time systems design improves separation of concerns in the handling of func-
tional and non-functional requirements. In this sense, DERAF is a remarkable contribu-
tion due to the lack of aspects with platform independent adaptation semantics created
specifically to real-time and embedded systems domain. Due to its well-defined seman-
tics, DERAF has been successfully used at both modeling and implementation levels.
Moreover, the assessment presented in chapter 7 indicates improvements in design un-
derstandability and flexibility, and also in the reuse of previously developed artifacts (i.e.
model and/or code). It was demonstrated that DERAF aspects and JPDDs can easily be
reused in different designs.

Despite the lack of support for AO concepts in official UML specification, AMoDE-
RT proposes to specify them using DERAF, ACOD and a set of JPDDs. Instead of
proposing invasive extensions to UML meta-model elements,AMoDE-RT proposes a
lightweight extension using UML’s extensibility mechanism, i.e. a profile, allowing the
use of off-the-self UML modeling tool to create AO elements with ACOD and JPDDs.

Similarly to other MDE approaches, the effectiveness of AMoDE-RT approach usage
is highly dependent on tool support. Therefore, GenERTiCA has been created to assist in
the automatic transformation of UML models into source codefor different target plat-
forms. Although UML and MARTE provide adequate constructions to specify features of
distributed embedded real-time systems, they do not allow an unambiguous specification
targeting source code generation. Consequently, the intermediate PIM called DERCS has
been proposed to support code generation tools construction. The most remarkable dif-
ference between UML and DERCS is the representation of AO concepts, whose related
elements stand for information specified in ACOD and JPDD. AMoDE-RT transformation
heuristics extract information from ACOD and JPDD, allowing the creation of DERCS el-
ements. In addition, it interprets JPDD semantics gathering selected elements, associating
these elements with the DERCS join points representation.

GenERTiCA code generation approach is different from the majority of code gener-
ation tools available; it allows the separation of concernsin mapping rules description
by using small scripts responsible to generate source code fragments for structural and/or
behavioral elements. It can be state empirically that this approach improves cohesion and
reinforces designers focus on individual elements insteadof the whole model. Besides not
clearly demonstrated by case studies, we believe empirically that, using GenERTiCA ap-
proach, it is easy to reuse parts of mapping rules files in different designs, or using these
parts as base to extend the mapping rule scripts with other constructions in the target
platform.

A remarkable contribution of GenERTiCA is its ability to perform aspects weaving
in generated code fragments, and also in the input DERCS model. This capability, along
with the use of model-level aspects, allow to apply AO concept with non-AO target plat-
forms, as demonstrated in case studies. Furthermore, modelweaving provided by Gen-

147

ERTiCA could be also used in other tools, such as design exploration tools, to evaluate
the impact of a given aspect implementation. In this sense, in spite of allowing different
implementations, DERAF aspect semantics must be preservedto allow their high-level
(re)use, i.e. the same platform can provide different formsto implement aspect adapta-
tions, but this implementation must respect the pre-definedhigh-level semantics.

MDE, AOD, and code generation topics have still more issues to be investigated. This
work development has leaded to other open problems regarding the mentioned topics.
Thus, to conclude this text, a discussion on directions for future investigation are pro-
vided:

• Sequence diagram is not the most adequate diagram, in essence, to specify algorith-
mic behavior that do not represent object interactions. In behavior specifications,
there are algorithms having more mathematical expressionscalculation than object
interactions. In these situations, activity diagrams are more suitable than sequence
diagrams. Hence, a modification in AMoDE-RT modeling guidelines and transfor-
mation heuristics (to provide support for both sequence andactivity diagrams to
specify actions performed within a behavior) would allow designers to choose the
one the better fits with the behavior characteristics;

• MARTE profile has a bunch of other stereotype to describe real-time features, e.g.
ResourceUsage,GRService,TimingResource, and others. To investigate
how to combine them with the AMoDE-RT approach is other research direction;

• To support other JPDD types would allow other advanced options for elements se-
lection instead of only direct elements selection. This extension is very challenging
due to expressiveness power of JPDD that would need elementsevaluation consid-
ering, for example, execution flows, state machines, or indirect classes associations;

• To implement UML state diagrams transformation into DERCS elements according
AMoDE-RT transformation heuristics, as explained in chapter 6;

• MDE assumes that system implementation is obtained directly from models. To as-
sure that the automatically generated source code is functionally correct, the source
model must also be correct. Thus, it is an interesting topic to investigate how to
execute models. DERCS could be used as the base for a UML virtual machine
that simulates the behavior specified in UML models, allowing early evaluation of
system behavior;

• Following the model execution thread, it is also interesting to provide means for
automatic UML model testing, likewise implementation-level approaches such as
JUnit. Automatic model testing could allow automatic evaluation of model changes
against expected behavior results;

• To extend GenERTiCA’s code generation approach to overcomethe problem of
circular cross-reference, as mentioned in chapter 7;

• To investigate the use of OCL to support the specification of expressions in a pro-
gramming language independent fashion and, in addition, tomake GenERTiCA
fully platform independent;

• To create mapping rules for other platforms, such VHDL, Verilog, and others;

• To apply AMoDE-RT approach in other application domains of embedded systems.

148

149

REFERENCES

ANDERSSON, P.; HöST, M. UML and SystemC: a comparison and mapping rules for
automatic code generation. In: VILLAR, E. (Ed.).Embedded Systems Specification
and Design Languages. [S.l.]: Springer Netherlands, 2008. p.199–209.

APACHE. Apache Velocity Project.Apache Software Foundation. 2008. Disponível
em: <http://velocity.apache.org/ >. Acesso em: Dec. 2008.

ARMSTRONG, D. J. The quarks of object-oriented development. Communication of
the ACM , New York, v.49, n.2, p.123–128, 2006.

ARPINEN, T. et al. Configurable Multiprocessor Platform with RTOS for Distributed Ex-
ecution of UML 2.0 Designed Applications. In: DESIGN, AUTOMATION AND TEST
IN EUROPE CONFERENCE AND EXHIBITION, 2006.Proceedings. . .Leuven: Euro-
pean Design and Automation Association, 2006. p.1324–1329.

ARTISAN. Artisan Real-Time Studio.Artisan Software Tools. 2008. Disponível em:
<http://www.artisansoftwaretools.com/products/artisan-studio/ >. Acesso em: Dec. 2008.

BALARIN, F. et al. Metropolis: an integrated electronic system design environment.
Computer, Los Alamitos, v.36, n.4, p.45–52, 2003.

BALASUBRAMANIAN, K. et al. A Platform-Independent Component Modeling Lan-
guage for Distributed Real-Time and Embedded Systems. In: IEEE REAL-TIME AND
EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM, 2005.Proceed-
ings. . . Los Alamitos: IEEE Computer Society, 2005. p.190–199.

BALASUBRAMANIAN, K. et al. Weaving Deployment Aspects intoDomain-specific
Models.International Journal of Software Engineering and Knowledge Engineering,
[S.l.], v.16, n.3, p.403–424, 2006.

BERG, K. van den; CONEJERO, J. M.; CHITCHYAN, R.AOSD Ontol-
ogy 1.0: public ontology of aspect-orientation. 2005. 90 p. Technical Re-
port AOSD-Europe-UT-01 — AOSD-Europe. Disponível em: <http://eprints.eemcs.
utwente.nl/10220/01/BergConChi2005.pdf >. Acesso em: Oct. 2008.

BERTAGNOLLI, S. C.FRIDA : um método para elicitação e modelagem de rnfs. 2004.
163 p. Tese (Doutorado) — Programa de Pós-Graduação em Computação, Universidade
Federal do Rio Grande do Sul, Porto Alegre, 2004.

150

BEUCHE, D. et al. The PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems. In: IEEE INTERNATIONAL SYMPOSIUMON OBJECT-
ORIENTED REAL-TIME DISTRIBUTED COMPUTING, 2., 1999.Proceedings. . .
Washington: IEEE Computer Society, 1999. p.45–53.

BéZIVIN, J. On the Unification Power of Models.Software and Systems Modeling,
[S.l.], v.4, n.2, p.171–188, May 2005.

BOLLELLA, G. et al.The Real-Time Specification for Java, version 1.0.2. 2.ed. [S.l.]:
Addison Wesley Longman, 2001.

BOOCH, G.Object-Oriented Analysis and Design with Applications. Massachusetts:
Addison-Wesley, 1994.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I.Unified Modeling Language User
Guide, The (2nd Edition). [S.l.]: Addison-Wesley, 2005.

BORDIN, M.; VARDANEGA, T. Real-time Java from an Automated Code Generation
Perspective. In: INTERNATIONAL WORKSHOP ON JAVA TECHNOLOGIES FOR
REAL-TIME AND EMBEDDED SYSTEMS, 5., 2007, Vienna, Austria.Proceedings. . .
New York: ACM, 2007. p.63–72.

BORLAND. Borland Together.Broland Software Corporation. 2008. Disponível em:
<http://www.borland.com/us/products/together/index.html >. Acesso em: Dec. 2008.

BOSCH. CAN 2.0 protocol specification.CAN in Automation . 1991. Disponível em:
<http://www.can-cia.org/index.php?id=164 >. Acesso em:Jan. 2009.

BRUSEY, J. et al. Auto-ID based Control Demonstration - Phase 2: pick
and place packing with holonic control. 2003. 20 p. Technical Report —
Cambridge University. Disponível em: <http://www.ifm.eng.cam.ac.uk/automation/
publications/documents/CAM-AUTOID-WH011.pdf >. Acessoem: Dec. 2008.

BURMESTER, S. et al. The Fujaba Real-Time Tool Suite: model-driven development
of safety-critical, real-time systems. In: INTERNATIONALCONFERENCE ON SOFT-
WARE ENGINEERING, 27., 2005.Proceedings. . .New York: ACM, 2005. p.670–671.

BURMESTER, S.; GIESE, H.; SCHäFER, W. Model-Driven Architecture for Hard Real-
Time Systems: from platform independent models to code. In:EUROPEAN CONFER-
ENCE ON MODEL DRIVEN ARCHITECTURE - FOUNDATIONS AND APPLICA-
TIONS, 2005.Proceedings. . .Berlin: Springer, 2005. p.25–40.

BURNS, A. et al. The Meaning and Role of Value in Scheduling Flexible Real-Time
Systems.Journal of Systems Architecture, New York, v.46, n.4, p.305–325, 2000.

BURNS, A.; WELLINGS, A. J. HRT-HOOD: a structured design method for hard real-
time systems.Real-Time Systems, Norwell, v.6, n.1, p.73–114, 1994.

BURNS, A.; WELLINGS, A. J.Real-Time Systems and Programming Languages.
2.ed. Harlow: Addison-Wesley, 1997.

CARRO, L.; WAGNER, F. R. Sistemas Computacionais Embarcados. In: Jornadas de
Atualização em Informática. Campinas: SBC, 2003. n.22, p.45–94.

151

CECHTICKY, V. et al. A UML2 Profile for Reusable and VerifiableSoftware Compo-
nents for Real-Time Applications. In: INTERNATIONAL CONFERENCE ON SOFT-
WARE REUSE, 9., 2006.Proceedings. . .Berlin: Springer, 2006. p.312–325.

CHEN, R. et al. UML and platform-based design. In: LAVAGNO, L.; MARTIN, G.;
SELIC, B. (Ed.).UML for Real : design of embedded real-time systems. Norwell:
Kluwer Academic Publishers, 2003. p.107–126.

CHIDAMBER, S. R.; KEMERER, C. F. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, Los Alamitos, v.20, n.6, p.476–493,
1994.

CLARKE, S. Extending Standard UML with Model Composition Semantics.Science of
Computer Programming: Special issue on Unified Modeling Language, Amsterdam,
v.44, n.1, p.71–100, 2002.

CLARKE, S.; BANIASSAD, E.Aspect-Oriented Analysis and Design. Upper Sadde
River: Addison-Wesley Professional, 2005.

CLARKE, S.; WALKER, R. J. Towards a Standard Design Languagefor AOSD. In: IN-
TERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOP-
MENT, 1., 2002.Proceedings. . .New York: ACM, 2002. p.113–119.

CONROW, E. H.; SHISHIDO, P. S. Implementing Risk Managementon Software Inten-
sive Projects.IEEE Software, Los Alamitos, v.14, n.3, p.83–89, 1997.

CUGOLA, G.; NITTO, E. D.; FUGGETTA, A. The JEDI Event-Based Infrastructure
and Its Application to the Development of the OPSS WFMS.IEEE Transactions on
Software Engineering, Piscataway, v.27, n.9, p.827–850, 2001.

DAHL, O.-J.; NYGAARD, K. SIMULA: an algol-based simulationlanguage.Commu-
nunication of the ACM , New York, v.9, n.9, p.671–678, 1966.

DAVARE, A. et al. A Next-Generation Design Framework for Platform-Based Design.
In: CONFERENCE ON USING HARDWARE DESIGN AND VERIFICATION LAN-
GUAGES, 2007.Proceedings. . .[S.l.: s.n.], 2007.

DITZE, C. Towards Operating System Synthesis. 2000. 200 p. Tese (Doutorado) —
Department of Mathematics and Computer Science, University of Paderborn, Paderborn,
2000.

DOMAINSOLUTIONS. CodeGenie MDD.DomainSolutions. 2008. Disponível em:
<http://www.domainsolutions.co.uk/ >. Acesso em: Dec. 2008.

EDWARDS, M.; GREEN, P. UML for hardware and software object modeling. In:
LAVAGNO, L.; MARTIN, G.; SELIC, B. (Ed.).UML for Real : design of embedded
real-time systems. Norwell: Kluwer Academic Publishers, 2003. p.127–147.

FILMAN, R. E. et al. (Ed.).Aspect-Oriented Software Development. Boston: Addison-
Wesley, 2005.

FRANCE, R. et al. Aspect-Oriented Approach to Early Design Modelling.IEE Proceed-
ings - Software, [S.l.], v.151, n.4, p.173–185, Aug. 2004.

152

FREITAS, E. P. de.Metodologia Orientada a Aspectos para a Especificação de Sis-
temas Tempo-Real Embarcados e Distribuídos. 2007. 171 p. Dissertação (Mestrado)
— Programa de Pós-Graduação em Computação, Universidade Federal do Rio Grande
do Sul, Porto Alegre, 2007.

FUENTES, L.; MANRIQUE, J.; SáNCHEZ, P. Pópulo: a tool for debugging uml models.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 30., 2008,
Leipzig, Germany.Proceedings. . .New York: ACM, 2008. p.955–956.

FUENTES, L.; PINTO, M.; TROYA, J. M. Supporting the Development of CAM-DAOP
Applications: an integrated development process.Software-Practice & Experience,
New York, v.37, n.1, p.21–64, 2007.

FUENTES, L.; SáNCHEZ, P. Elaborating UML 2.0 Profiles for AO Design. In: WORK-
SHOP ON ASPECT-ORIENTED MODELLING (AOM), 8., 2006, Bonn, Germany.Pro-
ceedings. . .[S.l.: s.n.], 2006.

FUENTES, L.; SáNCHEZ, P. Designing and Weaving Aspect-Oriented Executable UML
models.Journal of Object Technology, Zurich, v.6, n.7, p.109–136, 2007.

GAMMA, E. et al. Design patterns: elements of reusable object-oriented software.
Boston: Addison-Wesley Longman Publishing, 1995.

GELL-MANN, M. The quark and the jaguar: adventures in the simple and the complex.
New York: W. H. Freeman & Co., 1995.

GENTLEWARE. Poseidon for UML. Gentleware AG. 2008. Disponível em:
<http://www.gentleware.com/uml-software-pe.html >. Acesso em: Dec. 2008.

GéRARD, S.; SELIC, B. The UML – MARTE Standardized Profile. In: WORLD
CONGRESS OF THE INTERNATIONAL FEDERATION OF AUTOMATIC CON-
TROL, 17., 2008.Proceedings. . .[S.l.: s.n.], 2008. p.6909–6913.

GSRC. Metropolis: design environment for heterogeneous sys-
tems. Gigascale Systems Research Center. 2002. Disponível em:
<http://www.gigascale.org/metropolis/index.html >. Acesso em: Dec. 2008.

HABERMANN, A. N.; FLON, L.; COOPRIDER, L. Modularization and Hierarchy in
a Family of Operating Systems.Communications of the ACM, New York, v.19, n.5,
p.266–272, 1976.

HAREL, D. Statecharts: a visual formalism for complex systems.Science of Computer
Programming, Amsterdam, v.8, n.3, p.231–274, 1987.

HARRISON, W. H.; BARTON, C.; RAGHAVACHARI, M. Mapping UML Designs
to Java. In: ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PROGRAM-
MING, SYSTEMS, LANGUAGES, AND APPLICATIONS, 15., 2000, Minneapolis,
Minnesota, United States.Proceedings. . .New York: ACM, 2000. p.178–187.

HARRISON, W. H.; OSSHER, H. L.; TARR, P. L.Asymmetrically vs Symmet-
rically Organized Paradigms for Software Composition. 2002. 10 p. Technical
Report — IBM Watson Research Center. Disponível em: <http://domino.watson.ibm.
com/library/cyberdig.nsf/papers/2A4097E93456D0CF85256CA9006DAC29/$File/RC2
2685.pdf >. Acesso em: Oct. 2008.

153

HAUSMANN, J. H.; KENT, S. Visualizing model mappings in UML.In: ACM SYMPO-
SIUM ON SOFTWARE VISUALIZATION, 2003, San Diego, California.Proceedings. . .
New York: ACM, 2003. p.169–178.

HECHT, M. V.; PIVETA, E.; PIMENTA, M.; PRICE, R. T. Aspect-Oriented Code Gen-
eration. In: XX SIMPóSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, 2006.
Anais. . . Porto Alegre: Sociedade Brasileira da Computação, 2006. p.209–223.

HERRINGTON, J.Code Generation in Action. Greenwich: Manning Publications Co.,
2003.

HODGES, S. et al.Auto-ID based Control Demonstration - Phase 1: pick
and place packing with conventional control. 2003. 15 p. Technical Report —
Cambridge University. Disponível em: <http://www.ifm.eng.cam.ac.uk/automation/
publications/documents/CAM-AUTOID-WH-006.pdf >. Acesso em: Dec. 2008.

IBM. IBM Telelogic Tau. IBM Corporation . 2008. Disponível em:
<http://www.telelogic.com/products/tau/tau/index.cfm >. Acesso em: Dec. 2008.

IBM. IBM Rational Rose Technical Developer.IBM Corporation . 2008. Disponível
em: <http://www-01.ibm.com/software/awdtools/developer/rose/index.html >. Acesso
em: Dec. 2008.

IBM. IBM Telelogic Rhapsody. IBM Corporation . 2008. Disponível em:
<http://modeling.telelogic.com/products/rhapsody/software/developer/index.cfm >.
Acesso em: Dec. 2008.

ISO/IEC. Systems and Software Engineering - Recommended Practice for Architectural
Description of Software-Intensive Systems.ISO/IEC 42010 IEEE Std 1471-2000 First
edition 2007-07-15, [S.l.], p.c1–24, Jul. 2007.

ITO, S. A. et al. Making Java Work for Microcontroller Applications.IEEE Design and
Test of Computers, Los Alamitos, v.18, n.5, p.100–110, 2001.

ITRS. International Technology Roadmap for Semiconductors 2007Edition : design.
2007. 46 p. Technical Report — International Technology Roadmap for Semiconductors.
Disponível em: <http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf
>. Acesso em: Out. 2007.

KICZALES, G. et al. Aspect-Oriented Programming. In: EUROPEAN CONFERENCE
ON OBJECT-ORIENTED PROGRAMMING, 1997.Proceedings. . .Berlin: Springer-
Verlag, 1997. p.220–242.

KRUCHTEN, P.The Rational Unified Process: an introduction, second edition. Boston:
Addison-Wesley, 2000.

KUKKALA, P. et al. UML 2.0 Profile for Embedded System Design.In: DESIGN, AU-
TOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2005. Pro-
ceedings. . .Washington, DC, USA: IEEE Computer Society, 2005. p.710–715.

LAMPORT, L. Time, Clocks, and the Ordering of Events in a Distributed System.Com-
munications of the ACM, New York, v.21, n.7, p.558–565, 1978.

154

LAMPORT, L. The +CAL Algorithm Language . 2007. 34 p. Technical Report
— Microsoft Research. Disponível em: <http://research.microsoft.com/users/lamport/
pubs/pluscal.pdf >. Acesso em: Dec. 2008.

LAPLANTE, P. A. Real-Time Systems Design and Analysis: an engineer’s handbook.
2.ed. New York: IEEE Press, 1997.

LéDECZI Ákos et al. Composing Domain-Specific Design Environments.IEEE Com-
puter, Los Alamitos, v.34, n.11, p.44–51, 2001.

LINDHOLM, T.; YELLIN, F. Java Virtual Machine Specification. Boston: Addison-
Wesley, 1999.

LOHMANN, D. et al. PURE Embedded Operating Systems - CiAO. In: INTERNA-
TIONAL WORKSHOP ON OPERATING SYSTEM PLATFORMS FOR EMBEDDED
REAL-TIME APPLICATIONS, 2006, Dresden, Germany.Proceedings. . . [S.l.: s.n.],
2006.

LOHMANN, D. et al. Interrupt Synchronization in the CiAO Operating System: expe-
riences from implementing low-level system policies by aop. In: WORKSHOP ON AS-
PECTS, COMPONENTS, AND PATTERNS FOR INFRASTRUCTURE SOFTWARE,
6., 2007.Proceedings. . .New York: ACM, 2007.

LONG, Q. et al. Consistent Code Generation from UML Models. In: AUSTRALIAN
SOFTWARE ENGINEERING CONFERENCE, 2005.Proceedings. . . Los Alami-
tos: IEEE Computer Society, 2005. p.23–30.

LSE. Sistemas Eletrônicos Embarcados baseados em Plataformas. Labo-
ratório de Sistemas Embarcados. 2003. Disponível em: <http://www.inf.ufrgs.
br/̃lse/pag_projeto.php?cod_projeto=1 >. Acesso em: Sep. 2008.

MARTIN, G.; MÜLLER, W. (Ed.). UML for SOC Design. Netherlands: Springer-
Verlag, 2005.

MELLOR, S. J. et al. An Action Language for UML: proposal for aprecise execution
semantics. In: FIRST INTERNATIONAL WORKSHOP ON THE UNIFIEDMODEL-
ING LANGUAGE. UML’98: BEYOND THE NOTATION, 1999.Proceedings. . .Lon-
don: Springer-Verlag, 1999. p.307–318.

MICROTOOL. objectiF – The Tool for Model-Driven Development with UML. Micro-
Tool. 2008. Disponível em: <http://www.microtool.de/objectif/en/index.asp >. Acesso
em: Dec. 2008.

NASCIMENTO, F. A. M. do; S. OLIVEIRA, M. F. da; WEHRMEISTER, M. A.;
PEREIRA, C. E.; WAGNER, F. R. MDA-based Approach for Embedded Software Gener-
ation from a UML/MOF Repository. In: SYMPOSIUM ON INTEGRATED CIRCUITS
AND SYSTEMS DESIGN, 19., 2006, Ouro Preto, MG, Brazil.Proceedings. . .New
York: ACM, 2006. p.143–148.

NASS, R. An Insider’s View of the 2008 Embedded Market Study.Embed-
ded Systems Design, San Francisco, v.21, n.9, September 2008. Disponível em:
<http://www.embedded.com/design/testissue/210200580>. Acesso em: Sep. 2008.

155

NGUYEN, K. D.; SUN, Z.; THIAGARAJAN, P. S.; WONG, W.-F. Model-Driven SoC
Design via Executable UML to SystemC. In: IEEE INTERNATIONAL REAL-TIME
SYSTEMS SYMPOSIUM, 25., 2004.Proceedings. . .Washington: IEEE Computer So-
ciety, 2004. p.459–468.

NITTO, E. D. et al. Deriving executable process descriptions from UML. In: INTER-
NATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 24., 2002, Orlando,
Florida.Proceedings. . .New York: ACM, 2002. p.155–165.

NODA, N.; KISHI, T. Aspect-Oriented Modeling for Embedded Software Design. In:
ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, 14., 2007.Proceed-
ings. . . Washington: IEEE Computer Society, 2007. p.342–349.

NOMAGIC. Introducing MagicDraw. No Magic, Inc. 2008. Disponível em:
<http://www.magicdraw.com/ >. Acesso em: Dec. 2008.

OMG. Common Warehouse Metamodel (CWM).Object Management Group. 2003.
Disponível em: <http://www.omg.org/spec/CWM/1.1/ >. Acesso em: Sep. 2008.

OMG. Model-Driven Architecture.Object Management Group. 2004. Disponível em:
<http://www.omg.org/mda >. Acesso em: Sep. 2008.

OMG. UML Profile for Schedulability, Performance, and Time,ver-
sion 1.1. Object Management Group. 2005b. Disponível em:
<http://www.omg.org/technology/documents/formal/schedulability.htm >. Acesso
em: Sep. 2008.

OMG. Meta Object Facility (MOF) 2.0.Object Management Group. 2006. Disponível
em: <http://www.omg.org/spec/MOF/2.0 >. Acesso em: Sep. 2008.

OMG. Object Constraint Language (OCL) 2.0.Object Management Group. 2006.
Disponível em: <http://www.omg.org/spec/OCL/2.0/ >. Acesso em: Dec. 2008.

OMG. XML Metadata Interchange (XMI) 2.1.1.Object Management Group. 2007.
Disponível em: <http://www.omg.org/spec/XMI/2.1.1/ >. Acesso em: Sep. 2008.

OMG. Unified Modeling Language (UML), Version 2.2.Object Management Group.
2008. Disponível em: <http://www.omg.org/spec/UML/2.2/Beta1/Superstructure/PDF >.
Acesso em: Dec. 2008.

OMG. MOF Query/Views/Transformations.Object Management Group. 2008a.
Disponível em: <http://www.omg.org/spec/QVT/1.0 >. Acesso em: Sep. 2008.

OMG. UML Profile for Modeling and Analysis of Real-time and Embed-
ded Systems (MARTE).Object Management Group. 2008b. Disponível em:
<http://www.omg.org/cgi-bin/doc?ptc/2008-06-08 >. Acesso em: Sep. 2008.

OMG. UML Profile for for Modeling Quality of Service and FaultTolerance Charac-
teristics and Mechanisms, v1.1.Object Management Group. 2008c. Disponível em:
<http://www.omg.org/spec/QFTP/1.1/ >. Acesso em: Sep. 2008.

PERSEIL, I.; PAUTET, L. Foundations of a New Software Engineering Method for Real-
Time Systems.Innovations in Systems and Software Engineering, London, v.4, n.3,
p.195–202, Oct. 2008.

156

PINTO, M.; FUENTES, L.; TROYA, J. M. DAOP-ADL: an architecture description lan-
guage for dynamic component and aspect-based development.In: INTERNATIONAL
CONFERENCE ON GENERATIVE PROGRAMMING AND COMPONENT ENGI-
NEERING, 2., 2003.Proceedings. . .New York: Springer-Verlag., 2003. p.118–137.

PINTO, M.; FUENTES, L.; TROYA, J. M. A Dynamic Component and Aspect-Oriented
Platform.The Computer Journal, Oxford, v.48, n.4, p.401–420, 2005.

RAJKUMAR, R. Model-Based Development of Embedded Systems:the sysweaver ap-
proach. In: RAMESH, S.; SAMPATH, P. (Ed.).Next Generation Design and Verifi-
cation Methodologies for Distributed Embedded Control Systems. [S.l.]: Springer
Netherlands, 2007. p.35–46.

RICCOBENE, E.; SCANDURRA, P.; ROSTI, A.; BOCCHIO, S. A SoC Design Method-
ology Involving a UML 2.0 Profile for SystemC. In: DESIGN, AUTOMATION AND
TEST IN EUROPE CONFERENCE AND EXHIBITION, 2005.Proceedings. . .Wash-
ington: IEEE Computer Society, 2005. p.704–709.

ROSENBERG, L. H.Applying and Interpreting Object Oriented Metrics . 2003. 18
p. Technical Report — NASA Software Assurance Technology Center. Disponível em:
<http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply.pdf >. Acesso em: Oct.
2008.

ROTHENBERG, J. The Nature of Modeling. In: WIDMAN, L. E.; LOPARO, K. A.;
NIELSEN, N. R. (Ed.).Artificial Intelligence, Simulation & Modeling . New York:
John Wiley & Sons, 1989. p.75–92.

SAE. Architecture Analysis & Design Language.Society of Automotive Engineers.
2006. Disponível em: <http://www.sae.org/technical/standards/AS5506 >. Acesso em:
Dec. 2008.

SáNCHEZ, P. et al. Aspect-Oriented Model Weaving Beyond Model Composition and
Model Transformation. In: INTERNATIONAL CONFERENCE ON MODEL DRIVEN
ENGINEERING LANGUAGES AND SYSTEMS, 11., 2008, Toulouse, France.Pro-
ceedings. . .Berlin: Springer-Verlag, 2008. p.766–781.

SANGIOVANNI-VINCENTELLI, A. The Tides of EDA.IEEE Design & Test of Com-
puters, [S.l.], v.20, n.6, p.59–75, Nov. 2003.

SANT’ANNA, C. et al. On the Reuse and Maintenance of Aspect-Oriented Software: an
assessment framework. In: XVII BRAZILIAN SYMPOSIUM ON SOFTWARE ENGI-
NEERING, 2003.Proceedings. . .[S.l.: s.n.], 2003. p.19–24.

SCHATTKOWSKY, T.; MUELLER, W. Model-based Specification and Execution of
Embedded Real-Time Systems. In: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE AND EXHIBITION, 2004.Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 2004. p.1392–1393.

SCHATTKOWSKY, T.; MUELLER, W.; RETTBERG, A. A Model-Based Approach for
Executable Specifications on Reconfigurable Hardware. In: DESIGN, AUTOMATION
AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2005.Proceedings. . .
Washington: IEEE Computer Society, 2005. p.692–697.

157

SCHAUERHUBER, A. et al. Towards a Common Reference Architecture for Aspect-
Oriented Modeling. In: INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED
MODELING, 3rd., 8., 2006.Proceedings. . .[S.l.: s.n.], 2006.

SCHMIDT, D. C. Guest Editor’s Introduction: model-driven engineering.IEEE Com-
puter, [S.l.], v.39, n.2, p.25–31, Feb. 2006.

SCHMIDT, D. C.; LEVINE, D. L.; MUNGEE, S. The Design of the TAOReal-Time
Object Request Broker.Computer Communications, [S.l.], v.21, p.294–324, 1998.

SEIBEL, C. W.Uma metodologia Formal para o Planejamento e Controle de Missões
de Aeronaves Não-Tripuladas. 2001. Tese (Doutorado) — Departamento de Engenharia
Elétrica, Universidade Federal de Santa Catarina, Florianopólis, 2001.

SELIC, B. The Pragmatics of Model-Driven Development.IEEE Software, Los Alami-
tos, v.20, n.5, p.19–25, 2003a.

SELIC, B.; MOTUS, L. Using Models in Real-Time Software Design. IEEE Control
Systems Magazine, [S.l.], v.23, n.3, p.31–42, June 2003b.

SILVA JR., E. T. da.Middleware Adaptativo para Sistemas Embarcados e de Tempo-
Real. 2008. 127 p. Tese (Doutorado) — Programa de Pós-Graduação em Computação,
Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.

SOMMERVILLE, I. Software Engineering. 6.ed. Harlow: Addison-Wesley, 2001.

SPINCZYK, O.; LOHMANN, D. The design and implementation of AspectC++.
Knowledge-Based Systems: Special Issue on Creative Software Design, Amsterdam,
v.20, n.7, p.636–651, 2007.

STAHL, T.; VOELTER, M. Model-Driven Software Development: technology, engi-
neering, management. [S.l.]: Willey, 2006.

STANKOVIC, J. A. et al. VEST: an aspect-based composition tool for real-time sys-
tems.Real-Time and Embedded Technology and Applications Symposium, IEEE ,
Los Alamitos, v.0, p.58, 2003.

STANKOVIC, J. A. Misconceptions About Real-Time Computing: a serious problem for
next-generation systems.Computer, Los Alamitos, v.21, n.10, p.10–19, 1988.

STEIN, D. et al. A UML-based Aspect-Oriented Design Notation for AspectJ. In: IN-
TERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOP-
MENT, 1., 2002.Proceedings. . .New York: ACM Press, 2002. p.106–112.

STEIN, D. et al. Expressing Different Conceptual Models of Join Point Selections in
Aspect-Oriented Design. In: ASPECT-ORIENTED SOFTWARE DEVELOPMENT, 5.,
2006.Proceedings. . .New York: ACM, 2006. p.15–26.

TANENBAUM, A. S.; STEEN, M. van.Distributed Systems: principles and paradigms.
2.ed. Upper Saddle River: Prentice-Hall, 2007.

TESANOVIC, A. et al. Aspects and Components in Real-time System Development: to-
wards reconfigurable and reusable software.Journal of Embedded Computing, [S.l.],
v.1, n.1/2005, p.17–37, Jan. 2005.

158

TSANG, S. L.; CLARKE, S.; BANIASSAD, E. L. A. An Evaluation ofAspect-Oriented
Programming for Java-Based Real-Time Systems Development. In: IEEE INTER-
NATIONAL SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DISTRIBUTED
COMPUTING (ISORC 2004), 7., 7., 2004.Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 2004. p.291–300.

UPB. Organic Reconfigurable Operating System.Design of Distributed Embedded
Systems – University of Paderborn. 2008. Disponível em: <https://orcos.cs.uni-
paderborn.de/orcos/ >. Acesso em: Jan. 2009.

VANDERPERREN, Y.; MUELLER, W.; DEHAENE, W. UML for electronic systems
design: a comprehensive overview.Design Automation for Embedded Systems, [S.l.],
v.12, n.4, p.261–292, 2008.

VASSILIADIS, S. et al.The HiPEAC Roadmap on Embedded Systems. 2005. 106
p. Technical Report — European Network of Excellence on High-Performance Embed-
ded Architecture and Compilation. Disponível em: <http://www.hipeac.net/roadmap >.
Acesso em: Dec. 2005.

W3C. eXtensible Markup Language (XML) 1.0 (Fourth Edition). World Wide Web
Consortium. 2006. Disponível em: <http://www.w3.org/TR/2006/REC-xml-20060816
>. Acesso em: Dec. 2008.

W3C. XSL Transformation (XSLT) 2.0 - Candidate Recomendation. World Wide Web
Consortium. 2006. Disponível em: <http://www.w3.org/TR/xslt20 >. Acesso em: Dec.
2008.

WEHRMEISTER, M. A. Framework Orientado a Objetos para Projeto de Hard-
ware e Software Embarcados para Sistemas Tempo-Real. 2005. 104 p. Dissertação
(Mestrado) — Programa de Pós-Graduação em Computação, Universidade Federal do
Rio Grande do Sul, Porto Alegre, 2005.

WOLF, W. H. Computers as Components: principles of embedded computing system
design. San Francisco: Morgan Kaufmann, 2001.

ZHANG, L.; LIU, R. Aspect-Oriented Real-Time System Modeling Method Based on
UML. In: IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL-
TIME COMPUTING SYSTEMS AND APPLICATIONS, 11., 2005.Proceedings. . .
Washington: IEEE Computer Society, 2005. p.373–376.

159

APPENDIX A DERAF DETAILED DESCRIPTION

This appendix provides a more exhaustive discussion on the high level semantics of
DERAF aspects, representing the initial proposal for the handling of non-functional re-
quirements presented in chapter 2.

A.1 Timing Package

As depicted in figure A.1, this package contains aspects to handle time-related re-
quirements, such as deadlines for activities execution, WCET information, periodic tasks
activation, and others.

TimingAttributes aspect is responsible to deal with active objects characteristics such
deadline, priority, WCET, and absolute time instants on which their behavior must start
and finish the execution. Attributes representing the mentioned characteristics are inserted
in the affected active object classes, as well as methods andbehavior to initialize and
handle these attributes. It provides the following adaptations:

• Deadlineinserts an attribute representing the active objects behavior deadline, i.e.
an active object has only one main behavior, to which the deadline is related;
• WCETadds attributes to represent the WCET of active objects behaviors;
• StartTimeinserts an attribute to specify the absolute time instant inwhich an active

object can start their main behavior execution;
• EndTimeinserts an attribute to represent the absolute time instantin which the exe-

cution of the active object main behavior is not allowed to execute. For instance, a
periodic active object cannot be triggered to execute its behavior after its end time;
• Priority adds an attribute to represent the priority that an active object have to exe-

cute their behavior;
• SetTimingAttributesinserts the behavior responsible to initialize the inserted at-

tributes values;
• AddAccessMethodsadds access methods to the inserted attributes;

PeriodicTiming aspect provides means to trigger periodically an active object behav-
ior execution. Thus, besides adding an attribute indicating the execution frequency in the
affected active object class, this aspect must also enclosethe affected behavior with a rep-
etition mechanism, whose execution is controlled according the information stored in the
mentioned new attribute. In other words, this aspect is usedto deal with the handling of
periodic active objects (or threads). It provides the following adaptations:

• Period inserts an attribute representing the activation period ofperiodic active ob-
jects behavior that is used to control the behavior execution frequency;

160

<<Non−Functional>>

Timing

<<Aspect>>

SchedulingSupport

<<StructuralAdaptation>>+Scheduler()

<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<Aspect>>

TimeBoundedActivity

<<StructuralAdaptation>>+TimeCountInfrastructure()

<<BehavioralAdaptation>>+StartCounting()

<<BehavioralAdaptation>>+StopCounting()

<<Aspect>>

TimingAttributes

<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<StructuralAdaptation>>+StartTime()

<<StructuralAdaptation>>+EndTime()

<<BehavioralAdaptation>>+SetupTimingAttributes()

<<BehavioralAdaptation>>+AddAccessMethods()

<<Aspect>>

PeriodicTiming

<<StructuralAdaptation>>+Period()

<<BehavioralAdaptation>>+SetupPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<use>>

<<use>>

<<use>>

Figure A.1:Timing Package:dealing with time non-functional requirements

• SetPeriodinserts all code responsible to initialize the period attribute values, as well
as the get/set methods responsible to access it;
• LoopMechanismencloses periodic active objects behavior with a mechanism, and

hence, behavior’s actions sequence is executed repeatedly;
• FrequencyControladds a mechanism to control the execution frequency of periodic

active object behavior. This mechanism is responsible to hold active object’s behav-
ior execution. One solution would be to inform the schedulerthat the active object
has executed its behavior, and can be suspended. Other implementation could be a
busy wait.

SchedulingSupport aspect inserts a scheduler object in the affected computingnodes.
This object is responsible to control active objects execution, indicating instants at which
they must start performing their behavior. It provides the following adaptations:

• Scheduleradds a scheduling mechanism that follows a given schedulingpolicy;
• SetupConcurrentActivitiesinserts the behavior responsible to add active objects in

the scheduling list, in order to perform the execution schedule.

TimeBoundedActivity aspect controls the execution time duration of an activity or
action by counting the time elapsed since the start time instant. If maximum allowed
duration is surpassed, this aspect provides means to abort the affected activity/action ex-
ecution. Examples of this aspect use are: to restrict the maximum time a shared resource
can be in exclusive access mode, or the maximal time amount anactive object can wait
for the reply of a remote objects. It provides the following adaptations:

• TimeCountInfrastructureadds a time counting mechanism (e.g. timer) associated
with the affected element, which can be a new class attributeor a local variable in
a method behavior;
• StartCountinginserts behavior to setup and start the time counting mechanism at

the starting time the controlled action/activity;
• StopCountingadds behavior to stop the time counting mechanism right after the

controlled action/activity is finished.

161

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<BehavioralAdaptation>>+StartTime()

<<BehavioralAdaptation>>+VerifyToleratedDelay()

<<Aspect>>

Jitter

<<BehavioralAdaptation>>+StartTime()

<<BehavioralAdaptation>>+VerifyToleratedJitter()

<<Aspect>>

DataFreshness

<<StructuralAdaptation>>+ValidityInformation()

<<BehavioralAdaptation>>+VerifyFreshness()

<<BehavioralAdaptation>>+UpdateValidity()

<<Aspect>>

ClockDrift

<<BehavioralAdaptation>>+CorrectClock()

<<BehavioralAdaptation>>+SetupValidity()

Figure A.2:Precison Package:dealing with precision non-functional requirements

A.2 Precision Package

Precision in meeting time requirements are handled by the aspects of this package,
which concentrates efforts in features such as the maximum tolerated delay in starting
activities, variance in activities timeliness, information’s validity duration, or the deviation
of local clock reference compared with the global one. Precision package aspects are
depicted in figure A.2.

Jitter aspect measures the accuracy variance in activities performed by the system.
This aspect provides means to measure the time before (or after) an observed activity
happen, storing this information (the history must provideinformation of at least one
time sample) to calculate the variance among the observed time instants. This aspect
can be used, for example, to calculate the jitter in an periodic active object activation or
execution, or to compute the time variance of a periodic message sending. It provides the
following adaptations:

• StartTimeadds, as the name indicates, behavior to measure the time point on which
an activity starts;
• VerifyToleratedJitterinserts a behavior to calculate the variance in two consecutive

time measurements of the same activity, comparing the result with the instant at
which this activity is expected to be performed. If the variance violates the tolerated
threshold, a corrective behavior can be executed.

ToleratedDelay aspect controls the maximum tolerated latency to the actualstart of
a given system activity. Thus, the time between the command and the execution of the
observed activity must be measured and calculated. If the observed duration is greater
than the maximum allowed latency, this aspect provides means to handle this exception.
It provides the following adaptations:

• StartTimeinserts behavior to measure the time instant at which an activity is com-
manded to start;
• VerifyToleratedDelayadds a behavior to measure the time point at which the ob-

served activity actually starts. The time interval (i.e. delay) between command and
execution starting instants is calculated and compared with the expected delay. If
the threshold is violated, a corrective behavior can be executed.

162

ClockDrift aspect controls the clock deviation between the local time source and the
global one. Assuming that the target platform provides means to allow clock synchroniza-
tion, this aspect uses the global clock as reference to calculate the local clock deviation.
Thus, designers must specify time instants (or system events, e.g. the starting of an behav-
ior execution) at which the local clock must be compared withthe global clock reference
in order to check if there is a difference between the two measured values. It provides the
following adaptation:

• CheckClockDriftreads the current time from both global and local clocks, andcom-
pares the time obtained from them. If the perceived different is outside the accepted
threshold range, any corrective action (e.g. update the local clock reference) can be
performed.

DataFreshness aspect is responsible to deal with the validity duration (orutility) of
different system information (BURNS et al., 2000). For that, this aspect associates times-
tamps to affected data by adding new attributes to representing such information, as well
as inserting behavior to control these data use. In other words, each time a controlled
data needs to be read, its validity must be checked and, if it is out of validity, a corrective
behavior must be performed, e.g. wait until the date to be updated, read data directly
from its source, decrease the frequency at which periodic behaviors (which read the con-
trolled data) are executed. Analogously, each time a controlled data is updated, its validity
duration must also be updated. It provides the following adaptations:

• ValidityInformationadds an attribute indicating the validity period of the controlled
attribute or object;
• SetValidityinserts the behavior that is responsible for initializing the validity period

information;
• VerifyFreshnessinserts a behavior to check data validity before all readingactions

that access the controlled data;
• UpdateValidityadds the corresponding behavior that updates data validityafter all

actions that write/modify the controlled data.

A.3 Synchronization Package

This package provides aspects to deal with non-functional requirements related to the
synchronization and the concurrent access control to shared resources. Figure A.3 depicts
the available aspects.

ConcurrentAccessControl aspect provides means to control the concurrent access to
objects, which share their attributes information with other objects. The access to ob-
ject’s different elements can be controlled:(i) the object itself;(ii) their attributes; and/or
(iii) their methods. Therefore, depending on the controlled element, one or more arbiters
(i.e. concurrency controller instances) are created. Every time an (active or passive) ob-
ject needs to access controlled shared elements, it must request the access to them (i.e.
request a lock) that are granted or not by the arbiter. Depending on the arbiter imple-
mentation (e.g. mutex, semaphore, monitors), and also to the number of objects that are
accessing the shared resource at the moment, the access request can be authorized or not.
Similarly, after the use of the shared resource, the object that had the access permission
must notify the arbiter, indicating that it is leaving the shared resource and does not need
to use it anymore. It provides the following adaptations:

163

<<Non−Functional>>

Synchronization

<<Aspect>>

ConcurrentAccessControl

<<StructuralAdaptation>>+ConcorrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>

MessageSynchronization

<<BehavioralAdaptation>>+WaitForAcknowledge()

<<StructuralAdaptation>>+WaitingMechanism()

Figure A.3: Synchronization Package:dealing with synchronization non-functional re-
quirements

• ConcurrentControlMechanisminserts an arbiter to control the access to shared re-
sources;
• AcquireAccessadds the behavior that is responsible for requesting the access to

shared resources before reading or writing information from/to the shared resource;
• ReleaseAccessinserts a behavior to notify the arbiter that the access to the share

resource can be released;

MessageSynchronization aspect deals with holding behaviors execution until the ar-
rival of an acknowledgement message (or a reply message) indicating that the (remote)
object has received the message sent. It provides a waiting mechanism that could be
implemented as either(i) a busy wait, i.e. a loop that waits until the acknowledgement
message arrives; or(ii) using the system scheduler, which preempts the execution ofthe
current active object, marking it as blocked, and thus, opening room for other active ob-
jects execution. Later, when the expected acknowledgementmessage arrives, the blocked
active object is marked as ready to execute, and its execution is resumed following the
scheduler’s decision. It provides the following adaptations:

• WaitingMechanisminserts the acknowledgement waiting mechanism. In fact this
adaptation makes more sense within the context of (ii), because the scheduler must
be modified in order to realize this implementation;
• WaitForAcknowledgementadds the behavior that is responsible for waiting for the

expected acknowledgement message;

A.4 Communication Package

This package provides aspects to deal with objects communication in terms of mes-
sages sending. The first intention was to cover the communication between objects that
are located in computing devices that are physically separated. However, depending on
application requirements, this package’s aspects can alsobe used for specifying the com-
munication of objects located in the same computing device.The available aspects are
show in figure A.4.

MessageAck aspect provides an acknowledgment mechanism to notify reception of a
message to its sender. In this sense, this aspect affects both sides of a message exchange:

164

sender and destination objects. On one side, the sender object sends a messages and waits
for an acknowledgement of message reception. On the other side, the receiver objects
needs to send an acknowledgement message after each received message.MessageAckis
related withMessageSynchronizationaspect. It provides the following adaptations:

• AcknowledgeMechanismadds the acknowledge mechanism. After a message re-
ception, this mechanism must be notified about this arrival,and send an acknowl-
edgement message to this message sender;
• SignalAcknowledgeMechanismadds the behavior, at the sender object side, that is

responsible for notifying the acknowledge mechanism that amessage has been sent
and an acknowledge message must be received;
• SendAcknowledgeinserts a behavior, at the receiver object side, that sends an ac-

knowledge message, after an message reception, informing its sender that the mes-
sage has been delivered to the destination object;

MessageIntegrity aspect is responsible for handling messages integrity by providing
checking information within a message. Similarly toMessageAck, this aspect also af-
fects both message’s sender and receiver objects. Sender objects must generate integrity
checking information, appending it in the message to be sent, while receiver objects must
generate checking information from the received message, comparing it with the infor-
mation that came with the received message. The acknowledgment mechanism must be
notified whether the checking information match or not. It provides the following adapta-
tions:

• GenerateIntegrityInfoinserts behavior, at the message sender side, before the mes-
sage sending action, that executes a algorithm to generate checking information that
is appended in the message being sent;
• VerifyIntegrityInfoadds behavior, at the message receiver side after the message

reception, that executes an algorithm (the same performed at message sender side)
to generate checking information of the received message, comparing the generated
information with the one received in the message. If it matches, the acknowledge
mechanism is notified, otherwise any other corrective behavior can be performed;

MessageCompression spect is in charge to compress/decompress messages in orderto
improve bandwidth utilization. Like the other aspects of this package, this aspect affects
both message’s sender and receiver objects. At sender side,the message is compressed
using a compression algorithm, while at receiver side the message is decompressed using
the same algorithm. It provides the following adaptations:

• Compressadds a behavior to compress the message being sent before sending it;
• Decompressadds a behavior to decompress the compressed message received be-

fore actually delivering it;

A.5 TaskAllocation Package

Aspects provided by this package handle non-functional requirements related to ob-
jects distribution on different computing devices at runtime. These aspects are typically
related to distributed system nodes that are physically separated. Figure A.6 depicts the
available aspects.

165

<<Non−Functional>>

Communication

<<Aspect>>

MessageAck

<<StructuralAdaptation>>+AcknowledgeMechanism()

<<BehavioralAdaptation>>+SinalAcknowledgeMechanism()

<<BehavioralAdaptation>>+SendAcknowledge()

<<Aspect>>

MessageIntegrity

<<BehavioralAdaptation>>+GenerateIntegrityInfo()

<<BehavioralAdaptation>>+VerifyIntegrityInfo()

<<Aspect>>

MessageCompression

<<BehavioralAdaptation>>+Compress()

<<BehavioralAdaptation>>+Decompress()

<<use>>

Figure A.4: Communication Package:dealing with communication non-functional re-
quirements

<<Non−Functional>>

TaskAllocation

<<Aspect>>

NodeStatusRetrieval

<<BehavioralAdaptation>>+ProcessingLoad()

<<BehavioralAdaptation>>+MessageThroughput()

<<BehavioralAdaptation>>+Alive()

<<Aspect>>

TaskMigration

<<BehavioralAdaptation>>+Migrate()

Figure A.5: TaskAllocation Package:dealing with tasks allocation non-functional re-
quirements

NodeStatusRetrieval aspect includes a mechanism to gather information on the sys-
tem dynamic characteristics, such as processing load, message sending and reception
rates, and if the computing device is running. It provides the following adaptations:

• ProcessingLoadinserts a behavior to calculate the device’s processing load, updat-
ing this information at every start/end of an active object behavior;
• MessageThroughputadds a behavior to calculate the sent messages rate, as well

as the ratio for the received ones. This information is updated at every message
sending/reception;
• Alive includes a new object in the computing device that is responsible to broadcast

an “I’m alive” message to the other devices in the distributed system;

TaskMigration aspect adds a migration mechanism to move active objects from one
computing device to another one. Therefore, active objectscan migrate from one node to
another, as well as from software to hardware, or vice-versa1. To accomplish this mission,

1Objects migration between software and hardware (at runtime) is usually known as “reconfiguration”.
However, in embedded systems domain, “reconfiguration” usually means to upload a bitstream into a FPGA
device. Thus, in order to avoid misunderstandings, this text uses the term “reconfiguration” to refer to
the later, while objects software-to-hardware and/or hardware-to-software reconfiguration are also called
“migration”

166

the migration mechanism must provide means for saving/restoring the execution context
of active objects, as well as for objects serialization and object’s information sending.
In fact, the decision on which objects must migrate is made bythe aspects responsible
to control embedded systems physical resources, such asEnergyControl, MemoryUsage-
Control, andHwAreaControl. BasicallyTaskMigration aspectprovides only one adap-
tation, i.e. Migrate behavioral one, which adds the mentioned behavior related to the
migration mechanism.

A.6 Embedded Package

Non-functional requirements related to physical resources availability, which are very
common concerns in embedded systems design, are handle by this package’s aspects.
Energy consumption, memory usage, and hardware reconfigurable area can be cited as
examples of such concerns. As depicted in A.6, the availableaspects are concerned in
monitoring and controlling the mentioned physical resources. Thus, depending on the
physical resource being controlled, the control policy, and platform capabilities, different
actions can be performed by these aspects as, for instance:(i) depending on the sys-
tem requirements and runtime state, to remove objects related to non-critical activities;
(ii) active objects migration;(iii) to loosen timing constraints;(iv) to decrease processor
operation frequency;(v) to turn off unnecessary hardware components; It is important to
highlight that this aspects are dependent on target platform capabilities, meaning that the
platform must provide means to monitor and control system physical resources.

HwAreaMonitoring aspect is related to systems that use reconfigurable hardware
devices, such as FPGAs. It provides a mechanism to monitor the reconfigurable area
by which the remaining reconfigurable area (in terms of configurable logic blocks) is
(re)calculated at each reconfiguration command. It provides the following adaptations:

• IncreaseAreaUsageinserts a behavior that increases the reconfigurable area usage
amount, before all hardware reconfiguration actions, basedon area required by the
new hardware active objects;
• DecreaseAreaUsageadds a behavior that decreases the reconfigurable area usage

amount, before all hardware reconfiguration actions, basedon size information of
the hardware active objects that are leaving the reconfigurable hardware device;

HwAreaControl aspect controls the hardware reconfigurable device usage byadding
an arbiter to allow or deny every reconfiguration based on theinformation of this package
monitoring aspects. In fact it provides only one adaptation: the inclusion of a new active
object that accesses the information produced by theHwAreaMonitoringaspect to control
the reconfigurable area use, taken actions as described earlier in this sub-section.

EnergyMonitoring aspect relies on the target platform to provide a mechanism to
monitor energy consumed by system activities. This mechanism must measure the re-
maining energy level before the observed activities start,and after their completion. Fur-
ther, it calculates the amount of energy that was consumed bythese activities. It provides
the following adaptations:

• EnergyMonitoringMechanismadds the energy monitoring mechanism;
• InitialEnergyMeasurementinserts a behavior responsible to measure the energy

level before any activity execution;

167

<<Non−Functional>>

Embedded

<<Aspect>>

EnergyMonitoring

<<StructuralAdaptation>>+EnergyMonitoringMechanism()

<<BehavioralAdaptation>>+StartingEnergyAmount()

<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>

MemoryUsageControl

<<BehavioralAdaptation>>+MemoryUsageControlPolicy()

<<Aspect>>

EnergyControl

<<BehavioralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>

MemoryUsageMonitoring

<<BehavioralAdaptation>>+IncriaseMemoryUsage()

<<BehavioralAdaptation>>+DecreaseMemoryUsage()

<<Aspect>>

HwAreaControl

<<BehavioralAdaptation>>+HwAreaControlPolicy()

<<Aspect>>

HwAreaMonitoring

<<BehavioralAdaptation>>+IncreaseAreaUsage()

<<BehavioralAdaptation>>+DecreaseAreaUsage()

<<use>>

<<use>>

<<use>>

Figure A.6:Embedded package:dealing with embedded non-functional requirements

• CalculateEnergyConsumptionadds a behavior that also measures the energy level
right after the execution of observed activity is finished, calculating the energy con-
sumed by this activity, and also by the overall system;

EnergyControl aspect provides an object that uses information provided bythe mon-
itoring aspects to control the energy consumption. To accomplish such goal, this object
could perform the actions mentioned in the beginning of thissubsection. This aspect pro-
vides only one adaptation,EnergyConsumptionPolicy, that includes an energy controller
element in the system.

MemoryUsageMonitoring aspect is similar to the other two monitoring aspects but it
is related to software rather than to hardware. It provides amechanism that must calculate
the overall memory usage of a computing device at every object allocation/deallocation.
It provides the following adaptations:

• IncreaseMemoryUsageinserts a behavior to increase the monitoring element infor-
mation on used memory amount before every action that allocates memory;
• DecreaseMemoryUsageinserts a behavior to decrease the used memory amount

information before every action that allocates memory;

MemoryControl aspect uses the information provided byMemoryUsageMonitoring
and HwAreaMonitoringaspects to control the memory allocation requests for objects
allocation following an adopted memory control policy. Thus theMemoryUsageCon-
trolPolicy adaptation inserts this controller element in the system.

168

169

APPENDIX B UML MODELS FOR THE UAV CASE STUDY

extension points
UAV in danger

<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>

Helicopter
Movement Control

<<NFR_Timing>>
<<NFR_Distribution>>

Environment
Sensing

<<NFR_Distribution>>

Back Rotor
Sensing

<<NFR_Timing>>
<<NFR_Embedded>>

Alarm Control

<<NFR_Distribution>>

Piloting

Special Condition
Movement Control <<NFR_Timing>>

Rotor
Sensing

Temperature
Sensing

Main Rotor
Sensing

Humidity
Sensing

Guidance

Wind
Sensing

Data Transfer
System

Temperature
Sensor

Maintenance
System Wind

Sensor

Back Rotor
Sensor

Back Rotor
Actuator

Main Rotor
Actuator

Main Rotor
Sensor

Navigation
Control

Humidity
Sensor

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure B.1: UAV movement control use case diagram

17
0

<<getter>>+getEnvironmentInfo() : EnvironmentInformation{getter/setter for attribute = envInfo}

EnvironmentSensingSubSystem

-Humidity : float
-WindSpeed : float
-WindDirection : float
-Temperature : float

<<setter>>+setHumidity(humidity : float){getter/setter for attribute = Humidity}
<<getter>>+getHumidity() : float{getter/setter for attribute = Humidity}
<<setter>>+setWindSpeed(windSpeed : float){getter/setter for attribute = WindSpeed}
<<getter>>+getWindSpeed() : float{getter/setter for attribute = WindSpeed}
<<setter>>+setWindDirection(windDirection : float){getter/setter for attribute = WindDirection}
<<getter>>+getWindDirection() : float{getter/setter for attribute = WindDirection}
<<setter>>+setTemperature(temperature : float){getter/setter for attribute = Temperature}
<<getter>>+getTemperature() : float{getter/setter for attribute = Temperature}

<<MutualExclusionResource>>

EnvironmentInformation

<<getter>>+getMainRototInfo() : MovementInformation{getter/setter for attribute = mrInfo}
<<getter>>+getBackRotorInfo() : MovementInformation{getter/setter for attribute = brInfo}

MovementSensingSubSystem

-newMRRotation : int
-newMRPace : int
-newBRRotation : int
-newBRPace : int

+run() : void
+processInfo(r1 : int, p1 : int, r2 : int, p2 : int, ws : float, wd : float, h : float, t : float) : void

<<SchedulableResource>>

MovementController

-Rotation : int
-Pace : int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation}
<<getter>>+getRotation() : int{query,getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{query,getter/setter for attribute = Pace}
+applyParameters() : void

RotorActuator

-Rotation : int
-Pace : int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation}
<<getter>>+getRotation() : int{getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{getter/setter for attribute = Pace}

<<MutualExclusionResource>>

MovementInformation

-Value : float

<<setter>>+setValue(value : float){getter/setter for attribute = Value}
<<getter>>+getValue() : float{getter/setter for attribute = Value}

<<MutualExclusionResource>>

SensorDriver

-newHumidity : int
-newTemperature : int
-newWindSpeed : int
-newWindDirection : int

+run() : void
+encodeHumidity(value : float) : void
+encodeTemperature(value : float) : void
+encodeWindInfo(wSpeed : float, wDirection : float)

<<SchedulableResource>>

EnvironmentDataSampler

#issueAlarm() : boolean
+triggerLowFuelAlarm() : boolean
+triggerHostileEnvironmentAlarm() : boolean
+triggerUnderAttackAlarm() : boolean

<<SchedulableResource>>

Alarm

-Mode : MovementControlMode

SpecialConditionMovementControl

-newRotation : int
-newPace : int

+run() : void
+encodeRotation(value : int) : void
+encodePace(value : int) : void

<<SchedulableResource>>

MovementEncoder

TemperatureSensorDriver

EnvironmentSensorDriver

BackRotorSensorDriver

+getRotation() : int
+getPace() : int

MovementSensorDriver

MainRotorSensorDriver

HOSTILE_ENVIRONMENT

UNDER_ATTACK
LOW_FUEL

NORMAL

<<enumeration>>

MovementControlMode

+run() : void

<<SchedulableResource>>

BackRotorActuator

HumiditySensorDriver

+getWindSpeed() : float
+getWindDirection() : float

WindSensorDriver

MainRotorActuator
ControlSubSystem

-alarm

1

1

-alarm

1

1

-mrAct

1

1

-sHumidity 1

1

-sHumidity 1

1

-sWind

1

1

-brSensor 1

1

-sTemperature

1

1

-mrSensor

1

1

-envSampler 1

1

-ctrlMode 1

1

-movEncoder 1

1

-brAct

1

1

-brInfo 1

1

-mrInfo 1

1

-sWind

1

1

-envInfo 1

1

-mrSensor 1

1

-brSensor 1

1

-mrAct

11-movCtrl

1

1

-envInfo 1

1

+mrInfo 1

1

+brInfo 1

1

-brAct 1

1

-sTemperature 1

1

-envInfo
1

1

-brInfo 1

1

-mrInfo 1

1

Figure B.2: UAV movement control class diagram

171

Environment Sensing Environment Sensinginteraction []

sTemperature : TemperatureSensorDriver<<SchedulableResource>>

envSampler : EnvironmentDataSampler

sHumidity : HumiditySensorDriver<<MutualExclusionResource>>

envInfo : EnvironmentInformation

sWind : WindSensorDriver<<Scheduler>>

 : Scheduler

temperature7:

getValue()2:

encodeHumidity(value="humidity")4:

getValue()6:

encodeTemperature(value="temperature")8:

setHumidity(humidity=newHumidity)5:

setTemperature(temperature=newTemperature)9:

getWindSpeed()10:

getWindDirection()12:

encodeWindInfo(wSpeed=windSpeed, wDirection=windDirection)14:

setWindSpeed(windSpeed=newWindSpeed)15:

setWindDirection(windDirection=newWindDirection)16:

humidity3:

windSpeed11:

windDirection13:

<<TimedEvent>>

run()1:

{every = "(20, ms)"}

Figure B.3: Environment sensing

17
2

Movement Encode Movement Encodeinteraction []

mrSensor : MainRotorSensorDriver brSensor : BackRotorSensorDriver<<SchedulableResource>>

movEncoder : MovementEncoder

<<MutualExclusionResource>>

mrInfo : MovementInformation

<<MutualExclusionResource>>

brInfo : MovementInformation

<<Scheduler>>

 : Scheduler

rotation3:

pace6:

rotation11:

pace14:

getRotation()2:

encodeRotation(value=rotation)4:

getPace()5:

encodePace(value="pace")7:

setRotation(rotation=newRotation)8:

setPace(pace=newPace)9:

getRotation()10:

encodeRotation(value=rotation)12:

getPace()13:

encodePace(value=pace)15:

setRotation(rotation=newRotation)16:

setPace(pace=newPace)17:

<<TimedEvent>>

run():""1:

{every = "(10, ms)"}

Figure B.4: Main and back rotors sensing

173

Movement Control Movement Controlinteraction []

<<MutualExclusionResource>>

envInfo : EnvironmentInformation

<<SchedulableResource>>

movCtrl : MovementController

<<MutualExclusionResource>>

mrInfo : MovementInformation

<<MutualExclusionResource>>

brInfo : MovementInformation

mrAct : MainRotorActuator<<SchedulableResource>>

brAct : BackRotorActuator

<<Scheduler>>

 : Scheduler

windSpeed11:

windDirection13:

humidity15:

temperature17:

getRotation()2:

getPace()4:

getRotation()6:

getPace()8:

getWindSpeed()10:

getWindDirection()12:

getHumidity()14:

getTemperature()16:

processInfo(r1="mrRotation", p1="mrPace", r2="brRotation", p2="brPace", ws="windSpeed", wd="windDirection", h="humidity", t="temperature")18:

setRotation(rotation=newMRRotation)19:

setPace(pace=newMRPace)20:

setRotation(rotation=newBRRotation)21:

setPace(pace=newBRPace)22:

applyParameters()23:

applyParameters()24:

mrRotation7:

mrPace9:

brRotation3:

brPace5:

<<TimedEvent>>

run()1:

{every = "(20, ms)"}

Figure B.5: Helicopter movement control

174

Back Rotor Control Back Rotor Controlinteraction []

<<SchedulableResource>>

brAct : BackRotorActuator

<<Scheduler>>

 : Scheduler

applyParameters()2: <<TimedEvent>>

run()1:

{every = "(10, ms)"}

Figure B.6: Helicopter piloting

Initialization_EnvironmentSensingSubSystem Initialization_EnvironmentSensingSubSysteminteraction []

<<SchedulableResource>>

envSampler : EnvironmentDataSampler

 : EnvironmentSensingSubSystem

*

(sHumidity, sWind, sTemperature, envInfo)2:

1:

Figure B.7: Environment sensing subsystem initialization

Initialization_MovementSensingSubSystem Initialization_MovementSensingSubSysteminteraction []

<<SchedulableResource>>

movEncoder : MovementEncoder

 : MovementSensingSubSystem

*

(mrInfo, mrSensor, brInfo, brSensor)2:

1:

Figure B.8: Movement sensing subsystem initialization

175

Initialization_ControlSubSystem Initialization_ControlSubSysteminteraction []

 : EnvironmentSensingSubSystem : MovementSensingSubSystem

<<SchedulableResource>>

movCtrl : MovementController

 : ControlSubSystem

*

env3:

5: mr

7: br

("env", "mr", mrAct, "br", brAct, alarm)8:

getEnvironmentInfo():""2:

getMainRototInfo():""4:

getBackRotorInfo():""6:

1:

Figure B.9: Control subsystem initialization

General Behaviors General Behaviorsinteraction []

sWind : WindSensorDriver*

[int i = 0; i < 5]

loop

ASSIGN(x, x+i*3)3:

ASSIGN(i, i+1)4:

RETURN(x)5:

ASSIGN(int x, 100)2:

getWindSpeed()1:

Figure B.10: Other behavior:WindSensorDriver.getWindSpeed()

176

General Behaviors 2 General Behaviors 2interaction []

sWind : WindSensorDriver*

[x < 0]

[x == 0]

[else]

alt

loop

ASSIGN(int x, 0)2:

ASSIGN(x, x - 10)4:

ASSIGN(x, x*5)3:

RETURN(x)5:

getWindDirection()1:

Figure B.11: Other behavior:WindSensorDriver.getWindDirection()

General Behaviors 3 General Behaviors 3interaction []

ctrlMode : SpecialConditionMovementControl<<SchedulableResource>>

 : MovementController

<<SchedulableResource>>

alarm : Alarm

*

[ctrlMode.getMode() == MovementControlMode.NORMAL]

[ctrlMode.getMode() == MovementControlMode.HOSTILE_ENVIRONMENT]

[ctrlMode.getMode() == MovementControlMode.LOW_FUEL]

[ctrlMode.getMode() == MovementControlMode.UNDER_ATTACK]

alt

[(ws > 15) || (h > 85) || (t > 40)]

opt

EXPRESSION(newMRRotation, newMRRotation/r1*p1)3:

ASSIGN(newMRPace, (newMRPace+p1)/r1)4:

EXPRESSION(newBRRotation, newBRRotation/r2*p2)5:

ASSIGN(newBRPace, (newBRPace+p2)/r2)6:

triggerHostileEnvironmentAlarm()7:

triggerLowFuelAlarm()8:

triggerUnderAttackAlarm()9:

setMode(mode=MovementControlMode.HOSTILE_ENVIRONMENT)2:

processInfo(r1=, p1=, r2=, p2=, ws=, wd=, h=, t=)1:

Figure B.12: Other behavior:MovementController.processInfo()

177

System_Deploymentpackage FR[]

MainRotor

<<artifact>>

RT-FemtoJava.MainRotor_Node

BackRotor

<<artifact>>

RT-FemtoJava.BackRotor_Node

sTemperature :
TemperatureSensorDriver

<<SchedulableResource>>

envSampler :
EnvironmentDataSampler

<<MutualExclusionResource>>

mrInfo :
MovementInformation

<<MutualExclusionResource>>

brInfo :
MovementInformation

<<MutualExclusionResource>>

envInfo :
EnvironmentInformation

mrSensor :
MainRotorSensorDriver

brSensor :
BackRotorSensorDriver

sHumidity :
HumiditySensorDriver

<<SchedulableResource>>

movCtrl :
MovementController

<<SchedulableResource>>

movEncoder :
MovementEncoder

<<SchedulableResource>>

alarm : Alarm

<<SchedulableResource>>

brAct :
BackRotorActuator

mrAct :
MainRotorActuator

sWind :
WindSensorDriver

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>

<<manifest>> <<manifest>>

<<manifest>> <<manifest>>

<<manifest>>

<<manifest>>

<<manifest>>
<<manifest>>

Figure B.13: UAV movement control deployment diagram

17
8

<<Pointcut>>+pcSharedObjClass(JPDD_ExclusiveObjectClass, ConcurrencyControlMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcBeforeRead(JPDD_ExclusiveGet, AcquireAccess, BEFORE)
<<Pointcut>>+pcAfterRead(JPDD_ExclusiveGet, ReleaseAccess, AFTER)
<<Pointcut>>+pcBeforeWrite(JPDD_ExclusiveSet, AcquireAccess, BEFORE)
<<Pointcut>>+pcAfterWrite(JPDD_ExclusiveSet, ReleaseAccess, AFTER)
<<StructuralAdaptation>>+ConcurrencyControlMechanism()
<<BehavioralAdaptation>>+AcquireAccess()
<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>

ConcurrentAccessControl

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Period, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjConstructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetPeriod, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)
<<Pointcut>>+pcLoop(JPDD_PeriodicBehavior, LoopMechanism, AROUND)
<<Pointcut>>+pcFreqCtrl(JPDD_PeriodicBehavior, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period()
<<StructuralAdaptation>>+ModifyConstructor()
<<BehavioralAdaptation>>+SetPeriod()
<<BehavioralAdaptation>>+LoopMechanism()
<<BehavioralAdaptation>>+FrequencyControl()
<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>

PeriodicTiming

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActClass2(JPDD_ActiveObjectClass, ModityClassStructure, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjInit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObjContructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<StructuralAdaptation>>+Deadline()
<<StructuralAdaptation>>+Priority()
<<StructuralAdaptation>>+WCET()
<<StructuralAdaptation>>+ModifyConstructor()
<<StructuralAdaptation>>+ModityClassStructure()
<<BehavioralAdaptation>>+SetTimingAttributes()
<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>

TimingAttributes

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyMonitoringMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcGetStartingEnergy(JPDD_PeriodicBehavior, StartingEnergyAmount, BEFORE)
<<Pointcut>>+pcCalcEnergy(JPDD_PeriodicBehavior, CalculateEnergyConsumption, AFTER)
<<StructuralAdaptation>>+EnergyMonitoringMechanism()
<<BehavioralAdaptation>>+StartingEnergyAmount()
<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>

EnergyMonitoring

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, AcknowledgmentMechanism, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+AcknowledgmentMechanism()
<<BehavioralAdaptation>>+SendAcknowledgment)()
<<BehavioralAdaptation>>+SinalAcknowledgmentMechanism()

<<Aspect>>

MessageAck

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, Scheduler, ADD_NEW_FEATURE)
<<Pointcut>>+pcSubSystemConstruction(JPDD_SubSystemConstruction_2, SetupConcurrentActivities, AFTER)
<<StructuralAdaptation>>+Scheduler()
<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<Aspect>>

SchedulingSupport

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyConsumptionPolicy, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>

EnergyControl

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, MigrationMechanism, ADD_NEW_FEATURE)
<<StructuralAdaptation>>+MigrationMechanism()
<<BehavioralAdaptation>>+Migrate()

<<Aspect>>

TaskMigration

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, WaitingMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcRemoteMsgSending(JPDD_SendMsgToRemoteObject, WaitForAcknowledge, AFTER)
<<StructuralAdaptation>>+WaitingMechanism()
<<BehavioralAdaptation>>+WaitForAcknowledge()

<<Aspect>>

MessageSynchronization

<<Pointcut>>+pcInfoClassAttr(JPDD_InfoClassAttribute, ValidityInformation, ADD_NEW_FEATURE)
<<Pointcut>>+pcInfoClassObjInit(JPDD_InfoObjectConstruction_Action, SetValidity, AFTER)
<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
<<Pointcut>>+pcWriteAttrValue(JPDD_InfoAttributeWrite, UpdateFreshness, AFTER)
<<StructuralAdaptation>>+ValidityInformation()
<<BehavioralAdaptation>>+SetValidity()
<<BehavioralAdaptation>>+VerifyFreshness()
<<BehavioralAdaptation>>+UpdateFreshness()

<<Aspect>>

DataFreshness

<<MutualExclusionResource>>

EnvironmentInformation

<<MutualExclusionResource>>

MovementInformation

<<SchedulableResource>>

EnvironmentDataSampler

<<SchedulableResource>>

Alarm

<<SchedulableResource>>

BackRotorActuator

<<SchedulableResource>>

MovementEncoder

<<SchedulableResource>>

MovementController

<<Crosscut>>

{Deadline = "10ms" ,
Priority = "1",
WCET = "3ms"}

<<Crosscut>>

{Deadline = "10ms" ,
Priority = "2",
WCET = "5ms"}

<<Crosscut>>

{Period = "20ms"}

<<Crosscut>>

{Period = "20ms"}

<<Crosscut>>

{Deadline = "20ms" ,
Priority = "2",
WCET = "7ms"}

<<Crosscut>>

{Deadline = "5ms" ,
Priority = "0",
WCET = "2ms"}

<<Crosscut>>

{Deadline = "20ms" ,
Priority = "1",
WCET = "8ms"}

WindSpeed, WindDirection

<<Crosscut>>

{Validity = "25ms"}

Humidity, Temperature

<<Crosscut>>

{Validity = "100ms"}
<<Crosscut>>

{Validity = "25ms"}

<<Crosscut>>

{Period = "10ms"}

<<Crosscut>>

{Period = "10ms"}

Figure B.14: Aspects Crosscutting Overview Diagram

179

JPDD_ActiveObjectClasspackage NFR[]

<<SchedulableResource>>
<<JoinPoint>>

 *

Figure B.15: JPDD: selection of active objects class

JPDD_ExclusiveObjectClasspackage NFR[]

<<JoinPoint>>
<<MutualExclusionResource>>

 *

Figure B.16: JPDD: selection of shared passive objects

JPDD_InfoClassAttributepackage NFR[]

<<JoinPoint>>-* : *

*Information

Figure B.17: JPDD: selection of passive class attributes

180

JPDD_InfoObjectConstruction_2package NFR[]

<<JoinPoint>>+*Information(..) : *{Behavior}

*Information

Figure B.18: JPDD: selection of passive class constructor

JPDD_SubSystemClasspackage NFR[]

<<JoinPoint>>

*SubSystem

Figure B.19: JPDD: selection of sub systems classes

JPDD_SubSystemConstruction_2package NFR []

<<JoinPoint>>+*SubSystem(..):*(){Behavior}

*SubSystem

Figure B.20: JPDD: selection of sub systems constructor

JPDD_ActiveObjectConstruction_Action JPDD_ActiveObjectConstruction_Actioninteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

Figure B.21: JPDD: selection of selection of active objectsconstruction actions

JPDD_ActiveObjectConstruction JPDD_ActiveObjectConstructioninteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

{Behavior}

Figure B.22: JPDD: selection of active objects constructorbehavior

181

JPDD_ActiveObjectConstructor JPDD_ActiveObjectConstructorinteraction []

<<SchedulableResource>>

* : *

 * : *

<<JoinPoint>>

1:

{MessageDefinition}

Figure B.23: JPDD: selection of active objects constructor

JPDD_ExclusiveGet JPDD_ExclusiveGetinteraction []

<<MutualExclusionResource>>

* : *

 * : *

<<JoinPoint>>

get*(..):*1:

Figure B.24: JPDD: selection of messages whose name starts with “get”

JPDD_ExclusiveSet JPDD_ExclusiveSetinteraction []

<<MutualExclusionResource>>

* : *

 * : *

<<JoinPoint>>

set*(..):*1:

Figure B.25: JPDD: selection of messages whose name starts with “set”

182

JPDD_InfoAttributeRead JPDD_InfoAttributeReadinteraction []

* : *Information * : *

<<JoinPoint>>

get*(..):*1:

{Behavior}

Figure B.26: JPDD: selection of messages whose name starts with “get”

JPDD_InfoAttributeWrite JPDD_InfoAttributeWriteinteraction []

* : *Information * : *

<<JoinPoint>>

set*(..):*1:

{Behavior}

Figure B.27: JPDD: selection of messages whose name starts with “set”

JPDD_InfoObjectConstruction_Action JPDD_InfoObjectConstruction_Actioninteraction []

* : *Information

 * : *

<<JoinPoint>>

1:

Figure B.28: JPDD: selection of passive objects contruction action

183

JPDD_PeriodicBehavior JPDD_PeriodicBehaviorinteraction []

<<SchedulableResource>>

* : *

<<Scheduler>>

 * : Scheduler

<<TimedEvent>>
<<JoinPoint>>

*(..):*1:

{Behavior,
every = "*"}

Figure B.29: JPDD: selection of active objects periodic behavior

JPDD_SendMsgToRemoteObject JPDD_SendMsgToRemoteObjectinteraction []

remote.* : *local.* : *

<<JoinPoint>>

*(..):*1:

Figure B.30: JPDD: selection of message sending action to remote objects

JPDD_SubSystemConstruction JPDD_SubSystemConstructioninteraction []

* : *SubSystem

* : *

<<JoinPoint>>

1:

{Behavior}

Figure B.31: JPDD: selection of sub systems constructor behavior

184

185

APPENDIX C MAPPING RULES

C.1 Application

<?xml version="1.0" encoding="utf-8"?>
<Platforms>
<!--**-->
<!--* Configuration for RT-FemtoJava Platform *-->
<!--**-->
<RT-FemtoJava>

<!-- Mapping rules for APPLICATION CODE -->
<Application>

<Software>
<!-- Source code generation options -->
<SourceOptions isAspectLanguage="no" ClassesPerFile="1"

hasClassesDeclaration="no" Identation="5"
BlockStart="{" BlockEnd="}">

<FileNameConvention>$Class.Name</FileNameConvention>
<Package>package $Class.Package;</Package>
<SourceReference>

import $ReferencedClass.Package\.$ReferencedClass.Name;
</SourceReference>
<SourceOrganization>

<DeclarationFile FileExtension="">
$SourceCode.ClassesDeclaration

</DeclarationFile>
<ImplementationFile FileExtension=".java">

$SourceCode.PackagesDeclaration
\n$SourceCode.ReferencesDeclaration
\n$SourceCode.ClassesImplementation

</ImplementationFile>
</SourceOrganization>

</SourceOptions>

<!-- Mapping rules for PRIMARY ELEMENTS -->
<PrimaryElementsMapping>

<DataTypes>
<Array>

#set($n = $DataType.getSize())
#set($s = $CodeGenerator.getDataTypeStr($DataType.DataType))
#if ($n > 0)
$s[]

#else
ArrayList<$s>

#end
</Array>
<Boolean>boolean</Boolean>
<Byte>byte</Byte>
<Char>char</Char>
<Class>$DataType.Represent.Name</Class>
<DateTime>Date</DateTime>
<EnumerationDefinition>

public enum $DataType.Name
$Options.BlockStart
#foreach ($v in $DataType.Values)
#if ($velocityCount > 1) , #end

186

\n$v
#end
\n$Option.BlockEnd

</EnumerationDefinition>
<Enumeration>

${DataType.Name}
</Enumeration>
<Integer>int</Integer>
<Long>long</Long>
<Short>short</Short>
<String>String</String>
<Void>void</Void>
<Double>double</Double>
<Float>float</Float>

</DataTypes>
<DataTypeDefaultValues>

<Array>null</Array>
<Boolean>true</Boolean>
<Byte>0</Byte>
<Char>’’</Char>
<Class>null</Class>
<DateTime>new Date(2000, 01, 01, 0, 0, 0)</DateTime>
<Enumeration></Enumeration>
<Integer>0</Integer>
<Long>0</Long>
<Short>0</Short>
<String>""</String>
<Void></Void>
<Double>0.0</Double>
<Float>0.0</Float>

</DataTypeDefaultValues>
<Visibilities>

<Private>private</Private>
<Protected>protected</Protected>
<Public>public</Public>

</Visibilities>
<ParameterKinds>

<In></In>
<Out></Out>
<InOut></InOut>

</ParameterKinds>
</PrimaryElementsMapping>

<!-- Mapping rules for CLASSES -->
<Classes>

<Declaration></Declaration>

<Implementation>
import saito.sashimi.realtime.*;
\n
public
#if ($Class.isAbstract())

abstract
#end
class $Class.Name
#if ($Class.SuperClass)

extends $Class.SuperClass.Name
#end
\n$Options.BlockStart
\n$CodeGenerator.getAttributesDeclaration(1)
\n
\n$CodeGenerator.getMessagesImplementation(1)
\n$Options.BlockEnd

</Implementation>

<Attributes>
$VisibilityStr
#if ($Attribute.isStatic())

static
#end
$DataTypeStr $Attribute.Name;

</Attributes>

187

<Messages>
<Declaration></Declaration>
<Implementation>

#if ($DERCSHelper.isDestructor($Message) == false)
$VisibilityStr
#if ($Message.isStatic())

static
#end
#if ($Message.isAbstract())

abstract
#end
#if ($DERCSHelper.isNormalMethod($Message))

$ReturnTypeStr
#end
${Message.Name}(
#if ($Message.ParametersCount > 0)

#foreach($param in $Message.Parameters)
#if ($velocityCount > 1), #end
$CodeGenerator.getDataTypeStr($param.DataType) $param.Name

#end
#end
)
#if (!$Message.isAbstract())
$Options.BlockStart

\n// Variables
\n$CodeGenerator.getVariablesDeclaration(1)
\n// Actions
\n$CodeGenerator.getActionsCode(1)

\n$Options.BlockEnd
#else

;
#end

#else
\n// *****************************
\n// destructor was ignored!
\n// *****************************

#end
</Implementation>

</Messages>
</Classes>

<!-- Mapping rules for BEHAVIOR, i.e. sequence of actions -->
<Behavior>

<VariableDeclaration>
$DataTypeStr $Variable.Name;

</VariableDeclaration>

<Branch>
if ($Branch.EnterCondition) $Options.BlockStart

#set($ident = $IdentationLevel + 0)
\n$CodeGenerator.getVariablesDeclaration($ident)
\n$CodeGenerator.getActionsCode($ident)

\n$Options.BlockEnd
#if ($Branch.hasAlternativeBehavior())

\n else $Options.BlockStart
\n$CodeGenerator.getVariablesDeclaration($Branch.AlternativeBehavior, $ident)
\n$CodeGenerator.getActionsCode($Branch.AlternativeBehavior, $ident)

\n$Options.BlockEnd
#end

</Branch>

<Loop>
#if ($Loop.NumberOfRepetitions > 0)

for(int $IndexVariableName = 0; $IndexVariableName <
$Loop.NumberOfRepetitions; $IndexVariableName++)

#elseif ($Loop.ExitCondition)
#if ($Loop.EnterCondition)

${Loop.EnterCondition};
#end
\n while ($Loop.ExitCondition)

#end

188

$Options.BlockStart
\n$CodeGenerator.getVariablesDeclaration(1)
\n$CodeGenerator.getActionsCode(1)

\n$Options.BlockEnd
</Loop>

<Assignment>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
=
#if ($Action.isAssignmentOfValue())

$Action.Value;
#else

$CodeGenerator.getActionCode($Action.Action)
#end

</Assignment>

<Object>
<Creation>

#set($x = ’nada’)
new ${Action.Object.InstanceOf.Name}(
#if ($Action.ParametersValuesCount > 0)
#foreach($x in $Action.ParametersValues)

#if ($velocityCount > 1), #end
$x

#end
#end
);

</Creation>

<Destruction></Destruction>
</Object>

<Expression>
#if ($DERCSHelper.isNormalMethod($Message))

${Action.Action.Expression}
#else

${Action.Expression}
#end
;

</Expression>

<Return>
return
#if ($Action.isAssignmentOfValue())

${Action.Value}
#elseif ($Action.isAttributeAssignment())

${Action.Attribute.Name}
#else

$CodeGenerator.getActionCode($Action.Action)
#end
;

</Return>

<StateChange></StateChange>

<SendMessage>
<ToLocal>

<Software>
#if ($Action.getToObject() != $Action.getFromObject())

#if ($Action.RelatedMethod.isStatic())
${Action.RelatedMethod.OwnerClass.Name}.

#else
${Action.ToObject.Name}.

#end
#end

189

${Action.RelatedMethod.Name}(
#if ($Action.ParametersValuesCount > 0)

#foreach($param in $Action.getParametersValues())
#if ($velocityCount > 1), #end
#set($x = $velocityCount - 1)
#if ($Action.isParameterValue($x))
${param}

#else
${param.Name}

#end
#end

#end
);

</Software>
<Hardware></Hardware>

</ToLocal>

<ToRemote>
<Software>
#if ($Action.getToObject() != $Action.getFromObject())

#if ($Action.RelatedMethod.isStatic())
${Action.RelatedMethod.OwnerClass.Name}.

#else
${Action.ToObject.Name}.

#end
#end
${Action.RelatedMethod.Name}(
#if ($Action.ParametersValuesCount > 0)

#foreach($param in $Action.getParametersValues())
#if ($velocityCount > 1), #end
#set($x = $velocityCount - 1)
#if ($Action.isParameterValue($x))
${param}

#else
${param.Name}

#end
#end

#end
); // ** REMOTE **

</Software>
<Hardware></Hardware>

</ToRemote>
</SendMessage>

<InsertArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.add(${Action.Element});

</InsertArrayElement>

<RemoveArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.remove(${Action.Element});

</RemoveArrayElement>

<GetArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name

190

#else
#if ($Action.Object)

${Action.Object.Name}.${Action.Attribute.Name}
#else

${Action.Attribute.Name}
#end

#end
.get(${Action.Element});

</GetArrayElement>

<SetArrayElement>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.set(${Action.Element});

</SetArrayElement>

<ArrayLength>
#if ($Action.isVariableAssignment())

$Action.Variable.Name
#else

#if ($Action.Object)
${Action.Object.Name}.${Action.Attribute.Name}

#else
${Action.Attribute.Name}

#end
#end
.size();

</ArrayLength>
</Behavior>

<!-- Mapping rules for INTERRUPT HANDLING code -->
<InterruptHandling>
</InterruptHandling>

<!-- Mapping rules for DERAF ASPECTS -->
<Aspects>

<!--**-->
<!--* Timing Package *-->
<!--**-->
<TimingAttributes>

<Declaration></Declaration>
<Adaptations>

<Structural Name="Deadline" Order="3" ModelLevel="no">
private static RelativeTime _Deadline = new RelativeTime(0,0,0);
\n
\npublic void exceptionTask() {}
\nprotected void initializeStack() {}
\npublic void mainTask() {}

</Structural>
<Structural Name="Priority" Order="3">
</Structural>
<Structural Name="WCET" Order="3" ModelLevel="no">
private static RelativeTime _Cost = new RelativeTime(0,0,0);

</Structural>
<Structural Name="ModityClassStructure" Order="0" ModelLevel="yes">
$DERCSHelper.changeSuperClass($Class,

$DERCSFactory.newClass("RealtimeThread", null, true), true)
</Structural>
<Structural Name="ModifyConstructor" Order="0" ModelLevel="yes">
$Message.addParameter("pDeadline", $DERCSFactory.newInteger(false),

$DERCSFactory.getParameterIn());
$Message.addParameter("pCost", $DERCSFactory.newInteger(false),

$DERCSFactory.getParameterIn());
</Structural>

191

<Behavioral Name="SetTimingAttributes" Order="2" ModelLevel="no">
\n_Deadline.set(0,pDeadline,0);
\n_Cost.set(0,pCost,0);
\ngetReleaseParameters().setDeadline(_Deadline);
\ngetReleaseParameters().setCost(_Cost);

</Behavioral>
<Behavioral Name="AdaptObjectConstruction" Order="0" ModelLevel="yes">
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("Deadline"), "ms"))
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("WCET"), "ms"))
</Behavioral>
<Structural Name="AddAccessMethods" Order="3" ModelLevel="no">
// TimingAttributes.AddAccessMethods

</Structural>
<Structural Name="StartTime" Order="3" ModelLevel="no">
// TimingAttributes.StartTime

</Structural>
<Structural Name="EndTime" Order="3" ModelLevel="no">
// TimingAttributes.EndTime

</Structural>
</Adaptations>

</TimingAttributes>

<PeriodicTiming>
<Declaration></Declaration>
<Adaptations>

<Structural Name="Period" Order="1" ModelLevel="no">
\nprivate static RelativeTime _Period = new RelativeTime(0,0,0);
\nprivate static PeriodicParameters _PeriodicParams =

new PeriodicParameters(null, null, null, null, null);
</Structural>
<Structural Name="ModifyConstructor" Order="1" ModelLevel="yes">
$Message.addParameter("pPeriod", $DERCSFactory.newInteger(false),

$DERCSFactory.getParameterIn());
</Structural>
<Behavioral Name="SetPeriod" Order="2" ModelLevel="no">
\n_Period.set(0,pPeriod,0);
\n_PeriodicParams.setPeriod(_Period);
\nsetReleaseParameters(_PeriodicParams);

</Behavioral>
<Behavioral Name="FrequencyControl" Order="3" ModelLevel="no">
waitForNextPeriod();

</Behavioral>
<Behavioral Name="LoopMechanism" Order="4" ModelLevel="no">
while (isRunning()) $Options.BlockStart

\n$CodeGenerator.getGeneratedCodeFragment(1)
\n$Options.BlockEnd

</Behavioral>
<Behavioral Name="AdaptObjectConstruction" Order="1" ModelLevel="yes">
$Action.addParameterValue($DERCSHelper.strTimeToInteger(

$Crosscutting.getValueOf("Period"), "ms"))
</Behavioral>

</Adaptations>
</PeriodicTiming>

<SchedulingSupport>
<Declaration></Declaration>
<Adaptations>

<Structural Name="Scheduler" Order="0" ModelLevel="no">
// SchedulingSupport.Begin
\npublic static EDFScheduler scheduler = new EDFScheduler();
\npublic void idleTask() {}
\n// SchedulingSupport.End

</Structural>
<Behavioral Name="SetupConcurrentActivities" Order="0" ModelLevel="no">
\n // SchedulingSupport
\nScheduler.setDefaultScheduler(scheduler);
\n
#foreach($Obj in $Message.TriggeredBehavior.BeharioralElements)

#if ($DERCSHelper.isAssignmentOfActiveObject($Obj))
#if ($Action.isVariableAssignment())

#set($ObjName = $Obj.Variable.Name)

192

#elseif ($Obj.Object)
#set($ObjName = $Obj.Object.Name + ’.’ + $Obj.Attribute.Name)

#else
#set($ObjName = $Obj.Attribute.Name)

#end
\n
\n${ObjName}.addToFeasibility();
\n${ObjName}.start();
\n

#end
#end
\n
\nscheduler.setupTimer();
\nidleTask();

</Behavioral>
</Adaptations>

</SchedulingSupport>

<TimeBoundedActivity>
<Adaptations>

<Structural Name="TimeCountInfrastructure" Order="0" ModelLevel="no">
// TimeBoundedActivity.TimeCountInfrastructure

</Structural>
<Behavioral Name="StartCounting" Order="0" ModelLevel="no">
// TimeBoundedActivity.StartCounting

</Behavioral>
<Behavioral Name="StopCounting" Order="0" ModelLevel="no">
// TimeBoundedActivity.StopCounting

</Behavioral>
</Adaptations>

</TimeBoundedActivity>

<!--**-->
<!--* Precision Package *-->
<!--**-->
<Jitter>

<Adaptations>
<Behavioral Name="StartTime" Order="0" ModelLevel="no">
// Jitter.StartTime

</Behavioral>
<Behavioral Name="VerifyToleratedJitter" Order="0" ModelLevel="no">
// Jitter.VerifyToleratedJitter

</Behavioral>
</Adaptations>

</Jitter>

<ToleratedDelay>
<Adaptations>

<Behavioral Name="StartTime" Order="0" ModelLevel="no">
// ToleratedDelay.StartTime

</Behavioral>
<Behavioral Name="VerifyToleratedDelay" Order="0" ModelLevel="no">
// ToleratedDelay.VerifyToleratedDelay

</Behavioral>
</Adaptations>

</ToleratedDelay>

<ClockDrift>
<Adaptations>

<Behavioral Name="CheckClockDrift" Order="0" ModelLevel="no">
// ClockDrift.CheckClockDrift

</Behavioral>
</Adaptations>

</ClockDrift>

<DataFreshness>
<Declaration></Declaration>
<Adaptations>

<Structural Name="ValidityInformation" Order="0" ModelLevel="no">
// freshness: ${Attribute.Name}
\nprivate static AbsoluteTime ${Attribute.Name}_Validity =

new AbsoluteTime(0,0,0);
\nprivate static AbsoluteTime ${Attribute.Name}_NextValidity =

193

new AbsoluteTime(0,0,0);
\n
\npublic void set${Attribute.Name}Validity(int newValidity) $Options.BlockStart
\n ${Attribute.Name}_Validity.set(0,newValidity,0);
\n$Options.BlockEnd
\n//freshness: ${Attribute.Name}
\n

</Structural>
<Structural Name="SetValidity" Order="0" ModelLevel="no">
#set($ObjName = ’---’)
#if ($Action.isVariableAssignment())

#set($ObjName = $Action.Variable.Name)
#elseif ($Action.Object)

#set($ObjName = $Action.Object.Name + ’.’ + $Action.Attribute.Name)
#else

#set($ObjName = $Action.Attribute.Name)
#end
// begin of freshness setup
\n

#foreach($NFR in ${Crosscutting.CrosscutingInformations})
#if ($NFR.Name == "Validity")

#if ($NFR.ElementName == $NFR.Name)
#foreach ($Attr in

$Crosscutting.getAffectedElement().getAttributes())
\n${ObjName}.set${Attr.Name}Validity(
$DERCSHelper.strTimeToInteger($NFR.Value, "ms"));
// freshness

\n
#end

#else
\n${ObjName}.set${NFR.getElementName()}Validity(

$DERCSHelper.strTimeToInteger($NFR.Value, "ms"));
// freshness

\n
#end

#end
#end

\n // end of freshness setup
</Structural>
<Behavioral Name="VerifyFreshness" Order="0" ModelLevel="no">
#if ($Message.AssociatedAttribute)

if (${Message.AssociatedAttribute.Name}_NextValidity.compareTo(
Clock.getTime()) >= 0) $Options.BlockStart

\n$CodeGenerator.getGeneratedCodeFragment(1)
\n$Options.BlockEnd
\nelse $Options.BlockStart
\n ${Message.AssociatedAttribute.Name} =

${Message.AssociatedAttribute.Name} * 90 / 100;
\n$Options.BlockEnd

#end
</Behavioral>
<Behavioral Name="UpdateFreshness" Order="0" ModelLevel="no">
\n${Message.AssociatedAttribute.Name}_NextValidity.set(

Clock.getTime());
\n${Message.AssociatedAttribute.Name}_NextValidity.add(

${Message.AssociatedAttribute.Name}_Validity);
</Behavioral>

</Adaptations>
</DataFreshness>

<!--**-->
<!--* Synchronization Package *-->
<!--**-->
<ConcurrentAccessControl>

<Declaration></Declaration>
<Adaptations>

<Structural Name="ConcurrencyControlMechanism" Order="0" ModelLevel="no">
// ConcurrentAccessControl.ConcurrencyControlMechanism

</Structural>
<Behavioral Name="AcquireAccess" Order="0" ModelLevel="no">
// ConcurrentAccessControl.AquireAccess

</Behavioral>
<Behavioral Name="ReleaseAccess" Order="0" ModelLevel="no">

194

// ConcurrentAccessControl.ReleaseAccess
</Behavioral>

</Adaptations>
</ConcurrentAccessControl>

<MessageSynchronization>
<Declaration></Declaration>
<Adaptations>

<Structural Name="WaitingMechanism" Order="0" ModelLevel="no">
// MessageSynchronization.WaitingMechanism

</Structural>
<Behavioral Name="WaitForAcknowledge" Order="0" ModelLevel="no">
// MessageSynchronization.WaitForAcknowledge

</Behavioral>
</Adaptations>

</MessageSynchronization>

<!--**-->
<!--* Communication Package *-->
<!--**-->
<MessageAck>

<Declaration></Declaration>
<Adaptations>

<Structural Name="AcknowledgmentMechanism" Order="0" ModelLevel="no">
// MessageAck.AcknowledgeMechanism

</Structural>
<Behavioral Name="SignalAcknowledgmentMechanism" Order="0" ModelLevel="no">
// MessageAck.SignalAcknowledgeMechanism

</Behavioral>
<Behavioral Name="SendAcknowledgment" Order="0" ModelLevel="no">
// MessageAck.SendAcknowledge

</Behavioral>
</Adaptations>

</MessageAck>

<MessageIntegrity>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="GenerateIntegrityInfo" Order="0" ModelLevel="no">
// MessageIntegrity.GenerateIntegrityInfo

</Behavioral>
<Behavioral Name="VerifyIntegrityInfo" Order="0" ModelLevel="no">
// MessageIntegrity.VerifyIntegrityInfo

</Behavioral>
</Adaptations>

</MessageIntegrity>

<MessageCompression>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="Compress" Order="0" ModelLevel="no">
// MessageCompression.Compress

</Behavioral>
<Behavioral Name="Decompress" Order="0" ModelLevel="no">
// MessageCompression.Decompress

</Behavioral>
</Adaptations>

</MessageCompression>

<!--**-->
<!--* TaskAllocation Package *-->
<!--**-->
<NodeStatusRetrieval>

<Declaration></Declaration>
<Adaptations>

<Structural Name="Alive" Order="0" ModelLevel="no">
// NodeStatusRetrieval.Alive

</Structural>
<Behavioral Name="ProcessingLoad" Order="0" ModelLevel="no">
// NodeStatusRetrieval.ProcessingLoad

</Behavioral>
<Behavioral Name="MessageThroughput" Order="0" ModelLevel="no">
// NodeStatusRetrieval.MessageThroughput

195

</Behavioral>
</Adaptations>

</NodeStatusRetrieval>

<TaskMigration>
<Declaration></Declaration>
<Adaptations>

<Behavioral Name="Migrate" Order="0" ModelLevel="no">
// TaskMigration.Migrate

</Behavioral>
<Structural Name="MigrationMechanism" Order="0" ModelLevel="no">
// TaskMigration.MigrationMechanism

</Structural>
</Adaptations>

</TaskMigration>

<!--**-->
<!--* Embedded Package *-->
<!--**-->
<HwAreaMonitoring>

<Declaration></Declaration>
<Adaptations>

<Structural Name="HwAreMonitoringMechanism" Order="0" ModelLevel="no">
// HwAreaMonitoring.HwAreMonitoringMechanism

</Structural>
<Behavioral Name="IncreaseAreaUsage" Order="0" ModelLevel="no">
// HwAreaMonitoring.IncreaseAreaUsage

</Behavioral>
<Behavioral Name="DecreaseAreaUsage" Order="0" ModelLevel="no">
// HwAreaMonitoring.DecreaseAreaUsage

</Behavioral>
</Adaptations>

</HwAreaMonitoring>

<HwAreaControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="HwAreaControlPolicy" Order="0" ModelLevel="no">
// HwAreaControl.InsertControlMechanism

</Structural>
</Adaptations>

</HwAreaControl>

<EnergyMonitoring>
<Declaration></Declaration>
<Adaptations>

<Structural Name="EnergyMonitoringMechanism" Order="0" ModelLevel="no">
// EnergyMonitoring.EnergyMonitoringMechanism

</Structural>
<Behavioral Name="StartingEnergyAmount" Order="0" ModelLevel="no">
// EnergyMonitoring.StartingEnergyAmount

</Behavioral>
<Behavioral Name="CalculateEnergyConsumption" Order="0" ModelLevel="no">
// EnergyMonitoring.CalculateEnergyConsumption

</Behavioral>
</Adaptations>

</EnergyMonitoring>

<EnergyControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="EnergyConsumptionPolicy" Order="0" ModelLevel="no">
// EnergyControl.EnergyConsumptionPolicy

</Structural>
</Adaptations>

</EnergyControl>

<MemoryUsageMonitoring>
<Declaration></Declaration>
<Adaptations>

<Structural Name="MemoryMonitoringMechanism" Order="0" ModelLevel="no">
// MemoryUsageMonitoring.MemoryMonitoringMechanism

</Structural>

196

<Behavioral Name="IncreaseMemoryUsage" Order="0" ModelLevel="no">
// MemoryUsageMonitoring.IncreaseMemoryUsage

</Behavioral>
<Behavioral Name="DecreaseMemoryUsage" Order="0" ModelLevel="no">
// MemoryUsageMonitoring.DecreaseMemoryUsage

</Behavioral>
</Adaptations>

</MemoryUsageMonitoring>

<MemoryControl>
<Declaration></Declaration>
<Adaptations>

<Structural Name="MemoryUsageControlPolicy" Order="0" ModelLevel="no">
// MemoryControl.MemoryUsageControlPolicy

</Structural>
</Adaptations>

</MemoryControl>
</Aspects>

</Software>

<Hardware></Hardware>
</Application>

<!-- Mapping rules for PLATFORM CODE -->
<PlatformConfiguration>

<Software>
<SourceOptions OutputDirectory="platform"></SourceOptions>
<Files xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="./platform_RT-FemtoJava/AbsoluteTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/AbstractPoolingServer.xml"/>
<xi:include href="./platform_RT-FemtoJava/AperiodicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEvent.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEventHandler.xml"/>
<xi:include href="./platform_RT-FemtoJava/AsyncEventsMechanism.xml"/>
<xi:include href="./platform_RT-FemtoJava/Clock.xml"/>
<xi:include href="./platform_RT-FemtoJava/EDFScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/FixedPriorityHWScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/HighResolutionTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/HWRealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/InterruptPoolingMechanism.xml"/>
<xi:include href="./platform_RT-FemtoJava/OneShotTimer.xml"/>
<xi:include href="./platform_RT-FemtoJava/PeriodicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/PeriodicTimer.xml"/>
<xi:include href="./platform_RT-FemtoJava/PoolingServer2.xml"/>
<xi:include href="./platform_RT-FemtoJava/PoolingServer1.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/PriorityScheduler2.xml"/>
<xi:include href="./platform_RT-FemtoJava/RateMonotonicScheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/RealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/RelativeTime.xml"/>
<xi:include href="./platform_RT-FemtoJava/ReleaseParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/Scheduler.xml"/>
<xi:include href="./platform_RT-FemtoJava/SchedulingParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/SporadicParameters.xml"/>
<xi:include href="./platform_RT-FemtoJava/Timer.xml"/>
<xi:include href="./platform_RT-FemtoJava/TimeTriggeredRealtimeThread.xml"/>
<xi:include href="./platform_RT-FemtoJava/TimeTriggeredScheduler.xml"/>

</Files>
</Software>
<Hardware></Hardware>

</PlatformConfiguration>
</RT-FemtoJava>

</Platforms>

C.2 Platform Configuration

<File Name="Scheduler.java" OutputDirectory="saito.sashimi.realtime"
Aspects="SchedulingSupport">

<Fragment>

197

package saito.sashimi.realtime;
import saito.sashimi.*;

public abstract class Scheduler implements TimerInterface {
protected static Scheduler c_defaultScheduler = null;
protected static int m_MainBaseStackPointer = 0xFFFF;

protected int m_currentTask = -1;
protected boolean m_Processing = false;

</Fragment>
<Fragment Aspects="TimingAttributes">

public final static int MAX_APERIODIC_TASKS = 16;
protected static RealtimeThread m_AperiodicTaskList[] =

{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};

protected int m_AperiodicListCount = 0;
</Fragment>
<Fragment Aspects="PeriodicTiming">

public final static int MAX_PERIODIC_TASKS = 16;
protected static RealtimeThread m_PeriodicTaskList[] =

{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};

protected int m_PeriodicListCount = 0;
</Fragment>
<Fragment>

public abstract boolean isFeasible();
public abstract void runScheduler();
protected abstract int getContextOffsetForStaticMethod();
protected abstract int getContextOffsetForVirtualMethod();

protected static int indexOf(RealtimeThread list[], int listCount,
RealtimeThread schedulable) {

int i = 0;
for (; (i < listCount) && (list[i] != schedulable); i++);
if (i < listCount)
return i;

else
return -1;

}

protected static void addToListOrderByPriority(RealtimeThread list[],
int listCount, RealtimeThread schedulable, int priority) {

int i = 0;
for(; (i < listCount) && (priority <=
((PriorityParameters)list[i].getSchedulingParameters()).getPriority());
i++);
if (i < listCount) {

for(int j = listCount; j > i; j--)
list[j] = list[j-1];

}
list[i] = schedulable;

}

protected boolean addToFeasibility(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

if ((m_PeriodicListCount < (MAX_PERIODIC_TASKS-1)) &&
(indexOf(schedulable) == -1)) {

m_PeriodicTaskList[m_PeriodicListCount] = schedulable;
m_PeriodicListCount++;
return true;

}
else

</Fragment>
<Fragment>

return false;
}

protected boolean removeFromFeasibility(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

if (m_PeriodicListCount > 0) {
int i = 0;

198

for(; (i < m_PeriodicListCount) &&
(m_PeriodicTaskList[i] != schedulable); i++);

if (i < m_PeriodicListCount) {
m_PeriodicTaskList[i] = null;
m_PeriodicListCount--;
if (i < m_PeriodicListCount) {
int j = i;
for(; (j <= m_PeriodicListCount); j++)

m_PeriodicTaskList[j] = m_PeriodicTaskList[j+1];
m_PeriodicTaskList[j] = null;

}
return true;

}
else

return false;
}
else

</Fragment>
<Fragment>

return false;
}

public static Scheduler getDefaultScheduler() {
return c_defaultScheduler;

}

protected int indexOf(RealtimeThread schedulable) {
</Fragment>
<Fragment Aspects="PeriodicTiming">

int i = 0;
for (; (i < MAX_PERIODIC_TASKS) &&

(m_PeriodicTaskList[i] != schedulable); i++);
if (i < MAX_PERIODIC_TASKS)

return i;
else

</Fragment>
<Fragment>

return -1;
}

public boolean isAddedToFeasibility(RealtimeThread schedulable) {
return (indexOf(schedulable) != -1);

}

public static void setDefaultScheduler(Scheduler scheduler) {
c_defaultScheduler = scheduler;

}

public static void saveMainContext() {
m_MainBaseStackPointer = FemtoJavaSO.saveCTX() +

getDefaultScheduler().getContextOffsetForStaticMethod();
}

public static void restoreMainContext() {
c_defaultScheduler.m_Processing = false;
FemtoJavaSO.restoreCTX(m_MainBaseStackPointer);

}

public boolean isAllTasksFinished() {
boolean result = true;

</Fragment>
<Fragment Aspects="PeriodicTiming">

for (int i=0; (i < m_PeriodicListCount) && result; i++)
result &= m_PeriodicTaskList[i].isFinished();

</Fragment>
<Fragment>

return result;
}

public void setupTimer() {
FemtoJavaInterruptSystem.setEnable(0x2F);
FemtoJavaTimer.setTimer0(100);
FemtoJavaTimer.startTimer0();

199

}

public void tf0Method() {
FemtoJavaInterruptSystem.setEnable(0x6F);
FemtoJavaTimer.stopTimer0();
if (!c_defaultScheduler.m_Processing) {

c_defaultScheduler.m_Processing = true;
FemtoJavaInterruptSystem.setEnable(0x2F);
c_defaultScheduler.runScheduler();
c_defaultScheduler.m_Processing = false;

}
}

public void tf1Method() {} // not used ! Used in Timer objects
}

</Fragment>
</File>

C.3 Source Code Generated by GenERTiCA

import saito.sashimi.realtime.*;
public class MovementController extends RealtimeThread {

private SpecialConditionMovementControl ctrlMode;
private EnvironmentInformation envInfo;
private MovementInformation mrInfo;
private MainRotorActuator mrAct;
private MovementInformation brInfo;
private BackRotorActuator brAct;
private int newMRRotation;
private int newMRPace;
private int newBRRotation;
private int newBRPace;
private Alarm alarm;

private static RelativeTime _Cost = new RelativeTime(0,0,0);
private static RelativeTime _Deadline = new RelativeTime(0,0,0);

public void exceptionTask() {}
protected void initializeStack() {}
public void mainTask() {}

private static RelativeTime _Period = new RelativeTime(0,0,0);
private static PeriodicParameters _PeriodicParams =

new PeriodicParameters(null, null, null, null, null);

public MovementController(EnvironmentInformation _envInfo ,
MovementInformation _mrInfo ,
MainRotorActuator _mrAct ,
MovementInformation _brInfo ,
BackRotorActuator _brAct ,
Alarm _alarm , int pDeadline ,
int pCost , int pPeriod) {

// Variables
// Actions

ctrlMode = new SpecialConditionMovementControl();
envInfo = _envInfo;
mrInfo = _mrInfo;
mrAct = _mrAct;
brInfo = _brInfo;
brAct = _brAct;
alarm = _alarm;

_Deadline.set(0,pDeadline,0);
_Cost.set(0,pCost,0);
getReleaseParameters().setDeadline(_Deadline);
getReleaseParameters().setCost(_Cost);

_Period.set(0,pPeriod,0);
_PeriodicParams.setPeriod(_Period);
setReleaseParameters(_PeriodicParams);

}

200

public EnvironmentInformation getenvInfo() {
// Variables
// Actions

return envInfo ;
}
public void setenvInfo(EnvironmentInformation _envInfo) {

// Variables
// Actions

envInfo = _envInfo;
}
public MovementInformation getmrInfo() {

// Variables
// Actions

return mrInfo ;
}
public void setmrInfo(MovementInformation _mrInfo) {

// Variables
// Actions

mrInfo = _mrInfo;
}
public MainRotorActuator getmrAct() {

// Variables
// Actions

return mrAct ;
}
public void setmrAct(MainRotorActuator _mrAct) {

// Variables
// Actions

mrAct = _mrAct;
}
public MovementInformation getbrInfo() {

// Variables
// Actions

return brInfo ;
}
public void setbrInfo(MovementInformation _brInfo) {

// Variables
// Actions

brInfo = _brInfo;
}
public BackRotorActuator getbrAct() {

// Variables
// Actions

return brAct ;
}
public void setbrAct(BackRotorActuator _brAct) {

// Variables
// Actions

brAct = _brAct;
}
public Alarm getalarm() {

// Variables
// Actions

return alarm ;
}
public void setalarm(Alarm _alarm) {

// Variables
// Actions

alarm = _alarm;
}
public void run() {

// Variables
int brRotation;
int brPace;
int mrRotation;
int mrPace;
float windSpeed;
float windDirection;
float humidity;
float temperature;

// Actions
while (isRunning()) {

// EnergyMonitoring.StartingEnergyAmount

201

brRotation = brInfo.getRotation(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
brPace = brInfo.getPace(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
// ConcurrentAccessControl.AquireAccess
mrRotation = mrInfo.getRotation();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
mrPace = mrInfo.getPace();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
windSpeed = envInfo.getWindSpeed();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
windDirection = envInfo.getWindDirection();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
humidity = envInfo.getHumidity();
// ConcurrentAccessControl.ReleaseAccess
// ConcurrentAccessControl.AquireAccess
temperature = envInfo.getTemperature();
// ConcurrentAccessControl.ReleaseAccess
processInfo(mrRotation, mrPace, brRotation, brPace, windSpeed,

windDirection, humidity, temperature);
mrAct.setRotation(newMRRotation);
mrAct.setPace(newMRPace);
brAct.setRotation(newBRRotation); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
brAct.setPace(newBRPace); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
mrAct.applyParameters();
brAct.applyParameters(); // ** REMOTE **
// MessageSynchronization.WaitForAcknowledge
// EnergyMonitoring.CalculateEnergyConsumption
waitForNextPeriod();

}
}
public void processInfo(int r1 , int p1 , int r2 , int p2 ,

float ws , float wd , float h , float t) {
// Variables
// Actions

if ((((int)ws) > 15) || (((int)h) > 85) || (((int)t) > 40)) {
ctrlMode.setMode(SpecialConditionMovementControl.HOSTILE_ENVIRONMENT);

}
if (ctrlMode.getMode() == SpecialConditionMovementControl.NORMAL) {

newMRRotation = newMRRotation/r1*p1 ;
newMRPace = (newMRPace+p1)/r1;
newBRRotation = newBRRotation/r2*p2 ;
newBRPace = (newBRPace+p2)/r2;

} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.HOSTILE_ENVIRONMENT) {

alarm.triggerHostileEnvironmentAlarm();
} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.LOW_FUEL) {

alarm.triggerLowFuelAlarm();
} else {

if (ctrlMode.getMode() ==
SpecialConditionMovementControl.UNDER_ATTACK) {

alarm.triggerUnderAttackAlarm();
}

}
}

}
}

}

202

203

APPENDIX D LIST OF PUBLICATIONS

This appendix presents all publications that have been produced during this thesis’
period of work.

2009

FREITAS, E. P.; ALLGAYER, R. S.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARS-
SON, T. Supporting Platform for Heterogeneous Sensor Network Operation based on
Unmanned Vehicles Systems and Wireless Sensor Nodes. In: IEEE INTELLIGENT VE-
HICLES SYMPOSIUM, 2009, Xi’an.Proceedings. . .Los Alamitos: IEEE Computer
Society, 2009. p.786–791.

FREITAS, E. P.; HEIMFARTH, T.; WEHRMEISTER, M. A.; WAGNER, F. R.; FER-
REIRA, A. M.; PEREIRA, C. E.; LARSSON, T. Using a Link Metric to Improve Com-
munication Mechanisms and Real-Time Properties in an Adaptive Middleware for Het-
erogeneous Sensor Networks. In:Advances in Information Security and Assurance.
Berlin: Springer, 2009. p.422–431.

FREITAS, E. P.; WEHRMEISTER, M. A.; FERREIRA, A. M.; PEREIRA, C. E.; LARS-
SON, T. Multi-Agents Supporting Reflection in a Middleware for Mission-Driven Het-
erogeneous Sensor Networks. In: INTERNATIONAL WORKSHOP ONAGENT TECH-
NOLOGY FOR SENSOR NETWORKS, 3., 2009, Budapest.Proceedings. . .[S.l.: s.n.],
2009. p.25–32.

OLIVEIRA, M. F. S.; WEHRMEISTER, M. A.; NASCIMENTO, F. A.; PEREIRA, C. E.;
WAGNER, F. R. High-level Design Space Exploration of Embedded Systems Using the
Model-Driven Engineering and Aspect-Oriented Design Approaches. In: GOMES, L.;
FERNANDES, J. M. (Ed.).Behavioral Modeling for Embedded Systems and Tech-
nologies: applications for design and implementation. Hershey: Information Science Ref-
erence, 2009. p.114–146.

WEHRMEISTER, M. A.; FREITAS, E. P.; PEREIRA, C. E. Using GenERTiCA to gen-
eration code from RT-UML : a case study. In: IFAC SYMPOSIUM ONINFORMATION
CONTROL PROBLEMS IN MANUFACTURING, 13., 2009, Moscow.Proceedings. . .
[S.l.]: Elsevier Science, 2009. p.678–683.

WEHRMEISTER, M. A.; FREITAS, E. P.; PEREIRA, C. E. An Infrastructure for UML-
based Code Generation Tools. In: IFIP INTERNATIONAL EMBEDDED SYSTEMS
SYMPOSIUM, 3., 2009, Langenargen.Proceedings. . .[S.l.]: Springer, 2009. (to appear).

204

2008
FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSON,T. Using As-
pects and Component Concepts to Improve Reuse of Software for Embedded Systems
Product Lines. In: INTERNATIONAL SOFTWARE PRODUCT LINE CONFERENCE,
12., 2008, Limerick.Proceedings. . .Limerick: University of Limerick, 2008. p.105–112.

FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSON,T. Reflective
middleware to support mission-driven heterogeneous sensor networks. In: WORKSHOP
ON SENSOR NETWORKS AND APPLICATIONS (CO-LOCATED WITH 21ST SYM-
POSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN), 2008, Gramado.
Proceedings. . .Porto Alegre: Universidade Federal do Rio Grande do Sul, 2008. p.1–6.

FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSON,T. Real-time
Support in Adaptable Middleware for Heterogeneous Sensor Networks. In: INTER-
NATIONAL WORKSHOP ON REAL TIME SOFTWARE (CO-LOCATED WITH IN-
TERNATIONAL MULTICONFERENCE ON COMPUTER SCIENCE AND INFOR-
MATION TECHNOLOGY), 2008, Wisla.Proceedings. . .Los Vaqueros Circle: IEEE
Computer Society Press, 2008. p.593–600.

PEREIRA, C. E.; GÖTZ, M.; WEHRMEISTER, M. A.; FREITAS, E. P.;JUNIOR, E.
T. S. Real-Time Distributed Embedded Systems: infra-structure for bio-inspired automa-
tion systems. In:Self-optimizing Mechatronic Systems: design the future. Paderborn:
Heinz Nixdorf Institute, 2008. p.449–468.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, F.;PEREIRA,
C. E. A Comparison of the Use of Aspects and Objects for Modeling Distributed Embed-
ded Real-Time Systems with RT-UML. In: X WORKSHOP DE SISTEMAS DE TEMPO-
REAL E EMBARCADOS (EM CONJUNTO COM XXVI SIMPóSIO BRASILEIRO
DE REDES DE COMPUTADORES), 2008, Rio de Janeiro.Anais. . . Porto Alegre: So-
ciedade Brasileira da Computação, 2008. p.1–8.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, F.;PEREIRA,
C. E. Evaluating Aspect and Object-Oriented Concepts to Model Distributed Embedded
Real-Time Systems Using RT-UML. In: TRIENAL WORLD CONGRESSOF THE IN-
TERNATIONAL FEDERATION OF AUTOMATIC CONTROL, 2008, Seoul.Proceed-
ings. . . [S.l.]: Elsevier Science, 2008. p.6885–6890.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, F.;PEREIRA,
C. E. GenERTiCA: a tool for code generation and aspects weaving. In: IEEE SYM-
POSIUM ON OBJECT ORIENTED REAL-TIME DISTRIBUTED COMPUTING, 11.,
2008, Orlando.Proceedings. . .Los Alamitos: IEEE Computer Society Press, 2008. p.44–
54.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, F.;PEREIRA,
C. E. A Case Study to Evaluate Pros/Cons of Aspect- and Object-Oriented Paradigms
to Model Distributed Embedded Real-Time Systems. In: INTERNATIONAL WORK-
SHOP ON MODEL-BASED METHODOLOGIES FOR PERVASIVE AND EMBED-
DED SOFTWARE, 5., 2008, Budapest.Proceedings. . .Los Alamitos: IEEE Computer
Society Press, 2008. p.44–54.

205

2007
FREITAS, E. P.; WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVALHO, F. C.; WAG-
NER, F. R.; PEREIRA, C. E. Using Aspect-Oriented Concepts inthe Requirements Anal-
ysis of Distributed Real-Time Embedded Systems. In:Embedded System Design: top-
ics, techniques and trends. Boston: Springer, 2007. p.221–230.

FREITAS, E. P.; WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVALHO, F. C.; WAG-
NER, F. R.; PEREIRA, C. E. DERAF: a high-level aspects framework for distributed
embedded real-time systems design. In:Early Aspects: current challenges and future
directions (lecture notes in computer science). Berlin / Heidelberg: Springer, 2007. p.55–
74.

JUNIOR, E. T. S.; WEHRMEISTER, M. A.; WAGNER, F. R.; PEREIRA,C. E. An
Approach to Improve Predictability in Communication Services in Distributed Real-time
Embedded Systems. In: INTERNATIONAL WORKSHOP ON JAVA TECHNOLOGIES
FOR REAL-TIME AND EMBEDDED SYSTEMS, 5., 2007, Vienna.Proceedings. . .
New York: ACM Press, 2007. p.121–126.

WEHRMEISTER, M. A.; FREITAS, E. P.; RAMMIG, F.; PEREIRA, C. E. Combining
Aspects-Oriented Concepts with Model-Driven Techniques in the Design of Distributed
Embedded Real-Time Systems. In: EUROMICRO CONFERENCE ON REAL-TIME
SYSTEMS, WORK-IN-PROGRESS SESSION, 19., 2007, Pisa.Proceedings. . .Singa-
pore: National University of Singapore, 2007. p.49–59.

WEHRMEISTER, M. A.; FREITAS, E. P.; WAGNER, F. R.; PEREIRA, C. E. An
Aspect-Oriented Approach for Dealing with Non-FunctionalRequirements in a Model-
Driven Development of Distributed Embedded Real-Time Systems. In: IEEE INTERNA-
TIONAL SYMPOSIUM ON OBJECT AND COMPONENT-ORIENTED REAL-TIME
DISTRIBUTED COMPUTING, 10., 2007, Santorini.Proceedings. . .Washington: IEEE
Computer Society, 2007. p.49–52.

2006
FREITAS, E. P.; WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVALHO, F. C.;
WAGNER, F. R.; PEREIRA, C. E. Using Aspects to Model Distributed Real-Time Em-
bedded Systems. In: III WORKSHOP BRASILEIRO DE DESENVOLVIMENTO DE
SOFTWARE ORIENTADO A ASPECTOS (EM CONJUNTO COM XX SIMPOSIO
BRASILEIRO DE ENGENHARIA DE SOFTWARE), 2006, Florianópolis. Anais. . .
[S.l.]: SBC, 2006. p.1–11.

NASCIMENTO, F. A.; OLIVEIRA, M. F. S.; WEHRMEISTER, M. A.; WAGNER,
F. R.; PEREIRA, C. E. MDA-based Approach for Embedded Software Generation from
a UML/MOF Repository. In: SYMPOSIUM ON INTEGRATED CIRCUITSAND SYS-
TEMS DESIGN, 19., 2006, Ouro Preto.Proceedings. . .New York: ACM Press, 2006.
p.143–148.

WEHRMEISTER, M. A.; ATAIDE, F. H.; CARVALHO, F. C.; PEREIRA,C. E. A Com-
parative Study of Embedded Protocols for Safety-Critical Control Applications. In: IFAC
SYMPOSIUM ON INFORMATION CONTROL PROBLEMS IN MANUFACTURING,
12., 2006, Saint-Etienne.Proceedings. . .[S.l.]: Elsevier Science, 2006. p.87–94.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Optimizingthe Generation
of Object-Oriented Real-Time Embedded Applications Basedon the Real-Time Speci-
fication for Java. In: IEEE/ACM DESIGN, AUTOMATION AND TEST IN EUROPE,
2006, Munich.Proceedings. . .Los Alamitos: IEEE Computer, 2006. p.1–6.

2005
JUNIOR, E. T. S.; WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA,C. E.; WAG-
NER, F. R. Design Exploration in Hw/Sw Co-design of Real-Time Object-Oriented
Embedded Systems: the scheduler object. In: IEEE INTERNATIONAL WORKSHOP
ON OBJECT-ORIENTED REAL-TIME DEPENDABLE SYSTEMS, 10., 2005, Sedona.
Proceedings. . .Washington: IEEE Computer Society, 2005. p.378–388.

JUNIOR, E. T. S.; WEHRMEISTER, M. A.; CARVALHO, F. C.; BECKER, L. B.;
PEREIRA, C. E.; WAGNER, F. R. Exploração do Espaço de Projetoem Hw/Sw Co-
design de Sistemas Tempo-Real Embarcados Orientados a Objetos: o objeto escalon-
ador. In: VII WORKSHOP DE TEMPO REAL (EM CONJUNTO COM XXIII SIM-
PóSIO BRASILEIRO DE REDES DE COMPUTADORES), 2005, Fortaleza. Anais. . .
[S.l.: s.n.], 2005. p.09–16.

WEHRMEISTER, M. A.; ATAIDE, F. H.; CARVALHO, F. C.; PEREIRA,C. E. Assess-
ing the Use of RT-Java in Automotive Time-Triggered Applications. In:From Specifica-
tion to Embedded Systems Application. New York: Springer-Verlag, 2005. p.223–234.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Metodologia de Pro-
jeto Orientada a Objetos Baseada em Plataformas para Sistemas Tempo-Real Embarca-
dos. In: VII WORKSHOP DE TEMPO REAL (EM CONJUNTO COM XXIII SIM-
PóSIO BRASILEIRO DE REDES DE COMPUTADORES), 2005, Fortaleza. Anais. . .
[S.l.: s.n.], 2005. p.01–08.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Object-Oriented Methodol-
ogy to the Development of Embedded Real-Time Systems. In: IEEE INTERNATIONAL
CONFERENCE ON INDUSTRIAL INFORMATICS, 3., 2005, Perth.Proceedings. . .
Los Alamitos: IEEE Computer Society, 2005. p.68–73.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. An Approachfor Design-
ing Real-Time Embedded Systems from RT-UML Specifications.In: INTERNATIONAL
FEDERATION OF AUTOMATIC CONTROL WORLD CONGRESS, 16., 2005,Prague.
Proceedings. . .[S.l.]: Elsevier Science, 2005.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Applying the SEEP Method
in the Design of a Real-Time Embedded Control System for a Motorized Wheelchair. In:
IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND
FACTORY AUTOMATION, 10., 2005, Catania.Proceedings. . .Los Alamitos: IEEE
Computer Society, 2005. p.147–184.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E.; WAGNER, F.R. An
Object-Oriented Platform-based Design Process for Embedded Real-Time Systems. In:
IEEE INTERNATIONAL SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DIS-
TRIBUTED COMPUTING, 8., 2005, Seattle.Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 2005. p.125–128.

