

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Anodização de alumínio em ácido sulfúrico com posterior
	modificação do filme por tratamento anódico em ácido cítrico
Autor	TOBIAS LEIDENS
Orientador	GERHARD HANS KNORNSCHILD

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Departamento de Metalurgia Eletrocorr- Laboratório de Processos Eletroquímicos e Corrosão Autor: Tobias Leidens Orientador: Gerhard Hans Knornschild

Anodização de alumínio em ácido sulfúrico com posterior modificação do filme por tratamento anódico em ácido cítrico

A relação ganho de propriedades mecânicas por resistência à corrosão é um dos principais objetos de estudo na indústria do alumínio, principalmente aeronáutica. A adição de elementos de liga e os variados tratamentos térmicos, de modo geral, diminuem a resistência à corrosão, sendo mandatário um passo adicional para sanar essa lacuna. Nas ligas de alumínio a anodização consiste no principal tratamento superficial contra a corrosão. O estudo versa sobre um processo de proteção à corrosão de alumínio e de suas ligas através de anodização em duas etapas. O processo consiste em preparação da superfície metálica, preparação dos eletrólitos, anodização porosa e posterior anodização em banho formador de óxido barreira.

A anodização é um processo eletroquímico no qual se induz o crescimento de uma camada de óxido sobre um metal válvula. Essa por sua pode ser barreira ou porosa, dependendo do grau de dissociação do eletrólito.

A análise foi realizada na liga Al-Cu AA2024, seguindo os parâmetros de anodização anteriormente estabelecidos no mesmo estudo nas ligas AA1200 e Al 99,99%. A preparação da superfície foi feita com métodos normatizados de limpeza de ligas de alumínio, ou seja, desengraxe, decapagem alcalina e dissolução dos precipitados por ataque ácido de HNO3. Na primeira parte, formação de filme poroso utilizou-se H2SO4 entre 5 e 15% em peso e na segunda etapa preenchimento dos poros por filme barreira de ácido cítrico utilizou-se concentrações entre 0,01e 0,05 mol/l, ambas anodizações foram galvanostáticas, sendo o parâmetro de controle da primeira o tempo, esse responsável pela espessura final do filme, e na segunda etapa o potencial final, visto que a espessura do filme barreira depende linearmente com o potencial final da anodização. A validação dos resultados se deu por meio de microscopia eletrônica de varredura,

A validação dos resultados se deu por meio de microscopia eletrônica de varredura, análises de EDS, medidas do potencial de circuito aberto, voltametrias cíclicas e espectroscopia de impedância eletroquímica. Foram comparadas amostras de alumínio anodizado em ácido cítrico, ácido sulfúrico e acido sulfúrico e cítrico em duas etapas.

Anteriormente na liga AA1200 provou-se visualmente que o filme barreira engrossa através da segunda anodização. As voltametrias cíclicas mostram um Epite intermediário do filme realizado em duas etapas, isso comparado a filme barreira e ao filme poroso, que respectivamente possuem menor e maior potencial de pite. No diagrama de Tafel (Log IxE), para o filme ácido sulfúrico a densidade de corrente assume um valor aproximadamente constante, indicando passividade. Já os nos outros dois filmes, há um aumento contínuo na densidade de corrente com a polarização e esses atingem um máximo de corrente superior ao filme poroso.