Análise do Desempenho de *Solvers* Utilizados no Pacote OpenFOAM para Resolução de Sistemas Lineares

Autora: Carolina Sehnem Festugatto
Orientador: Dr. Nilo Sérgio Medeiros Cardozo

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Laboratório de Fluidodinâmica Computacional Aplicada - LAFCA

Introdução

Na área de fluidodinâmica computacional, a modelagem de escoamentos é feita por equações diferenciais que representam as equações governantes (como balanços de massa e de quantidade de movimento).

Estas equações são discretizadas por meio de métodos numéricos, a fim de transformar um domínio de cálculo contínuo em um domínio discreto.

Essa transformação gera um sistema de equações algébricas lineares, que são então resolvidas por um método iterativo adequado.

Objetivo

Analisar a eficiência dos principais *solvers* de sistemas lineares implementados no OpenFOAM, o Método do Gradiente Conjugado e o Método Multigrid, na análise de escoamentos de fluidos Newtonianos.

Metodologia

Método do Gradiente Conjugado

Para que seja computacionalmente viável a sua utilização em sistemas de grande dimensão, é necessário o uso de um pré-condicionador, que tem como objetivo diminuir o número de iterações até a convergência. A análise de desempenho é feita comparando o tempo de simulação até atingir o estado estacionário, com cada tipo de pré-condicionador.

Método Multigrid

É sempre utilizado com um *smoother* para suavizar erros de alta frequência. A análise de desempenho é feita comparando o tempo de simulação até atingir o estado estacionário, com cada tipo de *smoother*.

Resultados

Foram realizados testes de escoamento de um fluido Newtoniano em geometrias de placas paralelas e coluna em 3D, na horizontal. Os tempos de simulação com cada método, e seus respectivos pré-condicionadores ou *smoothers*, estão representados nas Tabelas 1 e 2.

Tabela 1: geometria de placas paralelas

solver	PC/smoother	Tempo simulação (s)
GAMG	DIC	56,33
GAMG	GaussSeidel	58,36
PCG	DIC	193,47
PCG	Diagonal	338,45

Tabela 2: geometria de coluna em 3D

PC/smoother	Tempo simulação (s)
DIC	850,79
GaussSeidel	783,62
DIC	1348,91
Diagonal	1892,35
	DIC GaussSeidel DIC

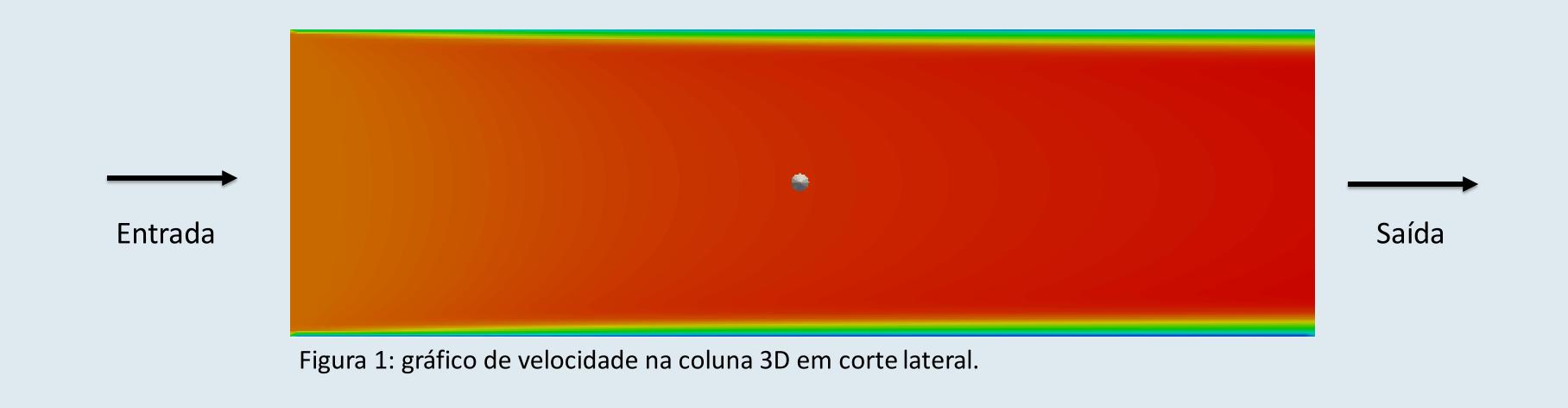
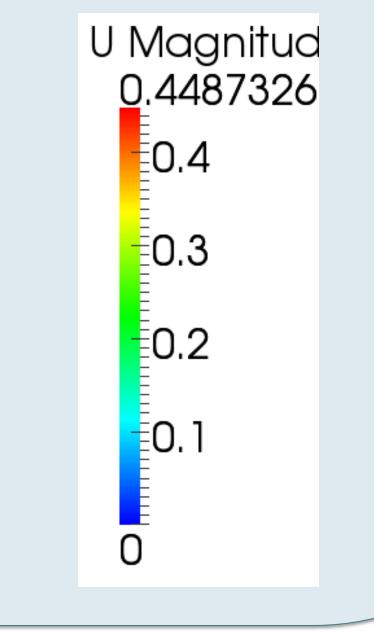



Figura 2: gráfico de velocidade na coluna 3D em corte transversal.

Conclusões

Foi possível determinar que há diferenças significativas entre a utilização dos solvers, bem como seus respectivos smoothers e pré-condicionadores, frente ao tempo de total de simulação. Esta diferença ocorre principalmente devido ao número de iterações por passo de tempo em cada método, sendo o PCG/diagonal o método com o maior número de iterações por passo de tempo, e o GAMG/DIC com o menor número de iterações por passo de tempo. Outros tipos de geometria estão em fase de testes.

