UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

MARCO AURELIO WEHRMEISTER

An Aspect-Oriented Model-Driven
Engineering Approach for Distributed
Embedded Real-Time Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Carlos Eduardo Pereira
Advisor

Prof. Dr. Franz Josef Rammig
Co-advisor

Porto Alegre, September 2009

CIP — CATALOGING-IN-PUBLICATION

Wehrmeister, Marco Aurélio

An Aspect-Oriented Model-Driven Engineering Approach
for Distributed Embedded Real-Time Systems / Marco Auréljo
Wehrmeister. — Porto Alegre: PPGC da UFRGS, 2009.

206 p.: il.

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de Pé6s-Graduacédo em Computacéo, Porto Alegre, BR—
RS, 2009. Advisor: Carlos Eduardo Pereira; Co-advisorn&ra
Josef Rammig.

1. Model-Driven Engineering (MDE). 2. Aspect Oriented De
velopment (AOD). 3. UML. 4. Code Generation. 5. Aspects
Weaving. 6. Real-Time Embedded Systems. |. Pereira, Carlos
Eduardo. 1l. Rammig, Franz Josef. lI. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Pro-Reitor de Coordenagéo Académica: Prof. Rui Vicentee@ppnn
Pro-Reitora de Pés-Graduacao: Prof. Aldo Bolten Lucion

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagn
Coordenador do PPGC: Prof. Alvaro Freitas Moreira
Bibliotecéaria-chefe do Instituto de Informatica: Beafegina Bastos Haro

To Jo, my lovely wife, for her love, huge patience, support,
and understanding at the moments | was absent.

ACKNOWLEDGMENTS

| have a noticeable improvement in my professional/penddaafter these six years
working in the Embedded Systems Lab at the Federal UniyeséRio Grande do Sul. |
have been with many people that contributed directly orgwdly to this improvement. |
would like to express gratitude to all of them.

First of all, | would like to thank Dr. Carlos Eduardo Pereirde is not only my
advisor but also a friend. His help along two years of magtdrfaur years of Ph.D. did
strongly contribute to several aspects of my professioma@leersonal life in Porto Alegre.
Our discussions have been a fundamental piece for the adisbment of this work. |
tried to learn the maximum | could from his example.

Other important part of my Ph.D. was my “sandwich” stage atihiversity of Pader-
born, Germany. For this, | would like to thank Dr. Franz Jd3ammig for accepting me
as member in his working group, for the discussions, créams suggestions on my work,
and more specially, for the opportunity to do the bi-natid?taD. | do not have words to
describe how this stay in Germany opened my horizons comgepersonal and profes-
sional aspects.

From home, | would like to thank my wife, Josi, for her supp@mncouraging, and
comprehension in the last six years. She was and still is dafmental piece during
all phases of my life. | am also thankful to my parents, Nelaod Berta, my brothers
Fernando and Leonardo, and my sister-in-law Thaize for tice@agement and support.
Specially, | would like to thank my uncle Vendelino, aunt 8em and cousins Rudolf,
Priscilla, Barbara, and Julia for their support in Portogkks decreasing the yearning for
the family of Blumenau. In special, | would like to thank Barh for the English review
of some chapters of this thesis.

| would also like to acknowledge all professors and admiaiste staff of the Infor-
matics Institute, which somehow contributed for the cosicln of my Ph.D. Specially, |
would like to thank Dr. Flavio Rech Wagner, Dr. Luigi CarreydaDr. Marcelo Soares
Pimenta for the valuable discussions, critics, and suggestiuring all this time.

I am thankful to all colleagues and friends from the Embed8gstems Lab who
directly or indirectly contributed to this work. | cannotma all of them because | will
certainly forget many names. However, | should mentionéhbat provide remarkable
contributions to this work: Edison Pignaton Freitas, Mar@lliveira, and Elias Teodoro
da Silva Jr. Additionally, | would like to thank two undergratudents: William Silva
for the help with some case studies in ORCOS platform; andalRlorRodrigues Ferreira
(a.k.a. Bixo) for the English review of this text’s first draf

Considering my stay in Germany, | would like to express mytityrde to Marcelo
Go6tz, which actually came back to Brazil when | arrive at Padm, for all help and
hints about the life in Germany, and specially for letting to€‘inherit” his house in

Paderborn. From there, | must also mention Vera Kiuhne fdredfi with the bureaucracy
at the university, the colleagues of the working group, gmecglly Tales and Carolina
Heimfahrt, Dalimir Orfanus, Fahad Bin Tariq for various nments we spend together.
Finally, | would like to thank the Conselho Nacional Ciemiffie Tecnolégico (CNPQ)
for both regular and “sandwich” scholarships, and also teetBcher Akademischer Aus-
tausch Dienst (DAAD) for the financial support during partlod stay in Germany.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS

LISTOFFIGURES.
LISTOF TABLES
ABSTRACT . . . e
RESUMO

1 INTRODUCTION e s e e

1.1 Motivation e
1.2 Goalsand Scope Delimitation.
1.3 ThesisContributions.
1.4 TextOrganization i

2 THEORETICALBACKGROUND
2.1 Introduction
2.2 Distributed Embedded Real-Time Systems
2.21 Introduction
2.2.2 Real-TimeSystems
2.2.3 EmbeddedSystems
2.2.4 Distributed Systems e e
2.3 Requirements in Embedded Systems Domain
2.4 Embedded Systems Design Approaches
2.4.1 Introduction
2.4.2 Object-Oriented Paradigm
2.4.3 Aspect-Oriented Paradigm
2.4.4 Evaluating the DesignwithMetrics
2.5 Model-Driven Engineering o e
251 OVEeIVIEW e
252 MARTEUMLprofile

3 STATEOF THE ARTANALYSIS.
3.1 Introduction
3.2 Design and Modeling Approaches
3.21 Overviewof Related-Work
3.2.2 DISCUSSION e e
3.3 Separation of Concerns in Requirements Handling.

3.3.1 Introduction e 52

3.3.2 Separation of Concerns in General Systems Develgpmen 52
3.3.3 TheUse of AOD inthe Design of DERTS 56
3.3.4 DISCUSSION e e 60
3.4 CodeGeneration. 61
3.4.1 Introduction 61
3.4.2 Code Generation fromUMLModels 61
343 Commercial Tools 64
3.4.4 DISCUSSION e e 66
3.5 Discussiononthe OpenProblems 66
4 MDE PROCESS FORDERTSDESIGN 69
4.1 Introduction e 69
4.2 Aspect-Oriented Model-Driven Engineering for DERTS 69
4.3 Adaptations inthe SEEP designflow. 73
5 SPECIFYING DERTS USING UML AND ASPECTS 75
5.1 Introduction 75
5.2 Functional Requirements Handling Elements. 75
5.2.1 Introduction 75
5.2.2 Specification of System Expected Functionalities 77
5.2.3 Specification of System Structure L 77
5.2.4 System Behavior Specification 80
5.3 Non-Functional Requirements Handling Elements. 88
5.3.1 Introduction 88
5.3.2 Distributed Embedded Real-time Aspects Framework. 89
5.3.3 Aspects Crosscutting Overview Diagram B 15)
5.3.4 Join Points: Selecting Model Elements Affected bye!kn‘,g 97
54 FinalRemarks e 99
6 TOOL SUPPORT FOR THE PROPOSED APPROACH 101
6.1 Introduction 101
6.2 A Platform Independent Model for Code Generation. 102
6.3 UML-to-DERCS Transformation 106
6.4 MappingRules 111
6.4.1 OVEIVIEW e e e e 111
6.4.2 ApplicationCode 112
6.4.3 Platform Configuration 118
6.5 Code Generation Process. i 119
6.6 FinalRemarks 121
7 VALIDATION e 123
7.1 Introduction 123
7.2 ToolsetOverview. e 123
7.2.1 RT-FemtoJava Platform 123
7.22 ORCOSPlatform 124
7.2.3 Case Studies Assessment 125
7.3 CaseStudies 126
7.3.1 Unmanned Aerial Vehicle 126

7.3.2 Industrial Packing System L L, 134

7.3.3 Wheelchair Automation 139

74 FinalRemarks 141
8 CONCLUSIONS AND FUTUREWORK 145
REFERENCES e 149
APPENDIX A DERAF DETAILED DESCRIPTION 159
Al TimingPackage. 159
A.2 PrecisionPackage 161
A.3 Synchronization Package 162
A4 Communication Package 163
A5 TaskAllocationPackage L. 164
A.6 EmbeddedPackage 166
APPENDIX B UML MODELS FOR THE UAV CASE STUDY 169
APPENDIXC MAPPINGRULES 185
C.1 Application e e 185
C.2 Platform Configuration 196
C.3 Source Code Generated by GenERTICA 199

APPENDIX D LISTOFPUBLICATIONS 203

LIST OF ABBREVIATIONS AND ACRONYMS

AAM

ABS
AMoODE-RT
API

AADL

AO

AOD
AODM
ASIP

CWM
DERAF
DERCS
DERTS
DREAMS
DSML
GenERTICA
HDL

HW

IEEE

JPDD
MAC
MARTE
MDA
MDD
MDE

Aspect-oriented Architecture Model

Anti-lock Bracking System

Aspect-oriented Model-Driven Engineering for Real-Tingstems
Application Programming Interface

Architecture Analysis & Design Language
Aspect-Orientation

Aspect-Oriented Design

Aspect-Oriented Design Modeling

Application Specific Instruction Processor

Common Warehouse Meta-model

Distributed Embedded Real-time Aspects Framework
Distributed Embedded Real-time Compact Specification
Distributed Embedded and Real-Time System

DistRibuted Extensible Application Management System
Domain-Specific Modeling Languages

Generation of Embedded Real-Time Code based on Aspects
Hardware Description Language

Hardware

Institute of Electrical and Electronics Engineers

Intellectual Property

Join Point Designation Diagrams

Media Access Control

Modeling and Analysis of Real-time and Embedded systems
Model-Driven Architecture

Model-Driven Design

Model-Driven Engineering

MOF
OMG
e]e)
ORCOS
PIM
PSM
QoS
QVT
RTSJ
RTOS
SAE
SCL
SEEP
SoC
SPT
SW
UAV
UML
VHDL
VHSIC
WCET
XMI
XML

Meta-Objects Facilities

Object Management Group
Object-Orientation

Organic Reconfigurable Operating System
Platform Independent Model

Platform Specific Model]

Quality of Service

MOF Query/View/Transformation
Real-Time Specification for Java
Real-Time Operating System

Society of Automotive Engineers

Skeleton Customization Language
Sistema Eletronicos Embarcados baseados em Plataformas
System-on-Chip

UML profile for Schedulability, Performance and Time
Software

Unmanned Aerial Vehicle

Unified Modeling Language

VHSIC Hardware Description Language
Very High Speed Integrated Circuit

Worst Case Execution Time

XML Metadata Interchange

eXtensible Markup Language

Figure 1.1:
Figure 1.2:
Figure 1.3:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:

Figure 3.7:
Figure 3.8:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:

LIST OF FIGURES

Hardware and software design gap
Using higher abstraction levels in embeddetkgyslesign
Most important tools in embedded system design

Non-Functional Requirements Classification

Scattering: same code in multiple places .

Quality model proposed in Sant’anna et al. (2003. C

Overall MARTE architecture
Stereotypes of Time profile
Stereotypes of GRM profile

Methodology for Multimedia Systems availalnléletropolis

SEEP design flow

Aspects and join points modelingin AODM
Examples of Theme/UML models

CAM model represented as a class diagram

AO modeling: (a) aspects modeling; (b) adviceletiag; (c) pomt-

cut specification
Specification usingtene aspect

AO modeling: (a) functional and non-functioo@ahcerns; (b) aspects

model; (c) inter-aspects relations rules

Overview of the AMoDE-RT design approach

Overview of RT-Frida
RT-FRIDA templates for requirements specifcat
Other tools provided by RT-FRIDA

Adaptations proposed to SEED designflow

Graphical representation of system requirésnen. . . .

Specification of the static structure
Specification of the dynamic structure

Specification of objects deployment

Specification of the behavior in terms of actlpea‘ormed by objects

Invalid behavior specification using sequenagrdm
System behavior overview specified using agtdingram
Behavior of classes specified using state diagra. . . .
Conceptual AO model

All aspects provided by DERAF

56
57

................ 58

69
70
71
12
74

77
78
79
80
81
82
86
87
88
90

Figure 5.11: Aspects specificationusingACOD 95
Figure 5.12: JPDD for structural elements selection. 98
Figure 5.13: JPDD for behavioral elements selection 99
Figure 6.1: GenERTICA mains features overview 101
Figure 6.2: DERCS meta-model: structural elements wow o103
Figure 6.3: DERCS meta-model: behavioralelements 104
Figure 6.4: DERCS meta-model: AO-related elements i owww ... 105
Figure 6.5: Mapping rules XML organization 112
Figure 6.6: Mapping rulessSourceOptions>and<PrimaryElements>branches 113
Figure 6.7: Mapping rulescAttributes>node 114
Figure 6.8: Mapping rulessSendMessagerode 114
Figure 6.9: Mapping ruleeriodicTimingaspect implementation 116
Figure 6.10: Source code fragment with modifications pentat by aspect adap-
tations 117
Figure 6.11: Platform configuration XML structure 118
Figure 6.12: GenERTICA: application code generationfleavth 120
Figure 6.13: GenERTICA: platform configuration generafiowchart 120
Figure 7.1: Reusability quality model 126
Figure 7.2: UAV movement control use case diagram 127
Figure 7.3: UAV movement control class diagram 128
Figure 7.4: Fragments of UAV movement control sequencerdrag 129
Figure 7.5: UAV non-functional requirements handling: ®@§OD, and (B) JPDQ.30
Figure 7.6: Calculated metrics for the UAV control system132
Figure 7.7: Comparison of UAV'Bbvenent Control | er classes. 132
Figure 7.8: Industrial packing system use case diagram 134
Figure 7.9: Industrial packing system class diagram136
Figure 7.10: Industrial packing system sequence diagram. 136
Figure 7.11: Industrial packing system: reused elemen{&)JrACOD, and (B)
JPDD . . . e 137
Figure 7.12: Calculated metrics for the industrial paclsggtem 138
Figure 7.13: Calculated metrics for the wheelchair movaroentrol system . . .140

Table 2.1:

Table 5.1;
Table 5.2:
Table 5.3:

Table 6.1:
Table 6.2:

Table 7.1;
Table 7.2:
Table 7.3:

Table 7.4:
Table 7.5:
Table 7.6:
Table 7.7:

LIST OF TABLES

Metrics influence in quality attributes 40
Reserved words for actions specification 84
Naming pattern for elements selectioninJPDD 97
Summary of MARTE stereotypes used in AMoDE-RT 100
UML-to-DERCS mappingtable 106
UML-to-DERCS behavior elements relationships. 110
UAV: Statistics of the UML model of AO version133
UAV: Statistics of the generated sourcecode133
Industrial packing system: Statistics of the UMbdel of AO ver-

SION . . e 138
Industrial packing system: Statistics of theagated source code . 139
Wheelchair: Statistics of the UML modelof AOvers 140
Wheelchair: Statistics of the generated sowdec 141

AO elements reused in the different case studies. 143

ABSTRACT

Currently, the design of distributed embedded real-tinstesys is growing in com-
plexity due to the increasing amount of distinct functidgties that a single system must
perform, and also to concerns related to designing diftedgrals of components. Indus-
trial automation systems, embedded electronics systeeg@amobiles or aerial vehicles,
medical equipments and others are examples of such systdnd) includes distinct
components (e.g. hardware and software ones) that arelyusiesigned concurrently
using distinct models, tools, specification, and impleragoh languages. Moreover,
these systems have domain specific and important requitsmehich do not represent
by themselves the expected functionalities, but can affett the way that the system
performs its functionalities as well as the overall designcess. The so-called non-
functional requirements are difficult to deal with during ththole design because usually
a single non-functional requirement affects severalmiisttomponents.

This thesis proposes an automated integration of dis&tbaimbedded real-time sys-
tems design phases focusing on automation systems. Thegawppproach uses Model-
Driven Engineering (MDE) techniques together with Asp@ctented Design (AOD) and
previously developed (or third party) hardware and sofeydatforms to design the com-
ponents of distributed embedded real-time systems. Axditly, AOD concepts allow a
separate handling of requirement with distinct natures {unctional and non-functional
requirements), improving the produced artifacts moduédion (e.g. specification model,
source code, etc.). In addition, this thesis proposes agederation tool, which supports
an automatic transition from the initial specification pdsso the following implemen-
tation phases. This tool uses a set of mapping rules, desgriow elements at higher
abstraction levels are mapped (or transformed) into lowstraction level elements. In
other words, such mapping rules allow an automatic transdtion of the initial specifica-
tion, which is closer to the application domain, in sourcdector software and hardware
components that can be compiled or synthesized by othes,tobtaining the realiza-
tion/implementation of the distributed embedded reaktsystem.

Keywords: Model-Driven Engineering (MDE), Aspect Oriented Develar (AOD),
UML, Code Generation, Aspects Weaving, Real-Time Embe®&jestems.

Uma Abordagem de Engenharia Guiada por Modelos para o Projei de Sistemas
Tempo-Real Embarcados e Distribuidos

RESUMO

Atualmente, o projeto de sistemas tempo-real embarcaddstréodidos esta cres-
cendo em complexidade devido & sua natureza heterogénearesaente niumero e di-
versidade de func¢des que um Unico sistema desempenhan&stie automacao indus-
trial, sistemas eletrénicos em automoveis e veiculos agegpipamentos meédicos, entre
outros, sdo exemplos de tais sistemas. Tais sistemas sgmsms por componentes
distintos (blocos de hardware e software), os quais gerdds&0 projetados concorren-
temente utilizando modelos, ferramentas e linguagenspkr#isacio e implementacao
diferentes. Além disso, estes sistemas tem requisito£dsps e importantes, 0os quais
nao representam (por si s6) as funcionalidades esperadésteima, mas podem afetar a
forma como o sistema executa suas funcionalidades e sao impibrtantes para a reali-
zacgdao do projeto com sucesso. Os chamados requisitos néio+fais sdo dificeis de tra-
tar durante todo o ciclo de projeto porque normalmente urolr@quisito nao-funcional
afeta varios componentes diferentes.

A presente tese de doutorado propde a integracéo autodetizs fases de projeto
de sistemas tempo-real embarcados e distribuidos focanagpkcacdes na area da au-
tomagdo. A abordagem proposta usa técnicas de engenh&adaqor modelos (do
inglés Model Driven Engineeringpu MDE) e projeto orientado a aspectos (do inglés
Aspect-Oriented Desigou AOD) juntamente com o uso de plataformas previamente de-
senvolvidas (ou desenvolvida por terceiros) para proj@sacomponentes de sistemas
tempo-real embarcados e distribuidos. Adicionalmentepnseitos de AOD permitem a
separacao no tratamento dos requisitos de naturezasnifer@e. requisitos funcionais
e néo-funcionais), melhorando a modularizacéo dos astefabduzidos (e.g. modelos
de especificacdo, cddigo fonte, etc.). Além disso, estapeg®e uma ferramenta de
geracao de cbdigo, que suporta a transicdo automaticasissifaciais de especificacao
para as fases seguintes de implementacéo. Esta ferransantanuconjunto de regras de
mapeamento, que descrevem como elementos nos niveis toaidalabstracdo sdo ma-
peados (ou transformados) em elementos dos niveis masshdéxabstracdo. Em outras
palavras, tais regras de mapeamento permitem a transf@omaagomatica da especifica-
céo inicial, as quais estdo mais préximo do dominio da agicaem codigo fonte para
0s componentes de hardware e software, 0s quais podem spilagios e sintetizados
por outras ferramentas para se obter a realizacdo/imptagéndo sistema tempo-real
embarcado e distribuido.

Palavras-chave:Engenharia Guiada por Modelos, Desenvolvimento Orienda@ispec-
tos, UML, Geracéo de Cdodigo, Entrelacamento de AspectetgrBas Embarcados e de
Tempo-Real.

21

1 INTRODUCTION

1.1 Motivation

The use of specialized electronic devices to assist in dagtyvities is increasing
rapidly. The so-called embedded systems are hardly pedeis computing systems.
Currently, at least 20-30 embedded systems can be foundemanon household, e.g.
cell phones, digital cameras, DVD players, microwave oyeass electronic systems
and others. On the other hand, the same household has only desiktop computers or
laptops (VASSILIADIS et al., 2005). Moreover, many of thegystems have several tasks
distributed in multiple processing units (deployed eitloeally or physically distant from
each other) that must cooperate to accomplish a commonwoidé, respecting stringent
application’s real-time requirements. For example, in alemo middle-range car, it is
possible to find over 50 embedded systems controlling skefuamations ranging from
anti-lock braking (ABS) and fuel injection systems to irdmiment systems such as GPS
navigator or a music/video player (VASSILIADIS et al., 200%0 meet this high demand
from industry, many researchers propose/develop metbgas, standards, architectures
and tools to assist the systematic development of sucha e of distributed, cooper-
ative and real-time embedded systems.

As technology advances faster, there is an increasing deefoanew embedded sys-
tems capable of performing a large amount of complex funefides, which impact
strongly in their design time and complexity. Such growingwplexity is partially caused
due to the distinct nature of elements involved in the desighese systems, i.e. design-
ers must produce, usually concurrently, hardware (HW) afidvare (SW) components.
However, as one can see in figure 1.1, there is a productiapylgptween the software
and hardware teams: the first one needs 5 years to increahgcpuity twice, while the
later improves it a little faster but still not in the sameerat the increase in technology
capabilities. In addition, the non-functional nature ofngimportant requirements have
a great influence in design complexity. The embedded systiemsin has characteris-
tics that constrain system design, such as fewer avatialoiticomputational resources
(e.g. memory and processing power), restrictions on lowggneonsumption without
performance degradation, and also a tight time-to-mafk&RRO; WAGNER, 2003).

To deal with the above mentioned problems, researchers esidrebrs propose to
raise the abstraction level used during system design.ré&ifji2 shows a chart from a
recent embedded systems market survey (NASS, 2008), irvithban be seen that ap-
proximately 43% of embedded systems designers use higreds laf abstraction, such as
UML, Simulink or SystemC, in their projects. In this contetite Object-Oriented (OO)
paradigm appears as an interesting choice due to some tdréstcs, such as abstraction
and hierarchy, which are pointed since the 70’s as key caat¢epmanage complexity

22

1 ‘I Additional SW required for HW
og , 2x/10 months

2,

= LoC SW/Chip
= Gates/Chip
= Gates/Day
= LoC/Day

Technology capabilities
PR 2x/36 months

HW including
SW design gap

HW design productivity
= = | Filling with IP and memory

Y. = = +4HW design productivity

SW productivity
——————— 2x/5 years

o

HW
design
gap

time

1981
1985
1989
1993
1997
2001
2005
2009
2013
2017

Figure 1.1: Hardware and software design gap (ITRS, 2007)

growth and the increasing design effort (HABERMANN; FLONQOPRIDER, 1976).
Over the last years, the use of OO in the design of distribeieldedded real-time system
is the focus of several works, as can be seen in importaneoemées and publications, as
for example the IEEE International Symposium on Objectrmied Real-time distributed
Computing (ISORC), (MARTIN; MULLER, 2005), or (CHEN et aR003). However,
not all issues involved in the design of distributed embeddal-time systems are well
handled only by using OO concepts. The crosscutting natuserae important require-
ments impacts in different parts of a system (i.e. non-flonetl requirements crosscut
functional requirements), hindering the reuse of prodwagifhcts (e.g. models, source
code, IPs, etc.) (FILMAN et al., 2005).

In the literature there are some proposals, e.g. (STANKGAtI&., 2003) and (TSANG;
CLARKE; BANIASSAD, 2004), that suggest the use of aspectietal with the problem
of crosscutting non-functional requirements in embeddestiesns design. The Aspect-
Oriented (AO) paradigm (FILMAN et al., 2005) allows a sepadaspecification of sys-
tem’s functional and non-functional requirements. Aduhally, it allows designers to
concentrate efforts on important concerns, such as thdingrat real-time, performance
and energy consumption constraints. Additional AO help#eicoupling the produced ar-
tifact allowing their reuse in the same or further projedtsus, the achieved separation of
concerns in requirements handling can improve the desigistfbuted embedded real-
time systems, opening room for reusing the produced atsifddsually, non-functional
requirements affect (i.e. crosscut) functional requiretaén different ways, in different
design phases and/or in different system modules (FILMA&l.e2005). Traditional OO

SystemC/ NN 17% 17%

uf " M Currently uses Currently uses
hardware " I 23% (2008 N= 978) [20% {2007 N= 852)
UML [6% I Likely to use 15% I Likely to use
I 18 (2008 N=974) [23% (2007 N=854)
Simulink/modeling [N 10% 12%
language I 14°% [1%
HW/SW codesign/ I 6% 5%
coverification tool [7% 6%
I 59 o
Neone of the abeve b B0
I, 50% I 48%
Figure 2 0% 10% 20% 30% 40% 50% 60% /0% 0% 10% 20% 30% 40% 50% 60% /0%

Figure 1.2: Using higher abstraction levels in embeddetkayslesign (NASS, 2008)

23

approaches do not handle these requirements in a satigféoto. To illustrate the this
situation, let's consider the control of concurrent acdess shared resource. The code
responsible for handling this requirement must be addell ttae some task needs to use
a shared resource, and hence, it is scattered within diffenedules.

Another way to decrease the gap between hardware and seftlgargns, and also
the design time, is the adoption of a common language to fypleaih the structure and
behavior of a distributed embedded real-time system (VABEIS et al., 2005). Thus,
the information exchange between design teams (i.e. telaasliévelop hardware and
software components) is facilitated, minimizing possimisunderstandings in the speci-
fication (CHEN et al., 2003). In the last years, it can be olesttthe increasing use of the
Unified Modeling Language (UML) (OMG, 2008) in the design ofleedded systems.
Such claim can be confirmed in the book “UML for SoC design” (RTAN; MULLER,
2005), which describes different research works that pgegdahe use of UML to design
Systems-on-Chip (SoC).

The idea of using models to design complex systems is begpstinnger because
models help in the understanding of complex problems andgb&ential solution through
higher levels of abstract in the specification (SELIC, 2Q00Based on the fact that models
are essential for traditional engineering projects (elg donstruction of buildings, the
aerodynamic design of an aircraft or the construction of lanteomechanical engine),
several researchers and industry professionals advdtenbdels produced during the
design of computational systems must play the main rolendiuthe whole design cycle
(SELIC; MOTUS, 2003b).

The so-called Model-Driven Engineering (MDE) (SELIC, 26Q$CHMIDT, 2006)
defines that the design should mainly focus on the creatiggraghical models instead
of writing source code for computer programs. Hence, modedsthe most important
artifacts in the design of computational systems becausg dhe easier to specify, un-
derstand and maintain. Besides, they are less sensitiveatgges in the implementation
technology, in other words, models are intended to be platfand technology inde-
pendent. To support this idea, a fundamental premise of MDthat system imple-
mentation (e.g. source code) must be automatically gesebfadbm models, avoiding
discrepancies among models and the actual system implatitant One example of
standardization for MDE is the Model-Driven ArchitectuM@A) (OMG, 2004), which
offers a conceptual framework and a set of standards to lkingbe development of
general-purpose systems, and proposes the use of UML fapibeafication modeling
language. The transition from a Platform Independent M@EEBM) to a Platform Spe-
cific Model (PSM) is performed through standardized modelegformations specified
using the MOF Query/View/ Transformation (QVT) languagé®, 2008a). However,
in spite of this infrastructure, UML and MDA do not have elertseto deal with functional
and non-functional requirements in a separated manneubecthey only use OO-based
concepts.

Despite all work done in academy, the use of high-level nsitbgiguages is not a
common practice in current industry projects as can be seeguire 1.3 also from (NASS,
2008). Analyzing together figures 1.2 and 1.3, one can itfar designers want to use
higher abstractions levels during design, however the mgsbrtant used tools are those
that deal with low-level artifacts, such as compilers orwtgiers. One possible reason
for this situation is due to the fact that low level tools, Is@s compilers and debuggers,
are much more mature. Other relevant reason for this ssuiatiight also be that cur-
rent available tools and methodologies do not fulfill thetigal) needs of actual designs.

24

Compiler/assembler NN 56%
Debugger I 56%
Oscilloscope NN 36%
IDE I 28%
JTAG/BDM I 21%
ICE I 21%
Logic analyzer [N 19%
mancgomont rocls NN 14%
Linux teols [N 9%
Software librarics [8%
Codevelopment tools [7%
Source code unulysis;; e 7%

timing analysis tool

Automatic code generation [l 6%
UML tools I 6%
Simulation medeling teols Il 6%

Software testing tools [l 6% I 2008 (N=975)
Graphical design tools [l 6%
Figure 3 0% 10% 20% 30% 40% 50% &60%

Figure 1.3: Most important tools in embedded system dedN#HSES, 2008)

Therefore, it is clear that there is a need for improved tsajsporting high-level tech-
niques. Tool support is key to allow the use of MDE to cope it complexity of the
embedded systems design (SELIC; MOTUS, 2003b).

1.2 Goals and Scope Delimitation

Considering the mentioned shortcomings in the design dfildiged embedded real-
time systems, this research work has looked for solutionghe following problems:
() manage the complexity to handle requirement of distribetatdedded real-time sys-
tem;(ii) support for separation of concerns in the handling of fuumal and non-functional
requirementsfiii) the use of a common language to describe the initial spetificé.e.
model) of system structure and behavior; &wl productivity increasing through an au-
tomatic transition from initial design phase, e.g. modglito further phases, e.g. imple-
mentation.

As embedded systems are used in very distinct applicatioradts, applying systems
with a broad range of different characteristics and cafiggs) this work restricts itself to
distributed embedded real-time systems applied to automsystems, such as industrial
and home automation, or electronic control systems of ehiand aircrafts. Thus, to
overcome the mentioned problems in the design of such aiglits, this work advocate
the increase of the abstraction level by using models as #ie antifact used during the
whole design. As a result, the produced high-level modatsbsasuccessively refined
until a system implementation is obtained.

To specify models for distributed embedded real-time sysiehis work recommends
the use of a standard modeling language, such as UML. Itsaiiagare used to describe
functional requirements, as well as those requiremenddaelto the Quality of Service
(QoS) required/offered from/by system elements, whichspecified using stereotypes
from the recently approved UML Profile faviodeling and Analysis of Real-time and

25

Embedded SysterldARTE) (OMG, 2008b). Furthermore, it is proposed to hande-
functional requirements already in earlier phases, sépgrdnese requirements handling
from functional ones. Thus, to handle non-functional regmients, this work proposes
that AO concepts must be applied combined with UML models.adloieve such goal,
aspects must deal with real-time, performance and disioibuequirements, as well as
energy consumption, memory and area usage. It is impoxamghlight that there are
other equally important requirements in the domain of thisted embedded real-time
systems, e.g. fault tolerance, which are complex enought{emselves) to be dealt
within the scope of other thesis. Consequently, for scofiendation, this work does not
consider them.

According to Selic (2003a), models can be considered ordjept’s documentation
for requirements (functional and non-functional) of diatited embedded real-time sys-
tems. In such situation, designers might consider thelivadae too small because mod-
els may easily diverge from the system real implementafi@novercome this problem,
a fundamental premise of MDE is to have adequate tool suppattow automatic gen-
eration of system implementation from their high level medélence, other goal of this
work is to provide a tool capable of generating code from UdAitructural and behavioral
diagrams. Moreover, it must be aware of AO concepts specifitidn the model, i.e. it
must identify the used aspects, as well as the functionalahs affected by them. The
adaptation performed by the aspect must be woven in the giedesource code. Addi-
tionally, this code generation tool must be flexible, i.eniist not constraint the generated
source code to a specific target language. To achieve thesg toe tool can use scripts
to generate code fragments for each element in the UML model.

According to the motivations described until here, this koas the following goals:

e To propose a design flow, which allows the use of MDE and AODhnejues,
improving and increasing the reuse of previously develoged tested artifacts
(e.g. models, libraries, mapping rules, code generatioptscetc.);

e To advocate for the use of UML diagrams decorated with MART&il@ stereo-
types in combination with aspects (from a high-level aspé&eimework) for the
specification of the structure, behavior and non-functioequirements handling
in the design of distributed embedded real-time systemss Whl put together
initial system specification using a well-know and accepieshdard, which helps
in information exchange about system characteristics apdated functionalities
among design teams (i.e. hardware and software teams);

e To improve separation of concerns in the handling of requéaets, i.e. functional
requirements are handled apart from the non-functionad;one

e To propose modeling guidelines, as well as UML diagram pregation semantics
to eliminate or at least decrease the ambiguity in diagramespretation. This al-
lows the transformation from the UML meta-model to a definedarmodel, whose
semantics is more suitable for code generation due to itgracg in the specifica-
tion of system structure and behavior;

e To create a tool for code generation to support the autortratsition from spec-
ification to implementation phases. The tool must suppormador specifying
mapping rules to transform model elements into source codstrictions in the
chosentarget language. The generated code must be as toag®ssible, mean-
ing that the code should not contain only class skeletons;

26

e Mapping rules must allow their further reuse. In other wordiey must be de-
scribed in such a way that it might be possible to create asiapy of created
mapping rules. However, it is important to highlight thae ttefinition of such
repository is out of the scope of this Ph.D. thesis;

e To evaluate - using software engineering metrics - if thgoppsed approach and, in
particular, the use of AO positively impacts in the systemcsjcation, and also in
the automatic generation of source code.

1.3 Thesis Contributions

This work was developed within the context of the SEEP ptojf8&EP stands for
Platform-based Embedded Systeons'Sistemas Elerdnicos Embarcados baseados em
Plataforma$). Following SEEP ideas, the main goal is to provide mectiausito manage
the increasing design complexity by using MDE techniques separation of concerns
in the handling of functional and non-functional requirentse Therefore, this work’s
contributions are as follow:

Use of MDE techniques in embedded systems designThe use of models to assist in
the development of software for general purpose computestia new research topic. In
addition, there are already some works on the “model-drarggineering” topic propos-
ing solutions to some problems. However, the employment BEMn the design of
distributed embedded real-time systems can be considerstat research topic, which
still has several gaps to be fulfilled. Thus, it can be staked the study and assess-
ment of model-driven methodologies and techniques appdi¢de design of distributed
embedded real-time systems is a relevant contribution.

Platform independent modeling of embedded systems: This work suggests the use
of UML and the recently approved MARTE profile together wittincepts of AOD. This
can also be considered a contribution in the design of Higed embedded real-time
systems because they allow initial system descriptionawuititonsidering its implemen-
tation. In other words, it is possible to specify structrehavior, as well as crosscutting
non-functional requirements without concerning if an edainwill be implemented as
software or hardware, allowing a unified system specificati@t can be understood by
both software and hardware design teams.

Handling of crosscutting non-functional requirements in enbedded systems design:
Other remarkable contribution is the aspect frameworkteteto handle non-functional
requirements of distributed embedded real-time systemnsado To the best of our
knowledge, up to now there is no work in the literature reipgrthe creation/ devel-
opment of a high-level aspects framework that can be usedtmrodeling and imple-
mentation levels.

Tool support for the proposed design flow: The code generation tool proposed in this
work is also an important contribution because it providesiatomatic transition from
the modeling phase to the implementation of distributiorbedded real-time systems.
Again, to the best of our knowledge, there is no other tooVigliag the same flexibility
allowed in the specification of the mapping rules scriptseSéhsmall scripts concentrate
only on one or few model elements, which facilitates the gjgation of mapping rules.

It is important to highlight that it is expected that the teolld also generate HDL code
from the UML model. Other functionality provided by this tas the generation of plat-

27

form configuration, in term of either configuration files, ¢afiorm source code tailoring.
In other words, besides generating configuration files, dihget platform can be config-
ured by means of removing source code lines (related to dmls¢gform services) from
its source code files.

Tool support for aspects weaving: A very important contribution of the code genera-
tion tool is the ability to weave aspects adaptations. lbssible to modify the generated
code fragment using aspects (i.e. aspects weaving in thheesoade), as well as modify
the high-level model (i.e. aspects model weaving). Suctufeavas not found in any
tool available in industry or academy. Moreover, aspeatsigipd within the UML model
steer the platform customization, meaning that platformises are included depending
on which aspect have been specified in the model.

1.4 Text Organization

The remainder of this text is structured as follov@hapter 2presents an overview
on the basic concepts used in this text. It includes key qusceslated to embedded
real-time systems, as well as requirements present in tmgaad; concepts of OO and
AO paradigm; MDE and platform-based approaches, and al$mid sverview of the
MARTE UML profile.

In Chapter 3 the state of the art is discussed. Following topics are remvedesign
and modeling approaches for embedded systems; handlimglddded systems require-
ments; and code generation techniques.

Chapter 4presents the design flow proposed in this work, namepect-oriented
Model-Driven Engineering for Real-Time systefA810DE-RT), which supports activi-
ties from requirements analysis to system realizationgugitarget platform.

Chapter 5discusses guidelines for using UML to specify system stmecand be-
havior. It also introduces an aspects framework, naBisttibuted Embedded Real-time
Aspects FrameworfDERAF), which provides aspects with high-level semarticspec-
ify the handling of crosscutting non-functional requirerteawithin UML models.

Chapter 6introduces the code generation tool named GenERTiGAngration of
Embedded Real-Time Code based on Aspeotsited to support the AMoDE-RT design
flow. Further, this chapter presents an intermediate PIMeawHistributed Embedded
Real-time Compact SpecificatigpERCS), discussing how to transform UML models
into DERCS models. The code generation and aspects wegwimgaches used by Gen-
ERTICA, as well as the specification of mapping rules to poadsource code from the
UML model, are also discussed in this chapter.

Three case studies, that illustrate the proposed approatBanERTICA usage, are
presented irChapter 7 The case studies are: the movement control of an Unmanned
Aerial Vehicle (UAV), the movement control of a wheelchaind the control systems for
an automated packing system. Additionally, this chapteridies an evaluation of the
AMoDE-RT approach based on a set of software engineeringaaet

Finalizing,Chapter 8presents the conclusions of this work, and also draws drest
for future work.

28

29

2 THEORETICAL BACKGROUND

2.1 Introduction

This chapter presents some concepts used within the caftigns text. The goal here
is to provide basic understanding and some references lfrarg concepts addressed
in this text. For a more detailed discussion on them, inteceseaders are referred to
text books and tutorials such as: (BURNS; WELLINGS, 199FARLANTE, 1997),
(CARRO; WAGNER, 2003), (WOLF, 2001), (SOMMERVILLE, 2001BOOCH, 1994),
(FILMAN etal., 2005), (LAMPORT, 1978), (TANENBAUM; STEEN,007) and (STAHL;
VOELTER, 2006).

2.2 Distributed Embedded Real-Time Systems

2.2.1 Introduction

Distributed Embedded Real-Time Systems can be defined tensyshat must pre-
cisely meet time requirements in spite of their running $dskdistributed in different pro-
cessing units, having few available physical resourcesNHNBAUM; STEEN, 2007).
They must provide temporal predictability while performimultiple concurrent and
communicating tasks, which are deployed on different resogonstrained processing
units (sometimes physically distributed over differerddtions), e.g. processing power,
amount of available memory, or energy consumption reginst In the sequence, details
on each characteristic that defines a distributed embeddédime system are presented.

2.2.2 Real-Time Systems

Real-time systems are a special kind of computational systan which the correct
processing of an algorithm is not enough to ensure corretésybehavior, i.e. the algo-
rithm worst case execution time must be predictable, asagadlgorithm results must be
delivered in predefined time instants, meeting the apphinattime requirements. Thus,
real-time systems are considered deterministic syste®BI(ANTE, 1997). The ability
to process data in milliseconds or even in nanoseconds daetefine a computational
system as a real-time system; what really matters is th&gsyesponse times are limited
and predictable. Stankovic (1988) presents several misgiions and misunderstand-
ings on real-time systems and their definition.

When considering the accomplishment of real-time requars) real-time systems
can be classified in two categoriddard Real-Time Systeand Soft Real-Time System
The former represents systems that will have critical fagy which can cause catas-
trophic losses, if any time constraint is not fulfiled (BUBNWELLINGS, 1997). On

30

the other hand, the later represents systems that can gerttieir execution, in a de-
graded operation mode, even when some time requirementsissed. Hard real-time
systems are commonly found interacting with the environiysarch as embedded control
systems. For example, a car’s engine supervisory systemaswedded hard real-time
system because a late response can damage the engine aadsbeger. Consequently,
such situation can lead to losses of car's occupants’ li@her examples are medical
devices or industrial control systems, whose malfunctigrdan cause, respectively, life
and monetary losses. Soft real-time systems are commophedpn systems that re-
ceive data streams that need to be processed. The processéids than delivered to
other components or systems connected to the soft-realsystem. As an example,
entertainment audio/video broadcast systems can be medtidn this system, the not
fulfillment of time requirements decreases the video andoagdality but the system
remains operating.

Furthermore, real-time systems domain has some importardepts that should be
highlighted (BURNS; WELLINGS, 1997):

e Deadlineis the maximal time instant at which a task must provide isults, i.e.
the system has to finish execution of a given algorithm wighmaximal time limit.
Deadlines are key issues in hard real-time systems.

e Worst Case Execution Time(WCET) is the maximal time spent for an algorithm
to finish its execution and deliver the computed results.

e Periodis the time interval between two consecutive executionf@divity.

e Predictability is a key characteristic for real-time systems because bieiavior
must be know. Latency and jitter must be guaranteed withim@vk maximal
time interval. Latencyindicates the time spent from the stimulus detection until
the execution of the code responsible to handle such standitier is a random
variation in the timing of a signal, especially a clock.

e Exception handling can be performed to overcome the problems caused by dead-
lines misses, or unexpected latency or jitter. Hence, ctwe actions are per-
formed in order to alleviate or even to eliminate the effedta temporal failure.

2.2.3 Embedded Systems

There are many definitions for embedded systems, some amadmbory while oth-
ers are complementary (VASSILIADIS et al., 2005). Howeubgere is an important
characteristic that is shared among all definitions andaallseparating embedded sys-
tems from general-purpose systems: the ability to perfgatislized tasks for specific
purposes within the context of a larger system. Usuallyserspecific purpose systems
have less processing power than general-purpose syste@isgV2001).

The current processors market share indicates that mone9® of the sold pro-
cessors are used in embedded systems (VASSILIADIS et &5)2@Imost all modern
electronic devices, from toys and cell phones to vehiclaadustrial embedded control
systems, use microprocessors or microcontrollers to elelheir expected functionality.
As can be noted, the proportion between the usage of geperpbse processors and
embedded processors is huge.

31

Usually, embedded systems should use processors with emergy consumption,
given that in many application they impact in the procesgpiogrer delivered to the soft-
ware application. Embedded systems are often built witltdidhmemory resources due
to other constraints such as components cost, physical@zanergy consumption, re-
quiring very optimized operating systems or even their glation. Hence such operating
system must provide only the amount of services requireth@ypplication software. In
spite of all these constraints, the requirements of theetaagplication lead the decision
on which processor or memory amount to use, or if the systeithsise an operating
system (CARRO; WAGNER, 2003).

Many embedded systems are developed assuming they mustd&usa long period
of time without maintenance. The fact is that the intent®tiproduce an embedded sys-
tem for a given application domain, letting it operate aotoously for its entire expected
lifetime (WOLF, 2001). For that reason, many embedded systh not own mechanical
parts, e.g. fans, magnetic disks, etc. These sorts of coemp®@re affected by natural
harm caused by their use, thus these components need tolaeeckpr fixed. Besides,
there are alternative components that provide the samédumatity, e.g. ROM and flash
memory components can store both the operating system ghidapn software.

2.2.4 Distributed Systems

Distributed systems are systems composed by a collectigmnaalessors with their
own local memory, i.e. they do not share memory. These psocgsre usually spatially
distributed and are connected through a communicatioastructure. In a distributed
system, the goal is to decentralize processing among tleegsors in a transparent way
without given indications of this split to the final user, f@hich the system does not
appear to be distributed (TANENBAUM; STEEN, 2007).

Besides providing cooperation among multiple processionéng at increasing the
whole processing power, distributed systems are alsoeppihi applications requiring
decentralization due to special needs, such as steerigysystems, which have inter-
connected sensors and actuators deployed in each whedbkarnd the steering wheel in
order to improve the overall performance of the system.

The most remarkable characteristics of distributed syst@m related to their techni-
cal issues (SCHMIDT; LEVINE; MUNGEE, 1998):

e The architecture can adopt the following approackigslient-server(ii) publisher-
subscriber(iii) peer-to-peer;

e There is a mechanism to control how, when and where condyreoesses should
execute;

e There is a mechanism to control concurrent access to shasedinces. In other
words, concurrent processes should synchronize theirsadcesuch shared re-
sources in order to guarantee data integrity; and

e As processes communicate with each other, there is a consatiom control mech-
anism. It should allow correct messages delivery to thestidations.

2.3 Requirements in Embedded Systems Domain

In software industry, there is no common definition on whattérmrequiremente-
ally means (SOMMERVILLE, 2001). There are two extremes: na band, it represents

32

high level and abstract statements of services providethdgystem or constraints that
it must fulfill; on the other hand, it represents detailedthmanatically formal definition
of system functions. According to Sommerville (2001), thir different level of system
specification, which are intended to different types of exad

e User requirementsare statements, usually in natural language, for clientcamd
tract managers that do not have a detailed technical kng®led

e System requirementsare detailed statements on system services and constraints
The system requirements document is intended to senionitadistaff and project
managers;

e Software design specificatioms an abstract definition of the software design, which
is the base for the following design and implementation peaghus, it is intended
to software engineers who will, in fact, develop the system.

In this text, the termmequirementss used to refer to system requirements. An impor-
tant sub-classification is the separation of system reouargs in:

e Functional requirements specify services provided by a system, along with how
it should react to certain inputs, and how it should behavgairticular situations.
Functional requirements specification must be complege €ll services required
by users should be provided) and consistent (i.e. requm&rghould not have
contradictions). For large and complex systems, it is atraofeasible to achieve
functional requirements consistency and completenessI(@ERVILLE, 2001);

¢ Non-functional requirements, as the name suggests, are not concerned with func-
tions delivered by the system. Rather, they are constramtle services or func-
tions, or supporting elements that assist the executionaf services and functions
(CONROW; SHISHIDO, 1997);

e Domain requirementsare obtained from characteristics of the target domairerath
than user needs. They can be functional or non-functioeptesenting the funda-
mentals of the application domain, e.g. a requirement fedgceleration of a train
in an automated train protection system.

Concerning the design of distributed embedded real-tirsegys, non-functional re-
quirements are as important as functional requirementgnibedded systems domain,
it is not uncommon to have non-functional requirements énat(in some sense) contra-
dictory, such as for instance performance and energy copsomm Thus, non-functional
requirements must be classified in order to help in their hagdiuring design. Even
though not particularly intended to distributed embeddsal-time system, a good ex-
ample of non-functional requirements classification isdhe presented by Bertagnolli
(2004), which describes, in details, a classification fon-functional requirements re-
lated to fault-tolerant systems. As one can suppose, sontleesé requirements can
be found in the distributed embedded real-time system dontdowever, according to
Freitas (2007), there are other important non-functioequirements that are commonly
found in this domain, as followgi) time; (i) performance(iii) distribution; andiv) em-
bedded issues. The classification of such requirementsvsrsim figure 2.1.

Time issues, such as real-time constraints and chardatsriare depicted under the
time branch, which was also divided in two sub-branches:

33

Deadline

Period

Cost

Release Time

Activation Latency

B Start and End
Time

Timing

Jitter

Tolerated Delay
Laxity
Freshness
Resolution

Drift

Non-Functional J} performance Response Time
Requirements Throughput

Tasks Allocation
Distribution Hosts

Precision

Communication
Synchronization

Area
Embedded Power Consumption

Total Energy
Memory Allocation

Generic «(mm—p- Specific

Figure 2.1: Non-Functional Requirements ClassificatidREHAS, 2007)

e Timing: in this branch, it can be seen typical elements of a real-igséem such as
deadlines, activation period and cost (i.e. WCET); theseewléscussed in section
2.2.2. However, there are other important requirements:

— Release timeepresents the moment at which an activity is ready to be exe-
cuted;

— Activation latencys the delay to start an activity execution, i.e. differebee
tween the instant at which an activity became ready to eremud the instant
of the beginning of its real execution;

— Startis the time instant at which an activity begins its executeomd

— Endis the time instant at which an activity finishes its exeautio

e Precision: under this sub-branch, one can see requirements relatedSarthe
accomplishment of real-time constraints, such as jittat Was also discussed in
section 2.2.2. Following, there are other requirements:

Tolerated delayepresents the maximum latency the can be admitted;
Laxity is obtained by calculating the deadline minus the WCET ofdcivigy,
representing this activity’'s maximum idleness.

Freshnesss the time interval on which the associated data is consttealid;
Resolutiondefines the lowest time granularity (e.g. nanosecondsjsedH
onds, etc.) in which the system can operate.

— Drift represents deviation of system’s logical time from phyldioae.

Non-functional requirements under therformance branch represent constraints re-
lated to both time and distribution non-functional reqments. For this reason, they
received a separated classification (FREITAS, 2007). BHgjtchroughputrefers to the
rate an element can deliver its results, be them resultsdroadgorithm execution or mes-
sages sent/receiveResponse timepresents the delay after which the system delivers a
result, which depends on the execution of both local and temactivities.

The classification related to distribution non-functiorequirements is not complete.
Figure 2.1 show only the most relevant ones. As can be sedw ohdtribution branch,

34

there are four most common non-functional requirements:

e Task allocatiorrefers to deployment of activities on different processings that
compose the distributed embedded real-time system. Assocwith other non-
functional requirements, it is also related with allocatguch activities in nodes
with different capabilities, aiming at meeting real-tinenestraints;

e Hostsis related to node monitoring. The status of all nodes, wpiticipate in
the accomplishment of system activities, need to be relguttiecked, in oder to
evaluate if they are working as expected. Usually, it is eisded with the task
allocation requirement;

e Communications associated with communication features, such as netiwprk-
ogy, connection type among nodes (e.g. connection-odem@nnectionless), if
communication should use an acknowledgment mechanism torifnmessages
should be encrypted or not, among other communication ctearstics;

e Synchronizatiordefines policies for concurrent access to shared resouidas.
affects the form concurrent activities perform their astipwhich, depending on
the adopted policy, can affect the overall system perfoogean

The last branch is related smbedded non-functional requirements. These require-
ments are closer related to design constraints, i.e. th@gsent constraints that can in-
fluence directly in the performance, and hence, the fulfiihté other constraints. They
were divided in three features:

e Areaconstrains the system physical size and/or the amount ofnzae. This re-
quirement can demand monitoring and management activitiesder to optimize
the usage of system hardware, or even migration of act\iteen software to hard-
ware, and vice-versa;

e Energyrequirements constrain system runtime in terms of energypamwer con-
sumption. Such constraints have more impact in distribetetbedded real-time
systems that use batteries as power supply, due to the fcthé system stops
if batteries run out of charge. Additionally, power dissipa can also be a prob-
lem in portable systems due to devices overheating. Suakssaust be carefully
considered during design;

e Memorynon-functional requirements, similar to the previous greemstrain the
memory usage during system runtime. They can also demaniariog and man-
agement activities in order to improve their usage.

It is important to highlight that requirements in this clifisation are not independent
from each other, meaning they have conflicting aims, e.& ragrationvs. processing
power or remaining energy. Moreover, some of them are rlatesystem-wide charac-
teristics and constraints, while others have a more limsisape. A detailed discussion
on requirements analysis is out of the scope of this texerésted readers can refer to
(FREITAS, 2007), in order to obtain a detailed discussion.

35

2.4 Embedded Systems Design Approaches

2.4.1 Introduction

There are several approaches to design embedded systemgvary from ad-hoc
design flows to more formal and rigorous methodologies. & same way, there are
several different abstractions used to specify systemtaathre and expected behavior.
Looking at the literature, there are approaches that segytem as a set of data struc-
tures, operations and functions, while others try to endaps them in single elements.
Some of them use rigorous mathematical formulations whiters use more informal
specifications, which are most commonly found in currentisid; practices, specially in
initial design phases (CHEN et al., 2003).

Current practices for designing distributed embeddedtreed systems deal, in an
acceptable form, with some problems that appear duringgdesiiowever, the increas-
ing number of stringent requirements (e.g. energy consiomgierformance, portability,
dependability, and time-to-market) demands new methapedo tools and abstractions
to assist designer to cope with the growing design compleXitcording to Carro and
Wagner (2003), embedded systems are becoming more sofivansive, thus innova-
tion depends more on software than on hardware. The desigmb&dded software
should essentially follow some of the principles of hardsvdesign, i.e. reuse of previ-
ously developed and validated/certified source code.

A design flow consists in capturing requirements at a wellngefiabstraction level
that allows several refinements towards an efficient re#@izaf the specified system
(BALARIN et al., 2003). Sometimes, these steps from requéeets to implementation
are not as smooth as designers expected. Requirements entianblated to a system
level architecture, which represents the conceptual stre@nd expected system func-
tional behavior. Following, this architecture is transthinto an implementation, defining
the system logical organization. At the last step, impletaigon is realized as the system
physical structure (VASSILIADIS et al., 2005).

Therefore, it is important to use a suitable abstractionndesigning distributed em-
bedded real-time systems. As previously stated, softvgdbecoming more important in
such design. Hence, it makes sense to use approaches fraaftivare engineering do-
main, even though the project of embedded systems compme@ndware and software
designs, in order to close the gap presented in figure 1.hidrcontext, approaches such
as Object-Orientation (OO) and Aspect-Orientation (AOpeqgr as interesting options.
The following sections will present more details on eactagam.

2.4.2 Object-Oriented Paradigm

The object-oriented paradigm allows designers to reasa@problem in term of
entities instead of operations and functions. In fact,alegities in OO are calleabjects
which have their own local state, and operations that camgddhis state. In other
words, objects encapsulate data and behavior to maniphkese data (BOOCH, 1994).
Consequently, a system is composed of several interadbjegts that maintain their own
local state, while providing operations on this informatid he direct access to object’s
data is not allowed to other objects, i.e. there is no exteoeess to such information,
only object’s operations can access it.

Using OO based system analysis, classes and objects aaetegtfrom functional
requirements and non-functional ones. Further, in OO desigese objects and classes
are refined by including additional details into them. If de@, new classes can be cre-

36

ated.

During modeling design phase, designers must igleddifa types to represent ob-

ject’s state as well as operations that make objects belsamegp@cted (SOMMERVILLE,
2001).

According to Armstrong (2006), despite the fact that OO emts were introduce
in late 1960s with Simula programming language (DAHL; NYGRB, 1966), there is
no thoroughly understanding on the fundamental conceptsdifine the OO approach.
In that work, she has identified the following concepts ascinarks of object-oriented
paradigm:

Classis a description of structural characteristics (attrisyi@nd behavior (meth-
ods) shared by one or more similar objects;

Object is an individual or identifiable element in a OO system. It capresent
either a real or abstract system element. As mentioned taomdata representing
its state in a given time instant;

Inheritance is the mechanism that allows characteristics to be reusedguiasses,
i.e. attributes and behavior (methods) of one class candbeded in other classes;

Encapsulationis a technique to restrict the access to data and behavidasdes
and objects through a pre-defined set of messages that®bjezigiven class can
receive;

Abstraction is the act of creating classes to simplify the problem(s) l®ans of
using different levels of details;

Attribute is an remarkable characteristic of an elements class. Tlod adributes
represent a class’ structure;

Method represents object’s behavior. It is a way to access, set aipmate ob-
ject’s information;

Message passings the process through which objects can exchange infoomati
or trigger the execution of a behavior of the message’svecebject;

Polymorphism is the ability of different classes (from the same hierajdioyre-
spond to the same message through a different behaviohuginaore appropriate
to each class;

Instantiation is the act of creating objects from a given class;

Relationship are associatiodsamong classes or objects. There are the following
types of relationships:

— Plain associationsndicate that classes or objects are related through messag
passing, i.e. they do not represent any structural charsiote even though
the implementation could require an attribute of the sanpe s the other
association end, in order to respect @meapsulation

A quark is a fundamental particle that represents the sstaddfeown unit of matter. Hence they are the
basic building blocks for everything in the universe (GEMANN, 1995).
2|t is important to mention thahheritanceis also considered a relationship among classes.

37

— Aggregationsndicate that other classes or objects make part of thetateic
of the aggregator class/object. Parts can exist withouadjgeegator element;

— Compositiongepresents a stronger aggregation relationship, wherénthe
volved classes or objects are dependent from each othethér is no com-
posite without its parts and vice-versa.

2.4.3 Aspect-Oriented Paradigm

Before starting the description of concepts important endabpect-oriented paradigm,
it is important to highlight some more fundamental concéqus software engineering.
Such concepts were extracted mainly from (CLARKE; BANIAS3A005), (ISO/IEC,
2007) and (SOMMERVILLE, 2001)

Concerns according to ISO/IEC (2007), are “... . interests which gi@rto the sys-
tem’s development, its operation or any other aspects teatrdical or otherwise
important to one or mode stakeholders...”. Concerns aataeto both functional
and non-functional requirements;

Separation of concernsmeans to deal with each concern in isolation, in order to
allow the creation of modular artifacts that handle themweleer, in the literature

of embedded systems, it is usual to find the teeparation of concernsieaning
the separation of functional and architectural concerasyell as the separation
of computation and communication. This text uses this tesrtha separation of
functional concerns from non-functional ones;

Modularization means the ability to group or partition artifacts into eattcalled
Modules(i.e. an abstraction unit in the adopted language) thatllideaust be
loosely coupled and highly cohesive;

Composition is the ability of integrating several modular artifactsoirst coherent
whole;

Decompositionis the division of a larger problem into smaller ones, whicyrbe
handled apart from each other;

Tangling indicates that multiple concerns are mixed together in oodute;
Scattering indicates that one concern is spread over multiple modules;

Crosscutting represents the occurrence taingling and scatteringthat happens
when the selected decomposition is unable to modularizeeros effectively;

Crosscutting concernsare concerns that cannot be mapped to unique modules,
thus leading to tangling and scattering. Non-functiongureements can be viewed

as crosscutting concerns, because they are usually ixiedmvith functional re-
quirements inside several modules. Figure 2.2 depict thsscutting concerns
related to transaction management presented in (CLARKENIBSSAD, 2005).

Some authors, such as (CLARKE; BANIASSAD, 2005), state #@ts the natural
evolution of OO. Traditional approaches like OO do not deithwrosscutting concerns
in a suitable way. In other words, OO decomposition is unebéscapsulate crosscutting
non-functional requirements, leading to tangling andtecaig in the handling of these

38

void applyCharges
(Account acct,
BankLedger ledger)

|| acctdeductCharges() | void transfer
‘ Mp@dger.chqgtChares (int amount, Account acc
{| [~ transaction.commit() |

oIt |)
acct.credit(amount) | void applyinterest
| debit(amount) (Account acct,
5 ATt BankLedger ledger)

-

Figure 2.2: Scattering: same code in multiple places (CLAREANIASSAD, 2005)

requirements. AO analysis and design have emerged fromsihect-oriented program-
ming (KICZALES et al., 1997). According to Clarke and Baniass2005) there are two
different approaches in AO, which follow the software comsigion presented in (HAR-
RISON; OSSHER; TARR, 2002)i) asymmetricwhich separates aspects from the core
functionality; and(ii) symmetri¢ which treats separated concerns at the same hierarchy
level, i.e. aspects and base concerns have the same imgrtéhis work follows the
asymmetric approach for AOD.

Following, the basic AO concepts, which are based in (SCHRHBBER et al.,
2006) and (BERG; CONEJERO; CHITCHYAN, 2005), are presenfEdese concepts
have a broader scope compared with those presented in (KIE&Aet al., 1997), which
are closer to programming languages than to general cancBp work is based on the
following AO concepits:

e Aspectsrepresent units of modularization for crosscutting conser.e. they can
encapsulate into a single entity all structural and/or leemal element of a cross-
cutting concern;

e Adaptations specify how concerns are adapted (i.e. enhanced, replacesden
deleted) when an aspect affects them. There are two kinddaptations:

— Structural adaptationsepresent modifications in the structure of a concern,
e.g. adding a new attribute or method to a class, or modifytregformal
parameters list or the return type of a method;

— Behavioral adaptationspecify changes in the behavior of a concern, e.g. in-
serting a specific behavior before or after a message passingplacing an
entire behavior for another one;

e Aspects weavingis the composition process that spreads aspects adagtation
affected concerns. In other words, aspect adaptationspglesd at specific join
points of the affected concerns;

¢ Join points are well-defined places in the structure or behavior of corecevhere
an aspect can perform adaptations;

e Pointcuts are links between aspects adaptations and join pointsheg.are spec-
ified within an aspect to indicate the places where the aspast perform a given

39

adaptation. Usually, this relationship betwestaptationandjoin pointsis one-to-
many, that means, oraglaptationto one or manyoin points In addition, pointcuts
also specify aelative positionthat indicates if the adaptation should be applied
before after or aroundthe join point.

2.4.4 Evaluating the Design with Metrics
2.4.4.1 Introduction

A high quality systems is the goal of all designs. Hence, iinigortant to have mech-
anisms to allow the assessment of a design in order to vesfguality in terms of a
given set of characteristics. Such mechanisms should geayuiantitative information
to permit a more precise evaluation (SOMMERVILLE, 2001)rtRealarly, considering
distributed embedded real-time systems design, measatamechanisms must derive
numeric values for some attributes of both hardware anavaodt designs. As previously
stated, the design of distributed embedded real-time \ste becoming software dom-
inated, shifting the costs in development, validation asd from hardware to software.
For this reason, despite the importance of metrics extmador hardware designs, this
section will only discuss software metrics.

In the software engineering literature, there are seveedtios and evaluation frame-
works to extract quantitative information from softwareadh of these works aims at the
evaluation of different system characteristics. This pegsents a brief description of two
of these works:(i) the C&K metrics suite; andii) the assessment framework for AO
systems from Sant’anna et al. (2003).

2.4.4.2 C&K Metrics Suite

The C&K metrics suite (CHIDAMBER; KEMERER, 1994) was propdgo measure
the main factors affecting OO software quality, i.e. alittoam, encapsulation, and inheri-
tance. These metrics have been used in many works, incltickngvaluation of software
for NASA's aerospace systems (ROSENBERG, 2003). C&K metie composed from
six measurements:

e Weighted Methods per Class (WMC)counts the number of methods implemented
within a class;

e Depth of Inheritance Tree (DIT) indicates the maximum depth in the classes hi-
erarchy tree, i.e. the number of levels from a class to theritdnce tree top;

e Number of Children (NOC) represents the number of immediate sub-classes that
have the same parent class;

e Coupling Between Object Classes (CBOgounts the number of other classes as-
sociated to a given class;

e Response for a Class (RFCindicates the number of methods that can be poten-
tially invoked in response to a message received by an objecgiven class;

e Lack of Cohesionin Methods (LCOM)uses the degree of similarity among method
pairs of a class. It uses the set of attributes, which areeghzatween two methods,
to calculate class cohesion. It counts the number of empsgy(se. the number of
method pairs that do not share the same attributes set) rhieusumber of non-
empty sets (i.e. number of method pairs that share at leasttribute).

40

Table 2.1: Metrics influence in quality attributes

WMC | DIT | NOC | CBO| RFC| LCOM
Comprehension X X X X
Maintainability X X X
Reusability X X X X X
Testability X X X X

Only the numbers provided by the measurement of system deaistics are not
enough to assess the quality of a design. These metricscsheuklated with each other
in order to allow their analysis, and hence, to determinégdeguality. Table 2.1 repre-
sents the relationship among C&K metrics and quality aiteb that are being evaluated.
Marked cells indicate that a metric influences the qualitylatte.

Although the goal is usually to minimize metrics values, hbsld be highlighted
that DIT and NOC metrics do not follow this goal. A higher DIficreases complexity,
however it improves reuse. Likewise, a higher NOC leads tmarease in the effort for
testing (because more classes should be tested) but alsoviespreuse. Therefore, it is
not useful to read metric values or quality attributes inggon. They should be analyzed
along with other metrics or quality attributes in order tsess which are more important
to design goals, and consequently, to make trade-offs teweethe desired quality.

2.4.4.3 Assessment Framework for AO systems

Sant'anna et al. (2003) have proposed an extension for C&Kicseo allow the
evaluation of OO and AO systems. Additionally, an assessimemework was proposed
to assist in the analysis of metrics values extracted froensifstem. To allow the use
of the same metrics set to evaluate systems developed usiegedt paradigms, it is
necessary to homogenize the way to obtain these metricevatuorder to take into
account abstractions provided by such paradigms. Thud;aBaa et al. (2003) treat
aspects, classes and interfaces@saponentswhile methods and aspects adaptations are
calledoperations Following, the metrics set is presented:

e Separation of Concerns metricameasure the ability to encapsulate the handling
of a concern. They are divided in the following metrics:

— Concern Diffusion over Components (CD&unts the number of components
(i.e. aspects or classes) engaged in the handling of aedacern;

— Concern Diffusion over Operations (CD@dunts the number of operations
(i.e. methods or aspect adaptations) related to the hanafia concern;

— Concern Diffusion over LOC (CDLOG)punts the number of transition points
for each concern in the source code, i.e. code lines areativid fragments
(where each fragment handles only one concern), thus ti@msifrom one
fragment to another are counted;

e Coupling metrics measure how dependent an element is regarding other sgstem’

elements. Two metrics compose this group:

— Coupling between Components (CBi€)an extension to CBO from C&K
metrics. It counts the number of other components that anpled with a
given component. For classes, CBC is similar to CBO, howaweaspects

41

Quality Factors Internal Attributes Metrics

Reusability
Maintainability

Figure 2.3: Quality model proposed in Sant’'anna et al. (2003

CBC counts other classes that are specified within adaptatiba component
is coupled more than once with other component, it is couoidyglonce;

— Depth of Inheritance Tree (DITi$ an extension to DIT from C&K metrics by
means of including the aspects inheritance tree;

e Cohesion metrics Cohesion is the closeness measure for the relationship of a
component with its internal elements. It is translated lgyftllowing metric:

— Lack of Cohesion in Operations (LCO@)similar to LCOM of C&K metrics.
The difference is that, in addition to methods, adaptatamesalso taken into
account;

e Size metricsmeasure the size of the model:

— Vocabulary Size (VS®punts the number of system components, i.e. the amount
of classes and aspects;

— Lines of Code (LOCgounts the number of lines of code;

— Number of Attributes (NOAgounts the internal vocabulary of each compo-
nent, i.e. the number of attributes of each class or aspect;

— Weighted Operations per Component (WOfasures the complexity of a
component in terms of its operations, i.e. the sum of coniylexf each
method and/or adaptation. The measure for operation cattyple obtained
by counting the number of parameters of the operation, assyiimat an oper-
ation with more parameters than another is likely to be moregtex. WOC
extends C&K metrics’ WMC because WMC considers the compjdxrr all
method being equal to “1”;

In addition to the presented metrics set, Sant’anna et @03Rdefine relationships
among metrics to assess the quality of reusability and riaiaibility for a system. The
assessment framework defirgsalitiesthat are divided irfiactors which in turn are split
into internal attributesassociated witlmetrics Figure 2.3 shows these relationships.

Reusability and maintainability qualities of a system candefined by two factors:
understandability and flexibility. The understandabitédgtor is obtained through separa-
tion of concerns, coupling, cohesion and size attributepagtion of concerns directly
affects the understandability of a system, because the lnoatized concerns are, the
easier is to find and to understand them. Cohesion and cgupliiicate the level of in-
dependency of one element regarding others. The more indepean element is, the
easier is to understand it. Model size impacts on underataliy due to the amount of

42

elements that should be understood. For the flexibilitydia¢he key attributes are cou-
pling, cohesion, and separation of concerns. A compondlexple if it is independent
or almost independent of the rest of the system, meaningtthgiresents a specialized
part of the system with a specific and well-defined missionesEhcharacteristics are
translated into low coupling and high cohesion (i.e. it hdeva dependence on other
parts of the system) and a good separation of concernsieeamponent is responsible
for a well defined mission).

2.5 Model-Driven Engineering

2.5.1 Overview

To start the discussion on Model-Driven Engineering (MDEhould be stated what
“model” means. According to Bézivin (2005), there are maiffecent, and also contra-
dictory, definitions for the word “model”, which depends twe tontext in which the term
is used. For computing related systems, a consensual aefioit model was given by
Rothenberg (1989) as follows:

“...Modeling, in the broadest sense, is the cost-effeatise of
something in place of something else for some cognitive gagp
It allows us to use something that is simpler, safer or cheidyaa
reality for some purpose. A model represents reality forgikien
purpose; the model is an abstraction of reality in the semesgitt
cannot represent all aspects of reality. This allows us &b wéh
the world in a simplified manner, avoiding the complexitypdar
and irreversibility of reality. . .”

MDE is an approach that proposes the use of generative amsfdrenational tech-
niques for computing systems design where system implatiens are (semi-) auto-
matically derived from models or specifications. In suchrapph,modelsare used as
primary engineering artifact throughout the productidadycle (SELIC, 2003a). Ac-
cording to Schmidt (2006), MDE is a promising approach tol dath the complexity
of platforms (which is not effectively decreased by usingdfgeneration languages), as
well as express domain-specific concepts. Thus MDE combines

e Domain-Specific Modeling Languages (DSMLYormalize the application struc-
ture, behavior and requirements of a particular domain. ddeer, they define re-
lationships among concepts of the target domain, as wepedfy key constraints
and semantics related to them. DSML are described in termetzd-modelsvhose
elements represent concepts of the domain. Instances afmadels represent the
use of domain concepts within a design;

e Transformation engines and generatorswhose purpose is to “understand” the
information contained in the model in order to produce (sgatomatically other
types of artifacts, such as more detailed models, source, @nchulation inputs,
components configuration files, and others. Such tools hetpre consistency
between the specification of the system and its implememtati

An already mentioned example of standard for MDE approachtte Model-Driven
Architecture (MDA) (OMG, 2004), which was proposed by thej&b Management
Group (OMG). The set of standards supporting MDA is:

43

e Meta-Objects Facility (MOF) (OMG, 2006a), a standard for meta-models speci-
fication;

¢ Unified Modeling Language (UML) (OMG, 2008), a general purpose modeling
language for systems specification. It was built upon MOFrapdesents de facto
standard for modeling languages;

e MOF Query/View/Transformation (QVT) (OMG, 2008a), a standard defining
transformation languages requirements and operationgbmgs to allow transfor-
mations of source models into other target models that shoahform to MOF
meta-models

e XML Metadata Interchange (XMI) (OMG, 2007), a standard for metadata infor-
mation exchange, specified using a XML dialect, to allow tifierimation exchange
on MOF-based specifications, such as interchange of UML l@aeong different
tools;

e Common Warehouse Meta-model (CWM)(OMG, 2003), which provides stan-
dard interfaces that can be used to enable interchange ehaase and business in-
telligence metadata between warehouse tools, warehocaterpis and warehouse
metadata repositories in distributed heterogeneousamnwients.

The principle of MDA is to specify system functionality ugiaPlatform-Independent
Model (PIM) using an appropriate DSML. PIM provides a system dpetion that is
suitable for deriving system implementation for differéatget platforms. Further, this
PIM is translated to ®latform-Specific ModdPSM), which, on the other hand, provides
a platform specific viewpoint of the system, i.e. it combitiesspecifications in the PIM
with the details specifying how that system uses a partidylze of platform. In order
to enable this transformation (or mapping)Pktform Model(PM) must be provided.
The PM provides a set of technical concepts, representadifferent kinds of parts that
make up a platform and the services provided by that platfdéradso provides concepts
representing the different kinds of elements to be usedaisplecification of how platform
should be used by the application.

2.5.2 MARTE UML profile

UML was created to be a general purpose modeling languagsoftware develop-
ment. Its wide acceptance makes it an interesting optiantaldesign distributed embed-
ded real-time systems. However, UML lacks suitable corsibus/abstractions to repre-
sent specific concepts of embedded and also real-time systemains. The first attempt
to overcome such deficiencies was the UML profile for Schedilitia Performance, and
Time (SPT) (OMG, 2005b). SPT provides concepts to allow notidel-based schedula-
bility and performance analysis, and also a rich frameworkodel time and time-related
mechanisms. However, according to Gérard and Selic (2@3®griences in applying
SPT revealed shortcomings within the profile in terms of xigressiveness for modeling
real-time and embedded phenomena. The amount of issues BRM profile resulted
in a Request for Proposals (RFP) for a new UML profile for siyewj embedded and
real-time systems. Consequently, a new profile naMedeling and Analysis of Real-
Time and Embedded syste(MARTE) (OMG, 2008b) was proposed. It was accepted by
OMG in July 2007 and is in the finalization process.

44

I
MARTE Foundation
<<profile>> <<profile>>
1~ 21 | Non-Functional <<profile>> <<profile>> Generic Resources | [€ 1
L Properties Time Allocation Modeling |
<<us ‘ >> (NFP) (GRM) <eusg>
|
" |
MIARATE PrEsim (ot Real-Time and Embedded Analysis
<<profile>>
<<profile>> <<profile>> _ <P)
Generic High-Level Generic Quantitative Analysis Model
Component Model Application Modeling (GQAM)
(GCM) (HLAM) w w
ﬁ |<<use>> ﬁ |<<use>>
<<profile>> <<profile>> <<profile>> <<profile>>
Software Resource Hardware Resource Schedulability Performance
Modeling Modeling Analysis Modeling Analysis Modeling
(SRM) (HRM) (SAM)
MARTE Annexes
<<profile>> —1 <<profile>>
Value Specification <<modelLibrary>> Repetitive Structure
Language MARTE Library Modelin
(VSL) (RSM)

Figure 2.4: Overall MARTE architecture (OMG, 2008b)

The MARTE profile addresse§) new elements to UML 2.x are proposéiily design
of both software and hardware aspects of embedded sy§ignigroader schedulability
and performance analysis capabiliti@s) specification of embedded systems characteris-
tics, such as memory capacity and energy consumpfigsupport to component-based
architecturesyvi) other computational paradigms, such as asynchronoushsymaus,
and timed; andyvii) compliance with the UML profile for Quality of Service and fau
Tolerance (OMG, 2008c). An overview of MARTE profile is prasal in figure 2.4.

As can be seen, MARTE profile is composed by four packa@eMARTE Founda-
tion; (i) MARTE Design Model{iii) Real-Time and Embedded Analysis; dnd MARTE
Annexes. TheMARTE Foundatiompackage provides a domain-specific meta-model for
core concepts MARTE, as well as their characteristics alatioaships among such con-
cepts, i.e. it defines the semantics base for the DSML pravigethe profile. Elements
of this package are shared among other packages.

In fact, MARTE is intended to cope with two concerns: modglof real-time and
embedded systems features, and to support analysis offsgsdpertiesMARTE Design
Modelpackage provides first-order language constructs to spemtiel expressing spe-
cific phenomena of real-time and embedded systems. It apatform modeling in terms
of software (se&oftware Resource Modelif§RM) package) or hardware (Sdardware
Resource Modeling (HRM) package) platforms. According trdd and Selic (2008),
MARTE sees platforms as a set of resources, possibly comg@ffiser-grained resources
into a hierarchical manner, in which each resource offelsast one service. A resource
IS seen as a service provider with finite capacity, which Ipgames from physical lim-
itations of the underlying hardware (e.g. memory capabayndwidth, processing power,
etc.). Considering software platforms, SRM package pewid model-based view for
concepts provided by RTOS API, such as semaphores and centtasks (or processes).
On the other hand, regarding hardware platforms, HRM pazkagvides concepts to as-
sist software design and allocation by providing a higreldardware description model
instead of using block diagrams. Additionally, conceptvipded by HRM assist in the

45

ackage Timel[[
P 9 [! <<stereotype>> @l <<stereotype>>
<<stereotype>> [z <<stereotype>> @ ClockType TimedValueSpecification
TimedDomain Clock —nature : TimeNatureKind [1] —interpretation : TimelnterpretationKind [0..1]
—standard : TimeStandardKind [0..1] —pnltType : Enumeration [0..1]
—isLogical : Boolean [1] = false
—on | 1.* —resolAttr : Property [0..1]
<<stereotype>> 1 —maxValAttr : Property [0..1] <<stereotype>>
MARTE_Profile::NFP:: T -offsetAttr : Property [0..1] TimedInstantObservation
. _Unit YP€ |—getTime : Operation [0..1]
ni o1 —setTimel : Operation [0..1] —obsKind : EventKind [0..1]
= . - —indexToValue : Operation [0..1]
convFactor : Real [0..1] <<stereotype>> P [0.1]
—confOffset : Real [0..1] TimedEl . B
o : imedElemen
baseUnit [0..1] D < — <<stereotype>>) d<<ste_reotyl:)e>> !
= <<stereotype>> TimedObservation | TimedDurationObservation
<<stereotype>> TimedProcessing —obsKind : EventKind [0..2]
ClockConstraints —

0..
<<stereotype> _duration <<metaclass>>

" . UML Standard Profile::UML2 Metamodel::Classes::Kernel::
TimedConstraints 0.1 s
—every ValueSpecification

—interpretation : TimelnterpretationKind [0..1]

J7 ~Start 0.1
0.1 .1 0.1 | -Finish
<<stereotype>> P
MARTE_Profile::NFP:: <<stereotype>> UML Standard Profile::UML2 Metamodel::CommonBehaviors::Communications::
NfpConstraint TimedEvent Event
—kind : ConstraintKind [0..1] ~repetition : Integer [0..1]

Figure 2.5: Stereotypes of Time profile (OMG, 2008b)

analysis of real-time and embedded properties, and alsarohware models simulation,
which depends on the description detail level and simutadiccuracy.

Model-based analysis is supported by Real-Time and Embedded Analysackage,
which provides a foundation for applying transformatiors UML models into a wide
variety of analysis models. According to OMG (2008b), Generic Quantitative Anal-
ysis Modeling GQAM) defines basic UML extensions needed to decorate UMHets
in order to perform any kind of analysis. Currently, two ksnof analysis packages are
provided, namel\Schedulability Analysis ModelinGAM) and Performance Analysis
Modeling(PAM) packages. The former provides stereotypes to alldhwedelability anal-
ysis, while the later provides stereotypes for performaaraysis.

Due to their importance to this work, two packages ofMA&RTE Foundatiopackage
need to be detailed. The first one is themepackage, which provides a general framework
for representing time and time-related concepts. MART Epéglbme models that rely on
partial ordering of time instants. The temporal orderingethavior activities can be repre-
sented in many ways, depending on the level of precisionimeduThere are three main
classes of time abstractioffi) causal/temporalwhich concerns only about instruction
precedence/dependengyy) clocked/synchronoysvhich adds the notion of simultaneity
and divides the time scale in a discrete succession of itsst@i) physical/real-time
which demands accurate modeling of real-time durationesl&tereotypes available in
Timepackage are shown in figure 2.5.

A C ock exists in ali mneDomai n and gives access to time at a certain resolution.
Ti medConst r ai nt represents a constraint (instant or duration value) agtsatiwvith
a model element bound to@ ock, while Ti nedEvent represents an event whose
occurrence is explicitly bound to@ ock. Theevery property specifies the duration
between successive occurrences, thus indicating a peewdnt.Ti medPr ocessi ng
represents activities having known start and finish times, kmown duration, which are
bound to &Cl ock. For a detailed description of the other stereotypes, reade referred
to (OMG, 2008b).

Another important package is tii&eneric Resources ModelifGRM), which offers

46

ackage Generic Resources Modeling (GRM o J
packag 9 (GRM) [||] <<stereotype>> <<stereotype>>
Resource ~SubUsages ResourceUsage
B
—resMult : Integer [0..1] —execTime : NFP_Duration [*[{ordered}
<<stereotype>> —isProtected : Boolean -msgSize : NFP_DataSize [*|{ordered}
MutualExclusionResource —isActive : Boolean —allocatedMemory : NFP_DataSize [*|{ordered}
= . ize [*]
—protectKind : ProtectProtocolKind = Prioritylnheritance A * usedMemory - NFP_DataSize [{ordered}
S —powerPeak : NFP_Power [*|{ordered}
—ceiling : Integer ~UsqdResources - NFP_Energy [{ordered}
—otherProtectProtocol : String .) - fad
—isProtected : Boolean = true{readOnly} ~protectgdSharedResources
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
CommunicationEndPoint SynchronizationResource ConcurrencyResource SchedulableResource =Viftual
Progessin
—packetSize : Integer —schedParams : SchedParameters Units
—isActive : Boolean = true{readOnly} —"T——
<<stereotype>> 0.
<<stereotype>> . 0.*
N ProcessingResource "
DeviceResource A —ProcessingUnits —-SchedulableResources
—speedFactor : NFP_Real 0
—Host —Schegduler
<<stereotype>> 0.1 <<stereotype>> o1 0.1 0..1
i i It — — il .
CommunicationMedia ‘mainScheduler| ComputingResource € y] <<stereotype>>
—elementSize : Integer ost Scheduler
—isPreemptible : Boolean = true
<<stereotype>> <fSTere°type>> <<Stereotyp.e>> —schedPolicy : SchedPolicyKind = FixedPriority
TimerResource — TimingResource GRService -ot}:]erdsclhedgoncy ;Es"mg)
~ B -schedule : OpaqueExpression
~duration : NFP_Duration owner : Resource [0..1] ?
—isPeriodic : Boolean —~Dependent
<<stereotype>> <<stereotype>> <<stereotype>> Scheduler
<<stereotype>> <<stereotype>> Acquire StorageResource SecondaryScheduler
ClockResource Release - - - 0.1
—isBloking : Boolean —elementSize : Integer

Figure 2.6: Stereotypes of GRM profile (OMG, 2008b)

concepts to model a general platform for executing reat-é&embedded applications. Ac-
cording to OMG (2008b), this package allows the modeling>afcaiting platforms at
different levels of details. Figure 2.6 depicts the steypes available in GRM package.

The central concept of the GRM package is the notionRégour ce, which repre-
sents a physically or logically persistent entity that tffene or more services. There are
many types of resources such @s,n ngResour ce representing a hardware or soft-
ware entity that is capable of following and evidencing thegof time.Concur r ency
Resour ce andSchedul abl eResour ce represent protected active resources that can
perform their activities concurrently with others. Therfar indicates resources, which
take their processing capacity from a potentially différ@onput i ng Resour ce en-
abling physical or logical concurrency. On the other hahe Jater only allow logical con-
currency because it competes for processing capacityRsfacessi ng Resour ce
with otherSchedul abl eResour ce elements. ASchedul er coordinates the access
to thePr ocessi ngResour ce from all Schedul abl eResour ce elements associ-
ated to it. A resource makes use of a service from other resdyr means aAcqui r e
andRel ease. The former represents the allocation of or the access t@ Samount”
from the resource, while the later represents the de-dltotar liberation of the allo-
cated resource. The control of concurrent accesses to camesources at run-time is
performed by avut ual Excl usi veResour ce. Other kinds of resources can be rep-
resented using the GRM package. For more details see (OMiBH20

47

3 STATE OF THE ART ANALYSIS

3.1 Introduction

According to SANGIOVANNI-VINCENTELLI (2003), to raise thabstraction level
used during design of digital systems is fundamental to mpartbe increasing design
complexity, leading to costs decrease and designers ptietijppyemprovements. In em-
bedded system projects, many languages considered aslévigih languages (e.g. Sys-
temC or System Verilog) cannot suitably deal with importaguirements such as tem-
poral predictability of an application. To increase desigh productivity and also de-
crease the amount of eventual errors caused by inconsigpectfications or require-
ments misunderstanding, project focus should move froernme¢diate levels to higher
levels of abstraction, as well as to separate the handlifignational requirements from
non-functional ones.

Many researchers propose to rise the abstraction level ing msodels as first-class
elements during whole design of distributed embeddedthea-systems. However, only
using models does not assure an improvement on design gneesiproductivity. There-
fore, to achieve the benefits from using model-driven temines, a methodology is very
important. Hence, some side effects, such as lack of synghyetween models and im-
plementation, can be decreased or even avoided. Addilyprtaé methodology must
provide a smooth transition from high level specificatiae.(imodel) to implementation
of the distributed embedded real-time system, and alswslloe reuse of artifacts created
and tested in previous designs.

This chapter discusses the state of the art in the desigrswoildited embedded real-
time systems. It presents methodologies and modeling igebs, as well as code gener-
ation approaches to produce source code from model, andhtpyment of separation
of concerns in the handling of requirements.

3.2 Design and Modeling Approaches

3.2.1 Overview of Related-Work

This section discusses traditional methodologies (i.@se¢methodologies using OO)
applied to the design of distributed embedded real-timeéegys. The presented ap-
proaches use a higher abstraction level in terms of UML n®teproduce the initial
specification of the structure and behavior of distributedbedded real-time systems.

Schattkowsky and Mueller (2004) have proposed a MDA-basethod to specify
and execute embedded real-time systems. Their approaplorssigsystem specification
using class diagrams, state diagrams, and sequence deafjramUML 2.0. In the class

48

diagram, designers specify classes, as well as theiraiskand operations. Each class’
operation is considered a state machine. Different seguéiagrams are associated with
different states of a state machine in order to describee¢havor (i.e. actions sequence)
that must be executed within a state of the state machineeXdwmition environment sup-
ports state machines composed of simple or composite sta@sver, concurrent states
are not supported. Asynchronous calls to methods lead tmstentiation of a new state
machine, which executes its behavior concurrently witeogtate machines. Another re-
markable feature of that work is that interruptions and pkoas can be specified within
state machines, i.e. external devices such as sensorsmamgeexternal signals that are
perceived by the runtime environment. In order to executdeis that work proposed
the Abstract Execution PlatforfAEP) (SCHATTKOWSKY; MUELLER; RETTBERG,
2005), which is a stack-based machine with instruction toimdate OO constructions
expressed in the UML model. The produced models are “comtipitgenerating a binary
code that runs in the AEP. In fact, according to the authoER /s a virtual machine that
can be implemented in both software and hardware, simitardyJava Virtual Machine.

Arpinen et al. (2006) present a technique to execute emldedpplications spec-
ified with UML 2.0 in configurable multiprocessor systems. pigation is specified
using UML 2.0 diagrams, which are decorated with stereotiypm the TUT-profile
(KUKKALA et al., 2005) providing concepts of embedded réate systems to support
automatic transition from UML models to the SoC implemeptat The design flow
starts with the application architectural descriptioreafled with class and composite
structure diagrams, defining system elements in terms opooents interconnected by
ports. System behavior is expressed in terms of state maghivhich represent applica-
tion tasks. The next step is the architectural exploratimch is responsible to allocate,
map and schedule tasks into different processors. Foltpvifre design flow is split into
two branches: code generation of application software datfopm synthesis. State ma-
chines are transformed intextended Finite State Machin¢EFSM) in order to allow
C code generation. Composite structure and class diagreengsad to configure the
platform, allowing the needed VHDL code generation. Arpir al. (2006) presents a
case study, which shows the implementation of a MAC protéaoWireless networks.
That application has been implemented using four Altera@sNI processors and three
hardware accelerators interconnected through a HIBI conication architecture.

Other work that uses UML as modeling language is presentéNGUYEN et al.,
2004). That work presented an approach to transform UML itisdde SystemC code,
allowing system simulation. For system description, cldisgrams and state diagrams
decorated with stereotypes indicating SystemC constmstare used. According to
Nguyen et al. (2004), class diagrams represent a systemnrs tef components, and
how these components should be interconnected with eaehtotprovide system archi-
tecture. Thus, classes are used to describe computatiotité € having a runtime state
and an associated behavior that modifies their state. Irsémse, classes within a class
diagram are decorated with stereotypes representingrB¢sééements, such as modules,
interfaces, ports and channels. Each state diagram desc¢hié behavior of a single com-
ponent (i.e. a class), in which composite states (@aitt-stateegions) are used to model
concurrency. Actions can be associated with the entry draéxa state, as well as with
state transitions. That approach follows the semantickefXML specification for state
machines, i.e. a state transition is triggered by an evelgtiball guard conditions are
true. As a consequence, within a system UML model, all astenmd guard conditions
are textual descriptions using SystemC syntax.

49

Riccobene et al. (2005) presented a proposal to modify tizdasign flow used by
STMicroelectronics. The original design flow starts witqugements specification using
natural language. These requirements guide the spe@faaitexecutable models, which
capture all expected behavior in a platform independehtdas After this step, the design
flow is split into two concurrent phases: hardware and so#wigsigns. Although their
concurrent nature, these separate designs must interagtria steps to achieve system
final implementation. Riccobene et al. (2005) argue thatydigg UML, it is possible to
improve the process in the sense of standardizing exeeufdbls, and hence, improving
communication between designers teams, which can shatetvdedge about system
functionalities and requirements. Therefore, from thegiefiow splitting, each team
can decorate the executable PIM with profiles suitable tdatsain: the hardware team
use a SystemC profile proposed in (RICCOBENE et al., 2005)ap bML constructs
into synthesizable code; while the software team can usefdepmore suitable to the
programming language used to implement functionalitias will run on hardware units
created by the hardware team. Adopting this approach, ibssiple to use code gen-
eration tools for both designs. To model the system, thevielig UML diagrams are
employed:(i) class diagram to describe components types, as well asttr#iutes and
operations{ii) composite structure diagram to specify used componerés,ghrts and
interfaces{iii) sequence diagram to create testbenches{iaphdtate diagrams to repre-
sent the behavior of each operation. In that paper, a snsdl sidy has been presented,
consisting of a FIFO-based producer/consumer, which iseamented as hardware using
a UML 2.0 model decorated with stereotype of authors’ Sy&iqmofile.

Other interesting work is the Metropolis project (BALARIN &., 2003), which pro-
vides an infrastructure, a toolset, and a design methodla@a & uniform representa-
tion for heterogeneous components of an embedded systesndénto accomplish such
approach, Balarin et al. (2003) propose the separation mpatation and communica-
tion specification, by means of isolating computation elenfitom communication ones.
Hence, elements reuse can be improved. The infrastructoedsa meta-model allowing
the representation of several computation and commuaitagmantics at different ab-
straction levels, using different computation models his tvay, a meta-model represents
a set of processes interconnected by interfaces commiungaatough different medias.
Processes have their own properties and constraints. &@keaution is controlled by a
scheduling policy. Furthermore, Metropolis methodologggests an approach that uses
successive refinements, in which more details are incoigdrdo depart from higher
abstraction levels until arrive to system implementatigkccording to GSRC (2002),
Metropolis project has different methodologies applieatd different domains, which
are concerned with special characteristics of their ownalopbeing very different from
other domains. By December 2008, there are five domainsg#weir own methodology:
fault tolerant data flows in automotive systems; multimpdiaeless communication and
sensor networks; microprocessor modeling and analogthsiigal systems. In order to
support such diversity of methodologies, some principlastrbe followed{i) functional
decomposition, i.e. in the highest abstraction level, tysen is considered a single
process, which is decomposed in a set of concurrent praséssdetween two commu-
nicating processes, there is always an extra process, \hielponsible to transform (or
adapt) the values from the output of one process to the irfgbhemther oneiii) for each
communicating process, a media, which defines communicagmantics, is associated,;
(iv) in addition, each communicating process is enclosed by pperaconnecting it to
the mediajv) at each refinement step, a media is replaced by a set of pescasd me-

50

Design Problem

Formulation
(Use Case Diagram)

Funtional Specification Platform Specification
(Class, State Machine, (Class, Components,
Activity, Sequence Diagram) Deployment Diagram)

¥

Communication
Refinement
Mapping

Metropolis
Metamodel

HW/SW
Synthesis

Figure 3.1: Methodology for Multimedia Systems availaliéMetropolis (CHEN et al.,
2003)

dias, adding more details on the communicatigu} finally, the specified elements are
mapped into architectural components (i.e. hardware twsoé components) of the cho-
sen platform. Figure 3.1 shows the methodology used in tHeémeadia domain. In such
methodology, UML diagrams are decorated with stereotypas fJML platform profile
(CHEN et al., 2003), which defines elements of Metropolisastructure and also some
models of computation. Thus, model elements represemtrdift concepts of the selected
model of computation. Further, model refinement is perfartoenap model element into
platform elements that are available in a repository. Riéyaen Davare et al. (2007), an
extension named Metro |l has been proposed. It involvesnipeavement of Metropo-
lis framework in terms of three features: heterogeneousiport, orthogonalization of
performance from behavior, and design space exploration.

HASoC (Hardware and Software Objects on Chip) (EDWARDS; GRE2003) is
an OO methodology, which is partially based on RUP (KRUCHTEQDO) and provides
an incremental and iterative design flow for embedded re@d-systems. It suggests the
design must start with the specification of a UML model vakdiausing aruncommit-
ted modelwhich represents an abstract execution model where sljeemnot associated
with a given implementation, be it as hardware or softwarequRements are specified
by means of use case diagrams, in which each use case isatisdowith at least one
sequence diagram that indicates an execution scenariic &ta dynamic system struc-
tures are specified using, respectively, class and objegisains. Once system specifica-
tion is finished, the produced model is partitioned into hanek and software components
producing the so-callecommitted modelThese components are mapped into implemen-
tation platforms, which are reused from a platforms repogipreviously developed and
tested. Further, this model is refined in order to includatamdhl implementation details,
which must respect design constraints. In this step, theviotg platforms are selected:
interfaces between hardware and software objects, i.écaldvivers; and available hard-
ware components, e.g. processors, memories, commumdaiges. At the end, selected
components integration is performed, leading to the finslesy implementation.

An iterative MDE method, which combines semi-formal andral notations, for
fault-tolerant distributed embedded real-time systeraed Method C is presented in
(PERSEIL; PAUTET, 2008). The aim of this method is to keepdbeelopment “con-
tinuum”, whose concept is defined as “...the continuity leetwdifferent software de-
velopment lifecycle steps without any logic or semanticalireo that they are at an ef-
fective level of automation. ...” Method C proposes thatgjagtween abstraction levels

51

High-level Model

Requirements Functional o
Specification Specification D validation

—
- Systen_] Algorithms &
Exploration Models Library

< ||High-level Executable —
Component Description validation
Library
— Architectural
@nation Platform xploratiol
Library
Macro-architecture
/ with Fun(_:tlonal validation
Mapping
I

V\éﬁgg‘}iggon Communication Micro-architecture PlTeSt,
i . anning
Generation Synthesis Synthesis

> V't v
[Software] [Micro-architecutre] D validation

Figure 3.2: SEEP design flow

should be fulfilled by means of model transformations usirgaymodels of the adopted
languages. Languages supported in this method are UML anBT&Aprofile, AADL
(SAE, 2006), and +CAL (LAMPORT, 2007). UML diagrams decedtwith MARTE
profile stereotypes are used to specify application elesrtbiat may also be related with
real-time domain concepts (e.g. tasks, timers, semaphetey On the other hand, be-
havior is specified using formal semantics (e.g. Petri Natsyided by both AADL and
+CAL. The former allows the description of software and leack parts of the system,
while the later is a formal action language to be used wittatesor activity diagrams.

The SEEP project (portuguese acronym$astemas Eletrénicos Embarcados basea-
dos em Plataformg@4LSE, 2003) proposes a methodology that integrates desigrest
of embedded systems considering a wide range of requiraméné proposed methodol-
ogy encompasses the whole design cycle, from system mgdeding UML to the gener-
ation of embedded hardware and software components. F3gRishows the design flow
proposed in SEEP. Design starts with requirements spédaificas well as description of
expected functions using high abstraction level UML modélke next step is system
exploration, in which designers can select different atbars to perform the expected
functionalities meeting application and design requiretseFollowing, an architectural
space exploration phase takes place. In this phase, dddigmetions are mapped to dif-
ferent hardware components that must also respect regemtsmThe automatic genera-
tion of hardware and software components, which is basebdefuhctionalities partition
performed in previous phases, happens in the next step.efdrnt of the design cycle,
the embedded real-time system, which performs the apicdbr which it has been
designed, is obtained.

3.2.2 Discussion

Works presented in this section advocate the use of stat@iagdages as UML to
specify the structure and behavior of embedded systemsigld$ass diagram for spec-
ification of system static structure is a well-establishpdraach, as well as using state
diagrams to specify behavior. Most of the presented workgsdosuch diagrams. How-

52

ever, sometimes the use of state machines is not a suitaitetéospecify behavior be-

cause it is not that easy, for example, to understand cogruactivities or non-reactive
system behavior. Furthermore, other issue, which is ntdiska to behavior specification
in models, is the use of textuaktion languageso describe actions performed within
each state. This makes the behavior description closer torguter program (written

using a programming language) than to a graphical reprasenthat may be easier to
understand.

Each of these approaches, excluding Perseil and Paute®)(20@poses their own
profile to decorate UML diagrams in order to provide speci@imantics to modeled el-
ements. Such situation hinders the exchange of informaitiothe modeled system be-
tween design teams, mainly if one of the involved teams doe&mow the proprietary
profile. This problem also happens during code generatiaie@eneration tools must
be aware of the profile semantics in order to produce sourde mpresenting the pro-
file’s stereotypes semantics. Semantics standardizatienms of UML profiles is a good
approach to deal with the mentioned problems.

As can be observed, most of the presented works do not decifisply with the
design of distributed embedded real-time systems or stgsattae handling of functional
requirements from non-functional ones. Although not diearated, the work proposed
by Balarin et al. (2003) may deal with distributed functibiias due to their proposal for
using higher abstraction levels to specify communicatigartfrom computation. Addi-
tionally, considering the other mentioned approacheg,wioak was the only approach
separating requirements from distinct natures, i.e. cdatjmn and communication.

As this work is inserted in the context of the SEEP projecke ofits goals is to
support a mechanism for separation of concerns in the handl requirements from
initial design phases, while in the same time supportinglteibution of functionalities
over different processing units. To accomplish this gdag work proposes adaptations
in SEEP design flow as described in the Chapter 4.

3.3 Separation of Concerns in Requirements Handling

3.3.1 Introduction

This section discusses methods and techniques for moztian in requirements
handling, focusing on the separation of the handling of fiemal requirements from
non-functional ones during the whole development cycleth&tbeginning, this section
presents some proposals applied to general-purpose s/stermon-embedded systems.
Afterwards, other approaches that apply such separaticorafern in the design of em-
bedded real-time systems are also discussed.

3.3.2 Separation of Concerns in General Systems Developnien

Stein et al. (2002) propose tiespect-Oriented Design ModelirigODM) approach
to represent concepts of Aspectd, an AO programming larggpegposed by Kiczales
et al. (1997), within UML diagrams. Aspects are represeliedlasses annotated with
«aspect » stereotype, as shown in figure 3.3a, and can speafyces introductions
andpointcuts Two kinds of adaptations are supported: structural and\aeral adapta-
tions. Structural adaptations, which are calieloductionsin AspectJ terminology, are
specified in the class diagram by means of attributes or tpasaspecification, which
will be inserted in classes whose structure is affected byagpect. As can be seen in

53

——————————— [niiinivintalatviniuintulisiniulrintriniulai
_ caspech (b) _-~"«introduction» ™~ «containsWeavinglnstructions» |
SubjectObserverProtocol s 'Bas: eType {base=BookCopy}'
{instantiation=perJVM} 7 BOOKICOPY S == !
{base=undefined} 7 «interface» |1 S
{privileged=true} 4 " i \
T) / Subject ! BaseType \
1
lpointcut» pointcut startObserver(Observer o, Subject s) ! «realizesT | getState() | |
lpointcut» pointcut stopObserver(Observer o, Subject s) \ ! A
advice» advice_id01 \ BaseType |i string 4
jsct9)\{base BiaieChangss)} . [+getState() |1 €777 P
advice» advice_id02 S ! -
after(Observer o, Subject s) {base startObserver(o, s)} Sso 1 ,,'/
advice» advice_id03 Rt SR L =
after(Observer o, Subject s) {base stopObserver(o, s)} ee—IIIIo .,
________ B v i _.--=77" _«introduction» | «containsWeavingInstructions» |
‘/’«immducmn{‘, BaseType _{base=Subject} | ~|_Subject P BookManager 1BaseType {base=BookManager}
_______________________ - 2ASE 1 YPE _\DRsemDooRVIanagels,
Subject L «interface» f AN
S / \
......................... / Observer i = N
_________ i i] / ~ [BaseType | [«interface»| \
/" cintroduction» }BaseType _{base=Observer}| "~ Observer !) f rvr] Subject | !
_ Obsewer T oTTTTTTTITTITISR H «realize» jupdate(Subject);] A
Sy - \ 1 > | /
=== \ BaseType i o g
Sy ™ (Syi' 5 f String Vv
~._[+update(Subjec o | €T ’
«aspect» ANS P) | String '
1 1 SN | l T -7
verPr p S~o I 1 -
— ! -
pointcut stateCl jects) B S SS
{base = target(s) &&
call(void BookCopy.return(..)) || (C) -) =~
call(void BookCopy.borrow(..)));} remotePointcut N
\
lpointeut» pointcut startObserver(Observer o, Subject s) / A\
{base = target(o) && args(s) && — BookCopy i g% ¥ kg k *3)
° . ;
call(void BookManager.buyBook(BookCopy)):} I : AuthServer DbServer !
lpointcut» pointcut stopObserver(Observer o, Subject s) +getid() i T T !
{base = target(o) && args(s) && +setid() ! ! i !
S b—— pehlasing L P resistertser ! y |
e o : omomary ! (*: String, pi P !
«introduction» 1BaseType {base=BookCopy}} - ! . . P11 _addUser i
”””””””””””””” 1 *: String) [0..%] !
BookCopy BookManager ! : g o (*: String executions |
S— : s « » |
_____________________________ +addBook(Book) \ % . Qpps
______ ! il . | T T T : String) T P
oy I BaseType { 3 +searchBook(Book) . 1 2jp
BookManager Tt +buyBook(BookGopy) ~~- :
S~ Jiteg +discardBook(BookCopy) [

Figure 3.3: Aspects and join points modeling in AODM (STElNak, 2002, 2006)

figure 3.3b, anntroductionis specified, within the context of an aspect, as a dashed el-
lipse decorated witki nt r oduct i on» stereotype, e.gBookCopyinserts the method
getState()n affected classes. On the other hand, behavioral adapsativhich are called
advicesin AspectJ terminology, are specified in sequence diagramsh shows how a
given interaction is affected by the aspect, e.g. insedingethod call into another object
before or after the affected interaction. Adviceis represented as a method decorated
with the«advi ce» stereotype (see figure 3.3a). An important part is the spatidin of

the elements affected by aspects, i.e. the specificatigpiropoints This is done using
Join Point Designation Diagram@PDD) (STEIN et al., 2006), which is a sequence dia-
gram or a class diagram that indicates model elements majeuoteal by aspects. Figure
3.3c depicts an example of JPDD that selects all methodtcellbServer.addUser()er-
formed from any object after the user registration in thénantication server. The link
between aspect adaptations and the selection of affecteteats (JPDD) is described
by pointcuts which are specified as an attribute decorated withqh@ nt cut » stereo-
type. In other words, pointcutindicates which model elements (by means of JPDD) must
be modified by which adaptatioadvice at which moment (before, after, or around). It
Is important to highlight that, as the AODM follows Aspecghsantics, structural adapta-
tions (ntroductiong are tightly coupled with the classes it affects, hindetimgreuse of
such structural adaptations.

Theme/UML (CLARKE; WALKER, 2002; CLARKE; BANIASSAD, 2005} an ap-
proach to support separation of concerns by means of caraegdnstructions called
themesAccording to Clarke and Baniassad (2005), Theme/UML is @afsproach that
supportssymmetricseparation of concerns rather thasymmetricseparation, which is
supported by most of AO approaches (e.g. AODM, AspectJ, éi§petr, and others). In
this sense, ghemeis more general than an aspect because it can represenemégof
behavior and/or structure representing a concern. In etbets, all elements related with
the handling of a concern are specified within only tr@ame One interesting characteris-

54

«subject» «SUDJECE | e .
Observer i <Subject, _aStateChange(..)> :| | Observer | i <Subject, _aStateChange(.)> |

i <Observer, update()> 1 <Observer, update()> :
e —
Observer :
N " «subject»
Subject subjects : Librjary
" + update() '
+ aStateChange() h Book
_aStateChange() observers [Vector T name Location
- notify()] ! + author + roomNumber
+ISBN + shelfNumber
aSubject : Subject anObserver : Observer + getName() + ?:r:‘z\(/)g;gz)k 0
T T ' +
StateCh. ; : + getAuthor()
astateChange() ; : + getISBN()
_aStateChange() BookManager
H H BookCopy
+ add(Book)
""" + borrow() + remove(Book)
: \ + return() + search(Book)
notify() + addView(BookCopy)
update() i \ + removeView(BookCopy)
- 7 + updateStatus(BookCopy)
""" bind[<BookCopy, {meta:isQuery=false}>,
<BookManager, updateStatus()>]

action aSubject.notify()
post all observers in aSubject::observers

(a) are sent updade() event (b)

Figure 3.4: Examples of Theme/UML models (CLARKE; WALKER)(2)

tic of that approach is that it is common to find different véesf the same element in dif-
ferentthemesi.e. certain elements and behaviors are shared among haorebheheme
To allow the representation tfhemeswithin UML diagrams, the UML meta-model has
been extended in (CLARKE, 2002). That work proposes the epinof composite pat-
terns which supports the composition/decomposition abilityuieed by symmetric sep-
aration of concerns. Making an analoggmposite patternsan be compared to UML
templates, which allow model elements be partially defined.heme/UML,themesare
specified as packages containing all concepts related toceoothat are specified using
class and sequence diagrams, as depicted in figure 3.4aditioadintegration between
themess defined by means of a binding, which indicates which elémehathemeare
affected by elements of othdreme This integration is depicted in figure 3.4b. Compar-
ing to the asymmetric approach, this is similar to the refabetween functional elements
that are affected by aspects. There are two kinds of integréte. aspect weaving): to
override and to merge concepts. In the former approach,esienistructural and/or be-
havioral) passed as parameters override associated @kemehe affectedheme On
the other hand, in the later approach, concepts of the aftetttemeare merged with
elements of the affectatiemeat the points indicated as parameters.

The AO modeling approach proposed by France et al. (2004gasés concerns dur-
ing modeling step, aiming exploring different design aitgives in a platform-independent
fashion. Such approach produces Aspect-oriented ArdbitedModels (AAM), which
consist in a base architecture model nanpeidnary modelto specify the application
model, and a set of aspect models. Both kinds of elementspa@fied as UML dia-
grams. In this way, aspects models describe how the primadehis affected by non-
functional requirements. The composition of aspects nwoitethe primary model (i.e.
aspect weaving) may cause conflicts of interests leadingg@inergence of undesired
system properties. Such situation, according to Francé €@04), can be minimized
(or solved) by means of adapting the aspects model. Furtiverraspects provide struc-

55

<<ProvidedInterface>> O AN
C1Providedinterface <ApplicationArchitecture>
<components>
+foo() <component role="c1"> ... </component>
</components>
<<provides>> <aspects>
<aspect role="trace"> ... </aspect>
<<Role>> | <&fulfills |<<Component>> <<sends>> <<Message>> </aspects> _

C1Role cl foo <compositionConstraints>

<componentCompositionRules>

-name ="c1"

<<applies to>> </componentCompositionRules>
{join point=BEFORE_SEND} <aspectEvaluationRules>
<sendMessage>
<<Role>> | fulfills |<<Aspect>> <source-comp role="c1"/>
TraceRole Trace <message name="foo"/>
<BEFORE_SEND>

<concurrent>

<aspectlist>trace</aspectList>

<<Evaluatedinterface>> <fconcurrent>

</BEFORE_SEND>
TraceEvaluatedinterface </sendMessage>

-joinpoint = ANY </aspectEvaluationRules>
</compositionConstraints>
</ApplicationArchitecture>

-name = "trace"

<<evaluates>>

Figure 3.5: CAM model represented as a class diagram (PINFKMENTES; TROYA,
2005)

tural and behavioral adaptations in the primary model $igecivith templates in class
diagrams (for structural adaptations) and collaboratimymms (for behavioral adap-
tations). It is important to highlight that, in that work,effe is no mention about how
elements of the primary model are selected (i.e. join pa@peification) to be adapted
by aspects.

Pinto, Fuentes and Troya (2005) propose an aspect- and c@mipbased approach
to separate the handling of non-functional requiremeis flunctional ones from early
specification to implementation phases during softwareldgment. This approach de-
fines transformations from UML models, which are decoratétl stereotypes from the
Com ponent-Aspect Mod@CAM) profile, to CAM models, which describes a system in
terms of components, aspects, and composition rules toengsgpect into components.
According to Pinto, Fuentes and Troya (2005), behavior ifipation is realized using
standard mechanisms of UML, i.e. state, activities, anditaraction diagrams. Al-
though important, that work does not discuss how behavimpsesented in CAM mod-
els. Further, the information described in a CAM model iscHjped with the DAOP-ADL
language (PINTO; FUENTES; TROYA, 2003), which uses ¢x¢ensible Markup Lan-
guage(XML) (W3C, 2006a) format to describe components and aspac system, and
also their relationships. An example of such XML file is giveriigure 3.5. DAOP-ADL
specifications are interpreted by a middleware platforfed@dynamic Aspect-Oriented
Platform (DAOP) (PINTO; FUENTES; TROYA, 2003), which provides a coosfion
mechanism that performs aspects weaving dynamically dimmeni.e. it performs as-
pects adaptation in the affected components while runmagpplication. In this sense,
during the weaving process, aspects see components ag timaes”. Such approach
constraints aspects adaptations to modify component bmhay means of intercepting
operation calls or event occurrences, in other words, ibipnssible to define join points,
and hence, modify internal behavior of a component.

An approach to specify Aspect-Oriented Executable Mod&BEM) has been pro-
posed in (FUENTES; SANCHEZ, 2007). This work provides a UMafite to describe

56

€) <<aspect>> <<component>> 3 | | <<pointcut>>
. Va . ! :
Persistence @ Persister ! sd ShoppmgCartUpdate/—
|

<<advice>>+persist() IPersistence
| o T T T T T :ShoppingCart

arg <<CallOperation>>) | <<joinpoint>1'> {point=RECEIVE,
persist | add*(.) | time =AFTER}
I
<<GetTarget>> .
GetSettedComp [

Figure 3.6: AO modeling (FUENTES; SANCHEZ, 2007): (a) aspewodeling; (b) ad-
vice modeling; (c) pointcut specification

{advice =Persistence .persist()ﬁ

<<Literal>>

<<CallBehavior>>
GetReference

Persister

(b)

AO-related concept within UML models. Three different misdare produced(i) abase
modelspecifying system functional concerr{8) anaspects modedpecifying crosscut-
ting concerns, including their precise and complete beimain terms of AO elements
using the AOEM profile(iii) apointcut modetlescribing (using the AOEM profile) how
crosscutting concerns are composed in the base model is @rpointcuts. Further, a
weaver is used to transform the produced models into a pl&dh thodel, which can
be executed using P6pulo UML virtual machine (FUENTES; MARRE; SGNCHEZ,
2008). Additionally, the AOEM profile provides stereotypgesspecify the action lan-
guage defined in the UML 2.x specification. To allow the speaifon of AO-related
actions, the AOEM profile extends the standard UML actiorgisge by means of al-
lowing, for example, getting the intercepted message namegrget or source object.
For more information on this AO extension for the UML actidasguage, readers are
referred to (FUENTES; SANCHEZ, 2006). Furthermore, aspéeices are specified as
activities diagrams (see figure 3.6b), whose actions arerdtad with stereotypes of the
AOEM profile. These advices are related to pointcuts, whrehspecified with sequence
diagrams (see figure 3.6c¢), showing the link between thegoint selection and the ad-
vice. That work allows only the interception of sent message. only message-related
events can be selected as join points. However, Sanchez(20aB) propose a modifi-
cation in the specification of pointcuts and join points byameof using JPDDs (STEIN
etal., 2006).

3.3.3 The Use of AOD in the Design of DERTS

Zhang and Liu (2005) use UML diagrams and AO concepts to agpéne handling
of timing requirements from other non-functional requissits in the design of real-time
systems. That work proposed the use of only one aspect, ichvdii timing informa-
tion of a system is contained. A UML profile is defined to detemements in a class
diagram in order to represent both AO and real-time concefisch profile provides
language level concepts of AO, e.g. aspects, advices, @imtg) crosscut, and control.
However, it is important to highlight that the last two copts i.e. crosscut and control,
are not defined in AO language€rosscutis used to model the weaving relationship
between classes and aspects, wbdatrol models the weaving relationship between be-
havior and aspects. Although system behavior is modeldd stéte diagrams and also
proposing the control relationship, that work does not show the modification in the
base behavior will eventually happens, neither how to $p@uin point to select element
in the base classes and behavior. Figure 3.7 depicts an éxaifrtpming handling spec-
ification. As can be seen, time values description is done &sns of notes (i.e. UML
text boxes) associated to a time aspect in the class diagkéoneover, there are other

57

{11: Vi3 j@(!door.open, j) = @(|stop, i) = B
OPEN_MIN_TIME * @(| door.open, j) —

@(| stop, i) < OPEN_MAX_TIME

[2]:. Vi3 j(—=(@(!button, j) - @(| door.open, j) <
STAY_OPEN_NORMAL_TIME) — (@(! door.close, i)
= @(} door.open, i)+STAY_OPEN_MIN_TIME))

(@(1door.close, i) = @(| door.open, i) +
STAY_OPEN_NORMAL_TIME))

[3]:. Vidj(!move, j) - @(|door.close, i) =
OPEN_MIN_TIME * @(}move, i) —
@(| door.close, j) = CLOSE_MAX_TIME} 1 1

N

FloorButton
I
I

FloorLamp

DirectionLamp

<<Aspect>> <<Crosscut>> 1 Sensor

TimeAspect 1 Elevator 1.*

-t: Time

+set(time : TimeValue)|
+get() : TimeValue

L
*'esetg) 1. 1. 1.0 1.
+start
+pause() | EIevatarLampI | MntarI ElevatorButton
| | 1 | 1

Figure 3.7: Specification usingtene aspec{ZHANG; LIU, 2005)

stereotypes representing real-time domain concepts,agiclocks and timers. However,
they are very similar to stereotypes from the UML SPT prof@G, 2005b). Partic-
ularly, the approach presented in (ZHANG; LIU, 2005) is ndeguate to describe such
key requirements as timing constraints and requiremenesiltime system design.

Noda and Kishi (2007) have proposed an approach for usingohOept to model em-
bedded software. More specifically, they propose to use ABddel the context in which
the embedded system operates. That work uses the symnpgir@aah for aspects, sim-
ilarly to (CLARKE; BANIASSAD, 2005). Functional and non4figtional concerns are
modeled as aspects, which are related to each other by meavistypes of inter-aspect
relations: (i) trigger and(ii) refer. The former indicates that one aspect triggers the be-
havior of other aspect, while the later means that an asptatrto properties of another
aspect to determine its behavior. Such relation can be segguire 3.8a. Aspects are
modeled as a class diagram and one or more state diagramumaeach class in the
class diagram has its behavior specified in a state diagrayure=3.8b depicts an aspect
concerning the role of front doors in the vehicle illumimatsystem that was used as case
study in (NODA; KISHI, 2007). In addition, to define detailSioter-aspect relations, a
rules-based language has been proposed. Basically, tiggdge describes inter-aspects
relations in term of events, transitions, and guard coogifor transition in state dia-
grams. Therefore, this can be seen as a complement to systesmibr specification.
Figure 3.8c shows a fragment of relation rules.

Lohmann et al. (2006) propose the initial ideas for the CiA@rating system, which

is the successor in the operating systems family called P(BEEJCHE et al., 1999) for
deeply embedded systems, i.e. those embedded systemsamyjthesgtricted processing
power and memory availability. The main goal of CiAO is to yde a very fine grain
configurable operating system. Such granularity is obthimg using concepts of AO
programming supported in the AspectC++ language (SPINCAYBHMANN, 2007).
In this sense, CiAO separates non-functional handling éaohe application components
code by means of using aspects that are woven into the appficade at the configura-
tion phase. According to Lohmann et al. (2006), such sejparahproves the reusability
of application components. In (LOHMANN et al., 2007), therars reported their expe-
rience on using AO programming to design and implement ttexnmmpt synchronization
as a configurable property in the CiAO operating system.

AO concepts are used in tMaginia Embedded Systems ToolKEST) (STANKOVIC

58

aspecton <<sensor—= DOOR - trigger from POWER to BATTERYSTATUS
<<aspect>> <<actuator>> LIGHT B i| 1. Power:t1 -> charge”BatteryStatus

2. Power:t2 -> stop”BatteryStatus
et ?L T«mgger» 1 | orverdoor |——] optok | i - trigger from DOOR to DOORSTATUS
<<trigger> i| 3. *t1->open”DoorStatus
Passen erDoor|—| PDLock i
<<aspect>> <<aspect>> l S | 4. *t2 -> close"DoorStatus
<<process>> <<process>> Class diagram - trigger from BATTERYSTATUS to BATTERYSAVER
BATTERYSAVER LIGHTINGCONTROL i| 5. BatteryStatus:t1 -> save*BatterySaver
<<reier>>l T«"'gge’»\«mgge ~ T«mgger» @_ !!open [ODLock@Unlocked] P t1:unlock 6. BatteryStatus:t2 -> release"BatterySaver
= i v i v f - trigger from DOORSTATUS to BATTERYSAVER
<<aspect>> <<aspect>> Tock 7. DoorStatus:t1 -> save”BatterySaver
<<context>> <<context>> - = H 12 - A
BATTERYSTATUS DOORSTATUS State diagram for DriverDoor State diagram for DDLock 8 -DS'?grgt::ijf(:rzn S(;e(l)eRaSs'T'AB'I'al;tSertyosalg:-lTlNGCONTROL
- H - _ Al i, 9
e I s e | A | O e ettt
v H X B
<<aspect>> <<aspect>> H - tri
<<sensor>> <<sensor>> ﬁz close - | lock 11 Bh'tllggeé' fro“_]mBI:T-I;fEEY::\VER tolLICHT
POWER DOOR T = H - BatterySaver:2 -> off*Lig
ate diagram for PassengerDoor State diagram for PDLock H - trigger from LIGHTINGCONTROL to LIGHT
@) (b) (©

Figure 3.8: AO modeling (NODA; KISHI, 2007): (a) functionahd non-functional con-
cerns; (b) aspects model; (c) inter-aspects relations rule

et al., 2003) in order to separate and check non-functiomgdgsties in the analysis and
composition of component-based embedded real-time sgstdmo kinds of concepts
were identifiedprescriptive aspectandaspects check®rescriptive aspectare, in fact,
advices (or adaptations) that modify the information of elaglements (e.g. tasks pri-
ority or the replication level of a component). Such adaptet are described using a
proprietary language calledEST Prescriptive Aspect LanguaféPAL). On the other
hand,aspect checksdicate the dependency check among components of a emibedde
real-time system. Such checking is performed using thermétion from the system
model. Sometimes, component characteristics can influetie components behav-
ior, e.g. tasks priorities and/or activation periods tbgetwith communication latency
may influence the end-to-end scheduling of activities. ldeMEST provides automatic
check of components offered/required QoS that considedifivations in components
performed by the aspects weaving process. That work hasrpexfl two case studies
that lead to the conclusion that using aspects one can iraph@vanalysis and composi-
tion of components in the design of embedded real-time Byste

Tsang, Clarke and Baniassad (2004) present an interestngaemparing two im-
plementations of a traffic simulator, which represents alekiequipped with speed sen-
sors as well as sensors capable to measure the distancetftenrsarrounding vehicles,
allowing vehicles be self-driven through four track stseefhe first version is imple-
mented using pure OO concepts and the Real-Time Specifidatiddava (RTSJ) (BOL-
LELLA et al., 2001), while the second version uses AO coneepid Aspectd (KICZA-
LES et al., 1997) in order to refactor RTSJ constructiong. (¢he creation of threads,
memory management, synchronization, and others) thanaapsulated in aspects. The
evaluation was made using an adapted version of the C&K osgi@HIDAMBER; KE-
MERER, 1994) to deal with AO constructions. That work hasmhthat using AO leads
to the improvement of modularity because many RTSJ elensmtsconstructions can
be encapsulated in separated entities (i.e. aspects). udowarcording to (TSANG;
CLARKE; BANIASSAD, 2004), there are some metrics that aresean AO compared
to the OO version, e.g. number of methods per class, whiatensthe understandability
and maintainability. As conclusion, Tsang, Clarke and Basad (2004) pointed that one
can achieve more benefits from using AO if the relation agapptication is broad and
generic, meaning that maximizing encapsulation of rednhdpplication code into as-
pects, one can have an overall improvement of the applitabde. The more redundant
code a application has, better is the application code naoidiyprovided by aspects to
encapsulate such redundant code.

59

The AspeCtual COmponent-based Real-time system Develog@€@ORD) ap-
proach (TESANQVIC et al., 2005) proposes the integratiomahponent-based tech-
niques with AO concepts for software development of reaktsystems. In that work, a
Real-Time COmponent Model (RT-COM) has been proposed. ppatis the notion of
time and temporal constraints, space and resource manageamstraints, and compos-
ability semantics. Additionally, the RT-COM provides thencept of gray box compo-
nents that preserve some of the main features of a black bhopa@eent, such as well-
defined interfaces as access points to the component, andliteallow aspect weaving
to change component behavior and internal state. Tesaebwdt (2005) define three
kinds of aspectsyi) application aspectsan change internal behavior of components,
e.g. security, synchronization, real-time policy hanglietc.;(ii) runtime aspectsefer
to concerns related to system integration with the run timerenment, e.g. resource
demand, platforms to which components are compatible, Wa&mponents behavior
in each platform, and other§ii) composition aspectdescribe with which components a
component can be combined, respecting component’s vesisidoffered and demanded
QoS. Although ACCORD provides a component model that coliavathe use of AO
concepts at higher abstraction levels, that work specifigs bomponents and aspects
using the AspectC++ programming language (SPINCZYK; LOHNM 2007).

The SysWeaver approach (RAJKUMAR, 2007) uses differeristmgenerate code
from models. The proposed approach separates functicaleenents, which are mod-
eled using Mathlab Simulink, from requirements the auttenge calledbara-functional
requirements, e.g. timing, replication, security, jitend others. In facpara-functional
requirements have the same meaning of non-functionalnr@ments as used in this work.
Para-functionakequirements are modeled using the SysWeaver tool, whieleicts with
other complementary tools to provide toolchain integrgtiallowing domain-specific
analysis such as schedulability or model checking of othstesn properties. Moreover,
according to Rajkumar (2007), that approach uses the con€epmponents, whose en-
capsulation mechanism combined with system propertiesehobecking enable the con-
struction of “systems-of-systems” that are “correct by staunction”. In (RAJKUMAR,
2007), the SysWeaver approach has been used to design anyd@gdor vehicles.

Balasubramanian et al. (2006) present an approach to adch@sscutting concerns
in component-based MDE usir&spect-Oriented Domain ModelindODM). An AO
model weaving technique is used to spread crosscuttingecosencapsulated in as-
pects. The tool calle€onstraint-Specification Aspect Wea\(&-SAW) performs this
aspects weaving in the context®fatform-Independent Component Modeling Language
(PICML) (BALASUBRAMANIAN et al., 2005), which is a DSML for dveloping com-
ponent-based systems that has been developed usi@gtieric Modeling Environment
(GME) (LEDECZI et al., 2001). PICML provides a proprietarpdeling syntax for cre-
ating models of component-based distributed systems,hnihidudes information on
interfaces, components properties and system softwalditoyrules. C-SAW is a model
transformation engine, which has been implemented as aiplt@gthe GME. It takes
as input the created PICML model and a text file describingetspand transformations
that must be performed in the PICML model. Such model trans&ions are described
using theEmbedded Constraint LanguagECL), which is an extended subset of the
OMG’s Object Constraint Language (OMG, 2006b). Partidy/&CL provides two im-
portant conceptdi) modeling aspectgproviding modular constructions to specify cross-
cutting concerns; an(i) strategies specifying transformations logic that will be applied
in PICML model elements affected by modeling aspects. Tipeageh proposed by Bal-

60

asubramanian et al. (2006) was intended to be applied inghelapbment of large-scale

component-based distributed system, in order to improveeigcalability, and also the

handling of crosscutting concerns. Thus, they presentadhawng system that uses
many Unmanned Aerial Vehicle@JAV) to help in disaster recovery efforts stemming
from floods, earthquakes, or hurricanes. UAV transmitsasdeom the surveyed area to
a control center, where rescue teams can decide rescursadleSAW has been used to
perform modifications in several components of differentigled UAV.

3.3.4 Discussion

The use of AO paradigm in initial computing system designsgisas recent and has
not achieved the maturity level of approaches using the O@dmgm. Such claim is
supported by the diversity of proposals for AO modeling tteat be found in the litera-
ture, i.e. there are several approaches to specify the sancegts using their own form,
repeating what happened before the UML creation. Howeliersame cannot be said
for AO implementation, which has achieved a certain degferaturity as can be seen
by the wide use of languages, such as the AspectJ or Aspect8khough there are
proposals to apply AO in early phases, there is no standand fo separate functional
requirements handling from non-functional requiremerits particular, (STEIN et al.,
2002), (CLARKE; WALKER, 2002), and (FUENTES; PINTO; TROYRQO07) are the
most remarkable works. The first one is an approach beingecefm support other AO
languages in addition to AspectJ. The second one proposesesesting approach, but
the specification of how a theme affects other themes is rejuate due to the lack of
scalability, i.e. in systems with large amount of crossogtthemes, the specification of
bind relationship to express weaving hinders model maintalitalaind evolution. Fi-
nally, the third approach proposes extensions to UML in otdellow the specification
of AO concepts and also to perform AO model weaving.

To the best of our knowledge, the use of AO concepts in the doofadistributed
embedded systems is still low. There are few approachesestigg their use in the im-
plementation or configuration of embedded software, and éawer that try to apply
these concepts in design or modeling. For example, the apprproposed by Zhang
and Liu (2005) suggests the use of only one aspect to dealaMitime related non-
functional requirements. The time requirements specifingiroposed by that approach
iS not appropriate because time requirements can havedtiffgiewpoints (e.g. peri-
odic activations, deadlines or WCET for algorithms exemutilatency measurements,
and others) that can be misunderstood by designers. Ini@udihe use of UML notes
to specify important information is not appropriate duehe tack of representation in
the UML meta-model. Besides, there are other importantireaients from the domain
of distributed embedded real-time systems whose handiangbe improved if aspects
are used. The approach proposed by Noda and Kishi (2007 pageaspects to model
all concerns in embedded systems design. However, that dam& not deal specifically
with timing, embedded, or distribution non-functionalu@gments. They can be handled
separately from functional requirements but this must beedipecifically from design to
design because of the textual specification of aspects csitiggo Moreover, Tesanovic
et al. (2005), Rajkumar (2007) and Balasubramanian et @0gPpropose component-
based design approaches that specify aspect in terms ohtelescriptions instead of
graphically modeling them.

61

3.4 Code Generation

3.4.1 Introduction

Code generation means to use a computer program to assistdagbion of source
code, be it application source code, HDL source code, codpl&form configuration,
and others. Commonly, a code generator program takes asamypgh level specification
in addition to a set of templates in order to create one or reouece code files as output.
According to Herrington (2003), code generation is not t@msed to be only a quick
way to produce source code. Other benefits can be achievetass:

e Quality: code generator tools use templates to produce code (foget falatform)
from elements specified in high level models. The more cota@lset of templates
is, the better is the quality of the obtained generated socode. If the templates
describe an optimized code generation based on desigraityqund optimization
criteria, a quality increase is reflected in the final geregtaburce code;

e Consistency: the naming standardization for classes, methods, andbats is
fully consistent in the generated code. Hence, the appicaf naming standard-
ization facilitates classes interfacing and use becauske standards are defined
within the templates;

e Productivity: code generation increases productivity gains due to thulityato
adapt quickly to changes during design. In other words, freadions in the spec-
ification can be automatically propagated to system impteat®n. In addition,
code generation allows the inclusion or exclusion of bigipas of source code;

e Abstraction: advantages in terms of design abstraction level can beszhiesing
code generation tools that work with input specificationg.(enodels of the system
structure and behavior, database schemes, or user igatésigns) in a neutral
form, i.e. using platform independent languages. In othendw, it is possible to
generate source code for different programming languaye$ @s Java, Smalltalk,
or C++) from the same abstract model.

This section presents some proposals to generate code fkbionmibdels, as well as
commercial tools that implement such code generation. thaddilly, some works that
produce HDL code from UML are also presented.

3.4.2 Code Generation from UML Models

Many different approaches to generate source code from UMdeis can be found
in the literature. Some of them use only one diagram (e.gsdligagram), while others
use a combination of different diagrams (e.g. class diagnaith state, sequence and/or
activities diagrams) to generate code ranging from claskeletons to code containing
system elements behavior. This subsection present the sjopneaches.

The work presented in (HARRISON; BARTON; RAGHAVACHARI, 20pdemon-
strates the mapping from class diagrams to Java source ddueapproach allows the
generation of high-level class skeletons, which allowgrab#on of details on attributes
implementation, i.e. attributes data type, from the claggdeémentation point of view. In
other words, the implementation does not need to know thibaties existence because
their stored values are accessed only through get/set ogetfithe code generation pro-
cess only considers classes from the UML model decoratdd«knt i t y» stereotype.

62

Each entity is mapped to an interface and a pair of classegtipement this interface,
i.e. for each entity, the following Java elements are generai@dan interface namex;

(i) an abstract class nam&d\bst and(iii) a concrete class nam&dinst The created in-
terface contains the operations defined in the UML modeHeentity. The abstract class
implements the interface and specifies attributes, as wehleir data types (e.g. integer
or string attributes) and auxiliary methods that accessethattributes, which are gener-
ated automatically by the code generator. Finally, the mralass extends the abstract
class by means of adding the methods that must be implemensegport the operations
from the entity interface. In fact, the code generator poeduempty methods that must
be filled by the programmer in order to provide the entity wédra The concrete class ac-
cesses class attributes by means of the auxiliary get/sboae specified in the abstract
class. Additionally, associations among classes in the UiMidel are represented by
cursors which are entities encapsulating the complexity of asgmeris navigation and
updates. The concept ofirsorshas been proposed to separate the associations semantics
from their real representation and implementation.

Burmester, Giese and Schéafer (2005) have presented a coeéeagien approach
that uses the FUJABA (From UML to Java And Back Again) Reahd&iTool Suite
(BURMESTER et al., 2005) to generate code for RTSJ apptinati System structure
is modeled using the components diagram from UML, while bnas specified with
an extended version of the UML state diagram caRedl-Time StatecharfThe PIM of
the system is transformed into a PSM that uses the SPT profif&s, 2005b) to specify
real-time concerns. Every Real-Time Statechart is transfd into, at least, one active
object, which represents the main thread and is implemesgeriodidRealtimeThread
At each period, all transitions that can be triggered arekéd, and those that passed
some conditions (see (BURMESTER; GIESE; SCHAFER, 2008)¢recuted. Orthog-
onal states are not implemented as multiple concurrenbgierthreads, but by exactly
one periodic thread (the main thread) and multiple concarageriodic threads. It is
important to highlight that, depending on the deploymefarimation of Real-Time Stat-
echarts, a JVM can have multiple periodic threads, i.e. onedch Real-Time Statechart
deployed in the JVM.

Bordin and Vardanega (2007) propose a source code gemesataiegy for multiple
target OO languages from HRT-UML models, i.e. UML modelsatated with the FW
profile (CECHTICKY et al., 2006) that specifies HRT-HOOD (BNR; WELLINGS,
1994) concepts. In that work, the RTSJ has been assessedeintorcheck (regarding
some requirements proposed by that authors) its poteatts tused by code generation
tools. RTSJ source code with Java annotations has beeragesh&om HRT-UML mod-
els. Such annotations allow traceability of HRT-HOOD cqotsge.g. cyclic or sporadic
execution of methods, or protected or unprotected methedution) between model and
source code, and also, decreases the size of the generaederause it hides infor-
mation from the programmer (BORDIN; VARDANEGA, 2007). Hena pre-processor,
which converts these annotations into plain RTSJ codegusired to be used before the
generated source code compilation.

A code generation approach based on MDA concepts was peesbytHausmann
and Kent (2003). In order to generate skeleton source code dtass diagrams, the pro-
posed approach uses transformations based on meta-mbdeksach target language, a
meta-model, as well as the mapping rules from the PIM to thd,RBust be specified.
The process of creating mapping rules is based on pairs wiegits, their relationships,
domains and constraints. A pair represents two elementdifferent models, that are

63

related through a relationship, which specifies relatiomst@ints, and in which domain
elements are linked. The mapping between PIM and PSM isfggkan class diagrams,
in which meta-model elements of different models are linkganeans of class diagram
associations. Additional OCL constraints can be includethe associations. Besides
not showing the final generated source code, mapping rues fiML to Java language
has been depicted in (HAUSMANN; KENT, 2003). It can be seet this graphical ap-
proach to describe mapping rules can assist in the ovesalélization of the transforma-
tion, however, it can hinder the creation of more complex pirags among meta-model
elements of different models.

Generation of AO source code is the focus of the work pregent@HECHT et al.,
2006). The goal is to allow automatic generation of Aspegtifee code from extended
UML diagrams by using the Theme/UML approach. Theme/UML sisdre exported to
XMl files which are taken as input to a code generation tooétgyed with theeXtensible
Stylesheet Language TransformatidiSLT) (W3C, 2006b). The generated code is not
complete, i.e. only skeletons of classes and aspects avalpdo However, for aspects,
the code includes the pointcuts that link advices with joamgs that were specified in
the Theme/UML model. Furthermore, Hecht et al. (2006) dtadéit is possible to gen-
erate code for the body of advices, since created Theme/Ukljraims provide enough
information on the modification of system elements, which e executing during the
aspects weaving process.

Nitto et al. (2002) use UML as a language to describe prosemseé also to validate
modeled processes. To allow the intended validation, UMide®are translated ©OR-
CHESTRA Process Support SystgdiSS) models (CUGOLA; NITTO; FUGGETTA,
2001), which are executable models with formal semanticsani OPSS description,
one process is divided into activities performed by ageBlements in class, activities
and state diagrams are transformed to OPSS elements. Theaéipp structure, which
is specified in the class diagram, is translated directlyavaJXlasses (skeleton source
code) of the OPSS framework. State diagrams representebgdle of an object, and are
translated to Java code representing objects behaviailyiactivities diagram describes
activities flow of a process, as well as associations amotigtaes and agents. It is used
to produce Java code that represents the precedencenshafiof activities execution.

The formalization of class and sequence diagrams has bepoged by Long et al.
(2005) in order to allow code generation from UML 2.0 mod@lse proposed model se-
mantics is based on theelational Calculus of Object Systen€0S) semantics, which
was devised to design OO systems. That work generates akealetle from class di-
agrams, and code for methods body from the sequence diagfamcode generation
algorithm interprets sequence diagrams as a compositioressages sequences, allow-
ing its use for creation of code from separated fragmentegfisnce diagrams. Source
code can be generated only if the model passes a consisteackiieg. In that work,
the code generation for rCOS language is demonstrated,isthdww class skeletons,
containing attributes and empty methods, are created. i@ngy the behavior, each
message in sequence diagrams is transformed to a methanl K20S. Nested messages
are mapped to method calls in the body of the parent method.

The generation of SystemC code from UML models is investigan (ANDERS-
SON; HGST, 2008). Initially, that works assesses constrnstof UML 2 and those of
SystemC 2.2, comparing them in order to create a mappingeeetwoncepts of both
languages. Considering structural specification, UML paels are mapped to SystemC
name spaces, and UML active classes and classes with perteapped to SystemC

64

modules. However, other types of non-mentioned classemapped to standard C++
classes. Ports in UML have a required and a provided interf@n the other hand, in
SystemC &c_port must have exactly one interface, which corresponds to ti@ned
interface of UML port. Provided interface of UML ports is egaient tosc_export
construct of a SystemC module. Regarding the specificafimommunication among
elements, UML communication can be modeled as signalsasynchronous messages,
that are sent through ports. The destination is specifiatgusinnectors. At the receiv-
ing object, the signal is stored in a queue and will evernyuadl consumed. In SystemC,
ports are connected through channels, whose referenagasl sh the port during system
initialization. Therefore, to map the mentioned semarfties1 UML to SystemC, UML
connectors are mapped to System€ f i f o channels that connesic_export of a
module tosc_port of another one. Furthermore, to produce SystemC sourcefamde
UML models, the mapping process is composed by three s{@pte initial UML de-
scription is manually annotated with the SystemC profil¢;the model is automatically
transformed into a new UML description that includes dimegresentation of SystemC
construction, e.g. state diagrams are translated to eassehich each method imple-
ments the behavior performed in a state. Additionally, UMIncepts without SystemC
correspondence are removed from the model; @ndthe UML model produced in the
previous step is transformed to the corresponding Systeoal€.cThis transformation
is an one-to-one transformation. This SystemC code gearrapproach has been im-
plemented as a plugin to the Telelogic Tau tool (IBM, 200&8ejng its the C++ code
generation facilities.

There is an interesting on-going research in the Embeddst@®g Lab of the Federal
University of Rio Grande do Sul, whose initial results wenblshed in (NASCIMENTO
et al., 2006). That work proposes a meta-modeling infratiire, calledVodel-Driven
Embedded System desigioDES), to represent distributed embedded real-timesgyst
in higher level of abstraction. The goal of MoDES is to pr@/@a common infrastruc-
ture to various MDE tools, as for example, high-level desgace exploration or code
generation tools. That approach suggests a methodoloywpipéies successive refine-
ments from an initial specification, which is a PIM, to an ieplentation model of the
system using a selected target platform. The initial PIMi¢hltan be specified using
UML, Simulink, or other modeling language) is transformatbian application model
that is an instance of tHaternal Application Meta-Mod€llAMM), which represents ap-
plication functionalities in a uniform manner. Likewisepdels of many implementation
platforms (e.g. SystemC, Java, VHDL, and others) are spdaifsing a uniform platform
representation calldaternal Platform Meta-ModelIPMM). The set of mapping rules is
described using th®lapping Meta-Mode(MMM), which is used to guide the transfor-
mation of IAMM and IPMM model in a system realization modehmadImplementation
Meta-ModellMM. The IMM represents the implementation of the initial ded (i.e. the
one specified using UML, Simulink, etc.) using a selecteddaplatform (e.g. Java,
VHDL, SystemC, etc.). Hence, it is possible to generate ¢ama the IMM.

3.4.3 Commercial Tools

This section presents some commercial CASE tools that altme generation from
UML diagrams. During the study of the state of the art in codeegation, many tools
with different automatic code generation capabilitiesev@und: from code skeleton for
classes to tools that are capable of generate configuralesnfér server of distributed
components such as CORBA or Enterprise Java Beans.

65

Rational Rose (IBM, 2008b) CASE tool has many different iars with different
code generation capabilities. All of them work on the pregioersion of UML, i.e. the
version 1.4. The tool Rational Rose Technical Developevipusly called Rational Rose
Realtime) allows the automatic creation of Java, C and Ct#cgocode. It generates code
skeletons for classes. However, if any code was informethérCodetab of methods
specification, this text is also included in method’s bodyldaionally, behavioral code
can be generated from state diagrams. This code generatiowd the same approach,
I.e. code is typed in th€odetab of states.

Rhapsody (IBM, 2008c) and Tau (IBM, 2008a) are modelinggdmdm Telelogic,
which was recently acquired by IBM. Both tools supportedgpecification of UML 2.1
models. In addition, Tau also supports SysML. Rhapsody eaeigte code for Ada, C,
C++ and Java, while Tau for C, C#, C++ and Java. The approgwiotiuce code is similar
to the Rational Rose tool, i.e. both Rhapsody and Tau geneoale skeletons for classes,
and the body of methods must be written in a special field irhog specification.

Borland’s Together (BORLAND, 2008) CASE tool allows the geation of code
skeletons for class, and also methods body. It uses the éasion of UML (version
2.1) to automatically create code for Java, J2EE, C++ and30#e skeletons are gener-
ated from the class diagram, while methods body from theesgrpidiagram. The code
generation can be customized by means of changing the giemaiemplates.

Artisan Studio (ARTISAN, 2008) (previously called Artis&eal-time Studio) sup-
ports UML 2.0 and SysML modeling, and also automatic geranaif C, C++, C#, Java
and Ada source code using external tools. It also generats skeletons from class
diagrams. In addition, source code for classes behavi@nsmted from state diagrams.
Actions performed in each state must be written (in the setetarget language) in special
fields in states specification. To allow code generation, UNdments must be decorated
with stereotypes of the target language, and hence, ekt@yda generators can produce
the right constructions in the selected target languageh&umore, C/C++ code genera-
tion tool uses templates allowing some customization ofjgreerated code.

Poseidon for UML (GENTLEWARE, 2008) is a CASE tool that sugpdJML 2
modeling, and implements a script-based code generatioichwises the Velocity Tem-
plate Engine (APACHE, 2008). There are pre-defined scrgotihe following languages:
C#, C++, CORBA IDL, Delphi, Perl, PHP4, SQL DDL, and VB.nethé designer can
create its own code generation script that accesses infiamat the UML model to gen-
erate code for other target languages. However, only thes cleagram can be accessed,
and thus only code skeletons can be created.

Other tool is the ObjectiF (MICROTOOL, 2008), which also sisetemplate-based
code generation approach to produce code skeletons fras diagrams. This tool uses
stereotypes to assist in Java, C# and C++ source code genei@bjectiF can generate
automaticallyget()andset()methods (with the corresponding behavior) for attribulbes t
are decorated with a specific stereotype. Additionallyeitgrates attributes and methods
representing composition, aggregation, and plain assmegamong classes. Moreover,
it can also create the implementation of unit tests for eassing NUnit or JUnit.

The CodeGenie MDD toolset (DOMAINSOLUTIONS, 2008) prowsde code gen-
eration tool that takes as input XMl files from executable UMbdels. Three levels of
code generation are support€d:code skeletons for classespresenting only software
static structure(ii) code skeletons with architectural mechanismluding architectural
mechanisms (e.g. event queues, stacks, circular bufters e addition to classes struc-
ture; and(iii) code skeletons with architectural mechanism and betracomplementing

66

the previous level by adding behavioral code generated thenstate diagram.

3.4.4 Discussion

Code generation from UML model is not a new topic. As one car) generation of
code skeletons from class diagrams is a well-defined apprdae to the large number
of tools that can generate this kind of code. Some of the ptedevorks can generate
behavioral code from state diagrams. However, a drawbaclkegointed: depending
on the target application, state machines are not the maabkimodel of computation
to describe the developed application behavior. Besitiesspecification of actions per-
formed in state diagrams is neither standardized nor a canomesensus. It can be done
using programming languages or more abstract textualralgtiguages. Thus, proposals
that use other UML behavioral diagrams can be seen as aestitay option to specify
actions in an UML model. Although sequence diagrams are ursedme works, there
is no mention on the use of new constructions available irUkié 2.x, such as those to
specify “ifs”, “loops” and others. In other words, only methcalls are generated that is
not sufficient to generate the complete code from the UML rhode

Other open problem is the interpretation of UML diagrams #relr combination.
Different viewpoints offered by different model elementsyde remarkable information,
which can be combined to obtain the complete descriptiogsitsn structure and behav-
ior. However, there is no defined semantics for differengdiens integration. There-
fore, interpretation rules must be created to allow theagtion of a concise specification
which, for code generation purposes, must be unambigualsiaple.

Finally, it was observed that most of the approaches proffessenapping 1-to-1 be-
tween model and source code, i.e. the more detailed a mqadailyger is the amount
of code lines that can be generated from it. However, theifspegigon of excessive de-
tails in the model decreases a key advantage of using matthelszisualization facility
of the structure and behavior of the modeled system. Inetudetails in excess hinders
model understandability, and also decreases the reusg eleinents. In order to avoid
unnecessary details in the model, a code generation totd ader missing information
on model elements based on modeling guidelines. Henceg dsio-N mapping rules
between model elements and lines of code, this tool coulérgém code as complete as
the completeness of the mapping rules specification. Othgrtavkeep models without
unnecessary details is the use of AO concepts. Details thata directly related to the
desired functionalities can be encapsulated in aspectss@utting behavior can also be
represented in this way. Therefore, the code generatidrctatdd be aware of the adap-
tations performed by aspects, which would modify the gaedraode. In other words,
the code generation tool could also perform aspects weavimgs, using AO concepts at
modeling level allows the use of non-AQO target languages.

3.5 Discussion on the Open Problems

This section discusses open problem identified in the worggipusly cited in this
chapter. UML is broadly used and well accepted in the domfasofiware engineering
for modeling “general purpose” computing systems. Sucalasitn has been drawing the
attention of professionals of other computing domainshsag embedded systems and
hardware designers. One feature that is desired by greaif@signer, in all computing
domains, is the capability of automatic source code geioar&iom high-level specifica-
tions, in order to decrease design effort and avoid errangproanual coding activities.

67

Related work presented in section 3.2 compared some ap@edcat use UML in
the design of systems whose functionalities are implendgeinteither software of hard-
ware. Every approach uses different diagrams to structodebahavior specification.
This shows that there is no consensus on which diagrams raustdd to specify a dis-
tributed embedded real-time system. Additionally, it cerobserved that many of these
approaches, e.g. (ARPINEN et al., 2006), (NGUYEN et al. AO(RICCOBENE et al.,
2005) and (BALARIN et al., 2003), use proprietary profilesetdend UML semantics
according to their needs. Given that UML does provide meishas to extend its se-
mantics, doing that with non-standard (i.e. proprietangfifes is not a good approach
because this hinders the specification understanding kglstéders outside the design
task. The use of standardized profiles, as in (PERSEIL; PATI08), overcomes
the mentioned problem. Thus using standard profiles pravigeorganizations such as
OMG (the group that maintains UML standard) is a very imparitssue that must be ap-
proached by new modeling techniques. Besides, excludegtk presented by Balarin
et al. (2003), none of the presented approaches separdtariieng of crosscutting con-
cerns, which decreases the modularity of artifacts (e.gletsoor source code) created in
previous projects, hindering their reuse in new projects.

Approaches that separate the handling of functional anefmactional requirements
are presented in section 3.3. The majority of the cited worlsat the design of software
for “general purpose” computing systems, i.e. not embeddd#uvare, whose developer
do not have to worry about constraints that are intrinsicnhiibedded real-time systems
domains, such as timing constraints, restricted procgggwer, limited memory amount,
or energy consumption. The mentioned separation of coaderbecoming popular in
that domain by means of using concepts of the AO paradigmndJaspects to handle
crosscutting non-functional requirements improves theuterity and the encapsulation
of concerns. There are many attempts to adapt the UML foesgmting AO concepts
in models. The main drawback of approaches, such as (STEAN, &002), is that they
propose changes in the UML graphical syntax instead of uiegJML extensibility
mechanism as (FUENTES; PINTO; TROYA, 2007) and (PINTO; FUHES; TROYA,
2005) propose. Such heavyweight extensions hinder theitayggstandardization. The
use of lightweight extensions (i.e. UML profiles) is pretdeg since they allow the use
of any modeling tool that supports the standard extensikitiechanism of the UML
specification. Furthermore, the useaamposite patternsvhich is proposed by Clarke
and Walker (2002), allows the use of UML standard graphieakesentation without
modifications. However, the problem of this approach is that specification of the
affected elements is not scalable, i.e. it is not suitab$perify composition relationships
of crosscutting concerns that affect a huge amount of othrecerns, leading to problems
in the specification of large systems.

Considering the design of distributed embedded real-tiyseems, there is little dis-
cussion on the use of AO concepts. Few works can be found Iiehegure. Most of them
are related to the implementation phase of such systeneamhstf earlier design phases.
(ZHANG,; LIU, 2005) and (NODA; KISHI, 2007) are exceptionshahg and Liu (2005)
propose the use of a single aspect to specify the handlingofg requirements within
UML models. Other important non-functional requiremerftsrabedded systems domain
are neglected. Additionally, the specification of timingperties (as notes in the class
diagram) is hard to understand and also not suitable duestavdéfak relation with UML
meta-model elements. Noda and Kishi (2007) uses the syntmaetiroach for modeling
crosscutting concerns likewise (CLARKE; WALKER, 2002).tlhdugh it is an interest-

68

ing approach, it suffers the same drawback of (CLARKE; WAIKE002) approach, i.e.
the lack of scalability. Moreover, mixed specification wsgraphical elements and textual
descriptions is not desirable, because it is not easy t@lWmiaspects composition, i.e.
which aspect crosscuts other aspects. (TESANOVIC et dd5RBALASUBRAMA-
NIAN etal., 2006), (RAJKUMAR, 2007), and (STANKOVIC et aQ03) propose the use
of AO in component-based MDE of embedded systems. The firsé thpproaches pro-
pose the specification of aspects and their adaptationsnrstef proprietary text-based
languages. Moreover, (TESANOVIC et al., 2005) and (BALASRBMANIAN et al.,
2006) use proprietary modeling syntax to model system compts, while (RAJKU-
MAR, 2007) uses Simulink syntax. Although the mentioned saliog) syntaxes provide
DSML to specify embedded system components, they lack atdimhtion for specifica-
tion. Going towards the approaches that use AO for implemgr@mbedded systems,
(STANKOVIC et al., 2003) use aspects to check if there is achiag of required/offered
information by components that are related with each otigdHMANN et al., 2006)
and (TSANG; CLARKE; BANIASSAD, 2004) are implementationated approaches,
i.e. they use AO programming languages to deal with crosagubhon-functional re-
quirements. Analyzing the results reported by both workg, could conclude that there
are a lot of open issues that can be investigated. Otheraurthsgy non-functional re-
quirements, such as access synchronization of sharedreespumemory management,
or communication issues, could be handled with aspectspicapon implementation
and target platform tailoring. Moreover, the creation otaaf aspects to deal with non-
functional requirements from higher abstraction levels. (irequirements specification
and modeling) to more concrete levels (i.e. implementagiot platform tailoring) is a
very interesting research topic.

Analyzing the mentioned code generation approaches, ibeatated that there is no
formalization or even consensus for UML diagrams integireh or integration of dif-
ferent diagrams. Such problem hinders the generation optimcode for computing
systems. However, one exception is the class diagram, fmtwhere is a “well-defined
interpretation”. All presented works can at least genecatge skeleton for specified
classes. Although useful, code skeletons are a small dract all code that could be
generated from the entire UML model. The problem is thatehgmo consolidated ap-
proach to generate behavioral code from elements of otagralins. Some works propose
the use of state diagrams, whose actions are specified Umgrigrget programming lan-
guage or any other kind of textual action language. Othexsqgse the use of sequence or
activities diagrams but not all constructions can be tteslto code in a given platform.
Anyway, the generation of code containing the behaviorifipddn the UML model is
still not well defined compared to the generation of codeetkels from class diagrams.

Some directions for MDE of distributed embedded real-tipstesm were pointed,
however there are many open problems that can be addressedhfe research point of
view. Those open problems go from the formalization of med®erpretation semantics
to the empirical use of mappings to transform models intescaode. In addition, using
AO concepts would allow a better modularization and hamggdtihcrosscutting concerns
and non-functional requirements. Code generation appesacould consider AO con-
cepts specified within UML models in order to allow code gatien for both AO and
non-AO programming languages. Hence, besides code gemertte tool could per-
form aspects weaving in the generated code, and also thédatget platform based on
the aspects specified in the model. Additionally, optimaatould be performed while
reading the UML model or generating code.

69

4 MDE PROCESS FOR DERTS DESIGN

4.1 Introduction

One of the goals of this thesis is to propose a design flow titaeases the abstrac-
tion level during design of distributed embedded real-taygtems, in order to address its
complexity. The proposed design flow must allow a smoothsiteom from initial spec-
ification phases to implementation/coding phases. For thatAspect-oriented Model-
Driven Engineering for Real-Time systef@gMoDE-RT) design flow has been created.
AMODE-RT uses MDE techniques combined with AO concepts tmawplish the men-
tioned goals. It is important to highlight that, to be effeef AMoODE-RT needs adequate
tool support (which is also provided by this work) in orderassist its use in the de-
sign of distributed embedded real-time systems. Figuredégicts an overview of the
AMODE-RT design flow.

4.2 Aspect-Oriented Model-Driven Engineering for DERTS

The first step in AMoDE-RT is gathering requirements and trangs of the dis-
tributed embedded real-time system. This is performedguia RT-FRIDA approach,
which is an extension to the FRIDA (BERTAGNOLLI, 2004) regaments analysis ap-
proach aiming at applying it into the distributed embeddsd-time systems domain. RT-
FRIDA is the result of a cooperative work performed togethigh the colleague Edison
Pignaton de Freitas for his M.Sc. dissertation (FREITAS)70 In addition to require-
ments analysis, the RT-FRIDA also shares the modeling stpAMODE-RT. A brief
discussion of both steps is given in the following paragsa@nd an in depth discus-

Requirements]
-’ Requirements II —} mModeImg
¥

RT-UML Model RT-UML
Model h Transformation « Specification
©

)

GenERTICA

Code | Aspects Generated
Generation =~ Weaving Source Code
u)

© l

Distributed Embedded

» Code Compilation
and Synthesis
(10)

Real-Time System
(11)

Figure 4.1: Overview of the AMoDE-RT design approach

70

Requirements Identification

Functional
Requirements

Non-F.unctlonaI Automatic
Requirements - e
e e Identification
Specification Specification
I I

1
Mapping i {
Functional Concepts Aspects
Extraction Extraction DERAF

r' 3

[Mapping Table Construction J
K

Concepts Modeling ’ *

UML Diagrams Drawing
Functional * Non-Functional
Seclla;sc/e?k:;?\t/it E ACOD
J v JPDD

State Machine

Figure 4.2: Overview of RT-Frida

sion on AMoDE-RT modeling approach is presented in the neapter. For details on
RT-FRIDA, readers should refer to (FREITAS, 2007).

An overview of RT-FRIDA steps is depicted in figure 4.2. Thguiements iden-
tification step is the first step and is divided in two actestithat can be performed in
parallel: functional requirementspecification anahon-functional requirementspecifi-
cation. Firstly, a use case diagram is created. It depitexpected functionalities for
the distributed embedded real time system, and also thenextelements that interact
with these functionalities. For each use case specifiedisndibgram, a functional re-
quirements template (see figure 4.3a) must be filled. Aftat, tthe filled templates of
functional requirements are analyzed regarding possidicts. Thus a conflicts res-
olution matrix is created, in which the first row and first aolu are filled with the IDs
of functional requirements. If a functional requiremennfticts with other one, a “X” is
marked in the cell that intersects row and column of configgtiequirements.

For non-functional requirements specification, additistaps are then performed.
RT-FRIDA provides checklists (see an example in figure 4tda) assist in identifying
the non-functional requirements that have been presemtgztiion 2.3. Answering these
checklists’ questions helps in the identification on whiom+functional requirements af-
fect functional requirements. As performed for functiorequirements specification, a
template must be filled for each non-functional requirenfsee¢ figure 4.3b). In addition
to checklists, there is also a parser that can be used tafidkay words in documents
written in natural language, indicating the presence opansied non-functional require-
ments (FREITAS, 2007). After that, there is also a confliesotution step similar to the
one in functional requirements specification, i.e. degigfi# a conflicts resolution ma-
trix indicating which non-functional requirements affethers.

The second step of RT-FRIDA approach is the mapping of requents to (candidate)
design elements. This is done using a mapping table as thaepeted in figure 4.4b. As
it can be observed, rows indicate functional requirememitéle columns non-functional
requirements. If any non-functional requirement affectg tunctional requirement, a
“X" is marked in the cell that intersects row and column ofatwed requirements. Fur-
thermore, this mapping table links requirements to (caatdiddesign elements, allowing
requirements traceability from requirements analysisygiesn design. Hence, the last
column indicates which (candidate) classes in the desigieirare responsible to handle
functional requirement. Similarly, the last row indicatelsich aspects are used to handle
crosscutting non-functional requirements. Aspects aogiged by a predefined aspects

71

(a) Funtional requirements template (b) Non-funtional requirements template
Item Description Item Description

5 D This identifier allows requirements traceability over the whole project. H D This identifier permits the requirement

'-g k= traceability over the whole project.

Q Name Use case name. 8

L= — = Name Crosscutting concern's name.

£ Goal Description of the use case goals. =]

1] N " — 5 Autor The person that is responsible for the

-] Author The person that is responsible for the use case description. ° corsscuting concern specification.

“g co:drieti-on A condition that must hold before the execution of the use case. Classification |Classification in which the concern belongs.
= e Post- Description Description of how the concern afect system
5 8 condition A condition that must hold after the execution of the use case. c P! functionalities.

o
c
[} " =1 Afected Use |, .
o » PR:::Y Actors that are the source of the events for the main scenario stimuli _8 Cases List of the use cases afected by the concern.
L - - - “f, Context Determines in which situation a use case is
2 Secondary |Passive actors that interact with the use case, but do not execute 2 affected by the concern.
Actor any action within its context. I7)
Used o decide the relative i . ™ (Global/Partial) The requirement is global if it
g g Priority thse IO ?C_' IV? _e rela “ﬁ '(T.po a'\r;c_:e.among use cases. There are Scope affects the whole system, and is partial if
- ree levels: Maximum, Mecium, Minimum. afects only part(s) of the system.
S g —g A requirement can be in one of the following situations: — .
© © 9| situation |0 - Identified; 2 - Specified; 4 - Canceled; K Concern's importance regarding other non-
o o 1- Analyzed; 3 - Approved; 5 - Finished; &8 5 Priority functional concerns. Higher numbers
c s represent higher importance.
Main Describes the main flow of the use case, as well as its results, o2 -
(Normal) [without condiser error conditions. 29 0 - Identifyed; 3 - Approved;
Paths [T Status 1-Analysed; 4 - Canceled;
Alternate [Describes the alternate flow to the use case. 8 2 - Specifyed; 5 - Finished;
Exception |Describes a exceptional situation in the use case flow.
; Main Describes the main steps of the use case scenario.
Scenario — - - P -
Variations |Describes steps that modify one or more steps within the scenario.

Figure 4.3: RT-FRIDA templates for requirements speciiocat

framework name®istributed Embedded Real-time Aspects FrameWb&RAF), which
is discussed in details in the section 5.2 of the next chafités important to highlight
that this table is initially filled with candidate handlinéement and, during the whole
design phase, it can be modified/updated with new elemeatsmit be included to the
design model. Consequently, it is important to keep thietapdated in order to maintain
traceability of requirements to design elements and versav.

At the end of these two steps, designers have produced adetwients specifying
functional and non-functional requirements that the systader development must deal
with, and also the relationships among these requirements.

These documents are then used in the next phase: systemimgod¢ML diagrams
annotated with the stereotype of the MARTE profile (OMG, 20G#e used to model the
structure and behavior of distributed embedded real-tipséesns. In this phase, UML
models are created and successively refined up to achiedesimed level of detail, pro-
viding sufficient information to allow system realizatiom the initial UML model, el-
ements describe concepts that are closer to the targetappii domain, e.g. sensors,
steering devices, turbines, speed and trajectory infoomatobot arms, etc. These el-
ements represent problem domain concepts, hiding detadigtaheir implementation.
Higher abstraction levels are easier to understand, aad aksigner to focus on appli-
cations foundations instead of concerning about impleat@mt issues. Thus, they rep-
resent the handling of functional requirements. Applmatlements can be reused from
previous designs, and hence, it is possible to create tepesi of application domain
elements. Such elements can be made up of many different Udthemts and/or dia-
grams. For instance a robot arm can be compound of three jaitt a gripper. To reuse
this domain-level element, at least five classes (threeh®jdints, one for the gripper,
and the composite class for the robot arm) are reused. Addity, behavioral diagrams
describing robot arm’s behavior could also be reused.

The specification of non-functional requirements handisndone with assistance of
aspects provided by DERAF. They are used in two moméitgr modeling phase (see
section 5.3.2)(ii) in implementation phase, more specifically, in code germratspects

72

(a) Checklist example

Relevance | Priority | Restrictions / Conditions / Description

Time
Timing

Movement Control; Environment Sensing; Main

. - o
Is there any periodic activity or data sampling? X 8 Rotor Sensing; Back Rotor Sensing;

Is there any sporadic activities?
Is there any aperiodic activity?
Is there any restriction in relation to the latency

N - X 9 Corrective Action
to start an execution of a system activity?
Is there any specific instant to start or finish an
execution of a system activity?
Was any WCET specified? Or at least, is there X 10 The smapled data of both rotors must be ready at a
any concern about this? maximum of 10 ms.
(b) Requirements mapping table
Non-Functional Requirements FR handling
ID | NFR1 | NFR2 | .. NFR-n elements
_ 2| FRA1 Class1, Class3
5
S £| FR2 Class2
38
@ | FR-n X ClassN
NFR handing Aspect2
elements Aspect Aspect3 AspectN

Figure 4.4: Other tools provided by RT-FRIDA

weaving step (see chapter 6). During modeling phase, aspexithosen based on their
high level semantics to handle crosscutting non-functimguirements. For instance, the
ConcurrentAccessContrakpect deals with issues on concurrent access control @dsha
resources. Hence, if the system has this non-functionaimr@gent,ConcurrentAccess-
Control aspect is selected and specified in &spects Crosscutting Overview Diagram
(ACOD). Moreover, based on information of the mapping tatskeated previously, de-
signers must specify which UML model’s elements are affétig this aspect. For that,
designers creatdoin Point Designation Diagram@PDD), which are special diagrams
that specify model elements selection. JPDD, which can credtin a repository and
reused in further designs likewise DERAF aspects, are Speaising common UML
modeling tools with support to profiles. Details on modelbagh functional and non-
functional requirements are given in the next chapter.

At the end of modeling phase, designers have created a UMLehibdt specifies
elements to deal with the functional and non-functionaliresents, using, respectively,
OO0 and AO concepts.

Although increasing abstraction level during design isdymr managing complex-
ity, the higher the abstraction level is, more are the chawwé@mbiguous or even erro-
neous interpretations of the same specification. Usuatiy level specifications cannot
be executed in computational devices (e.g. microprocsssuegrated circuits, or Pro-
grammable Logic Controllers (PLC)) due to their incomplséenantics and/or lack of
sufficient details. To overcome these issues, specificatmobiguities must be removed,
and also computational elements (e.g. FIFO queues, saredyhchronization mecha-
nisms, and others) must be included into these high-lewsiBpations. A transformation
of the initial model into a more concise one must happen. ABdRY’s third step per-
forms the transformation of the UML model annotated with MA&Rprofile stereotypes
into an instance of thBistributed Embedded Real-time Compact SpecificdiERCS),
which is a PIM suitable to code generation and model execyizposes. By transform-
ing UML into DERCS, the information on system structure, debr and non-functional
requirements handling, which is spread over different UNBgdams whose information
may overlap each other, is combined in fewer and conciseeziesiin DERCS represen-

73

tation. For more information on UML to DERCS transformatgee section 6.2.

The next step is source code generation from the DERCS mAdeahentioned, one
of the goals of this work is to provide a smooth transitiomirbigh-level models to
the implementation of distributed embedded real-timeesyst Thus, a code generation
tool calledGeneration of Embedded Real-Time Code based on As(i@etsERTICA)
has been developed. In fact, GenERTICA performs not onle amheration, but also
aspects weaving. The code generation process executesfassepts (mapping rules)
to perform model-to-text transformations from DERCS elatado constructions in the
target platform.

Mapping rules are specified as small scripts that createceaiade fragments (rep-
resenting target platform constructions) for elementhién@ERCS model. Source code
files are made up of these generated code fragments. Sampstaaed and organized
in mapping rules files specified using the eXtensible Markapduage (XML) (W3C,
2006a) format. Therefore, it is possible to create a repostb allow the reuse of pre-
viously created scripts and mapping rules for platformse Thde generation process
iterates all elements looking for the script that definesnila@ping from the element be-
ing evaluated into suitable construct(s) in the targetfotat.

Additionally, if the element under evaluation is affecteddny DERAF aspect, the
aspects weaving process is performed after the generdttbe oode fragment. GenER-
TiCA uses aspects implementations to modify code fragmemetschanges in generated
code fragments are performed by implementations of aspeletstations. There is also
the possibility to perform adaptations in DERCS model eletmbefore generating code.
Thus, GenERTICA provides code and model aspects weavinmplrtant to highlight
that implementations of aspects adaptations are scripikasito “normal” mapping rules
scripts. Hence, it is also possible to create repositorfigsfi@rent implementations for
the same aspect adaptation, depending on the target ptatidoreover, DERAF aspects
are also used to tailor platforms, in the sense of configuhagelected target platform by
adding only services that are required by the applicationreMietails on GenERTICA,
and also the code generation and aspects weaving procesgpgam in chapter 6.

The last step of AMODE-RT is the use of a third party tool to pamand synthesize
the generated application code. In addition, the genem#ttibrm configuration files are
used to configure the final platform that will be deployed. eAfthat, the realization of
distributed embedded real-time system being designe@dyr® be executed or tested.

4.3 Adaptations in the SEEP design flow

As already mentioned, this work was developed within thgpeadf the SEEP project.
Thus it proposes adaptations to the original SEEP design iitoerder to accommodate
the proposed AMoDE-RT design flow, as depicted in figure 4% Start of SEEP flow
has been extended to incorporate steps 1, 2 and 3 of AMoDE&& figure 4.5a). Thus,
in the original “High-level Model” step, “Requirements Sjfecation” and “Functional
Specification” were substituted by, respectively, “Fumietl Requirements Specification”
and “Non-Functional Requirements Specification”. A “Systéodel Specification” step
has been included after requirements specification. Irstes, designers can reuse appli-
cation elements and DERAF aspect in the UML model, as meadiabove. The result of
this step is the “Complete System Specification”, which esdteated UML model whose
diagrams are decorated with stereotypes of the MARTE proAleer that, a “Remove
Ambiguities from Model” step was added. It represents thagformation of the UML

74

High-Le

vel Model

Functional
Requirements
Specification

Non-Functional
Requirements
Specification

Application
Elements

System Model
Specification

DERAF
High-Level
Aspects

Remove Ambiguities
from Model

Compact System
Specification

1
1
1
1
1
1

1 o

Complete System |9 validation

Specification 1
1
T "
|
|
|
1

System
Exploration

High-level Executable
Description

Architectural
Exploration

Macro-architecture
4 —with functiopal . L.
mapping

Code Generation +
Aspects Weaving

DERAF
11 | Implement. | f,
I {_ Library _}|

SW and RTOS

Source Code Code

i

-
| Software |

| Micro-architecture ‘

a validation

Figure 4.5: Adaptations proposed to SEED design flow

model created in the previous step into a DERCS model, wiaalepresented by the
“Compact System Specification” box. It is important to hight that the DERCS model
can be used as input to the system exploration activity, hvimicorporate the platform-
independent computational elements mentioned in the quesection. Thus, different
implementation of these elements can be evaluated and théhahbest fits system re-
quirements can be selected.

Other proposed extension to the original SEEP design flowepsctied in figure 4.5b.
After the “Architectural Exploration”, a “Code GeneratienAspects Weaving” activity
has been included — it appears after the “Macro-Architectwith Functional mapping”
box in figure 4.5. This code generation activity represemsforth step of AMoODE-RT
design flow, and is performed by the GenERTICA code generatiol. Repositories of
mapping rules and DERAF aspects implementations werededlin SEEP design flow
(see figure 4.5c). Both mapping rules and aspects impletn@mt&ly on the platforms
available in the platforms library (see figure 4.5d). GenEXAreuses elements of these
repositories to perform the code generation and aspecté@ngeprocesses. As result of
this activity, source code files for both software and haréveae created. Further, these
source code files are used in the compilation and synthesps ahd can also be tested
using the SEEP test approach. Finally, real implementatidhe distributed embedded
real-time system being designed is obtained.

75

5 SPECIFYING DERTS USING UML AND ASPECTS

5.1 Introduction

This chapter discusses the distributed embedded realsystems specification, in
terms of modeling their structure, behavior, and non-fiemetl requirements handling.
The word “model” has very different meanings, which are tedlato context in which
it is used. In the context of this work, models are simplifi@s$ctiptions of computing
elements that are being developed to provide the expeatetidnalities for a computing
system, which must cope with application/domain requineisie

As stated in chapter 4, this work uses UML to specify modeldistributed embed-
ded real-time systems. However, as UML lacks specific syataior sufficient seman-
tics to describe embedded and real-time system domain pt{éANDERPERREN;
MUELLER; DEHAENE, 2008), a subset of the MARTE profile steggies is used to
complement the system’s features specification.

This chapter discusses guidelines to create UML modelsgtwhiust be followed
to allow the transformation of UML models into DERCS modets €ode generation
purposes. In fact, in addition to suggestions on the diagrs@fection, these modeling
guidelines define some restrictions in modeling activjti®wing a correct system spec-
ification interpretation and transformation. Hence, tHerimation on structure, behavior
and non-functional requirements handling that is spreaa different diagrams can be
combined in the DERCS model. The discussion is divided inpands: (i) specification
of functional requirements handling, which approachesufee of some UML diagrams
to specify the structure and behavior of systems; @hapecification of non-functional
requirements handling, which explains how to specify AOaggis in UML models.

5.2 Functional Requirements Handling Elements

5.2.1 Introduction
The current version of UML specification, namely version(@&1G, 2008), supports
14 diagrams, whose brief description is given as follows:

e Structural Diagrams show a complete or partial view of system’s structure. Avall
able diagrams are:

— Class Diagranshows system static structure in terms of classes andactsf
their attributes and operations, as well as relationshipsng them;

— Composite Structure Diagramepicts the system structure as hierarchically
linked blocks. The internal structure of a structured cfassis shown as

76

parts interconnected by ports, which are linked to inter$ac

— Component Diagranprovides a component view of system structure, i.e. it
shows classes and their instances as components. Reltapierese repre-
sented as provided/required interfaces;

— Deployment Diagrandescribes the system architecture, by means of assign-
ing objects onto execution platforms;

— Object Diagramdepicts the dynamic structure, i.e. class instances and the
relationships, at a specific instant;

— Package Diagranshow the system as a set of packages that represent the
logical grouping of classifiers; and

— Profile Diagramis very similar to the class diagram, but instead of showing
classes, this diagram depicts stereotypes.

e Behavior Diagramsdepict complete or partial expected system behavior:

— Use Case Diagramhows system’s main functionalities in a very abstractfash
ion, as well as external actors that interact with the system

— State Machine Diagrardisplays hierarchical finite state machines, which are
composed of composite states with one or more orthogortakstéhese states
machines are an extended version of Harel's statechartREHA1987);

— Activity Diagramdepicts system behavior in terms of activities and control
flow. Activities use a Petri net-like semantic, i.e. its ex@en semantics is
based on tokens. Additionally, there are special kinds desdhat represent
forks, joins, branches, and others;

— Interaction Diagramsshows the communication among concurrent objects.
There are four kinds:

x Sequence Diagrarshow multiple objects exchanging messages during
their lifetime. Objects are represented as lifelines. Mgss, which can
be synchronous or asynchronous, are represented as ratinoes from
one lifeline to another one. There are also special cortgtngthat rep-
resent loops, branches, concurrent messages exchandeshars;

+x Communication Diagramns similar to the sequence diagram, but instead
of showing messages exchanged over time, it shows only tilssages
order without any special control flow element;

* Interaction Overview Diagranms a special kind of activity diagram, in
which the nodes represent sequence diagrams insteadwfiestiand

« Timing Diagramrepresents discrete values or states changing while time
passes. It is similar to continuous waveforms.

For more details on UML diagrams, interested readers aegregf to (BOOCH; RUM-
BAUGH; JACOBSON, 2005) and (OMG, 2008).

According to Vanderperren, Mueller and Dehaene (2008primétion captured in
UML models is often redundant and overlaps. Consequeitiy,rnot necessary to use
all of these diagrams to model a distributed embedded maal-$ystem. Depending on
the used design method and project goals, only some of thenuseful. Moreover,
some diagrams are more suitable (or clear) than others tufggstem characteristics

77

<<NFR_Timing>>

% _Timing>> <<includess/ <<NFR_Embedded>>
Control Wheelchair - = = Sample Movement

Left Wheel Movement Information

Actuator

Figure 5.1: Graphical representation of system requirésnen

in a given target application domain. For instance, altioacfivity, state and sequence
diagrams are behavior diagrams, sequence diagrams shdaetibeior related to objects
exchanging messages in a better way than activity or staggains allow, in spite of all
of them could express such actions.

In this sense, AMoDE-RT modeling approach restricts UMLgest eight diagrams:
() use case diagranii) class diagram(ii) sequence diagranfiv) composite structure
diagram;(v) deployment diagram(vi) activity diagram;(vii) state diagram. However,
only (i), (ii) and (iii) are mandatory, the other diagramsg aptional. As mentioned, to
allow information contained in these diagrams to be colyextiracted, and transformed
into a DERCS model, a set of modeling guidelines for eachrdiaghas been created,
and must be followed. The following subsections discussdahguidelines, providing
examples on how to create the supported diagrams.

5.2.2 Specification of System Expected Functionalities

As mentioned in chapter 4, the use case diagram is used totbleomvain function-
alities of the distributed embedded real-time system bdegjgned. Figure 5.1 depicts
a sketch showing elements that are important in the AMoDEapRgroach. The “stick
man” is the graphical representation of an actor, whichegsgnmts a role played by a user,
thing, or any other system that interacts with the systentipdels represent use cases,
which indicate a set of actions performed by the system tleédyan observable result to
associated actors. In other words, use cases represenathexpected functionalities.
It is important to highlight that crosscutting non-functa requirements, which affect
system functionality, are also represented in the use dageath. Therefore, the infor-
mation of the mapping table, which has been created in th@resgents analysis (see
chapter 4 and (FREITAS, 2007)), is used to decorate uses vagestereotype indicat-
ing the first-level of non-functional requirements classifion presented in figure 2.1 of
section 2.3. These stereotypes are shown in figure 5xXINBR_* » stereotypes. Hence,
the traceability between requirements and model elemsmésrnforced.

5.2.3 Specification of System Structure
5.2.3.1 Class Diagram

The main diagram to describe system structure is the clagsain. As expected, this
diagram describes the static structure of the distributeldezlded real-time system under
design. It shows all classes that are responsible or retatdte handling of functional
requirements. Figure 5.2 shows an example of such diagram.

The proposed modeling approach assumes the common and sedé this diagram,
i.e. classes are depicted with their attributes and metlgysires, as well as their re-
lationships with other classes. Names of classes andw#gbnust be substantives to
represent elements, which are relevant to the system ordh@iacteristics. On the other
hand, method names must be verbs to represent activitieemed by objects of such
classes. This naming convention must be also followed erfates specification. Fur-

78

-movinfo
<<MutualExclusionResource>> ‘ 1

1 N
Movementinformation Actuat leftWheel

MovementControlSystem

1 1
+setActValue(value : float) | -rightwheel

+setMode(newMode : int) : void +getActValue() : float
+getSpeed() : float

” —ctrl §1
+getMode() : int -act 1
+processDate(newData : int) 1 <<SchedulableResource>>

+storeDate(newData : int) MovementController

-info "1 -newActuationValue : float

AbstractController 1 <<getter>>+getActuationValue(){Attribute = newActuationValue}

<<setter>>+setActuationValue(){Attribute = newActuationValue}
+run()
+savePreviousMode()

-Mode : int

+shutdown()

#processinfo(speed : int, angle : int) : float

Figure 5.2: Specification of the static structure

thermore, class names are used to fill the mapping table ¢fFRIDA in order to allow
traceability between design elements and requirementsfisagion.

One important feature to be observed in figure 5.2 is the uséeoéotypes decorat-
ing certain elements. As mentioned in section 2.4.2, endafsn restricts the access
to class attributed by means of providing access methodsicéjaf a class needs to
access an attribute of other class, the designer must mgleichnd/orset methods for
that purpose. Such methods are specified as in the MassmentControlleri.e. a
«getter» or«setter» stereotype must decorate, respectivgbtandsetmethods.
The attribute that is accessed by them is specified usingtjget valudttribute Later,
in the transformation of the UML model into a DERCS modelstihiformation is used to
automatically generate the corresponding behavior of sustinods.

Taking into account the specification of concepts that aexifip to the real-time
domain, the UML model can represent active and passive thjéctive objects are re-
sources that are able to perform actions concurrently whkroactive objects (BURNS;
WELLINGS, 1997; OMG, 2008b). Hence, the proposed approasiiraes that active
objects include their own thread of control. Classes thatagent active objects are deco-
rated with the stereotypeSchedul abl eResour ce» from the MARTE profile, as the
classMovementControllem figure 5.2. On the other hand, passive objects are resource
that perform actions in response to stimuli of both activgpassive objects, meaning
that a passive object can eventually be accessed condyrirettie context of more than
one active object execution flow (i.e. thread). If the conenir access of such objects
needs to be synchronized, classes that represent this kiolject must be annotated
with the «Mut ual Excl usi onResour ce» stereotype of the MARTE profile. The
Movementinformatioklass in figure 5.2 is an example of controlled shared pasdive
ject class. Classes without any stereotype or decoratéddRegsour ce» stereotype are
interpreted as passive objects with concurrent acces$isymeation.

Multiple inheritance is not allowed, i.e. one class can hawly one parent class as
specified in the generalization relationship betwdsywvementControlleand Abstract-
Controller. If classes, which are children of different parent claseegd to share some
features, an interface specifying these features shoulctdmed. Then, those classes
should be linked to this interface by means of the interf@edization relationship. Other
three relationships are supportdd: association(ii) compaosition; andiii) aggregation.
In all of these relationship at least one association end bris (one), i.e. only the fol-
lowing cardinalities are allowed: 1-to-1, 1-tp1-ton..*, and 1-to-* (wherenis a positive
natural number). Hence, many-to-many relationships dab@specified. Additionally,
at least one association end must have a name, and must lgalmlayiindicating that
objects of the class represented by one association encboamunicate with objects of

79

MovementControlSystem

<<SchedulableResource>> act(0] leftWheel : Actuator [1] |
ctrl : MovementController [1]

act[1]
_________ —| rightWheel : Actuator [1 |
| <<MutualExclusionResource>> L 9 m

| info : Movementinformation [1] | | jnfo <<MutualExclusionResource>>
_________ - movinfo : Movementinformation [1]

Figure 5.3: Specification of the dynamic structure

the class represented by the navigable association endhn &gure 5.2 actindicates that
MovementControllés objects can interact witActuators objects. During the transfor-
mation of the UML model, information of the navigable asstion end is used to create
an attribute in the class of the other association end. Tbasstraints were imposed in
order to provide a precise interpretation of these relatigrs during the transformation
of the UML model into the DERCS model (for details see seclid).

5.2.3.2 Composite Structure Diagram

Besides the specification of the static structure of theitiged embedded real-time
system, designers can also specify the dynamic structurgafo of it) using the com-
posite structure diagram. In the context of this work, dyitastructure means the set
of active and passive objects (i.e. class instances) thmpose the system. As already
mentioned, the use of composite structure diagram is notlatary. The information on
system objects can also be extracted from the sequenceuntidgr means of its lifelines.
However, using this diagram is particularly interestinghia design of systems that do not
create new class instances after the initialization pressasual in hard-real time control
system, due to system constraint or application requirésn&rhus, all objects required
in the system execution phase could be specified in a singi@asite structure diagram.
Figure 5.3 shows an example of composite structure diagram.

As can be seen, the whole system under design is representedasslovement-
ControlSystemthat encloses its set of active and passive objects, whiehdapicted
as rectangles likewise classes in the class diagram,atly(active object) |eftWhee|
rightWhee] andmovinfo(passive objects). The difference is the syntax for name-spe
ification in such classifiers:dbject_name : class_name [amount_of objéctBpr ob-
jects that make up other objectshject namemust be the name of the navigable as-
sociation end of the respective composite/aggregati@tioaiship in the class diagram,
e.g. instances oActuatorinsideMovementControlSystethat refers to “leftWheel” and
“rightWheel” compositions depicted in figure 5.2. Moreqwanount_of_objectdefines
the amount of instances of a given class, ergovinfo : Movementinformation [1}ep-
resents one object of tidovementinformatioolass. Two or more instances of the same
class can be indicated using numbers inside brackets, fereft rectangles (each one
having a unique name) as demonstrated in “leftWheel” arghtiVheel” objects.

As one can see in figure 5.3, composite relationships areftgukas solid lines rect-
angles, and aggregation relationships as dashed lines,‘iafg” object inside Move-
mentControlletthat refers to “info” aggregation depicted in figure 5.2. @ea tther hand,
normal associations are depicted as lines linking objects, “act[0]”, “act[1]” that rep-
resent the association with the same name in figure 5.2.

Composite structure diagrams also depict MARTE stereatypbich were used in the
class diagram to refine classes’ semantics according teptsof real-time and embed-

80

<<MutualExclusionResource>>
Node_1 movinfo :
Movementinformation Node_2
<< i
artifact>>[4 <<nq\anifest>> <<artifact>>N | | <<artifact>>[1
Java | | | === -
Java C++
i manifesto> — | — =
<<manifest>> <<manifest>> = "
v | leftWheel : <<manifest>> <<mlanifest>>
<<SchedulableResource>> Actuator - - \/
ctrl : N\ rightWheel :
MovementController | MCS : MovementControlSystem | Actuator

Figure 5.4: Specification of objects deployment

ded domains, facilitating the differentiation of activgexdis from passive ones. However,
it is important to highlight that, as this information is repented as instances of UML
meta-model elements, it does not need to be specified twieace] there is no need to
re-annotate objects with the same stereotypes used indbedilagram. During the trans-
formation of the UML model into the DERCS model, such infotima is obtained from
the meta-model elements of the class diagram.

5.2.3.3 Deployment Diagram

Other structural diagram used in AMoDE-RT modeling apphoiacthe deployment
diagram, which specifies on which computing device (e.g.ic#svwith processors and
memory, ASIC or FPGA hardware devices, or hybrid deviceg@ab execute their be-
havior, as well as in which kind of platform they are implertegh Figure 5.4 shows
an example of such diagram. Different computing devicespeeified asiodesin de-
ployment diagrams, while different platforms adifacts placed inside these nodes, e.g.
Node_landNode_Z2are computing nodes, addvaandC++ are platforms representing
node’s implementation. Objects are specified as instamtlesd with artifacts through
manifest relationshipsTherefore, objects are deployed in the node (or computngd)
that owns the artifact associated to them, ectyl is an active object implemented as
software using a Java platform; aleftWheelndrightWheelare implemented in C++.

Objects that are linked with artifacts in the same node seprocal objects On the
other hand, objects linked with artifacts residing in difiet nodes are considerezginote
objects At modeling level, the semantics of the communication agnimcal objects is
the same as remote objects, i.e. one object sends a messagether, waiting or not
for a response. The same is true for objects modelled as ingpieed as software and/or
hardware. The differentiation among messages sent to twaamote objects is done
during code generation phase by GenERTICA that evaluatdésshon which source and
target objects (related to sending message actions) ateyeelp However, it is impor-
tant to highlight that there are some non-functional regaints related to distributed
objects communication. They are handled by aspects of DERKdwing designers to
focus on concepts of the target application domain instéah amplementation issues,
as explained in the section 5.3.

5.2.4 System Behavior Specification

5.2.4.1 Sequence Diagram

System behavior is specified as a combination of differentLUM2 behavior dia-
grams, i.e. different diagrams of the same type, such asrdiif sequence diagrams, as
well as different kinds of diagrams, such as a combinatiatifeérent sequence diagrams

81

<<Scheduler>> <<SchedulableResource>> act : Actuator <<MutualExclusionResource>>
sched : Scheduler ctrl : MovementController info : Movementinformation
I I I
. 1: run() . I |
| <<TimedEvent>> | 2: setActValue(value="0") I |
{every = "(15,ms)"}
3:

I I M - - = - — — tmpAct : Actuator I
| | [i=0;i<10] | |
I I alt T 4: getActValue() R I
I I I(i % 2) == 0] | 5: result 'JIl I
[[S~ - - - - - - - = [[

|
| | | I 6: setActValue(value=result) | |
I I felse] | 7: getActValue(| I
I I I 8: result I
| | K -————=—--—-- |
[[I i [
| | | :l 9: ASSIGN(j, i+1) | |
| | |
| 10: processinfo(spee I— angle=) I |

l 11: setMode(newMode=10) I L
[: | g
| & }
I 12: ASSIGN(int var1| angle*0.9) I I
| [speed > 100] | 13: getSpeed() | |
! oL _eseed 11
| | |
T 1 |

Figure 5.5: Specification of the behavior in terms of actipegormed by objects

with state and/or activity diagrams. In AMoDE-RT modelimgpaoach, the sequence dia-
gram plays the main role for describing the behavior of arithsted embedded real-time
system. It was chosen due to its intuitive syntax to depigéaib communicating with
each other (i.e. message exchanges), as well as its capalitontrolling the execu-
tion flow within the diagram. As explained in the followingrpgraphs, a set of reserved
words has been created to represent other kinds of actiodls,as value assignment to
variables or object attributes, evaluation of expressiand objects state changes. Con-
sequently, it is possible to specify most actions a distediembedded real-time system
needs to perform as its behavior.

There are some modeling rules that must be followed in oedlow the combi-
nation of the behavior information spread into differenfeence diagrams. Figure 5.5
depicts an example of a valid behavior specification usinggauence diagram. All life-
lines represent active or passive objects, whose name rausther the name of an at-
tribute or a variable. Therefore, an object that sends a agest® other object must be
related to it through either a relationship between botssc(gpecified in the class dia-
gram), or the creation of this object (as a local variablghinithe context of its methods’
behavior. For example, the third lifeline (from left to rigjiepresents the association
relationship betweeiMovementControlleand Actuator classes, whose association end
has been named as “act” (see class diagram depicted in figiye As mentioned in
the previous section, this association end representstidougd with the same name in
the MovementControllerallowing the communication between objects of this class a
objects of théActuatorclass.

However, there is an exception of this naming rule: the fifslihe does not need to
represent any specific object. Hence, it can have any naraeiding the “*” wildcard
character, as depicted in figure 5.6), and does not requyr@ssociated object. This is
possible because the transformation algorithm usuakdypnéts messages departing from
the first lifeline as the beginning of an actions’ executi@wfl For example, in figure

82

<<SchedulableResource>> <<MutualExclusionResource>> | | act : Actuator
ctrl : MovementController info : MovementInformation
res 3
par

1: processinfo(speed=, anglef) |
2: getMode()

P+ 3:setMode(newMode=10)

4: savePreviousMode()

- — — 1 <

5:invalid()

6: setMode(newMode=)

7: savePreviousMode()

|
|
|
|
|
8: setActValue(value=150) !
T
LL
1

CEE == ===

Figure 5.6: Invalid behavior specification using sequenagrdm

5.5, “message 1” indicates the beginning of the behavidvlofementControllerun()
method. The same is valid for messages “1” and “6” in figuretha represent start
of, respectivelyMovementControlleprocessinfo(andMovementinformatiosetMode()
methods’ behavior Although the relaxed naming rule, theeepitfall in the specification
of messages sent to the first lifeline: if the message is semnt bther lifeline to the first
one, e.g. “message 5” in figure 5.6, it means a sending messaiga, and hence, the
first lifeline must represent an object to allow the corrat¢tpretation of this action. The
transformation algorithm will try to find the method asseetwith the message (in this
case, the methodvalid()), but will succeed due to the lack of associated object. et
words, the situation presented in figure 5.6 representsvafidrmessage flow due to the
lack of any object and/or class associated to the firstiiéli.e. the name “*” indicates
that the lifeline can represent any object.

Furthermore, considering the execution flow depicted imieage diagrams, messages
must be specified according a nesting constraint: it is éepebat the next message de-
parts either from the lifeline that has received the previoessage, or from one of the
lifelines that had sent any previous message. In this séms@liagram presented in fig-
ure 5.5 represents a valid flow, because all messages havespeeified according such
constraint. Considering this sequence diagram, let'sagsu‘imaginary” execution flow
that passes a control token from tbehed : Scheduldifeline to ctrl : MovementCon-
troller lifeline in “message 1”. This token is forwarded from thigline toact : Actuator
(“message 2”), which, in turn, passes it to thepAct : Actuatodifeline (“message 3").
After the instantiation oActuatorclass, the token is returned to thet : Actuatorlife-
line. Following, the token is passed againtiopAct : Actuatorin either “message 4”
or “message 77, returning back to the previous lifeline.(aet : Actuato) after the ex-
ecution of the behavior specified within the correspondiltgriaative in the combined
fragment. Finally, after the execution of the assignmetibacspecified in “message 9”
(explained in the following paragraphs), the token is nmedar toctrl : MovementCon-
troller lifeline. Further, “message 10" specifies a recursive ngssahich indicates the
beginning ofMovementControlleprocessinfo(method behavior (the darker part in the
lifeline). Thus, all messages sent from this lifeline patomg toprocessinfo(¥ behavior.
Likewise explained previously, the execution token flowsoamlifelines respecting the
message nesting order. In this example, it is important te tieat almost all messages
(e.g. messages 1, 2, 4, 6, 7, 10, 11, and 14) have been spasiigdchronous call oper-
ation messages, meaning that the execution of the callinigadis behavior must be held
until the called method returns the execution control token

On the other hand, figure 5.6 shows an invalid behavior spatidin using sequence

83

diagrams. It describes a broken execution flow due to “me&s3agOonce reading this dia-
gram according to the mentioned messages nesting consireiexpected that “message
3” departs fromnfo : Movementinformatiorctrl : MovementControlleror “*” lifelines
rather than fromact : Actuator Hence, the specified execution flow violates the expected
messages nesting order. Nevertheless, if “message 3” aessage 5" (as explained in
previous paragraphs) are removed, the sequence diagraotedejn figure 5.6 becomes

a valid behavior specification, due to the compliance withrttentioned constraints.

As mentioned, sequence diagrams are key diagrams to syskavibr specifica-
tion. They are intended to depict objects interactions imgof messages exchanged
among them. However, behavior of distributed embeddedtimal systems cannot be
fully specified using only sending messages actions. Therether equally important
actions: (i) values assignment to object attributes or variabfi@sevaluation (or execu-
tion) of mathematical or boolean expressidii) explicit changes in the object state
(iv) array-related actions, such as insert/remove elementsggelement values, or get
the array length. The problem is that there is no availabiestaction in sequence dia-
grams to specify such actions. Thus a set of reserved worg€reated to specify these
actions. Table 5.1 presents the created reserved wordsh ate used in the specification
of message names to represent the mentioned actions. Intoraléow the correct inter-
pretation of such names during the transformation phasesythtax depicted in table 5.1
must be followed.

Other important feature in behavior specification is thetimf execution flow using
constructions such as branches or loops. Since the apbUNIL 2.0 superstructure
specification, sequence diagrams allow the specificatiaoofrol constructions, named
combined fragmentswvhich operate on an interaction fragment. Thus it is pdsdib
specify alternative or optional execution of interactioagiments, parallel execution of
interaction fragments, repetition of interaction fragisesxecution, and others. The pro-
posed modeling approach allows using a subset of all cordiragments kinds:

e Alternatives (al t) designates different choices for execution of actionsieages.
To use this construction, designers must specify at leastaiernatives. Each
alternative sequence is guarded by a boolean expressiach) wiust hold in order
to deviate the execution flow to the alternative interactiagment. If an alternative
does not have a guard expression, the actions sequencs alténnative is executed
if and only if guard conditions of all other alternatives dat ihold. In the case of
two or more guard conditions hold, the action sequence Bpeavithin the first
alternative (considering the alternatives order depiatete sequence diagram) is
executed; other action sequences are ignored. In othesywbre actions specified
in anal t fragment are not concurrent. Figure 5.5 depicts an exanpseich
combined fragment;

e Option (opt) defines an optional sequence of action that are executettharitbe
guard expression holds. It is similar & t combined fragment, but it specifies
only a single alternative. Therefoogpt combined fragment must always have a
guard condition. Figure 5.5 shows an example of this contbiregment;

e Parallel (par) represents parallel execution of action sequences, wdelkute
concurrently and independently from the other paralletgoais sequences of ac-
tions could terminate in different instants, designers trma$ specify any action

1The term “state” in the context of OO can interpreted as twmmlementary definitions(i) values
of object’s attributes at a given instant; and(dy a explicit state, which is generally specified in a state

machine. In this work, “object state”, “state of the objedt simple “state” refers to (ii).

84

Table 5.1: Reserved words for actions specification

Syntax

Description

ASSI GN([dat a t ype]
target, val ue)

Represent an assignment action of a value to a variable or
object attribute, where:

dat a type is optional, and indicates the variable data
type;

t ar get specifies the name of the target variable or at-
tribute, in which the value is stored. The naming constraint
(i.e. lifeline naming) must be respected;

val ue is the value to be assigned.

EXPRESSI ON([[dat a type]
target,] expr)

Represent the evaluation (or execution) action of a mathe-
matical or boolean expression, where:

dat a type is optional, and indicates the variable data
type;

t ar get is optional, and specifies the name of a variable
or attribute in which the expression result is stored. The
naming constraint (i.e. lifeline naming) must be respected
expr is the expression to be evaluated.

MODI FY_STATE(newSt at e)

Represent the action that changes explicitly the object
state, where:

newsSt at e represent the new state in which the object will
be after the execution of this action.

| NSERT _ELEMENT(t ar get
[pos,] val ue)

Represent the action of inserting a value in a given array,
which can be a variable or attribute:

t ar get specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected;

pos is optional, and specifies the array position after which
the value is inserted. If it is omitted, the element is added
at array’s end;

val ue is the value to be inserted.

REMOVE_ELEMENT(t ar get ,
pos)

Represent the action of removing a value from a given ar-
ray, which can be a variable or attribute.

t ar get specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected;

pos specifies the array position that must be removed.

ARRAY LENGTH(t ar get)

Represent the action of reading the length of a given array,
which can be a variable or attribute.

t ar get specifies the array name. The naming constraint
(i.e. lifeline naming) must be respected.

85

after apar combined fragment. Figure 5.6 also shows an example of tns c
bined fragment;

e Loop combined fragment (0op) represents the repetition of the actions sequence
execution. The actions sequence is repeated while the gugmession holds.
Loops can also have a fixed number of repetitions, which igipd using the
syntax ‘var = m nNunber; var < nmaxNunber”, wherevar is the name
of the repetition countenyi nNunber is the initialization value for the counter;
andmaxNunber is the number of repetitions. Figure 5.5 shows an example of a
loop combine fragment that has a fixed number of repetitions.

To conclude the discussion on behavior specification usaggence diagrams, it is
important to consider the specification of real-time feasur Similar to the specifica-
tion of the dynamic structure, stereotypes that decoraigsek of active and passive ob-
jects are also depicted in sequence diagrams, due to thalalmi of this information
in instances of UML meta-model element previously specifigdthis sense, MARTE
stereotypes do not need to be specified twice for the demgripf same system el-
ement, e.g. «Schedul abl eResour ce», «Mut ual Excl usi onResour ce» and
«Schedul er » stereotypes have already been used in the class diagrancpalttibe
depicted in sequence diagram elements of figure 5.5.

An important view of system behavior is the specificationative objects’ concurrent
behavior that need to be periodically executed at a centaquency. This kind of active
object must have only one periodic behavior, i.e. only onéhogkcan have its behavior
triggered periodically. Thus, designers must create at le@e sequence diagram for each
periodic active object, showing the activation patternifeperiodic behavior. An exam-
ple of such diagram is presented in figure 5.5. This diagrast adways start with a mes-
sage sent from the scheduler object to the active objedtahdg the start of the periodic
behavior execution. Such message must be decorated withT@ARTi nedEvent »
stereotype. The time interval between two consecutivelgi@ts of the behavior must
be specified using thever y tag, whose value must follow MARTE®alue Specifica-
tion LanguagdVSL) (OMG, 2008b) syntax:(‘n, timeUnit)”, wheren is a number
andti meUni t is the time unit. For instance, in figure 5.5, “message 1" iscaated
as‘every = (15, ms)”, indicating that the interval between two consecutivecexe
tions of this behavior is 15 milliseconds.

5.2.4.2 Activity Diagram

Another diagram to specify system behavior that is suppgdriteAMoDE-RT mod-
eling approach is the activity diagram. Although optiomathe proposed modeling ap-
proach, this kind of diagram may be used in combination wafuence diagrams to
specify the overall view of system behavior in terms of romgiphases.

Distributed embedded real-time system runtime can be elivil three distinct phases:
(i) initialization; (ii) execution; andiii) shutdown. The activity diagram is used to specify
these phases as shown in figure 5.7. Each activity is asedaiath a sequence diagram,
which details actions performed in the activity. AMoDE-RDdeling approach uses se-
guence diagrams rather than textual action languages (MER_&t al., 1999) to specify
complex behavior and/or actions sequence, due to grapspedifications are consid-
ered easier to understand than textual descriptions. 8gsitiagrams are more intuitive
and technology independent, facilitating the informatexchange among different de-
sign teams. Additionally, textual languages are consatlgszy similar to conventional

86

¢ R

<<TimedEvent>> <<TimedEvent>> <<TimedEvent>>

System <<RTFeature>> <<RTFeature>> <<RTFeature>>
Initialization JoystickDriver. MovementController. | | MovementEncoder.

run() run() run()
System
Shutdown

{every ="(10,ms)", {every ="(50,ms)", {every ="(10,ms)",
relDeadline = "(10,ms)", relDeadline = "(50,ms)", relDeadline = "(10,ms)",
weet = "(3,ms)"} weet = "(10,ms)"} weet = "(2,ms)"}

i

Figure 5.7: System behavior overview specified using agtdiagram

programming languages (e.g. Java or C/C++), and henceatieeyot the most suitable
form to specify system behavior in high-level models.

System initialization and shutdown activities descrideaations that need to be per-
formed, respectively, before and after the core functitiealprovide by the system. As it
can be seen in figure 5.7, after the initialization activitg execution flow is split in sev-
eral concurrent activities. Usually, these activitiesicate periodic behaviors executed
by active objects. If this overview of system behavior isyided, it is expected that the
amount of sequence diagrams provided in the UML model isast lequal to the amount
of activities specified in the activity diagram.

Activities’ timing information are specified by MARTE stertypes and tagged val-
ues, indicating the activation perioé\ery tag of «Ti nedEvent »), deadline, and
WCET (respectivelyr el Deadl i ne andwcet tags of«Real Ti meFeat ur e») for
activities execution. Figure 5.7 depicts three activitlest are annotated with the men-
tioned MARTE stereotypes and tagged values, doystickDriver.run() MovementCon-
troller.run() and MovementEncoder.run()As mentioned, this information is specified
once, i.e. one or more instances of UML meta-model elemeafésed to system ele-
ments, and reused in many different diagrams that depictange elements, such as
class diagram, sequence diagram, activity diagram, am@apother diagram supported
by AMoDE-RT modeling approach.

It is important to highlight that runtime phases can alsofecHied using state dia-
grams, in which each state represents a phase. Althouglersegdiagrams could also
be linked to states (in a state diagram) to indicate the behaxecuted when the system
is in a given state, the activity diagram is considered mar&Ble for depicting such
viewpoint due to its sequential execution flow semantics, @so to the clearer visual-
ization of concurrent behavior. Furthermore, AMoDE-RT ralaly approach binds state
diagrams to classes to specify explicitly states in whicjectbcan be during different
system runtime. Consequently, using state diagrams tafgsgstem-level states may
cause problems in the model’s information interpretatiot tiansformation.

5.2.4.3 State Diagram

Although sequence and activity diagram are considerectcgrftly complete to spec-
ify the distributed embedded real-time systems behaveret are application domains
in which this view of system behavior is not the most suitabie. Usually, in reactive
systems, behavior is usually specified in term of events atidres performed in response
to these events. To support this specification viewpointof¥-RT modeling approach
uses state diagrams, which are associated with classafiespécthe class diagram. In
this sense, state diagrams represent both explicit statedich a class instance (i.e. ob-
ject) can be at a given instant, and the behavior performele istays in these states. It

87

Running

low battery level

Triggering

low battery level Alarm

processlinfo(speed : int,
angle : int)

Reading

Information Calculating

Actuation
Values

PP Reading Joystick

AApAplyi_ng low battery level

Values shutdown() _ — Stopping }
X®)<

processDate(newData : int storeDate(newData : int)
(® Reag:‘,?ssreed next activation Storing shutdn()

setActuationValue()

next activation

Processed Data

low battery|level
low battery level

Triggering low battery level

Alarm

K

Figure 5.8: Behavior of classes specified using state diagra

is important to highlight that one state diagram is assediaiith only one class, and vice-
versa. Figure 5.8 shows an example of state diagram cotistracwhich are allowed in
the proposed modeling approach.

State diagrams show behavior as states, transitions, antkse\Actions are associated
with states indicating their execution in three mome(i)son entering the statéij) dur-
ing the stay on that state; aifii) on exiting the state. Similarly to activity diagrams,
actions must be specified using sequence diagrams, whidssoeiated to states in the
mentioned moments. Moreover, state transitions are firegl/byts, which may be inter-
nal or external. Internal events are logical events fromaglication domain, e.g. the
detection of a certain kind of threat in a surveillance syst®©ther example of internal
eventis the instant in which a method call action is perfatjagy. transitions from “Read-
ing Joystick Position” to “Reading Movement Informatiomt, from “Processing Data”
to “Storing Processed Data” as depicted in figure 5.8. Erlevents indicate remarkable
occurrences, which happened in the external environmemhich the system is embed-
ded, e.g. signals issued by presence sensors. Such eversigeaified as substantives
in the transitions name, e.g. “low battery level” transigan figure 5.8. Furthermore,
deep and shallow history pseudo-states (OMG, 2008) areuppiosted by AMoDE-RT
modeling approach. Consequently, the only way to stadHiai state machine is passing
through, respectively, initial and final states.

Orthogonal states are also supported. Designers can pmewfsub-state machine
in each orthogonal region, meaning that once entering irtteogonal state, objects can
be in severaAND-stateOMG, 2008) at the same time, e.g. “Running” state in figure
5.8. Atransition from these orthogonal states to any ottate $s possible only if all sub-
state machines arrive in their final state. Hence, if the @xint (which triggers the exit
transition from an orthogonal state) happens, and one og Budy-state machine are notin
their final state, the event is passed to all sub-state meshkwvhich remain active. On the
other hand, if there is no active sub-state machine, thdraxisition from the orthogonal
state happens. For instance, let’'s assume that the stateneatepicted in figure 5.8 is
in “Running” orthogonal state. The first sub-state machuyggr orthogonal region) is
in the final state, and the other one is in “Storing ProcessadD When a “shutdown”
event occurs, itis passed only to the second sub-state negdaiusing the transition from
“Storing Processed Data” to the final state, and thus, froomfing” to “Shutdown”. It
is also possible to specify a transition from orthogonalestavithout triggering events,
indicating that, once all sub-state machine arrive the fitate, the exit transition from
the orthogonal state is triggered automatically.

88

ConcernDecomposition ‘
formalizedBy * 1.
Jaopi N S e Weaving
{overzpping
¢ superaspect Aspect inConflictWith
e N e ConflictResolution
2
8 |
AdaptationRule
AdaptationSubject AdaptationKind
RelativePosition | consistsOf consistsOf
relPos[0..1]:RelativePositionKind Operator
; . .
<<enumera tion>> w composedOf Adaa”on Ecomposedof
RelativePositionKind
gregﬂ:]ed Si_mg!s Composite | ~ Simple Composite | ~*
after Pointcut Pointcut Adaptation Adaptation
* | selectedBy
[JoinPointModel | ---{ SelectionMethod |
1. owner * | selectedJP Structural Behavioral
JoinPoint Adaptation Adaptation
ownedJP —
dynamicity *{) «Q
1] representedElement implementedBy | implementedBy
Language
_Language 1.
1 Structural
owner 4. £ ; Element 1.*
ownedElement " ‘ \ Behavioral
Element

Figure 5.9: Conceptual AO model (SCHAUERHUBER et al., 2006)

5.3 Non-Functional Requirements Handling Elements
5.3.1 Introduction

As already mentioned, AMoDE-RT modeling approach usesasype specify non-
functional requirements handling in UML models. Given tbiMiL does not have con-
structions to depict AO concepts in its diagrams, a lighgueextension to UML in terms
of a UML profile has been proposed. The concepts representédebcreated profile
stereotypes are based on the AO concepts presented inns2cti@, and also the AO
conceptual model proposed by Schauerhuber et al. (200&)itgee 5.9). That model
provides more general AO concepts compared to the onessgsdin section 3.3, which

are simply adaptations of specific AO languages conceptsn Bris model, the following
stereotypes have been derived:

e «Aspect »: used in ACOD (see section 5.3.3) to specify which DERAF efspe
(see next section) are selected in the current design. It beussed to decorate
UML's class meta-model element, extending its semanticspoesent aspects;

e «Behavi or al Adapt ati on»: used in ACOD to decorate aspects “methods” to
specify behavioral adaptations performed in system fonelielements. It must be
used to decorate UML's operation meta-model element extgrith semantics to
represent behavioral adaptations;

e «Structural Adapt ati on»: used in ACOD to specify structural adaptations
performed in system functional elements. It is also usecetmrhte UML's opera-
tion meta-model element;

e «Crosscut »: used in ACOD to decorate associations between classessand a
pects. In ACOD crosscut associationdo not represent by themselves a relation-
ship between aspects and classes. Instead, they repref@mation that is in-

89

serted by aspects in affected classes. Thus, this steeeexgpnds UML's associa-
tion relationship using the mentioned semantics;

e «Poi nt cut »: used in ACOD to decorate aspects “methods” to specify tiie li
between join points and aspect adaptations. It must be wsdddorate UML's
operation meta-model element extending its semanticspi@sent pointcuts. In
the decorated methods, parameters represent pointcutiation as explained in
section 5.3.3;

e «Joi nPoi nt »: used in JPPDs (see section 5.3.4) to decorate the pointichwh
aspects can perform adaptations. It only indicates whictd(&f) model element is
affected by aspect adaptations, instead of modifying $esimantics;

e «JPDD»: used to decorate sequence or class diagrams indicatirtpdyaepresent
join point selections rather than a functional diagram.

The following sections discuss how to use AO concepts to @éhlnon-functional
requirements in the distributed embedded real-time sys@#sign. Firstly, an aspects
framework to handle the mentioned requirements is predeiiteese aspects are used in
theAspects Crosscutting Overview DiagrdACOD), which is proposed in this work and
discussed in section 5.3.3. Finally, join point specifimatis presented in section 5.3.4,
which discusses the use @fin Point Designation Diagram@PDD).

5.3.2 Distributed Embedded Real-time Aspects Framework
5.3.2.1 Overview

To provide modularized handling for non-functional reguaents, a framework of
aspects namebistributed Embedded Real-time Aspects FramewWDKRAF) has been
created. In this sense, DERAF aspects encapsulate in & silgghent all issues related
to the handling of non-functional requirements.

Based on the AO conceptual model presented in the previati®seDERAF is an
extensible high-level aspects framework to be used inezatésign, as well as implemen-
tation phases. The main idea is to provide aspects that ealthe modeled system by
means of adding specific behavior and structure to specifiyfaoctional requirements
handling. These “new” behavior and structure are indepenfdem any specific imple-
mentation technology.

More specifically, DERAF was intended to be used togethdr WKL and MARTE
profile. To achieve this goal, details about how to implenaspiect adaptations have been
abstracted, i.e. designers choose which aspects are uspedify the non-functional re-
quirements handling based on aspects adaptations highdemantics. Thus, in UML
model, DERAF aspects are used as “black boxes”. In additlesigners must indicate
which functional elements are affected by the selectedcspsing join points specifica-
tion, as discussed in section 5.3.4

Considering the non-functional requirements presentesation 2.3, each require-
ment can be handled by one or more DERAF aspects. Figure Balssan overview of
the DERAF aspects. As it can be seen, DERAF provides six jgagskgrouping aspect
based on their goals. The following sub-sections provideef discuss on the seman-
tics of each available aspect. In addition, a more comprEhenlescription of DERAF
aspects is presented in appendix A.

90

<<Non-Functional>> |
Timing <<Non-Functional>>
Precision
i <<Aspect> A t <<Aspect>>
imi i <<Aspect>>
TimingAttributes < <<use>> | PeriodicTiming P P!
Jitter DataFreshness
w
<<use>> 7
~
<<Aspect>> [SSuse>> <<Aspect>> <<Aspect>>
TimeBoundedActivity <<Aspect>> ToleratedDelay ClockDrift
SchedulingSupport
N
7
{
r e
\ e
<<Non-\FunctionaI>> P -
Synchronization :
<<use>x “ecusess <<Non-Functional>>
<<Aspect>> Communication
ConcurrentAccessControl <<Aspect>> <cuses> <<Aspect>>
| MessageAck | — | Messagelntegrity
<<Aspect>> F<use>>
MessageSynchronization <<Aspect>>
MessageCompression
<<Non-Functional>> |
Embedded <<Non-Functional>>
TaskAllocation
<<Aspect>> <<Aspect>>

=<US€>> IHwAreaControl | <fuse>>

HwAreaMonitoring <
- = 4 _ <<Aspect>>

>
TaskMigration
<<Aspect>> <cuses> | <<Aspects> | SFUSe= 4 — K
EnergyMonitoring [€ — — — ~|EnergyControl - 7
~
~
<<Aspect>> <<Aspect>> d<use>> . :;ASPGC:.:) I
tat tri
MemoryUsage | _<<US¢>> _ |MemoryUsage odeStatusRetrieval
Monitoring Control

Figure 5.10: All aspects provided by DERAF

5.3.2.2 Timing Package

This package contains aspects to handle time-relatedrezgents, such as deadlines
for activities execution, WCET information, periodic taskctivation, and others.

TimingAttributesaspect is responsible to deal with active objects chatiatitey such
deadline, priority, WCET, and absolute time instants onchtiheir behavior must start
and finish the execution. Attributes representing the roaetil characteristics are inserted
in the affected active object classes, as well as methodsahavior to initialize and
handle these attributes. As mentioned, the handling okttiesng issues is delegated to
the target platform that must provide support to this aspegtantics.

PeriodicTimingaspect provides means to trigger periodically an activedailijehavior
execution. Thus, besides adding an attribute indicatiegettecution frequency in the
affected active object class, this aspect must also enthesaffected behavior with a
repetition mechanism, whose execution is controlled attngrthe information stored in
the mentioned new attribute. In other words, this aspecsesi o deal with the handling
of periodic active objects (or threads).

SchedulingSuppo#espect inserts a scheduler object in the affected compntidgs.
This object is responsible to control active objects exeayindicating instants at which
they must start performing their behavior.

TimeBoundedActivitgspect controls the execution time duration of an activitst®
tion by counting the time elapsed since the start time instatmaximum allowed dura-
tion is surpassed, this aspect provides means to abortféetexf activity/action execu-

91

tion. Examples of this aspect use are: to restrict the maxirtimne a shared resource can
be in exclusive access mode, or the maximal time amount areasject can wait for
the reply of a remote objects.

5.3.2.3 Precision Package

Precision in meeting time requirements are handled by thecss of this package,
which concentrates efforts in features such as the maxinolenated delay in starting
activities, variance in activities timeliness, infornmatis validity duration, or the deviation
of local clock reference compared with the global one.

Jitter aspect measures the accuracy variance in activities pegfbby the system.
This aspect provides means to measure the time before @) aft observed activity
happen, storing this information (the history must providi®rmation of at least one
time sample) to calculate the variance among the obserusel ifistants. This aspect
can be used, for example, to calculate the jitter in an periactive object activation or
execution, or to compute the time variance of a periodic agssending.

ToleratedDelayaspect controls the maximum tolerated latency to the actaal of
a given system activity. Thus, the time between the commaddlze execution of the
observed activity must be measured and calculated. If tsergbd duration is greater
than the maximum allowed latency, this aspect provides syeahandle this exception.

ClockDrift aspect controls the clock deviation between the local tiouece and the
global one. Assuming that the target platform provides méaallow clock synchroniza-
tion, this aspect uses the global clock as reference to lesdctihe local clock deviation.
Thus, designers must specify time instants (or system gveny. the starting of an behav-
ior execution) at which the local clock must be compared withglobal clock reference
in order to check if there is a difference between the two mesbvalues.

DataFreshnessspect is responsible to deal with the validity durationulity) of
different system information (BURNS et al., 2000). For thhis aspect associates times-
tamps to affected data by adding new attributes to repriegesitich information, as well
as inserting behavior to control these data use. In othedsyaach time a controlled
data needs to be read, its validity must be checked andsibuii of validity, a corrective
behavior must be performed, e.g. wait until the date to beatgul] read data directly
from its source, decrease the frequency at which periodienaers (which read the con-
trolled data) are executed. Analogously, each time a cthetrdata is updated, its validity
duration must also be updated.

5.3.2.4 Synchronization Package

Synchronization and the concurrent access control to dhasources requirements
are dealt by this package’s aspects.

ConcurrentAccessContralspect provides means to control the concurrent access to
objects, which share their attributes information withestlobjects. The access to ob-
ject’s different elements can be controll€d:the object itself{ii) their attributes; and/or
(i) their methods. Therefore, depending on the controlled elnone or more arbiters
(i.e. concurrency controller instances) are created. \Etngre an (active or passive) ob-
ject needs to access controlled shared elements, it mustsethe access to them (i.e.
request a lock) that are granted or not by the arbiter. Ddapgnah the arbiter imple-
mentation (e.g. mutex, semaphore, monitors), and alscetaumber of objects that are
accessing the shared resource at the moment, the accesstregj be authorized or not.
Similarly, after the use of the shared resource, the objtttiad the access permission

92

must notify the arbiter, indicating that it is leaving theastd resource and does not need
to use it anymore.

MessageSynchronizati@spect deals with holding behaviors execution until the ar-
rival of an acknowledgement message (or a reply messageptimdy that the (remote)
object has received the message sent. It provides a waitechamism that could be
implemented as eithdr) a busy wait, i.e. a loop that waits until the acknowledgement
message arrives; @i) using the system scheduler, which preempts the executitreof
current active object, marking it as blocked, and thus, oygeroom for other active ob-
jects execution. Later, when the expected acknowledgemessage arrives, the blocked
active object is marked as ready to execute, and its execigicesumed following the
scheduler’s decision.

5.3.2.5 Communication Package

This package provides aspects to deal with objects comrmatioicin terms of mes-
sages sending. The first intention was to cover the commiimichetween objects that
are located in computing devices that are physically sépadraHowever, depending on
application requirements, this package’s aspects carbalssed for specifying the com-
munication of objects located in the same computing device.

MessageAchspect provides an acknowledgment mechanism to notifyptieceof a
message to its sender. In this sense, this aspect affettsidets of a message exchange:
sender and destination objects. On one side, the sendet ebjeds a messages and waits
for an acknowledgement of message reception. On the ottley thie receiver objects
needs to send an acknowledgement message after each deoeissageMessageAcks
related withMessageSynchronizati@aspect.

Messagelntegrityaspect is responsible for handling messages integrity byiging
checking information within a message. SimilarlyMessageAckthis aspect also af-
fects both message’s sender and receiver objects. Sendetoimust generate integrity
checking information, appending it in the message to be sdmlke receiver objects must
generate checking information from the received messagaparing it with the infor-
mation that came with the received message. The acknowlkenlgmechanism must be
notified whether the checking information match or not.

MessageCompressiaspect is in charge to compress/decompress messages in or-
der to improve bandwidth utilization. Like the other asgeot this package, this as-
pect affects both message’s sender and receiver objectseniier side, the message is
compressed using a compression algorithm, while at recsigte the message is decom-
pressed using the same algorithm.

5.3.2.6 TaskAllocation Package

Aspects provided by this package handle non-functionalirements related to ob-
jects distribution on different computing devices at raréi These aspects are typically
related to distributed system nodes that are physicallsrségd.

NodeStatusRetrievakpect includes a mechanism to gather information on thersys
dynamic characteristics, such as processing load, messagkéng and reception rates,
and if the computing device is running.

TaskMigrationaspect adds a migration mechanism to move active objeats dree
computing device to another one. Therefore, active obartamigrate from one node to

93

another, as well as from software to hardware, or vice-versa

5.3.2.7 Embedded Package

Non-functional requirements related to physical resaies@ilability, which are very
common concerns in embedded systems design, are handleshyattkage’s aspects.
Energy consumption, memory usage, and hardware recorifiguaaea can be cited as
examples of such concerns. Basically, the available as@@etconcerned in monitor-
ing and controlling the mentioned physical resources. THapending on the physical
resource being controlled, the control policy, and platfaapabilities, different actions
can be performed by these aspects as, for instgijcéepending on the system require-
ments and runtime state, to remove objects related to nboatractivities; (ii) active
objects migration(iii) to loosen timing constraintgiv) to decrease processor operation
frequency;(v) to turn off unnecessary hardware components; It is impbttahighlight
that this aspects are dependent on target platform cagpedilineaning that the platform
must provide means to monitor and control system physicalnees.

HwAreaMonitoringaspect is related to systems that use reconfigurable hazdlear
vices, such as FPGAs. It provides a mechanism to monitor éhenfigurable area
by which the remaining reconfigurable area (in terms of caméigle logic blocks) is
(re)calculated at each reconfiguration command.

HwAreaControlaspect controls the hardware reconfigurable device usageding
an arbiter to allow or deny every reconfiguration based ommtfeemation of this package
monitoring aspects.

EnergyMonitoringaspect relies on the target platform to provide a mecharmsnon-
itor energy consumed by system activities. This mechanisist measure the remaining
energy level before the observed activities start, and #fir completion. Further, it
calculates the amount of energy that was consumed by thagities.

EnergyControlaspect provides an object that uses information providethéynon-
itoring aspects to control the energy consumption. To ag@tisimsuch goal, this object
could perform the actions mentioned in the beginning of $hissection.

MemoryUsageMonitoringspect is similar to the other two monitoring aspects but it
Is related to software rather than to hardware. It providegehanism that must calculate
the overall memory usage of a computing device at every bbjexration/deallocation.

MemoryControlaspect uses the information provided kfgmoryUsageMonitoring
and HwAreaMonitoringaspects to control the memory allocation requests for tdbjec
allocation following an adopted memaory control policy.

5.3.2.8 Discussion

As one can conclude from the DERAF aspects description, semects deal with the
same non-functional requirements, suchvessageSynchronizatipMessageAckMes-
sagelntegrityandMessageCompressidhat handle objects message sendingylemo-
ryUsageMonitoringandMemoryUsageContraspects that handle memory non-functional
requirements. There are aspects that access resourcedegrby other aspects, such as
the SchedulingSuppodspect that uses resources providedioyingAttributesandPeri-
odicTimingaspects adaptations; or control-related aspects thahtmeniation provided

2Objects migration between software and hardware (at r@tisusually known as “reconfiguration”.
However, in embedded systems domain, “reconfigurationdlismeans to upload a bitstream into a FPGA
device. Thus, in order to avoid misunderstandings, thisusgs the term “reconfiguration” to refer to the
later, while reconfiguration between software and hardwegecalled “migration”

94

by monitoring aspects to control the use of embedded sysiwsigal resources.

However, it is important to note the conflicting nature of soaspects adaptations.
The behavior that handles a non-functional requirementdfact the handling behavior
of other non-functional requirements, e.g. the energyrotiet (inserted by thd=ner-
gyControlaspect) decides to migrate an active object from softwatatdware to save
energy, but the hardware area controller (inserted byHiw&reaContro) aborts this mi-
gration activity due to insufficient available reconfigueabrea. These conflicts must be
solved at design time. RT-FRIDA provides tools to enablair@mments conflicts reso-
lution by assigning an importance value to each requirefeREITAS, 2007). Hence,
this information must be taken into account in aspects impl&ation, so that, problems
related to requirements conflicts can be minimized.

The key factor that motivated DERAF creation was to provigetof high-level as-
pects, which offer well-defined adaptations semanticsetaded in UML models. How-
ever, to allow its practical use, it is also necessary to igevhe realization of these
aspects in terms of application or platform source code Jaifggm configuration code.
Additionally, aspects implementation must follow the plefined semantics on “how”
and “where” aspects adaptation can be applied. Keepingdherency between high-
level adaptations semantics and their implementatios, possible to increase the reuse
of aspects implementation previously created, reduciegetifort necessary to handle
non-functional requirements in further projects.

In this sense, it is important to highlight that, althoughitig information is specified
by Timing Packags aspects within ACOD context, specific details on how todian
timing are delegated to the target platform, in order to kP&RAF aspects platform-
independent. In other words, the implementation of aspetéptations defines exactly
how to deal with each timing feature using constructionslalke in the target platform,
and respecting DERAF’s high-level semantics as specifiddMi. model. An example
of such aspect implementation can be seen in figure 6.9 of hlapt€r 6 that shows how
periodic timing is handled using constructions availalblen RT-Java based platform.
Other timing issues (e.g. deadline, WCET, etc.) are handl@dsimilar form: DERAF
defines high-level semantics to these non-functional reqments handling, which are
further implemented using constructions and serviceslahlai in the target platform.
Consequently, the exact handling of timing features dependhe target platform.

It should be stated that there are two kinds of possible implgations to aspect
adaptations(i) those that adapt application code; gidadaptations that tailor platform
source code, or produce platform configuration files. Theé&rrepresents modification
in the application code itself, e.d?eriodicTimingaspect’'sLoopMechanisnadaptation,
DataFreshnesaspect'sverifyFreshnesadaptation, oConcurrentAccessContraspect’s
AcquireAccesadaptation. On the other hand, the other kind enables doldsa feature
in the target implementation platform, elessageAckMessagelntegrityandMessage-
Compressiomspects adaptations. The most important thing is to notetthprovide the
expected aspects adaptations according to the pre-dekneahsics, the target platform
must offer the required services. It is not the intentiorhefdescribed DERAF semantics
to provide a definitive solution for the handling of each rianetional requirements ad-
dressed by its aspects, they are suggestions to addreshesthrequirements handling.

Finally, it is worth mentioning that the aspects set prowgidyy DERAF does not
cover all non-functional requirements present in the ithisted embedded systems do-
main. Currently, non-functional requirements such ad talgrance are not addressed by
DERAF aspects. However, it is an extensible framework, nmgaimat it is not difficult

95

<<Aspect>>
TimingAttributes <<MutualExclusionResource>>
Movementinformation
<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjlnit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<StructuralAdaptation>>+Deadline() <<Crosscut>>
<<BehavioralAdaptation>>+SetTimingAttributes() {Validity F "50ms"}
T Speed
<<Crosscut>> <<Aspect>>
{Deadline = "20ms", DataFreshness <<Crosscut>>
Priority = "1", {Validity = "20ms"}
WCET = "8ms"} <<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE) Angle

<<SchedulableResource>> || <<BehavioralAdaptation>>+VerifyFreshness()
MovementController

Figure 5.11: Aspects specification using ACOD

to include other aspects. It is only necessary to follow tules:

1. High-level semantics, indicating “how” and “where” aspeeadaptations are ap-
plied, must be pre-defined; and

2. To respect aspects’ pre-defined semantics in their impl&tien using services
and constructions of a given target platform.

5.3.3 Aspects Crosscutting Overview Diagram

As UML does not provide any meta-model element or graphicaktruction to rep-
resent aspects, this works has proposedAbpects Crosscutting Overview Diagram
(ACOD), which is an extended version of the standard claagrdm. ACOD is based
on the concepts presented by Stein et al. (2002) and Schdugeriet al. (2006), and
shows DERAF aspects affecting or not functional elementserd& are two ACOD ver-
sions with different levels of detail(i) overview ACOD presents all aspects affecting
classes without depicting details about aspects’ infoilenatnd(ii) detailed ACOD de-
picts all aspects specified in the UML model along with thelagtations and pointcuts,
and all classes that receive new information from aspecttai®2d ACOD is the main
information source for aspects specification. Thus, desgymust always create this di-
agram to specify AO-related elements. Overview ACOD candyegated automatically
by evaluating all pointcuts specified in the detailed ACORBirfg the join points indi-
cated in these pointcuts) to discover which aspects affbtiwclasses. Hence, overview
ACOD is considered an informative diagram rather than ae@syspecification.

AO-related stereotypes proposed in this work are used totatenUML meta-model
elements depicted in ACOD to represent AO concepts as gezbamfigure 5.11Aspects
are represented as classes decorated withAl@ect » stereotype. Aspectisehavioral
adaptationsare specified as methods decorated withk¢Behavi or al Adapt ati on»
stereotype, whilstructural adaptationsis methods decorated with th&t r uct ur al -
Adapt at i on» stereotype. Similarlypointcutsare specified as methods decorated with
«Poi nt cut » stereotype. As pointcuts specify the link between join fsoselection and
aspect adaptations, this information is specified as mgthoagmeters as follows:

e The first parameter represents the join point name, andatetiavhich model ele-
ments are selected by these JPDD, éRPD _InfoAttributeReadh DataFreshness

e The second parameter indicates which adaptations arerpexfian selected model
elements, e.gDeadlineandSetTimingAttributesr TimingAttributes If more than
one adaptation of the same aspect modify the same join @aaptations names

96

can be combined in the same pointcut, using the “+” chardoteseparate each
adaptation name, e.g. “Deadline+Priority+WCET”;

e The third parameter specifies position (related to the jointp at which associated
adaptations are applied. For structural adaptationsptriameter is optional. The
following relative positions are supported:

— BEFORE: used for behavioral adaptations to indicate that they ppéied be-
forejoin point occurrences, e.gcReadAttrValuen DataFreshness

— AFTER: used for behavioral adaptations to indicate that they ppied after
join point occurrences, e.@cActObjlnitin TimingAttributes

— AROUND: used for behavioral adaptations to indicate that theglose(i.e.
adaptations are done before and after) join point occue€nc

— REPLACE: used for behavioral or structural adaptations to inditia&e join
point occurrenceare replacedoy these adaptations;

— MODI FY_STRUCTURE: used for structural adaptations to indicate that they
modifyelements selected by join points;

— ADD_NEW FEATURE: used for structural adaptations to indicate that new
features (e.g. attributes) are added in affected elemergspcActClassn
TimingAttributes

An important ACOD feature must be highlighted: associaibatween aspects and
classes, which are decorated with th@ osscut » stereotype. If an aspect structural
adaptation inserts new attributes in classes, the affetdsdes must be included in ACOD
specification. For each affected class, an unilateral orme association decorated with
the«Cr osscut » stereotype must be created from the aspect to the affectssl dfalues
for the new attributes are specified as tagged values icrtdsscut associatioas depicted
in figure 5.11. As one can se@&mingAttributesnserts three attributes (i.eDeadline
Priority, andWCET) into MovementController The crosscut associatioapecifies that
Deadlinemust be initialized with 20 m<riority with 1, andWCET with 8 ms. Simi-
larly, DataFreshnesaspect adds a new attribute associated Wilvementinformatios
SpeedandAngleattributes. A different value to each attribute is specifredrosscut as-
sociations However, it is important to highlight tharosscut associatiorare not “real”
associations between aspects and classes in terms of UMtiatssn semantics. Instead,
they are interpreted as informative relationships thatatgpnoduce any meta-model ele-
ment in the associated elements.

Considering timing requirements handled by DERAF aspebts,form to specify
such information is demonstrated in figure 5.11. For insadeadlines are handled by
TimingAttributesand thus, they are specified@assscut associatiorisetween this aspect
and the affected active object classes. As DERAF defines|kigh adaptation seman-
tics (see Appendix A), the exact handling of deadlines isgltied to the target platform,
which implements the pre-defined semantics of this aspethis sense, the UML model
specifies that active objects behaviors are constrainecehglihes, which are dealt by
TimingAttributes However, there is no definition if this handling must be perfed
using timers, special APIs, or other programming abswasti The target platform is
responsible for this handling. Consequently, aspectstatiaps must be map to con-
structions in such platform, defining the mentioned norefiomal requirement handling.
The same is valid to the other aspects that deal with timisges, e.gPeriodicTiming
DataFreshnessand other.

Additional examples of ACOD specification are provided ia tase studies presented
in Chapter 7, and also in Appendix B.

97

Table 5.2: Naming pattern for elements selection in JPDD

Naming Pattern Description

* Indicate that any name matches with the pattern

* Endi ng Indicate that any name that ends with the character se-
guence “Ending” matches with the pattern

Start * Indicate that any name that starts with the character se-

guence “Start” matches with the pattern

nt hName ' (° [par Nane This special naming pattern is used in sending message ac-
[, parNane]*] ")’ ':’ tions selection, where

r et TypeNane mthNamas the message name pattern as described above;
parNameis the message parameter name pattern. It is an
optional part. If method parameters should not be consid-
ered, the string “..” must be used. Otherwise, parameters
naming pattern follows the above mentioned patterns;
retTypeNaméndicates the method return type name, as de-
scribed above.

[local. | renote.] This special naming pattern is used in objects, classes or
obj Name ' :’ nodes selection. They are used to name lifelines in se-
cl assNane guence diagram JPDD, where

local or remoteis a reserved word to indicate if the element
communicates with, respectively, local or remote elements
objNameis the object name, as described abowlkzss-
Nameis the class name, as described above.

5.3.4 Join Points: Selecting Model Elements Affected by Aggts

Although the aspects specification is an important part of-fomctional handling
specification, equally important is the specification of evhmodel elements are affected
by aspects adaptations. Therefore, join points selectierspecified using a subset of
Join Point Designation Diagram@&PDD) (STEIN et al., 2006). The main reason for
using JPDD is the possibility to specify join points gragiy, which facilitates the un-
derstanding about which element kind is selected. AddalignJPDDs are considered
more suitable to use in UML models than join points textualadigtions.

JPDD can capture model elements based on three differerglmd@il control flow;
(i) data flow; andiii) state. The first model allows elements selection based oexie
cution control flow depicted in sequence or activity diagsaeg. a JPDD selects actions
performed in the behavior of a given method “a”, which isedlinside the behavior of a
method “b”. The second model allows the elements selectsedh on data passed from
one method to other one, e.g. a JPDD selects a method beltaatibias received a string
starting with “s” character as parameter. The last modelalelements selection base
on their explicit state described in a state diagram, e.gP@DIselects all objects that
are in “state_A’. As one can infer, elements selection capdyéormed statically or dy-
namically. The first model allows both dynamic and statiesgbn; the other two only
dynamic. Additionally, JPDDs can select elements (e.gssds, attributes, and others)
based their names rather than using the mentioned models.

AMODE-RT modeling approach supports both control flow JPPdar&l elements se-
lection based on naming patterns. However, there is a @nstrcontrol flow JPDDs
cannot specify multiple calling levels, i.e. only actioresformed in the method behavior
context can be selected. Furthermore, to specify which emsnshould be selected by

98

<<SchedulableResource>> |- | <<MutualExclusionResource>> |:
<<JoinPoint>> : :

<<JoinPoint>> [

- | <<JoinPoint>>-sensor* : *

: : <<JoinPoint>>+set*
<<JoinPoint>> remote.* : * : : 0
onPoint>> | | remole.”: | m

{Class} | : 1: N <<SchedulableResource>>
I 1 %) | : <<JoinPoint>> b
: {MessageDefinition} I

Figure 5.12: JPDD for structural elements selection

JPDDs, this work follows the naming patterns presented@m&it al. (2006), as shown
in table 5.2.

Elements selection is performed during the transformatbtML model into a
DERCS model. JPDDs are evaluated using elements’ stabonation, and hence, dy-
namic evaluation of JPDD is not supported. In this sensefall@ving model elements
can be selectedi) classes(ii) attributes;(iii) methods{iv) nodes;(v) sending message
actions;(vi) object creation actiongyii) object destruction actiongyiii) method return
actions; andix) methods behavior. Structural elements (i —iv) are selecset the sort
of JPDDs presented in figure 5.12. On the other hand, bels\etaments (v — ix) are
selected by JPDDs depicted in figure 5.13.

Sequence diagrams and class diagrams are decorated wihPDD» stereotype to
indicate that they are, in fact, the specification of joinnmia@election rather than sys-
tem specification. Additionally, elements selected by tiia point are decorated with
the «Joi nPoi nt » stereotype, which defines some tags to identify preciselighwél-
ements are considered. The available tags @&l asses; (ii)) Obj ect ; (iii) Node;
(iv) MessageDef i ni ti on; and(v) Behavi or.

To illustrate the specification of model elements seleg@dorief discussion on which
elements are selected by JPDDs depicted in figures 5.12 &Bdssprovided. Structural
elements are selected by JPDDs presented in figure 5.12:

e JPDDs infigures 5.12a and 5.12e select classes. The foriaetssall active object
classes, while the later selects all classes whose objectsraessages to remote
objects;

e Figure 5.12b depicts the selection of all attributes, whh@sae starts with “sensor”,
from all passive objects that are accessed exclusively;

e The selection of all system nodes is shown in figure 5.12c;

e Figure 5.12d depicts a JPDD that selects all methods, wharse start with “set”;

e All constructors of all active object classes are seleciethb JPDD presented in
figure 5.12f.

Regarding the selection of behavioral elements, the fafigwelements are gathered
by JPDDs depicted in figure 5.13:

e All actions related to messages whose name starts with, ‘séith are sent from
any object to any passive object, are selected by the JPBiemied in figure 5.13a.

99

e <<MutualExclusionResource>> | : | local.” : * | | remote.” : * |

it : I 1: get*(..):* I

: 1:set*():* I <<JoinPoint>>
I :

<<JoinPoint>>

<<Scheduler>> | | <<SchedulableResource>> |:| * <<Resource>>
* : Scheduler o :

* : *Information

1:*(..) : float

1)

I
| | :
H <<JoinPoint>> '|l|]
|| <<TimedEvent>> || . e
| {every =", | :

(©) Behavior } - (d)
l:I <<MutualExclusion :
1 Resource>> : . 1: W/
<<JoinPoint>> o |I| <<JoinPoint>> 7\

(e) . I #

Figure 5.13: JPDD for behavioral elements selection

e JPDD presented in figure 5.13b selects all actions repiliegemessages, whose
name starts with “get”, and are sent to any remote object.

e Figure 5.13c presents a JPDD that selects the periodic lmel{adoi n Poi nt »
stereotype’'8ehavi or tag) executed by any active object. Thus, this JPDD selects
all messages sent from the scheduler to any active objettatk, in addition, are
annotated witk«Ti medEvent » stereotype andvery tagged value.

e Allreturn actions from methods of all passive object classbose name ends with
“Information” are selected by the JPDD shown in figure 5.13d.

e Figure 5.13e depicts the selection of all actions that erpassive objects.

e JPDD presented in figure 5.13f selects all actions thatalesiny object.

5.4 Final Remarks

During the study to identify which diagrams are importanspecify structure and
behavior of distributed embedded real-time systems, tbpgsed modeling approach
selects UML diagrams that have been considered more wuyiti order to facilitate the
interpretation of design intentions performed by différdasign teams. In this sense,
modeling guidelines are defined (and must be followed) tdlengystem specification
to be automatically extracted from UML models. Other godbisise UML diagrams
in its standard form, i.e. using the standardized graptsgatax without proposing any
graphical extension. Hence, off-the-shelf UML modelinglsocan be used to support
AMoDE-RT modeling approach without any constraints.

In AMoDE-RT, the class diagram is the most important diagtamescribe system’s
static structure. It provides all structural informatiasr System objects. The activity
diagram has been chosen to depict an overall view of systetinre phases, in which
active objects’ concurrent behavior can be seen with th@ing constraints expressed
using standard MARTE stereotypes. However, in AMoDE-RT eliod) approach, the
most important behavior diagram is the sequence diagrare.t®iis intuitive graphical
syntax, sequence diagram has been chosen to specify astignance execution instead
of a textual actions language. In this sense, elements wvitgc@nd state diagrams are

100

Table 5.3: Summary of MARTE stereotypes used in AMoODE-RT

MARTE stereotypes UML elements | Usage
«Schedul abl eResour ce» d ass Specifies active object classes
«Resour ce» or d ass Specifies passive object classes
«Mut ual Excl usi onResour ce»
«Schedul er » d ass Specifies the scheduler of a com-
puting node
«Ti medEvent » Oper ati on, Specifies behaviors that are trig-
Message, gered periodically
Activity
_____ every T e et inierval be-

tween two consecutive execu-
tions of the behavior

«RTFeat ur e» Activity Specifies behaviors’ timing
characteristics

i Beadline T indicates bahaviors” relative
deadline

Ceet e e S RET

liked with sequence diagrams to indicate the behavior érelday classes associated these
elements. Considering the subset of MARTE stereotypesins@MoDE-RT modeling
guidelines, table 5.3 shows all stereotypes that can betosaihotate UML diagrams’
elements, along with a brief description of their usage.

Also with regard to the specification of non-functional regments handling , this
work does not propose any new UML graphical extensions toahA® concepts. As
mentioned, the intention is to use UML standard diagramss thlightweight extension
in terms of a UML profile has been proposed. Commercial affghelf modeling tools
are able to specify both ACOD and JPDD diagrams. JPDD has d&iszsen due to its
expressiveness to specify join points selection, and alsiheé lack of a consolidated
standard for AO concepts modeling.

Finally, although DERAF aspects’ pre-defined high-levehaatics define non-func-
tional requirements handling, aspects realization muptééded in further design phases
using services provided by available platforms. Therefaspects adaptations must be
implemented using constructions of a target platform, aoseel from previous projects
that had implemented these adaptations using the targénpha In this sense, platform
supportis crucial to allow the DERAF effective use. Althauyis is not the focus of this
thesis, some DERAF aspects implementations are providad ptatforms available in
our research group. Empirically, we believe that all aspace fully, or at least partially,
implementable using platforms that are already availabledustry or academy.

101

6 TOOL SUPPORT FOR THE PROPOSED APPROACH

6.1 Introduction

Tool support is essential to improve a design method usdgetieeness. In MDE ap-
proaches, one important tool is the code generation onehwlses the produced models
to create source code respecting system specification eftinerGeneration of Embed-
ded Real-Time Code based on AspdGenERTICA) has been created to support the
AMOoDE-RT approach. As stated in chapter 4, GenERTICA is gpstrased code gen-
eration tool, which executes small scripts to produce coggnfients that are merged to
produce the expected source code files for a target platférgure 6.1 shows the three
main features involved in the code generation approachemehted by GenERTICA:
() transformation of system specification from UML to DERCS mlodvhich is more
suitable than UML for code generation purpog@$;model-to-text mapping rules defini-
tion; and(iii) code generation and aspects weaving algorithm.

This chapter discusses GenERTICA's features. Firstly,iiit discuss the DERCS
meta-model, and heuristics created to transform UML mobtighents into DERCS el-
ements. Next, mapping rules specification is discussedisfog on mapping rules file
structure and scripts organization using the XML format.d&dnally, mapping rules
scripts are detailed. Finally, the algorithm used to predcmde from model elements is
discussed. Aspects weaving performed by GenERTICA is adtaildd.

I

XML
Mapping
Rules

Model
Jransformation

Source
Code

Code Generation
+

Aspects Weaving

Figure 6.1: GenERTICA mains features overview

102

6.2 A Platform Independent Model for Code Generation

UML is a complex modeling language, which allows system elets specification
using different views. In its version 2.2, UML provides teen different diagrams: six
for system structure specification, and seven for behayecification. Although these
different diagrams facilitate visualization of systemtteas from different viewpoints,
this diversity of diagrams may lead to an ambiguous spetificadue to information
overlapping and duplication. Furthermore, UML is cons&dka semi-formal language,
due to the lack of formal semantics to define the interpm@tadf system specification in-
formation, which is usually spread in several diagrams.Sggnently, computers cannot
perform UML models automatic interpretation (or execufion

A candidate solution to these problems is to transform UMigdams elements, which
represent embedded system information, into element$ef atodel, providing the same
abstraction level without binding system specification ng anplementation platform.
However, this transformation makes sense only if this othedel can provide a more
concise meta-model compared to the UML one. Hence, this svor@poses the use of
the so-calledistributed Embedded Real-Time Compact Specificf#RCS), aiming
at providing a PIM suitable for code generation purposesROSE is based on a subset of
both the UML meta-model and MARTE profile meta-model, and ét&e AO conceptual
model (SCHAUERHUBER et al., 2006), providing a model thatlunles OO and AO
concepts. The main intention is to precisely and unambiglyaepresent the informa-
tion on distributed embedded real-time system’s structoedavior and non-functional
requirements handling.

DERCS meta-model defines a distributed embedded real-gstera as set of com-
municating objects, which interact among each other toigeothe expected system func-
tionality. In other words, objects are the key elements steay specification, representing
hardware and software components. System behavior isseqesl by both actions per-
formed sequentially by objects, and objects interactidrer€ are two object types: active
and passive. Active objects are autonomous entities thag theeir own flow of control
(i.e. a particular thread), allowing concurrent actionbeexecuted in parallel with other
active objects. Additionally, these objects can be congpéweconcurrent processes in
multitask operating system, having characteristics, siscactivation patterns (e.g. peri-
odic, aperiodic, or sporadic), deadlines, WCET, priositi@nd others. On the other hand,
passive objects are those that execute actions sequgmiaksponse to messages re-
ceived from other objects (active or passive). Passivectdhan be seen as entities that
provide useful information and services to active objects.

Likewise the UML meta-model, DERCS meta-model represeydtes structure el-
ements using OO concepts. Figure 6.2 shows DERCS meta-rswdetural elements.
An objectis aclassinstance, which, in turn, represents elements structurerms of at-
tributes and method#ttributeshold values to represent objects’ state at a given instant,
while methodsrepresent messages signatures that can be received fremadjects.
Both can be inherited from the so-called superclasses. €oimg thedata typesDERCS
defines almost the same data types as UML. It is important tdiorethat classes can also
define a set of explicit possibé&atesin which their instances can be during their lifetime.
Class explicit states are represented by attributes whatseype isStateDataTypeEach
state is associated witinansitions representing state changes. Further, more than one
incoming/outgoing transitions can be associated to the.st2oncluding the discussion
about system structure representation, as one can inéee ikhhno major difference from
DERCS structural meta-model elements to UML ones.

103

| Byte | |Short| |Integer | | Long | <<enumeration>>

ParameterKind

\V4

Float Double

| IntegerDataType | |DateTime| | CharacterDataType ||FIoatingPointDataTypes |

in
out

| Enumeration |

I I
|CIassDataType| |Void |

1.*
I_ State
—PataType
1 1 1 0.1 1 1
1 -FromState -ToState
DataType —LLDataType _| Class | —Instanceof
1 1 5 1.* 1.0
-DataType ~Referepces } 1 Y1 StateTransition
—ReturnType —Attri 1
o |_Parameter

1
—-Represent
L Array
—SuperClass

Boolean

NamedElement

™ Attribute b

|StateDataType IM

inout

1
—ParameterKin

|Passive0bject | |Node|—

ActiveObiject

\V4

<<enumeration>> Jsibilit 0.*
Visibility 1 o
ARV ANA rotected 1 .
gubnc 1 —Visibility 1 Method

Figure 6.2: DERCS meta-model: structural elements

System behavior is represented by elements presented e g8t Abehaviorcon-
sists of behavioral elements, which can be eithetionsor other behaviors, anlbcal
variables Basically, behaviors can be triggered in response to rgessa&ceived from
other objects (i.e. a behavior is associated to a method bbdygiven class). In other
words, behaviors can be seen as the execution of actionsrseegithat start in response
to method calls. DERCS defines its actions model based on e tdeta-model, pro-
viding platform independent actions as follows:

Assi gnnment Act i on represents a value assignment to an attribute or local vari-
able;

Expr essi onAct i on represents mathematical or boolean expressions evalua-
tion;

SendMessageAct i on indicates the action of an object sending a message to
another object;

e Modi f ySt at eAct i on represents the action of changing object’s explicit state;
e Creat e(bj ect Act i on indicates an object creation, whilest r oybj ect -

Act i on an object destruction;

e Ret ur nAct i on represents a method value return action;
e I nsert ArrayAct i on represent the action of inserting a new element in an ar-

ray, whileRenoveAr r ayAct i on represents the opposite, i.e. the action of re-
moving an element from an array. In additiédw,r ayLengt hAct i on represents
the array size information retrieval.

Moreover, DERCS defines that behaviors have pre- and postiteaans that must

hold,

respectively, before and after actions sequenceuérec Pre-conditionsndicate

that behaviors start their actions execution only if thelban expression holds. Like-
wise, post-conditionsndicate that behaviors repeat actions sequence exeautidrihe
boolean expression become valid.

104

—(>| NamedElement |<)—| BaseElement |<} EntryStateEvent
AN AN
1 DataType 1 —Return rype ExitStateEvent
\/

1 1 #TriggeredBehavior
Behavior r —Related
|RuntlmeElement | |StateTran5|t|on Transition
~

1 1

1 1 1\ —toElement !

1 0..* 0.*

Ll | LocalVariable

1

v —fromElement
BehavioralElement

InterruptionEvent
\/

—AssociatedObject 1

1 1 1
1 [ModifyStateAction

—DestingtionVariable <<enumeration>>
TriggerKind

SEQUENTIAL
PARALLEL

1 1 1T : o : 1
-ResultOfAction
. 1 ! : InsertArrayAction | | RemoveArrayAction MessageEvent
L_{Attribute e

DestinationAttribute
SendMessageEvent
ExpresswnActlon |ArrayLengthAct|on | |0bleCtACt'°" |1 —TriggeredAction

1.7 1 1|1 |ReceiveMessageEvent|

|Destroy0bjectAct|on ||Create0bjectActlon | |SendMessageActlon |—>|1 1 Method

Figure 6.3: DERCS meta-model: behavioral elements

1|#RelatedObject
1 | [[I
|AssignmentAction | |ActionWithOutput | |ArrayAction | |ReturnAction |

Behaviors can also be executed in response to events accesteln fact, an event
is associated with an object that contains methods capéalbianalling this event. Thus,
when an event occurs, it triggers a sending message actiometof the associated ob-
ject’'s methods. DERCS defines two event types: internal atetreal. Internal events
are detectable occurrences during system runtime, sunfeasages sending/reception
enteringin an explicit state, andxitingfrom an explicit state. On the other hardternal
eventsare occurrences which happened in the external environimevtiich the system
is embedded. Furthermore, events spes#guentiabind parallel triggers. The former
indicates that the triggered object’s behavior must hotlakecution until the execut-
ing behavior finishes. On the other hand, the later indicthtasthe associated object’s
behavior can start its execution concurrently with otheroeing behaviors.

Other important DERCS feature is objects distribution. €2ty reside in computing
devices (e.g. devices with general purpose processors ambry, or dedicates hardware
devices), upon which their behavior is performdldde element represents such devices,
whose implementation represents either software or hasdplatforms. Additionally, it
can represent physically separated computing devicesingakjects to be considered
as local or remote objects (depending on the objects/deefegence). However, it is
important to highlight that, independently of objects iemplentation (i.e. software or
hardware) or their deployment (i.e. local or remote), baragemantics proposed in
DERCS remain the same. Thus, actions are executed (behaviasponse to either
messages received from other objects, or event occurremcegher words, messages
exchanged by objects implemented as software or hardwalerasheployed in different
devices, at DERCS abstraction level, have the same sermmaitie implementation of
these different message exchange types is defined in therckaget platform that will
realize the distributed embedded real-time system elesnent

The most noticeable difference between DERCS and UML metdets is the ca-
pability of representing AO concepts, as depicted in figure &spectsconsist of an

105

NamedElement K] 1

“SelaciedElements 0.. —AffectedElement
1 <<enumeration>>
IJ—L!MM Aspect RelativePosition
1 1 1 1 BEFORE
v —Pointcuts AFTER
1 J,O N AROUND
Bomtout | Rel B ADD_NEW_FEATURE
ointcu —RelatiyePositipn
MODIFY_STRUCTURE
1 — 1 1 ol*
—AspectAdaptation 0.” J|Crosscutting
—Crosscuting
0.*

1)
_)| AspectAdaptation —Crosscutingipfo

-StruqturalAdaptations T —BehavioralAdaptations 1
0..* [1 J0.* Crosscutting
| StructuralAdaptation | | BehavioralAdaptation | Information

Figure 6.4: DERCS meta-model: AO-related elements

aspect adaptationset, which contain botBtructural or behavioral adaptationsand a
set ofpointcuts In essence, DERCS represents DERAF aspects specified ACO&®
(as discussed section 5.3.3); similarly, aspect adap&tiepresent specified adaptations
provided by the selected DERAF aspects. In additiongthescutting informatiospec-
ified in ACOD’s crosscut associations (between aspects Es$eas) is represented by
Crosscutting andCrosscutti ngl nf or mati on elements.Pointcutsrepresent
the link betweeAspect Adapt at i ons andJoi npoi nt elements, indicating thel-
ative positionin which adaptations must be performdRel at i vePosi ti on enumer-
ation specifies one of the following options:

e BEFORE indicates that adaptations are perfornieforejoin point occurrences.

It is used in pointcuts that link join points representindhééoral element (e.g.
actions) selection with aspect adaptations;

e AFTER indicates that adaptations are perfornadigdr join point occurrences. It is
also used in pointcuts related to behavioral join points;

¢ AROUND specifies that adaptations are performed in batftoreandafterjoin point
occurrences. Itis used in pointcuts that link join poin@tteelect behavioral ele-
ments (e.g. actions or behaviors) with aspect’s behavantaptations;

e ADD NEW FEATURE specifies that new features (e.g. an attribute in a class, or
a parameter in a method) are included by the aspect adapiatithhe structural
elements selected by the join point;

e MODI FY_STRUCTURE indicates that structural features of the selected elesnent
are modified by the aspect adaptation. Likewise the previelasive position, this
is used in pointcuts related to join points selecting striadtelements.

Join pointsare represented by thkoi npoi nt element, which contains a list of
selected base elements, i.e. those elements that exterBh#eEl ement class. In
other words, the selected elements list consists of: inegpfCl ass, Attri but e,
Met hod, andNode, in addition to all behavior-related elements, i.e. ins&nof all
Act i on subclasses, anBehavi or class. As it will be explained in the next section,

106

Table 6.1: UML-to-DERCS mapping table

UML meta-model

DERCS meta-model

Ker nel . Cl ass

C ass

Ker nel . Property

Attribute

Ker nel . Type or
Kernel . Pri maryType

Dat aType subclass

Ker nel . Operation

decorated witheset t er »

Met hod, Par aret er , Behavi or , Assi gnnment Acti on

Ker nel . Par anet er

Par anet er

Ker nel . Par anet er Di r ect i onKi nd

Par anet er Ki nd

Ker nel . Associ ati on

if any association end defines
Aggr egat i onKi nd as conposite

Attribut e, Met hod, Par anet er, Behavi or,
(Assignment Action,ReturnAction

Attri bute, Met hod, Par anet er , Behavi or,
Assi gnment Act i on, Ret ur nActi on,

Creat ebj ect Acti on,DestroyObj ect Acti on

Ker nel . I nst anceSpeci fi cation or

Basi cl nteractions. Lifeline

..... olated To class decorated with | ActiveShi st
«Schedul abl eResour ce»

..... related to class decorated with | PasSTveGhj st
«Mut ual Excl usi onResour ce»

or «<Resour ce»

the selection query specified in JPDD is evaluated, and dRO& elements instances that
match with the selection criteria are included infleé npoi nt ’s elements selection list.

6.3 UML-to-DERCS Transformation

Based on the information provided in the previous sectibrcan be claimed that
DERCS meta-model can represent structure and behavior iora ooncise way than
UML meta-model. DERCS uses fewer meta-model elements t@sept the same in-
formation (i.e. system structure and behavior) comparedNth, which, in turn, has
different element to represent similar features. In thissethere is no direct one-to-one
relationship among many DERCS elements and their similansopart in UML meta-
model. Hence, to transform a UML model into a DERCS model, esstransformation
heuristics had to be defined.

Considering the structural elements, the majority of theaweha direct counterpart
in the UML meta-model, as show in table 6.1. Thus, when GenERS transforma-
tion engine reads the UML model, and one of these elementaiigdf it does not need
to interpret the UML meta-model element semantic regardmgtransformation heuris-
tic, i.e. it just creates the DERCS element that matches thghUML one. However,
there are two exceptiongi) method signatures; an@) associations between classes.
An UML’s Ker nel . Oper at i on element decorated withget t er » or «set t er »
stereotypes indicates an access method to a given attridutas, the transformation
heuristic understands such role, and creates not only ofI3EMet hod element, but
also its associateBehavi or element, in which actions corresponding to the specified
semantics (i.e. get/set attributes values) are inserted.

Associations among classes have also a special transfomfauristic. As stated
in chapter 5, all associations must have at least one endf@pganultiplicity equals
to “1”, and the navigable property set to true; the classasgmting this association end
will receive elements related to the association. For “radfrassociations, the transfor-
mation engine inserts aned t r i but e element (related to the other association end),
along with aPar anet er element in class constructor, and Asisi gnnent Act i on

107

to represent this new attribute initialization. Access moes, i.e. get/set methods, for
the new attribute are also created as described in the pieparagraph. For aggregation
relationships, the same transformation heuristic is adplHowever, for composition re-
lationships, the class receives two additional methodsausof the new parameter and its
assignment actior(i) one method to create composite class parts;(@ndnother one to
remove (or destroy) composite class parts. For both methioglsorresponding behavior
is also created. To illustrate the mentioned heuristit's,densider théeft\Wwheetompos-
ite relationship betweeMovementControlSysteamdActuatordepicted in figure 5.2. As
one can sedActuatorassociation end is the navigable end (indicated by the anead).
ConsequentlyMovementControlSystemceives a new attribute, whose namief8/Vheel
and the type is thActuatorclass and, as this association is a composition, the mettion
methods are also addedMovementControlSysteimstead of the new parameter and its
assignment action iMovementControlSystésrcontructor.

As mentioned, UML has very different ways to specify systeshdvior. DERCS pro-
poses a more simplified form for behavior representatiomf@red to UML meta-model
elements). For that reason, there is no direct one-to-onmimag from UML behavior-
related elements to DERCS ones. Thus some UML behavior aliagyinterpretation
heuristics have been created.

In AMoDE-RT approach, sequence diagram is the most impbdiagram to specify
objects behavior, due to its capability of showing objectnactions, execution flow
control (usingcombined fragment®OMG, 2008)), and also actions (using the reserved
words presented in section 5.2, table 5.1). The whole beha¥ia distributed embedded
real-time system is specified using different sequenceainag, i.e. behavior information
must be extracted from more than one diagram. Additiondtlgre is no one-to-one
relation between sequence diagrams meta-model elemah@BERCS behavioral ones.
Thus, to accomplish the UML-to-DERCS transformation, a@ernpretation heuristic has
been defined. Sequence diagram messages are staticaljyethalsing a stack-based
algorithm, which pushes messages (i.e. method calls) onoghef a “call stack” to
discover which messages (i.e. actions) are nested ins&deethavior of other methods.
Algorithm 1 shows this static analysis.

For each message, a tupe= (Sender, Target, Behavioi§ created, wher8endelis
the message’s sender lifelilndargetis the message’s target lifeline; aBehavioris the
behavior associated to the method represented by the neesshg algorithm analyzes
all messages (respecting messages order depicted in themnsegdiagram) to create the
corresponding action, e.g. sending message, assignmpengssion, etc. If the message
represents a sending message action, this message’s syplished on top of the call
stack. If the following messages are sent from the samenddl.e. same object) as tu-
ple’s target on stack’s top, these messages represemgpeoformed within the context
of the calling message’s behavior.

It is important to highlight that combined fragments areaiensidered in sequence
diagrams analysis. Combined fragments represent execcwiatrol flow in objects in-
teractions, i.e. they can specify both conditional, or etimg interactions (as described
in section 5.2.4). For each combined fragment, a behavithr pre-conditions (for com-
bined fragments whosent er act i onQper at or property is set tal t or opt), or
post-conditions (for those specified witltoop operator) is created. Therefore, mes-
sages enclosed by combined fragments represent actiofosrped within the context

ILifelines are vertical lines depicted in sequence diagrtéms represent objects and/or classes. The
proposed transformation heuristics interprets lifeliagsystem'’s objects.

108

Algorithm 1 Extract behavioral information from sequence diagrams

1: stack « ()
2:
3: for all m = message in Sequence Diagrdm
4: if stack = 0 then
5: PUSH(Gtack, m)
6: else
7 if stack.Top.Target= m.Sendethen
8: I/l Action must be inserted into the method’s behavior on theks top
9: action < create an action from
10: else
11: /I Action must be inserted into other method’s behavior.
12: POPGtack)
13:
14: Il Looking for the “right” method’s behavior according thelt stack. ..
15: while (stack # 0) A (stack.Top.Targett m.Sendey do
16: POPGtack)
17: end while
18:
19: if stack # () then
20: /Il The “right” method behavior could be found
21: action < create an action from
22: else
23: /l Message order violates call stack order, i.e. it is senaliyeline
24: /I (i.e. object) that have not sent any message before, g dke
25: /I execution flow
26: throw an exception
27: end if
28: end if
29:
30: insertaction in stack.Top.behavior
31:
32 I/ Potentially, all send message actions (including messag the lifeline itself)
33: /I trigger different behaviors, and hence, they must be ed<in the stack
34: if ((action is a send message actipn (m.Sender m.Targe})
V (m is a recursive messagthen
35: PUSH(Gtack, m)
36: end if
37. endif

38: end for

109

of branches (i.e. “ifs”) or loops. When a combined fragmerdetected, a new behavior
Is created, and inserted in the tuple’s behavior on staok'skience, actions created from
messages enclosed by this combined fragment are insettethe@Behavi or element
related to the combined fragment.

The behavior transformation heuristic allows merging iinfation from different se-
quence diagrams. For a given messagsf the following messages are nested mes-
sages (i.e. departing from's target lifeline), a DERC®ehavi or element is created,
and associated with the method representedhbylo illustrate this heuristic, let's con-
sider the sequence diagram depicted in figure Bl&ementController.run(nethod has
two nested messag@égtuator.setActValuand MovementController.processinfélence,
aBehavi or element containing tw&endMessageAct i ons is created and associ-
ated withMovementController.run(inethod. Similarly,Actuator.setActValue(@nethod
has five nested messages (e.g. messages 3, 4, 6, 7, 8, andl @satwo combined frag-
ments enclosing its nested messages. TAcdgator.setActValue§Behavi or contains
oneBehavi or representing the “loop” combined fragment, which, in tuwantains a
Creat e(bj ect Acti on and aAssi gnnent Act i on (related to message 3), another
Behavi or ? (related to the “alt” combined fragment), and otiersi gnment Acti on
(related to message YlovementController.processinfafjethod’s behavior is extracted
using the same heuristics.

As one case see, from a single sequence diagrams it is possibktract different
method behaviors, eliminating the need of creating oneesgzpidiagram to each method
behavior. However, if not carefully used, such approachpraduce duplicated specifi-
cation, e.g. the same method behavior specified twice,lgadiambiguities in behavior
specification. To overcome this problem, a simple ambigdgection heuristic has been
created: if there is alreadyBehavi or element associated withra method (created
from other sequence diagram), and there are messages toastetthe current sequence
diagram, this situation indicates thais behavior was specified twice. When this situa-
tion occurs, the transformation engine reports the dedextgbiguity to system designers.
To illustrate this situation, let’s consider that sequetieggrams of figures 5.5 and 5.6 are
specified in the same UML modé¥lovementController.processinfaflethod has nested
messages in both diagrams. The transformation engine ngdte aBehavi or element
to this method during the interpretation of figure 5.5’s satpe diagram and, when the
transformation engine tries interpret figure 5.6’s seqaatiagram, it will discover that
there is already 8ehavi or element associated tdovementController.processinfo()
Consequently, the ambiguity is detected.

To summarize sequence diagram to DERCS elements trangfomtable 6.2 presents
the relationships among UML meta-model elements with DERG&:.

State diagrams are used in AMoDE-RT modeling approach,targj heed also trans-

formation heuristics to derive DERCS behavioral elemeramfthem. Two heuristics
have been definedi) straightforward state machine mapping; gndapplying theob-
jects for stateslesign pattern (GAMMA et al., 1995). The first heuristic puoésif-
then-elsestate machine implementations. More specifically, DEFBC&t eDat aType
elements are created to each state machine. Every Béilavi or St at eMachi nes.
St at e element in the state machine is transformed to a DERICS e element, which is
associated with the creat&tlat eDat aType. Similarly,Behavi or St at eMachi nes.
Transi ti on elements are transformed ini at eTr ansi ti on elements, whose
guard condition, and from/to states are also obtained Behavi or St at eMachi nes.

2ThisBehavi or element contains actions related to messages 4-8

110

Table 6.2: UML-to-DERCS behavior elements relationships

UML meta-model DERCS meta-model
Basi cl nteractions. Lifeline, Behavi or,

Basi cl nteracti ons. Message, Assi gnnent Act i on,

Basi cl nteracti ons. MessageCccurrenceSpeci fication, | Expressi onActi on,

Ker nel . Operati on I nsert ArrayActi on,

RenmoveArrayActi on,
Modi f ySt at eActi on

Basi cl nteractions. Cal | Event, SendMessageActi on
‘Basicinteractions. CreationEvent,] Create(bj ect Action
‘Basicinteractions. DestructionEvent, | DestroyObjectAction =

Basi cl nteractions. Lifeline, Behavi or

Basi cl nt eracti ons. Conbi nedFr agnment ,
Basi cl nteractions. | nteractionFragnent

Tr ansi ti on. Moreover, the same transformation heuristics are appdietthogonal
state: onést at eDat aType element is created to each orthogonal state region, and thus
DERCSSt at e elements are created to ea®ND-stategi.e. concurrent sub-state).
According to AMoDE-RT guidelines, one state diagram is agged with only one
class. Hence, an attribute (whose type is this state didg@nat eDat aType element)
and a method (which is responsible to execute differenbastdepending on the actual
state) are created and added to the associated class. Ipastant to highlight that it
is assumed that associations between state diagrams asd<lepresent the following
execution semantics: instances of this class are activectsbihat execute the method
related to the state machine. This method is triggered gieadly, and its behavior exe-
cutes concurrently with other active objects’ behavionghis sense, the behavior related
to this method performs a “commoif*then-elsestate machine implementation. Consid-
ering the state machines with orthogoAMND-statesadditional attributes are created to
each sub-state machine. However, instead of represestiageDat aType elements,
they represent sub-state machines’ active objects. Tdrereivhen an object enters in a
orthogonal state, sub-state machine active objects staxdcute their behavior.

On the other hand, the second heuristic implementshijects for stateslesign pat-
tern (GAMMA et al., 1995), in which each state is represerae@n object that imple-
ments behavior related to the stajects for statedesign pattern involves the following
elementscontex} state andconcrete state subclassé® summarize, the context object
has an attribute representing the state object, which isstance of one state’s subclass.
The context delegates its methods execution to the stagetobijn the proposed trans-
formation heuristic, the class associated with the statgrdm is thecontext This class
receives a method representing the state diagram execatidnan attribute represent-
ing its state object, similarly to the first transformatiogunistic. This method behavior
has only oneSendMessageAct i on action, representing the delegation of this method
execution to the state object.

An abstract class is created to represent the state maetmdes used as the new at-
tribute’s type. This abstract class also has a method reptieg state machine execution,
which is overridden by states’ concrete subclasses. Fdr gtate, &Cl ass element is
created to represent the state’s concrete subclass. Hsis ektends the state diagram’s
abstract class, overriding its abstract method using tineber extracted from the se-
guence diagram associated with the state. At the end of tbikad behavior, additional
Behavi or elements with pre-conditions (representing ththen-elsestatements) are
inserted to represent state’s outgoing transitions. Astexecuted in these behaviors rep-
resent the destruction of context’s current state objext,the creation of the next state

111

object. For orthogonahND-state this heuristic follows the same approach as the first
one: creates active object classes for each sub-statemeaahexplained earlier.

Both approaches have pros and cons. For example, (i) alksgsthemory usage but
leads to extra runtime overhead because objects need twvdisghich actions must be
performed in the actual state, by means of comparing ak stetchine’s possible states
(in the worst-case), in order to execute the correct actionghe current state. On the
other hand, (ii) uses more memory because states are thessddjects (not only at-
tributes representing states as enumerations or integeibens), but allows less runtime
overhead caused by the search for the correct actions todoeitexd when the objectis in
a specific state. The decision on which heuristic is applegzbdds on system constraints,
and is made by designers before the UML-to-DERCS transfoomarocess. Although
important, none of these state diagrams transformationdties are implemented in the
initial version of GenERTICA's transformation engine ptyipe. In fact their implemen-
tation was not considered one of this thesis’ main contidimst and thus, it was left to
future work.

6.4 Mapping Rules

6.4.1 Overview

To generate code from the UML model, GenERTICA adopts a sbaged approach,
in which small scripts define how to map model elements ingetaplatform construc-
tions, generating source code fragments that are mergeddage source code files. The
proposed script-based code generation improves sepaddtamncerns in mapping rules
specification, because each script is concerned with thefosemation of a single model
element (or few of them) into source code fragment.

Mapping rules are described as XML (W3C, 2006a) files, whosmdt is portable,
and allows the specification of self-described contentregal in a tree structure. These
characteristics, and also because XML ideafactostandard, have influenced its choice
as the language used to describe GenERTICA mapping rulesherfonore, XML tree
organization facilitates scripts storage in terms of plaitf mapping rules repositories,
allowing scripts to be reused in further projects that ugeséime target platform. Hence,
the design effort to derive system implementation from anLLivbdel is decreased.

Leaf nodes of the mapping rules’ tree contain scripts exetiat generate code from a
specific DERCS element (representing the correlated UMinefd). As mentioned, each
script concentrates on generating a source code fragmateddo a single DERCS ele-
ment. The correct script is selected based on which eleradeing accessed by the code
generation algorithm (see next section), i.e. the leaf modst match with the DERCS
element. These scripts have complete access to DERCS méatahation, in order to be
able to generate source code as complete as possible. @endggthe more complete
code generation scripts are, more source code is geneaatgdess effort is required to
manually write additional code. One of GenERTICA's aimiallow code generation as
complete as possible, decreasing (or even eliminating)¢lee of manual coding. How-
ever, this work does not define a new script language or sexgxtution engine. It rather
uses a well-known open source scripting framework calfetbcity (APACHE, 2008),
which defines th&/kelocity Template Languad®TL) that provides all functionalities re-
quired to assist the GenERTICA code generation approackeimgntation. VTL is a
Java-like scripting language, which returns a string asltres script execution. Thus,
the generated source code fragment is obtained by meansesfsicg model information

112

File Name Convention ‘

|
Source Options
—
Declaration File

Source Organization
Implementation File
Data Types
Visibilties |
Parameter Kind
Adantatl Structural
: aptations

. -
Implementation

Attributes ‘ Declaration ‘

Primary Elements

Class

Messages Implementation ‘

Variable Declaration

Application
: To Local Object
Message Sending
To Remote Object
Stage Change

Return

Behavior

Insert Element

Array Remove Element ‘

Branch ‘ Array Length ‘

Platform;,

Platforms :

Hardware : Same organization as Software !

Service,

Service,

Component;

Figure 6.5: Mapping rules XML organization

Software

w Platform Configuration

Hardware

through DERCS API.

Considering the mapping rules organization, one can segurefi6.5 that the XML
file root is divided into a set of different target platformgjose child trees represent map-
ping rules for constructions in the target platform. Thertao source code categories
defined in a platform mapping rule§) application code; angi) platform code. Both are
divided in software and hardware source code. Inapplicationbranch, software and
hardware sub-trees have the same structure, i.e. they hesame script types to gen-
erate code from DERCS elementspiatform configuratiorbranch the difference is that
platform software elements provide services instead ofpmrants as in the hardware
ones.

6.4.2 Application Code

Applicationbranch is subdivided in(i) source code optiongji) primary elements
scripts;(iii) scripts for class-related elemen(s;) scripts for behavior-related elements;
and(v) script specifying DERAF aspects implementation. Congmdg(i), figure 6.6 lines
01-29 show an excerpt from a XML file with mapping rules to Javae <SourceOp-

113

01 <SourceOptions 30 <Pri maryEl enent s>
02 i sAspect Language="no" 31 <Dat aTypes>
03 Cl assesPerFil e="1" 32 <Array>$Dat aType. Dat aType[] </ Array>
04 hasC assesDecl arati on="no" 33 <Bool ean>bool ean</ Bool ean>
05 I ndent ati on="5" 34 <Byt e>byt e</ Byt e>
06 Bl ockStart="{" Bl ockEnd="}"> 35 <Char >char </ Char >
07 <Fi | eNanmeConventi on> 36 <d ass>
08 $C ass. Name 37 $Dat aType. Repr esent . Name
09 </ Fi | eNameConventi on> 38 </ d ass>
10 <Package> 39 <Dat eTi me>Dat eTi ne</ Dat eTi me>
11 package $C ass. Package; 40 <Enuner at i on></ Enuner ati on>
12 </ Package> 41 <I nt eger >i nt </ | nt eger >
13 <SourceRef erence> 42 <Long>| ong</ Long>
14 i nport $Ref erencedC ass. Package 43 <Short >short </ Short >
15 . $Ref er encedd ass. Naneg; 44 <String>String</String>
16 </ Sour ceRef erence> 45 <Voi d>voi d</ Voi d>
17 <Sour ceOr gani zat i on> 46 <Doubl e>doubl e</ Doubl e>
18 <Decl arationFile a7 <Fl oat >f | oat </ Fl oat >
19 Fi | eExt ensi on=""> 48 </ Dat aTypes>
20 $Sour ceCode. C assesDecl arati on 49 <Visibilities>
21 </ Decl arationFi | e> 50 <Private>private</Private>
22 <l nmpl ement ati onFil e 51 <Pr ot ect ed>pr ot ect ed</ Pr ot ect ed>
23 Fi | eExt ensi on=".j ava"> 52 <Publ i c>publ i c</ Public>
24 $Sour ceCode. PackagesDecl ar ati on 53 </Visibilities>
25 $Sour ceCode. Ref erencesDecl aration| 54 <Par anet er Ki nds>
26 $Sour ceCode. C assesl npl enentati on| 55 <l n></ | n>
27 </l nplenmentationFile> 56 <Qut ></ Qut >
28 </ Sour ceOr gani zat i on> 57 <I nQut ></ | nQut >
29 </ Sour ceOpti ons> 58 </ ParaneterKi nds>
59 </PrimaryEl emrent s>

Figure 6.6: Mapping rulessSourceOptions>and<PrimaryElements>branches

tions>node manages issues related to source code files creatimmgéhe source code
file naming conventiongFileNameConvention>node) and organizatior§ourceOrga-
nization>node). GenERTICA assumes that a target language may hdva detlaration
and an implementation file, such as in C/C++ which defines dreaild implementation
source code files. ThusSourceOrganization>node defines how each of them is struc-
tured. If there are dependencies among source code filesSiherceReferencernode
indicates target language constructions to specify satode file references. It is impor-
tant to note two attributes irSourceOrganization>node: isAspectLanguagand has-
ClassesDeclaration The former indicates if the target language is an AO-lagguar
not. GenERTICA will not perform aspects weaving if the &ffite value is “yes”. It will
interpret scripts in thé&spectbranch as aspects constructions in the target AO-language.
hasClassesDeclaratiogttribute indicates if the target language requires a dastara-
tion before describing class implementation, such as inHE/&nguages.

Taking into account (ii), thecPrimaryElements>node (figure 6.6 lines 30-59) pro-
vides scripts representing straightforward mappings flRERCS elements to primary
elements constructions in the target language. On the btmad, considering (iii), the
classbranch provides more complex scripts, which need to regrisformation on the
DERCS element being evaluated, in order to generate theatarode fragment for that
element.<Class> node defines, in thelmplementation>node, how to use target lan-
guage constructions to describe the class implementatiterms of attributes and meth-
ods. Additionally, if the target languages requires a ctisdaration construction, this
node also provides means to specify this in¢eeclaration> node.

However<Class>node’s mostimportant children nodes a#sttributes>and<Mes-
sages>nodes. The later provides scripts to generate methodsrdgotaand implementa-
tion based on information contained in a DERMI& hod element. The former provides
a script to transform a DERCSt t r i but e element into an attribute construction in

114

01 <Attri butes>

02 $VisibilityStr

03 #if ($Attribute.isStatic()) static #end
04 3$DataTypeStr $Attri bute. Nane;

05 </ Attributes>

private int w ndSpeed;

Figure 6.7: Mapping rulessAttributes>node

01 <SendMessage> 26 <ToRenot e>
02 <TolLocal > 27 <Sof t war e>
03 <Software> 28 #set ($x=%Act i on. Par anet er sVal uesCount
04 #if ($Action. ToObject != 29 + 1)
05 $Act i on. Fronthj ect) 30 nmyMsg. set Nr Byt es($x) ;
06 $Act i on. ToObj ect . Nane. 31 myMsg. addByt e(
07 #end 32 $Acti on. Rel at edMet hod. I D) ;
08 $Act i on. Rel at edMet hod. Name(33 #foreach($v in
09 #i f ($Acti on. Par anet er sVal uesCount > 34 $acti on. get Par anet er sVal ues())
10 0) 35 nyMsg. AddByt e((byte) $v);
11 #f oreach($paramin 36 #end
12 $Acti on. Par anet er sVal ues) | 37 | ocal Tp. sendMsg(conecti onNunber,
13 #if ($vel ocityCount > 1), #end 38 nmyMsg,
14 #set ($x = S$vel ocityCount - 1) 39 ti meQut Par am get msgSendTi ne()) ;
15 #i f ($Action. i sParaneterVal ue($x)) | 40 </ Sof t war e>
16 $par am 41 <Har dwar e></ Har dwar e>
17 #el se 42 </ ToRenot e>
18 $par am Nane 43 </ SendMessage>
19 #end
20 #end
21 #end
22)
23 </ Sof t war e>
24 <Har dwar e></ Har dwar e>
25 </ TolLocal >
myMsg. set Nr Byt es(1);
envl nf o. get W ndSpeed() myMsg. addByt e(49);
| ocal Tp. sendMsg(conecti onNunber, myMsg,
ti meQut Param get nsgSendTi ne()) ;

Figure 6.8: Mapping rulessSendMessagerode

the target platform language. A script to generate atteilolgiclarations for a Java target
platform is presented in figure 6.7. The code fragment preduny this script is shown
in this figure’s lower part. As one can see, this script is higlohesive because it deals
with only one element, i.e. the attribute, from which inf@tion is obtained by accessing
context variables (those identifiers starting with a “$” idw@er), or directly calling one
of DERCS API methods of thAttribute element (e.g. line 03). It is important to note
here that all methods (of all elements) available in the DER®I can be used within the
context of script.

Behaviorbranch (iv) provides key scripts to map DERCS behaviorahelgs into
constructions in the target language. There is one nodecitifg@ script to each action
available in the DERCS actions model, and also to behavidhspre- (branch) and post-
conditions (loop). Designers must only specify how to magiviidual DERCS actions
into equivalent constructions in the target language. Coatgments related to actions
are generated by these scripts, and merged to compose adrehBlis approach fa-
cilitates the specification of behavior mapping rules, heeadesigners do not need to
specify complex scripts that deal with all action types ia #ame script. Scripts have
full access to actions information, as well as the behavamtaining them. Thus, it

115

is possible to create very specialized and elaboratedtscigg the mapping rules for
SendMessageAct i on elements shown in figure 6.8. As mentioned, DERCS sending
message semantics is the same for any kind of target ohgctpcal or remote objects,
and/or objects implemented as software or hardware. Tigettatatform is in charge
to implement these sending message variations. In figurdiBe® 04-22 (left column)
show the script to map actions that send messages to loadtebp a Java platform.
On the other hand, lines 28-39 (right side) depict the mappiractions that send mes-
sages to remote objects using a communication API (SILVA 2808) in the same Java
platform. GenERTICA decides which script should be exatbised on the information
contained in th&endMessageAct i on, i.e. GenERTICA compare tHdode in which
both sender and target objects have been deployed. Ndte is the same, GenERTICA
executes the script related to local messages, otherwesedutes the script related to
remote messages. Examples of code fragments generatedhboschipts are presented in
the lower part of this figure 6.8.

The most important part of the application mapping rulescgigation is the set of
scripts to describe DERAF aspects implementations. Asdtatsection 5.3.2, DERAF
aspects high-level semantics do not define how to implenspedc adaptations; it must
be done in implementation phase considering the targdoptat Thus, in the proposed
code generation and aspects weaving approach, DERAF aspgtementation is spec-
ified via scripts within theaspectsranch (v). For each aspect, scripts representing its
structural and behavioral adaptations are defined. GerER&xecutes aspect adapta-
tion scripts upon elements selected by the join points. Murecifically, information
contained in aspects’ pointcuts specification is used tecselhich adaptations scripts
must be executed to modify the elements gathered by jointgoin other words, when
the code generation algorithm analyzes a DERCS elementdlass, attribute, behavior,
action, etc.) to generate its source code fragment, it dleoks if this element is selected
by any JPDD. If it is the case, scripts of aspects adaptatielased to these JPDDs (as
indicated in aspects’ pointcuts specification) are exetutedifying either the generated
code fragment, or the element itself. Thus, besides coderggon, GenERTICA also
performs aspects weaving in both generated code fragmettSBRCS elements.

There are two kinds of aspect adaptation implementatiams tleat modifies the gen-
erated code fragment; and one that modifies the selecte@mpteiirhe former is executed
after the script defined irClass> of <Behavior> branches for the selected element,
modifying the generated code fragment to include changas@ied by the aspect adap-
tation. The later is executed before the mentioned bransikepts, modifying the se-
lected element at model level, i.e. the input DERCS modehetd is modified. Thereby,
GenERTICA is able to perform aspects model weaving. Totiléie these two types of
aspect adaptation implementations, figure 6.9 presentsriplementation of thderi-
odicTimingaspect (see section 5.3.2) for the RT-FemtoJava platfor@ €t al., 2001,
WEHRMEISTER, 2005).

In this example, six adaptations have been created: thddusimodifying the gen-
erated source code fragment, and the two last modifyingcijréhe affected element
(indicated by thdvbdel Level attribute). PeriodicTimingaspect affects active object
classes that need to execute its behavior cyclically at @engikequency. Hence, adapta-
tions affected these classes’ attributes and behaResrod structural adaptation adds two
attributes in affected classes, as depicted in figure 6rigsID7-09; initialization code
for these attributes is inserted in the class constructoBétPeriodbehavioral adapta-
tion, as shown in lines 19-2FrequencyControappends code (after the last action) that

116

01 <Peri odi cTi mi ng>

02 <Decl aration></Decl aration>

03 <Adaptations>

04 <Structural Nane="Period" Oder="1" Mdel Level ="no">

05 private static RelativeTinme _Period = new Rel ativeTi me(0, 0, 0);
06 private static Periodi cParaneters _Periodi cParans =
07 new Periodi cParanmeters(null, null, null, null, null);

08 </ Structural >
09 <Behavi oral Nane="Set Peri od" Order="2" Mbdel Level ="no">

10 _Period. set (0, pPeriod, 0);
11 _Periodi cPar ans. set Peri od(_Peri od);
12 set Rel easePar anet er s(_Peri odi cPar ans) ;

13 </ Behavi or al >

14 <Behavi oral Name="FrequencyControl" Order="3" Model Level ="no">
15 wai t For Next Peri od() ;

16 </ Behavi or al >

17 <Behavi oral Nane="LoopMechani sm' Order="4" Mbdel Level ="no" >

18 whil e (isRunning()) $Options. Bl ockStart
19 $CodeCener at or . get Gener at edCodeFr agnent (1)
20 $Opti ons. Bl ockEnd

21 </ Behavi or al >

22 <Structural Nanme="MdifyConstructor" O der="1" Model Level ="yes">
23 $Message. addPar anet er (" pPeri od", $DERCSFact ory. newl nt eger (f al se),
24 $DERCSFact ory. get Paraneterin());

25 </Structural >

26 <Behavi oral Name="Adapt Cbj ect Construction" O der="1"

27 Model Level ="yes" >

28 $Act i on. addPar anet er Val ue($Cr osscut ti ng. get Val ueO (" Peri od"))
29 </ Behavi or al >

30 </Adaptations>

31 </ Peri odi cTi m ng>

Figure 6.9: Mapping rulefPeriodicTimingaspect implementation

controls the execution frequency of active objects’ peddehavior using RT-FemtoJava
platform constructions, as presented in line 33. SimildtlyopMechanisnadaptation
encloses the periodic behavior (and the code inserteBrédguencyContrglin a while
construction, as depicted in lines 27 and 36. It is importantote that, to enable the
expected behavioFrequencyControhdaptation must be performed beftu@opMecha-
nism GenERTICA uses thér der attribute to control the execution order of adaptations
scripts (lower numbers have higher execution priority)this exampleFrequencyCon-
trol order is 3 and_.oopMechanisns 4, causing-requencyControcript to be executed
beforeLoopMechanisnone, forcing the code inserted by the first script (line 33h¢o
enclosed by thevhile construction inserted byoopMechanisnscript (lines 27 and 36).
Moreover, as one can see, source code fragments insertdt byentioned adap-
tations are exactly equal to their script in the mappings@/L file, indicating that
these adaptations are independent of affected elemeptsnafion. However, although
these scripts do not use any information of affected elemeleisigners need to be aware
that both scripts could be applied only to behavior-relakednents (e.gBehavi or or
Act i on subclass). However, if these adaptations need to be appliether DERCS
elements (e.gCl ass, Met hod, etc.), their script must be changed to provide additional
modifications. On the other hand, there are adaptationstscthat are close related to af-
fected elements, e.¢lodifyConstructoror AdaptObjectConstructionrhese adaptations
modify affected elements’ DERCS specification rather theairtgenerated source code
fragment. Adaptations changing model elements are alwessuged before any other
aspect adaptation, allowing model-level modifications ¢ovisible for the non-aspect
scripts (i.e. “normal” code generation scripts). Consedlyeaspects model weaving
occurs prior to code generation, and also aspects weavihg igenerated fragments.

Considering model level aspect adaptatidviedifyConstructorstructural adaptation

117

01 public class Mvenent Control er extends Real ti neThread {

02 ...

03 protected Environentlnformation envlnfo;

04 protected int w ndSpeed;

05 ...

06 // PeriodicTimng.Period - Begin

07 private static RelativeTime _Period = new Rel ativeTi ne(0,0,0);
08 private static Periodi cParaneters _Periodi cParans =

09 new Periodi cParanmeters(null, null, null, null, null);
10 /1 PeriodicTimng.Period - End

11 public void Mvenent Control er (Environent!|nformation new_envl nfo,
12 Movenent | nf or mati on new_mvbvi nfo, Myvenent| nformati on new_bMvl nf o,
13 Mai nRot or Act uat or new_nRAct, BackRotor Actuator new bRAct, int pDeadline,
14 /1 PeriodicTi mng. Modi fyConstructor - Begin

15 int pPeriod) {

16 /1 PeriodicTimng. MdifyConstructor - End

17 L.

18 /1 PeriodicTimng. Set Peri od - Begin

19 _Period. set (0, pPeriod, 0);

20 _Peri odi cPar ans. set Peri od(_Peri od);

21 set Rel easePar anmet er s(_Peri odi cPar ans) ;

22 /1 PeriodicTimng. Set Peri od - End

23}

24 ...

25 public void run() {

26 /1 PeriodicTi mng. LoopMechani sm (1) - Begin

27 while (isRunning()) {

28 /1 PeriodicTi mng. LoopMechani sm (1) - End

29 C

30 wi ndSpeed = envl nf 0. get W ndSpeed() ;

31 .

32 /1 PeriodicTi mng. FrequencyControl - Begin

33 wai t For Next Peri od();

34 /1 PeriodicTi mng. FrequencyControl - End

35 /1 PeriodicTi m ng. LoopMechani sm(2) - Begin

36 }

37 /1 PeriodicTi mng. LoopMechani sm(2) - End

38 1}

39 }

Figure 6.10: Source code fragment with modifications pent by aspect adaptations

uses DERCS API to modify the constructor of affected clagsexlude a new parameter
that represents initialization value of tperiod attribute inserted byeriod adaptation.
Moreover,SetPeriocadaptation adds the code in selected constructors’ bahttavdssign
this new parameter’s value to tiperiod attribute. As aspects model weaving occur be-
fore code generation, the code generation script is ableclade the new parameter in
affected constructors’ code fragment, as shown in line Iftgafe 6.10. Similarly, as the
constructor of affected classes has been modified, acth@<teate objects from these
classes must also be modified. Therefé@aptObjectConstructioadaptation script per-
forms a model level adaptation in the mentioned actionss @laptation uses the period
information specified in ACOD’srosscuttingrelationships to include the correct infor-
mation in the right object creation action.

As one can infer, this difference in aspect adaptation tyglies/s flexibility in aspect
implementation specification. Designers can choose the suitsble manner to imple-
ment DERAF aspects adaptations, taking into account tigett@tatform. Additionally,
the combination of aspects model and source code weavingsapem for new forms
to describe aspects implementation, as well as allows neyg veaexplore how aspects
modifications (performed on system functional (or basanel&s) are implemented.

118

01 <Pl at f or mConf i gur ati on>

02 <Sof t war e>

03 <General QutputDirectory="./platforn></General >
04 <File Name="PlatFile_1.java" QutputDi rectory="realtine"
05 Aspect s="Schedul i ngSupport">

06 <Part >

07 C

08 Configuration statenents or source code fragnent
09 C

10 </ Part>

11 <Part Aspects="Tim ngAttributes, PeriodicTimng">
12 .

13 Configuration statenents or source code fragnent
14 .

15 </ Part>

16 </File>

17 <File> ... </File>

8 ...

19 </ Sof t war e>

20 </ Pl at f or nConf i gur ati on>

Figure 6.11: Platform configuration XML structure

6.4.3 Platform Configuration

Platform configuratiorbranch provides script to generate platform configuraties fi
or tailored source code files of frameworks, libraries, otA®hich are generated based
on services or components needed by application source GalERTICA assumes that
the target platform provides means (i.e. software senaceshardware components) to
support platform constructions described in applicatiompss. Considering the usually
constrained execution environment of embedded systemskiés sense to tailor the tar-
get platform, in order to provide only services and comptsegquired by the embedded
application. In this sense, it is essential that targef@lats provide means to allow their
configuration in one of the following alternatives:

e Configuration files, which turn on/off services or compomponents. GenERTICA
can generate configuration files, allowing platform-speddfols to configure them,
e.g. removing unused elements, or optimizing providedisesy

e Source codeavailability. GenERTICA can generate tailored source doased on
the original code, optimizing the final target platform imts of required footprint.

GenERTICA platform configuration approach integrates DER#Spects with plat-
form configuration. More specifically, DERAF aspects aratexd to platform services
and/or components, and thus, if an aspect is specified in taeinthe service(s) and
component(s) related to this aspect must be included innlaégiatform. The platform
configuration specification is very pragmatsoftwareor hardwarebranches are divided
in several files, which, in turn, are divided in parts (or frents), as depicted in the ex-
ample in figure 6.11. Platform configuration or source codssfdre, in fact, specified
as a sequence of text fragments witkiart> nodes. Hence, GenERTICA creates plat-
form configuration files from these fragments. Betfile> and<Part> nodes have an
Aspect s attribute indicating which DERAF aspects are related tgpeetively, plat-
form configuration (or source code) files and/or its text mnagts. They are included in
the generated platform configuration only if the model sfpexany aspect in the list. On
the other hand, if anyFile> and/or<Part> node do not specify thAspect s attribute
(or its value is an empty string), it means that the node’setrmust always be included
in the generated configuration file.

119

6.5 Code Generation Process

As mentioned in the previous section, GenERTICA adoptsiatsoased approach to
produce source code and/or configuration files, for bothiegjgbn and target platform.
Besides code generation, GenERTICA also performs aspeetgimg using aspects spec-
ified in the UML model, as well as their adaptations’ implertaion in form of scripts
described in the mapping rules XML file.

Therefore, GenERTICA's generation process involves twinmhaases: code gener-
ation/aspects weaving of application level elements, ardiguration files generation
or source code tailoring of the target platform. The formealgzes all elements in the
model, trying to find the script in the mapping rules XML fileatrmatches with each of
them. On the other hand, the later reads all XML nodes reltgdatform configura-
tion, checking if the associated aspects have been speiified model, to generate the
configuration file according to the specification.

To provide more details on the process followed by GenERTi€&enerated appli-
cation code, figure 6.12 depicts the activity diagram regmmgsg this process. Source
code is directly generated from the DERCS model, which igialkd from the original
UML model via model transformations, due to its capabilifyr@presenting structure,
behavior, and non-functional requirements handling in aenpoecise and unambiguous
fashion than compared to UML. Thus, as can be seen, thereare BERCS key ele-
ments driving the code generation procg®sCl ass; (i) Attri but e; (iii) Met hod;
(iv) Behavi or; (v) Act i on; (vi) Aspect s; and(vii) Joi npoi nt .

Classes are the main elements in the code generation/aspeating process, due
to their importance to the distributed embedded real-tigstesn specification itself i.e.
they represent structure and behavior of system objecishwim turn, represent system
elements. Therefore, GenERTICA applies the code generfatipects weaving algorithm
to each class in the DERCS model classes list. For each dasgtributes, methods,
as well as their associated behavior and actions list, agewsed by the algorithm. As
one can see, an activities execution pattern can be exdréfoteeach of these elements),
representing this algorithm’s kernel as follows:

1. Check if the element is affected by any model-level aspeaptadion, using point-
cut and join points information. If it is the case, the ad&ptais performed.

2. Try to find and execute the script that matches with the el¢reimg evaluated,
e.g. if the element is Assi gnnent Act i on the script in the<Assignment>is
found and executed.

3. Check if the element is affected by any other aspect adaptdtie. those that
modify the generated code fragment), and if so, executesati@ated adaptations.

On the other hand, the platform configuration generatioedakn inverse path, as
shown in figure 6.13: thePlatformConfiguration>branch drives the generation process,
and the information on DERAF aspects is obtained from theghddus, for eackFile>
and<Path> node in this branch, at least one aspect in the associatedtadist must be
found in the model to allow the generation of the file or thdusmn any of its parts.

120

Initialization

Is there
any Class to
analyse?

Generate
source code file

o No
Yes

Select next Class Combine source

code fragments

Is it affected Yes A Apply
pply No adaptations Apply
by model Ieyel aspect adaptations P adaptations
adaptations?

Is

selected Yed
Class affected by any e
No Search mapping Aspect? Yes)
rule that fits with the Is it No
selected Class affected by any
Aspect?
No

Is there
any Attibute to

Is there
any Message to

No
Execute script

analyse? analyse?
Yes| Yes| Search script
to execute
Select next Attribute Select next Message

Apply

No adaptations

Is it affected
by model level aspect
adaptations?

Is it affected
by model level aspect
adaptations?

Yes

Yes

Apply

No
Apply
adaptations adaptations adaptations N
Select next Action
Search script Search script
to execute to execute
Execute script Execute script

Is it
affected by any
Aspect?

Yes

Is there
any Action to
analyse?

No

No Yes

affected by any
Aspect?

Has
associated
Aspects?

there any File
to analyse?

Select File Read Aspects
Node List

Has
associated
Aspects?

Is there
any Part to
analyse?

Read Aspects List)(—(Select Part Node)

Figure 6.13: GenERTICA: platform configuration generafioachart

121

6.6 Final Remarks

UML is not the most suitable modeling language to allow catgktode generation,
due to its various intentional semantic variation pointherefore, GenERTICA code
generation approach transforms UML into the proposed DERG&e!, trying to simplify
the access to system specification information. MoreoveROS meta-model allows the
same specification level as UML for describing structure laekavior, but using fewer
meta-model elements, facilitating the mapping of modeinelets into constructions in
the target platform language. However, more importantessiparation of concerns in
requirements handling specification provided by DERCS. DERAO concepts allow
using AO-related elements at modeling level that can bééuntealized in both AO and
non-AQ target languages.

Regarding mapping rules description, the main reason fochivice of XML is be-
cause it represents a well-structured and self-descripecifecation for organizing code
generation scripts. Thus, other tools can use the mappleg files for other purposes,
such as evaluating different target platform construatiorapping rules to represent the
same model element. Additionally, the XML format facilgatthe creation of mapping
rules repositories, from which tools can read their infaiorato decide which file (or
fragment) should be selected and reused.

GenERTICA approach of using small scripts improves searatf concern in map-
ping rules specification because designers need only toitakeccount few elements
for transforming a concepts in the model into constructiartee target language. More-
over, scripts allow aspects weaving at two levels: modelsanuoice code. In other words,
aspects adaptations can modify both model elements andubheescode fragment gener-
ated from them. Designers can choose the implementationtfwat better fits their needs.
To the best of our knowledge, there is no other aspect weappgoach that allows both
model and source code level aspects weaving.

Furthermore, aspect adaptation implementations are yhigpendent on the target
platform, i.e. the target platform must provide means tovaIDERAF aspects semantics
realization. However, it must be stated that this work dossimtend to provide imple-
mentations for all aspects available in DERAF. Even so, ttesgrovided represent good
examples on how to implement other DERAF aspects. Besidegqroposed code gen-
eration/aspects weaving approach enables the use of bo#gmA®on-AO languages as
the target language in scripts specification, enabling rilexaility in the target platform
selection.

Finally, it is important to highlight that, after code geagon/aspects weaving pro-
cess, separation in the handling of functional from norefiomal requirements is missed,
I.e. code representing non-functional requirements erimixed with the code related to
functional ones. However, it is not a problem since the RTEFRapproach (used in
requirements specification) and also the mapping rulestsiieiorganization allow trace-
ability in handling elements/construction from requirenssto code, and vice-versa.

122

123

7 VALIDATION

7.1 Introduction

This chapter presents three case studies to illustrate aitthte the AMoDE-RT ap-
proach, as well as the GenERTICA code generation and aspeatsng tool. The first
case study presents the movement control system of an urethaenial vehicle; the sec-
ond one the control system of an industrial packing systenall§i, the third one the
movement control of an automated wheelchair. For each ¢adg, swo versions have
been created: object-oriented and aspect-oriented. lii@udhey have been compared
using a subset of the software engineering metrics for AQegys presented in section
2.4.4.3. Mapping rules for two different platforms, nam#éig RT-FemtoJava and OR-
COS platforms, have been specified to generate source anddtie AO version of these
systems examples.

7.2 Toolset Overview

In order to facilitate the understanding of the presentseé studies, a brief description
on the technologies used in implementation is presentedFdritoJava and ORCOS
platforms, which have been used to implement the AO versidhase case studies, are
presented. Thereafter, the assessment framework usedlt@®/both versions of each
case study is also presented.

7.2.1 RT-FemtoJava Platform

RT-FemtoJava platform is composed by a customizable Jaeegsor (ITO et al.,
2001), and a set of APIs to support real-time applicationEARMEISTER, 2005).
RT-FemtoJava processor implements a Java execution eagihardware by means of
a stack-based machine compatible with the Java Virtual MactdVM) specification
(LINDHOLM; YELLIN, 1999). Moreover, it adopts the Harvardganization, i.e. dif-
ferent memories for code (ROM) and data (RAM). There aresthfiit versions available
for the RT-FemtoJava processor: 8, 16, 32-bits with diffegrchitectures (multicycle,
pipeline, VLIW). The choice of which version should be s#becis made according to
application requirements and constraints.

As RT-FemtoJava is a customizable processor, it is gertebgt¢he SASHIMI envi-
ronment (ITO et al., 2001), which takes the compiled Jaxtacodess input to produce a
VHDL description of the customized RT-FemtoJava, optirdife that Java binary code.
In other words, SASHIMI analyses the compiled Java code,atdmatically synthe-
sizes anmApplication Specific Instruction ProcessASIP), using only the instructions

124

subset used by the target application. Hence, the syndtepiocessor control unit size
is directly proportional to the number of different Jayacodesieeded by the application
software, optimizing the final footprint based on applicatrequirements.

In addition to RT-FemtoJava processor, an API (WEHRMEISTERS) based on the
Real-Time Specification for JayRTSJ) (BOLLELLA et al., 2001) was developed to fa-
cilitate application software development by raising thsteaction level of programming
constructs. Thereby programmers do not have to worry aloautdvel details. This API
covers the most important aspects of real-time programnikegmultithreading, real-
time scheduling, and specification of timing issues. Tortyeaxpress timing and other
constraints in the real-time application source code, At introduces the concept of
schedulable objects (i.e. active object), which are ins#armf classes that implement the
RTSJSchedulablénterface (aRkealtimeThreadlass). It also specifies a set of classes to
store parameters that represent particular resource disfram one or more schedulable
objects. For example, tHeeleaseParameterdass (super class fromperiodicParame-
tersand PeriodicParametersincludes several useful parameters for the specification o
real-time requirements, e.g. deadlines, activation per@md others. Moreover, it sup-
ports the expression of the following elements). time values (absolute and relative
time); (ii) clocks; (iii) periodic, sporadic and aperiodic tasks;) scheduling policies;
(v) timers; (vi) asynchronous events and their handlers; @iyl pooling servers to min-
imize the disturbance caused by asynchronous events hardiecution. For details on
the RTSJ-based API, interested readers are referred to RMEHSTER, 2005)

As mentioned, RT-FemtoJava platform also has a commuaic#PI| (SILVA JR.,
2008) that allows the establishment of a communication mllaopon a network, in
which objects residing in different processing nodes cahamge messages. Two com-
munication models are supported by the communication Alhteserver and publisher-
subscriber. The former allows connection oriented and tgokpoint communication,
while the later connectionless and multicast communicatiddditionally, distinct pri-
orities and timing constraints can be associated with ngessamproving the real-time
constraints management. Moreover, the communication #Bivided in transport, net-
work, and data link layers, following the OSI/ISO refereneedel. In the current version,
it implements a communication infrastructure following t&@AN-bus (BOSCH, 1991)
communication protocol.

7.2.2 ORCOS Platform

Organic Reconfigurable Operating Syst€@RCOS) platform provides a customiz-
able RTOS, whose aim is to run it upon any kind of embeddedwenel (UPB, 2008).
ORCOS implements a fully object-oriented hybrid kernelifgsC++ language), rep-
resenting the evolution of thBistRibuted Extensible Application Management System
(DREAMS) (DITZE, 2000), a library-based construction set éperating system ser-
vices. A remarkable feature of ORCOS/DREAMS is the abilityseparate mandatory
operating systems source code parts from optional onesibyg asconfiguration mech-
anism. Thus, ORCOS can achieve small binary footprint uair@nfiguration mech-
anism that uses an XML-based configuration language, n&@ketbton Customization
LanguaggSCL).

ORCOS kernel is divided in several independent moduleschvare selected and
integrated by means of the SCL. The following services apgiged by ORCOS:

e Memory managementis one of the most important modules, and is mandatory in
any system configuration. There are separated memory sfmaassch application

125

task, and also for the ORCOS kernel. In addition, each taskteawn memory
manager, which is responsible for task's memory managesteaiegy. Moreover,
if the embedded hardware supports virtual memory, ORCOBlesta use it;

e System callsprovide a manner for applications task to communicate viigh@R-
COS kernel. Thus, when a task needs to use any kernel fuattiygnt must use
syscallAPI functions to trigger a hardware interrupt, which, inrtuis recognized
by the kernel that executes the desired kernel functignalit

e File systemuses the same approach as the Unix file system, i.e. all fiterays
entries can be accessed through a unique path. Resouraegiatered inside the
file system structure, and accessed through a POSIX-likef $etrnel functions;

e Processesin ORCOS, represent tasks and their set of executing threReal-
time support is provided by ORCOS through real-time threambreal-time sched-
ulers. Moreover, there are special kernel tasks/thrededabrkerthreadgo sup-
port asynchronous interrupts for hardware devices I/Oedirfunctions calls, or
periodic functions calls (likewise periodic threads buthahe option of stopping
function execution to allocate thveorkerthreadto other purpose);

e Scheduling is other important module in ORCOS, and is divided in two step
dispatching and scheduling. The later comprehends thef sates to determine
the order in which threads are executed, while the formecwrs instructions to
allocate CPU to the thread selected to execute. The follpwaheduling policies
are availableEarliest Deadline Firs{EDF), Rate Monotoni¢RM), Round Robin
(RR), and a priority-based scheduler;

e Hardware Abstraction Layer (HAL) provides an abstraction layer to access the
real hardware, avoiding the ORCOS kernel to access it tirect

e Power managementallows energy savings. The current ORCOS version allows
only to halt the CPU execution every time the idle task is gamexecute;

e Communication module allows inter-node and inter-process communicatiefin-
ing a socket communication interface that uses differeptiqmols to communicate.
Each socket can be explicitly configured (at runtime) to aefuhich protocol stack
(OSI/ISO reference model’s transport and network layeegjrto be used.

A detailed discussion on ORCOS is beyond the scope of thts #xus, interested
readers are addressed to (UPB, 2008) and (DITZE, 2000).

7.2.3 Case Studies Assessment

Case studies presented in this chapter aim at assessigg deprovements achieved
by using the proposed AMoDE-RT design flow. Thus, for eacle casdy, two versions
have been designed: one using only OO concepts to specifyfbottional and non-
functional requirements handling, and another one apglp® concepts to deal with
non-functional requirements.

To compare the suitability of OO and AO concepts for distigouembedded real-
time systems development, a set of quality metrics is caledlfor each version. This
work uses the assessment framework presented by Sant’aaha(2003) (see section
2.4.4.3) to infer the reusability quality of the produced UMhodels. Not all available

126

Quality Factors Internal Attributes Metrics

Reusability
CBC
Coupling -
DIT
Cohesion|—LCOO|

Figure 7.1: Reusability quality model

metrics have been used to provide the qualitative assesshboth models. A subset
of metrics had to be chosen and adapted based on their $itytédyi modeling instead

of coding phase. Hence, implementation related metrict) agLines of Codehave not
been used. Additionally, it is important to highlight thaigassessment concentrates only
on “reusability” instead of “reusability and maintainatyi as proposed in the original
assessment framework (SANT'ANNA et al., 2003). Figure hdvss the selected metrics
and their relations to provide the reusability quality asseent. For more details on each
metric, readers are referred to section 2.4.4.3. In additmassist in metrics extraction,
a plug-in for the MagicDraw modeling tool (NOMAGIC, 2008)shbeen developed and
used to automatically calculate the metrics set.

Moreover, in order to be able to do a fair comparison betwe@ra@d AO models, the
development of these models were done by two different psfsme person has modeled
the OO version of all case studies, while the other one hasteddhe AO version. The
intention of this approach is to decrease the occurrenceyobias that may happen if the
same person designs both versions of the same system.

Besides model assessment, other point evaluated in thesestalies is the source
code generated from UML models. Statics about the amourtwote code files, as well
as generated lines of code, for each mentioned target ptatice presented.

7.3 Case Studies

7.3.1 Unmanned Aerial Vehicle

Unmanned Aerial Vehicl@JAV) is an aircraft that flies without having an onboard
pilot, and is used in activities where the human presenceoislad due to inherited risks,
or simply to decrease operational costs. UAVs can fly a pogiammed route or be
remotely operated by a ground station. Reconnaissancegupmatural disasters, mon-
itoring and defect detection of transmission lines locatadhospitable places, and area
surveillance and vigilance are some examples of UAV apiitina. An UAV is com-
pounded of several subsystems, such as video recording-@mshtission, navigation,
mission management, collision avoidance, self-diagnpatid movement control.

This work focuses on the movement control subsystem of ananned helicopter,
modifying the UAV movement control case study presentedRREITAS, 2007) by
means of providing a more detailed design. Summarizingh#étieopter control system
is divided three different modules:

e Sampling subsystemis responsible to sample helicopter information (e.g. main
and tail rotors pace), as well as environmental informa{mg. humidity, tem-

127

Temperature Humidity Sensor
Sensor

Humidity <<NFR_Distribution>> Back Rotor
Temperature Sensing Back Rf)tor Sensor
Sensing Sensing
% ¥ : :
>

<<NFR_Timing>>

<<NFR_Embedded>>
<<NFR_Distribution>>
Rotor

Wind Sensor

Main Rotor
Sensor

Main Rotor
Sensing
<<NFR_Distribution>>
Piloting

, <<include>>

A

N <<NFR_Timing>>
Navigation <<NFR_Embedded>>
Control

Control Alarm
% DataTransfer
y

Enviroment
Sensing

Sensing

\V<<include>> /I<<include>>
<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>
Helicopter
Movement Control

1ce
System

- _¢<<include>>

Special Condition extension points ; ’:
i Back Rotor
UAV in danger
Movement Control 9 % ctuator

UAV in danger, 'P
y_ (UAVindanger) Main Rotor
<<extend>>
Actuator

Figure 7.2: UAV movement control use case diagram

perature, wind speed and direction). Sampled data hawerelif utility lifetimes
depending on the information kind, operation mode, andission;

e Control subsystemuses the sampled data to control both helicopter main ahd tai
rotors, allowing helicopter guidance and piloting. Bajc& implements a control
system based on the method proposed by Seibel (2001);

e Actuation subsystemtakes the control values produced by the control subsystem,
applying them in helicopter rotor engines.

Further, the helicopter control system has two intercotateceal-time processing
nodes: one is located close to the main rotor and the otheclose to the back rotor.
In other words, the designed control system is distributest these two communicat-
ing nodes, employing both remote and local objects. For goteter description on this
system’s requirements, interested readers should re(ERBITAS, 2007).

Figure 7.2 shows functionalities expected from the memtibsubsystem. Following
AMOoDE-RT modeling guidelines, functionalities affectegrimn-functional requirements
(e.g. “Helicopter Movement Control”) are decorated witmanctional stereotype an-
notations, e.g. such &NFR_Ti m ng». The following subsections provide more details
on the modeled subsystem using AO and OO concepts.

7.3.1.1 Object-Oriented Version

The static structure of UAV movement control system is diegievith a class diagram.
This diagram shows classes, their attributes and methodisthee relationships among
classes. Figure 7.3-A depicts the UML class diagram crefatethe OO version. As
suggested in AMoDE-RT modeling guidelines, classes repitesy active objects are
decorated with th&Schedul abl eResour ce» stereotype from the MARTE profile,
and passive objects witkMut ual Excl usi onResour ce» stereotype.

Some classes depicted in figure 7.3-A (those with differdimtdicolor) are responsi-
ble to handle non-functional requirements as, for exanggemphor e class that is re-
sponsible to control the simultaneous access to sharetvpadgects,Ti nmer that deals
with timing requirements, déner gy Cont r ol | er that deals with energy consumption.

128

<<SchedulableResource>>
EnergyControler

<<SchedulableResource>>
Alarm

<<SchedulableResource>>
BackRotorActuator

101 EnergyMonitoringSubSystem ‘

SpecialCondition
MovementControl

otors | RotorActuator 4 MainRotorActuator ‘
1.2 A

<<RTclock>> <<SchedulableResource>>

<<SchedulableResource>>

Alarm RotorActuator

1 ~
1 <<SchedulableResource>>

‘ MovementControler

Timer BackRotorActuator

;_ﬁ <<Scheduler>>

‘ SpecialConditi ontrol ‘

MovementSensing

1 1\\ iEnviromentSensingSubSystem ‘
10 SubSystem J/

1X1
L Contr <<SchedulableResource>> 1

L[| |[MovementSensing | [T
SubSystem %7 1\ 1

1 ‘Subiect‘ <<SchedulableResource>>

~

1010 <<MutualExclusionResource>>

1
ControlSubSystem J Movementinformation

1
<<SchedulableResource>>

<<MutualExclusionResource>>

Enviromentinformation

MovementEncoder

1
<<SchedulableResource>> “’9‘ <<MutualExclusionResource>> }»

i T
<<SchedulableResource>>
1.5 .

Envir

‘mation

=

1 \

RemoteTask 5| <<MutualExclusionResource>>

Envir mation [Message
* 1.2

(]
‘T ‘ Driver ﬁSensorDriverJ JCommunicationDriver ﬁ:’

I

<<SchedulableResource>>
BackRotorSensorDriver

MovementSensorDriver

T4 1

MainRotor

SubSystem

SensorDriver

M Enviromer Driver ‘

‘ TemperatureSensorDriver ‘

<<SchedulableResource>> HumiditySensorDriver

BackRotorSensorDriver

EnviromentSensing
1

| 1
1 .
‘ MainRotorSensorDriver ‘ ‘ EnviromentSensorDriver ‘

T

[1
‘HumidilySensorDriver HT p Driver H i Driver‘

‘ WindSensorDriver ‘

(A) Object-Oriented Version (B) Aspect-Oriented Version

Figure 7.3: UAV movement control class diagram

UAV control system’s behavior was specified using only segealiagrams, showing
the behavior in terms of interactions among objects. Tairifferent sequence diagrams
were created(i) Helicopter movement contro(ji) Back rotor control;(iii) Main rotor
movement encode(iv) Back rotor movement encod€x;) Environment data acquisition;
(vi) General Behaviofvii) General Behavior viii) General Behavior 8x) Control Sub-
System Initialization(x) Environment Sub-System Initializatiq®i) Movement Sensing
Sub-System Initializatiorfxii) Energy control; andxiii) Task migration. Figure 7.4-A
shows two fragments of the helicopter movement control sege diagram: (Al) the
start ofMovenent Cont r ol | er’s periodic behavior responsible for controlling the he-
licopter movement, and (A2) the end of this active objecthudtbehavior.

In this diagram, theSchedul er object sends periodically an activation message
(each 20 ms), which is annotated with th&i medEvent » stereotype, to th&bv-
enment Control | er object. A loop combined fragment, indicating the repetitha-
ture of the control task, encloses all performed actionsmifig and distribution re-
guirements handling is performed by, respectivBlyrer andSemaphor e classes (see
figure 7.4-A1). Timer's timeout value is the value of the aation period assigned to
Movenent Cont rol | er object. At the end of the controller method (figure 7.4-A2),
the execution is held until the timeout occurrence (mesd@y&o control the execution
frequency. Figure 7.4-Al also depicts the synchronizedsg(using a semaphore, as de-
picted in message 11) tdovenent | nf or mat i on object, whose attributes values are
written byMovenent - Encoder active object, and read lWpvenent Control | er
active object. Therefore, before every access tavbneenent | nf or mat i on object,
an permission must be requested, and after its use, thesasehrcess must be released.

As stated before, the control system has one processingatdtie main rotor and
another one at the back rotor. The control task runs in the naéor node while the back
rotor actuation task runs in its own node. Thus, the movermentrol task must send
the calculated actuation values to the back rotor node.r€igu-A2 shows the handling

129

esource>> x| MutualExclusiol
Controller|MRInfo:Movementin

: decreaseEn:
40: waitForTimeouf (timer=freqCtrl)

(A) Object-Oriented Version l (B) Aspect-Oriented Version

an an

Figure 7.4: Fragments of UAV movement control sequencerdrag

of this communication non-functional requirement (messag4 and 35), and also the
application of calculated actuation values to the mainrratduator. Furthermore, this
diagram also shows other method related to control enengguwoption (message 39).

7.3.1.2 Aspect-Oriented Version

The AO version uses DERAF aspects to specify the handlingpoffanctional re-
quirements, i.e. the handling of each non-functional neqment is enclosed within the
scope of a single element instead of being spread over $eieaent elements.

Figure 7.3-B depicts the class diagram for the AO versionc#s be observed, this
diagram is simpler to visualize compared to the one in OOieryslue to the elimination
of classes that are not related with the application itsedf (classes that handle non-
functional requirements). In other words, in AO version klaadling of non-functional
requirements is done using aspects from DERAF, which arefggukin the ACOD. One
may argue that the same visual simplification is achieved bgma of separating func-
tional from non-functional requirements handling classgs two different class dia-
grams. This claim is true, however, the use of aspects botigs advantages, such as a
decrease in coupling among classes, reduction in the anodunbddel elements related
to non-functional requirements handling, and others.

Considering the behavior specification, the number of megusequence diagrams
was also reduced to nine. In AO version the following segeeatiagrams of OO ver-
sion have been eliminatedi) Back rotor actuation(ii) Back rotor movement encoder;
(i) Energy control; andiv) Task migration. The last two diagrams (iii and iv) are not
necessary anymore because the handling of energy conttadkak migration require-
ments have been delegated to, respectiatgr gyCont r ol andTaskM grati on
aspects of DERAF (see section 5.3.2). Actions in the otheralivninated diagrams, i.e.
(i) and (ii), were merged with, respectively, “Helicoptelovement Control” and “Main
Rotor Movement Encoder” sequence diagrams. Figure 7.4e/stthe movement con-
trol diagram, which is equivalent to the same diagram in OBiga. As can be observed,
all non-functional requirements handling elements hawenbemoved, reducing consid-

130

SLaEREES (A) | <<JoinPoint>> B)
QUGS <<SchedulableResource>>
TimingAttributes | *
<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET) {Name = “ActiveClass”}
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupTimingAttributes, AFTHR) (B1)
<<StructuralAdaptation>>+Deadline () I
<<Structuralddaptation>>+Priority() | o Beeereenie e
<<StructuralAdaptation>>+WCET ()
<<BehavioralAdaptation>>+SetupTimingAttributes () . <<JoinPoint>> poT—
chedula e
<<frosscut>> <<Crospcut>> (Namé = “ActObjConstructor”} Resource>>
i - w " {Dealine| = “5ms”, J—
{Dealine = “10ms”, . N *oeox
Prifprity = “17, Pmorit‘z' o | 1 *(..):*
WCET = “5ms”) WCET = ['2ns”} T
<<Crosscut>> <<Crosscut>>
: <<Cfrosscut>>
N » =< : _ "
(Deéll.e 15ms”, chedulable (Deallne = “20ms”, {Dealine 15ms”, | (BZ)
Priority = “1”, Resource>> Priofity = %17 Priority =[“1",
weET 4 " MovementEncoder = ’ -N Wy e e s s essssssasasssssas e e eaeananas -
C 8ms”} WCET| = “7ms”) WCET 8mg " }
<< >>
<<Schedulable <<SchedulableResource> <<Schedulable | <<Scheduler>> SehedalableResource
R >> . .
Resource>> EnvironmentDataSampler, esource * : Scheduler e
MovementController BackRotorActuator T T
<<Crospcut>> S<Crospeut>> M schedulable | <<JoinPoint>>
{Period [“15ms”} {period|= m20ms”} >> d S
esource <<Crdsscut>> {Name = “periodicActivatibn”}
<<Crosgcut>> Alarm “ ”
{Period F “10ms”} {(Period = “15ms }l ! >
<<TimedEvent>>
<<Aspect>> T: *(..):*
<<NFR_Timing>> I (B3)
PeridicTiming 1 b L. it i i e s e s a s
<<Pointcut>>+pcActClass(ActiveClass, Period) * L%
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupPeriod, AFTER) | <<JoinPoint>> <<MutexExclusion
<<Pointcut>>+pcLoop (PeriodicActivation, LoopMechanism, AROUND) {Nameé = “InfoObjCreation”} Resource>>
<<Pointcut>>+pcFreqCtrl (PeriodicActivation, FrequencyControl, AFTER) B — _— R . . .
<<StructuralAdaptation>>+Period () | 1: *(..):* : *Information
<<BehavioralAdaptation>>+SetupPeriod () [
<<BehavioralAdaptation>>+LoopMechanism ()
<<BehavioralAdaptation>>t+FrequencyControl () | (B4)
<<Aspect>> :
<<NFR Distpribution» | <<Schedulable <<MutexExclusion
- Resource>> Resource>>
ConcurrencyControl * . *Information
<<Pointcut>>+pcInfoClass(InfoObjCreation, ConcurrencyControlMechanism) | | <<JoinPoint>> |
<<Pointcut>>+pcBeforeWriteInfo(SetInfoValue, AcquireAccess, BEFORE) {Name = “setInfoValue”}
<<Pointcut>>+pcAfterWriteInfo(SetInfoValue, ReleaseAccess, AFTER) I ~|
<<StructuralAdaptation>>+ConcurrencyControlMechanism () | 1: set*(..):*
<<BehavioralAdaptation>>+AcquireAccess ()
<<BehavioralAdaptation>>+ReleaseAccess () (BS) !
1

Figure 7.5: UAV non-functional requirements handling: @&gOD, and (B) JPDD

erably the size of diagrams in terms of number of messagés (éQuction) and lifelines.

Additionally, figure 7.4-B also shows the union of “HeliceptMovement Control”
and “Back Rotor Actuation” sequence diagrams, which isespnted by the parallel
combined fragment (“par”), meaning that both interactionsur concurrently. Due to
elimination of messages related to non-functional hagdlmly two messages remained
from the original “Back Rotor Actuation”. Thus, these mag=awere included into the
“Helicopter Movement Control” sequence diagram (see ngessa4 and 25) and, conse-
guently, the “Back Rotor Actuation” could be eliminated netAO version.

According to AMoDE-RT, DERAF aspects and join points arecsigedd using a com-
bination of ACOD and JPDD (see section 5.3). Figure 7.5-Ansha fragment of the
UAV’s ACOD, showing three aspectsti m ngAttri butes, PeriodicTi m ng
andConcur rencyContr ol . The first two aspects insert new attributes to active ob-
jects classes (those annotated wi8chedul abl eResour ce» stereotype). Attributes
related to deadline, priority and WCET are insertedTlbyn ngAt t ri but es, and the
activation period byPer i odi cTi m ng aspect. Values for this new attributes are spec-
ified in crosscut associations. It is important to emphatiaé crosscutting associations
do not insert by themselves new attributes into particngaélements (class or aspect) as
normal associations. Hence, they do not bind classes wpikcss, and vice-versa.

As mentioned, the real link between aspects adaptationaféeated elements (whose
selection is specified with JPDDs) is specified by pointcascdption within aspects.
Figure 7.5-B shows five examples of all JPDDs created in e ctudy:

131

1. Acti ved ass join point (B1) represents the selection of all classes tatad
with «Schedul abl eResour ce» stereotype,;

2. Act Qbj Cont ruct or join point (B2) selects all actions that construct all aetiv
objects;

3. Peri odi cActi vati on join point (B3) represents the selection of all messages,
which are annotated witkTi medEvent » stereotype, sent by the scheduler to any
active object;

4. 1 nf oObj Cr eat i on join point (B4) selects all actions that construct passive o
jects (i.e. classes annotated witlilt ual Excl usi onResour ce»),whose name
ends with “Information”;

5. Set | nf oVal ue join point (B5) selects all messages with name starting with
“set”, which are sent to passive objects whose name ends'Mfthrmation”.

As shown in figure 7.5-APer i odi cTi m ng aspect uses JPDDs numbers 1-3,
while Ti mi ngAt t ri but es aspect uses only JPDDs numbers 1 and 2.

ConcurrencyCont r ol aspect affects passive objects, which store informatiah th
can be simultaneously accessed by more than one activet.obbjassigns a concurrency
control mechanism to each affected object during theimimsation, whose join point is
captured by thé nf oObj Cr eat i on JPDD. Additionally, before every access (read or
write) to a protected object, an access permission mustiested to this control mech-
anism. Similarly, the control mechanism should be inforrtiext the object is no longer
in use. Writing accesses are capturedey | nf oVal ue JPDD. Itis important to high-
light that according to DERAF premises of high-level aspeat modeling level, it does
not matter if this inserted control mechanism is a new aitelior each affected classes or
simply an new global object, which is associated with theégut@d shared object. These
are implementation specific issues, which should be de@tledplementation phase.

As a first impression, one can think that the specification ©O® and JPDD seems
to require more effort but it is not true. The generic naturdPDDs allows their re-
use from previous modeled projects, as demonstrated ie tteee studies. Hence, many
JPDDs have been simply reused without modification in therathse studies.

7.3.1.3 Results

Considering separation of concerns metrics, figure 7.6-@wshhow effective was
the application of DERAF aspects to handle time, distrdoutitnd embedded concerns.
All non-functional requirements have better handling sapan in the AO model com-
pared to the OO one, i.e. the smaller amount of elementssgdaand/or aspects) han-
dling a concern, better separation of concerns is achideadjng to a decrease in the
scattering problem. The numbers presented confirm the Hicagion observed in the
diagrams of AO version. The reduction ranges from 55% to 88&the CDC and from
75% to 92% for the CDO metric. CDC/CDO became smaller in ACsieer because
the way they are calculated (see section 2.4.4.3). Fornostan AO version, CDC
for timing non-functional requirements considers only fbkkowing DERAF aspects:
Per i odi cTi m ng, Schedul i ngSupport, Ti m ngAtri but es and Ti nePa-

r anmet er sAdapt er . On the other hand, in OO version, CDC takes into accounsetas
specifically related to timing non-functional requirenseitandling Schedul er and
Ti mer) plus those related to functional requirements, which disal with time issues

132

=00 OAO =00 OAO

70 700
59

614
60 600
50 500
40 ” 38 400
30 300 217
20 . 2 14 2 200 164 105
cebebel oF - kERaw
0 0 S -
cbe C

cDC CDO DO cDC CcDO CBC DIT LCOO | LCOO* Vs NOA
Timing Distribution Embedded Coupling Cohesion Size
(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.6: Calculated metrics for the UAV control system

<<SchedulableResource>> <<SchedulableResource>>
MovementController_OO MovementController_AO
+getPriority() +run() : void
+setPriority() +processinfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getDeadline() +getLastValidComputation()

+setDeadline()
+getPeriod()

+setPeriod()

+getWCET()

+setWCET()
+getEnergyLevel()
+decreaseEnergyLevel()
+resetEnergyLevel()
+waitForTimeout(timer)
+changeControlPolicy()
+run() : void
+processlInfo(r1:int, p1:int, r2:int, p2:int, ws:float, wd:float, h:float, t:float) : void
+getLastValidComputation()

Figure 7.7: Comparison of UAV’Bbvenent Cont r ol | er classes

(Movenent Control | er, Movenent Encoder, Envi r onnent Dat aSanpl er,
BackRot or Sensor Dri ver, BackRot or Act uat or, Al ar mand Ener gyCon-
troller). Consequently, in OO model, functional and non-functiceguirements
handling intermixing cause the inclusion of some functle@laments/methods as non-
functional elements/methods.

Considering the other metrics, figure 7.6-B depicts theltesibtained. Analyzing
coupling metrics, DIT results show that the use of aspectdidmodified the inheri-
tance tree. CBC results show, again, a decrease of more 8%nrbthe AO model.
CBC takes into account each reference (e.g. attribute,odethll, parameter) to other
classes/aspects. Consequently, classes/aspects in AilOrvare more modular than in
OO version, mainly, due also to the intermixed treatmentin€fional and non-functional
requirements that happens in OO version. Observing thersetec, VS did not change,
while NOA has a decrease of 52%. This happened because lsemetfunctional-related
attributes were moved from classes to aspects, which aremiono all affected classes
in implementation phase.

Regarding cohesion, the difference of LCOO between AO andn@Qels is more
than 91%. This decrease is primarily caused by eliminatioget/setmethods for at-
tributes related to non-functional requirements handlif@illustrate this difference, fig-
ure 7.7 presentdbvenent Cont r ol | er class for OO and AO versions. Moreover,
LCOO metric does not distinguish the two kinds gdt/setmethods: (i) “raw” which
have minimum impact on real cohesion; (ii) with computasiowhich have significant
impact on real cohesion. As one can see, OO versignisenent Cont rol | er has

133

Table 7.1: UAV: Statistics of the UML model of AO version

Diagrams Amount
_____ Structural e
Behavioral o
_____ ACOD b
_____ JPpD e
DERAF aspects 10

""" Structural adaptations | 15
 Behavioral adaptations | 18

Table 7.2: UAV: Statistics of the generated source code

RT-FemtoJava’ ORCOS
Mapping Rules (lines) 388/803 332/749
Application
S eoures codefies | by P RRERE
_______ Cines of Code | ived lTizgs
_______ Binary Size (kb) | BaLz | a4
Platform
 Soures codafies | P otor
_______ Uines of Code | meame lUage
_______ Binary Size (Kb) | 5930y | ez

+ Numbers inside parentheses represent the bytecodessieeated by java compiler
* Considering RTSJ APl (WEHRMEISTER, 2005) + APl COM (SILVRJ 2008)

nine “raw” get/setmethods related to non-functional requirements. Theeetorprovide
a fair assessment, LCOO for OO has been recalculated ergltigiw” get/setmethods
(LCOO* in figure 7.6-B). Even in this situation, LCOO decreas 75% in AO model.
The obtained results show that using aspects improves nsotekion.

Besides the modeling approach, AMoDE-RT also supports gederation using the
produced UML model as input. Mapping rules for two differgaatforms, i.e. RT-
FemtoJava and ORCOS, have been created and used to produsyestiim source code
in Java and C++. Tables 7.1 and 7.2 present some statisbcs, abspectively, the UAV
movement control UML model and the generated source code.

The size of mapping rules XML files, in terms of code lines, @8 8ines for the
RT-FemtoJava, and 749 lines for ORCOS platform. Howevéngfiines related to XML
markup are not considered, the amount of lines for the magppies scriptis 388 and 332,
respectively. These scripts representApplicationbranch. ORCOS mapping rules file
is smaller than the RT-FemtoJava one due to the later hasaspeet adaptations scripts
than the former. In fact, in ORCOS platform, several expbtiehaviors of aspect adap-
tations (e.gPer i odi cTi m ng’s LoopMechani smandFr equencyCont rol) are
implicitly executed within platform context, and henceeyhdo not need extra lines of
code in application code, only the correct configurationnalde such behavior. Further-
more, as some aspects used in the UML model are not suppgrteatibtarget platforms,
their adaptations insert only a comment (one line) indigpthat aspects have performed
adaptations in generated source code fragments. Despgitenptementing real code,
these scripts serve as demonstration of aspects weavifaymped by GenERTICA.

134

<<include>> %
Gripper Control
<<NFR_Timing>> Iltem Reader
<<NFR_Embedded>> _<<i_nc|£de_>>_
Arm Joints
% Control

<<NFR_Distribution>>
Robotic Arm
Input Parts
Conveyor

Control

<<NFR_Timing>>
<<NFR_Distribution>>

<<NFR_Timing>>
<<NFR_Embedded>>
<<NFR_Distribution>>

Robot Arm

Conveyor Movement
Control

Output
Products

Conveyor <<NFR_Timing>>
% \ Items Detection
Storage U <<incluge$> PO
<<NFR_Distribution>>
Storage Unit Detection Parts Detection
Control

Figure 7.8: Industrial packing system use case diagram

Assembly Cell
Control

Considering generated platform configuration, the difieeesin amount of lines is
even greater. RT-FemtoJava configuration has 2931 linesQC&RCOS 480 lines. This
happened because ORCOS has already a configuration menhamd RT-FemtoJava
none. Hence, on one hand, a configuration file is generat€gdR&@OS, and on the other
hand, the entire RT-FemtoJava API code is tailored to ireladly lines that provide
services required by aspects. In other words, by using thiétntoJava configuration
approach, GenERTICA provides a preprocessor mechanisavéy likewise the one na-
tively supported in C/C++.

Regarding the generated source code for the UAV movememtat@ystem, all be-
haviors/actions specified with sequence diagrams haverbapped to source code con-
structions. Thus, for the RT-FemtoJava platform, the arhotiapplication code lines is
almost 3.3 times the amount of mapping rules scripts lines CRCOS, the rate is almost
4.2 times, demonstrating the effort reduction in applmatoding, and the importance of
code generation tools in MDE approaches. In the other caskest the mapping rules
have been used without modification, and hence, the effaitain system implementa-
tion was even lower than in this case study.

Considering the size of compiled source code, a considedhfiérence between both
platforms can be perceived. This is caused by the differbebseen instructions size of
both target processors. ORCOS code has been compiled tbigsF2ewerPC processor,
whose instructions size is 4 bytes. On the other hand, RTiddava is a hardware im-
plementation of the JVM specification and, according to bivich and Yellin (1999), the
size of JVM instructions is 1, 2 or 3 bytes. Consequently, &&®&€’s binary size could be
(in the worst-case) almost four times greater than RT-F8avias binary size.

7.3.2 Industrial Packing System

This case study was inspired on the packing system presen{gtODGES et al.,
2003) and (BRUSEY et al., 2003). The system is composed obatimarm with a
gripper, two conveyors, a storage unit and several sensdre. input conveyor brings
individual parts, which are combined to form products. Theweyor stops when the
sensor detects the presence of a part. Then the robotic dreither put it in the storage
unit or use it to assembly a product. The second conveyogb®empty boxes into which
parts are inserted. This conveyor remains operating ustisensor detects an empty
box at the expected position. When the product is completetgmbled, the controller
sends a command to the conveyor and it starts to move forwgaith.a The controller

135

is a periodic active object that verifies whether there aoelpets to be assembly and/or
parts to be place into the storage unit. When the new produgtires a part, which is

physically located at the parts conveyor, this part is tedkem there, and used to mount
the product; otherwise, the part is taken from the storagte This system was intended

to be distributed, i.e. there are four different processiodes: one responsible to control
the products assembly process and the robotic arm; two nodestrol, respectively, the

input parts conveyor and the assembled products outpuegonvand one to control the

amount of parts in the storage unit.

The discussion starts exactly as in the UAV case study: \ir8ie packing system
functionalities are specified with an use case diagram, pteel in figure 7.8. Once
again, one can see that several use cases are annotatedenetityges related to non-
functional requirements. Although this case study has nugee cases decorated with
“NFR_” stereotypes, it has fewer non-functional requiretse More specifically, there
are fewer embedded non-functional requirements (if coepp&r the UAV case study),
due to system size and absence of energy constraints ingisgoacking system.

This case study have been performed as previous the prewviwels i.e. object-
and aspect-oriented modeling approaches are shown andacednwith the assessment
framework. Source code have also been generated for the emtioned platforms, and
their statistics are presented.

7.3.2.1 Object-Oriented Version

Following the approach adopted in the UAV case study, thecss&ructure of the
packing system is specified using the class diagram, astddpic figure 7.9-A. The
same MARTE profile stereotypes have been usedsBehedul abl eResour ce» and
«Mut ual Excl usi onResour ce», to specify, respectively, active and passive objects.
Non-functional requirements related classes are also asig#d with different colors.

For behavior specification, eleven sequence diagrams heme treatedy(i) Prod-
ucts assembly controfii) Conveyor control{iii) Item detection{iv) Robotic arm joints
control; (v) Gripper control(vi) Robotic arm movements contrdl;ii) Storage unit con-
trol; (viii) Controller sub-system initializatior(jx) Conveyor sub-system initialization;
(x) Storage unit sub-system initialization; apx) Memory management and tasks migra-
tion. Figure 7.10-A shows two fragments of (i), as in the UA\&e study: (a) the start of
products assembly control execution, and (b) the end ob#thsvior. Repeating the UAV
case study modeling pattern, the scheduler object sendealigemessage (annotated
with «Ti medEvent ») to theAssenbl yCel | Cont r ol | er active object, triggering
its behavior execution at each 5 seconds. Classes spegifgimfunctional requirements
handling can also be seen in these fragments,Te.ger andMessage classes.

As stated before, active objects are spread into four nodés. main control task
(i.,e. Assenbl yCel | Control | er object) runs in the main node, and must access
information from conveyors and storage objects locatedheronodes. Thus, this object
must send messages to these other objects, in order to @aitalwith them to proceed
with the products assembly and parts storage. For instdigeee 7.10-A shows the
message sending that requests the position of the storagentm which a part should
be placed (messages 45-48). Additionally, other messatgged to other non-functional
requirements handling, e.g. the memory control (messa@gm855), are also depicted.

136

T
TaskMigration <<SchedulableResource>> MemoryManager (i | <<SchedulableResource>>
MemoryController Al RobotArmdoint
E 3| : ‘ [I £ I 1
|
Semaphore 1 1| <<SchedulableResource>> <<Scheduler>> “ WristJoint H ShoulderJoint H RotaryShoulderJoint H ArmJoint ‘
RobotArmJoint Scheduler IR 1 1 1 1
! 2 | 1
[T I 1 <<SchedulableResource>>
‘ WristJoint ‘ ‘ShoulderJoint H RotaryShoulderJoint ‘ ‘ ArmJoint ‘ ! <<Schedulable RobotArm AssemblyCellController 1
1 T 1 1T 1 Resource>> 1 a8 -
| Gripper
<<TimerSource>> | 1 L
Timer <<Schedulable 1 1| <<Schedulable
\\ RobotArm | Rosouroess. - Resources>
AN 1 | <<MutualExclusion |1 1 c
1 . ItemReader Resource>> < onveyor
<<Schedulable ‘ 1| RobotArmPosition 1
Resource>> <<SchedulableResource>> 1 | 0
N -
Gripper 1 AssemblyCellController | RFIDReader
1 1 ‘ B ‘ B P - :
7T T 3 1 ol<<SchedulableResource>>{ |<<MutualExclusion
1 | | <<MutualExclusion Resource>>
1 | <<Schedulable T 7| <<Schedulable | Resource>> 4| StoagerCompartment
Resource>> <<MutualExclusion Resource>> i1~ StorageUnit ® T Item
1| ItemReader Resource>> Conveyor — !
~ RobotArmPosition T | 0..%
1 1
RFIDRead }I 1 1 <<MutualExclusion
7 — 1 | <<MutualExclusion [~ Resource>> <<MutualExclusion [0 .[. *
1 [—{ <<SchedulableResource>> —<MutualExclusion | Resource>> ProductPart Resource>>
<<Mutual 1 4| StoagerCompartment Resources> | Recipe Product
[L| Exclusion 1 Item B
L Resource>> 1 !
StorageUnit 0..* [!
1 1| 1.« [<<MutuatExclusion| | | <eMutualExclusion !
<MutualExclusion Resource>> Resource>> |10+ 1
Resource>> ProductPart N Product |
i 1 Recipe L |
l Communicationinterface ! lessage |
|
(A) Object-Oriented Version | (B) Aspect-Oriented Version
<<Scheduler>> <<SchedulableResource>> <<Scheduler>> <<SchedulableResource>>

<<NFR_Timing>> ||acc:Assemblycell sched:Scheduler| semblyCellController

sched:Scheduler

al

croller

robotArm:RobotArm | | <<MutualExclusionReso
ProdToAssembly:Produc

<TimedEvent>> | {every
run ()

|

alt] [(hasprodudthToBuild() =
(MixedPargysput.isItemDetected() =

True) &&

¢
2: allocate (amount=Ti;

: getRecipe()

o) <Timermesourcers] |
— — 5| <R Timing>> || Lk - - - - = recipe
freq:Timer loop J[i=0; i eceita.getPartsCount ()] . — L)
| : getPart (indéx=i
4: setTimeout (t=Period) ‘ !
| L _ _ 5: part o
5: start() alt J [(Producfsfn.isTtemDetected () E) &&
| (part = productsin.getTtem())] | 6: getPosition ()
6: allocate (amount-Msg n | 7: pos
<<NFR_Distributio 8: openGripper () |
\ Msg:Message 9: moveTo (newPos=pos)
¢ 10: closeGripper () ‘
al (hasProductsToBuild () ve) s& |
(MixedPartsout.#sItemDetected() == TRUE)] g§; ge}Recipe 11: gefPosition()
h I -
I f 9: rec [. pos
ke - - - - — . _ Ziregipe li-iﬁj _
Sop i < receita.getPardeCount ()] | >
10: Pdrt(,f\dexf
(A1) T
E—
: (B1)
[Aoy 1~ ST CleAar T~ S L - — —
(A2) L] re1se

et (Value=GET_ITEM PQSITION) |

openGripper (1

28: moveTo (newPos=pos) |

29: closeGripper ()

49: moveTo (newPos : getltem()

itep |

50: openGripper ()

51:

| |
free (amounttMsg.size ()) |
[} 34:

53: waitForTimeout () _ |

| | 35: openGripper () |

54:
>< 55: free (amount=I

il

(A) ObjeEl-Oriented Version (B) Asp_ect»Oriented Version

Figure 7.10: Industrial packing system sequence diagram

137

Prp—— @ | ®
<<NFR_Timing>>
PeridicTiming <<JoinPoint>>
<<SchedulableResource>>
-

<<Pointcut>>+pcActClass(ActiveClass, Period)
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupPeriod, AFTER) {Name = “ActiveClass”}
<<Pointcut>>+pcLoop(PeriodicActivation, LoopMechanism, AROUND) |

<<Pointcut>>+pcFreqCtrl (PeriodicActivation, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period ()

<<BehavioralAdaptation>>+SetupPeriod () |
<<BehavioralAdaptation>>+LoopMechanism ()
<<BehavioralAdaptation>>+FrequencyControl () (B1)

<<Crospcut>> <<Crospcut>> <<Crosgcut>> [~ poTmmssomsmmms s s

(Period | “500mg~} {Period|= “300ms”} {Period $ “500ms”|

<<Cropscut>> <<Crossqut>> <<Closscut>>

{Period = “350ms”)| {Period =]|"500ms”} (Perifd = “5s7) |
<<JoinPoint>>
<<Schedulable
(Nam ActobjConstructor }

<< >> Resource>>
Shschedres <<SAschedRes>> <<SAschedRes>> <<SAschedRes>>

<<Shresource>> * o

ItemReader StorageCompartment |||AssemblyCellController F(o.):*

Conveyor

SN e <<ShAschedres>>| <<cropscut>> |
<<SAschedRes>>| (Ee? 1'_‘[. ms, Gripper {Deallne=5s,
. riorifty=5,
RobotArmJoint
et WCET=1p0ms }

Priofity=5,
WCET$3.5s) |
<{Crosscut>> <<crpsscut>> <<Crdsscut>> <<Cfosscut>> (B2)
{Dpaline=500ms, (peafline=350mp, (Dealine=500ms, {Dealline=500ms, | Lttt ae e
Priority=5, Priprity=5, Priogity=5, Prigrity=5, [

WEET=100ms } WCE[r=150ms } WCET4100ms } WCET=100ms} <<Scheduler>> <<SchedulableResource>>

<<Aspect>> * : Scheduler * oo
<<NFR_Timing>> | T T
TimingAttributes <<JoinPoint>>
| {Namé = “perlodicActivatan")
<<Pointcut>>+pcActClass(ActiveClass, Deadline+Priority+WCET) L oL
<<Pointcut>>+pcActObjInit (ActObjConstructor, SetupTimingAttributes,AFTER) <<TimedEvent>>
<<StructuralAdaptation>>+Deadline () | 1: % (..):*
<<StructuralAdaptation>>+Priority ()
<<StructuralAdaptation>>+WCET ()
e e AR e e e e e () | (B3)

Figure 7.11: Industrial packing system: reused elemen&)®\COD, and (B) JPDD

7.3.2.2 Aspect-Oriented Version

DERAF was also used in the AO version of the industrial pagldystem to specify
non-functional requirements handling. Figure 7.9-B shtvesclass diagram specifying
the static structure. Again, the amount of classes, as wahlarelations among them,
have decreased. Thus the complexity of this diagram dezsea#\O version, just like in
the previous case study. Hence, the same statements mawdearevious section hold in
this case study.

In AO version, system behavior has been specified using iagsaiins than the OO
version, however, for the industrial packing system casdystthe decrease happened
only in one case: “Memory control and tasks migration” wasoged due to the han-
dling of memory control and task migration requirementsealblegated to, respectively,
Menor yUsageCont r ol and TaskM gr ati on aspects. Figure 7.10-B shows two
fragments of the products assembler control diagram, wénierequivalent to those pre-
sented in figure 7.10-A. The amount of messages in this diagsaB6% smaller than
the OO version one. As happened in the UAV case study, the lesahpdecrease for
describing the same system features can be clearly pedceive

Considering the specification of non-functional requirateehandling, figure 7.11
shows a fragment of ACOD, showing the reuselToim ngPar anet er s and Per -

I odi cPar anet er s aspects. Not only aspects have been reused. As one canigsee, jo
points (i.e. JPDD) used in pointcuts specification are atssed from the UAV case
study. This shows the generality of DERAF and the AMoDE-Rprapch, demonstrating
that aspects can be reused at modeling level in differetrilslised embedded systems
designs, due to their high-level semantics. It is importartiighlight that, for aspects
implementation, the mapping rules have also been reusémutitmodifications, due to
the fact that the target platform is the same, and the imphstien follows the high-level

138

=00 DAO =00 BAO

25 240
203
200

19 1903
. 160
12 12
9 10 10 M 120 08 96
10 80 80
80
5 3 4 3 28
2 40 27
11
0 0 IRl R
coo | coc | cbo | cpc | cpo VS

CBC DIT LCOO | LCOO*

89
48
NOA
Time Distribution Embedded Coupling Cohesion Size

(A) Separation of concerns metrics (B) Coupling, Cohesion and Size metrics

Figure 7.12: Calculated metrics for the industrial paclsggtem

Table 7.3: Industrial packing system: Statistics of the UiMadel of AO version

Diagrams Amount
_____ Stractural
Behavioral T
_____ ACOD
_____ SPDD s
DERAF aspects 9

""" Structural adaptations | 14
~ Behavioral adaptations | 15

* 11 JPDDs have been reused from UAV

pre-defined semantics of each aspect.

7.3.2.3 Results

Separation of concerns metrics depicted in figure 7.12-Avshibat the same improve-
ment achieved in UAV case study is obtained in the AO versidh@industrial packing
system. CDC metrics have been reduced at least 66% up to 8ii#ée, @DO from 16%
up to 75%. Although there is an improvement of concerns sgjpa, it was not in the
same degree as in the UAV case study, due to the amount ofgtinan-functional re-
quirements present in both systems, as for example fresmiagairements in UAV case
study that do not exist in the industrial packing system.

The other metrics exhibit similar improvement§):DIT did not change, i.e. aspects
do not modify classes hierarchii) AO model is again more cohesive, as pointed by the
decrease of 47% in CBC metri@ji) VS in AO version indicates a small increase (i.e.
one element), because in this version memory requiremeatsaamdled by two elements
(Menor yUsageCont rol andMenor yUsageMoni t or i ng aspects) instead of one
element as specified in OO versidiy) NOA, on the other hand, decrease almost 46%
in AO version, showing that in spite of the increase in VS imethe number of classes’
internal elements has decreased. Regarding model coh&sia® version, LCOO de-
creases 58% when considering all kinds of methods, and 16fawf’ get/setmethods
are excluded, showing that, in spite of the good cohesiohenQO version, the use of
AO concepts improve system cohesion.

Considering the created UML model, and the implementateregated from it, tables
7.3 and 7.4 show the statistics on the produced artifactthisncase study, the reuse of

139

Table 7.4: Industrial packing system: Statistics of theegated source code

RT-FemtoJava' ORCOS
Mapping Rules (lines) 388/803 332/749
Application
S e ires codafies B R P RURNNI
_______ Cinas of Code | iTad T isas
_______ Binary Size (kb) | 4saey | 1ae
Platform
ot code files | symge L ovor
_______ Uinesof Code | sear T ame
_______ Binary Size (kb | ea2@o) | asx

+ Numbers inside parentheses represent the bytecodessieeated by java compiler
* Considering RTSJ APl (WEHRMEISTER, 2005) + API COM (SILVRJ 2008)

previously created artifacts is highlighted in both ACateld elements specification and
mapping rules. Considering the former, in addition to DER#Spects reuse, JPDDs also
have been reused. From the 13 JPDDs used in this case stuagyd been reused from
the UAV case study without any modification. The same happevieh the mapping
rules specification. Thus, none effort was necessary torgen&144 and 1343 source
code lines for, respectively, RT-FemtoJava and ORCOSqrlaH.

7.3.3 Wheelchair Automation

The third case study was an automation system for an eleattiated wheelchair.
Therefore, AMODE-RT approach has been applied in the wha&ls movement control
system. Summarizing, the wheelchair movement controlgtes two engines (one for
each wheel), a joystick to steer the wheelchair in terms eédpand direction, and two
sensors to sample wheel rotation speed. Therefore, thensysust perform the following
concurrent activities:

e To sample the wheel sensors every 10 milliseconds to daterthie movement
speed and direction;

e To sample the current joystick position at the same peried 10 ms;

e To perform the wheelchair control algorithm every 50 ms,lgpg the calculated
actuation value to left and right wheel engines;

e To monitor changes in the operation mode. The operation nrdlieences in the
way of deadlines misses are treatél:signal the occurrence of missed deadlines;
(i) signal the occurrence of missed deadlines, and apply thevdéid actuation
value; or(iii) signal the occurrence of missed deadlines, and stop theletiage
movement.

UML models of this case study have already been presentedelhas discussed, in
(WEHRMEISTER, 2005) (OO version) and (FREITAS, 2007) (AQsien). Thus, in this
text, the goal of this case study is to discuss the calculattettics for both version, and
in addition, present results concerning the generatecceatode from the UML model
of AO version. Moreover, this case study is slightly diffierérom the one presented in

140

E00 DAO

E00 TAO

25 7 100

87

20 + 80

62

60

39 35

40 ~
20 ~

meL IWL

11

10
CDC CDO ‘ CDC ‘ CDO CDC ‘ CDO

Timing

Distribution ‘ Embedded ‘

Coupling

CBC ‘ DIT ‘LCOO‘ VS ‘ NOA

‘Cohesion‘ Size

(A) Separation of concerns metrics

(B) Coupling, Cohesion and Size metrics

Figure 7.13: Calculated metrics for the wheelchair moveroentrol system

Table 7.5: Wheelchair: Statistics of the UML model of AO vers

Diagrams Amount
_____ Stractural
Behavioral 6
_____ AGOD g
_____ SBDE
DERAF aspects 5

""" Structural adaptations | 10
 Behavioral adaptations | 12

* all JPDDs have been reused from UAV

(FREITAS, 2007) because AMoDE-RT modeling guidelines negsome small modifi-
cations in diagrams, in order to allow code generation froengroduced UML model.

Figure 7.13 shows the calculated metrics for the wheeldzse study. As occurred
in the other cases studies, AO version has increased theatepaof concern: CDC de-
creased 50% for timing and distribution and 71% for embeddedfunctional require-
ments, and CDO from 58% to 65%. As it can be noted, compariiiy the other case
studies, the improvement obtained for CDC metric in thiecaady is not the same one
obtained in UAV and industrial packing system. This sitoathappens due to the fewer
amount of non-functional requirements that exist in whiesilccase study compared to
the ones present in the other case studies. This can be aiod by CBC metric that
decreased only 10%. In addition, the lower CBC absoluteavalboth versions indicates
that the wheelchair movement control case study has a gapdelef decoupling. Com-
bining the later metric value with the lower LCOO absolutéuea it can be stated that
both OO and AO versions are well designed, due to, mainlgnitall size in comparison
with the other case studies. Moreover, one can see thabuglthNOA decreases almost
48%, the VS metric increases 27% in the AO version. As in thestrial packing system,
the reason for this increase is that there are no one-toeteugon between non-functional
requirements handling classes in OO version and aspect®iaetsion. Hence, as the
system size is small, the relative impact of extra elemengsaater than in the other case
studies. However, as the other metrics have a significantavgment, this increase in
vocabulary size is still acceptable.

Compared to the wheelchair case study presented in (FREIZB), the real con-
tribution of this case study is the generation of source c8ddhe other two case studies,

141

Table 7.6: Wheelchair: Statistics of the generated souwde c

RT-FemtoJava' ORCOS
Mapping Rules (lines) 388/803 332/749
Application
S e ires codafies R oy
_______ Cinas of Code | Egs
_______ Binary Size (kb) | zeiey | s
Platform
ot code files | T R ovor
_______ nesof Code I ionm T ase
_______ Binary Size (kb) | 3008 | asx

+ Numbers inside parentheses represent the bytecodessieeated by java compiler
*only RTSJ API (WEHRMEISTER, 2005)

two tables presents some statistics: table 7.5 considengrttduced UML model for the
AO version; and table 7.6 considers the source code geddmtéhe RT-FemtoJava and
ORCOS platform.

Again, this case study emphasizes the reuse of previoustent artifacts. In this
case study, 100% of JPDDs could be reused from the UAV cadg.sGionsidering that
both DERAF aspects and JPDDs have been reused, one carhatat®/tusing AMoDE-
RT, designers need only to concern with functional requaet®s specification, letting
non-functional requirements handling specification to bmpgosed by already created
elements. Moreover, as experience is acquired in the daewedot of others projects,
the model elements repository grows in amount of elememtseasing the possibility of
reusing more elements.

Considering the wheelchair control system implementatidhis case study, GenER-
TiCA has generated 672 and 712 source code lines for, reégpgcRT-FemtoJava and
ORCOS platforms. Rates of generated source code lines gapinggrules scripts lines
are 1.73 and 2.14, respectively. As one can conclude, ingiétion gains in this case
study are not the same as the other cases studies mainly dsesize, i.e. wheelchair
case study has 12 classes while the UAV and the industri&lpgsystem have 22 classes
each. In the same sense, this case study specified 6 behaiémams, while the other
ones 10 and 12 different diagrams each. However, in wheelcase study, no additional
mapping rules had to be defined, i.e. as the mapping ruleshfiles already been speci-
fied in the first case study, it was necessary only to reuse thigmout modifications to
obtain the mentioned amount of source code files.

7.4 Final Remarks

Taking into account the results obtained for all case sfydieean be stated that the
use of AO concepts improves the reusability quality, eversfoall embedded real-time
systems, as the case of the wheelchair movement contrelsysimost all metrics have
better values for AO model compared to OO one, ranging frofrh 8Y 66% in average.
Considering the understandability factor, key issues sisaeparation of concerns, cohe-
sion and coupling improved around 45% in average. Althobhgmumber of components
has increased a little bit (10% in average), the number abates decreased ca. 48%.
For flexibility factor, AO model elements are more cohesind decoupled compared to

142

OO model. Separations of concerns results show that elsne®O model have more
specific and well-defined roles than in OO model.

The difference in the absolute metrics values leads to tinelasion that improve-
ments achieved with the use of AO concepts increase with aingber of crosscutting
non-functional requirements. Additionally, these caseéists’ metrics confirm that, using
AO, the same benefits achieved in traditional informaticsteays can be obtained in the
design of distributed embedded real-time systems.

Further, as one can see in table 7.7, using DERAF aspectsdslimg level allows
their reuse in different designs. If the implementatiorldek the aspect adaptations
high-level semantics, the aspects implementation cank®s®used, as occurred in all
presented the case studies. AMoDE-RT approach to specifyppuints selection also
allows the reuse of JPDD (52% of all created JPDDs have beshinsll case studies).
However, it is worth to comment that JPDDs must specify gersalection of elements
(e.g. JPDD_Acti ve(Obj ect Cl ass or JPDD_Per i odi cBehavi or) to allow their
reuse. Usually, JPDDs selecting specific elements §&BD | nf oAt t ri but eRead)
are harder to reuse, due to their close relation with apybicespecific elements (the
mentioned JPDD, select attributes of classes whose nansengtid‘Information”).

Considering the use of GenERTICA, it must be stated that theuat of generated
code is directly proportional to mapping rules scripts arafjthms specification com-
pleteness. In other words, if the UML model can provide catglinformation about
system structure and behavior (following AMoDE-RT modglguidelines), and map-
ping rules specification can map all elements available enniodel into constructions
available in a given target platform, it is likely that GenE®A can generate a large
amount of source code. Considering the source code gedaéngteesented case studies,
one can see that it is possible to generate an amount of scadedines from 1.73 to 4.2
times the amount of mapping rules scripts lihes

Regarding the generated source code, source code filenethtaiter the code gen-
eration process are more complete than the ones obtainsgl assilable commercial or
academic code generation tools, which usually only progidss skeletons and/or simple
state machine related code. In addition, the aspects wga@riormed by GenERTICA
allows the use of aspect adaptations in non-AO languagesn €éwnsidering these advan-
tages, it must be highlighted that the generated code isamoplete. There are several
small issues that are highly dependent on the target phatfehich cannot be solved us-
ing general approaches like GenERTICAs one. For examplallicase studies, there is
a need of filling the gap between the software objects reptegehardware components
(e.g.W ndSensor Dri ver in UAV case study) and the real hardware. This kind of code
is too specific to be specified in UML models or mapping ruleslying unnecessary de-
tails for a single element. Thus, programmers must code algnihhe corresponding
methods in the generated source code files. Other examplattdrm-specific problems
is the circular cross-reference problem in C++ source cdes. fiThis situation has oc-
curred in the performed case studies, due to GenERTICA®agh to specify references,
which is strongly based on the Java language. A solutionhigrgroblem would be to
pre-declare referenced classes inside class source cesge Tihus, GenERTICA code
generation algorithm must be extended to include this aptio

There is another small technical problem in the code geioerptocess implemented

Mapping rules script's amount of lines for RT-FemtoJava @RCOS platforms are, respectively, 388
and 332 lines. These numbers only represent script lindwwitconsidering XML marks, which, in fact,
do not influence code generation

Table 7.7: AO elements reused in the different case studies

UAV | IPS* | Wheelchair

DERAF aspects

TimingAttributes X X X
“periodicTiming T o <
“TimeBoundedActiviy T T
“SehedulingSupport T x| g
Jitter
DataFreshnass e K
JoleratedDelay T
B e e
ConcurrentAccessControl X X X
“MessageSynchronizaiion | X [R
MessageAck X X
Messageintegrity T
“MessageCompression
TaskMigration X X
NodeStatusRetrieval e
HwAreaMonitoring
HwAreaControl
“EnergyMonitoring
CEnergyControl
“MemoryUsageMonitoring T N
“MemoryUsageControl S
JPDD

JPDD_ActiveObjectClass X X X
- JPDD_ActiveObjectConstruction | X | X | X
- JPDD_ActiveObjectConstruction_Action X | X | X
- JPDD_ActiveObjectConstructor | X | X | X
JPOD BxclusveGet R o S
- JPDD_ExclusiveObjectClass | X | . X | X
JPOD ExclusveSet R o <
IR InfoAttributeRead TR N
PO InfoAttributewrite x| <
PO InfoClassAttibute x| X
- JPDD_InfoObjectConstruction_ 2 | X | |
- JPDD_InfoObjectConstruction_Action| X | | X
- JPDD_ObjectConstruction_Action | | X
- JPDD_ObjectDestruction_Action | | X
“JPDD PericdicBehavior x| R g
- JPDD_SendMsgToRemoteObject | X | X |
JPDD SubSystemClass | T] g
JPDD. SubSystemGonstracion | f T T
- JPDD_SubSystemConstruction_2 | X | . X | X

* Industrial Packing System

143

144

in the initial version of GenERTICA: the expressions usesida the UML model must
be specified using the target platform syntax. In other woB#WERTICA reads expres-
sions in the model, using them as they are (i.e. a text fragjnmenhe generated code.
Consequently, if the target language changes, and thessipns syntax is not the same,
expressions in the model must be fixed, otherwise the gestecade incur to compilation
errors. A solution to this problem would be to parse expmssspecified in the UML
model, converting them to the target platform syntax. A genexpressions language
must be used for specifying expressions in UML diagrams.his $ense, OCL could
be a reasonable option, but its characteristics and sliiyator this purpose need to be
evaluated before choosing it as this generic expressiogsiége.

To conclude this chapter, it is worth to mention that the UAge study is completely
provided in the appendices. Interested readers can seeriy@ete UML model, along
with mapping rules files for the RT-FemtoJava platform.

145

8 CONCLUSIONS AND FUTURE WORK

This work has proposed an approach to design distribute@édsal real-time systems
using MDE techniques along with concepts of AO paradigm f@ecaith the increasing
complexity associated with the design of modern systemselgpecifically, the proposed
approach has addressed the following top{gsnanage the complexity of functional and
non-functional requirements handlin@) support for separation of concerr{si) spec-
ification of system structure and behavior using a commoguage;(iv) improvement
in design phases transition by providing adequate tool aup@\ll ideas and elements
involved in the proposed approach have been presentedgtihoatithis text.

AMOoDE-RT design flow proposes solutions for all these issaapporting a smooth
transition from requirements specification to source cag@eémentation, in order to ful-
fill gaps usually found in the design flow. Such quest is acdavsing a combination of
elements:(i) RT-FRIDA for requirements analysi¢j) UML as specification language;
(i) DERAF aspects to handle non-functional requiremefm3;modeling guidelines to
homogenize the specification of system structure, behaamat non-functional require-
ments handling(v) DERCS as intermediate representation of such modeleciafioon;
(vi) transformation heuristics to convert UML model elements DERCS elements; and
(vii) GenERTICA code generation tool to support the AMoDE-RT apph.

Besides requirements gathering, RT-FRIDA assists intigkequirements specifica-
tion with design elements, improving requirements tradiab Further, traceability is
still preserved in implementation, due to GenERTICA apphothat uses mapping rules
to generated code fragments from model elemets. In othetsyitis possible to compare
generated source code lines with code generation/aspegatadithn scripts, relating them
with model elements, to discover which requirements arelleaiby these code lines. In
this sense, the effort to check if the system meets the repaints can be decreased.

This work has shown that UML and MARTE profile can be used tcgpesystem
expected functionalities in terms of structure, behawaod also non-functional require-
ments handling. As MARTE provides stereotypes with stathd@mantics to express
real-time and embedded systems features, its usage isgbiefeather than “home-made”
profiles, due to its already accepted concepts and constngd¢hat passed through a rig-
orous review process. Using a common and standard specifi¢ahguage facilitates the
communication of design intention, reducing possible mirstandings in specification
interpretation. Further, UML raises the abstraction lexsdd in design by shifting the fo-
cus from expected functions to system elements and theis tolaccomplish the desired
functionalities, representing abstractions closer tbweald elements.

However, as UML has many variation semantic points, it i® amsportant to de-
fine modeling guidelines and also interpretation semaitaicsinimize (or even remove)
model specification ambiguities. AMoDE-RT modeling guides$ intend to provide flex-

146

ibility in UML diagrams creation, but defining, at the samméi, an interpretation se-
mantic for modeled elements, allowing the integration éhimation specified in distinct
diagrams (mainly in behavior diagrams).

UML sequence diagrams have been successfully used to lesaiions performed
within behaviors, eliminating the need of using textuai@cianguages as current ap-
proaches suggest. AMoDE-RT transformation heuristiasxalictions sequence extrac-
tion from several different sequence diagrams, enablieg tssociation with other be-
havior diagrams, such as state diagrams, to provide graldietavior specification.

Furthermore, this work results have shown that using AO ephin distributed em-
bedded real-time systems design improves separation oécasiin the handling of func-
tional and non-functional requirements. In this sense, BER a remarkable contribu-
tion due to the lack of aspects with platform independenptadeon semantics created
specifically to real-time and embedded systems domain. Diis tvell-defined seman-
tics, DERAF has been successfully used at both modeling mptementation levels.
Moreover, the assessment presented in chapter 7 indicapgsvements in design un-
derstandability and flexibility, and also in the reuse ovrasly developed artifacts (i.e.
model and/or code). It was demonstrated that DERAF aspadigRDDs can easily be
reused in different designs.

Despite the lack of support for AO concepts in official UML sflieation, AMoDE-
RT proposes to specify them using DERAF, ACOD and a set of J?DIbstead of
proposing invasive extensions to UML meta-model elemefAlpDE-RT proposes a
lightweight extension using UML’s extensibility mechamisi.e. a profile, allowing the
use of off-the-self UML modeling tool to create AO elementdfwACOD and JPDDs.

Similarly to other MDE approaches, the effectiveness of AMGRT approach usage
is highly dependent on tool support. Therefore, GenERTi@a lbeen created to assist in
the automatic transformation of UML models into source ctaiedifferent target plat-
forms. Although UML and MARTE provide adequate construasito specify features of
distributed embedded real-time systems, they do not allownambiguous specification
targeting source code generation. Consequently, themettiate PIM called DERCS has
been proposed to support code generation tools constnuctioe most remarkable dif-
ference between UML and DERCS is the representation of AQejuis, whose related
elements stand for information specified in ACOD and JPDD ofM-RT transformation
heuristics extract information from ACOD and JPDD, allogithe creation of DERCS el-
ements. In addition, it interprets JPDD semantics gatgex@hected elements, associating
these elements with the DERCS join points representation.

GenERTICA code generation approach is different from thgoritg of code gener-
ation tools available; it allows the separation of concemmapping rules description
by using small scripts responsible to generate source ecagments for structural and/or
behavioral elements. It can be state empirically that thp@ach improves cohesion and
reinforces designers focus on individual elements insté#te whole model. Besides not
clearly demonstrated by case studies, we believe empyritedt, using GenERTICA ap-
proach, it is easy to reuse parts of mapping rules files irfit designs, or using these
parts as base to extend the mapping rule scripts with othestieactions in the target
platform.

A remarkable contribution of GenERTICA is its ability to f@m aspects weaving
in generated code fragments, and also in the input DERCS Im®lis capability, along
with the use of model-level aspects, allow to apply AO coneafh non-AQO target plat-
forms, as demonstrated in case studies. Furthermore, m@@eling provided by Gen-

147

ERTICA could be also used in other tools, such as design exipdm tools, to evaluate
the impact of a given aspect implementation. In this semsspite of allowing different
implementations, DERAF aspect semantics must be preséovaitbw their high-level
(re)use, i.e. the same platform can provide different foronsnplement aspect adapta-
tions, but this implementation must respect the pre-defingh-level semantics.

MDE, AOD, and code generation topics have still more issod&tinvestigated. This
work development has leaded to other open problems regatden mentioned topics.
Thus, to conclude this text, a discussion on directions dbure investigation are pro-
vided:

Sequence diagram is not the most adequate diagram, in essespecify algorith-
mic behavior that do not represent object interactions. elmavior specifications,
there are algorithms having more mathematical express@oslation than object
interactions. In these situations, activity diagrams aceensuitable than sequence
diagrams. Hence, a modification in AMoDE-RT modeling guiaket and transfor-
mation heuristics (to provide support for both sequenceauttity diagrams to
specify actions performed within a behavior) would allovsigeers to choose the
one the better fits with the behavior characteristics;

MARTE profile has a bunch of other stereotype to describetmesd features, e.g.
Resour ceUsage, GRSer vi ce, Ti m ngResour ce, and others. To investigate
how to combine them with the AMoDE-RT approach is other rededirection;

To support other JPDD types would allow other advanced optior elements se-
lection instead of only direct elements selection. Thigegion is very challenging
due to expressiveness power of JPDD that would need elemeaitsation consid-
ering, for example, execution flows, state machines, oréaticlasses associations;

To implement UML state diagrams transformation into DER@&8ents according
AMoDE-RT transformation heuristics, as explained in cleapt

MDE assumes that system implementation is obtained dyr&otin models. To as-
sure that the automatically generated source code is anadty correct, the source
model must also be correct. Thus, it is an interesting tapimvestigate how to
execute models. DERCS could be used as the base for a UMlalirtachine

that simulates the behavior specified in UML models, allgnearly evaluation of
system behavior;

Following the model execution thread, it is also interggtio provide means for

automatic UML model testing, likewise implementationdeapproaches such as
JUnit. Automatic model testing could allow automatic ewion of model changes
against expected behavior results;

To extend GenERTICAs code generation approach to overahmeroblem of
circular cross-reference, as mentioned in chapter 7;

To investigate the use of OCL to support the specificatiorxpf@ssions in a pro-
gramming language independent fashion and, in additiomadke GenERTICA
fully platform independent;

To create mapping rules for other platforms, such VHDL, Megyj and others;

To apply AMoDE-RT approach in other application domainsrabedded systems.

148

149

REFERENCES

ANDERSSON, P.; H6ST, M. UML and SystemC: a comparison andpimgprules for
automatic code generation. In: VILLAR, E. (EdBmbedded Systems Specification
and Design Languages[S.l.]: Springer Netherlands, 2008. p.199-209.

APACHE. Apache Velocity ProjectApache Software Foundation 2008. Disponivel
em: <http://velocity.apache.org/ >. Acesso em: Dec. 2008.

ARMSTRONG, D. J. The quarks of object-oriented developmE&aimmunication of
the ACM, New York, v.49, n.2, p.123-128, 2006.

ARPINEN, T. et al. Configurable Multiprocessor PlatformWRTOS for Distributed Ex-
ecution of UML 2.0 Designed Applications. In: DESIGN, AUTGWIION AND TEST
IN EUROPE CONFERENCE AND EXHIBITION, 2006roceedings. . Leuven: Euro-
pean Design and Automation Association, 2006. p.1324-1329

ARTISAN. Artisan Real-Time StudicArtisan Software Tools. 2008. Disponivel em:
<http://www.artisansoftwaretools.com/products/anistudio/ >. Acesso em: Dec. 2008.

BALARIN, F. et al. Metropolis: an integrated electronic ®®m design environment.
Computer, Los Alamitos, v.36, n.4, p.45-52, 2003.

BALASUBRAMANIAN, K. et al. A Platform-Independent ComponeModeling Lan-
guage for Distributed Real-Time and Embedded SystemsHREIREAL-TIME AND
EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM, 200%roceed-
ings. .. Los Alamitos: IEEE Computer Society, 2005. p.190-199.

BALASUBRAMANIAN, K. et al. Weaving Deployment Aspects intdomain-specific
Models.International Journal of Software Engineering and Knowledge Engineering
[S.l.], v.16, n.3, p.403—-424, 2006.

BERG, K. van den; CONEJERO, J. M.; CHITCHYAN, RAOSD Ontol-

ogy 1.0 public ontology of aspect-orientation. 2005. 90 p. Techhi Re-

port AOSD-Europe-UT-01 — AOSD-Europe. Disponivel em: ghfeprints.eemcs.
utwente.nl/10220/01/BergConChi2005.pdf >. Acesso ent: ZBO8.

BERTAGNOLLI, S. C.FRIDA: um método para elicitagdo e modelagem de rnfs. 2004.
163 p. Tese (Doutorado) — Programa de Pés-Graduagédo em GagapuUniversidade
Federal do Rio Grande do Sul, Porto Alegre, 2004.

150

BEUCHE, D. et al. The PURE Family of Object-Oriented OpemgtiSystems for
Deeply Embedded Systems. In: IEEE INTERNATIONAL SYMPOSIUN OBJECT-
ORIENTED REAL-TIME DISTRIBUTED COMPUTING, 2., 1999Proceedings...
Washington: IEEE Computer Society, 1999. p.45-53.

BéZIVIN, J. On the Unification Power of ModelSoftware and Systems Modeling
[S.l.], v.4,n.2, p.171-188, May 2005.

BOLLELLA, G. et al. The Real-Time Specification for Java, version 1.0.2.ed. [S.L]:
Addison Wesley Longman, 2001.

BOOCH, G.Object-Oriented Analysis and Design with Applications Massachusetts:
Addison-Wesley, 1994.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, IUnified Modeling Language User
Guide, The (2nd Edition). [S.l.]: Addison-Wesley, 2005.

BORDIN, M.; VARDANEGA, T. Real-time Java from an Automate@dd® Generation
Perspective. In: INTERNATIONAL WORKSHOP ON JAVA TECHNOLQOES FOR

REAL-TIME AND EMBEDDED SYSTEMS, 5., 2007, Vienna, AustriBroceedings. . .
New York: ACM, 2007. p.63-72.

BORLAND. Borland TogetherBroland Software Corporation. 2008. Disponivel em:
<http://www.borland.com/us/products/together/intdxl >. Acesso em: Dec. 2008.

BOSCH. CAN 2.0 protocol specificatio®AN in Automation. 1991. Disponivel em:
<http://www.can-cia.org/index.php?id=164 >. Acesso dan. 2009.

BRUSEY, J. et al.Auto-ID based Control Demonstration - Phase 2 pick
and place packing with holonic control. 2003. 20 p. Techni¢&eport —
Cambridge University. Disponivel em: <http://www.ifmgenam.ac.uk/automation/
publications/documents/CAM-AUTOID-WHO011.pdf >. Acessm: Dec. 2008.

BURMESTER, S. et al. The Fujaba Real-Time Tool Suite: matielen development
of safety-critical, real-time systems. In: INTERNATIONACONFERENCE ON SOFT-
WARE ENGINEERING, 27., 200roceedings. . .New York: ACM, 2005. p.670-671.

BURMESTER, S.; GIESE, H.; SCHaAFER, W. Model-Driven Archttge for Hard Real-
Time Systems: from platform independent models to codeEWWROPEAN CONFER-
ENCE ON MODEL DRIVEN ARCHITECTURE - FOUNDATIONS AND APPLICA
TIONS, 2005 Proceedings. . .Berlin: Springer, 2005. p.25-40.

BURNS, A. et al. The Meaning and Role of Value in Schedulingxfle Real-Time
SystemsJournal of Systems Architecture New York, v.46, n.4, p.305-325, 2000.

BURNS, A.; WELLINGS, A. J. HRT-HOOD: a structured design mad for hard real-
time systemsReal-Time SystemsNorwell, v.6, n.1, p.73-114, 1994.

BURNS, A.; WELLINGS, A. J.Real-Time Systems and Programming Languages
2.ed. Harlow: Addison-Wesley, 1997.

CARRO, L.; WAGNER, F. R. Sistemas Computacionais Embarsabio Jornadas de
Atualizacdo em Informética. Campinas: SBC, 2003. n.22, p.45-94.

151

CECHTICKY, V. et al. A UML2 Profile for Reusable and VerifiabBoftware Compo-
nents for Real-Time Applications. In: INTERNATIONAL CONRENCE ON SOFT-
WARE REUSE, 9., 2006Proceedings. . .Berlin: Springer, 2006. p.312-325.

CHEN, R. et al. UML and platform-based design. In: LAVAGNO,, IMARTIN, G.;
SELIC, B. (Ed.).UML for Real: design of embedded real-time systems. Norwell:
Kluwer Academic Publishers, 2003. p.107-126.

CHIDAMBER, S. R.; KEMERER, C. F. A Metrics Suite for Object i@nted Design.
IEEE Transactions on Software Engineering Los Alamitos, v.20, n.6, p.476-493,
1994.

CLARKE, S. Extending Standard UML with Model Compositiom&ntics.Science of
Computer Programming: Special issue on Unified Modeling Laguage Amsterdam,
v.44,n.1, p.71-100, 2002.

CLARKE, S.; BANIASSAD, E.Aspect-Oriented Analysis and DesignUpper Sadde
River: Addison-Wesley Professional, 2005.

CLARKE, S.; WALKER, R. J. Towards a Standard Design Languag&OSD. In: IN-
TERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVBIP-
MENT, 1., 2002 Proceedings. . .New York: ACM, 2002. p.113-119.

CONROW, E. H.; SHISHIDO, P. S. Implementing Risk ManagenwnSoftware Inten-
sive ProjectslEEE Software, Los Alamitos, v.14, n.3, p.83-89, 1997.

CUGOLA, G.; NITTO, E. D.; FUGGETTA, A. The JEDI Event-Baseufriastructure
and Its Application to the Development of the OPSS WFNMEEE Transactions on
Software Engineering Piscataway, v.27, n.9, p.827-850, 2001.

DAHL, O.-J.; NYGAARD, K. SIMULA: an algol-based simulatidanguageCommu-
nunication of the ACM, New York, v.9, n.9, p.671-678, 1966.

DAVARE, A. et al. A Next-Generation Design Framework for fRiam-Based Design.
In:. CONFERENCE ON USING HARDWARE DESIGN AND VERIFICATION LN-
GUAGES, 2007Proceedings. . .[S.l.: s.n.], 2007.

DITZE, C. Towards Operating System Synthesis2000. 200 p. Tese (Doutorado) —
Department of Mathematics and Computer Science, Uniyes§iPaderborn, Paderborn,
2000.

DOMAINSOLUTIONS. CodeGenie MDDDomainSolutions 2008. Disponivel em:
<http://www.domainsolutions.co.uk/ >. Acesso em: De®&0

EDWARDS, M.; GREEN, P. UML for hardware and software objeabdaling. In:
LAVAGNO, L.; MARTIN, G.; SELIC, B. (Ed.).UML for Real : design of embedded
real-time systems. Norwell: Kluwer Academic Publishe@)2 p.127-147.

FILMAN, R. E. et al. (Ed.)Aspect-Oriented Software DevelopmentBoston: Addison-
Wesley, 2005.

FRANCE, R. et al. Aspect-Oriented Approach to Early Desigrdelling.IEE Proceed-
ings - Software [S.l.], v.151, n.4, p.173-185, Aug. 2004.

152

FREITAS, E. P. deMetodologia Orientada a Aspectos para a Especificacdo de Sis
temas Tempo-Real Embarcados e Distribuidos2007. 171 p. Dissertacdo (Mestrado)
— Programa de Pds-Graduacdo em Computagdo, UniversiddeeaFeo Rio Grande
do Sul, Porto Alegre, 2007.

FUENTES, L.; MANRIQUE, J.; SANCHEZ, P. P6pulo: a tool for dgging uml models.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 302008,
Leipzig, GermanyProceedings. . .New York: ACM, 2008. p.955-956.

FUENTES, L.; PINTO, M.; TROYA, J. M. Supporting the Developnt of CAM-DAOP
Applications: an integrated development processftware-Practice & Experience
New York, v.37, n.1, p.21-64, 2007.

FUENTES, L.; SGNCHEZ, P. Elaborating UML 2.0 Profiles for A@dign. In: WORK-
SHOP ON ASPECT-ORIENTED MODELLING (AOM), 8., 2006, Bonn, @&&ny.Pro-
ceedings. . .[S.l.: s.n.], 2006.

FUENTES, L.; SGNCHEZ, P. Designing and Weaving Aspect+Qeeé Executable UML
models.Journal of Object Technology, Zurich, v.6, n.7, p.109-136, 2007.

GAMMA, E. et al. Design patterns elements of reusable object-oriented software.
Boston: Addison-Wesley Longman Publishing, 1995.

GELL-MANN, M. The quark and the jaguar: adventures in the simple and the complex.
New York: W. H. Freeman & Co., 1995.

GENTLEWARE. Poseidon for UML. Gentleware AG. 2008. Disponivel em:
<http://www.gentleware.com/uml-software-pe.html >efso em: Dec. 2008.

GéRARD, S.; SELIC, B. The UML — MARTE Standardized Profile: IN'VORLD
CONGRESS OF THE INTERNATIONAL FEDERATION OF AUTOMATIC CON-
TROL, 17., 2008Proceedings. . [S.l.: s.n.], 2008. p.6909-6913.

GSRC. Metropolis: design environment for heterogeneous s- sy
tems. Gigascale Systems Research Center 2002. Disponivel em:
<http://www.gigascale.org/metropolis/index.html >.e8s0 em: Dec. 2008.

HABERMANN, A. N.; FLON, L.; COOPRIDER, L. Modularization @Hierarchy in
a Family of Operating System&€ommunications of the ACM, New York, v.19, n.5,
p.266-272, 1976.

HAREL, D. Statecharts: a visual formalism for complex syséeScience of Computer
Programming, Amsterdam, v.8, n.3, p.231-274, 1987.

HARRISON, W. H.; BARTON, C.; RAGHAVACHARI, M. Mapping UML Dsigns
to Java. In:. ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PRS-
MING, SYSTEMS, LANGUAGES, AND APPLICATIONS, 15., 2000, Mieapolis,
Minnesota, United StateBroceedings. . .New York: ACM, 2000. p.178-187.

HARRISON, W. H.; OSSHER, H. L.; TARR, P. LAsymmetrically vs Symmet-
rically Organized Paradigms for Software Composition 2002. 10 p. Technical
Report — IBM Watson Research Center. Disponivel em: <lHttpmino.watson.ibm.
com/library/cyberdig.nsf/papers/2A4097E93456 DOCFEB2A9006 DAC29/$File/RC2
2685.pdf >. Acesso em: Oct. 2008.

153

HAUSMANN, J. H.; KENT, S. Visualizing model mappings in UMIn: ACM SYMPO-
SIUM ON SOFTWARE VISUALIZATION, 2003, San Diego, CaliforamiProceedings. ..
New York: ACM, 2003. p.169-178.

HECHT, M. V.; PIVETA, E.; PIMENTA, M.; PRICE, R. T. Aspect-@Gmnted Code Gen-
eration. In: XX SIMPGSIO BRASILEIRO DE ENGENHARIA DE SOFTWRE, 2006.
Anais. .. Porto Alegre: Sociedade Brasileira da Computacao, 20069p223.

HERRINGTON, JCode Generation in Action Greenwich: Manning Publications Co.,
2003.

HODGES, S. et al.Auto-ID based Control Demonstration - Phase 1 pick

and place packing with conventional control. 2003. 15 p.hhemal Report —
Cambridge University. Disponivel em: <http://www.ifmgenam.ac.uk/automation/
publications/documents/CAM-AUTOID-WH-006.pdf >. Acessm: Dec. 2008.

IBM. IBM Telelogic Tau. IBM Corporation. 2008. Disponivel em:
<http://www.telelogic.com/products/tau/tau/indexact. Acesso em: Dec. 2008.

IBM. IBM Rational Rose Technical DevelopdBM Corporation . 2008. Disponivel
em: <http://www-01.ibm.com/software/awdtools/develdpse/index.html >. Acesso
em: Dec. 2008.

IBM. IBM Telelogic Rhapsody. IBM Corporation . 2008. Disponivel em:
<http://modeling.telelogic.com/products/rhapsoditisare/developer/index.cfm >,
Acesso em: Dec. 2008.

ISO/IEC. Systems and Software Engineering - Recommendsacti€& for Architectural
Description of Software-Intensive SystenSO/IEC 42010 IEEE Std 1471-2000 First
edition 2007-07-15[S.1.], p.c1-24, Jul. 2007.

ITO, S. A. et al. Making Java Work for Microcontroller Appéitons.IEEE Design and
Test of Computers Los Alamitos, v.18, n.5, p.100-110, 2001.

ITRS. International Technology Roadmap for Semiconductors 200Edition: design.
2007. 46 p. Technical Report — International Technologyd®aap for Semiconductors.
Disponivel em: <http://www.itrs.net/Links/2007ITRS@0 Chapters/2007_Design.pdf
>. Acesso em: Out. 2007.

KICZALES, G. et al. Aspect-Oriented Programming. In: EUREM¥N CONFERENCE
ON OBJECT-ORIENTED PROGRAMMING, 199Froceedings...Berlin: Springer-
Verlag, 1997. p.220-242.

KRUCHTEN, P.The Rational Unified Process an introduction, second edition. Boston:
Addison-Wesley, 2000.

KUKKALA, P. et al. UML 2.0 Profile for Embedded System Desidgm. DESIGN, AU-
TOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 200%ro-
ceedings. . Washington, DC, USA: IEEE Computer Society, 2005. p.716-71

LAMPORT, L. Time, Clocks, and the Ordering of Events in a Dizited SystemCom-
munications of the ACM, New York, v.21, n.7, p.558-565, 1978.

154

LAMPORT, L. The +CAL Algorithm Language. 2007. 34 p. Technical Report
— Microsoft Research. Disponivel em: <http://researcbrosoft.com/users/lamport/
pubs/pluscal.pdf >. Acesso em: Dec. 2008.

LAPLANTE, P. A. Real-Time Systems Design and Analysisan engineer’s handbook.
2.ed. New York: IEEE Press, 1997.

LEDECZI Akos et al. Composing Domain-Specific Design Envinents|EEE Com-
puter, Los Alamitos, v.34, n.11, p.44-51, 2001.

LINDHOLM, T.; YELLIN, F. Java Virtual Machine Specification. Boston: Addison-
Wesley, 1999.

LOHMANN, D. et al. PURE Embedded Operating Systems - CiAQ. INTERNA-
TIONAL WORKSHOP ON OPERATING SYSTEM PLATFORMS FOR EMBEDDED
REAL-TIME APPLICATIONS, 2006, Dresden, Germargroceedings...[S.l.: s.n.],
2006.

LOHMANN, D. et al. Interrupt Synchronization in the CiIAO Qja¢ing System: expe-
riences from implementing low-level system policies by .dop WORKSHOP ON AS-
PECTS, COMPONENTS, AND PATTERNS FOR INFRASTRUCTURE SOFTR&
6., 2007 Proceedings. . .New York: ACM, 2007.

LONG, Q. et al. Consistent Code Generation from UML Modefts. AUSTRALIAN
SOFTWARE ENGINEERING CONFERENCE, 200%roceedings... Los Alami-
tos: IEEE Computer Society, 2005. p.23-30.

LSE. Sistemas Eletronicos Embarcados baseados em PhageforLabo-
ratério de Sistemas Embarcados 2003. Disponivel em: <http:/www.inf.ufrgs.
br/lse/pag_projeto.php?cod_projeto=1 >. Acesso em: Se8.200

MARTIN, G.; MULLER, W. (Ed.). UML for SOC Design. Netherlands: Springer-
Verlag, 2005.

MELLOR, S. J. et al. An Action Language for UML: proposal fopeecise execution
semantics. In: FIRST INTERNATIONAL WORKSHOP ON THE UNIFIE®ODEL-
ING LANGUAGE. UML'98: BEYOND THE NOTATION, 1999.Proceedings. . .Lon-
don: Springer-Verlag, 1999. p.307-318.

MICROTOOL. objectiF — The Tool for Model-Driven Developntemith UML. Micro-
Tool. 2008. Disponivel em: <http://www.microtool.de/objéen/index.asp >. Acesso
em: Dec. 2008.

NASCIMENTO, F. A. M. do; S. OLIVEIRA, M. F. da; WEHRMEISTER, MA;
PEREIRA, C. E.; WAGNER, F. R. MDA-based Approach for Embeati8eftware Gener-
ation from a UML/MOF Repository. In: SYMPOSIUM ON INTEGRATECIRCUITS
AND SYSTEMS DESIGN, 19., 2006, Ouro Preto, MG, Bra#ltoceedings...New
York: ACM, 2006. p.143-148.

NASS, R. An Insiders View of the 2008 Embedded Market Studmbed-
ded Systems Design San Francisco, v.21, n.9, September 2008. Disponivel em:
<http://www.embedded.com/design/testissue/21020858@esso em: Sep. 2008.

155

NGUYEN, K. D.; SUN, Z.; THIAGARAJAN, P. S.; WONG, W.-F. ModdDriven SoC
Design via Executable UML to SystemC. In: IEEE INTERNATIONAREAL-TIME
SYSTEMS SYMPOSIUM, 25., 200#Lroceedings. . .Washington: IEEE Computer So-
ciety, 2004. p.459-468.

NITTO, E. D. et al. Deriving executable process descrigiiom UML. In: INTER-
NATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 24., 2002, |@rdo,
Florida.Proceedings. . .New York: ACM, 2002. p.155-165.

NODA, N.; KISHI, T. Aspect-Oriented Modeling for Embeddedfvare Design. In:
ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, 14., 200Froceed-
ings. .. Washington: IEEE Computer Society, 2007. p.342—-349.

NOMAGIC. Introducing MagicDraw. No Magic, Inc. 2008. Disponivel em:
<http://www.magicdraw.com/ >. Acesso em: Dec. 2008.

OMG. Common Warehouse Metamodel (CWN)bject Management Group. 2003.
Disponivel em: <http://www.omg.org/spec/CWM/1.1/>. Ase em: Sep. 2008.

OMG. Model-Driven ArchitectureObject Management Group. 2004. Disponivel em:
<http://www.omg.org/mda >. Acesso em: Sep. 2008.

OMG. UML Profile for Schedulability, Performance, and Timeyer-
sion 1.1. Object Management Group. 2005b. Disponivel em:
<http://'www.omg.org/technology/documents/formalisgulability.htm >, Acesso
em: Sep. 2008.

OMG. Meta Object Facility (MOF) 2.00bject Management Group. 2006. Disponivel
em: <http://www.omg.org/spec/MOF/2.0 >. Acesso em: S6p82

OMG. Object Constraint Language (OCL) 2.0bject Management Group 2006.
Disponivel em: <http://www.omg.org/spec/OCL/2.0/ >. Ase em: Dec. 2008.

OMG. XML Metadata Interchange (XMI) 2.1.10bject Management Group. 2007.
Disponivel em: <http://www.omg.org/spec/XMI/2.1.1/ >césso em: Sep. 2008.

OMG. Unified Modeling Language (UML), Version 2.@bject Management Group.
2008. Disponivel em: <http://www.omg.org/spec/UML/B&tal/Superstructure/PDF >.
Acesso em: Dec. 2008.

OMG. MOF Query/Views/TransformationsObject Management Group 2008a.
Disponivel em: <http://www.omg.org/spec/QVT/1.0 >. Ase€m: Sep. 2008.

OMG. UML Profile for Modeling and Analysis of Real-time and Bed-
ded Systems (MARTE).Object Management Group. 2008b. Disponivel em:
<http://www.omg.org/cgi-bin/doc?ptc/2008-06-08 >. Ase em: Sep. 2008.

OMG. UML Profile for for Modeling Quality of Service and Faulblerance Charac-
teristics and Mechanisms, v1.0Object Management Group. 2008c. Disponivel em:
<http://www.omg.org/spec/QFTP/1.1/ >. Acesso em: Sefi820

PERSEIL, I.; PAUTET, L. Foundations of a New Software Engimieg Method for Real-
Time Systemslnnovations in Systems and Software EngineeringLondon, v.4, n.3,
p.195-202, Oct. 2008.

156

PINTO, M.; FUENTES, L.; TROYA, J. M. DAOP-ADL: an architectidescription lan-
guage for dynamic component and aspect-based developmenNTERNATIONAL
CONFERENCE ON GENERATIVE PROGRAMMING AND COMPONENT ENGI-
NEERING, 2., 2003Proceedings. . .New York: Springer-Verlag., 2003. p.118-137.

PINTO, M.; FUENTES, L.; TROYA, J. M. A Dynamic Component angpect-Oriented
Platform.The Computer Journal, Oxford, v.48, n.4, p.401-420, 2005.

RAJKUMAR, R. Model-Based Development of Embedded Systetims:sysweaver ap-
proach. In: RAMESH, S.; SAMPATH, P. (Ed.Next Generation Design and Verifi-
cation Methodologies for Distributed Embedded Control Sysems. [S.l.]: Springer
Netherlands, 2007. p.35-46.

RICCOBENE, E.; SCANDURRA, P.; ROSTI, A.; BOCCHIO, S. A SoCdign Method-
ology Involving a UML 2.0 Profile for SystemC. In: DESIGN, AWMATION AND
TEST IN EUROPE CONFERENCE AND EXHIBITION, 200®roceedings. . .Wash-
ington: IEEE Computer Society, 2005. p.704-709.

ROSENBERG, L. HApplying and Interpreting Object Oriented Metrics . 2003. 18

p. Technical Report — NASA Software Assurance Technologgt€re Disponivel em:

<http://satc.gsfc.nasa.gov/support/STC_APR98/amukapply.pdf >. Acesso em: Oct.
2008.

ROTHENBERG, J. The Nature of Modeling. In. WIDMAN, L. E.; LARO, K. A,;
NIELSEN, N. R. (Ed.).Artificial Intelligence, Simulation & Modeling . New York:
John Wiley & Sons, 1989. p.75-92.

SAE. Architecture Analysis & Design Languaggociety of Automotive Engineers
2006. Disponivel em: <http://www.sae.org/technicaligards/AS5506 >. Acesso em:
Dec. 2008.

SaNCHEZ, P. et al. Aspect-Oriented Model Weaving Beyond ddbmposition and
Model Transformation. In: INTERNATIONAL CONFERENCE ON M(f. DRIVEN
ENGINEERING LANGUAGES AND SYSTEMS, 11., 2008, Toulouseakce.Pro-
ceedings. . .Berlin: Springer-Verlag, 2008. p.766—781.

SANGIOVANNI-VINCENTELLI, A. The Tides of EDA.IEEE Design & Test of Com-
puters, [S.l.], v.20, n.6, p.59-75, Nov. 2003.

SANT’ANNA, C. et al. On the Reuse and Maintenance of Aspedeed Software: an
assessment framework. In: XVII BRAZILIAN SYMPOSIUM ON SOWRARE ENGI-
NEERING, 2003Proceedings.. [S.l.: s.n.], 2003. p.19-24.

SCHATTKOWSKY, T.; MUELLER, W. Model-based Specification caexecution of
Embedded Real-Time Systems. In: DESIGN, AUTOMATION AND TEBI EUROPE
CONFERENCE AND EXHIBITION, 2004Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 2004. p.1392-1393.

SCHATTKOWSKY, T.; MUELLER, W.; RETTBERG, A. A Model-Basedgroach for
Executable Specifications on Reconfigurable Hardware. IBSIGN, AUTOMATION
AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 200%roceedings. ..
Washington: IEEE Computer Society, 2005. p.692—697.

157

SCHAUERHUBER, A. et al. Towards a Common Reference Architecfor Aspect-
Oriented Modeling. In: INTERNATIONAL WORKSHOP ON ASPECTRIENTED
MODELING, 3rd., 8., 2006Proceedings.. [S.l.: s.n.], 2006.

SCHMIDT, D. C. Guest Editor’s Introduction: model-drivengneering.|EEE Com-
puter, [S.l.], v.39, n.2, p.25-31, Feb. 2006.

SCHMIDT, D. C.; LEVINE, D. L.; MUNGEE, S. The Design of the TARQeal-Time
Object Request Broke€omputer Communications [S.l.], v.21, p.294-324, 1998.

SEIBEL, C. W.Uma metodologia Formal para o Planejamento e Controle de Misbes
de Aeronaves Nao-Tripuladas2001. Tese (Doutorado) — Departamento de Engenharia
Elétrica, Universidade Federal de Santa Catarina, Flopélis, 2001.

SELIC, B. The Pragmatics of Model-Driven DevelopmdBEE Software, Los Alami-
tos, v.20, n.5, p.19-25, 2003a.

SELIC, B.; MOTUS, L. Using Models in Real-Time Software DgisiI[EEE Control
Systems Magazing[S.l.], v.23, n.3, p.31-42, June 2003b.

SILVA JR., E. T. daMiddleware Adaptativo para Sistemas Embarcados e de Tempo-
Real 2008. 127 p. Tese (Doutorado) — Programa de Pés-Graduagdtoenputacao,
Universidade Federal do Rio Grande do Sul, Porto Alegreg200

SOMMERVILLE, I. Software Engineering 6.ed. Harlow: Addison-Wesley, 2001.

SPINCZYK, O.; LOHMANN, D. The design and implementation ofsgectC++.
Knowledge-Based Systems: Special Issue on Creative Soft@design Amsterdam,
v.20, n.7, p.636-651, 2007.

STAHL, T.; VOELTER, M. Model-Driven Software Development technology, engi-
neering, management. [S.l.]: Willey, 2006.

STANKOVIC, J. A. et al. VEST: an aspect-based compositiaol for real-time sys-
tems.Real-Time and Embedded Technology and Applications Sympasm, |IEEE,
Los Alamitos, v.0, p.58, 2003.

STANKOVIC, J. A. Misconceptions About Real-Time Computirggserious problem for
next-generation systemSomputer, Los Alamitos, v.21, n.10, p.10-19, 1988.

STEIN, D. et al. A UML-based Aspect-Oriented Design Notatfor AspectJ. In: IN-
TERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVBEIP-
MENT, 1., 2002 Proceedings. . .New York: ACM Press, 2002. p.106-112.

STEIN, D. et al. Expressing Different Conceptual Models oinJPoint Selections in
Aspect-Oriented Design. In: ASPECT-ORIENTED SOFTWARE DEHOPMENT, 5.,
2006.Proceedings. . .New York: ACM, 2006. p.15-26.

TANENBAUM, A. S.; STEEN, M. vanDistributed Systems principles and paradigms.
2.ed. Upper Saddle River: Prentice-Hall, 2007.

TESANOQVIC, A. et al. Aspects and Components in Real-timet&psDevelopment: to-
wards reconfigurable and reusable softwdmirnal of Embedded Computing [S.1.],
v.1, n.1/2005, p.17-37, Jan. 2005.

158

TSANG, S. L.; CLARKE, S.; BANIASSAD, E. L. A. An Evaluation dkspect-Oriented
Programming for Java-Based Real-Time Systems Developnient IEEE INTER-

NATIONAL SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DISTRIBUED

COMPUTING (ISORC 2004), 7., 7., 200Rroceedings...Los Alamitos: IEEE Com-
puter Society, 2004. p.291-300.

UPB. Organic Reconfigurable Operating Systddesign of Distributed Embedded
Systems — University of Paderborn 2008. Disponivel em: <https://orcos.cs.uni-
paderborn.de/orcos/ >. Acesso em: Jan. 2009.

VANDERPERREN, Y.; MUELLER, W.; DEHAENE, W. UML for electran systems
design: a comprehensive overviddesign Automation for Embedded Systemgs[S.l.],
v.12,n.4, p.261-292, 2008.

VASSILIADIS, S. et al. The HIPEAC Roadmap on Embedded Systems2005. 106
p. Technical Report — European Network of Excellence on Hegifformance Embed-
ded Architecture and Compilation. Disponivel em: <httpwiv.hipeac.net/roadmap >.
Acesso em: Dec. 2005.

W3C. eXtensible Markup Language (XML) 1.0 (Fourth Editiokyorld Wide Web
Consortium. 2006. Disponivel em: <http://www.w3.0rg/TR/2006/RE@H}20060816
>. Acesso em: Dec. 2008.

W3C. XSL Transformation (XSLT) 2.0 - Candidate Recomeratatorld Wide Web
Consortium. 2006. Disponivel em: <http://www.w3.0rg/TR/xslt20 >. éss0 em: Dec.
2008.

WEHRMEISTER, M. A.Framework Orientado a Objetos para Projeto de Hard-
ware e Software Embarcados para Sistemas Tempo-Red005. 104 p. Dissertacdo
(Mestrado) — Programa de Pés-Graduagdo em Computacaoersidiade Federal do
Rio Grande do Sul, Porto Alegre, 2005.

WOLF, W. H. Computers as Components principles of embedded computing system
design. San Francisco: Morgan Kaufmann, 2001.

ZHANG, L.; LIU, R. Aspect-Oriented Real-Time System ModegjiMethod Based on
UML. In: IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL

TIME COMPUTING SYSTEMS AND APPLICATIONS, 11., 200%roceedings. ..
Washington: IEEE Computer Society, 2005. p.373-376.

159

APPENDIX A DERAF DETAILED DESCRIPTION

This appendix provides a more exhaustive discussion onititel&vel semantics of
DERAF aspects, representing the initial proposal for thedhiag of non-functional re-
quirements presented in chapter 2.

A.1 Timing Package

As depicted in figure A.1, this package contains aspects nalbaime-related re-
quirements, such as deadlines for activities executionEW{Dformation, periodic tasks
activation, and others.

TimingAttributes aspect is responsible to deal with active objects chaiatitsrsuch
deadline, priority, WCET, and absolute time instants onchitiheir behavior must start
and finish the execution. Attributes representing the roaetil characteristics are inserted
in the affected active object classes, as well as methodsahavior to initialize and
handle these attributes. It provides the following adambast

e Deadlineinserts an attribute representing the active objects behdeadline, i.e.
an active object has only one main behavior, to which theldea related;

e WCETadds attributes to represent the WCET of active objectsvietsa

e StartTimeanserts an attribute to specify the absolute time instamthich an active
object can start their main behavior execution;

e EndTimenserts an attribute to represent the absolute time instavihich the exe-
cution of the active object main behavior is not allowed te@ie. For instance, a
periodic active object cannot be triggered to execute itaber after its end time;

¢ Priority adds an attribute to represent the priority that an actiyeobihave to exe-
cute their behavior;

e SetTimingAttributesnserts the behavior responsible to initialize the inskdée
tributes values;

e AddAccessMethodslds access methods to the inserted attributes;

PeriodicTiming aspect provides means to trigger periodically an activecilijehav-
ior execution. Thus, besides adding an attribute indigetie execution frequency in the
affected active object class, this aspect must also entties#fected behavior with a rep-
etition mechanism, whose execution is controlled accarthe information stored in the
mentioned new attribute. In other words, this aspect is tsedal with the handling of
periodic active objects (or threads). It provides the fwllty adaptations:

e Periodinserts an attribute representing the activation periogesiodic active ob-
jects behavior that is used to control the behavior exeouteEguency;

160

<<Non-Functional>>
Timing

<<Aspect>>
TimingAttributes

<<StructuralAdaptation>>+Deadline()
<<StructuralAdaptation>>+Priority()
<<StructuralAdaptation>>+WCET()
<<StructuralAdaptation>>+StartTime()
<<StructuralAdaptation>>+EndTime()
<<BehavioralAdaptation>>+SetupTimingAttributes()
<<BehavioralAdaptation>>+AddAccessMethods()

N P
<<use>> ! -7
| -
-

<<use>>

<<Aspect>>
PeriodicTiming

<<StructuralAdaptation>>+Period()
<<BehavioralAdaptation>>+SetupPeriod()
<<BehavioralAdaptation>>+LoopMechanism()
<<BehavioralAdaptation>>+FrequencyControl()

7

<<use>>. "
o

-
-
-

<<Aspect>>

<<Aspect>>
SchedulingSupport

TimeBoundedActivity

<<StructuralAdaptation>>+Scheduler()
<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<StructuralAdaptation>>+TimeCountInfrastructure()
<<BehavioralAdaptation>>+StartCounting()
<<BehavioralAdaptation>>+StopCounting()

Figure A.1:Timing Packagedealing with time non-functional requirements

SetPeriodnserts all code responsible to initialize the period btite values, as well

as the get/set methods responsible to access it;

LoopMechanisnencloses periodic

active objects behavior with a mecharasio

hence, behavior’s actions sequence is executed repeatedly

FrequencyControadds a mechanism to control the execution frequency of gierio
active object behavior. This mechanism is responsible lsdxive object’'s behav-
be to inform the schedthat the active object
has executed its behavior, and can be suspended. Othemqtiation could be a

ior execution. One solution would

busy wait.

SchedulingSupport aspect inserts a scheduler object in the affected compntidgs.
This object is responsible to control active objects exeayindicating instants at which
they must start performing their behavior. It provides thiéfving adaptations:

e Scheduleadds a scheduling mechanism that follows a given schedpbfigy;
e SetupConcurrentActivitiggaserts the behavior responsible to add active objects in

the scheduling list, in order to perform the execution sciteed

TimeBoundedActivity aspect controls the execution time duration of an activity o
action by counting the time elapsed since the start timaistif maximum allowed
duration is surpassed, this aspect provides means to &lecaffected activity/action ex-
ecution. Examples of this aspect use are: to restrict thermar time a shared resource
can be in exclusive access mode, or the maximal time amouattare object can wait
for the reply of a remote objects. It provides the followirtaptations:

e TimeCountinfrastructuradds a time counting mechanism (e.g. timer) associated
with the affected element, which can be a new class attribugelocal variable in

a method behavior;

e StartCountingnserts behavior to setup and start the time counting mesimaat

the starting time the controlled action/activity;

e StopCountingadds behavior to stop the time counting mechanism right #ite

controlled action/activity is finished.

161

<<Non-Functional>>

Precision
<<Aspect>> <<Aspect>>
Jitter DataFreshness
<<BehavioralAdaptation>>+StartTime() <<StructuralAdaptation>>+ValidityInformation()
<<BehavioralAdaptation>>+Verify Toleratedditter() | |<<BehavioralAdaptation>>+SetupValidity()
<<BehavioralAdaptation>>+VerifyFreshness()
<<BehavioralAdaptation>>+UpdateValidity()

<<Aspect>>

ToleratedDelay <<Aspect>>
ClockDrift

<<BehavioralAdaptation>>+StartTime()
<<BehavioralAdaptation>>+VerifyToleratedDelay()| |<<BehavioralAdaptation>>+CorrectClock()

Figure A.2:Precison Packagedealing with precision non-functional requirements

A.2 Precision Package

Precision in meeting time requirements are handled by thecss of this package,
which concentrates efforts in features such as the maxinolenated delay in starting
activities, variance in activities timeliness, infornaatis validity duration, or the deviation
of local clock reference compared with the global one. Rrenipackage aspects are
depicted in figure A.2.

Jitter aspect measures the accuracy variance in activities psetbby the system.
This aspect provides means to measure the time before @) aft observed activity
happen, storing this information (the history must providi®rmation of at least one
time sample) to calculate the variance among the obserueegl iistants. This aspect
can be used, for example, to calculate the jitter in an periactive object activation or
execution, or to compute the time variance of a periodic aggssending. It provides the
following adaptations:

e StartTimeadds, as the name indicates, behavior to measure the timtegpoivhich
an activity starts;

o \erifyToleratedJitteinserts a behavior to calculate the variance in two consecut
time measurements of the same activity, comparing thetresthl the instant at
which this activity is expected to be performed. If the vadaviolates the tolerated
threshold, a corrective behavior can be executed.

ToleratedDelay aspect controls the maximum tolerated latency to the actaal of
a given system activity. Thus, the time between the commaddlze execution of the
observed activity must be measured and calculated. If tsergbd duration is greater
than the maximum allowed latency, this aspect provides si@ahandle this exception.
It provides the following adaptations:

e StartTimeinserts behavior to measure the time instant at which anigcis com-
manded to start;

¢ VerifyToleratedDelaydds a behavior to measure the time point at which the ob-
served activity actually starts. The time interval (i.elag® between command and
execution starting instants is calculated and comparell tvé expected delay. If
the threshold is violated, a corrective behavior can begeec

162

ClockDrift aspect controls the clock deviation between the local tiouece and the
global one. Assuming that the target platform provides méaallow clock synchroniza-
tion, this aspect uses the global clock as reference to ledédcthe local clock deviation.
Thus, designers must specify time instants (or system gvert the starting of an behav-
ior execution) at which the local clock must be compared withglobal clock reference
in order to check if there is a difference between the two muegbvalues. It provides the
following adaptation:

e CheckClockDrifreads the current time from both global and local clocks,comd-
pares the time obtained from them. If the perceived diffeieautside the accepted
threshold range, any corrective action (e.g. update thad tdack reference) can be
performed.

DataFreshness aspect is responsible to deal with the validity durationuility) of
different system information (BURNS et al., 2000). For thhis aspect associates times-
tamps to affected data by adding new attributes to repregesitich information, as well
as inserting behavior to control these data use. In othedsyaach time a controlled
data needs to be read, its validity must be checked andsibuii of validity, a corrective
behavior must be performed, e.g. wait until the date to beatgutj read data directly
from its source, decrease the frequency at which periodienaers (which read the con-
trolled data) are executed. Analogously, each time a cthetrdata is updated, its validity
duration must also be updated. It provides the followingoéat#ons:

¢ ValidityInformationadds an attribute indicating the validity period of the coléd
attribute or object;

e SetValidityinserts the behavior that is responsible for initializing validity period
information;

¢ VerifyFreshnesmserts a behavior to check data validity before all readictipns
that access the controlled data;

e UpdateValidityadds the corresponding behavior that updates data vaditiey all
actions that write/modify the controlled data.

A.3 Synchronization Package

This package provides aspects to deal with non-functictplirements related to the
synchronization and the concurrent access control to dieseurces. Figure A.3 depicts
the available aspects.

ConcurrentAccessControl aspect provides means to control the concurrent access to
objects, which share their attributes information withestlbbjects. The access to ob-
ject’s different elements can be controll€d:the object itself{ii) their attributes; and/or
(iii) their methods. Therefore, depending on the controlled etepone or more arbiters
(i.e. concurrency controller instances) are created. \Etgre an (active or passive) ob-
ject needs to access controlled shared elements, it mustsethe access to them (i.e.
request a lock) that are granted or not by the arbiter. Dapgnuh the arbiter imple-
mentation (e.g. mutex, semaphore, monitors), and alscetouimber of objects that are
accessing the shared resource at the moment, the accesstregy be authorized or not.
Similarly, after the use of the shared resource, the objtttiad the access permission
must notify the arbiter, indicating that it is leaving theasdd resource and does not need
to use it anymore. It provides the following adaptations:

163

<<Non-Functional>>
Synchronization

<<Aspect>>
ConcurrentAccessControl

<<StructuralAdaptation>>+ConcorrencyControlMechanism()
<<BehavioralAdaptation>>+AcquireAccess()
<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>
MessageSynchronization

<<StructuralAdaptation>>+WaitingMechanism()
<<BehavioralAdaptation>>+WaitForAcknowledge()

Figure A.3: Synchronization Packagedealing with synchronization non-functional re-
guirements

e ConcurrentControlMechanisimserts an arbiter to control the access to shared re-
sources;

e AcquireAccessdds the behavior that is responsible for requesting thesaco
shared resources before reading or writing informatiomfto the shared resource;

e ReleaseAccessaserts a behavior to notify the arbiter that the accessdcstiare
resource can be released;

M essageSynchronization aspect deals with holding behaviors execution until the ar-
rival of an acknowledgement message (or a reply messageptimd) that the (remote)
object has received the message sent. It provides a waitechamism that could be
implemented as eithdr) a busy wait, i.e. a loop that waits until the acknowledgement
message arrives; @i) using the system scheduler, which preempts the executitreof
current active object, marking it as blocked, and thus, oygeroom for other active ob-
jects execution. Later, when the expected acknowledgemessage arrives, the blocked
active object is marked as ready to execute, and its execigicesumed following the
scheduler’s decision. It provides the following adaptasio

e WaitingMechanisninserts the acknowledgement waiting mechanism. In fast thi
adaptation makes more sense within the context of (ii), iiee#he scheduler must
be modified in order to realize this implementation;

e WaitForAcknowledgemeimidds the behavior that is responsible for waiting for the
expected acknowledgement message,;

A.4 Communication Package

This package provides aspects to deal with objects commatimicin terms of mes-
sages sending. The first intention was to cover the commiumicbetween objects that
are located in computing devices that are physically séparéHowever, depending on
application requirements, this package’s aspects carbalssed for specifying the com-
munication of objects located in the same computing devidee available aspects are
show in figure A.4.

MessageAck aspect provides an acknowledgment mechanism to notifytieceof a
message to its sender. In this sense, this aspect affetisides of a message exchange:

164

sender and destination objects. On one side, the sendet ebjeds a messages and waits
for an acknowledgement of message reception. On the ottiey thie receiver objects
needs to send an acknowledgement message after each deoeissageMessageAcks
related withMessageSynchronizati@spect. It provides the following adaptations:

e AcknowledgeMechanisadds the acknowledge mechanism. After a message re-
ception, this mechanism must be notified about this arrasadl send an acknowl-
edgement message to this message sender;

¢ SignalAcknowledgeMechanisadds the behavior, at the sender object side, that is
responsible for notifying the acknowledge mechanism thméasage has been sent
and an acknowledge message must be received;

e SendAcknowledgeserts a behavior, at the receiver object side, that sem@ds-a
knowledge message, after an message reception, inforisiegnder that the mes-
sage has been delivered to the destination object;

Messagel ntegrity aspect is responsible for handling messages integrity @wiging
checking information within a message. SimilarlyMessageAckthis aspect also af-
fects both message’s sender and receiver objects. Senédetsoimust generate integrity
checking information, appending it in the message to be sdmlke receiver objects must
generate checking information from the received messagaparing it with the infor-
mation that came with the received message. The acknowkeaigmechanism must be
notified whether the checking information match or not. thpdes the following adapta-
tions:

e Generatelntegritylnfinserts behavior, at the message sender side, before the mes
sage sending action, that executes a algorithm to gendrat&iag information that
is appended in the message being sent;

¢ Verifylntegritylnfoadds behavior, at the message receiver side after the neessag
reception, that executes an algorithm (the same perfortegssage sender side)
to generate checking information of the received messageparing the generated
information with the one received in the message. If it masghhe acknowledge
mechanism is notified, otherwise any other corrective biehaan be performed,;

MessageCompression spect is in charge to compress/decompress messages itmrder
improve bandwidth utilization. Like the other aspects a$ fhackage, this aspect affects
both message’s sender and receiver objects. At sendertlselmessage is compressed
using a compression algorithm, while at receiver side thesage is decompressed using
the same algorithm. It provides the following adaptations:

e Compresadds a behavior to compress the message being sent befdnegsen
e Decompressdds a behavior to decompress the compressed messageddoeiv
fore actually delivering it;

A.5 TaskAllocation Package

Aspects provided by this package handle non-functionalirements related to ob-
jects distribution on different computing devices at rargi These aspects are typically
related to distributed system nodes that are physicallgreg¢pd. Figure A.6 depicts the
available aspects.

165

<<Non-Functional>>
Communication

<<Aspect>>
MessageAck

<<StructuralAdaptation>>+AcknowledgeMechanism()
<<BehavioralAdaptation>>+SinalAcknowledgeMechanism()
<<BehavioralAdaptation>>+SendAcknowledge()

/
<use>>
/
[

<<Aspect>> <<Aspect>>
Messagelntegrity MessageCompression
<<BehavioralAdaptation>>+Generatelntegritylnfo() <<BehavioralAdaptation>>+Compress()
<<BehavioralAdaptation>>+VerifyIntegrityInfo() <<BehavioralAdaptation>>+Decompress()

Figure A.4: Communication Packagedealing with communication non-functional re-
guirements

<<Non-Functional>>
TaskAllocation

<<Aspect>>
TaskMigration

<<BehavioralAdaptation>>+Migrate()

<<Aspect>>
NodeStatusRetrieval

<<BehavioralAdaptation>>+ProcessingLoad()
<<BehavioralAdaptation>>+MessageThroughput()
<<BehavioralAdaptation>>+Alive()

Figure A.5: TaskAllocation Packagedealing with tasks allocation non-functional re-
guirements

NodeStatusRetrieval aspect includes a mechanism to gather information on the sys
tem dynamic characteristics, such as processing load,agpessending and reception
rates, and if the computing device is running. It providesftillowing adaptations:

e ProcessinglLoadhserts a behavior to calculate the device’s processinty igadat-
ing this information at every start/end of an active objesttdvior;

e MessageThroughpwtdds a behavior to calculate the sent messages rate, as well
as the ratio for the received ones. This information is updi@t every message
sending/reception;

e Aliveincludes a new object in the computing device that is regptat broadcast
an “I'm alive” message to the other devices in the distriduggstem;

TaskMigration aspect adds a migration mechanism to move active objects dree
computing device to another one. Therefore, active obartanigrate from one node to
another, as well as from software to hardware, or vice-versa accomplish this mission,

1Objects migration between software and hardware (at r@)tisusually known as “reconfiguration”.
However, in embedded systems domain, “reconfigurationdlismeans to upload a bitstream into a FPGA
device. Thus, in order to avoid misunderstandings, this tees the term “reconfiguration” to refer to
the later, while objects software-to-hardware and/or Wwaré-to-software reconfiguration are also called
“migration”

166

the migration mechanism must provide means for savingfresf the execution context
of active objects, as well as for objects serialization abpbat’s information sending.
In fact, the decision on which objects must migrate is madéhkyaspects responsible
to control embedded systems physical resources, suehexgyControl MemoryUsage-
Control, andHwAreaControl Basically TaskMigration aspecprovides only one adap-
tation, i.e. Migrate behavioral one, which adds the mentioned behavior relatetiet
migration mechanism.

A.6 Embedded Package

Non-functional requirements related to physical resaies@ilability, which are very
common concerns in embedded systems design, are handleshyattkage’s aspects.
Energy consumption, memory usage, and hardware recorifiguaaea can be cited as
examples of such concerns. As depicted in A.6, the availagects are concerned in
monitoring and controlling the mentioned physical researcThus, depending on the
physical resource being controlled, the control policg ptatform capabilities, different
actions can be performed by these aspects as, for instdcgepending on the sys-
tem requirements and runtime state, to remove objectsetktat non-critical activities;
(i) active objects migration(jii) to loosen timing constraintgiv) to decrease processor
operation frequency(y) to turn off unnecessary hardware components; It is impbttan
highlight that this aspects are dependent on target phatéapabilities, meaning that the
platform must provide means to monitor and control systegsjglal resources.

HwAreaMonitoring aspect is related to systems that use reconfigurable hadwar
devices, such as FPGAs. It provides a mechanism to moniéoretonfigurable area
by which the remaining reconfigurable area (in terms of caméigle logic blocks) is
(re)calculated at each reconfiguration command. It previte following adaptations:

¢ IncreaseAreaUsagmserts a behavior that increases the reconfigurable aeggeus
amount, before all hardware reconfiguration actions, baseatea required by the
new hardware active objects;

e DecreaseAreaUsagadds a behavior that decreases the reconfigurable area usage
amount, before all hardware reconfiguration actions, basesize information of
the hardware active objects that are leaving the reconfijgireardware device;

HwAreaControl aspect controls the hardware reconfigurable device usagddipg
an arbiter to allow or deny every reconfiguration based omtfeemation of this package
monitoring aspects. In fact it provides only one adaptattbe inclusion of a new active
object that accesses the information produced bythAreaMonitoringaspect to control
the reconfigurable area use, taken actions as describég @athis sub-section.

EnergyMonitoring aspect relies on the target platform to provide a mechanism t
monitor energy consumed by system activities. This medamust measure the re-
maining energy level before the observed activities stad, after their completion. Fur-
ther, it calculates the amount of energy that was consumeélddsg activities. It provides
the following adaptations:

e EnergyMonitoringMechanism@dds the energy monitoring mechanism,;
¢ InitialEnergyMeasuremeniserts a behavior responsible to measure the energy
level before any activity execution;

167

<<Non-Functional>>

Embedded

<<Aspect.>> . <<Aspect>>
HwAreaMonitoring - <<use>> | HwAreaControl

<<BehavioralAdaptation>>+IncreaseAreaUsage()
<<BehavioralAdaptation>>+DecreaseAreaUsage()

<<BehavioralAdaptation>>+HwAreaControlPolicy()

<<Aspect>>

EnergyMonitoring <<Aspect>>
<<use>> EnergyControl

<<StructuralAdaptation>>+EnergyMonitoringMechanism()
<<BehavioralAdaptation>>+StartingEnergyAmount() <<BehavioralAdaptation>>+EnergyConsumptionPolicy()
<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>
itori <<Aspect>>
MemoryUsageMonitoring ffufeff N MemoryUsageGontrol
<<BehavioralAdaptation>>+IncriaseMemoryUsage()
<<BehavioralAdaptation>>+DecreaseMemoryUsage() <<BehavioralAdaptation>>+MemoryUsageControlPolicy()

Figure A.6:Embedded packagetealing with embedded non-functional requirements

e CalculateEnergyConsumpti@dds a behavior that also measures the energy level
right after the execution of observed activity is finishealcalating the energy con-
sumed by this activity, and also by the overall system;

EnergyControl aspect provides an object that uses information providetiéynon-
itoring aspects to control the energy consumption. To ag@tisimsuch goal, this object
could perform the actions mentioned in the beginning ofshissection. This aspect pro-
vides only one adaptatiognergyConsumptionPolicyhat includes an energy controller
element in the system.

MemoryUsageMonitoring aspect is similar to the other two monitoring aspects but it
is related to software rather than to hardware. It providegehanism that must calculate
the overall memory usage of a computing device at every bhjexation/deallocation.

It provides the following adaptations:

¢ IncreaseMemoryUsagaserts a behavior to increase the monitoring element-infor
mation on used memory amount before every action that alscaemory;

e DecreaseMemoryUsagaserts a behavior to decrease the used memory amount
information before every action that allocates memory;

MemoryControl aspect uses the information provided ldgmoryUsageMonitoring
and HwAreaMonitoringaspects to control the memory allocation requests for tbjec
allocation following an adopted memory control policy. Fhilne MemoryUsageCon-
trolPolicy adaptation inserts this controller element in the system.

168

169

APPENDIXB UML MODELS FOR THE UAV CASE STUDY

<<NFR_Distribution>>

Special Condition
Movement Control

(o) <<NFR_Timing>>
Piloting R
T o otor
O <<extend>> Main Rotor Sensing
<<inglude>> Actuator
Navigation l BZC:(R;)tor y 0
<<NFR_Timing>> Back Rotor
<<NFR_Embedded>> <<in/clude>> Sensor

<<NFR_Distribution>>

Helicopter Q
Movement Control <<NFR_Distribution>>
- . Main Rotor Back Rotor
extension points Sensor Sensing

UAV in danger

<<NFR_Timing>>

<<NFR_Distribution>>
Environment

Sensing

<<include>>

<<NFR_Timing>>
<<NFR_Embedded>>

Alarm Control

\<<include>>

o

Humidity
Sensing

Maintenance pata Transfer

System System Q Wind
Humidity Sensor
Temperature Sensor
Sensor

Figure B.1: UAV movement control use case diagram

170

-mrAct

[of

ontrolSubSystem 1 MainRotorActuator
<<SchedulableResource>> -mrAct
1 1 -movCtrl MovementController 1 1 J7
1 'ﬂiwmﬁgéfi"f;{ int RotorActuator
-newl |
-Rotation : int

-newBRRotation : int

-newBRPace : int

+run() : void

<<SchedulableResource>>

+processinfo(r1 :int, p1 :int, r2 :int, p2 : int, ws : float, wd : float, h : float, t : float) : voi

-Pace :int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation|
<<getter>>+getRotation() : int{query,getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{query,getter/setter for attribute = Pace}

N +applyParameters() : void

EnvironmentSensingSubSystem

<<getter>>+getEnvironmentlinfo() : Environmentinformation{getter/setter for attribute = envinfo]

1 MovementEncoder 1 1 1 1
1 |-newRotation : int 1
[|-newPace : int 1
- -brAct|1

+run() : void

+encodeRotation(value : int) : void -brAct | <<SchedulableResource>>L_

+encodePace(value : int) : void ol —1 M BackRotorActuator -envinfol

-envinfo 1 1

movEncoder |1 (1 1 run) - void

-brinfo{1 -mrinfo|1 -mrinfo{1 -brinfo|1

<<MutualExclusionResource>>
Movementinformation

-Rotation : int
-Pace :int

<<setter>>+setRotation(rotation : int){getter/setter for attribute = Rotation|
<<getter>>+getRotation() : int{getter/setter for attribute = Rotation}
<<setter>>+setPace(pace : int){getter/setter for attribute = Pace}
<<getter>>+getPace() : int{getter/setter for attribute = Pace}

<<MutualExclusionResource>>
Environmentinformation

-Humidity : float
-WindSpeed : float
-WindDirection : float
-Temperature : float

<<setter>>+setHumidity(humidity : float){getter/setter for attribute = Humidity}
<<getter>>+getHumidity() : float{getter/setter for attribute = Humidity}
<<setter>>+setWindSpeed(windSpeed : float){getter/setter for attribute = WindSpeed}
<<getter>>+getWindSpeed() : float{getter/setter for attribute = WindSpeed}
<<setter>>+setWindDirection(windDirection : float){getter/setter for attribute = WindDirection
-ctrlMode | 1 <<getter>>+getWindDirection() : float{getter/setter for attribute = WindDirection}
<<setter>>+setTemperature(temperature : float){getter/setter for attribute = Temperature}
<<getter>>+getTemperature() : float{getter/setter for attribute = Temperature}

]

-mrSensor | 1 -brSensor | 1

-mrSensor | MainRotorSensorDriver | | BackRotorSensorDriver

+mrinfol1 +brinfo|1
SpecialConditionM: 1tControl
1 1 -Mode : MovementControlMode
<<enumeration>>

MovementSensingSubSystem MovementControlMode
<<getter>>+getMainRototInfo() : Movementinformation{getter/setter for attribute = mrinfo] ugg_’\r/:ﬁé ENVIRONMENT
<<getter>>+getBackRotorInfo() : MovementInformation{getter/setter for attribute = brinfo LOW FUEL

UNDER_ATTACK

1 MovementSensorDriver 1

-envinfo|1

1 -envSampler

<<SchedulableResource>>
EnvironmentDataSampler

-newHumidity : int

+getRotation() : int
+getPace() : int 7

<<MutualExclusionResource>>
SensorDriver

-newTemperature : int
-newWindSpeed : int
-newWindDirection : int

-Value : float

<<setter>>+setValue(value : float){getter/setter for attribute = Value] |+encodeHumidity(value : float) : void
<<getter>>+getValue() : float{getter/setter for attribute = Value}

+run() : void

+encodeTemperature(value : float) : void

1

-brSensor |1

<<SchedulableResource>>

?

EnvironmentSensorDriver

A

-alarm Alarm

+encodeWindInfo(wSpeed : float, wDirection : float

1 1

-sTemperature | 1

[
1 HumiditySensorDriver WindSensorDriver

TemperatureS Driver

-sTemperature

#issueAlarm() : boolean

-alarm

+triggerLowFuelAlarm() : boolean

+triggerUnderAttackAlarm() : boolean

1 | +triggerHostileEnvironmentAlarm() : boolean sHumidity |1 »5HumidityT1 +getWindDirection() : floa

+getWindSpeed() : float [-sWind

1

Figure B.2: UAV movement control class diagram

interaction Environment Sensing [@ Environment Sensig U

<<Scheduler>>
: Scheduler

<<SchedulableResource>>
envSampler : EnvironmentDataSampler

<<MutualExclusionResource>>
envinfo : Environmentinformatio

sHumidity : HumiditySensorDriver | | sTemperature : TemperatureSensorDriver | | sWind : WindSensorDrive

1:run()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o

<<TimedEvent>>

{every = "(20, ms)"}

I
|
2:getvalue)
3: humidity |

|
4: encodeHumidity(value="humidity")
|

5: setHumidity(humidity=newHumidity)

| 6: getValue)

o wmew 1 l

8: encodeTemperature(value="tenperaturg"

9: setTemperature(temperature=newTemp(?rature)

| 7: temperature]]

10: getWindSpeed]

11: windSpeed

14: encodeWindInfo(wSpeed=wingSpeed, wDirection=windDirection)

15: setWindSpeed(windSpeed=newWind§lpeed)

16: setWindDirection(windDirection=new\

1dDirection)

Y
[
[
N
[
[

Figure B.3: Environment sensing

T.T

172

interaction Movement Encode [@ Movement Encode U

<<Scheduler>>
: Scheduler

<<SchedulableResource>>
movEncoder : MovementEncoder

| mrSensor : MainRotorSensorDriver

<<MutualExclusionResource>>
mrinfo : Movementinformation

brSensor : BackRotorSensorDriver

<<MutualExclusionResource>>
brinfo : Movementinformation

|
I
|
. | |
1: run(): |
: U : . | | |
<<TimedEvent> 2: getRotation() R
I {every ="(10, ms)’} I 3: rotation I I I
| e — - - - — = - = — — | | |
I I 4: encodeRotation(value=rotation) I | I
| I: | |
| | 5: getPace() R | | I |
|
	6____6£a‘35____'[::			
	7: encodePace(value="pace")			
	8: setRotation(rotation=newRotation)			
	9: setPace(pace=newRace) I	I		
: :	10: getRotation() I C :			
. . '				
e — - — — _ _ _ _ _ _ g oo — — Meotaten_ W _ _ ________ TJ				
: : 12: encodeRotation(vaIue=rotatbn) : I :				
	I 13: getPace() . R I			
I . !				
e - o 0 1 T '[:]				
	I	I		
	15: encodePace(value=pace)			
	I 16: setRotation(rotation=newRotation) l L			
I ' I				
) 17: setPace(pace=nevaace))			
T T				
	I	I		
T				
T | | I |

Figure B.4: Main and back rotors sensing

interaction Movement Control [@ Movement Control U

<<Scheduler>>

<<SchedulableResource>>

<<MutualExclusionResource>>

<<SchedulableResource>>

<<MutualExclusionResource>>

<<MutualExclusionResource>>

mrAct : MainRotorActuator

: Scheduler movCtrl : MovementControlle brinfo : Movementinformation brAct : BackRotorActuator envinfo : Environmentinformation mrinfo : Movementinformation
1 1 1
. 1: run() . |
<<TimedEvent>> 2: getRotation() .

{every ="(20, ms)"}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

3: brRotation

4: getPace() |

5: brPace '|I|

7: miRotation

8: gétPacef

10: getWindSpeed() |

f

|

|

|

|

|

6: getRotation() |
|

|

9: AﬂrPace [
|

|

11: windSpeed

12: getWindDirection(

14: getHumidity()

15: humidity

| |
| |
I 13: windDirection | :I_Trl
_________ i
t t
| |
| 16: getTemperaturef |

| 17: temperature |

| | |
18: processlnfo(r1="erot:i1tion", p1="mrPace", r2="erotation“I p2="brPace", ws="windSpeed", wd="\ivindDirection", h="humidityimpettature")

19: setRotation(rotation=newMRRotatign)

| 20: setPace(pace=newMRPace) |

|
21: setRotation(rotation=newBRRotation)

22: setPace(pace=r:1ewBRPace)

23: applyParametersy(

24: applyPatameters(

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n
|

Figure B.5: Helicopter movement control

€Ll

174

interaction Back Rotor Control[@ Back Rotor Control U

<<Scheduler>> <<SchedulableResource>>
: Scheduler brAct : BackRotorActuator

[[
| 1: run()

<<TimedEvent>>
{every ="(10, ms)"}

2: applyParameters()

|
|
|
|
|
n

Figure B.6: Helicopter piloting

interaction Initialization_EnvironmentSensingSubSyste [@Initialization_EnvironmentSensingSubSystem U

1:

2: (sHumidity, sWind, sTemperature, envinfo) <<SchedulableResource>>
____________ envSampler : EnvironmentDataSampler

H — 9| : EnvironmentSensingSubSyste

Figure B.7: Environment sensing subsystem initialization

interaction Initialization_MovementSensingSubSystem [@Initialization_MovementSensingSubSys1e U

]

1:
- — 9| :MovementSerrsingSubSystem

I 2: (mrinfo, mrSensor, brinfo, brSengor <<SchedulableResource>>
__________ movEncoder : Ml)vementEncoder

Figure B.8: Movement sensing subsystem initialization

175

interaction Initialization_ControlSubSystem [@ Initialization_ControlSubSystem U

SubSyst ‘ l : MovementSensingSubSystem

* . Envi ry N
: Environmer g

2: getEnvironmentinfo():"" |

1:
H — : ControlSubSystem |

8: (" env",

1
\
\
\
\
\
\
\
\
\
n \
\

"mr", mrAct, "br"

, brAct, alajm

<<SchedulableResource>>
movCtrl : MovementController

I
I
I

Figure B.9: Control subsystem initialization

interaction General Behaviors [@ General Behaviors U

| * | | sWind : WindSensorDriver |

1: getWindSpeed()

2: ASSIGN(int x, 100)

loop

linti=

0;i<5]

]
]
.

3: ASSIGN(x, x+i*3)

4: ASSIGN(, i+1)

— = = = = = = = = = —=1]- -

]

5: RETURN(x)

Figure B.10: Other behaviok¥ ndSensor Dri ver. get W ndSpeed()

176

interaction General Behaviors 2 [@ General Behaviors 2 U

|:| ‘ sWind : WindSensorDriver ‘

|
1: getWindDirection() _ |
|
|

5: RETURN(x)

|

: :l 2: ASSIGN(int x, 0)

I loop

| x<o |

|

| alt |

| x==0 |, 3: ASSIGN(, X*5)

| |

| W _______
| [else]

‘ 4: ASSIGN(x, X - 10)
|

|

|

|

|

|

N

s NN I S

Figure B.11: Other behavioWW ndSensor Dri ver . get W ndDi recti on()

interaction General Behaviors 3[@ General Behavior8 U

ched
: MovementControtle

T
! 1: processinfo(r1=, p1=, r2=, p2=, ws=, wd=, h=) t=

<<Schedul ‘ ctriMode : SpecialConditi ontrol
alarm : Alarm

T
|
<

| opt]

! [tws > 15) | (1> 85) 11 > 30) | ‘

| || 2:setMode(mode=MovementControlMode.HOSTILE_ENVIRONMENT)

[: : [

| 0] & T

| alt | | T

| [ctriMode.getMode() == MovemeéntControlMode.NORMAL] | |

| | 3: EXPRESSION(newMRRotation, newMRRotation/r1*p1) |

[| | [

| | 4: ASSIGN(newMRPace, (newMRPace+p})/r1 |

[‘ ‘ [

| ‘ 5: EXPRESSION(ne\‘NBRRota(ion, newBRRotation/r2*p2) |

[! ! [
| |

I | 6: ASSIGN(newBRPpce, (newBRPace-+pR)r2 I

| |

1 N o - - - - _ _ o _ _ | — — -

| [ctriMode.getMode() == MoveméntControlMode. HOSTILE_ENVIRONMENT]

| T |

= 7:EiggerHos(ileEnvwronmentAIarm()

|

|

|

|

|

|

|

[ctriMode.getMode() == MovementControlMode.LOW_FUEL] | |
| | |
|

|

|

|

|

|

|

I 8: triggerLowFuelAlarm() I

[ctriMode.getMode() == MoveméntControlMode.UNDER_ATTACK]
‘9: mggerUnderAnackAlaer I

T T
I I
I I
] T
I I

Figure B.12: Other behaviokbvenent Contr ol | er. processl nf o()

package FR[1% System_DeponmentU

<<SchedulableResource>>

alarm : Alarm

<<SchedulableResource>>
movCtrl :

mrAct :

MainRotorActuator

N MovementController N
| <<manifest>> /T\<<manifest>> | — _«Ea”ieStf sHumidity :
<<MutualExclusionResource>> <srfianifest>> | I | HumiditySensorDriver
envinfo : i T MainRotor <<manifest>>| I
Environmentinformation !) <<manifest>> sWind :
<<artifact>> D — —| -t — > WindSensorDriver
<<SchedulableResource>> RT-FemtoJava.MainRotor_Node
envSampler : <4manifest>> | " — <<manifgst>> sTemperature :
EnvironmentDataSampler < — — — — |<<manifest>> | <<manifest>> | - - - = > TemperatureSensorDriver
| | g<manifest>>
\% \2 \%
mrSensor : <<MutualExclusionResource>> || <<SchedulableResource>>
MainRotorSensorDriver mrinfo : movEncoder :
Movementinformation MovementEncoder

<<MutualExclusionResource>>
brinfo :

Movementinformation . _ <<fnanifest>> BackRotor
I : <<S8chedulableResource>>
brSensor : <<manifest>> <<artifact>> 0 | <<man| fest_>> brAct :
PP - — RT-FemtoJava.BackRotor_Node BackRotorActuator

BackRotorSensorDriver

Figure B.13: UAV movement control deployment diagram

LLT

178

<<Aspect>>
TimingAttributes

<<Aspect>>
DataFreshness

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Deadline+Priority+WCET, ADD_NEW_FEATURE)
<<Pointcut>>+pcActClass2(JPDD_ActiveObjectClass, ModityClassStructure, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObijlnit(JPDD_ActiveObjectConstruction, SetTimingAttributes, AFTER)
<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)|
<<Pointcut>>+pcActObjContructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<StructuralAdaptation>>+Deadline()

<<StructuralAdaptation>>+Priority()

<<StructuralAdaptation>>+WCET()

<<StructuralAdaptation>>+ModifyConstructor()

<<StructuralAdaptation>>+ModityClassStructure()

<<BehavioralAdaptation>>+SetTimingAttributes()

<<Pointcut>>+pclinfoClassAttr(JPDD_InfoClassAttribute, ValidityInformation, ADD_NEW_FEATURE
<<Pointcut>>+pcInfoClassObjlnit(JPDD_InfoObjectConstruction_Action, SetValidity, AFTER)
<<Pointcut>>+pcReadAttrValue(JPDD_InfoAttributeRead, VerifyFreshness, BEFORE)
<<Pointcut>>+pcWriteAttrValue(JPDD_InfoAttributeWrite, UpdateFreshness, AFTER)
<<StructuralAdaptation>>+ValidityInformation()
<<BehavioralAdaptation>>+SetValidity()
<<BehavioralAdaptation>>+VerifyFreshness()
<<BehavioralAdaptation>>+UpdateFreshness()

<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Crosscut>> <<Crosscut>> G t
it " g " <<Crosscut>>
(\(a.hdlty ="100ms"} {V'alldlty = 25n?s } o {Validity = "25ms"}
Humidity, Temperature WindSpeed, WindDirection

<<MutualExclusionResource>>
Movementinformation

<<MutualExclusionResource>>
Environmentinformation

<<Aspect>>
ConcurrentAccessControl

<<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>>

{Deadline = "20ms", {Deadline = "10ms", | {Deadline = "20ms", |{Deadline = "10ms",|{Deadline = "5ms",

Priority = "1", Priority = "2", Priority = "2", Priority = "1", Priority = "0",

WCET = "8ms'"} WCET = "5ms'} WCET = "7ms"} WCET = "3ms'} WCET = "2ms'}
<<SchedulableResource>>| <<SchedulableResource>> <<SchedulableResource>>|

MovementController EnvironmentDataSampler Alarm

<<SchedulableResource>>| <<SchedulableResource>>|
MovementEncoder BackRotorActuator
<<Crosscut>> <<Crosscut>> <<Crosscut>> <<Crosscut>>
{Period = "20ms"} {Period = "10ms"} |{Period = "20ms"} {Period = "10ms"}
<<Aspect>>

PeriodicTiming

<<Pointcut>>+pcActClass(JPDD_ActiveObjectClass, Period, ADD_NEW_FEATURE)
<<Pointcut>>+pcActObjConstructor(JPDD_ActiveObjectConstructor, ModifyConstructor, MODIFY_STRUCTURE)
<<Pointcut>>+pcActObijlnit(JPDD_ActiveObjectConstruction, SetPeriod, AFTER)

<<Pointcut>>+pcActObjInit2(JPDD_ActiveObjectConstruction_Action, AdaptObjectConstruction, MODIFY_STRUCTURE)|
<<Pointcut>>+pcLoop(JPDD_PeriodicBehavior, LoopMechanism, AROUND)

<<Pointcut>>+pcFreqCtrl(JPDD_PeriodicBehavior, FrequencyControl, AFTER)
<<StructuralAdaptation>>+Period()

<<StructuralAdaptation>>+ModifyConstructor()

<<BehavioralAdaptation>>+SetPeriod()

<<BehavioralAdaptation>>+LoopMechanism()

<<BehavioralAdaptation>>+FrequencyControl()

<<BehavioralAdaptation>>+AdaptObjectConstruction()

<<Aspect>>
MessageSynchronization

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, WaitingMechanism, ADD_NEW_FEATURE
<<Pointcut>>+pcRemoteMsgSending(JPDD_SendMsgToRemoteObject, WaitForAcknowledge, AFTER)
<<StructuralAdaptation>>+WaitingMechanism()

<<BehavioralAdaptation>>+WaitForAcknowledge()

<<Aspect>>
MessageAck

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, AcknowledgmentMechanism, ADD_NEW_FEATURE
<<StructuralAdaptation>>+AcknowledgmentMechanism()

<<BehavioralAdaptation>>+SendAcknowledgment)()
<<BehavioralAdaptation>>+SinalAcknowledgmentMechanism()

<<Pointcut>>+pcSharedObjClass(JPDD_ExclusiveObjectClass, ConcurrencyControlMechanism, ADD_NEW_FEATURE)
<<Pointcut>>+pcBeforeRead(JPDD_ExclusiveGet, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterRead(JPDD_ExclusiveGet, ReleaseAccess, AFTER)

<<Pointcut>>+pcBeforeWrite(JPDD_ExclusiveSet, AcquireAccess, BEFORE)

<<Pointcut>>+pcAfterWrite(JPDD_ExclusiveSet, ReleaseAccess, AFTER)
<<StructuralAdaptation>>+ConcurrencyControlMechanism()

<<BehavioralAdaptation>>+AcquireAccess()

<<BehavioralAdaptation>>+ReleaseAccess()

<<Aspect>>
SchedulingSupport

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, Scheduler, ADD_NEW_FEATURE)
<<Pointcut>>+pcSubSystemConstruction(JPDD_SubSystemConstruction_2, SetupConcurrentActivities, AFTER)|
<<StructuralAdaptation>>+Scheduler()

<<BehavioralAdaptation>>+SetupConcurrentActivities()

<<Aspect>>
EnergyControl

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyConsumptionPolicy, ADD_NEW_FEATURE
<<StructuralAdaptation>>+EnergyConsumptionPolicy()

<<Aspect>>
EnergyMonitoring

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, EnergyMonitoringMechanism, ADD_NEW_FEATURE
<<Pointcut>>+pcGetStartingEnergy(JPDD_PeriodicBehavior, StartingEnergyAmount, BEFORE)
<<Pointcut>>+pcCalcEnergy(JPDD_PeriodicBehavior, CalculateEnergyConsumption, AFTER)
<<StructuralAdaptation>>+EnergyMonitoringMechanism()

<<BehavioralAdaptation>>+StartingEnergyAmount()

<<BehavioralAdaptation>>+CalculateEnergyConsumption()

<<Aspect>>
TaskMigration

<<Pointcut>>+pcSubSystemClass(JPDD_SubSystemClass, MigrationMechanism, ADD_NEW_FEATURE
<<StructuralAdaptation>>+MigrationMechanism()
<<BehavioralAdaptation>>+Migrate()

Figure B.14: Aspects Crosscutting Overview Diagram

179

package NFR[JPDD_ActiveObjectClass JJ

<<SchedulableResource>>
<<JoinPoint>>
*

Figure B.15: JPDD: selection of active objects class

package NFR[JPDD_ExclusiveObjectClass lJ

<<JoinPoint>>
<<MutualExclusionResource>>
*

Figure B.16: JPDD: selection of shared passive objects

package NFR[JPDD_InfoClassAttribute JJ

*Information

<<JoinPoint>>-*: *

Figure B.17: JPDD: selection of passive class attributes

180

package NFR[JPDD_InfoObjectConstruction_2 JJ

*Information

<<JoinPoint>>+*Information(..) : *{Behavior}

Figure B.18: JPDD: selection of passive class constructor

package NFR[JPDD_SubSystemClass JJ

<<JoinPoint>>
*SubSystem

Figure B.19: JPDD: selection of sub systems classes

package NFR [JPDD_SubSystemConstruction_2 D

*SubSystem

<<JoinPoint>>+*SubSystem(..):*(){Behavior}

Figure B.20: JPDD: selection of sub systems constructor

interaction JPDD_ActiveObjectConstruction_Action [JPDD_ActiveObjectConstruction_Action ﬂ
1: <<SchedulableResource>>

— = =

m <<JoinPoint>> i
I
|

Figure B.21: JPDD: selection of selection of active objectsstruction actions

interaction JPDD_ActiveObjectConstruction [JPDD_ActiveObjectConstruction JJ

1: <<SchedulableResource>>

- = = . > * . %
<<JoinPoint>> .
{Behavior} I

Figure B.22: JPDD: selection of active objects construlb#dravior

181

interaction JPDD_ActiveObjectConstructor [JPDD_ActiveObjectConstructor JJ

1: <<SchedulableResource>>

* .k

<<JoinPoint>>
{MessageDefinition} [

Figure B.23: JPDD: selection of active objects constructor

interaction JPDD_ExclusiveGet[JPDD_ExclusiveGet y

o <<MutualExclusionResource>>
* . %

1: get*(..)* |

<<JoinPoint>>

Figure B.24: JPDD: selection of messages whose name sti#intsget”

interaction JPDD_ExclusiveSet[JPDD_ExclusiveSet y

ok <<MutualExclusionResource>>
* . %

| 1: set*(..):* |

| <<JoinPoint>>

Figure B.25: JPDD: selection of messages whose name st#ntsset”

182

interaction JPDD_InfoAttributeRead [JPDD_InfoAttributeRead JJ

ok * 1 *Information

I
1: get*(..):* |

<<JoinPoint>>
{Behavior}

Figure B.26: JPDD: selection of messages whose name sti#nt&get”

interaction JPDD_ InfoAttributeWrite [JPDD_InfoAttributeWrite y

¥ * 1 *Information

I
1: set*(..):* |

[
I
| <<JoinPoint>>
|
I

{Behavior}

Figure B.27: JPDD: selection of messages whose name si#ntsset”

interaction JPDD_InfoObjectConstruction_Action [JPDD_InfoObjectConstruction_Action]J

1:
<<JoinPoint>>

Figure B.28: JPDD: selection of passive objects contruciction

183

interaction JPDD_PeriodicBehavior [JPDD_PeriodicBehavior JJ

<<Scheduler>> <<SchedulableResource>>
*: Scheduler ¥

|
| 1%
<<TimedEvent>>
<<JoinPoint>>

{Behavior,
every = Il*ll} |

Figure B.29: JPDD: selection of active objects periodicdwabr

interaction JPDD_SendMsgToRemoteObject [JPDD_SendMsgToRemoteObject JJ

| local.* : * | remote.* : *
I I
| 1% |

<<JoinPoint>>

Figure B.30: JPDD: selection of message sending actiomtoteobjects

interaction JPDD_SubSystemConstruction [JPDD_SubSystemConstruction JJ

1:
- - - = *: *SubSystem
<<JoinPoint>>

{Behavior}

Figure B.31: JPDD: selection of sub systems constructoaweh

184

185

APPENDIX C MAPPING RULES

C.1 Application

<?xm version="1.0" encodi ng="utf-8"?>
<Pl at f or ns>

<!--**-->
<l--x Configuration for RT-FentoJava Platform k- >
<!--**-->

<RT- Fent oJava>
<!-- Mapping rules for APPLI CATI ON CODE -->
<Appl i cation>
<Sof t war e>
<l-- Source code generation options -->
<Sour ceOptions isAspect Language="no" Cl assesPerFile="1"
hasCl assesDecl arati on="no" |dentati on="5"
Bl ockStart="{" Bl ockEnd="}">
<Fi | eNaneConventi on>$Cl ass. Nane</ Fi | eNaneConventi on>
<Package>package $C ass. Package; </ Package>
<Sour ceRef er ence>
i nport $Ref erencedd ass. Package\ . $Ref er encedd ass. Nang;
</ Sour ceRef er ence>
<Sour ceOrgani zati on>
<Decl arationFile Fil eExtension="">
$Sour ceCode. C assesDecl arati on
</ Decl arationFi | e>
<l npl ement ati onFil e Fil eExtensi on=".java">
$Sour ceCode. PackagesDecl ar ati on
\ n$Sour ceCode. Ref er encesDecl ar ati on
\ n$Sour ceCode. C assesl| npl enent ati on
</ | npl ement ati onFi |l e>
</ Sour ceOrgani zati on>
</ Sour ceOpti ons>

<l-- Mapping rules for PRI MARY ELEMENTS -->
<Pri mar yEl ement sMappi ng>
<Dat aTypes>

<Array>
#set ($n = $Dat aType. get Si ze())
#set ($s = $CodeCener at or. get Dat aTypeSt r ($Dat aType. Dat aType))
#f ($n > 0)
$s[]
el se
ArraylList&t; $s>
#end
</ Array>

<Bool ean>bool ean</ Bool ean>
<Byt e>byt e</ Byt e>
<Char >char </ Char >
<Cl ass>$Dat aType. Represent . Nane</ C ass>
<Dat eTi ne>Dat e</ Dat eTi ne>
<Enuner ati onDefinition>

publi ¢ enum $Dat aType. Name

$Opti ons. Bl ockSt art

#f oreach ($v in $Dat aType. Val ues)

#if ($velocityCount > 1) , #end

186

\ n$v
#end
\ n$Opt i on. Bl ockEnd
</ Enuner ati onDefinition>
<Enuner ati on>
${ Dat aType. Nane}
</ Enuner ati on>
<l nteger >i nt </ | nt eger >
<Long>l ong</ Long>
<Short >short </ Short >
<String>String</String>
<Voi d>voi d</ Voi d>
<Doubl e>doubl e</ Doubl e>
<Fl oat >f | oat </ Fl oat >
</ Dat aTypes>
<Dat aTypeDef aul t Val ues>
<Array>nul | </ Array>
<Bool ean>t r ue</ Bool ean>
<Byt e>0</ Byt e>
<Char>'"' </ Char >
<C ass>nul | </ O ass>
<Dat eTi me>new Dat e(2000, 01, 01, O, 0, 0)</DateTine>
<Enuner at i on></ Enuner ati on>
<l nt eger >0</ | nt eger >
<Long>0</ Long>
<Short >0</ Short >
<String>""</String>
<Voi d></ Voi d>
<Doubl e>0. 0</ Doubl e>
<Fl oat >0. 0</ Fl oat >
</ Dat aTypeDef aul t Val ues>
<Visibilities>
<Private>private</Private>
<Pr ot ect ed>pr ot ect ed</ Pr ot ect ed>
<Publ i c>publ i c</ Public>
</Visibilities>
<Par anet er Ki nds>
<l n></ | n>
<Qut ></ Qut >
<| nQut ></ | nQut >
</ Par anet er Ki nds>
</ Pri mar yEl ement sMappi ng>

<l-- Mapping rules for CLASSES -->
<Cl asses>
<Decl ar ati on></ Decl ar ati on>

<l npl enrent ati on>
import saito.sashim.realtine.*;
\n
public
#if ($C ass.isAbstract())
abstract
#end
cl ass $C ass. Nane
#if ($C ass. Super d ass)
ext ends $C ass. Super C ass. Nane
#end
\ n$Opt i ons. Bl ockSt art
\ n$CodeGener at or. get Attri but esDecl arati on(1)
\n
\ n$CodeCener at or . get Messages!| npl enent ati on(1)
\ n$Opt i ons. Bl ockEnd
</ | npl emrent ati on>

<Attributes>
$VisibilityStr
#if (SAttribute.isStatic())
static
#end
$Dat aTypeStr S$Attri bute. Nane;
</Attributes>

<Messages>
<Decl ar at i on></ Decl ar ati on>
<I npl emrent at i on>
#i f (SDERCSHel per.isDestructor ($Message) == fal se)

$VisibilityStr

#if ($Message.isStatic())
static

#end

#if ($Message.isAbstract())
abstract

#end

#i f ($DERCSHel per. i sNor nal Met hod($Message))
$Ret ur nTypeStr

#end

${ Message. Nane} (

#i f ($Message. Par anet er sCount > 0)
#f oreach($paramin $Message. Paraneters)

#if ($velocityCount > 1), #end
$CodeCener at or . get Dat aTypeSt r ($par am Dat aType) $param Nane

#end

#end

)
#if (!$Message.isAbstract())
$Opti ons. Bl ockSt art
\'n// Variables
\ n$CodeCener at or . get Vari abl esDecl arati on(1)
\'n// Actions
\ n$CodeCener at or . get Acti onsCode(1)
\ n$Opt i ons. Bl ockEnd
#el se

#end

#el se
NN/ *kkxkkhrhkhkrhhhkkkhkhkhkkkkk %k *
\n// destructor was ignored
NN/ *kkxkkhrhkhkrhhhkhkkkhkkkkkkk*

#end

</ | npl emrent ati on>
</ Messages>
</ Cl asses>

<l-- Mapping rules for BEHAVIOR, i.e. sequence of actions -->
<Behavi or >
<Vari abl eDecl ar ati on>
$Dat aTypeStr $Vari abl e. Narme
</ Vari abl eDecl ar ati on>

<Br anch>
if ($Branch.EnterCondition) $Options. Bl ockStart
#set ($ident = $ldentationLevel + 0)
\ n$CodeCener at or. get Vari abl esDecl arati on($i dent)
\ n$CodeCener at or . get Act i onsCode($i dent)
\ n$Opt i ons. Bl ockEnd
#if ($Branch. hasAl ternativeBehavior())
\n el se $Options. Bl ockStart
\ n$CodeCener at or. get Vari abl esDecl ar ati on($Branch. Al t er nati veBehavi or
\ n$CodeCener at or . get Act i onsCode($Branch. Al t er nati veBehavi or, $ident)
\ n$Opt i ons. Bl ockEnd
#end
</ Branch>

<Loop>
#if ($Loop. Number O Repeti ti ons > 0)
for(int $lndexVariabl eNane = 0; $I ndexVari abl eNane &l t;

187

$i dent)

$Loop. Nunber Of Repeti tions; $I ndexVari abl eNane++)

#el sei f ($Loop. Exi t Condi ti on)
#i f ($Loop. Enter Condi tion)
${ Loop. Ent er Condi ti on};
#end
\n while ($Loop. Exit Condition)
#end

188

$Opti ons. Bl ockSt art
\ n$CodeCener at or . get Vari abl esDecl arati on(1)
\ n$CodeGener at or . get Acti onsCode(1)
\ n$Opt i ons. Bl ockEnd
</ Loop>

<Assi gnnent >
#if ($Action.isVariabl eAssi gnnent())
$Acti on. Vari abl e. Name
#el se
#if ($Action. Oject)
${Action. Obj ect. Nane}. ${ Acti on. Attri but e. Nane}
#el se
${Action. Attribute. Nane}
#end
#end

#if ($Action.isAssignment Of Val ue())
$Acti on. Val ue
#el se
$CodeCener at or . get Acti onCode($Act i on. Acti on)
#end
</ Assi gnnent >

<bj ect >
<Creation>
#set ($x = 'nada’)
new ${Acti on. Obj ect. | nstanceO . Nane} (
#if ($Action. Paranet er sVal uesCount > 0)
#foreach($x in $Acti on. Paranet ersVal ues)
#if ($vel ocityCount > 1), #end
$x
#end
#end
)

</ Creation>

<Destructi on></Destruction>
</ Cbj ect >

<Expr essi on>
#i f (SDERCSHel per. i sNor mal Met hod($Message))
${ Acti on. Acti on. Expr essi on}
#el se
${ Acti on. Expr essi on}
#end

</ Expr essi on>

<Ret ur n>

return

#if ($Action.isAssignment Of Val ue())
${Acti on. Val ue}

#el sei f ($Action.isAttributeAssignnment())
${Action. Attribute. Nane}

#el se
$CodeCGener at or. get Acti onCode($Acti on. Acti on)

#end

</ Ret ur n>
<St at eChange></ St at eChange>

<SendMessage>
<TolLocal >
<Sof t war e>
#if ($Action.get ToObject() != $Action. get FronDbject())
#if ($Action. Rel atedMet hod. isStatic())
${ Acti on. Rel at edMet hod. Oaner C ass. Nane}.
#el se
${ Acti on. ToQbj ect . Nane}.
#end
#end

189

${ Acti on. Rel at edMet hod. Nane} (
#if ($Action. Paranet er sVal uesCount > 0)
#f oreach($paramin $Acti on. get Par anet er sVal ues())
#if ($vel ocityCount > 1), #end
#set ($x = $vel ocityCount - 1)
#if ($Action.isParaneterVal ue($x))
${ par an}
#el se
${ par am Nane}
#end
#end
#end
)
</ Sof t war e>
<Har dwar e></ Har dwar e>
</ ToLocal >

<ToRenot e>
<Sof t war e>
#if ($Action.get ToObject() != $Action. get FromObject())
#if ($Action. Rel atedMethod.isStatic())
${ Acti on. Rel at edMet hod. Oaner C ass. Nane}.
#el se
${Acti on. ToObj ect . Nane}.
#end
#end
${ Acti on. Rel at edMet hod. Nane} (
#if ($Action. ParanetersVal uesCount > 0)
#f oreach($paramin $Acti on. get Par anet er sVal ues())
#if ($vel ocityCount > 1), #end
#set ($x = $vel ocityCount - 1)
#if ($Action.isParaneterVal ue($x))
${ par an}
#el se
${ par am Nane}
#end
#end
#end
); /] ** REMOTE *=*
</ Sof t war e>
<Har dwar e></ Har dwar e>
</ ToRenot e>
</ SendMessage>

<l nsertArrayEl enent >
#if ($Action.isVariabl eAssignnent())
$Action. Vari abl e. Nane
#el se
#if ($Action. bject)
${ Acti on. Obj ect. Nane}. ${ Action. Attri but e. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.add(${Action. El ement});
</l nsertArrayEl ement >

<RenoveArr ayEl enent >
#if ($Action.isVariabl eAssignnent())
$Action. Vari abl e. Narme
#el se
#if ($Action. Oject)
${Action. Obj ect. Nane}. ${ Acti on. Attri but e. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.renmove(${Action. Elenent});
</ RenoveArr ayEl enent >

<Cet Arr ayEl ement >
#if ($Action.isVariabl eAssi gnnent())
$Acti on. Vari abl e. Name

190

#el se
#if ($Action. Oject)
${Action. Obj ect. Nane}. ${ Acti on. Attri but e. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.get (${Action. Elenent});
</ CGet Arr ayEl ement >

<Set Arr ayEl ement >
#if ($Action.isVariabl eAssi gnnent())
$Acti on. Vari abl e. Name
#el se
#if ($Action. bject)
${ Acti on. Obj ect. Nane}. ${ Action. Attri bute. Nane}
#el se
${Action. Attribute. Nane}
#end
#end
.set (${Action. Elenent});
</ Set Arr ayEl enent >

<ArraylLengt h>
#if ($Action.isVariabl eAssignnent())
$Action. Vari abl e. Narme
#el se
#if ($Action. bject)
${ Acti on. Obj ect. Nane}. ${ Action. Attri but e. Nane}
el se
${Action. Attribute. Nane}
#end
#end
.size();
</ ArraylLengt h>
</ Behavi or >

<l-- Mapping rules for | NTERRUPT HANDLI NG code -->
<l nterrupt Handl i ng>
</ I nt errupt Handl i ng>

<!-- Mapping rules for DERAF ASPECTS -->

<Aspect s>
<! mmkkkkkhkkkhkhkhhkhkhkhhkhkhkhhhkhkhhhhkhhhhkhkh bk hkhhhhkhhhhhkhkhhkdhhkhhkhhkhhkhhrhhdh- - >
<l--x Ti m ng Package x>
<! mmkkkkkhkhkkhkhkhhkhkhkhkhkhkhkhhhkhkhhhhkhkhhkhkhkhhhkhkhhhhkhhhhhkhkhhkdhhkhhhhkhhkhrrhhdh- - >

<Tim ngAttributes>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>

<Structural Nanme="Deadline" O der="3" Model Level ="no">
private static RelativeTine _Deadline = new Rel ativeTine(0, 0, 0)
\'n
\npublic void exceptionTask() {}
\nprotected void initializeStack() {}
\npublic void nmainTask() {}

</ Structural >

<Structural Name="Priority" Order="3">

</ Structural >

<Structural Name="WCET" Order="3" Mbdel Level ="no">
private static RelativeTine _Cost = new Rel ativeTine(0, 0, 0)

</ Structural >

<Structural Name="Mdityd assStructure" Order="0" Mdel Level ="yes">
$DERCSHel per . changeSuper Cl ass($C ass

$DERCSFact ory. newCl ass("Real ti neThread", null, true), true)

</ Structural >

<Structural Name="ModifyConstructor" Order="0" Model Level ="yes">
$Message. addPar anet er (" pDeadl i ne", $DERCSFactory. newl nt eger (fal se),

$DERCSFact ory. get Paraneterin());
$Message. addPar anmet er ("pCost ", $DERCSFact ory. new nt eger (fal se)
$DERCSFact ory. get Paraneterin());
</ Structural >

191

<Behavi oral Name="Set Ti mi ngAttri butes" O der="2" Mdel Level ="no">
\ n_Deadl i ne. set (0, pDeadl i ne, 0) ;
\'n_Cost . set (0, pCost, 0);
\ nget Rel easePar anet ers(). set Deadl i ne(_Deadl i ne);
\ nget Rel easePar aneters(). set Cost(_Cost);

</ Behavi or al >

<Behavi oral Nanme="Adapt Obj ect Construction" O der="0" Model Level ="yes">
$Act i on. addPar anet er Val ue($DERCSHel per . str Ti neTol nt eger (

$Crosscutting. get Val ueO (" Deadl i ne"), "ns"))
$Act i on. addPar anet er Val ue($DERCSHel per . str Ti neTol nt eger (
$Crosscut ting. get Val ue ("WCET"), "ns"))

</ Behavi or al >

<Structural Nanme="AddAccessMet hods" Order="3" Model Level ="no">
/1 TimngAttributes. AddAccessMet hods

</ Structural >

<Structural Name="StartTine" O der="3" Model Level ="no">
/1 TimngAttributes. StartTine

</ Structural >

<Structural Name="EndTi me" Order="3" Mddel Level ="no">
/1 TimngAttributes. EndTi ne

</ Structural >

</ Adapt ati ons>
</ Ti m ngAttri butes>

<Peri odi cTi m ng>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nane="Period" Order="1" Model Level ="no">
\nprivate static RelativeTime _Period = new Rel ativeTi ne(0, 0, 0);
\nprivate static PeriodicParaneters _Periodi cParans =
new Periodi cParanmeters(null, null, null, null, null);
</ Structural >
<Structural Name="ModifyConstructor" Order="1" Model Level ="yes">
$Message. addPar anet er (" pPeri od", $DERCSFact ory. newl nt eger (f al se),
$DERCSFact ory. get Paraneterin());
</ Structural >
<Behavi oral Nane="Set Period" Order="2" Model Level ="no">
\'n_Peri od. set (0, pPeri od, 0);
\'n_Peri odi cPar ans. set Peri od(_Peri od) ;
\ nset Rel easePar anet er s(_Peri odi cPar ans) ;
</ Behavi or al >
<Behavi oral Nane="FrequencyControl" Order="3" Mddel Level ="no">
wai t For Next Peri od();
</ Behavi or al >
<Behavi oral Nanme="LoopMechani sm' Order="4" Mbdel Level ="no">
whi | e (isRunning()) $Options. Bl ockStart
\ n$CodeCGener at or . get Gener at edCodeFr agnent (1)
\ n$Opt i ons. Bl ockEnd
</ Behavi or al >
<Behavi oral Nanme="Adapt Cbj ect Construction" O der="1" Model Level ="yes">
$Acti on. addPar anet er Val ue($DERCSHel per . str Ti neTol nt eger (
$Crosscut ting. get Val ueO ("Period"), "ms"))
</ Behavi or al >
</ Adapt ati ons>
</ Peri odi cTi m ng>

<Schedul i ngSupport >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="Schedul er" Order="0" Model Level ="no">
/'l Schedul i ngSupport. Begi n
\npublic static EDFSchedul er schedul er = new EDFSchedul er () ;
\npublic void idleTask() {}
\'n// Schedul i ngSupport. End
</ Structural >
<Behavi oral Nanme="SetupConcurrentActivities" O der="0" Mdel Level ="no">
\'n // Schedul i ngSupport
\ nSchedul er. set Def aul t Schedul er (schedul er);
\'n
#foreach($bj in $Message. Tri gger edBehavi or. Behari or al El ement s)
#i f ($DERCSHel per. i sAssi gnment Of Acti veQbj ect ($bj))
#if ($Action.isVariabl eAssignment())
#set ($Obj Name = $Obj . Vari abl e. Nane)

192

#el sei f ($Qbj . Obj ect)

#set ($Obj Name = $Qbj . Gbj ect. Name + '.' + $Obj . Attri bute. Nane)
t#el se

#set ($Obj Name = $Obj . Attri bute. Nane)
#end

\n
\ n${ vj Nane}. addToFeasi bi lity();
\ n${ oj Nane}.start();
\'n
#end
#end
\n
\ nschedul er. set upTi ner ()
\ ni dl eTask();
</ Behavi or al >
</ Adapt ati ons>
</ Schedul i ngSupport >

<Ti meBoundedActi vity>
<Adapt ati ons>
<Structural Nane="Ti neCount|nfrastructure" Order="0" Mdel Level ="no">
/1 Ti meBoundedActivity. Ti meCount | nfrastructure
</ Structural >
<Behavi oral Name="Start Counting" Order="0" Mdel Level ="no">
/1 Ti meBoundedActivity. Start Counting
</ Behavi or al >
<Behavi oral Nanme="St opCounting" Order="0" Mbdel Level ="no">
/1 Ti meBoundedActi vity. St opCounti ng
</ Behavi or al >
</ Adapt ati ons>
</ Ti mreBoundedActi vi ty>

<' B R R o R R R R R R R R EEEEEEERE
<I--x Preci si on Package *-->
<' B R R o R R R R R R R R R EEEEEEERE
Jitter>

<Adapt ati ons>
<Behavi oral Nanme="StartTi ne" O der="0" Model Level ="no">
/1 Jitter.StartTime
</ Behavi or al >
<Behavi oral Name="VerifyTol eratedJitter" Order="0" Mdel Level ="no">
/1 Jitter.VerifyToleratedJitter
</ Behavi or al >
</ Adapt ati ons>
</Jitter>

<Tol er at edDel ay>
<Adapt ati ons>
<Behavi oral Nane="StartTi ne" O der="0" Model Level ="no">
/'l Tol eratedDel ay. Start Ti ne
</ Behavi or al >
<Behavi oral Name="VerifyTol eratedDel ay" Order="0" Mbdel Level ="no">
/'l Tol eratedDel ay. VerifyTol er at edDel ay
</ Behavi or al >
</ Adapt ati ons>
</ Tol er at edDel ay>

<C ockDrift>
<Adapt ati ons>
<Behavi oral Name="CheckC ockDrift" Order="0" Mddel Level ="no">
/1 O ockDrift.CheckC ockDrift
</ Behavi or al >
</ Adapt ati ons>
</ C ockDrift>

<Dat aFr eshness>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Name="Validitylnformation" O der="0" Mdel Level ="no">
/1 freshness: ${Attribute. Nane}
\nprivate static AbsoluteTinme ${Attribute. Name}_Validity =
new Absol ut eTi me(0, 0, 0);
\nprivate static AbsoluteTime ${Attribute. Name} _NextValidity =

193

new Absol ut eTi me(0, 0, 0)
\n
\npublic void set${Attribute. Name}Validity(int newalidity) $Options. Bl ockStart
\n ${Attribute. Nane}_Validity.set(0, newalidity,O0);
\ n$Opt i ons. Bl ockEnd
\n//freshness: ${Attribute. Nane}
\'n
</ Structural >
<Structural Name="SetValidity" O der="0" Mdel Level ="no">
#set($oj Name = "---")
#if ($Action.isVariabl eAssignment())
#set ($Obj Nane = $Action. Vari abl e. Nane)
#el sei f ($Action. Obj ect)

#set ($Obj Name = $Action. Obj ect. Nanme + '.' + $Action. Attri bute. Nane)
#el se
#set ($Obj Nane = $Action. Attri bute. Nane)
#end
/'l begin of freshness setup
\n
#f oreach($NFR in ${Crosscutting. Crosscutingl nfornations})
#if ($NFR Name == "Validity")
#if (SNFR El enent Name == $NFR. Nane)
#foreach ($Attr in
$Crosscutting. get AffectedEl enent().getAttributes())
\ n${ Cbj Nane}. set ${ Attr. Nane} Val i di t y(
$DERCSHel per. strTi meTol nt eger ($NFR. Val ue, "ns"));
/'l freshness
\n
#end
#el se
\ n${ bj Nane}. set ${ NFR. get El ement Nanme() } Val i di t y(
$DERCSHel per . str Ti neTol nt eger ($NFR. Val ue, "ns"));
/'l freshness
\n
#end
#end
#end

\n // end of freshness setup
</ Structural >
<Behavi oral Nane="VerifyFreshness" Order="0" Mddel Level ="no">
#if ($Message. Associ at edAttri bute)
if (${Message. Associ atedAttribute. Nanme} _NextValidity.conpareTo(
Clock.getTinme()) >= 0) $Options. Bl ockStart
\ n$CodeCGener at or . get Gener at edCodeFr agnent (1)
\ n$Opt i ons. Bl ockEnd
\nel se $Options. Bl ockStart
\'n ${Message. Associ at edAttri bute. Nane} =
${ Message. Associ at edAttri bute. Nanme} » 90 / 100
\ n$Opt i ons. Bl ockEnd
#end
</ Behavi or al >
<Behavi oral Nanme="Updat eFr eshness" Order="0" Mddel Level ="no">
\ n${ Message. Associ at edAttri but e. Nanme} _Next Val i di ty. set (
Cl ock.getTine());
\ n${ Message. Associ at edAt tri but e. Name} _Next Val i di ty. add(
${ Message. Associ at edAttri bute. Name} _Validity);
</ Behavi or al >
</ Adapt ati ons>
</ Dat aFr eshness>

<! mmkkkkkhkhkhkkhkhhkhkhkhhkhkhkhhhkhkhhhhkhkhhhkhkhhhkhkhhhhkhhhhhkhkhhkdhhkhhkhkhhhkhrrhhdh- - >
<I--x Synchroni zati on Package k- >
<' B R R R R R R R R R EEEEEEERE

<Concurrent AccessControl >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Name="ConcurrencyControl Mechani snt' Order="0" Mbdel Level =" no">
/'l Concurrent AccessControl . ConcurrencyCont rol Mechani sm
</ Structural >
<Behavi oral Name="Acqui reAccess" Order="0" Mdel Level ="no">
/1 Concurrent AccessControl . Aqui r eAccess
</ Behavi or al >
<Behavi oral Nanme="Rel easeAccess" Order="0" Mbdel Level ="no">

194

/1 Concurrent AccessControl . Rel easeAccess
</ Behavi or al >
</ Adapt ati ons>
</ Concurrent AccessCont rol >

<MessageSynchr oni zati on>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Name="WaitingMechani sm' Order="0" Model Level ="no">
/1 MessageSynchroni zati on. Wi ti ngMechani sm
</ Structural >
<Behavi oral Nanme="Wai t For Acknowl edge" Order="0" Model Level =" no">
/'l MessageSynchroni zati on. Wai t For Acknowl edge
</ Behavi or al >
</ Adapt ati ons>
</ MessageSynchr oni zati on>

<! mmkkkkkhkhkkhkhkhhkhkhkhhkhkhkhhhkhkhhhhkhkhhkhkhkhhhkhkhhhhkhhhhhkhkhhkdhhkhhhhhhkhhrhhdh- - >
<l--x Communi cati on Package K- - >
<! mmkkkkkhkkkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhhkhhhhkhkhhhkhkhhhhkhhhhhkhkhhkdhhkhhhhhhkhhrhhkh- - >
<MessageAck>

<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Name="Acknow edgnent Mechani st Order="0" Model Level ="no">
/'l MessageAck. Acknowl edgeMechani sm
</ Structural >
<Behavi oral Nanme="Si gnal Acknowl edgnment Mechani sm' Order ="0" Mbdel Level ="no" >
/1 MessageAck. Si gnal Acknowl edgeMechani sm
</ Behavi or al >
<Behavi oral Nanme="SendAcknow edgnent” Order="0" Model Level ="no">
/'l MessageAck. SendAcknow edge
</ Behavi or al >
</ Adapt ati ons>
</ MessageAck>

<Messagel ntegrity>
<Decl ar at i on></ Decl ar ati on>
<Adapt ati ons>
<Behavi oral Name="Ceneratelntegritylnfo" O der="0" Mdel Level ="no">
/'l Messagel ntegrity. Generatelntegritylnfo
</ Behavi or al >
<Behavi oral Nane="Verifylntegritylnfo" O der="0" Mdel Level ="no">
/1l Messagelntegrity.Verifylntegritylnfo
</ Behavi or al >
</ Adapt ati ons>
</ Messagel ntegrity>

<MessageConpr essi on>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Behavi oral Nanme="Conpress" O der="0" Model Level ="no">
/1 MessageConpr essi on. Conpr ess
</ Behavi or al >
<Behavi oral Nanme="Deconpress" O der="0" Mdel Level ="no">
/'l MessageConpr essi on. Deconpr ess
</ Behavi or al >
</ Adapt ati ons>
</ MessageConpr essi on>

<' B R R R R R R R R R R R EEEEEEERE
<I--x TaskAl | ocati on Package k- >
<! mmkkkkkhkkkhkhkhhkhkhkhhkhkhkhhhkhkhhhhkhkhhhkhkhhhkhhhhkhkhhhhhkhkhhkdhhkhhhhhhkhrrhhdh- - >

<NodeSt at usRet ri eval >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nanme="Alive" Oder="0" Mdel Level ="no">
/1 NodeStatusRetrieval.Alive
</ Structural >
<Behavi oral Nanme="Processi ngLoad" Order="0" Mddel Level ="no">
/1 NodeStatusRetrieval . Processi ngLoad
</ Behavi or al >
<Behavi oral Name="MessageThroughput” Order="0" Model Level ="no">
/1 NodeSt atusRetri eval . MessageThr oughput

195

</ Behavi or al >
</ Adapt ati ons>
</ NodeSt at usRet ri eval >

<TaskM grati on>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Behavi oral Name="M grate" Order="0" Mdel Level ="no">
/1l TaskM gration. M grate
</ Behavi or al >
<Structural Nanme="M grationMechani sm' Order="0" Mdel Level ="no">
/1 TaskM gration. M grati onMechani sm
</ Structural >
</ Adapt ati ons>
</ TaskM grati on>

<' B R R R R R R R EEEEEEERE
<I--x Enbedded Package * - - >
<' B R R O R R R R R EEEEEEERE

<HwAr eaMoni t ori ng>
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nanme="HwAreMonitoringMechani sm O der="0" Model Level ="no">
/| HwAr eaMoni t ori ng. HWAr eMoni t or i ngMechani sm
</ Structural >
<Behavi oral Name="I|ncreaseAreaUsage" O der="0" Model Level ="no">
/'l HwAr eaMoni t ori ng. | ncr easeAr eaUsage
</ Behavi or al >
<Behavi oral Nanme="Decr easeAreaUsage" O der="0" Model Level ="no">
/1 HwAr eaMoni t ori ng. Decr easeAr eaUsage
</ Behavi or al >
</ Adapt ati ons>
</ HwAr eaMoni t or i ng>

<HwAr eaCont r ol >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nanme="HwAreaControl Policy" O der="0" Mdel Level ="no">
/'l HwWAreaControl .| nsertControl Mechani sm
</ Structural >
</ Adapt ati ons>
</ HwAr eaCont r ol >

<Ener gyMoni t ori ng>
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Nane="EnergyMonitoringMechani snt Order="0" Mdel Level ="no">
/'l Ener gyMoni t ori ng. Ener gyMoni t ori ngMechani sm
</ Structural >
<Behavi oral Name="Starti ngEner gyAnmount" Order="0" Mbdel Level ="no">
/| EnergyMonitoring. StartingEner gyAmount
</ Behavi or al >
<Behavi oral Nanme="Cal cul at eEner gyConsunpti on" Order="0" Model Level ="no">
/| Ener gyMoni toring. Cal cul at eEner gyConsunpti on
</ Behavi or al >
</ Adapt ati ons>
</ Ener gyMoni t ori ng>

<Ener gyCont r ol >
<Decl ar ati on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nanme="EnergyConsunptionPolicy" O der="0" Model Level ="no">
/1 EnergyControl.EnergyConsunptionPolicy
</ Structural >
</ Adapt ati ons>
</ Ener gyCont r ol >

<Menor yUsageMoni t ori ng>
<Decl ar at i on></ Decl ar ati on>
<Adapt ati ons>
<Structural Nanme="MenoryMonitoringMechani sm' O der="0" Mbddel Level ="no">
/1 MenmoryUsageMboni t ori ng. Menor yMoni t ori ngMechani sm
</ Structural >

196

<Behavi oral Name="I|ncreaseMenoryUsage" O der="0" Model Level =" no">
/1 MemoryUsageMbni tori ng. | ncr easeMenor yUsage

</ Behavi or al >

<Behavi oral Nanme="DecreaseMenoryUsage" O der="0" Mdel Level ="no">
/1 MemoryUsageMoni t ori ng. Decr easeMenor yUsage

</ Behavi or al >

</ Adapt ati ons>
</ Menor yUsageMoni t ori ng>

<Menor yCont r ol >
<Decl ar ati on></ Decl arati on>
<Adapt ati ons>
<Structural Name="MenoryUsageControl Policy" O der="0" Model Level ="no">
/1 MenoryControl . MenoryUsageControl Policy
</ Structural >
</ Adapt ati ons>
</ Menor yCont r ol >
</ Aspect s>
</ Sof t war e>

<Har dwar e></ Har dwar e>
</ Appl i cation>

<!-- Mapping rules for PLATFORM CCDE - -
<Pl at f or nConfi gurati on>
<Sof t war e>
<Sour ceOptions QutputDirectory="platforn></SourceOpti ons>
<Files xm ns:xi="http://ww. w3. org/ 2001/ XI ncl ude" >

<xi :include href="./pl atform RT-Fent oJava/ Absol uteTi ne. xm "/ >

<xi :include href="./platformRT-FentoJava/ Abstract Pool i ngServer.xm "/ >

<xi:include href="./platformRT-FentoJaval/ Aperi odi cParaneters. xm"/>

<xi :include href="./platform RT-FentoJava/ AsyncEvent.xm "/>

<xi:include href="./platformRT-FentoJava/ AsyncEvent Handl er. xm "/ >

<xi :include href="./pl atform RT-Fent oJava/ AsyncEvent sMechani sm xnm "/ >

<xi:include href="./platformRT-FentoJava/C ock. xm "/ >

<xi :include href="./pl atform RT-Fent oJava/ EDFSchedul er.xm "/ >

<xi:include href="./platformRT-FentoJaval/ Fi xedPriorityHWchedul er.xm "/>

<xi :include href="./platformRT-FentoJava/ H ghResol uti onTi ne. xm "/ >

<xi :include href="./platform RT-FentoJava/ H\Real ti neThr ead. xm "/ >

<xi:include href="./platformRT-FentoJava/l nterruptPool i ngMechani sm xm "/>

<xi :include href="./platform RT-Fent oJava/ OneShot Ti ner.xm "/ >

<xi:include href="./platformRT-FentoJava/ Peri odi cParaneters. xm "/ >

<xi :include href="./platform RT-FentoJava/ Peri odi cTi ner.xm "/ >

<xi:include href="./platformRT-FentoJaval/ Pool i ngServer2.xm "/ >

<xi:include href="./platformRT-FentoJaval/ Pool i ngServer1.xm "/ >

<xi :include href="./platformRT-FentoJava/ PriorityParaneters.xm"/>

<xi:include href="./platformRT-FentoJaval/PrioritySchedul er.xm"/>

<xi :include href="./platform RT-FentoJava/ PrioritySchedul er2. xm"/>

<xi:include href="./platformRT-FentoJava/ Rat eMonot oni cSchedul er.xm "/ >

<xi :include href="./platform RT-FentoJava/ Real ti neThread. xm "/>

<xi:include href="./platformRT-FentoJava/ Rel ativeTi me.xm "/>

<xi :include href="./pl atform RT-Fent oJava/ Rel easeParaneters. xm "/>

<xi :include href="./platform RT-FentoJava/ Schedul er.xm "/ >

<xi:include href="./platformRT-FentoJava/ Schedul i ngPar aneters. xm "/ >

<xi :include href="./platformRT-FentoJava/ Sporadi cParaneters. xm "/ >

<xi:include href="./platformRT-FentoJaval/ Ti ner.xm"/>

<xi :include href="./platform RT-FentoJava/ Ti neTri gger edReal ti neThread. xni "/ >

<xi:include href="./platformRT-FentoJaval/ Ti neTri gger edSchedul er.xm "/ >
</ Fil es>

</ Sof t war e>
<Har dwar e></ Har dwar e>
</ Pl at f ormConfi gurati on>
</ RT- Fent oJava>
</ Pl atforns>

C.2 Platform Configuration

<Fil e Name="Schedul er.java" QutputDirectory="saito.sashim .realtine"
Aspect s="Schedul i ngSupport ">
<Fr agnent >

197

package saito.sashim.realting;
import saito.sashim.x*;

public abstract class Schedul er inplenments Tinerlnterface ({
protected static Schedul er c_defaul t Schedul er = null;
protected static int m MiinBaseStackPoi nter = OxFFFF;

protected int mcurrentTask = -1;
protected bool ean m Processing = fal se;
</ Fragnment >
<Fragnent Aspects="Ti m ngAttributes">
public final static int MAX_APERI CDI C_TASKS = 16;
protected static RealtimeThread m Aperi odi cTaskList[] =
{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};
protected int m AperiodicListCount = O;
</ Fragnment >
<Fragnent Aspects="PeriodicTi m ng">
public final static int MAX_PERI CDI C_TASKS = 16;
protected static RealtimeThread m Peri odi cTaskList[] =
{null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null};
protected int m PeriodicListCount = O;
</ Fragnment >
<Fr agnent >
public abstract bool ean isFeasible();
public abstract void runSchedul er();
protected abstract int getContextOffsetForStaticMethod();
protected abstract int getContextOffsetForVirtual Met hod();

protected static int indexOf(RealtimeThread list[], int |istCount,
Real ti meThread schedul abl e) {
int i =0;
for (; (i &t; listCount) &anp; &np; (list[i] !'= schedul able); i++);
if (i &t; listCount)
return i;
el se
return -1,

}

protected static void addToLi stOrderByPriority(RealtineThread list[],
int listCount, RealtineThread schedul able, int priority) {
int i =0;
for(; (i &t; listCount) &anp; &np; (priority &t;=
((PriorityParameters)list[i].getSchedulingParaneters()).getPriority());

i ++);
if (i &t; listCount) {
for(int j =1listCount; j >1i; j--)
list[j] = list[j-1];
}

list[i] = schedul abl e;

}

protect ed bool ean addToFeasi bility(RealtinmeThread schedul able) {
</ Fragment >
<Fragnent Aspects="PeriodicTi m ng">
if ((m_PeriodicListCount & t; (MAX_PERI ODI C_TASKS-1)) &anp; &anp;
(i ndexOr (schedul able) == -1)) {
m Peri odi cTaskLi st [m Peri odi cLi st Count] = schedul abl e;
m _Peri odi cLi st Count ++;
return true;
}
el se
</ Fragment >
<Fr agnent >
return fal se;
}

protected bool ean renoveFronfeasi bility(RealtimeThread schedul able) {
</ Fragnent >
<Fragnent Aspects="Peri odicTi m ng">
if (m_PeriodicListCount > 0) {
int i =0;

198

for(; (i & t; mPeriodicListCount) &anp;&np;
(m_PeriodicTaskList[i] != schedul able); i++);
if (i &t; mPeriodicListCount) {
m Periodi cTaskList[i] = null;
m Peri odi cLi st Count - - ;
if (i &t; mPeriodicListCount) {
int j =i;
for(; (j & t;= mPeriodicListCount); j++)
m Peri odi cTaskList[j] = m Periodi cTaskList[]j +1];
m Peri odi cTaskList[j] = null;
}
return true;
}
el se
return fal se;
}
el se
</ Fragment >
<Fr agnent >
return fal se;
}

public static Schedul er getDefaul t Schedul er () {
return c_defaul t Schedul er;

}

protected int indexOf(Realti neThread schedul able) {
</ Fragnment >
<Fragnent Aspects="Peri odicTi m ng">

int i =0;
for (; (i &t; MAX_PERI ODI C_TASKS) &anp; &anp;
(m_PeriodicTaskList[i] != schedul able); i++);
if (i &t; MAX_PERI QDI C_TASKS)
return i;
el se

</ Fragment >
<Fragnent >

return -1;
}
publ i c bool ean i sAddedToFeasi bility(Real ti neThread schedul able) {
return (indexOr(schedulable) '= -1);
}

public static void setDefaultSchedul er(Schedul er scheduler) {
c_def aul t Schedul er = schedul er;

}

public static void saveMai nContext () {
m_Mai nBaseSt ackPoi nt er = Fent oJavaSO. saveCTX() +
get Def aul t Schedul er (). get Cont ext O f set For St ati cMet hod() ;
}

public static void restoreMinContext() {

c_def aul t Schedul er. m Processing = fal se;

Fent oJavaSO. r est or eCTX(m Mai nBaseSt ackPoi nter);
}

public bool ean i sAll TasksFi ni shed() {

bool ean result = true;
</ Fragment >
<Fragnent Aspects="Peri odicTi m ng">

for (int i=0; (i & t; mPeriodicListCount) &anp; &np; result; i++)

result &anp;= m Periodi cTaskList[i].isFinished();

</ Fragnment >
<Fr agnent >

return result;

}

public void setupTiner() {
Fent oJaval nt er r upt Syst em set Enabl e(0x2F) ;
Fent oJavaTi ner. set Ti ner 0(100) ;
Fent oJavaTi ner.start Ti mer0();

}

}

public void tfOMethod() {
Fent oJaval nt er r upt Syst em set Enabl e(Ox6F) ;
Fent oJavaTi ner. st opTi mer0() ;
if (!c_defaultSchedul er. mProcessing) {
c_defaul t Schedul er. m Processing = true;
Fent oJaval nt errupt Syst em set Enabl e(0x2F) ;
c_def aul t Schedul er. runSchedul er () ;
c_def aul t Schedul er. m Processing = fal se;
}
}

public void tfi1Method() {} // not used ! Used in Tiner objects

</ Fragment >

</ Fil

e>

C.3 Source Code Generated by GenERTICA

i npor
publ i

t saito.sashim.realtine.*;
c class Movenent Controller

private Special ConditionMvenent Control ctrl Mde;
private Environnentlnfornation envlnfo;

private Movenent!|nformation nrlnfo;

private MainRotorActuator nrAct;

private Movenent!|nformation brlnfo;

private BackRotorActuator brAct;

private int newVRRotati on;
private int newVRPace;
private int newBRRotation;
private int newBRPace;
private Alarmalarm

extends Real ti meThread {

private static RelativeTine _Cost = new Rel ativeTine(0,0,0);
private static RelativeTine _Deadline = new Rel ativeTi ne(0, 0, 0);

public void exceptionTask() {}
protected void initializeStack() {}
public void mai nTask() {}

private static RelativeTine _Period = new RelativeTi ne(0, 0, 0);

private static Periodi cParaneters _Periodi cParans =

new Peri odi cParanmeters(null, null, null, null,

public Movenent Control | er (

/1 Variabl es

Envi ronment | nformati on _envlnfo

Movenent I nformation _nrinfo
Mai nRot or Act uator _nr Act
Movenent | nformation _brinfo
BackRot or Act uat or _brAct ,
Alarm _alarm , int pDeadline
int pCost , int pPeriod)

ctrl Mode = new Speci al Condi ti onMbvenent Control ();

/'l Actions
envinfo = _envlnfo;
nrinfo = _nrinfo;
nmrAct = _nrAct;
brinfo = _brinfo;
brAct = _brAct;
alarm= _alarm

_Deadl i ne. set (0, pDeadl i ne, 0)
_Cost . set (0, pCost, 0);

get Rel easePar anet ers() . set Deadl i ne(_Deadl i ne);
get Rel easePar anet ers() . set Cost (_Cost);

_Period. set (0, pPeriod, 0);

_Periodi cPar ans. set Peri od(_Peri od);
set Rel easePar anet er s(_Peri odi cPar ans) ;

{

199

200

public Envi ronnent I nformation getenvinfo() {
/'l Vari abl es
/'l Actions
return envinfo ;
}
public void setenvlnfo(Envi ronment | nformati on _envinfo
/'l Variabl es
/'l Actions
envinfo = _envlnfo;
}
public Moverent I nformation getnrinfo() {
/'l Variabl es
/'l Actions
return nrinfo ;
}
public void setnrlnfo(Movenent | nformati on _nmrinfo)
/| Variabl es
/'l Actions

nminfo = _nrinfo;

public Mai nRot or Actuator getnrAct() {
/'l Vari abl es
/1l Actions

return nrAct ;

}
public voi d setnrAct(Mai nRot or Act uat or _nt Act) |
/'l Vari abl es
/'l Actions
nr Act = _nrAct;
}
public Movenent I nformation getbrinfo() {
/'l Vari abl es
/'l Actions
return brinfo ;
}
public void setbrlnfo(Movenent | nf ormati on _brinfo)
/'l Variabl es
/'l Actions
brinfo = _brinfo;
}

public BackRot or Actuator getbrAct() {
/1 Variabl es
/'l Actions
return brAct ;
}
public voi d setbrAct(BackRot or Act uat or _br Act) |
/| Variabl es
/'l Actions
brAct = _brAct;
}
public Alarm getalarn{) {
/'l Vari abl es
/'l Actions
return alarm;

public void setal arm(Alarm _alarm) {
/'l Vari abl es
/'l Actions

alarm= _alarm
}
public void run() {
/'l Vari abl es
int brRotation;
int brPace;
int nrRotation;
int nrPace;
float w ndSpeed;
float wi ndDirection;
float humdity;
float tenperature;
/'l Actions
while (isRunning()) {
/'l EnergyMoni toring. StartingEner gyAnount

}

}

public

/1 Vari abl

/'l Actions
if (
}
if (
} el
}

brRotation = brinfo.getRotation(); // ** REMOTE *x

/'l MessageSynchroni zati on. Wi t For Acknowl edge

brPace = brinfo.getPace(); // ** REMOTE #=*

/'l MessageSynchroni zati on. Wai t For Acknowl edge

/1 Concurrent AccessControl . Aqui r eAccess

nrRotation = nrilnfo.getRotation();

/| Concurrent AccessControl . Rel easeAccess

/1 Concurrent AccessControl . Aqui r eAccess

nrPace = nmrlnfo.getPace();

/| Concurrent AccessControl . Rel easeAccess

/1 Concurrent AccessControl . Aqui r eAccess

wi ndSpeed = envlnfo.get WndSpeed();

/1 Concurrent AccessControl . Rel easeAccess

/1 Concurrent AccessControl . Aqui r eAccess

wi ndDirection = envlnfo.getWndDirection();

/'l Concurrent AccessControl . Rel easeAccess

/1 Concurrent AccessControl . Aqui r eAccess

hum dity = envinfo.getHum dity();

/| Concurrent AccessControl . Rel easeAccess

/1 Concurrent AccessControl . Aqui r eAccess

tenperature = envlnfo.getTenperature();

/1 Concurrent AccessControl . Rel easeAccess

processl nfo(nrRotation, nrPace, brRotation, brPace,
wi ndDi rection, humdity, tenperature);

nr Act . set Rot ati on(newVRRot ati on) ;

nT Act . set Pace(new\RPace) ;

br Act . set Rotati on(newBRRotation); // ** REMOTE *=*

/1 MessageSynchroni zati on. Wai t For Acknowl edge

br Act . set Pace(newBRPace); // ** REMOTE *x*

/1 MessageSynchroni zati on. Wai t For Acknowl edge

nr Act . appl yPar aneters();

br Act . appl yParaneters(); // *+* REMOTE *=*

/1 MessageSynchroni zati on. Wai t For Acknowl edge

/'l Ener gyMoni toring. Cal cul at eEner gyConsunpti on

wai t For Next Peri od();

voi d processl nfo(int r1 , int pl1 , int r2

wi ndSpeed,

int p2

float ws , float wd , float h , float t)

es

((Cint)ws) > 15) || (((int)h) > 85 || (((int)t) > 40)) {

ctrl Mode. set Mode(Speci al Condi ti onMovenent Cont r ol . HOSTI LE_ENVI RONVENT) ;

{

ctrl Mode. get Mode() == Speci al Condi ti onMbvenent Control . NORVAL) {

newMRRot ati on = newlMRRot ation/rlxpl ;
newVRPace = (newiVRPace+pl)/r1;
newBRRot ati on = newBRRot ation/r2+p2 ;
newBRPace = (newBRPace+p2)/r2;

se {

if (ctrlMde.getMde() ==

Speci al Condi ti onMovenent Cont r ol . HOSTI LE_ENVI RONVENT) {

al armtriggerHostil eEnvironnent Al arn();
} else {

if (ctrlMde.getMde() ==

Speci al Condi ti onMovenent Control . LON FUEL) {

alarmtriggerLowruel Al arn();
} else {

if (ctrlMde.getMde() ==

Speci al Condi ti onMovenent Control . UNDER _ATTACK) {

al arm triggerUnder Att ackAl arn();

201

202

203

APPENDIX D LIST OF PUBLICATIONS

This appendix presents all publications that have beenugexti during this thesis’
period of work.

2009

FREITAS, E. P.; ALLGAYER, R. S.; WEHRMEISTER, M. A.; PEREIRE. E.; LARS-
SON, T. Supporting Platform for Heterogeneous Sensor N&tv@peration based on
Unmanned Vehicles Systems and Wireless Sensor Nodes.BE INTELLIGENT VE-
HICLES SYMPOSIUM, 2009, Xi'anProceedings...Los Alamitos: IEEE Computer
Society, 2009. p.786—791.

FREITAS, E. P.; HEIMFARTH, T.; WEHRMEISTER, M. A.; WAGNER,.R.; FER-
REIRA, A. M.; PEREIRA, C. E.; LARSSON, T. Using a Link Metrio tmprove Com-
munication Mechanisms and Real-Time Properties in an Adapiddleware for Het-
erogeneous Sensor Networks. Wdvances in Information Security and Assurance
Berlin: Springer, 2009. p.422-431.

FREITAS, E. P.; WEHRMEISTER, M. A,; FERREIRA, A. M.; PEREIRE. E.; LARS-
SON, T. Multi-Agents Supporting Reflection in a Middlewaoe Mission-Driven Het-
erogeneous Sensor Networks. In: INTERNATIONAL WORKSHOP ABENT TECH-
NOLOGY FOR SENSOR NETWORKS, 3., 2009, Budap&sbceedings.. .[S.l.: s.n.],
2009. p.25-32.

OLIVEIRA, M. F. S.; WEHRMEISTER, M. A.; NASCIMENTO, F. A.; PEEIRA, C. E;
WAGNER, F. R. High-level Design Space Exploration of Embedi®ystems Using the
Model-Driven Engineering and Aspect-Oriented Design Agghes. In:. GOMES, L.;
FERNANDES, J. M. (Ed.)Behavioral Modeling for Embedded Systems and Tech-
nologies applications for design and implementation. Hersheyorimiation Science Ref-
erence, 2009. p.114-146.

WEHRMEISTER, M. A.; FREITAS, E. P.; PEREIRA, C. E. Using G&RECA to gen-
eration code from RT-UML : a case study. In: IFAC SYMPOSIUM GW-ORMATION

CONTROL PROBLEMS IN MANUFACTURING, 13., 2009, MoscoWwroceedings. ..
[S.1.]: Elsevier Science, 2009. p.678-683.

WEHRMEISTER, M. A.; FREITAS, E. P.; PEREIRA, C. E. An Infrastture for UML-
based Code Generation Tools. In: IFIP INTERNATIONAL EMBEED SYSTEMS
SYMPOSIUM, 3., 2009, Langenargdproceedings. . [S.l.]: Springer, 2009. (to appear).

204

2008

FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSON, Using As-
pects and Component Concepts to Improve Reuse of Softwafenfibedded Systems
Product Lines. In: INTERNATIONAL SOFTWARE PRODUCT LINE CaNERENCE,
12., 2008, LimerickProceedings. . Limerick: University of Limerick, 2008. p.105-112.

FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSONR, Reflective
middleware to support mission-driven heterogeneous seretoorks. In. WORKSHOP
ON SENSOR NETWORKS AND APPLICATIONS (CO-LOCATED WITH 21STY#-
POSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN), 2008, &nado.
Proceedings. . .Porto Alegre: Universidade Federal do Rio Grande do Sul82p0-6.

FREITAS, E. P.; WEHRMEISTER, M. A.; PEREIRA, C. E.; LARSSON, Real-time
Support in Adaptable Middleware for Heterogeneous Sensawdrks. In: INTER-
NATIONAL WORKSHOP ON REAL TIME SOFTWARE (CO-LOCATED WITH IN

TERNATIONAL MULTICONFERENCE ON COMPUTER SCIENCE AND INFOR
MATION TECHNOLOGY), 2008, Wisla.Proceedings...Los Vaqueros Circle: IEEE
Computer Society Press, 2008. p.593-600.

PEREIRA, C. E.; GOTZ, M.; WEHRMEISTER, M. A.; FREITAS, E. RUNIOR, E.
T. S. Real-Time Distributed Embedded Systems: infra-stinedfor bio-inspired automa-
tion systems. InSelf-optimizing Mechatronic Systems design the future. Paderborn:
Heinz Nixdorf Institute, 2008. p.449-468.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, FPEREIRA,
C. E. A Comparison of the Use of Aspects and Objects for ModdDistributed Embed-
ded Real-Time Systems with RT-UML. In;: X WORKSHOP DE SISTEBIBE TEMPO-
REAL E EMBARCADOS (EM CONJUNTO COM XXVI SIMP6SIO BRASILEIRO
DE REDES DE COMPUTADORES), 2008, Rio de Janehoais. .. Porto Alegre: So-
ciedade Brasileira da Computacao, 2008. p.1-8.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, FPEREIRA,
C. E. Evaluating Aspect and Object-Oriented Concepts todViDistributed Embedded
Real-Time Systems Using RT-UML. In: TRIENAL WORLD CONGRE®&%® THE IN-
TERNATIONAL FEDERATION OF AUTOMATIC CONTROL, 2008, SeouPRroceed-
ings. .. [S.l.]: Elsevier Science, 2008. p.6885—-6890.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, FPEREIRA,

C. E. GenERTICA: a tool for code generation and aspects wgavn: |IEEE SYM-
POSIUM ON OBJECT ORIENTED REAL-TIME DISTRIBUTED COMPUTINGL1.,
2008, OrlandoProceedings. . Los Alamitos: IEEE Computer Society Press, 2008. p.44—
54.

WEHRMEISTER, M. A.; FREITAS, E. P.; ORFANUS, D.; RAMMIG, FPEREIRA,
C. E. A Case Study to Evaluate Pros/Cons of Aspect- and Ojjgented Paradigms
to Model Distributed Embedded Real-Time Systems. In: INNARIONAL WORK-
SHOP ON MODEL-BASED METHODOLOGIES FOR PERVASIVE AND EMBED-
DED SOFTWARE, 5., 2008, Budapes$troceedings. . .Los Alamitos: IEEE Computer
Society Press, 2008. p.44-54.

205

2007

FREITAS, E. P.; WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVAL® F. C.; WAG-
NER, F. R.; PEREIRA, C. E. Using Aspect-Oriented Concepthé&Requirements Anal-
ysis of Distributed Real-Time Embedded Systems.Hmbedded System Designtop-
ics, techniques and trends. Boston: Springer, 2007. pZ23.—

FREITAS, E. P.; WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVAL® F. C.; WAG-
NER, F. R.; PEREIRA, C. E. DERAF: a high-level aspects framdwfor distributed
embedded real-time systems design. lHarly Aspects current challenges and future
directions (lecture notes in computer science). Berlinideerg: Springer, 2007. p.55—
74.

JUNIOR, E. T. S.; WEHRMEISTER, M. A.; WAGNER, F. R.; PEREIRE, E. An
Approach to Improve Predictability in Communication Sees in Distributed Real-time
Embedded Systems. In: INTERNATIONAL WORKSHOP ON JAVA TECBNOGIES
FOR REAL-TIME AND EMBEDDED SYSTEMS, 5., 2007, Vienn&roceedings...
New York: ACM Press, 2007. p.121-126.

WEHRMEISTER, M. A.; FREITAS, E. P.; RAMMIG, F.; PEREIRA, C..EEombining
Aspects-Oriented Concepts with Model-Driven Techniquethe Design of Distributed
Embedded Real-Time Systems. In. EUROMICRO CONFERENCE OMIREIME
SYSTEMS, WORK-IN-PROGRESS SESSION, 19., 2007, Fsaceedings. . .Singa-
pore: National University of Singapore, 2007. p.49-59.

WEHRMEISTER, M. A.; FREITAS, E. P.; WAGNER, F. R.; PEREIRA, €. An
Aspect-Oriented Approach for Dealing with Non-FunctioRaquirements in a Model-
Driven Development of Distributed Embedded Real-Time &yst. In: IEEE INTERNA-
TIONAL SYMPOSIUM ON OBJECT AND COMPONENT-ORIENTED REAL-ME
DISTRIBUTED COMPUTING, 10., 2007, Santorir®roceedings. . Washington: IEEE
Computer Society, 2007. p.49-52.

2006

FREITAS, E. P.;, WEHRMEISTER, M. A.; JUNIOR, E. T. S.; CARVAI®Y F. C,
WAGNER, F. R.; PEREIRA, C. E. Using Aspects to Model Disttd Real-Time Em-
bedded Systems. In: Il WORKSHOP BRASILEIRO DE DESENVOLVEMTO DE
SOFTWARE ORIENTADO A ASPECTOS (EM CONJUNTO COM XX SIMPOSIO
BRASILEIRO DE ENGENHARIA DE SOFTWARE), 2006, FlorianopsliAnais. ..
[S.l.]: SBC, 2006. p.1-11.

NASCIMENTO, F. A.; OLIVEIRA, M. F. S.; WEHRMEISTER, M. A.; W&NER,
F. R.; PEREIRA, C. E. MDA-based Approach for Embedded Sakwaeneration from
a UML/MOF Repository. In: SYMPOSIUM ON INTEGRATED CIRCUITAND SYS-
TEMS DESIGN, 19., 2006, Ouro PretBroceedings. ..New York: ACM Press, 2006.
p.143-148.

WEHRMEISTER, M. A.; ATAIDE, F. H.; CARVALHO, F. C.; PEREIRAC. E. A Com-
parative Study of Embedded Protocols for Safety-Criticaht@ol Applications. In: IFAC
SYMPOSIUM ON INFORMATION CONTROL PROBLEMS IN MANUFACTURING,
12., 2006, Saint-Etienn@roceedings. . .[S.l.]: Elsevier Science, 2006. p.87-94.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Optimizirthe Generation
of Object-Oriented Real-Time Embedded Applications Basedhe Real-Time Speci-
fication for Java. In: IEEE/ACM DESIGN, AUTOMATION AND TESTN EUROPE,

2006, MunichProceedings. ..Los Alamitos: IEEE Computer, 2006. p.1-6.

2005

JUNIOR, E. T. S.; WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRE. E.; WAG-

NER, F. R. Design Exploration in Hw/Sw Co-design of Real-&if@bject-Oriented
Embedded Systems: the scheduler object. In: IEEE INTERRAIAL WORKSHOP

ON OBJECT-ORIENTED REAL-TIME DEPENDABLE SYSTEMS, 10., 2b0Sedona.
Proceedings. . Washington: IEEE Computer Society, 2005. p.378-388.

JUNIOR, E. T. S.; WEHRMEISTER, M. A.; CARVALHO, F. C.; BECKER.. B,;
PEREIRA, C. E.; WAGNER, F. R. Exploracdo do Espacgo de ProgmoHw/Sw Co-
design de Sistemas Tempo-Real Embarcados Orientados &€©bge objeto escalon-
ador. In: VIl WORKSHOP DE TEMPO REAL (EM CONJUNTO COM XXIII $-
P46SIO BRASILEIRO DE REDES DE COMPUTADORES), 2005, Fortaleznais. . .
[S.l.: s.n.], 2005. p.09-16.

WEHRMEISTER, M. A.; ATAIDE, F. H.; CARVALHO, F. C.; PEREIRAC. E. Assess-
ing the Use of RT-Java in Automotive Time-Triggered Applicas. In: From Specifica-
tion to Embedded Systems ApplicationNew York: Springer-Verlag, 2005. p.223-234.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Metodolagide Pro-
jeto Orientada a Objetos Baseada em Plataformas para SsfBampo-Real Embarca-
dos. In: VIl WORKSHOP DE TEMPO REAL (EM CONJUNTO COM XXIII SIM
P6SIO BRASILEIRO DE REDES DE COMPUTADORES), 2005, Fortalexnais. ..
[S.l.: s.n.], 2005. p.01-08.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Object-@nited Methodol-
ogy to the Development of Embedded Real-Time Systems. IBEIENTERNATIONAL
CONFERENCE ON INDUSTRIAL INFORMATICS, 3., 2005, PertRroceedings. ..
Los Alamitos: IEEE Computer Society, 2005. p.68-73.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. An Approadbr Design-
ing Real-Time Embedded Systems from RT-UML SpecificatitmsINTERNATIONAL
FEDERATION OF AUTOMATIC CONTROL WORLD CONGRESS, 16., 200%rague.
Proceedings. . [S.l.]: Elsevier Science, 2005.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E. Applying&SEEP Method
in the Design of a Real-Time Embedded Control System for eokitéd Wheelchair. In:
IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES ADI

FACTORY AUTOMATION, 10., 2005, CataniaProceedings...Los Alamitos: IEEE
Computer Society, 2005. p.147-184.

WEHRMEISTER, M. A.; BECKER, L. B.; PEREIRA, C. E.; WAGNER, R. An
Object-Oriented Platform-based Design Process for Endmbdeal-Time Systems. In:
IEEE INTERNATIONAL SYMPOSIUM ON OBJECT-ORIENTED REAL-TIME DIS-
TRIBUTED COMPUTING, 8., 2005, Seattleroceedings. . .Los Alamitos: IEEE Com-
puter Society, 2005. p.125-128.

