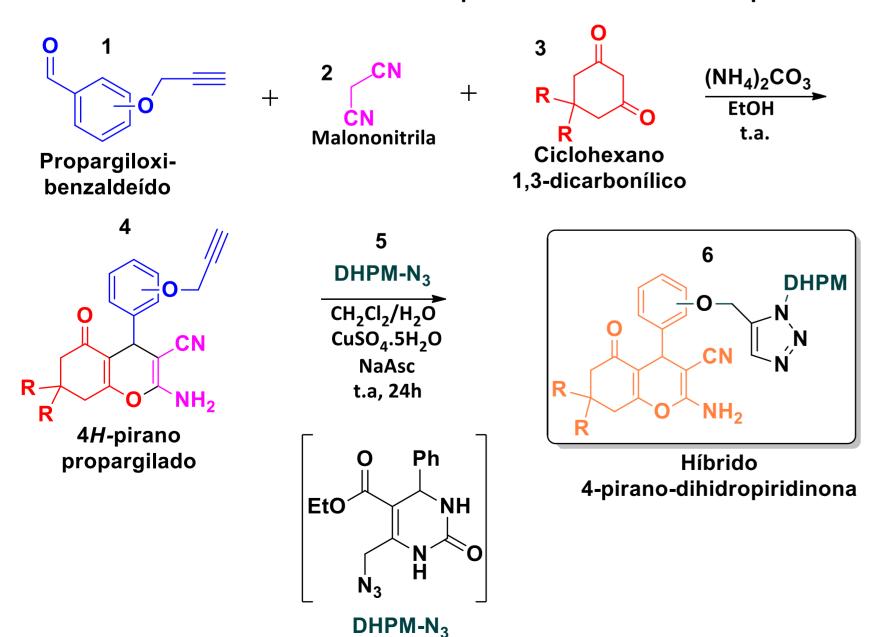


Síntese de híbridos 4*H*-Pirano-Dihidropirimidinona através de reações de cicloadição azida-alcino catalisada por Cu(I)

Esthéfani Peixoto Guedes (IC)* e Dennis Russowsky (PQ)

*esthefani_guedes@hotmail.com


Laboratório de Sínteses Orgânicas (LSO K-210), Universidade Federal do Rio Grande do Sul

INTRODUÇÃO

As reações multicomponentes (RMCs) são reações onde três ou mais reagentes são postos a reagir em um mesmo vaso reacional. Através de reações desse tipo foram sintetizados 4*H*-Piranos e Dihidropirimidinonas (DHPM), compostos que podem apresentar diversas propriedades farmacológicas.¹ A hibridização dessas duas moléculas foi realizada via reação de cicloadição azida-alcino catalisada por Cu(I) (CuAAC)² buscando a preparação de compostos multifuncionais.³ Esses compostos têm trazido resultados promissores pois podem atuar em mais de um alvo molecular diminuindo os efeitos colaterais.

RESULTADOS & DISCUSSÕES

síntese dos Propargiloxi-4*H*-Piranos foi alcançada utilizando-se reação **RMC** uma entre propargiloxibenzaldeído 1 (1 mmol), malononitrila 2 (1 mmol) e compostos dicarbonílicos 3 (1 mmol) na presença de $(NH_4)_2CO_3$ como catalisador e etanol como solvente à temperatura ambiente (t.a.), com tempo reacional variando de 40-70 minutos. Os compostos híbridos a partir dos Propargiloxi-4*H*-Piranos **4** (0,2 mmol) e azido-DHPM **5** (0,2 mmol) foram sintetizados via reação CuAAC na presença de $Cu(SO_4)_2$ (0,02 mmol), ascorbato de sódio (0,02 mmol), água e diclorometano como solvente em t.a. O tempo reacional durou 24h, e a purificação dos compostos desejados deu-se através de cromatografia em coluna. A rota de síntese está apresentada no Esquema 1.

Esquema 1: Esquema geral.

Tabela 1: 4-Piranos-Dihidropiridinonas sintetizados.

Entrada	6	R	Rend. (%)
1	6a	Н	57
2	6b	Me	56
3	6c	Н	60
4	6d	Me	57
5	6e	Н	58
6	6f	Me	58
7	6g	Н	59
8	6h	Me	58
9	6i	Н	58
10	6j	Me	57

CONCLUSÕES

Com esse trabalho foi possível realizar a síntese de novos híbridos 4*H*-Piranos-DHPM a partir de uma série de piranos propargilados, em diferentes posições, e azido-DHPM, demostrando que as metodologias propostas para as etapas foram realizadas com eficácia.

AGRADECIMENTOS

¹ Bihani, M.; Bora, P. P.; Bez, G. *Journal of Chemistry.* **2013**, 24, 92.

² L. Liang, D.; Astruc. Cood. Chem. Rev. **2011**, 255, 2933.

³ Bansal, Y.; Silakari, O. Eur J. Med. Chem. **2014**, 76, 31.