

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Síntese de Novos Compostos com Núcleo Perileno Bisimida
Autor	GUILHERME ARAUJO
Orientador	ALOIR ANTONIO MERLO

Título do trabalho: Síntese de Novos Compostos com Núcleo Perileno Bisimida

Aluno de Iniciação Científica: Guilherme Araújo

Orientador: Aloir Antonio Merlo

Instituição de Origem: Universidade Federal do Rio Grande do Sul

Perileno bisimida é uma molécula com dois anéis naftalênicos fundidos e dois grupos imida. Possui forte interação π-stacking em seu núcleo, o que gera uma estrutura muito condensada, com uma densa nuvem eletrônica. Assim, compostos com núcleo perileno bisimida são muito estáveis e possuem aplicações na fabricação de corantes, células solares e transistores orgânicos. Como o perileno bisimida possui um alto grau de empacotamento, a sua solubilidade em solventes orgânicos é muito baixa, o que torna difícil o seu manuseio. Para conseguir aumentar a sua solubilidade, teve-se a ideia de alquilar tanto o grupo imida quanto as baías. Primeiro, planeja-se alquilar o grupo imida com um composto bicaudal para diminuir as interações intermoleculares para depois conseguir adicionar o grupo isoxazolina nas baías, conforme demonstra a figura 1.

Figura 1. Molécula alvo (5) que será sintetizada neste trabalho.

Para fazer a alquilação da imida 1 e adicionar o grupo bicaudal 2 (esquema 1) serão utilizados os mecanismos de *Ullmann*, com catalisador iodeto de cobre, e o mecanismo de *Buchwald Hartwig*, com catalisador acetato de paládio. Depois será feita uma reação de bromação (4) para assim conseguir adicionar o grupo isoxazolina (5), via substituição aromática.

Esquema 1. Rota sintética para obtenção da molécula 5.