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AbstractThe main aims of this thesis are to provide an approach to the parallel composition of graphgrammars and a semantics for graph grammars, called the unfolding semantics, in which theaspects of concurrency and compositionality with respect to the parallel composition play acentral role.The parallel composition of graph grammar allows the composition of grammars withrespect to a shared part (that may be empty), and is based on parallel and amalgamatedcomposition of the rules of the component grammars. Moreover, the result of the compositionis suitably syntactically and semantically related to the component grammars.The unfolding semantics of a graph grammar is a true concurrent, branching structuresemantics in which states (graphs) as well as changes of states (derivations) are represented.The unfolding can be constructed incrementally, and we show that this yields the same resultas a construction based on gluing of the deterministic computations of a grammar. Moreover,the unfolding of a graph grammar is itself a graph grammar that belong to a special class ofgraph grammars: the occurrence graph grammars. Here this class is de�ned axiomatically,and the members of this class can be seen as grammars that represent (deterministic andnon-deterministic) computations of another grammars.The semantics of a grammar obtained as the parallel composition of other grammars isisomorphic to the composition of the semantics of the component grammars. As the purposeof the parallel composition is to be a composition for concurrent and reactive systems, thefact that this composition is compatible with a true concurrency semantics is an attractiveresult.
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ZusammenfassungDas Hauptziel dieser Arbeit ist es, einen Ansatz f�ur die parallele Komposition von Graph-Grammatiken und eine Unfolding-Semantik genannte Semantik f�ur Graph-Grammatikenbereitzustellen, in der die Aspekte Nebenl�au�gkeit und Kompositionalit�at bzgl. der paral-lelen Komposition eine zentrale Rolle einnehmen.Die parallele Komposition von Graph-Grammatiken erlaubt die Komposition von Gram-matiken bzgl. eines gemeinsamen (m�oglicherweise leeren) Anteils und basiert auf der parallelenund amalgamierten Komposition von Regeln der komponierten Grammtiken. Dar�uber hin-aus ist das Kompositionsergebnis syntaktisch und semantisch in geeigneter Weise mit denkomponierten Grammatiken verkn�upft.Die Unfolding-Semantik einer Graph-Grammatik ist eine echt nebenl�au�ge, verzweigendeSemantik, in der sowohl Zust�ande (Graphen) als auch Zustands�anderungen (Ableitungen)repr�asentiert sind. Das Unfolding kann inkrementell konstruiert werden und es wird gezeigt,da� dies das gleiche Result liefert wie die Verklebung der deterministischen Berechnungeneiner Grammatik Dar�uberhinaus ist das Unfolding einer Graph-Grammatik selbst eine Graph-Grammatik, die einer speziellen Klasse von Graph-Grammatiken angeh�ort: den Occurrence-Grammatiken. Hier wird diese Klasse axiomatisch de�niert und die Elemente dieser Klassek�onnen als Grammatiken gesehen werden, die (deterministische und nicht-deterministische)Berechnungen einer anderen Grammatik repr�asentieren.Die Semantik einer Grammatik, die aus der parallelen Komposition anderer Grammati-ken entstanden ist, ist isomorph zur Komposition der Semantiken der komponierten Gram-matiken. Dieses Kompatibilit�atsresultat verbindet die parallele Komposition und die Un-folding Semantik in enger Weise. Da der Zweck der parallelen Komposition die Kom-position nebenl�au�ger Systeme ist, stellt die Kompatibilit�at von Komposition und Ne-benl�au�gkeitssemantik ein attraktives Ergebnis dar.
ii
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1IntroductionIn the last years, concurrent systems have gained more and more importance. This kind ofsystems usually consists of several autonomous components that run in parallel and interactwith each other (for example, via messages). Although there are already many concurrentsystems implemented and working, there is still a great amount of fear that there may beundiscovered bugs within each of these systems, that probably will only be discovered in crit-ical situations. The complexity of a concurrent system is much bigger than the complexity ofa sequential system because the interactions of independent components a�ects the behaviourof the whole system, such that it is not enough to know that each component works as ex-pected to know that the whole system works as expected, but we also have to know how eachcomponent reacts to outside in
uences and how each component in
uences its outside whileit is running. Many systems that work \correctly" when they run as stand-alone systems maygenerate many unexpected and unwanted results when combined with others. Therefore, theexistence of formal methods that allow to prove that the system really works as expected iseven more important than for the sequential case. Moreover, as concurrent systems are usu-ally composed of smaller systems that work cooperatively together to reach some goal, waysof composing a concurrent system from smaller components are needed. This compositionshall obviously be not only a syntactical way of composing systems, but shall assure thatthe system generated from the components by applying this composition operator does notbehave in an unexpected (or unspeci�ed) way.Graph grammars [Ehr79] have originated from Chomsky grammars by substituting thereplacement of strings through the replacement of graphs. Very soon it was noticed thatgraph grammars are very well suited to the speci�cation of concurrent systems: a state of thesystem is represented by a graph in which di�erent rules may be applied at the same time. Toreach consistent results, not every set of rules may be applied at the same time to the graphrepresenting the state. A great part of the theory of algebraic graph grammars deals with�nding conditions under which the concurrent application of a set of rules leads to the sameresults as corresponding sequential applications of the same rules. By using di�erent kindsof graphical representation for vertices and edges for di�erent kinds of objects of a system,a graph becomes even more a powerful and expressive means of describing complex states.By representing states via graphs and changes of states via rules (whose left- and right-handsides are graphs and are connected in some compatible way) one can achieve a quite goodand understandable description of a complex system. Therefore, graph grammars seem to be1



2 1. Introductiona promising formalism for the description of concurrent and reactive systems.Recently, graph grammars have started being used for the speci�cation of bigger systems.This raised the question about compatible syntactical and semantical composition operatorsfor graph grammars. Classically, a graph grammar is de�ned as a whole and not obtained byits component grammars. Correspondingly, the usual semantics of graph grammars (basedon the application of rules) does not rely on the semantics of the possible \subgrammars" ofa grammar, although the application of rules has a local character. In the last years, �rstattempts have been made towards a compositional semantics for graph grammars.Indeed,compositional semantics for graph transformation systems (graph grammars without initialgraph) have been achieved in the framework of Double-Pushout graph grammars in [CH95,HCEL96] using an interleaving semantics that is compatible with a union operator, and inthe framework of ESM (Extended Structure Morphism) systems in [Jan93, Jan96] using aprocess semantics that is compatible with the union of ESM systems. These two approachesare based on graph transformation systems, that is, graph grammars without an initial graph.The ability to specify an initial state for a system may have advantages for some applications.For speci�cation purposes, the initial state has the role of restricting the computations that areallowed in the system and also the reachable states. Therefore, the speci�cation of a initialstate has a considerable e�ect on the language semantics of a graph grammar (reachablegraphs) { because without an initial graph the language semantics would always consist ofall graphs { and thus also on the analysis properties of a grammar, like deadlock, mutualexclusion, reachability and liveness properties. The same set of rules, with di�erent initialstates may exhibit very di�erent behaviours.The main aims of this thesis are to provide an approach to the paral-lel composition of graph grammars and a semantics for graph grammars,called the unfolding semantics, in which the aspects of concurrency andcompositionality with respect to the parallel composition play a centralrole.According to this general aim, syntactical operators to compose grammars will be intro-duced, as well as a semantical model that is particularly well-suited for concurrent systems,and it will be shown that this semantics, called unfolding semantics, is compositional withrespect to the syntactical composition operators. More concretely, the following results areachieved in this thesis:Parallel Composition : A new concept of parallel composition of graph grammars is pre-sented. The characteristics of this composition are:� The initial (start) graph is taken into account.� The composition of two grammars can be based on a shared part (cooperativeparallel composition), or be a composition without any shared parts (pure parallelcomposition).� The composition is based on specialization morphisms. These morphisms expressthe fact that both components to be composed are specializations of the sharedparts.� The result of the composition is suitably syntactically and semantically related tothe component grammars.



3Unfolding Semantics : A new semantical model, called unfolding semantics, for graphgrammars in which the aspects of concurrency and compositionality play a central roleis presented. The main characteristics of this semantics are:� It is a true concurrency semantics.� It is a branching-structure semantics: non-determinism is represented explicitly.� It is abstract: results of derivations are described up to isomorphism.� The initial graph is taken into account at the semantical level.� Not only actions (and relationships among them) but also data (states) are repre-sented at the semantical level.� The unfolding is constructed incrementally.� A number of important relationships that describe a system speci�ed by a graphgrammar, like the causal dependency, con
ict and occurrence relations, are rep-resented in the unfolding semantics. These relationships provide a good startingpoint to for analysis techniques for graph grammars.� The unfolding semantics represents all sequential (and concurrent) derivations ofa graph grammar.Compositionality : The unfolding semantics is compositional with respect to the parallelcomposition of graph grammars.Although parallel composition and unfolding semantics can be considered as stand-alonetopics, to achieve the desired compositionality of the semantics many decisions taken inde�ning each of these constructions have in
uenced each other. These decisions will bediscussed when the corresponding restrictions are made.Many di�erent ways of composing graph grammars have already been de�ned in theliterature, for example the composition of classes in [Kor96] and the DIEGO approach [TS95].There are also many di�erent kinds of concurrent semantics for graph grammars, for exampleprocess semantics [Jan93, KR95, CMR96a] and event structures semantics [Sch94, CEL+94a,Kor95, CEL+96b]. The relationship between these approaches and the one introduced in thisthesis will be discussed in more details in Chap. 7. The main advantage of our approachwith respect to other existing ones is the compatibility of a true concurrency semantics withrespect to the parallel composition operators within a framework of graph grammars. Thecompositionality of the unfolding with respect to the parallel composition gives an interestingaspect for the choice of type of composition and/or semantics to use. If one is interestedin a concurrent semantics, the unfolding semantics is a good choice because, besides beinga true-concurrent, branching structure semantics, it o�ers syntactical parallel compositionoperators that are compatible with it. If one is interested in composition operators for graphgrammars, the parallel composition o�ers an unfolding semantics that is compatible with it.Another contribution of this thesis is the de�nition of a class of graph grammars that canbe considered as computations, in the sense that each rule of such a grammar represents aderivation step (of another grammar). These grammars, called occurrence graph grammars,can be used to represent deterministic and non-deterministic processes of graph grammarsin the same way occurrence nets [NPW81] can be used to describe processes of Petri nets[GR83, BD87]. In the case of nets, occurrence nets are nets that are acyclic in which therelationships between transitions can be described by a causal and a con
ict relationships.



4 1. IntroductionIn the case of graph grammars, these two relationships may not be enough to characterizethe computation of a graph grammar. The fact that, especially in view of the preservationof items, the causality and con
ict relationships may not be enough to describe suitably aconcurrent system have been discussed in [JK93]. We will de�ne concrete relationships thatseem to capture the kernel of graph grammar computations. Moreover, it turns out thatthe unfolding of a graph grammar is an occurrence graph grammar. This fact means thatthe unfolding semantics enjoys one of the main advantages of an event structure semantics,that is the ability to reason about computations based on suitable relationships betweenthe computation units (derivation steps) of a system. The unfolding also enjoys one of theadvantages of the process semantics for graph grammars, that is the ability to describe states(as graphs). Therefore we believe that the unfolding semantics is a quite promising semanticsfor graph grammars, and that it can be used as a basis for analysis methods for graphgrammars (as the unfolding semantics of Petri nets { see [McM92, McM95]).The basic idea of parallel composition and unfolding presented in this thesis for graphgrammars was inspired in corresponding ones for Petri nets as they can be found in [MMS94].However, here there are two remarks that shall be made. The �rst one is that the mostinteresting form of parallel composition introduced here, namely the cooperative parallel com-position, was not de�ned for Petri nets. This kind of composition allows to compose twocomponents that share a common interface and we believe that this can be very useful alsoin the case of Petri nets (see Sect. 7.3 for more details). The other remark is that, althoughthe idea of what is an unfolding is quite related to the corresponding idea of Petri nets, it isnot an aim of this work to generalize the theory of Petri nets with respect to the adjunctionbetween categories of Petri nets and occurrence nets, although this is a very interesting topicof research. Nevertheless, there are tight relationships between Petri nets and their unfoldingsand the unfoldings of graph grammars and they will be discussed in Sect. 7.3.The framework considered for the theoretical investigations developed in this thesis is theSingle-PushOut approach, short SPO approach, to graph grammars [L�ow90, L�ow93]. Thechoice of this formalism was based on the fact that SPO graph grammars already providea notion of a concurrent derivation, from which the unfolding semantics is a further devel-opment. Moreover, the absence of gluing conditions made the construction of the unfoldingeasier. We believe that it is possible to de�ned the concepts of unfolding semantics, as well asthe parallel composition, for other kinds of graph grammars, like the DPO graph grammars(a discussion on this is made in Sect. 11). The formal investigations in this work will be doneusing category theory [AHS90, BW90]. Basic concepts are shortly reviewed in Appendix B.Structure of the Thesis:Chapter 2 : In this chapter an example of a speci�cation of a telephone system using graphgrammars is presented. The speci�cation is done in 3 parts: an interface part, calledglobal view, a phone component and a central component. This chapter serves as aninformal introduction and motivation for the main concepts presented in this thesis.Chapter 3 : This chapter reviews the basic notions of SPO graph grammars, including theirsequential an concurrent semantics, using a kind of graphs called \typed graphs".Chapter 4 : In this chapter graph grammar morphisms and the parallel composition opera-tors for graph grammars are introduced. It is shown that a composed graph grammar issuitably related to its components (by the existence of corresponding morphisms), and



5that the composition operators correspond to special categorical construction, namelyproduct and pullbacks. This has the advantage that, from standard categorical results,we obtain that the parallel composition operators are compatible with each other, thatthey are unique (up to isomorphism) and that they are associative.Chapter 5 : A semantical framework for graph grammars, namely occurrence graph gram-mars, is introduced in this chapter. An occurrence graph grammar is a grammar thatrepresents (deterministic or non-deterministic) computations of some graph grammar.A relationship between an occurrence graph grammar and a grammar from which itrepresents some computations is provided by a folding of the occurrence graph gram-mar. This folding is formally described by a functor. It is shown that each rule ofan occurrence graph grammar corresponds to an application of a corresponding rule insome derivation of its folded grammar. Moreover, it is shown that concurrent deriva-tions (that can be considered as deterministic computations of a grammar) are indeedoccurrence graph grammars.Chapter 6 : This chapter introduces the unfoldings of graph grammars. The unfolding of agraph grammar is obtained inductively by applying the rules of the grammar startingfrom the initial graph of the grammar. An important result is that the unfolding isnot only a graph grammar, but an occurrence graph grammar, and thus enjoys a lot ofspecial properties that may be useful for analysis of the original graph grammar. It isalso shown that the unfolding describes exactly all sequential and concurrent derivationsof a graph grammar. Then a connection between parallel composition and unfoldings isestablished: we show that the unfolding semantics is compositional with respect to theparallel composition operators (formally this is expressed by the fact that the unfoldingconstruction can be extended to a functor that preserves products and pullbacks).Chap. 7 : This chapter contains relationships to other works in the areas of composition andconcurrent semantics of graph grammars. Special attention is given to Petri nets andthe relationships of Petri net concepts with the constructions developed in this thesis.Appendix A : This appendix contains some mathematical conventions we use.Appendix B : This appendix provides basic notions of category theory and set-theoreticalcharacterizations of many of the categorical constructions in the categories we use.Appendix C : This appendix contains some proofs and lemmas.



2Parallel Composition and Unfoldingof Graph Grammars: An ExampleGraph grammars are well-suited as a speci�cation formalism for parallel and concurrentsystems (see, e.g., [Tae96]). In this chapter we will present (part of) the modeling of a PrivateBranching Exchange System, short PBX System, using graph grammars. This speci�cationwas developed within the project \Graphical Support and Integration of Formal and Semi-Formal Methods for Software Speci�cation and Development", short GRAPHIT. GRAPHIT isa project within the German/Brazilian cooperation \Information and Technology" supportedby DFG and CNPq, and the main aim of the project is to integrate semi-formal and formalmethods to provide a speci�cation method meeting the requirements of industries. Thepartners of the GRAPHIT project are the Brazilian company Nutec, the German companyMSB, the Brazilian Federal University of Rio Grande do Sul (UFRGS) and the GermanTechnical University of Berlin (TU Berlin). The PBX system is an ongoing project of thecompany Nutec, that develops corresponding software and hardware. The main aim of thissystem is to control a private telephone net.This chapter shall serve as an example and practical motivation for the theory that willbe developed in the following chapters of this thesis. Although the theory will be developedfor SPO graph grammars, as far as possible we will explain the constructions in this chapterindependently of this concrete approach. Section 2.1 describes the telephone system to bemodeled and Sect. 2.2 presents the main ideas of the modeling of the PBX system using graphgrammars and how a speci�cation of the whole system can be obtained from the speci�cationof the components by using one of the parallel composition operators presented in this thesis(in Chap. 4). Section 2.2.5 contains some insights on three possible formal semantics for thesystem: one based on sequential computations, one based on concurrent computations andone based on unfoldings, where the latter semantics for graph grammars is newly introducedin Chap. 6 of this thesis.Only a very small part of the speci�cation is presented here. Besides the big reductionof the number of rules that describe the system, a further simpli�cation made here is theabsence of attributes used to specify the data-types involved in the system. We use a simpleconcept of typed graphs to specify di�erent types. A full version of this case study usinggraphs with attributes can be found in [Rib96].6



2.1. Telephone System 72.1 Telephone SystemThe kind of telephone system to be considered here is known as a Private Branch Exchange(PBX) system. A PBX provides an intelligent connection between a (small) telephone pool{ as it can typically be found in companies { and several external lines giving access to analready existing (public) telephone net. The heart of such a system is a piece of hardware|often called a Central. The Central controls the (internal) communications betweenthe Phones and manages the connection of Phones inside the system with Phones outsidebelonging to a second (external) telephone Central. Modern PBX systems additionallyprovide a number of features as, e.g., programmable keys, last number redialing, call-back,follow-me, or automatic-answering mechanisms. For simplicity, we will restrict to the internalside of such a telephone system, i.e., one Central connected to several standard Phones.Therefore, the main aim of a PBX system presented here is to control the calls between thetelephones that are connected to it. The messages it receives from its phones are usuallyinformations about the state of the hook of the phones and the digits dialed by the users ofthe phones. The reaction to these messages is to send appropriate tone/ring signals to thephones and establish a connection with the called phones. For a more complete descriptionwe refer to [Rib96].2.2 Speci�cation of the PBX System using Graph GrammarsA graph grammar speci�es a system in terms of states and state changes, where the statesare described by graphs and the state changes are described by rules having graphs at theleft- and right-hand sides. The relationship between the left- and right-hand sides of a ruleis given by mapping vertices and edges from the left- to the right-hand side in a compatibleway. Compatible way means that is an edge e1 is mapped to an edge e2 then the source(target) vertex of e1 must be mapped to the source (target) vertex of e2. Such a compatiblemapping between graphs is a called a graph homomorphism, or simply graph morphism. Arule of a graph grammar may express preservation, deletion and/or creation of vertices andedges. This is expressed by a graph morphism f in the following way:� Preservation: An item belonging to the left-hand side of a rule and mapped via themorphism f to the right-hand side of this rule is preserved by this rule.� Deletion: An item belonging to the left-hand side of a rule and not mapped via themorphism f to the right-hand side of this rule is deleted by this rule.� Creation: An item belonging to the right-hand side of a rule that is not the image underthe morphism f from any item of the left-hand side of the rule is created by this rule.To allow the deletion of items by a rule the relationship between its left- and right-handsides may be partial.The operational behaviour of a system described by a graph grammar is described byapplying the rules of the grammar to actual graphs representing the states of the system(starting from a given initial state). The application of a rule to an actual graph, calledderivation step, is possible is there is an occurrence of the left-hand side of this rule intothe actual graph. This occurrence, called match, is a total graph morphism because oneintuitively expects that all elements of the left-hand side must be present at the actual graph



8 2. Parallel Composition and Unfolding of Graph Grammars: An Exampleto apply the rule. The result of the application of a rule is obtained by deleting from theactual graph all items that are deleted by the rule and adding to the actual graph the itemsthat are created by the rule (in fact, in the approach to graph grammars used here othere�ects like identi�cation of items and deletion of context are possible { these cases will bediscussed in Chap. 3).For specifying practical applications, there are usually a large number of vertices andedges in the graphs used to model the system. To make them easier to understand, a way todistinguish di�erent kinds of vertices/edges is helpful. In the PBX example, we would like todistinguish vertices that correspond to telephones from vertices that represent PBX centrals,for example. A typing mechanism can be used to make this distinction. One can implementthis typing mechanism in many di�erent ways, for example using labeled graphs or graphshaving di�erent sets of vertices/edges. Here we will use a graph, called type graph, to specifythe types of elements of the system: each vertex of the type graph represents one distinct typeof vertex and each edge of the type graph represents one distinct type of edge. Each actualgraph of the system must then have an interpretation in terms of this type graph. Formally,the concept of type graph was introduced in [Kor93, CMR96a].A graph grammar consists of the following components:� Type graph: specifying the di�erent kinds of items that may occur in the system;� Initial graph: specifying the initial state of the system;� Rules: specifying the possible changes of state of the system. Each rule consists of arule name and the rule itself (left- and right-hand sides connected by a morphism).A telephone system is characterized by a high communication tra�c and, in particularwhen more than one Phone is involved, there is a high degree of desirable parallelism.Therefore speci�cation methods that allow (at the syntactical and semantical levels) themodeling of parallelism are more suitable for this kind of system. Graph grammars is anexample of such formalisms. Moreover, this system is a reactive system: the behaviour ofeach component is described by the reaction performed by the component to some messagethat was received by it. Reactive systems are very common in the area of concurrent systemswhere the communication is done through message passing (see [MP92] for more details).We will present a way of specifying a system by composition of the speci�cations ofthe components. Obviously, the �rst step that has to be done towards such a speci�cationis the identi�cation of the components of the system. Moreover, we have to identify therelationships between the components and how these components cooperate to perform thetasks of a PBX system. The result of this speci�cation task will be called abstract globalview of the system. This view can be seen as an abstract interface for the development of theconcrete components of the system. Then we may specify each component separately. Thesespeci�cations can be seen as implementations (or specializations) of the abstract behaviourdescribed by the abstract global view. Each of such speci�cations is called local view of thesystem. When all speci�cations of the components are ready, they can be suitably composedyielding a concrete speci�cation for the whole system, called concrete global view of thesystem.For the PBX system, we can recognize 3 components: Central, Phone andEnvironment. The third component corresponds to the users. We included this componenthere for two reasons: i) the PBX system works as a reaction to the messages it gets from



2.2. Speci�cation of the PBX System using Graph Grammars 9the users, and thus the inclusion of users is necessary to model suitably the whole system,ii) discussions with the company Nutec (to whom this speci�cation was developed) led to theresult that the speci�cation of the user's behaviour can be very useful to produce a high-leveluser's manual for the system. The speci�cation of the Environment component will not befurther specialized here, it su�ces to give an abstract view for it. Therefore we will have onlytwo local components for the PBX system: Central and Phone. This idea is summarizedin the picture below, where \AG" stands for abstract global and \CG" for concrete global.The arrows between the components mean specialization (or re�nement) relationships. Boththe Phone and the Central views are specializations of the abstract view, and the con-crete global view can be seen as the smallest specialization of the abstract view including thespecializations described by the Phone and the Central components.PBX � AGV iewPhone V iew Central V iewPBX � CGV iew55kkkkkkkkkkkkkkk iiTTTTTTTTTTTTTTTiiSSSSSSSSSSSSSSS 55jjjjjjjjjjjjjjjEach of these views will be described by a graph grammar, and the relationships amongthem will be described by graph grammar morphisms. The composition of the local views(taking into account their connections established in the abstract global view) to get theconcrete global view of the system will be described by an operation on graph grammarscalled cooperative parallel composition, that will be de�ned in Chap. 4.2.2.1 Abstract Global View of the PBX SystemThe idea of the speci�cation of the abstract global view is to model the telephone system \inthe large", i.e., to say which are the components of the system, which are the relationshipsbetween these components and what are the messages that are exchanged between them (inan action/reaction way). At this global level, the internal structure of each component isnot considered. The abstract global view of the telephone system is described by a graphgrammar called AGV consisting of the following components (type graph, initial graph andrules):Type Graph: We may recognize two main types in the PBX system: the type Phoneand the type Central. As there are many operations of phones and of centrals that arereactions to stimulus from their environments (users), we will also include an Environmenttype in the system. These types are drawn as ☎ , ✺ and , respectively, in Figure 2.1,and the arrows between them correspond to \knows" relationships. For example, the arrowfrom the Phone to the Central means that the Phone knows this Central and thus cansend messages to it. Phones may also send messages to users (for example, ringing signal).Therefore there is a knows relationship from Phone to Environment. In our speci�cationof the PBX system, Centrals must never send messages to users, and therefore there is noarrow from Central to Environment.Messages are also represented types. There is one message type for each kind of messagethat can be sent in the system. Messages are drawn as envelopes carrying a name (the
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P-HookBool

P-Digit
Digit
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Signal

C-DigitDigit

C-NewPh

E-Signal E-Act
Signal

✺☎
C-Hook

Bool

UserId

Figure 2.1: Type Graph Typename of the message). Messages always have a target entity (in our case, a Phone, aCentral or an Environment). This is represented by an arrow from the message tothe corresponding target type. Messages may also have parameters, and these are obviouslyelements of some type. Parameter types may be references to some Phone or Centralbut also basic data types like natural numbers, booleans, digits, etc. Although basic datatypes are also modeled by vertices, they will be indicated just by their names in the graphicalrepresentation. Parameters are indicated by edges connecting the parameter type and themessage. The data types used in this example are:Bool ::= On(T )jOff(F )Signal ::=MutejFreejBusyjCalljCarrierjRingjWrongDigit ::= 0j1j2j3j4j5j6j7j8j9UserId ::= fuser1; user2; user3; user4; user5gThe graphical notation used in Figure 2.1 is in fact a shorthand. For example, the vertexP-Hook describes two messages: P-Hook(On) and P-Hook(Off). That is, there is one messagefor each possible data type carried by this message.1 Messages of type Hook are used to informPhones and Centrals about changes on the state of the hook of a telephone. Messagesof type Digit are used to inform Phones and Centrals that a digit has been dialed (thisdigit is sent as a parameter of the message). Messages of kind Signal are used to send audiosignals to Phones and Environments (ring, carrier-tone, busy-tone, mute, etc). The kindof signal is the parameter of the message.Initial State: We start the system from a state in which 4 telephones are alreadyconnected to the PBX system. Thus, the initial state of the system consists of 4 Phonesconnected to a Central, together with the corresponding users (the user-ids are used for thecase of checking the rights of some user to perform some activity, for example, a user musthave special rights to connect a new telephone in the net). Moreover, the users are able toact (this is indicated by the E-Act messages connected to them). The initial state is depictedin graph Ini of Figure 2.2.Rules: In a PBX system there are a number of actions such as sending dialed digits,1In the model described in [Rib96] using graph grammars with attributes it is not necessary to have onemessage for each possible parameter it may carry because variables may be used.
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✺Figure 2.2: Abstract Global View: Initial State and Rules of AGVestablishing connections between phones, connecting new phones to the net, etc. Theseactions are modeled by rules. Three rules of these rules are shown in Figure 2.2 (the othercan be found in [Rib96]). The �rst rule describes an action of the user, namely the dialing ofthe digit Pd. This is modeled by a rule that deletes the user's E-Act message and creates amessage P-Digit(Pd) on its corresponding Phone. The purpose of the E-Act message is tomodel the fact that a user is able to act (therefore, a message E-Act is also created by therule r1 indicated that the user is still able to act after dialing one digit). In the graphicalnotation, items that are in both left- and right-hand sides of rules are preserved. To be moreprecise, sometimes items are indexed (for example, the message E-Act of the left-hand sideof rule r1 is di�erent from the message E-Act of the right-hand side). The second rule (r2)



12 2. Parallel Composition and Unfolding of Graph Grammars: An Exampledescribes the forwarding of a digit Pd to the central, and the third rule (r3) describes the thebehaviour of the central if this number is the �rst one dialed by this phone (in this case, thecentral just has to store this number and wait for a second one to establish a connection).At this level of abstraction { where we can not see the internal states of the components {it seems that the C-Digit(Pd) message was merely deleted. It is the task of the Centralcomponent to specify the storing of this digit in its internal variables.2.2.2 Phone Local View of the PBX System: Grammar PLVIn this part the Phone component is further speci�ed in grammar PLV . The internal stateof a Phone is speci�ed in the corresponding type graph PType (see Figure 2.3).This internalstate consists of three vertices describing the hook status (P:h), the phone status (P:st) andif the phone has some digit to be sent to the central (P:pd). The identi�ers of the edges willbe used to describe the typing of the instances of this type graph. The rules of the grammarshown in Figure 2.2 are specialized to include the internal state of the Phone. For example,there are two rules that specialize rule r2, namely Pr2:1 and Pr2:2. The �rst rule sends the�rst dialed digit to the Central (when there is a carrier tone), and the second sends thesecond digit (when there is no tone). The initial graph PIni is the initial graph Ini plus theinternal structure of all phones, namely P:h = On (the hook is on), P:st = Free (the phoneis free), P:pd = F (no digit was dialed).2.2.3 Central Local View of the PBX System: Grammar CLVThe speci�cation of the Central component is shown in Figure 2.4 (grammar CLV ). Thetype graph includes a component TAB that carries informations about each Phonethat isconnected to the Central. These informations are the status of the Phone (C:st), thenumber of the Phone (C:pnr), the number dialed by a Phone (C:dnr), the informationwhether a Phone have dialed a digit (C:pd) and an established connection between twoPhones (indicated by the c-edge). Rule Cr2 describes the situation in which a digit is sentfrom a Phone to the Central if the Phone status is Carrier, that is, it models the sendingof the �rst digit of a telephone number to the Central. The component C:pd assures thatthe order of sending digits from Phones to Centrals is preserved. Rule Cr3 models thebehaviour of the Central when it receives a digit message and the Phone status is Carrier:the Phone status is set to Mute, a corresponding signal message is sent to Phone and thedialed digit is stored in C:dn. In the initial graph CIni, we have the initial graph Ini plusthe initial internal state of the Central: there is one TAB entry for each Phone, and theparameters are set correspondingly.
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Figure 2.5: Concrete Global View: Type GraphTo get the concrete global view of the telephone system, we put both specializations (ofPhone and Central components) together gluing them along the shared items. First, thetype graph is constructed in this way, giving raise to the graph shown in Figure 2.5. Thenthe initial graph is constructed in the same way (see graph PBXIni of Figure 2.6). Theconstruction of the rules of the system is also done by gluing corresponding rules. Accordingto the way in which the rules of the interface are specialized in the components, we may havethe following situations:1. A rule of the interface is not specialized in any component. In this case, the same rulewill be part of the composed system (in our example, there is no rule in this situation).2. A rule of the interface is specialized by one rule of only one component. This is thecase of rules r1 (that is specialized only by the Phone local component) and r3 (thatis specialized only by the Central local component). In this case, the specialized ruleis part of the composed system, i.e., rules Pr1 = PBXr1 and Cr3 = PBXr3 are inthe concrete global view of the telephone system.3. One rule of the interface is specialized in both components. This is the case of ruler2. The result is that the resulting rule(s) of the composed system is(are) a gluing ofthe two specializations. This kind of composition models a synchronization betweenthe components. If there are di�erent specializations for the same interface rule withinone component (for example Pr2:1 and Pr2:2), both these specializations are combinedwith the specialization of this rule done in the other component (in our example, givingraise to rules PBXr2:1 and PBXr2:2). Obviously, if there are more specializations forthe same interface rule in both components, all combinations will become rules of thecomposed system. Rules PBXr2:1 and PBXr2:2 describe the fact that the Phones



16 2. Parallel Composition and Unfolding of Graph Grammars: An Examplecan only send a digit to the Central when there is no pending digit (modeled byC:pd = F in the left-hand sides of these rules).4. A rule of one component is not in the interface. In this case, this rule shall be added tothe composed system. If there are also rules in this situation in the other component,they will also be added to the composed system, and also their parallel compositionswill be added. (In the example, there are no such rules.)2.2.5 Semantics of the PBX SystemDepending on the aspects of a system we are interested in, one semantical model may bemore appropriate than others. For the telephone system, the main aspect we are interestedin is concurrency. Therefore semantical models that describe concurrency seem to be moreadequate in this case. This means that the reachable states are not so important but theway they are reached. A suitable semantics for concurrent systems shall provide means forreasoning about computations, for example, how they are obtained, which actions may happenin parallel, what are the relationships between di�erent computations and between actions ofthe same computation, etc. To understand which kinds of relationships may occur betweendi�erent actions of a system, we will give a small example. These relationships are describedin di�erent ways by di�erent semantical models.Example 2.1 The following actions are possible in the PBX system:1. Phone 12 gets a Digit(5) message.2. Phone 52 gets a Digit(4) message.3. Phone 12 gets a Digit(3) message.4. Phone 12 forwards the Digit(3) message (received in action 3.) to its central.Obviously, actions 1 and 2 may occur in parallel because they involve di�erent telephones.Actions 1 and 3 are in con
ict because only one digit may be dialed at each time (phone numbersare sequences of digits). Action 4 depends on action 3 (Phone 12 can only send a digit that wasdialed to the central). ,�̂Next, we will present three kinds of semantics for the PBX system: one based on sequentialcomputations, one based on concurrent computations and one based on unfoldings. In thisthesis, we will newly introduce an unfolding semantics for (SPO) graph grammars. The aimof describing the already existing sequential and concurrent semantics of graph grammarshere is to compare and motivate the unfolding semantics.Sequential SemanticsA computation step of a system described by a graph grammar is modeled by a derivationstep, i.e., an application of a rule to a graph with respect to a match. Thus the (opera-tional) semantics of the system can be described by sequences of such derivation steps, calledsequential derivations. This kind of semantics is called sequential semantics.One derivation sequence of the PBX system, namely derivation �4, is shown in Figure2.7. The matches used for the applications of the rules are indicated by corresponding indices.
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C.pdFigure 2.7: Derivation Sequence �4In this derivation sequence the user of Phone 12 generates a P-Digit(5) message (step s1)and then the user of Phone 52 generates a P-Digit(4) message (step s2). Let derivations�5 and �6 be de�ned as follows: In derivation �5 these two messages are sent in the inverseorder; and in derivation �6 the �rst step (s5) represents the generation of a P-Digit(3)message on Phone 12 and the second step (s6) represents the forwarding of this digit tothe Central. We can observe that, among others, the following sequences belong to thesequential semantics SeqSem(CGV ) (\;" denotes sequential composition):�1 = (s1);�2 = (s3);�3 = (s5);�4 = (s1; s2);�5 = (s3; s4);�6 = (s5; s6)As the telephone system is highly parallel, many derivation steps may occur concurrently.In a sequential semantics, concurrency is derived from arbitrary interleavings, i.e., if twoactions a and b may occur in any order, then they may occur concurrently. This means thatconcurrency is the same as sequential independence. The notion of sequential independenceof graph grammars can be used to �nd out which steps \mean" the same action. In theexample, all steps s1 to s6 are di�erent, but one can see that s1 and s4 (respectively s2 ands3) mean the same action: the sending of a P-Digit(5) (P-Digit(4)) message to Phone 12(Phone 52). Formally, to �nd out whether two steps are sequential independent or not we



2.2. Speci�cation of the PBX System using Graph Grammars 19have to try to prolongate the match of the second derivation until the graph where the �rstrule was applied. If we succeed, the steps are sequential independent and may be performedin the inverse order (and this means that they may also be performed in parallel). If not, thesteps are sequentially dependent, and may only be performed in this order.Concurrent SemanticsThe main idea of the concurrent semantics of graph grammars is to use causal indepen-dence (instead of sequential independence) to describe concurrency. Roughly speaking, we saythat one step s2 is causally dependent of a step s1, written s1 � s2, if s1 creates somethingthat is needed for s2, i.e., , s2 can not occur if s1 had not occurred before. Thus, we are notanymore interested in sequences of steps, but in sets of actions related by a causal relationship.(We use the term `step' only for a unit of a sequential derivation, and the term `action' as aunit of a concurrent derivation.) A concurrent derivation is obtained from a sequential oneby abstracting out from the intermediate graphs of the sequential derivation. The basic ideato construct a concurrent derivation is to glue all intermediate graphs into a graph C calledcore graph of a derivation (because it represents the kernel of this derivation). A concurrentderivation consists of an initial graph, a core graph and a set of rules, where the initial graphand each rule are connected (via morphisms) to the core graph. An action consists of a ruleand the matches (morphisms) of the left- and right-hand sides of this rule into the core graph.These matches are called pre- and post-conditions of the action, respectively. For example,the sequential derivation �4 gives raise to the concurrent derivation �4, written �4 ; �4,shown in Figure 2.8. Although in this example the concurrent and the sequential derivationare quite similar, this is not always true. No matter how long a sequential derivation is, itsconcurrent derivation always consists of one core graph, one initial graph (together with itsmorphism into the core graph) and a set of actions (rules together with morphisms into thecore graph).If we look at the concurrent derivation �4, we can not say which of the actions a1 ora2 shall occur \�rst" (in a corresponding sequential derivation). This is because the pre-and post-conditions of these actions do not overlap in the core graph, i.e., the images ofthe pre- and post-conditions of these rules are disjoint. Moreover, �4 is also the concurrentderivation of the sequential derivation �5, i.e., �5 ; �4. This stresses the fact that �4 and�5 represent in fact the same computation if we abstract from the sequential order. Let �6be the concurrent derivation generated from �6 (�6 ; �6). In the concurrent derivation�6, the pre-condition of action a6 overlaps with the post-condition of action a5 on the itemC-Digit(3) of the core graph, and this item was created by the action a5. This implies thataction a6 is causally dependent of action a5, written a5 � a6, and thus there is only onepossible sequential order in which these action can be observed: a5; a6. Thus, the followingconcurrent derivations are included in ConcSem(CGV ) (\;" denotes that two actions arecausally unrelated and � denotes causal dependency):�1 = (a1);�2 = (a2);�3 = (a5);�4 = (a1; a2);�5 = (a5 � a6)With respect to the sequential derivations described before, here there is one derivationless because �4 and �5 are represented by the same concurrent derivation (�4).
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C.pdFigure 2.8: Concurrent Derivation �4We observe that the core graph plays a role that is analogous to the role of the type graphof a grammar: it is a static structure in which all rules and the initial graph �nd compatibleinterpretations. But the core graph (as well as all rules and the initial graph of the grammar)are already typed (over the type graph PBXType). Therefore a concurrent derivation may beseen as a \doubly-typed" graph grammar (having the original type and the core graph as typesand where the core graph itself is typed over PBXType). We will call this kind of grammarsdoubly-typed graph grammars. The fact that a concurrent derivation can be considered as agrammar gives an interesting view on the semantics of graph grammars: the behaviour of agraph grammar GG may be represented by a set of graph grammars (where each of thesegraph grammars represents one concurrent derivation of GG). As the application of the rulesof one graph grammar may be non-deterministic, this raises the question whether it is possibleto describe the behaviour of a graph grammar by only one graph grammar (intuitively as asuitable union of all graph grammars representing the concurrent derivations). Indeed, thisis possible, and this kind of semantics will be called unfolding semantics here.Unfoldings SemanticsAs concurrent derivations are obtained by gluing the intermediate graphs from sequentialderivations, they can not describe non-deterministic (con
ict) situations explicitly, such situ-ations are described by the non-existence of a derivation including the two \con
icting ones".In the example, �1 and �2 are not in con
ict because there is a concurrent derivation, namely�4, that contains both. But �1 and �5 are in con
ict because there can be no concurrentderivation containing both (due to the fact that both actions a1 and a5 delete the same itemE-Act from the core graph, and an item can be deleted at most once in each derivation).



2.2. Speci�cation of the PBX System using Graph Grammars 21The interplay between non-determinism and concurrency gives a very rich description ofthe behaviour of a system. A well-accepted way to describe this interplay is by modeling asystem using a causal and a con
ict relationships (as it is done in event structures [Win87a]).The unfolding semantics of a system presented here is able to express these relationshipsin a natural way. Moreover, these relationships are de�ned not only between actions but alsobetween items from the state graphs (this gives us a good basis for analysis of a grammar).Graph grammars are usually cyclic, in the sense that the same rule may be appliedmany times (each time in a di�erent context). The idea of the unfolding is to construct agrammar that represents all possible rule applications in all di�erent contexts. The unfoldingis constructed inductively starting with the initial graph of the grammar and in which in eachstep all possible applicable rules are applied to the results of the last step. As each item ofthe core graph can be created by at most rule, the unfolding is an acyclic grammar (each ruleof the unfolding { that represents an application of a rule of the original grammar { can beapplied at most once). We will show that the unfolding constructed inductively is actuallythe union of all concurrent derivations. The big advantage of the unfolding semantics withrespect to the concurrent semantics is that con
icts are described explicitly.
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22 2. Parallel Composition and Unfolding of Graph Grammars: An ExampleFigure 2.9 shows the (part of) the unfolding of the CGV grammar that includes theconcurrent derivations �1 to �5. We can notice that there are only 4 actions (that are exactlythe actions involved in the concurrent derivations). From the overlappings of these actions inthe core graph, we can derive (among others) the following relationships between actions:� Causal Dependency: based on overlappings of post- with pre-conditions of actionson created/deleted items. (a5 creates an item that is needed by a6.)a5 � a6� Con
ict: based on overlappings of pre- with pre-conditions of actions on deleted items.(a1 and a5 delete the same item, as a1 is in con
ict with a5 and a6 depends on a5, a1in also in con
ict with a6.) a1 #() a5; a1 #() a6



3Graph GrammarsIn this chapter the basic de�nitions of Single-Pushout graph grammars[L�ow90, L�ow93], shortSPO graph grammars, will be reviewed for the case of typed graphs [Kor93, CMR96a].For practical applications, often graphs consisting only of vertices and edges lead to verylow-level speci�cations of states (everything has to be coded into these two kinds of entities).Therefore many e�orts had been made enriching the concept of a graph. The most basicenrichment is to add a label alphabet to a graph, over which vertices and edges may belabeled. A more sophisticated extension is to use variables and terms of some algebraicspeci�cation as attributes for vertices and edges. These kind of graphs are called attributedgraphs [LKW93], and are of great practical relevance, not only because the readability ofthe graph grammar speci�cation is increased but also because it reduces signi�cantly thenumber of rules that are necessary to specify some problem. Other possible extension is touse di�erent kinds of edges, like ,e.g., hyperedges [Hab92] or edges between edges [L�ow90]. Aswe saw in the description of the PBX system (Chap. 2), graphs are very suitable to describetypes and their relationships within a system. Formally, this can is captured by the notionof typed graphs [Kor93, CMR96a]. The basic idea of a typed graph is that, instead of a setof labels, a graph (called type graph) is used as a label for another graph, and the labelingmechanism, called typing here, must preserve the sources and targets of edges. Practically,this has the advantage that some inconsistent states of a system are ruled out by the typing(in)compatibility, i.e., the concept of typing o�ered by typed graphs is stronger than thethe one o�ered by labeled graphs. For example, if there is no edge between two vertices inthe type graph, there can not be a state of the corresponding grammar in which instancesof these two vertices are connected by an edge. This kind of restriction can not be donedirectly by using labeled graphs (it must be required additionally). This kind of consistencycheck is used, for example, in the PROGRESS system [Sch91] (based on a programmedapproach to graph grammars), where typed graphs have been successfully used for manyapplications. Theoretically, the use of type graphs brings the advantage that instances andtypes are represented in a uniform way. In this chapter we will show how this typing conceptcan be used as a basis for relationships between di�erent graph grammars (these relationships,given by morphisms, will be de�ned in the next chapter). The theory we developed will bebased on graph grammars in which states are described by typed graphs and rules by typedgraph morphisms. Here we will use as type graph a simple graph (i.e., a graph consistingof a set of vertices, a set of edges and source and target functions), but we believe that the23



24 3. Graph Grammarsresults can be generalized for other kinds of type graphs, for example, for attributed graphsor hypergraphs.The main aims, de�nitions and results presented in this chapter are:� De�nition of basic notions of graph grammars: typed graphs (Sect. 3.1), rules (Sect. 3.2),graph grammars and their behaviour (Sect.3.3).� Establishment of a relationship between type graph morphisms and correspondinglytyped graphs: this is given by a retyping construction (Def. 3.8) that turns out to be afunctor (Prop. 3.11). This is a very important result because it allows for a de�nitionof relationships between graph grammars that are induced by relationships between thecorresponding type graphs.� Establishment of a relationship between type graph morphisms and sets of rules overthese types: this is given by a functor transforming rules with respect to one type intorules with respect to the other type (Def. 3.17). Moreover, as rules will be translated upto isomorphism, this allows for a representation independent de�nition of relationshipsbetween graph grammars.� De�nition and discussion about the semantics of graph grammars (Sect. 3.3): herewe will present the basic idea of changes of states speci�ed by graph grammars, thatare derivation steps. These can be combined sequentially, giving raise to a sequentialsemantics for graph grammars. Recently, another kind of semantics for SPO graphgrammars was proposed in which the emphasis is put on describing the concurrency ofthe grammar. This semantics is based on concurrent, rather than sequential, derivations[Kor95, Kor96].3.1 Typed GraphsA graph G consists of a set V of vertices and a set E of edges connecting the vertices of V(this connections are expressed by total functions source; target : E ! V assigning to eachedge its source and target vertices respectively). A graph morphism expresses a structuralcompatibility between graphs. This structural compatibility may be total or partial, givenby total and partial morphisms respectively. A graph morphism f : G! G0 from a graph Ginto a graph G0 consist of two components: a function fV mapping vertices of G into verticesof G0 and a function fE mapping edges of G into edges of G0. These components must obeysome compatibility restrictions: every edge that is mapped by fE must be compatible withthe mapping of its source and target vertices by fV . Graphs can be seen as algebras withrespect to a signature having two sorts (vertices and edges) and two operations (source andtarget functions from edges to vertices), and graph morphisms can be seen as (total or partial)algebra homomorphisms. This view on graphs as algebras gave raise to the algebraic approachto graph grammars [Ehr79].We will use the Single-PushOut (SPO) approach to graph grammars, that is one of thealgebraic approaches. The basic concept of a rule in the SPO approach is described by a partialgraph morphism. The SPO approach was developed by L�owe in [L�ow90, L�ow93], and there itwas described using a category of graphs seen as algebras with respect to (special) algebraicspeci�cations and partial morphisms described by a total morphism from a subgraph of thesource graph. To keep this work more comprehensible, we will avoid speaking about algebras,



3.1. Typed Graphs 25and will rather see graphs as tuples consisting of two sets (vertices and edges) and two totalfunctions (source and target of edges). Relationships between graphs will be expressed by apair of partial functions mapping vertices and edges that are weakly commuting with sourceand target functions (in [Kor96] it was shown that using a pair of weakly commuting functionsyields the same category as the original de�nition of category of graphs and partial morphismsin [L�ow90]).De�nition 3.1 (Weak Commutativity) For a (partial) function f : A! B with domaindom(f), let fH : A  dom(f) and f ! : dom(f) ! B denote the corresponding domaininclusion and the domain restriction. (fH; f !) is called the span of f .A dom(f) BA0 B0_��a _�� b//f 0=_?oo fH � //f ! () A BA0 B0//f_��a _�� b//f 0�Given functions as shown above, where a and b are total, we write f 0 � a � b � f and saythat the diagram commutes weakly i� f 0 � a � fH = b � f !. ,�̂Remarks.1. If f is an injective function, its inverse is usually denoted by (f)�1. The inverse of thedomain restriction fH is an injective and partial function. In particular f = f !� (fH)�1,and thus ((fH)�1; f !) is a factorization of f .2. If f and f 0 are total, weak commutativity coincides with commutativity. ,�̂The compatibility condition de�ned above means that everything that is preserved(mapped) by the morphism must be compatible. The term \weak" is used because thecompatibility is just required on preserved items, not on all items.We assume that the reader is familiar with basic notions of category theory [AHS90,BW90]. Set-theoretical characterizations of all categorical constructions that we use can befound in Appendix B.The mathematical notation can be found in Appendix A. By default, morphisms are par-tial, i.e., morphism denotes a partial morphism and total morphism denotes a total morphism.With the notion of weak compatibility de�ned above, we can now de�ne graphs and partialgraph morphisms.De�nition 3.2 (Graph, Graph Morphism) A graph G = (VG; EG; sourceG; targetG)consists of a set of vertices VG, a set of edges EG, and total functions sourceG andtargetG : EG ! VG, called source and target operations respectively. x 2 G denotes anitem x 2 VG [EG. A graph is �nite if VG and EG are �nite.A (partial) graph morphism g : G ! H from a graph G to a graph H is a tupleg = (gV ; gE) consisting of two partial functions gV : VG ! VH and gE : EG ! EH which areweakly homomorphic, i.e., the diagrams below commute weakly.



26 3. Graph GrammarsEG EHVG VH//gE_��sourceG _�� sourceH//gV� EG EHVG VH//gE_��targetG _�� targetH//gV�A morphism g is called total, injective, surjective, inclusion or empty if both componentsare total, injective, surjective, inclusions or empty functions, respectively. A graph G is asubgraph of H , written G � H if there is an inclusion g : G! H .The category of graphs and partial graph morphisms is denoted by GraphP (identitiesand composition are de�ned componentwise). The subcategory of GraphP consisting of allgraphs and total graph morphisms is denoted by Graph. ,�̂Remarks.1. Note that if commutativity instead of weak commutativity would be required, a mor-phism would not allow that an edge is not mapped if its source or target vertices aremapped.2. If g is an inclusion it is denoted by gH. Like partial functions, each partial graphmorphism f has a span representation (fH; f !)where the components are componentwisedomain inclusions and restrictions, and ((fH)�1; f !) is a factorization of f . ,�̂Example 3.3 (Graph,Graph Morphism) The graph shown in Figure 3.1 is given by G =(V;E; source; target), where V = f☎ ; ✺ ; P-Digit ; C-Digit ; 3; 4g, E = fa; b; c; d; e; f; gg, source =fa 7! ☎ ; b 7! ✺ ; c 7! P-Digit ; d 7! 3; e 7! ☎ ; f 7! C-Digit ; g 7! 4g, target = fa 7! ✺ ; b 7!
☎ ; c 7! ☎ ; d 7! P-Digit ; e 7! C-Digit ; f 7! ✺ ; g 7! C-Digit g.
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3.1. Typed Graphs 27Figure 3.2 shows two mappings (f and g). The mapping f is a (partial) graph morphism.The mapping g is not a graph morphism because the source vertex of edge c is not mapped andsource and/or target of the edges a and b are not mapped compatibly, i.e.,fV (sourceG(c)) = undef 6= ✺ = sourceG0(gE(c))fV (targetG(a)) = P-Digit 1 6= P-Digit 2 = targetG0(fE(a))fV (sourceG(b)) = ☎ 1 6= ☎ 2 = sourceG0(fE(b))fV (targetG(b)) = undef 6= ✺ = targetG0(fE(b))
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2Figure 3.2: f : Graph Morphism g: Not a Graph MorphismGraphical Notation: As the mapping of edges must be compatible with the mapping of verticeswe will sometimes omit this mapping (when it is clear from the context). Items that are preservedvia a morphism (are in the domain) will be indicated by corresponding indexes in source and targetgraphs (if there is no confusion, these indexes are omitted). ,�̂Theorem 3.4 The categories Graph and GraphP have limits and colimits and the inclu-sion functor I : Graph! GraphP preserves colimits and pullbacks. ,�̂Proof. It is well known that Graph has limits and colimits. The proof that GraphP haslimits and that I preserves pullbacks can be found in [L�ow90]. The proof that GraphP hascolimits can be found in [Kor96], where it is also shown that I preserves colimits. The proofthat GraphP has limits and that I preserves pullbacks can be found in [L�ow90]. pRemark. The inclusion functor I does not preserve initial objects, and therefore it does notpreserve arbitrary limits (in particular, products are not preserved). ,�̂



28 3. Graph GrammarsDe�nition 3.5 (Typed Graph) A typed graph GT is a tuple GT = (G; tG; T ) where Gand T are graphs and tG : G! T is a total graph morphism.Usually we will use x 2 GT meaning that x is a vertex or an edge of G.A typed graph morphism gt : GT1 ! HT2 between typed graphs GT1 and HT2 is apair of graph morphisms gt = (g; t) with g : G! H and t : T1! T2 such that the diagrambelow commutes weakly in GraphP, i.e., t � tG � gH = tH � g!.G HT1 T2//g_��tG _�� tH//t�A typed graph morphism is called an injective/surjective/total if both components areinjective/surjective/total. A typed graph automorphism is an isomorphism f t : GT ! GTthat is di�erent from the identity on GT .The category of typed graphs and typed graph morphisms is denoted by TGraphP. Ifwe �x one type graph T , a subcategory of TGraphP denoted by TGraphP(T), is obtainedhaving as objects all typed graphs over T and as morphisms all morphisms of TGraphP inwhich the type component is the identity. The restriction of the categories above to totalmorphisms are denoted by TGraph and TGraph(T), respectively. ,�̂Notation: If it is clear from the context, we will denote a typed graph GT by G, and amorphism f idT = (f; idT ) in TGraphP by fT .Example 3.6 (Typed Graph, Morphism) Let us consider the graph T shown in Figure 3.3as the type graph of our system. Then an actual graph I is an instance of this type graph, i.e.,a graph in which possibly many occurrences of each type occur. To describe the relationshipbetween an instance I and the type graph T , we use a total graph morphism tI : I ! T . Thismorphism describes the typing of all vertices and edges of the instance graph, and assures that theinstance graph is consistent with respect to the type graph (via the compatibility requirements ofmorphisms). A typed graph will usually be denoted by IT , where I is the instance graph havingT as type.Graphical Notation: Usually we will indicate the typing morphism by giving the same graphicalsymbols to vertices in the instances and in the type graph.As graphs represent states, it is natural that state changes are represented by relationshipsbetween graphs. Again, we may use graph morphisms to express this relationships. In this case,we require that not only vertices and edges are mapped compatibly, but also that the typinginformation is preserved. This means, for example, that vertex of type ☎ can not be mapped viaa morphism to a vertex of type ✺ .Figure 3.4 depicts a typed graph morphism fT between the (typed-) graphs IT and I 0T . Thismorphism deletes ☎ 2, C-Digit and the corresponding edges (i.e., these items are not in the domainof f). Phone ☎ 1, ✺ and P-Digit are preserved by the morphism (are in the domain of f).Graphical Notation: As it is clear from the context, we will usually just indicate the existenceof graph morphisms by an arrow between the corresponding graphs. When necessary, items in the
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30 3. Graph Grammarssource and target of the morphisms will get indexes to avoid confusion. We will also often omitthe type-graph if the mapping of instances into it is clear. ,�̂The categorical constructions in the categories of typed graphs that are relevant for thiswork are given in Appendix. B.4.In the next sections, we will be interested in relationships between graph grammars thatmay have di�erent type graphs. Thus it is important to de�ne how a graph (morphism) withrespect to one type can be converted to a graph (morphism) with respect to another typebased on a type morphism. Roughly speaking, the conversion of a typed graph G1T1 into atyped graph G2T2 based on a type graph morphism f : T2! T1 yields that G2 is the biggestsubgraph of G1 whose elements are typed over elements of the type graph T1 that are inthe range of f (in fact, if f is not injective, G2 may not be a subgraph of G1 because someelements of G1 may be splited in G2).The retyping of graphs and morphisms must have some properties such that the preserva-tion of derivation steps (and sequences) by graph grammar morphisms can be assured. Thekind of retyping presented here is similar to the one presented in [CEL+96a] for the DPO-approach. The basic di�erences are that the construction given below is a functor betweencategories of typed graphs and partial morphisms and that the morphism that induces thisfunctor is a partial morphism, instead of a span of total morphisms as in [CEL+96a]. In[CH95, HCEL96] a partial morphism was also used (in the DPO context) to induce the re-typing of graphs, but there a partial morphism in the opposite direction as the one presentedhere was used. An important remark is that the retyping functor induced by a morphism iscontravariant with respect to this morphism. This means that the retyping is done in fact inthe opposite direction from the graph morphism that induced the retyping. The advantageof this kind of retyping is that it allows to split types (this splitting allows for the de�nitionof suitable products in the category of graph grammars { this will be presented in Chap. 4).The de�nition of the retyping construction will be based on pullbacks in the categoryGraphP. Pullbacks are only unique up to isomorphism and to de�ne a deterministic con-struction we need exactly one result. Thus, we will use a \choice of pullbacks" [CEL+96a],but without assuming associativity. A choice of pullbacks means that we take a concretepullback for each pullback diagram. For the rest of the constructions, it is not relevant whichis the concrete choice that was done to de�ne the retyping, but that one was done. Thereforewe will not take care of de�ning concretely such a choice of pullbacks.De�nition 3.7 (Choice of Pullbacks) A choice of pullbacks in a category Cat thathas pullbacks is a �xed pullback PB(G3 g! G1 f G2) = (G1 f� G4 g�! G2) for each diagram(G3 g! G1 f G2) in Cat. ,�̂General Assumption 3.1 Let PB be a choice of pullbacks in the category GraphP. ,�̂Remark. The pullbacks that we will construct in categories of graphs will be always fromtotal graph morphisms. The construction of pullbacks in Graph is done componentwise (seeAppendix B). In [L�ow90] it was shown that the categoryGraphP has pullbacks and that theinclusion functor I : Graph ! GraphP preserves pullbacks. Although the pullbacks here



3.1. Typed Graphs 31will be always of total graph morphisms, we will use the category GraphP because in somesituations it is necessary to �nd an universal morphism induced by the pullback in which oneof the comparison morphisms is partial. ,�̂De�nition 3.8 (Retyping Functor) Let f : T2 ! T1 be a morphism in GraphP. Thenthere is a functor Tf : TGraphP(T1)! TGraphP(T2), called retyping functor, inducedby f . T1 TGraphP(T1)T2 TGraphP(T2)OOf �� TfTf is de�ned for each object (G1; tG1; T1) and morphism gT1 : G1 ! H1 inTGraphP(T1) as� Objects: Tf (G1; tG1; T1) = (G2; fH � tG1�; T2), where (1) below is a choice of pullback inGraph, i.e., (G1 f !G G2 tG1�! dom(f)) = PB(G1 tG1! T1 f ! dom(f)).G1 T1G2 dom(f) T2� //tG1_OOf !G _OO f !� //tG1�(1) � � //fH� Morphisms: Tf(g1T1) = g2T2, where g2 = g2! � (g2H)�1 is de�ned as follows: Let (3) bethe pullback in GraphP of gH : dom(g1)! G1 and f !G : G2! G1 where the pullbackmorphism g2H : dom(g2)! G2 is an inclusion. The morphism g2! : dom(g2)! H2 isobtained as the universal morphism induced by pullback (2).dom(g1)G1 H1T1dom(g2)G2 H2dom(f)
L lzz g1Huuuuuuuuu � **g1! UUUUUUUUUUUUUUUUUUUL lzz g2Huuuuuuuuu � **g2! UUUUUUUUUUUUUUUUUUU_OO f !� //g1� **tG1 UUUUUUUUUUUUUUUUUUUUUUU 5zz tH1uuuuuuuuu_OOf !G _OO f !H//g2 _OO f !� **tG1� UUUUUUUUUUUUUUUUUUUU 6zz tH1�vvvvvvvvv(1) (2)(3)

,�̂



32 3. Graph GrammarsRemarks.1. The morphism g2H may be chosen as an inclusion because by pullback properties itshall be injective and total, and thus, an inclusion up to isomorphism.2. The morphism g2! is de�ned in the following way: As (3) is a pullback we have g1H�f !� =f !G �g2H. This implies that tG1 �g1H �f !� = tG1 �f !G �g2H. As g1T1 is a morphism and(1) commutes we obtain that tH1�g1!�f !� = f !�tG2�g2H. Therefore as (2) is a pullbackthere is a universal morphism g2! : dom(g2)! H2 such that f !H � g2! = g1! � f !� andtH2 � g2! = tG2 � g2H. The latter assures that g2T2 is a morphism in TGraphP(T2) (itassures the weak commutativity requirement). ,�̂This retyping will be illustrated in the following example.Example 3.9 (Retyping Construction) Figure 3.5 shows three examples of retyping. Thebasic idea is that types that are in T2 but not in T1 do not a�ect the translation (see example(1)), instances of types that are in T1 and not in the image of f are forgotten (see example (2)),and instances of types that are duplicated are also duplicated (see example (3)). ,�̂
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3.1. Typed Graphs 33G1 H1G2 H2//g1_OOf !G _OO f !H//g2(5) dom(g1)G1 H1dom(g2)G2 H2L lzz g1Huuuuuuuuu 	 $$g1! IIIIIIIIIL lzz g2Huuuuuuuuu 	 $$g2! IIIIIIIII_OO //g1_OOf !G _OO f !H//g2(3) (4) G1 H1T1G2 H2dom(f) //g1	 $$tG1 IIIIIIIII 5zz tH1uuuuuuuuu_OOf !G _OO f !H//g2 _OO f !� $$tG1� HHHHHHHHH 6zz tH1�vvvvvvvvv(1) (2)Proof. First we will show that (5) commutes. Assume that g1 � f !G 6= f !H � g2. Then we havethree cases:1. 9e1 2 G2 : g1 � f !G(e1) = undef and f !H � g2(e1) = e2As f !G is total, there is e3 = f !G(e1) 2 G1. Then as g1 � f !G(e1) = undef, we musthave that g1(e3) = undef, i.e., e3 =2 dom(g1). As f !H � g2(e1) = e2, e2 2 dom(g2).As (2) is a pullback and g1H is an inclusion, there must be e3 2 dom(g1). But thiscontradicts the fact that g1(e3) = undef.2. 9e1 2 G2 : g1 � f !G(e1) = e2 and f !H � g2(e1) = undefAs f !H is total and f !H � g2(e1) = undef, e1 =2 dom(g2). As g1 � f !G(e1) = e2, thereis e3 2 G1such that f !G(e1) = e3 and g1(e3) = e2. This means that e3 2 dom(g1). As(2) is a pullback, there must be e1 2 dom(g2), but this contradicts e1 =2 dom(g2).3. 9e1 2 G2 : g1 � f !G(e1) = e2, f !H � g2(e1) = e3 and e2 6= e3In this case e1 2 dom(g2) and f !G(e1) = e4 2 dom(g2). As (2) is a pullback, f !G�(e1) =e4. As (3) must commute f !H � g2!(e1) = g1!(e4). By de�nition of g1 and g2 we havethat g2(e1) = g2!(e1) and g1(e4)! = g1(e4) if e1 and e4 belong to the correspondingdomains. Therefore e2 = e3.As (3) and (1) are pullbacks, (3)+(1) is also a pullback. As g1T1 is and g2T2 are morphismsin TGraphP(T1) and TGraphP(T2), we have that tG1 � g1H = tH1 � g1! and tG1� � g2H =tH1� � g2!. This implies that (3)+(1)=(4)+(2). Then as (4)+(2) and (2) are pullbacks andsince (4) commutes, (4) is also a pullback.If g1 is total then g1! = g1. This implies that g2! = g2 and as (4) is a pullback, (5) is alsoa pullback in this case. pProposition 3.11 Tf is a well-de�ned functor. ,�̂Proof.1. Tf is well-de�ned: Obviously, Tf(G1) is a typed graph in TGraphP(T2) (G2 is a graphand the typing morphism is total). As discussed in the remarks of Def. 3.8, g2T2 is amorphism in TGraphP(T2).



34 3. Graph Grammars2. Tt preserves identities: Let g1T1 = ididT1G1 . In this case, G2 = H2 and f !G = f !Hbecause they are pullback object and morphism of the same diagram. As the identityis total, dom(idG1) = G1 and thus an isomorphism. Isomorphisms are inherited underpullbacks, what implies that dom(g2) = G2. Therefore the only possible morphism g2!such that tG2 � g2! = tG2 � idG2 and f !G � g2! = idG1 � f !G is the identity of G2.3. Tf preserves composition: Let g1T1 : G1T1 ! H1T1 and h1T1 : H1T1 ! I1T1 bemorphisms in TGraphP(T1) and (h1 � g1)T1 be their composition (by de�nition,obtained componentwise). Let Tf((h1 � g1)T1) = kT2, Tf (h1T1) = h2T2 and Tf(g1T1) =g2T2. Then we have to show that kT2 = h2T2 � g2T2. As the composition of morphismsis de�ned componentwise in TGraphP(T2), it su�ces to show that k = h2 � g2.dom(h1 � g1)G1 dom(g1) H1 dom(h1) I1G2 dom(g2) H2 dom(h2) I2dom(k)_?oo g1H � //g1!_?oo g2H � //g2! _?oo h1H � //h1!_?oo h2H � //h2!_OO _OO_OOf !G _OO f !H _OO f !IaAzz jJwwooooooooooo � ''OOOOOOOOOOO � $$? _dd kH 4 Tgg u1OOOOOOOOOOO / 77u2 ooooooooooo� ::k!(1) (3) (2) (4)(10)(7)(8) (9)By the de�nition of the retyping construction we have that (1), (2), (3) and (4) arepullbacks (see Prop. 3.10). As k is obtained by retyping g1 � h1, squares (5), with tipsin dom(g1), dom(g2), dom(h1�g1) and dom(k) (see below), and (6), with tips in I1, I2,dom(h1�g1) and dom(k) are also pullbacks. Square (7) is a pullback because this is thecharacterization of the domain of a composed function. Based on pullbacks (1) and (4)we can �nd universal morphisms u1 : dom(k)! dom(g2) and u2 : dom(k)! dom(h2)such that (8) and (9) commute. As g2H and kH are inclusions and (8) commutes, u1 isalso an inclusion. As k! is total and (9) commutes, u2 is also total. As (3){(7) commute(see diagrams above and below), (10) also commutes. Then as (5)+(7) and (2) arepullbacks and (10) commutes, (10) is also a pullback. The facts that (10) is a pullbackand that kH is an inclusion imply that dom(k) = dom(h2 � g2). As (8), (9) and (10)commute we conclude that k = h2 � g2.



3.1. Typed Graphs 35dom(h1 � g1)dom(g1) dom(h1)H1dom(k)dom(g2) dom(h2)H2
jJwwooooooooooo � **UUUUUUUUUUUUUUUUUjJwwooooooooooo � **UUUUUUUUUUUUUUUUUU_OO� ++WWWWWWWWWWWWWWWWWWWWWWWWW lLzzuuuuuuuuu_OO _OO

_OO� ++WWWWWWWWWWWWWWWWWWWWWWWWW lLzzuuuuuuuuu
(7)(5) (6)

pProposition 3.12 states that the retyping functor preserves special pushouts (the ones thatare considered as derivation steps). This fact will be used to prove that morphisms betweengraph grammars induce a translation of derivations (this will be shown in Sect. 3.3).Proposition 3.12 Let r = (r1T1) : L1 ! R1 and m = (m1T1) : L1 ! G1 be morphismsin TGraphP(TG1T1) where r1 is injective and m1 is total, and (1) below be a pushout inTGraphP(T1) of r and m. Let f : T2 ! T1 be a typed graph morphism. Then (2) is apushout in TGraphP(T2).L1 R1G1 H1// //r_��m �� m�// //r�(1) Tf (L1) Tf (R1)Tf(G1) Tf(H1)// //Tf (r)_��Tf (m) �� Tf (m�// //Tf (r�)(2) ,�̂Proof. See Appendix C. pProposition 3.13 states that the retyping construction is (up to isomorphism) compatiblewith the composition of morphisms in the category GraphP. This is important for thewell-de�nedness of the category of graph grammars (see Sect. 3.3).Proposition 3.13 Let f : T1! T2 and g : T2! T3 be morphisms in GraphP. ThenTg�f �= Tg � Tf ,�̂



36 3. Graph GrammarsProof. See Appendix C. pA stronger statement would be Tg�f = Tg � Tf . This would require that the choice ofpullbacks (Def. 3.7) on which the retyping functor is based is associative. As it is not clearwhether there is a choice of pullbacks that is associative, we prefer to skip this requirement.3.2 RulesGraphs may be used to represent states of a system. In the graph grammar formalism, statechanges are speci�ed via rules. Rules describe a state change in the following way: the left-hand side describes what has to be present in a state such that the rule can be applied,and the right-hand side describes the changes that occur in the state via the application ofthe rule. The relationship between left- and right-hand sides expresses the basic operationsinvolved in a change of state, namely preservation, deletion and addition of items by the rule.In the SPO approach to graph grammars, the relationship between left- and right-hand sidesis described by a (partial) morphism.The idea of using a partial morphism to describe a change of state is quite simple. Letr : L ! R be a partial morphism. The basic operations involved in a change of state aredescribed as follows:Deletion : Everything that is in L and is not mapped to R via r is deleted.Addition : Everything that is in R and is not in the range of r is created.Preservation : Everything that is mapped via r is preserved by the rule.We will put two restrictions on rules: the �rst restriction is that rules shall not iden-tify items and the second is that rules shall delete something. Although these restrictionswere motivated by theoretical reasons (some of the de�nitions/results would not be achievedwithout these restrictions), they are also reasonable from a practical point of view. The �rstrestriction is formalized by requiring that rules must be injective. This allows rules to be\inverted", what is a necessary property for the construction of the concurrency semanticsof grammars and for the construction and interpretation of the unfolding of grammars. Therestriction to injective rules does not represent a strong limitation for many practical appli-cations. The main purpose of the graph grammars that we have in mind in this thesis is thespeci�cation of concurrent and reactive systems, and not the generation of (graph) languages.Examples of reactive systems are object-oriented systems, actor systems and other systemsin which message passing is the basis for calling and performing operations. Practically, areaction to some message is often speci�ed by deleting the message and doing the requiredactions. Non-deleting rules in this context would mean that (if the message requiring a reac-tion is not deleted) there may be in�nitely many (isomorphic) reactions for the same action.If we then think that this system is concurrent, all these reaction are not in con
ict witheach other (because nothing is deleted) and may thus occur in parallel. Theoretically, if weare interested in true-concurrency semantics, non-deleting rules are problematic because theylead to interpretation problems with respect to the causal dependencies between actions of agrammar (also in other formalisms, e.g., Petri nets, the existence of transitions without pre-conditions is forbidden in order to obtain true-concurrency semantics models as unfoldings orevent structures).



3.2. Rules 37De�nition 3.14 (Rule) Let T be a graph. Then a rule with respect to T is a morphismrT : LT ! RT in TGraphP(T) i�1. rT is injective and2. rT is consuming (not total).The class of all rules with respect to one type graph is denoted by Rules(T ). If we replacethe second requirement by20: r is not an isomorphismwe obtain a general rule. The class of all general rules with respect to a type graph T isdenoted by GRules(T ). Obviously, there is an inclusion i : Rules(T ) ! GRules(T ). Thesets of isomorphism classes of rules and of general rules with respect to a type graph T aredenoted by IRules(T ) and IGRules(T ). The function c is de�ned for all r 2 Rules(T ) asc(r) = [r]. The composition of gc � i = gi � c is denoted by ir.Rules(T ) GRules(T )IRules(T ) IGRulesx(T )� � //i_����c _���� gc� � //gi� ((ir PPPPPPPPPPPP ,�̂Remark. General rules were de�ned for technical reasons. For the de�nition of graph gram-mars, only rules are allowed, but the set IGRules(T ) of isomorphism classes of general rulesis used to de�ne the morphisms between graph grammars. ,�̂Example 3.15 (Rule) The rule described in Figure 3.6 deletes the P-Digit and 41 vertices, preservesthe Phone and the Central and creates a C-Digit and a 42 vertices (obviously, the correspondingedges are also deleted/preserved/created). The type graph of this rule is the graph T of Figure3.3. ,�̂
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38 3. Graph GrammarsiL : L1! L2 and iR : R1! R2 such that the diagram below is a pushout in TGraphP(T)L1 R1L2 R2//r1� _��iL � _�� iR//r2POand the safety condition below is satis�ed by iL and iR.(Safety Condition) A total and injective morphism iL : L1 ! L2 satis�es the safetycondition i� for all element e 2 L2 : if tL2(e) 2 rng(tL1) then there exists p 2 L1 such thatiL(p) = e.Two rules r1 and r2 are isomorphic, denoted by r1 �= r2, if r1 �r r2 and iL andiR are isomorphisms. The pair (idL; idR) is called the rule-identity. Let r1 �r r1 usingisomorphisms iL and iR, then the pair (iL; iR) is called rule-automorphism if (iL; iR) is notthe rule-identity of r1. We denote by [r1] �R [r2] the extension of the subrule relationship toisomorphism classes of rules. ,�̂Remarks.1. The safety condition assures that L2 does not contain any element that has the sametype as an element in the image of iL and is not in the image of iL.2. The relation [r1] �R [r2] is well-de�ned because if r1 �r r2 and r2 �= r20 then r1 �r r20because total and injective morphisms compose, the composition of pushouts is again apushout (if r2 �= r20 then the diagram above is trivially a pushout) and the conditionon elements is transitive.3. We will sometimes use the notion of a subrule when considering general rules or evenisomorphisms. ,�̂Using the construction of sets of (isomorphism classes of) rules over some type, we cande�ne a functor called Rules functor. The idea is to associate with each type graph its setof rules and with each type graph morphism the corresponding translation of rules (givenby the retyping functor). As the retyping of graphs and morphisms is done in the oppositedirection of the direction of the type graph morphism, the rules functor will be a contravariantfunctor. That is, it transforms objects and morphisms from the dual (or opposite) categoryof the category GraphP, called GraphPOP, into objects and morphisms of SetP. Thecategory GraphPOP has the same objects as GraphP and, except for the direction, thesame morphisms of GraphP (see Appendix B).De�nition 3.17 (Rules Functor) IGRules extends to a functorR :GraphPOP ! SetP,de�ned for all objects T1; T2 and morphism fOP : T1! T2 in GraphPOP as follows� Objects: R(T1) = IGRules(T1)



3.2. Rules 39� Morphisms: R(f) = Rf : IGRules(T1) ! IGRules(T2) is de�ned for all [r] 2IGRules(T1) asRf([r]) = � [Tf(r)]; if Tf(r) is not an isomorphism;undef; otherwise ,�̂Proposition 3.18 R is well-de�ned. ,�̂Proof. By de�nition, R(T1) is a set and R(f) is a partial function. If f is the identity then,R(f)([r]) = [Tf(r)] = [r] for all [r] 2 IRules+(T1) by the de�nition of Tf and the fact thatapplying Tf to each general rule r1T1 yields a general rule r2T2 such that r1 �= r2 (LemmaC.2). Let f : T1 ! T2 and g : T2 ! T3. By Prop. 3.13 we have that Tg�f �= Tg � Tf .Therefore [Tg�f(r)] = [Tg � Tf(r)]. pProposition 3.19 Let fOP : T1 ! T2. Then Rf preserves subrules, that is if [r1]; [r10] 2dom(Rf ) and [r1] �R [r10] then Rf([r1]) �R Rf ([r10]). ,�̂Proof. By the de�nition of subrules (Def. 3.16) there are total and injective morphisms iLand iR connecting the left- and right-hand sides of r1 and r10 such that the square obtainedthis way is a pushout and the safety condition is satis�ed. Lemma C.1 assures that thereare total and injective Tf (iL) and Tf (iR) between the corresponding retyped rules. Moreover,as Tf is a functor, the translated square commutes and Prop. 3.12 assures that it is also apushout (because iL is total and r1 is injective). As the safety condition is satis�ed by iL andiR and the retyping yields exactly the translation of the source and target graphs of iL andiR (without any other elements), we conclude that Tf(iL) and Tf(iR) also satisfy the safetycondition and thus Rf ([r1])�R Rf([r10]). pRules can be combined with each other, giving raise to more complex rules. There aremany ways to combine rules, giving raise to parallel, amalgamated, synchronized, concurrentrules (see [EHK+96, CMR+96b] for an overview). Here we will present a slightly di�erentapproach to the construction of parallel and amalgamated rules. This di�erence arises fromthe fact that we here have a di�erent motivation for these constructions, as will be explainedbelow for the case of parallel rules.The idea of the construction of a parallel rule from rules r1 and r2 is that the resultingrule r1 + r2 shall be able to simulate the e�ect of r1 and r2 acting in parallel. Standardly, aparallel rule is constructed based on rules of the same grammar (and thus having the sametype), and the resulting rule has also the same type as the component rules. We are mostlyinterested in composing graph grammars, and this brings the necessity to compose rules thatmay belong to di�erent grammars (and thus have possibly di�erent type graphs). Like thestandard construction of parallel rules, the construction presented here can also be seen as adisjoint union of rules and therefore we will call it also parallel rule. To make a distinction,we will use a di�erent notation: we write r1kr2 instead of the standard notation r1 + r2.De�nition 3.20 (Parallel Rule) Let r1T1 : L1T1 ! R1T1 and r2T2 : L2T2 ! R2T2 berules with respect to types T1 and T2 respectively, and T be the coproduct of T1 and



40 3. Graph GrammarsT2 in GraphP(see Appendix B.3). Then the parallel rule of r1T1 and r2T2, denoted byr1T1kr2T2, is the morphism in TGraphPr1T1kr2T2 : LT ! RTwhere LT is the coproduct of L1T1 and L2T2 in TGraphP (see Appendix B.4), RT is thecoproduct of R1T1 and R2T2 in TGraphP, and r1T1kr2T2 is the universal morphism inducedby the coproduct of left-hand sides.L1T1 R1T1L2T2 R2T2LT RT//r1T1� k ��i1L 333333333333333 � k ��i1R 333333333333333 //r2T2mM|| i2Lyyyyyyyy mM|| i2Rxxxxxxxx//r1T1kr2T2If we �x a coproduct T of type graphs T1 and T2, we denote by r1T1kT r2T2 the parallel ruleusing this �xed type graph. ,�̂Example 3.21 (Parallel Rule) Consider the rule r2 in Figure 2.2. The result of constructingthe parallel rule r2kr2 is shown in Figure 3.7. The type graph of the parallel rule consists of twodisjoint copies T1 and T2 of the type graph of Figure 2.1. The mapping into this type graph isindicated by corresponding indices on the elements of the left- and right-hand side of the parallelrule. This parallel rule describes a situation in which there are two independent PBX systems andthat messages (in this case digits) from phones belonging to di�erent centrals happen in parallel.Moreover, as the type of the parallel rule is the disjoint union of the types of the componentrules (T1 and T2), there can be no connections between items from these two type graphs inthe resulting type graph. In the example, this means that the two PBX systems that were puttogether are completely unconnected to each other (there can be no communication from phonesbelonging to di�erent centrals). In Def. 3.23 another way of composing rules that allow suchconnections will be presented. ,�̂
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3.2. Rules 41Proof. Coproducts in TGraphP are constructed componentwise in GraphP. As the T wasconstructed as a coproduct, LT and RT are well-de�ned. Moreover, this implies that the typecomponent of the parallel rule is idT . Therefore r1T1kr2T2 is a morphism in TGraphP(T).Now we have to show that r1T1kr2T2 is injective and consuming.1. Injectivity: Follows from injectivity of i1R, i2R, r1T1 and r2T2.2. Consuming: Follows from the consuming property of the component rules from thede�nition of the parallel rule as the corresponding universal morphism. pNow we will de�ne the composition of two rules with respect to a third rule. This kindof composition is usually called amalgamated rule [BFH87]. Again, here we will consideramalgamation construction of rules of di�erent grammars. The relationships between theinterface rule and the rules to be composed will be described by total and injective (typed)graph morphisms. It would be possible to de�ne more general amalgamated rules, but forthe purposes of this paper, only this kind is necessary.De�nition 3.23 (Amalgamated Rule) Let r0T0 : L0T0 ! R0T0, r1T1 : L1T1 ! R1T1and r2T2 : L2T2 ! R2T2 be rules with respect to types T0, T1 and T2 respectively. Letf1t1L : L0T0 ! L1T1, f1t1R : R0T0 ! R1T1, f2t2L : L0T0 ! L2T2, f2t2R : R0T0 ! R2T2 be totaland injective typed graph morphisms such that the squares (1) and (2) in the diagram belowcommute. Let T be the pushout of t1 : T0! T1 and t2 : T0! T2 in GraphP.L0T0 R0T0L2T2 R2T2L1T1 R1T1LT RT� _��f1t1L � r ##f2t2L HHHHHHHHH //r0T0 � _�� f1t1R� r ##f2RHHHHHHHHH//r1T1� r ##HHHHHHHHH //r2T2� _�� � r ##HHHHHHHHH � _��//r1T1kr0T0 r2T2(1) (2)
Then the amalgamated rule of r1 and r2 with respect to r0, denoted by r1T1kr0T0r2T2,is de�ned as the morphism in TGraphP(T)r1T1kr0T0r2T2 : LT ! RTwhere LT is the pushout of f1t1L and f2t1L in TGraphP, RT is the pushout of f1t1R and f2t1Rin TGraphP, and r1T1kr0T0r2T2 is the universal morphism induced by the pushout of theleft-hand sides of the rules.If we �x a pushout object T of t1 and t2, we denote by r1T1kTr0T0r2T2 the amalgamatedrule using this �xed type graph. ,�̂Example 3.24 (Amalgamated Rule) Consider the rules r2, Pr2:1 and Cr2 of Figures 2.2,2.3 and 2.4. It is easy to see that the rule r2 is included in both Pr2:1 and Cr2,i.e., the type



42 3. Graph Grammarsgraph of r2 is included in the other two and the left- and right-hand sides of r2 are also includedin the corresponding left- and right-hand sides of Pr2:1 and Cr2. To construct the amalgamatedrule we can �rst construct the resulting type graph by gluing the type graphs of Pr2:1 and Cr2along the type graph of r2. The resulting type graph can be seen in Figure 2.5. The we do thesame procedure with the left- and right-hand sides of the rules, giving raise to the rule PBXr2:1in Figure 2.6. This amalgamated rule, denoted by Pr2:1kr2Cr2, describes a synchronizationbetween the Phone and Central components: the Phone can only send a digit message tothe Central if the Central is waiting for it. ,�̂Proposition 3.25 The amalgamated rule is well-de�ned. ,�̂Proof. Pushouts of total morphisms in TGraphP are constructed componentwise inGraphP(see Appendix B.4). As the T was constructed as a corresponding pushout, LTand RT are well-de�ned. Moreover, this implies that the type component of the amalga-mated rule is idT . Therefore r1T1kr0T0r2T2 is a morphism in TGraphP(T). Now we haveto show that r1T1kr0T0r2T2 is injective and consuming.1. Injectivity: Follows from injectivity of f1t1R , f2t2R , r0T0, r1T1, r2T2, from the de�nitionof the amalgamated rule as a universal morphism, and from the fact that injectivity isinherited from pushout morphisms in Graph.2. Consuming: Follows from the consuming property of the component rules and thecomponentwise de�nition of the parallel rule. pWe just showed how to compose rules with and without an interface rule. Next we willde�ne how to split (decompose) a rule according to a given splitting of its type. This willbe done for splitting a type into two disjoint types, called parallel decomposition, and forsplitting a type into two types and an interface, called amalgamated decomposition of rules.For example, if we decompose a parallel rule with respect to the original types, we get againthe component rules (up to isomorphism). Depending on how the items of left- and right-hand sides of the rule are typed, it can be that we do not get two rules when we decompose arule with respect to two types. But this decomposition of a rule always gives raise to at leastone rule. This is very important for the proof that the category of (typed) graph grammarshas products (Theo. 4.16), and that these products will be shown to correspond to a parallelcomposition of (typed) graph grammars (see Sect. 4).De�nition 3.26 (Parallel Decomposition of Rules) Let T1 t1! T t2 T2 be a coproductdiagram in GraphPand r 2 GRules(T ). Then the parallel decomposition of r withrespect to T1jT2 is de�ned asdecompT1jT2(r) = (Tt1(r); Tt2(r))



3.2. Rules 43L1 R1 L2 R2T1 L R T2T� u ((t1 QQQQQQQQQQQQQQQ I ivv t2mmmmmmmmmmmmmmm� u ((l1 QQQQQQQQQQQQQQQQ I ivv l2nnnnnnnnnnnnnnn� !!tL1 CCCCCCCC � !!tL2 CCCCCCCC� u ((i1� PPPPPPPPPPPPPPP I ivv i2�mmmmmmmmmmmmmmmm;}} tR1{{{{{{{{ ;}} tR2{{{{{{{{�   tLBBBBBBBB =~~ tR}}}}}}}}//r1 //r2//r ,�̂Notation: When it is clear from the context the decomposition decompT1jT2(r) will bedenoted by decomp(r).Remarks.1. By the de�nition of the retyping (Def. 3.8), the four squares described by (Li; T i; L; T),(Ri; T i; R; T ), for i = 1; 2, are pullbacks (because the coproduct inclusions are total).2. The parallel decomposition is the inverse (up to isomorphism) of the parallel composi-tion. This is assured by Lemma C.3 (see Appendix C). ,�̂Example 3.27 (Parallel Decomposition of Rules) Consider the rule rT in Figure 3.8. Wewant to decompose this rule with respect to to the decomposition of the type T into T1 andT2. To obtain the component with respect to T1 we just have to remove from r all items whosetypes are not in T1, in this case, we remove the Central from the left- and right-hand sides ofr and obtain r1. r2 is obtained analogously. In this case, the result of the parallel decompositionis decompT1jT2(r) = (r1; r2). Note that r2 is an isomorphism and thus not a rule. ,�̂Proposition 3.28 Let (r1; r2) 2 fdecompT1jT2(r)jr 2 GRules(T )g. Then exactly one of thefollowing cases is true:1. r1 2 GRules(T1) and r2 is an isomorphism;2. r2 2 GRules(T2) and r1 is an isomorphism;3. r1 2 GRules(T1) and r2 2 GRules(T2). ,�̂Proof. By de�nition of GRules (Def. 3.14), if ri 2 GRules(Ti), for i = 1; 2, then ri is not anisomorphism and vice versa. Therefore, the 3 cases are mutually exclusive. Thus it remainsto show that there can't be the case in which r1 and r2 are both isomorphisms.By Lemma C.3 we obtain that L is the coproduct of L1 and L2 and R is the coproductof R1 and R2. Thus, r must be the parallel rule of r1 and r2 (because of uniqueness ofuniversal morphisms), i.e., r = r1kr2. By hypothesis, r 2 GRules(T ) and thus r is not anisomorphism and is injective. This means that there is at least one x 2 L such that r(x)is unde�ned or y 2 R such that y 62 rng(r). Assume we have the �rst case (x). As L is a
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i1 i2Figure 3.8: Parallel Decomposition of the Rule rcoproduct of L1 and L2, x must have a pre-image in one of these two graphs. Assume it hasa pre-image in L1. Let z 2 L1 such that l1(z) = x. As the coproduct morphisms l1 : L1! Land i1� : R1! R are total and r � l1 = i1� � r1 we conclude that r1(z) = undef. Thus r1 isnot an isomorphism. If we assume that x has a pre-image in L2, we get that r2 can't be anisomorphism, and if we assume the second case (y 2 R), we analogously obtain that either r1or r2 can't be isomorphisms in this case. Thus, we conclude that if r is not an isomorphism,either r1 or r2 or both are not isomorphisms. pThe next proposition expresses the fact that the parallel rule construction is compatiblewith the subrule relation.Proposition 3.29 Let [r1]; [r10] 2 R(T1), [r2]; [r20] 2 R(T2), r1 �r r10 and r2 �r r20. Then[r1kr2] �R [r10kr20]. ,�̂Proof. The construction of the parallel rule is based on coproducts in TGraphP. The rela-tions r1 �r r10 and r2 �r r20 mean that there are pushouts (1) and (2) in TGraphP(T1) andTGraphP(T2) using the rule morphisms and corresponding inclusions such that the safetycondition is satis�ed. Pushouts in the latter categories are also pushouts in TGraphP(seeDef. B.10 and Def. B.14). Let (3) be the square consisting of the rules r1kr2 and r10kr20 andthe total and injective morphisms iL1 + iL2 and iR1 + iR2, where the component morphismsare the corresponding inclusions of pushouts (1) and (2). Due to standard categorical results,if (1) and (2) are pushouts and (3) is obtained componentwise by coproducts, then (3) is alsoa pushout (see [BW90] for a proof). As the safety condition is satis�ed by the componentsand the parallel rules are obtained as coproducts, we conclude that [r1kr2]�R [r10kr20]. p



3.2. Rules 45Now, analogously to the parallel decomposition, we will de�ne the amalgamated decom-position.De�nition 3.30 (Amalgamated Decomposition of Rules) Let i1 : T0 ! T1 and i2 :T0 ! T2 be total and injective and (1) be a pushout. Let r 2 Rules+(T ). Then theamalgamated decomposition of r with respect to T1jT0T2 is de�ned asdecompT1jT0T2(r) = (Ti2�(r); Ti2��i1(r); Ti1�(r))L0 R0L2 R2L1 R1L RT0 T2T1 T
_��l1 � !!l2CCCCCCCC //r0 _�� s1� !!s2DDDDDDDD//r1� !!l2�CCCCCCCC //r2_�� l1� � !!s2�DDDDDDDD _�� s1�//r_�� i1� !!i2 CCCCCCCC _�� i1�� !!i2� CCCCCCCC
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����������������������������������(1) ,�̂Remarks.1. All (four) squares connecting the square of left-hand sides to the square of type graphs,as well as the (four) squares connecting the square of right-hand sides to the square oftype graphs, are pullbacks.2. Lemma C.4 assures that the amalgamated decomposition is the inverse of the amal-gamated composition of rules (up to isomorphism) if we use the pairs (l1i1; s1i1) and(l2i2; s2i2) as basis to construct the amalgamated rule, where the morphisms li and si,for i = 1; 2, are obtained by the retyping construction. ,�̂Example 3.31 (Amalgamated Decomposition) Consider rule r in Figure 3.9. The typegraph T is obtained as a gluing of T1 and T2 with respect to T0 (via the inclusions i1 and



46 3. Graph Grammarsi2). To decompose rule r with respect to this decomposition of the type we proceed analogouslyto the parallel decomposition. For example, r1 is obtained by deleting from r everything whosetype is not present in T1. Thus the amalgamated decomposition of r with respect toT0,T1 andT2, is decompT1jT0T2(r) = (r1; r0; r2). ,�̂
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Figure 3.9: Amalgamated Decomposition of the Rule rProposition 3.32 Let (r1; r0; r2) 2 fdecompT1jT0T2(r)jr 2 GRules(T )g. Then exactly oneof the following cases is true:1. r1 2 GRules(T1) and r0 and r2 are isomorphisms;2. r2 2 GRules(T2) and r0 and r1 are isomorphisms;3. r1 2 GRules(T1), r2 2 GRules(T2) and r0 is an isomorphism;4. r1 2 GRules(T1), r2 2 GRules(T2) and r0 2 GRules(T0) ,�̂Proo�dea. Analogous to proof of Prop. 3.28, using Lemma C.4. p



3.3. Graph Grammars and their Behaviour 473.3 Graph Grammars and their BehaviourThe basic idea of graph grammars is to specify a system by specifying its initial state (by agraph) and the possible changes of states (by graph rules). The behaviour of a graph grammaris given by applying rules to graphs representing the states of the system, called state graphsin the following. The application of a rule to a state graph is possible if there is a match forthis rule, i.e., there is a subgraph of the state that corresponds to the left-hand side of therule (this correspondence do not have to be an isomorphism because di�erent items from theleft-hand side may be mapped to the same items in the state graph).The operational semantics of a graph grammar is based on the applications of the rulesto state graphs. In particular the algebraic approach to graph grammars [Ehr79, L�ow93]stresses the fact that rules may be applied in parallel to a state graph. This may happen ifthe matches of the rules are not mutually exclusive in the sense that the rules do not delete thesame items of the state graph. Moreover, graph grammars are inherently non-deterministic:if many rules are applicable to some state then the choice of which will be the next one tobe applied is non-deterministic. Even the same rule may have di�erent ways of being appliedto the same graph (depending on the existing matches), and the choice of which match willbe �rst applied is non-deterministic. If we have two rules r1 and r2 that can be applied to agraph G, there may be three di�erent situations, that lead to three kinds of non-determinism:Sequential Independent Situation: This is the case when, after applying one of the rules,we can still apply the other one and vice-versa. The kind of non-determinism describedby this situation arises from the wish to apply these rules in some sequence, that is, thechoice is made just in order to sequentialize the applications of these rules. Therefore,this kind of non-determinism will be called interleaving non-determinism.Mutually Exclusive Situation: In this case, the application of one rule disables the ap-plication of the other and vice-versa. This happens if (at least) one item of the stategraph is deleted by both rules.1 This kind of non-determinism will be called mutualexclusion non-determinism.Mixed Situation: The fact that graph grammars allow items to be preserved by the ap-plication of rules gives raise to the possibility of having situations in which, althoughtwo rules are not mutually exclusive, there is only one possible order in which we mayapply these two rules. This happens if these two rules overlap on items of the stategraph that are preserved by one rule and deleted by the other. On the one hand, theserules are not mutually exclusive because they do not delete the same items. But onthe other hand, they can not be applied in any sequence because if the deleting ruleis applied �rst, the other one can not be applied anymore. This situation was mostlyinvestigated in the SPO approach, and is called a weak parallel situation [Kor95] (forthe DPO approach see [CR96]). The kind of non-determinism described here will decalled asymmetric non-determinism.In the case of algebraic graph grammars, there is another kind of non-determinism thatmay occur: the application of a rule to a match may have in�nitely many di�erent results.All of these results are isomorphic, but nevertheless it makes a di�erence whether all of these1In the DPO approach to graph grammars there may be other situations that lead to this kind of con
ict.These are related to the gluing condition [Ehr79].



48 3. Graph Grammarsresults are distinguished at the semantical level or not. If the semantics includes all thesederivation steps, they shall be considered as di�erent, what really means that the result of aderivation step is non-deterministic. If these derivation steps are identi�ed at the semanticallevel, then they are just di�erent syntactical representation for \the same" computation step.We will call this kind of non-determinism representation non-determinism.A sequential view on a (speci�cation of a) system is to see it as a description of the possiblesequences of steps that may happen in this system. Looking at these sequences, we maynotice that di�erent forms of non-determinism may describe di�erent phenomena. Usually,the interleaving non-determinism is the basis for describing the concurrency of a system(see [Mil89, MM90, MP92, CEL+94a, WN94]) and the mutually exclusion non-determinismis used to describe the con
icts of a system. If we relax the requirement that all actionsof a system must happen in some sequence, and instead say that actions that are causallydependent from others must happen in some order, but the other actions do not have to berepresented in a sequence, we have a more concurrent view on the system. In such a view,interleaving non-determinism is not really a non-deterministic choice because there is onlyone possibility to describe this situation: as a concurrent application of the involved rules(note that `concurrent' does not mean that they must happen together, but that they mayhappen together). In some approaches in which concurrency is not obtained from arbitraryinterleavings, interleaving non-determinism is a consequence of concurrency (these approachesare mostly based on partial orders of actions [Pra86, BD87, Vog92, MMS94, Kor96]). Thus,forgetting for a moment about asymmetric non-determinism, in a concurrent semantics thereis only one kind of non-determinism, and it describes the con
ict situations of the system.Asymmetric non-deterministic situations can only occur if the formalism allows that items ofa state are preserved from one state to the other, where `preservation' of an item is di�erentfrom `deletion and re-creation' of some item. In formalisms like Petri nets [Pet80], rewritinglogic [Mes92], various kinds of process calculus [Hoa85, Hen88, Mil89] there is usually nodi�erence between preservation and deletion/re-creation. The great advantage of makingthis di�erence is that a bigger amount of parallelism is allowed in a system because variousread-accesses of the same item may happen in parallel. In [MR95] an extension of Petri nets,called contextual nets, was presented adding this feature to Petri nets. In graph grammars,the ability to preserve items gave raise to a very rich theory of parallelism. However, thetheory was mostly concerned about situations in which an item is read-accessed by manyprocesses at the same time. The situation in which one item is write-accessed by one processand read-accessed by many others was mostly not investigated. Therefore there is no consenseyet about which phenomena is described by asymmetric non-determinism. In [Kor96] it wasused to describe concurrency, whereas in [CEL+94a] it was used to describe con
icts.The sequential semantics of graph grammars given in Def. 3.37 is based on sequencesof applications of rules (sequential derivations). In such a semantics, non-determinism isdescribed implicitly by di�erent sequences having a common subsequence. Thus, concurrencyand con
icts are described implicitly. Moreover, as this semantics is based on concrete graphs,there is representation non-determinism.The concurrent semantics of graph grammars given in Def. 3.46 is based on concurrentapplications of rules (concurrent derivations). In such a semantics, interleaving and asymmet-ric non-determinism are explicitly expressed by the absence of causal relationships betweenapplications of rules. Thus concurrency is explicitly described. If two derivations have acommon subderivation, a mutually exclusive situation may occur if there is no concurrentderivation containing these two. Thus, con
icts are described implicitly by the concurrent



3.3. Graph Grammars and their Behaviour 49semantics. By the use of suitable equivalence classes of concurrent derivations, representationnon-determinism is avoided.In Chap. 6 we will present a semantics for graph grammars, namely the unfoldingsemantics, in which both concurrency and con
icts are described explicitly, and in whichrepresentation non-determinism is not present.A (typed) graph grammar (see following de�nition) consists of� a type graph, that speci�es the type of all graphs involved in this grammar and istherefore called type of the grammar,� an initial graph, that speci�es the initial state of the system,� a set of rule names, that shall be used to identify the rules of the grammar and� a function associating with each rule name a corresponding rule.The initial graph and all rules must be typed according to the type of the grammar.De�nition 3.33 (Graph Grammar) A (typed) graph grammar is a tuple GG =(T; I;N; n) where� T is a type graph (the type of the grammar),� I is a typed graph in TGraphP(T) (the initial graph of the grammar),� N is a set of rule names,� n : N ! Rules(T ) is a total function (the naming function, assigning to each rulename a rule with respect to the type T ).We denote by n the extension of n to equivalence classes of rules, i.e., n(x) = [n(x)] foreach x 2 N .A graph grammar GG is safe if its initial graph I has no automorphisms and each of itsrules r has no rule-automorphisms. ,�̂Remark. The word `rule' will be used in many contexts. It may sometimes mean an elementof N , some times a morphism n(x), and sometimes a pair (x; n(x)), for x 2 N . A morphismn(x) is usually be called a rule pattern. ,�̂Example 3.34 (Graph Grammar) The grammar PBX described in Chap. 2 is an example ofgraph grammar having as components: i) type graph: PBXType shown in Figure 2.5, ii) initialgraph: PBXIni shown in Figure 2.6, iii) rule names: fPBXr1; PBXr2:1; PBXr2:2; PBXr3g,iv) association of names to rules: given in Figure 2.6. ,�̂



50 3. Graph Grammars3.3.1 Sequential SemanticsThe operational behaviour of a graph grammar is de�ned in terms of derivation steps, thatare applications of the rules of the grammar to some state graph. A rule r can be applied toa state IN if the pattern of the left-hand side L of the rule is found in IN . Formally, thisis described by the existence of a total typed graph morphism m from L to T , called match.The application of this rule r to the match m consists, roughly speaking, of taking from INeverything that is deleted by the rule and adding everything that is created by the rule (seeSect. 3.2 for a description of how these operations are modeled by a rule). As there are somecon
ict situations that may occur (see [EHK+96]), we describe the process of application ofa rule r : L! R to a graph IN via a match m : L! IN by �rst adding then deleting:1. Add to IN all items that shall be added by the rule, that is, all elements e that arein the right-hand side R (e 2 R) and that are not in the range of the rule morphisme =2 (rng(r)).2. Delete from the result of the �rst step all elements that shall be deleted by the rule(elements e 2 L such that e =2 dom(r)), and the items that depend on deleted items(dangling edges).Formally, the construction of the result of a rule application, called a derivation step, isgiven by a pushout of the rule r and the match m in the category of graphs typed over a �xedgraph T .A description of a no-operation step is done by the empty steps. There we use an empty-rule (that is an isomorphism) as a rule. The result is that nothing is deleted and nothing iscreated, i.e., we have the same output graph as the input. Empty steps will be useful forde�ning translations of derivation sequences from one grammar to another (based on graphgrammar morphisms { see Sect. 4.1).The following de�nition is the standard one for derivations in the single pushout approach,except for the fact that the derivation step is not only a pushout, but a pushout togetherwith the name of the rule that was used (a corresponding de�nition for the DPO approachcan be found in [CMR+96b]).De�nition 3.35 (Match, Derivation Step) Given a rule r : L! R with respect to a typegraph T , a match m : L ! IN of r in a graph IN is a total morphism in TGraphP(T).A derivation step s of a graph INs with rule rs with name nrs at match ms is a tuples = (nrs; S), where S is a pushout diagram of ms and rs in TGraphP(T) (see Def. B.14 forthe explicit construction). Ls RsINs OUTs//rs_��ms �� m�s//r�sSA derivation step is denoted by INs nrs:ms=) OUTs. INs, OUTs, r�s and m�s are called inputgraph, output graph, co-rule and co-match respectively.For a graph grammar GG, the class of all derivation steps using rules in GG is denotedby StepsGG. Let i : L ! R be an isomorphism and m : L ! IN be a total morphism in



3.3. Graph Grammars and their Behaviour 51TGraphP(T). The the pushout of i and m is called an empty step of GG and denotedby IN i:m() OUT . The class of all steps including the empty steps, denoted by StepsIGG, isde�ned by StepsIGG = StepsGG [ fs js is an empty stepg. ,�̂Example 3.36 (Derivation Step) Square (s1) of Figure 2.7 described the application of therule PBXr1 to the graph IN . The match is indicated by the indices, and describes that Phone12 receives a P-Digit(5)message. Following the steps to construct IN1, we �rst have to add toIN the messages E-Act3 and P-Digit(5), and the new vertex T together with a correspondingedge 5. Then, we delete the message E-Act1 and the vertex F of Phone1 with the correspondingedge 5. ,�̂A derivation step describes a unit of a computation using a graph grammar. Whole(sequential) computations may be described by sequences of derivation steps in which theoutput graph of one step is the input graph of the subsequent step. These sequences arecalled derivation sequences. The sequential semantics of a graph grammars is de�ned as theclass of all derivation sequences of this grammar.Notation: Let A be a set (or class). Then the set (or class) of all sequences over A isdenoted by A1. The restriction of A1 to �nite sequences is denoted by A�. The emptysequence is denoted by �. Let � 2 A1. Then j�j 2 N[ f!g denoted the length of �. The ithelement of a sequence � is denoted by �i. Concatenation of sequences �1 and �2 is denotedby �1 � �2.De�nition 3.37 (Sequential Derivation, Sequential Semantics) Given a graph gram-mar GG = (T; I;N;n). The class of sequential derivations with respect to GG is de�nedbySDerGG = f� 2 Steps1GG j � = � or IN� = IN�1 = I and OUT�i = IN�i+1 for all 1 � i < j�jgIf a sequential derivation � 2 SDerGG is �nite, we de�ne its output graph as OUT� =OUT�j�j . The class of sequential derivations including empty steps with respect toGG is de�ned bySDerIGG = f� 2 StepsI1GG j � = � or IN� = IN�1 = I and OUT�i = IN�i+1 for all 1 � i < j�jgThe sequential semantics of GG is the class of sequential derivations of GG, i.e.,SDerGG. ,�̂Example 3.38 Figure 2.7 shows a sequential derivation of the grammar PBX consisting of twoderivation steps s1 and s2. There we can see that the output graph of s1, namely IN1, is thesame as the input graph of s2. ,�̂For concurrent systems, the sequential semantics has at least three drawbacks:1. As discussed in the introduction of this section, concurrency in a sequential semanticsis usually expressed by the fact that the \same" derivation steps may be observed in



52 3. Graph Grammarstwo di�erent orders.2 If we consider just the total order of derivation steps given byone sequential derivation, then it is impossible to say which steps can be observedin di�erent orders. If we look `inside' the sequential derivation, then we may �nd outwhich steps are independent from each other, but this task is not at all easy because theconcepts of parallel and sequential independence of steps [EHK+96] are de�ned only forsubsequent derivation steps and the generalization of these concepts for sequences is notstraightforward. There are some approaches that go in the direction of de�ning classes ofsequential derivations that are equivalent, like the canonical derivations [Kre77, LD94]and shift-equivalences [Sch94, CEL+94a], but neither of them gives the answer to thequestion whether two arbitrary steps of a sequential derivation are independent or not(the comparison is made on the level of sequences and not on the level of derivationsteps). Therefore one can say that concurrency is described implicitly in the sequentialsemantics.2. To �nd out whether two derivation steps are mutually exclusive, one has to search fora bigger sequential derivation containing these two steps. If such a derivation can befound, the steps are not mutually exclusive. Otherwise, they are mutually exclusive.Thus, non-determinism is described implicitly.3. In the algebraic approach to graph grammars, the result of a derivation step is uniqueonly up to isomorphism. This means that, if some rule creating a vertex is applicableto a graph IN , there will be in�nitely many sequential derivations in the sequentialsemantics that represent this application, namely one for each possible (isomorphic)resulting graph. In the sequential semantics presented here, all these isomorphic resultsare present, that is representation non-determinism occurs.Two of these drawbacks (1. and 3.) were solved by the introduction of the concurrentsemantics of (SPO) graph grammars [Kor95, Kor96].3.3.2 Concurrent SemanticsThe main aim of developing a concurrent semantics for graph grammars was to representconcurrency explicitly. This is achieved by substituting sequential by concurrent derivationsas the basis for the semantics. Moreover, this allows one to de�ne morphisms betweenderivations leading to a category of concurrent derivations. This category has a specialproperty that allows the de�nition of a quotient category based on isomorphism classes ofconcurrent derivations. This quotient category identi�es computations that shall be \thesame" (that are just di�erent because di�erent choices of results were done for each derivationstep). Using this category as semantics, we avoid representation non-determinism.A concurrent derivation de�nes a class of sequential derivations that are in some senseequivalent with respect to concurrency. The de�nitions given below are slight variations fromthe ones in [Kor96]: the di�erence is that here we include explicitly the component \namesof actions" that was not present in the original version. This (syntactical) change does nota�ect the results obtained in [Kor96].The construction of a concurrent derivation � with respect to one sequential derivation �will be done in three steps:2To �nd out which derivation steps are the same, one may use concepts like parallel or sequential indepen-dence of derivations (see [EHK+96] for an overview).



3.3. Graph Grammars and their Behaviour 531. For each derivation step s of �, the input and output graphs are glued accordingly,giving raise to graphs IOs and total morphisms embedding INs, OUTs, Ls and Rs inIOs.2. Glue all IO graphs, giving raise to the core graph C and embeddings of all INs, OUTs,Ls and Rs in C. The diagram consisting of the core graph and the correspondingembeddings is called core structure of �. By construction, the core graph contains alloccurrences of the left- and right-hand sides of used rules.3. Build the concurrent derivation �, consisting of the core graph, the embedding of theinitial graph of � in the core graph, a set of action names, and a function mappingaction names to actions. The actions are obtained from the embeddings of the left- andright-hand sides of rules used in � in the core graph. The action names consist of thename of the rule used in the action and the action itself. As the output graph can bederived from the other components, it will not be an explicit part of the concurrentderivation.Remind that a derivation step of a grammar GG consists of a rule name and of a pushoutin TGraphP(T), where T is the type of the grammar. Therefore the graphs contained in aconcurrent derivation will also be typed over T .De�nition 3.39 (Core Structure) Let GG be a graph grammar.1. Given a step s = (n; S) 2 StepsGG, we de�ne the step-core of s as core(s) =(IOs; ins; outs) constructed as follows (see diagram below):a) Construct pushout (1) of Ls rHs - dom(rs) rs!! Rs in TGraphP(T).b) This leads to a factorization of rs = (aRs)�1 � aLs.3c) Thus the pushout S (of the derivation step) can be decomposed into pushouts (2)and (3).d) As (aRs)�1 is injective and surjective, the pushout morphism (outs)�1 is alsoinjective and surjective and can be inverted, giving raise to the morphism outsdom(rs)Ls RsLRsINs OUTsIOs
//rs_��ms �� m�s//r�s L lzz rHsuuuuuuuuuu � %%rs! KKKKKKKKKK
 $$aLs JJJJJJJJJJ K kyy aRsssssssssss99 99(aRs)�1ssssssssss_��mxs
 $$ins JJJJJJJJJ kKyy outsssssssssss99 99(outs)�1 ssssssssss(1)(2) (3)3Due to the fact that inverting the morphisms rHs and aRs yields also a pushout (see [Kor96]).



54 3. Graph Grammars2. Given a sequential derivation � 2 SDerGG, let inout(�) = (core(�i))i2f1::j�jg bethe diagram containing all cores of steps of �. Then the colimit Core(�) =(C; cini; ci; couti)i2f1::j�jg in TGraphP(T) is called the core structure of �. Eachcolimit morphism ci is called core morphism and the colimit graph C is called coregraph.Lj Rj Lj+1 Rj+1LRj LRj+1INj OUTj = INj+1 OUTj+1IOj IOj+1C
//rj //r�j� ""aLj EEEEEEEE N n}} aRj{{{{{{{{_��mxj� ""inj EEEEEEEE gGtt outjjjjjjjjjjjjjjjjjjj //rj+1 //r�j+1� $$aLj+1 HHHHHHHHH K kyy aRj+1ssssssssss_��mxj+1� **inj+1 UUUUUUUUUUUUUUUUUUU kKyy outj+1ssssssssss�� 33cinj** **cj UUUUUUUUUUUUUUUUUUUUU (tt cj+1hhhhhhhhhhhhhhhhhhhhhhh ,�̂Remark. The diagram inout(�) is a diagram containing only total morphisms. The inclusionfunctor I : TGraph(T) ! TGraphP(T) preserves colimits (see [Kor96]), and thus thecolimit Core(�) is also the colimit of the same diagram in TGraph(T), i.e., all colimitmorphisms are total. The fact that diagram inout(�) can be seen as a partial order (thereare no cycles) and that all morphisms in this diagram are injective implies that all colimitmorphisms are also injective (see [Kor96] for a proof). ,�̂A concurrent derivation describes a computation of a grammar in which some actionsmay occur in parallel. This computation is represented by the changes of states caused by theapplication of rules to an initial graph (initial state). States, as well as left- and right-handsides of rules, are represented by typed graphs. The construction of the core structure providesa way to describe all state graphs in one (typed) graph, and the corresponding applications ofrules as (total) morphisms having the core graph as target. Thus, we can see the core graphas a kind of type graph in which the initial graph and all rules of the considered derivationare interpreted. Therefore, the following de�nition will use the same notation as for typedgraphs. In this context, a \typing morphism" is a (total) morphism that has the core graphas target. However, we shall remark here that the typing used in this de�nition is not thesame as the one used on typed graphs because the core graph is already a typed graph (thiskind of typing will be formally de�ned in Sect. 5.1 and called double-typing). Moreover, inSect. 5.4 we will also show that a concurrent derivation can be seen as a graph grammar thathas special properties (can be considered as a \deterministic" graph grammar).De�nition 3.40 (Concurrent Derivation) Let GG = (T; I;N; n) be a graph grammar,� 2 SDerGG and Core(�) = (C; cini; ci; couti)i2dom(�) be the core structure of �. Then



3.3. Graph Grammars and their Behaviour 55the concurrent derivation � = (C�; I�;N�; n�) corresponding to �, written � ; �, isde�ned as follows (see diagrams of Def. 3.39):� Core graph: C� = C.� Initial graph: I� = cin1 : I ! C:� Action names: N� = f(nrj; LCj rCj! RCj ) j j 2 f1::j�jg and n(nrj) = (LCj rCj! RCj )g. Thetyping morphisms are given by tLCj = cj �mxj � aLj : Lj ! C and tRCj = cj �mxj � aRj :Rj ! C.� Actions: n� : N� ! Rules(C) is de�ned for all x = (nr; r) 2 N� as n�(x) = r. Thisfunction assigns for each action name a corresponding action.For each rC : LC ! RC 2 rng(n�) we de�ne pre�rC = tLC , r�rC = rC , post�rC = tRC , calledpre-condition, rule and post-condition of rC respectively.The length of a concurrent derivation � is de�ned by j�j = card(N�). If a concurrentderivation is �nite (N� is �nite), its output graph OUT� is de�ned as OUT� = outj�j :OUT� ! C.The class of all concurrent derivations obtainable from SDerGG is denoted by CDerGG.,�̂Remarks.1. As C is a typed graph, the initial graph I� of � is a typed graph that has a typedgraph as type. We will call these kind of graphs double-typed graphs, and they will bede�ned in Sect. 5. Rules(C) is the set of rules that have the typed graph C as type.The de�nition of Rules(C) is thus analogous to Def. 3.14 of Rules(T ) in which T is agraph.2. In [Kor95] it was shown that each concurrent derivation induces a partial order on itsset of rules, that describes the causal relationships between them. This order is de�nedby the way in which the pre- and post- conditions of each rule overlap in the core graph.This dependency relation will be de�ned in Sect. 5.1.3. In fact, usually there are in�nitely many concurrent derivations with respect to the samesequential derivation because the construction of the core graph delivers a result thatis unique up to isomorphism only. All these concurrent derivations are isomorphic, andthis will be expressed via morphisms between concurrent derivations (Def. 3.42. Foreach sequential derivation, there exists exactly one abstract concurrent derivation (Def.3.45) associated to it, where abstract concurrent derivations are de�ned as isomorphismclasses of concurrent derivations.4. An axiomatic characterization of concurrent derivations as special graph grammars willbe given in Sect. 5.4. ,�̂Example 3.41 (Concurrent Derivation) Concurrent derivations are constructed from se-quential ones by identifying items in di�erent intermediate graphs that shall be the same (are



56 3. Graph Grammarsconnected by morphisms). Figure 2.8 shows the concurrent derivation corresponding to the se-quential derivation shown in Figure 2.7. We can see that the input (and output) graphs are thesame, and the rules that were applied are also the same. The basic di�erence is that all matchesof the rules have now the same graph as target, namely the core graph C4. Roughly speaking,this graph is obtained by gluing the graphs IN ,IN1 and IN2 compatibly with the derivationmorphisms. Note that no matter which length a sequential derivation has, the correspondingconcurrent derivation will always consist of the initial graph of the derivation, the core graph andthe set of rules that were applied (together with their matches into the core graph). The outputgraph will usually not be represented because it can be derived from the other components. Fromthe overlappings of the left- and right-hand sides of rules in this graph, dependencies betweenrules can be derived. For example, as the matches pre1/post1 and pre2/post2 are completelydisjoint, actions a1 and a2 are independent and may be executed concurrently. It is interesting tonotice here that the total order of applications of rules described in the sequential derivation �4 isnot anymore present in �4. It is replaced by a partial order that indicates the causal dependenciesbetween rule applications. ,�̂Relationships between concurrent derivations can be expressed by concurrent derivationmorphisms. These relationships express a kind of concurrent pre�x relationship betweenderivations, i.e., there may be a morphism f from a concurrent derivation �1 to �2 if thesederivations have the same input graphs, the rules used in �1 are included in the rules usedin �2 and the applications of the same rule in �1 and �2 are isomorphic (that means, theyare the same action up to isomorphism). This \being the same action" can be expressed bycommutativity of the corresponding images in the core graphs with the transformation of thecore graph of �1 into the core graph of �2. Moreover, the embeddings of the input graph of�1 and �2 in the corresponding core graphs must also be compatible with the transformationof the core graph. The intuitive meaning of a concurrent derivation morphism f : �1 ! �2is that �1 is a (concurrent) pre�x of �2, that is, the computation �1 may evolve (maybe inparallel with others) to the computation �2.De�nition 3.42 (Concurrent Derivation Morphism) Let GG be a graph grammar and�1 = (C1; I1C1; N1; n1); �2 = (C1; I2C2; N2; n2) 2 CDerGG. Then a concurrent deriva-tion morphism f : �1! �2 is a pair f = (fC ; fN) where� fC : C1! C2 is a total and injective typed graph morphism in TGraphP(T) and� fN : N1! N2 is a total functionsuch that1. I1 = I2 and (1) commutes2. for all x = (rn; L1C1 r1C1! R1C1) 2 N1, n2 � fN (x) = (rn; L2C2 r2C2! R2C2), whereL2 = L1, R2 = R1, r2 = r1 and (2) and (3) commute.I1 = I2C1 C25zz inI1uuuuuuuuu 	 $$inI2IIIIIIIII� � //fC(1) L1 = L2C1 C24yyprer1C1ttttttttt 
 %%prer2C2JJJJJJJJJ� � //fC(2) R1 = R2C1 C24yypostr1C1tttttttttt 
 %%postr2C2JJJJJJJJJJ� � //fC(3)



3.3. Graph Grammars and their Behaviour 57The category of all concurrent derivations with respect to GG and all concurrent derivationmorphisms between them is denoted by CDerGG.Two concurrent derivations are isomorphic when both components fC and fN are isomor-phisms. ,�̂Example 3.43 (Concurrent Derivation Morphisms) Consider the concurrent derivations�1, �2 and �4 of Figure 3.10. These are the same derivations discussed in Sect. 2.2.5, wejust omitted the context items from the graphical representation to ease the understanding. Allthese derivations have the same input graph IN , and use the same rule PBXr1 (in �4, this ruleis used twice). Intuitively, we may expect that �1 and �2 may evolve to �4 because we may �ndin �4 actions that correspond to the ones performed in these two derivations. That is, �1 and �2are (concurrent) pre�xes of �4. But �1 may never evolve to �2 because they represent completelydistinct actions. As morphisms shall represent this pre�x relationship, we expect that there aremorphisms f : �1! �4, g : �2! �4, but no morphism h : �1! �2.To �nd out whether there is a concurrent derivation morphism between two concurrent deriva-tions, we have to map all actions of one concurrent derivation into the other (fN) and �nd amorphism fC between the corresponding core graphs that commute with the pre and post im-ages of the rules in these core graphs. Consider fC as being the inclusion of C2 into C4 andfN (a1) = a10. In this case, it is trivial to see that fC � pre1(x) = pre10(x) for all items x ofL1, and that the same holds for post1. Thus there is a morphism f = (fC ; fN) : �2 ! �4.Analogously we may �nd a morphism g : �1 ! �4. However, there is no concurrent derivationmorphism between �1 and �2 because the Phone vertex of the rule PBXr1 is mapped by pre1to Phone1 and by pre2 to Phone2. The only possibility to �nd a morphism h : �1! �2 wouldbe to map Phone1 of �1 to Phone2 of �2 via hC . But such a mapping wouldn't be compatiblewith the inclusion of the input graph IN into C1 and C2, and is thus forbidden. ,�̂Proposition 3.44 Let �1; �2 2 CDerGG. Then there is at most one concurrent derivationmorphism f : �1! �2. ,�̂Proo�dea. For a formal proof of this Proposition, see [Kor96]. This proof is based on the factthat each application of a rule depends in a unique way on the initial graph and on the rulesthat created items that are necessary for this rule to be applied. The basic requirement toassure this uniqueness is that all rules must delete something. In a concurrent derivation,there can't be an item that is deleted by more than one rule. Assume that a rule r of �1deletes an item x. As the core graph component of a morphism must be injective, there canbe only one way (if there is one) to map r to a corresponding rule in another concurrentderivation. pThe fact that there is at most one concurrent derivation morphism between two concurrentderivations (in each direction) is quite useful as a suitable means to �nd out which computa-tions are equivalent with respect to isomorphism non-determinism. Consider two derivations�1 and �2 and morphisms f : �1! �2 and g : �2! �1. Intuitively, this means that �1 is a(concurrent) pre�x of �2 and vice versa, i.e., they represent the same computation. Formally,the existence of morphisms assures that both derivations have the same initial graphs andthe same rules are used in the same way. Moreover, the core graphs are isomorphic (thereare total and injective morphisms in both directions, and as the sets of used rules are the



58 3. Graph Grammarssame, these morphisms must be surjective too). This means that �1 and �2 are the samederivation, except for the core graphs (that are isomorphic). But this implies that they areequivalent with respect to isomorphism non-determinism and shall be considered as the samecomputation. Therefore, the concurrent semantics of a graph grammar (Def. 3.46) is basedon isomorphism classes of concurrent derivations (Def. 3.45).De�nition 3.45 (Abstract Concurrent Derivation) Let �1; �2 2 CderGG be concur-rent derivations and f : �1 ! �2 be a concurrent derivation morphism. Then an abstractconcurrent derivation [�1] is the class of concurrent derivations isomorphic to �1. An ab-stract concurrent derivation morphism is the equivalence class [f ] of morphisms betweenelements of [�1] and [�2].Abstract concurrent derivations and morphisms form a category denoted by ADerGG.,�̂Remark. Prop. 3.44 assures that ADerGG is well-de�ned. ,�̂De�nition 3.46 (Concurrent Semantics) The concurrent semantics of a graph gram-mar GG is given by the category ADerGG. ,�̂As discussed at the end of last section, the concurrency semantics does not have two ofthe drawbacks of the sequential one:1. Concurrency is represented explicitly. If two actions may happen concurrently, thereis only one concurrent derivation that represent this computation. Moreover, due tothe partial order on actions induced by a concurrent derivation, one can see directlywhether each two actions belonging to a concurrent derivation are or not independentfrom each other. (This partial order will be de�ned in Chap. 5 for a more general classof concurrent derivations, called occurrence graph grammars.)3. There is no representation non-determinism because isomorphic derivations are consid-ered to be the same computation.However, there is still one point, namely point 2., that is not yet suitably described bythe concurrent semantics. This item is concerned about mutually exclusive situations. To�nd out whether two concurrent derivations �1 and �2 are mutually exclusive or not one hasto search for a bigger concurrent derivation that is an evolution of both of them. If such aderivation can be found, �1 and �2 are not mutually exclusive. Otherwise, they are mutuallyexclusive. Thus, non-determinism is described implicitly by the non-existence of some upperbounds. The unfolding semantics presented in Chap. 6 will also solve this drawback.
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Figure 3.10: Concurrent Derivation Morphisms



4Parallel Composition of GraphGrammarsThe speci�cation of complex systems is usually done by the \divide and conquer" idea: thesystem is divided into smaller, less complex components that are developed separately andthen merged in some way to form the speci�cation of the whole system. A suitable formalismthat supports such a development shall assure that the composition operators used to mergethe component speci�cations are compatible with the semantics of the system. Compatibilityhere means that the behaviour of the whole system can be derived from the behaviours ofits components, i.e., the composed system does not shows a behaviour that is not speci�edin any of its components. This property is very desirable for a speci�cation formalism, butit is not easy to achieve in formalisms in which initial states are considered, such as graphgrammars, Petri nets with initial markings and transition systems. The reasons for this willbe discussed in Sect. 4.2, where parallel composition operators for graph grammars will bepresented. Specially the cooperative parallel composition (Sect. 4.2.2) seems to be a verypromising kind of composition of graph grammars. This kind of composition formalizes theintuitive idea of divide and conquer described above: an abstract description of a systemis divided into components that are further specialized and then merged together to formthe speci�cation of the whole system. The important requirement is that each componentis a kind of conservative extension of the abstract description of the system, in the sensethat the specialization of the abstract view de�ned in the component does not imply thatthe behaviour of the abstract level would change. Such specializations are formalized bygraph grammar morphisms (Sect. 4.1). These morphisms are not only interesting to describespecializations (re�nements) of grammars, but also to express structural and behaviouralcompatibilities between graph grammars.The main aims, de�nitions and results of this chapter are:� De�nition of syntactical relationships (morphisms) between graph grammars (Def. 4.1)that are compatible with their operational behaviour (Theo. 4.11). This is presented inSect. 4.1.� De�nition of two parallel composition operators for graph grammars: pure parallelcomposition (Def. 4.12), that is a composition without any interface, and cooperativeparallel composition (Def. 4.20). Moreover, it is shown that these composition operators60



4.1. Graph Grammar Morphisms 61correspond to the product (Theo. 4.16) and the pullback (Theo. 4.24) in the category ofgraph grammars, respectively. From the fact that these operators correspond to thesecategorical constructions it follows that these operators are associative and compatiblewith each other. Moreover, this fact will be used to show that the unfolding semanticsis compatible with the parallel composition.As discussed above, suitable composition operators should be compatible with semantics.In Chap. 6 (Theo. 6.18) it will be shown that the parallel composition operators de�ned hereare compatible with the unfolding semantics of graph grammars, that is a semantics speciallysuitable for concurrent systems.4.1 Graph Grammar MorphismsDi�erent de�nitions of morphisms may describe di�erent kinds of relationships between ob-jects. The `right' de�nition of a morphism is therefore dependent on which kinds of relation-ships one expect to describe. The basic application of morphisms we have in mind is to usethem to compose graph grammars. Therefore, we are interested in relationships that expressa structural (syntactical) compatibility between grammars. Moreover, as we expect that com-position is compatible with semantics, morphisms should imply a corresponding semanticalcompatibilities. Many kinds of morphisms between graph grammars (and graph transforma-tion systems) have already been de�ned [CH95, CEL+96a, HCEL96, Kor96, PP96]. Most ofthem were de�ned for the DPO approach to graph grammars, but the aims were di�erentthan the aim of the morphisms that will be de�ned here. In [PP96] the aim is to transformgraph grammars in such a way that the graph language is preserved, but not necessarily thesequential derivations. For reactive and concurrent systems often the way in which compu-tations evolve is more important than the states that are reached [MP92]. Therefore, as ouraim is to model this kind of systems, we will rather concentrate on morphisms that preservederivations. In [CEL+96a] a powerful notion of morphism based on spans of graph mor-phisms was de�ned and was shown to preserve sequential derivations. But as the categoryof graph-spans is known not to have all pushouts [Wag93, Mue95], interesting constructionslike the cooperative parallel composition (see Sect. 4.2.2) would probably not be possible inthis more general framework. The kind of morphism presented here is a specialization ofthis kind of morphism by substituting the span by a partial graph morphism (contrastinglyto [CEL+96a], here we allow rules to be mapped to arbitrary ones that are isomorphic tothe corresponding retyping). In [CH95, HCEL96] a di�erent specialization of the morphismsof [CEL+96a] was done, namely to substitute the span by a partial morphism in the otherdirection as we do (that is, the partial morphism here goes in the direction of the graph trans-formation system morphism). This kind of morphism was de�ned for graph transformationsystems (graph grammars without initial graph) and were also shown to preserve sequentialderivations. Moreover, disjoint union and union with interface of graph transformation sys-tems were presented and were shown to be compatible with the sequential derivations (infact, with the sequential derivations starting from any graph). As the initial graph is animportant component of the speci�cation of a system (see discussion in Sect. 4.2.2), it isworthwhile to investigate such composition operators for this case (that is not a trivial exten-sion of the case without initial graph). In [Kor96] morphisms between concurrent derivations,that are special graph grammars, were de�ned. The purpose of these morphisms is to expressrelationships between concurrent computations of one grammar (see Sect. 3.3.2). These mor-



62 4. Parallel Composition of Graph Grammarsphisms not only preserve sequential derivations, but also the dependencies between the steps(or actions). However, these morphisms are very restricted to be used as a general kind ofrelationship between graph grammars.The following are the main requirements that should be satis�ed by the de�nition of asuitable morphism of graph grammars in view of composition operators:1. The morphisms shall describe reasonable syntactical relationships between the rules andinitial graphs of grammars.2. Morphisms shall be compatible with derivation sequences, i.e., if two grammars areconnected by a morphism, there should be a reasonable way to translate derivations ofthe �rst grammar into derivations of the second one.3. Morphism shall be composable such that they are able to express transitive relationshipsbetween grammars (allowing the de�nition of a category).4. Morphisms shall allow for the de�nition of a category in which some syntactical construc-tions exist (e.g. products and pullbacks) and these constructions shall have a reasonableinterpretation in terms of operations on graph grammars (e.g. parallel composition).The de�nition of graph grammarmorphism presented here was inspired from the de�nitionof morphisms between transition systems in [WN94] and between Petri nets in [MMS96]. Agraph grammar morphism f : GG1 ! GG2 consists of two components: a (partial) graphmorphism fT : T2! T1 of types and a (partial) function fN : N1! N2 of rule names. Themapping of types allows to split types, whereas the mapping of rule names allows to identifyrules. The fact that types and rule names are mapped in opposite directions expresses akind of duality between types, that represent static aspects of a system, and rules, thatrepresent dynamic aspects of a system. Moreover, fT and fN must be compatible with eachother, and this compatibility assures a structural relationship between these two grammars.Compatibility here means that the rule associated to a translated rule name must be a subruleof the translation of the corresponding rule induced by the type translation, and that theinitial graph of GG2 is isomorphic to the translation of the initial graph of GG1 induced byfT . Both fN and fT may be partial, what implies that GG1 may have more rules and typesthan GG2, and a bigger initial graph. The compatibility condition of the morphism assuresadditionally that the rules of GG1 that are not mapped do not a�ect the behaviour of thetarget grammar (i.e., it is possible to translate derivations of GG1 into derivations of GG2).GG2 may also have more rules and types that are not in the image of f , but the retyping ofits initial graph must be (up to isomorphism) a subgraph of the initial graph of GG2.Formally, we will de�ne a graph grammar morphism as being a pair of morphisms that goin the same direction, but the mapping of types will be a morphism in the dual category ofGraphP, and therefore usually denoted by fOPT . We will denote the corresponding morphismin GraphP by fT .De�nition 4.1 (Graph Grammar Morphism) Let GG1 = (T1; I1T1; N1; n1) andGG2 =(T2; I2T2; N2; n2) be two graph grammars. Then a graph grammar morphism f : GG1!GG2 is a pair f = (fOPT ; fN) where fOPT : T1 ! T2 is morphism in GraphPOP andfN : N1! N2 is a partial function such that the following conditions are satis�ed:



4.1. Graph Grammar Morphisms 631. Sub-commutativity: n2 � fN �R RfT � n1, where n1 and n2 are the extensions of n1and n2 (see Def. 3.33) and �R is the subrule relation (Def. 3.16).N1 R(T1)N2 R(T2)� //n1��fN �� RfT� //n2�R2. I2T2 �= TfT (I1T1)A morphism in which fN and (fT )�1 are inclusions and is called inclusion.1 We say thatGG1 � GG2 is there is an inclusion i : GG1! GG2. ,�̂Remark. The informal meaning of the conditions of the morphism are:1. Whenever a rule name nr is mapped via fN then the rule r2 associated to fN (nr)(i.e., n2 � fN (nr) = r2) must be a subrule of the translation of the rule associatedto nr (fN (nr)). This means that graph grammar morphisms allow to map a rule toa subrule (up to translation and isomorphism). The sub-commutativity condition alsoassures that if a rule name is not mapped then the corresponding rule pattern is alsonot mapped. The use of IGRules instead of IRules (that is considering also generalrules) assures that is a rule name is not mapped, the corresponding \rule" in the secondgrammar would be an isomorphism (that is not a rule). Intuitively this means that rulesthat are not mapped necessarily lead to a no-op (no-operation) in the target grammar.This requirement (using general rules) is necessary for the preservation of derivationsvia morphisms (this will be discussed in Example 4.4).2. The initial graph of GG2 is isomorphic to the translation of the initial graph of GG1 toGG2. This means that the initial graph of GG2 must be in some sense included in theone of GG1. ,�̂Example 4.2 (Graph Grammar Morphism) Consider the graph grammars AGV and PLVdepicted in Figures 2.2 and 2.3 resp. A graph grammar morphism f : PLV ! AGV can bede�ned by the following components: fT is the inclusion of Type (Figure 2.1) into PType andfN = fPr1 7! r1; Pr2:1 7! r2; Pr2:2 7! r2; r3 7! r3g. The compatibility conditions of amorphism require that:1. r1 is a subrule of the rule obtained from Pr1 by forgetting all items that are typed overitems PType that are not in Type (in this example, r1 is isomorphic to the retyping ofPr1). This \forgetting" is done by the retyping construction induced by fT . Analogously,this requirement must also be satis�ed for the other rules that are mapped via fN .2. Ini must be isomorphic to the graph obtained from PIni by forgetting all items that aretyped over items PType that are not in Type.1Note that an inclusion morphism is only possible if fT is injective and surjective.



64 4. Parallel Composition of Graph GrammarsIn the same way, we may �nd graph grammar morphisms g : CLV ! AGV , f� : CGV ! CLVand g� : CGV ! PLV . ,�̂Proposition 4.3 Graph grammars and graph grammar morphisms form a category, denotedby GG, in which identities and composition are de�ned componentwise. ,�̂Proof.1. Identities are well-de�ned morphisms: Let GG = (T; IT ; N; n) be a graph grammar.Then we have to show that the pair id = (idOPT ; idN) is a graph grammar morphism,i.e., it must satis�es conditions i) and ii) of the Def. 4.1(a) Diagram (1) commutes because R is a functor, and thus transforms identities intoidentities. Therefore, we trivially obtain that n � idN �R RidT � n.N R(T )N R(T )� //n_��idN _�� RidOPT� //n(1)(b) Let GT = TidT (IT ). As the diagram below is a pullback, i is an isomorphism andthus GT �= IT . I TG T� //tI_OOi _OO idT� //tG(PB)2. Composition is well-de�ned: Let GGi = (Ti; IiT i; Ni; ni) be graph grammars, for i =1::3, and f = (fOPT ; fN) : GG1 ! GG2 and g = (gOPT ; gN) : GG2 ! GG3 be graphgrammar morphisms. Then we have to show that g � f = (gOPT � fOPT ; gN � fN ) is awell-de�ned morphism:(a) Diagrams (2) and (3) sub-commute because f and g are morphisms. As (3) sub-commutes we have that n3 � gN � fN �R RgT � n2 � fN . Prop. 3.19 assuresthat RgT preserves the subrule relation, and thus as (2) sub-commutes we get thatn3 � gN � fN �R RgT � RfT � n1, i.e., (2)+(3) sub-commute.N1 R(T1)N2 R(T2)N3 R(T3)� //n1��fN �� RfT� //n2��gN �� RgT� //n3(2)(3)(b) I3T3 = Tg � Tf (I1T1. Let I30T3 = TgT �fT (I1T1). By Prop. 3.13 we conclude thatI3T3 �= I30T3.



4.1. Graph Grammar Morphisms 653. Neutrality of identity and associativity of composition follow from these properties inGraphPOP and SetP and from the componentwise construction of morphisms. pNow, until the end of this section, we will prove that graph grammar morphisms arecompatible with the sequential and concurrent semantics of graph grammars, i.e., if there isa morphism f : GG1 ! GG2, we can translate the (concurrent and sequential) derivationsof GG1 into corresponding ones of GG2. This is stated in Theo. 4.11. The basic idea of thistranslation will be illustrated in the following example.Example 4.4 (Translation of Derivation Sequences) Consider the graph grammarGG1 =(T1; I1; fr1; r2; r3g; n1) and GG2 = (T2; I2; fr10; r30g; n2) where T1 = (f�;F;�g; ;; ;; ;),T2 = (f�;�g; ;; ;; ;) and the initial graphs and rules are depicted in Figure 4.1. Let f : GG1!GG2 be a graph grammar morphism having the following components fT = (f� 7! �;� 7! �g; ;)and fN = fr1 7! r10; r2 7! undef; r3 7! r30g (i.e., rule r2 is not mapped by the morphism).The sequential derivation �1 of GG1 depicted in Figure 4.1 can be translated to the sequentialderivation �2 of GG2. This is done in 2 steps:1. Translate each derivation step of �1 according to the morphism f . This step gives raise toa sequence l that is not a sequential derivation of GG2 because the empty rule r20 is not arule of GG2.2. Delete the empty steps from l. This step is called normalization (in the sense that asequential derivation is a normal form of a sequence including empty steps) and gives raiseto the sequential derivation �2. It may also be necessary to substitute the initial graph of lby the initial graph of GG2 (they must be isomorphic due to condition 2. of graph grammarmorphisms).Note that, if the rule r2 would create something, say a � such that the rule r3 would becomedependent on this rule (by changing the current match to this new �), then the retyping TfT (r2)of r2 would yield a rule L ! R where L is the empty graph and R has a � vertex. In thiscase, TfT (r2) would not be an isomorphism and its corresponding isomorphism class would belongto RfT (T2). Therefore f would not be a graph grammar morphism (condition 1. is violated:n2 � fN(r2) = undef 6= [TfT (r2)]). An analogous situation would occur if r2 would delete someitem created by the rule r1. ,�̂The next lemma will be used to prove that graph grammar morphisms preserve sequentialsemantics. The basic idea is that rules that are not mapped by the morphism must leadto a no-operation in the second grammar. Isomorphisms denote no-operations because theapplication of a \rule" that is an isomorphism would leave the input graph unchanged.Lemma 4.5 Let f : GG1 ! GG2 be a graph grammar morphism and x 2 N1 be a rulename in GG1 such that fN(x) is unde�ned (i.e., x 62 dom(fN)). Then TfT (n1(x)) is anisomorphism. ,�̂Proof. Let n1(x) = r1 and [r1] = n1(x) (this is de�ned because n1 and n1 are total). Byde�nition of a graph grammar morphism (Def 4.1) we have that n2 � fN �R RfT �n1. As n1



66 4. Parallel Composition of Graph Grammars
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r3’Figure 4.1: Translation of Derivation Sequencesis total and fN (x) is unde�ned, RfT ([r1]) must be unde�ned too. By de�nition of the functorR (Def. 3.14), this can only be the case if TfT (r1) is an isomorphism. pBefore we can prove Theo. 4.11, we have to de�ne how sequential derivations of onegrammar can be translated into sequential derivation of a second grammar using a graphgrammar morphism. This translation will be based on the translation of derivation steps.Proposition 4.6 Let f = (fTOP ; fN) : GG1 ! GG2 be a graph grammar morphism. Thena total function f s : StepsGG1 ! StepsIGG2 is called translation of derivation steps i�for all s1 = (nrs1; S1) 2 StepsGG1, where S1 = (IN1 nrs1:ms1=) OUT1)), we have a subrule



4.1. Graph Grammar Morphisms 67relation (iL; iR) : n1(nrs1)! n2 � fN (nrs1) andf s(s1) = 8>>>>>>><>>>>>>>: (fN (xs1); S2); if x1 2 dom(fN), whereS2 = (TfT (IN1) fN (xs1):ms2=) TfT (OUT1)) withms2 : Ls2 ! TfT (IN1) = iL � TfT (ms1);S2; if x1 62 dom(fN), whereS2 = (TfT (IN1) rs2:ms2() TfT (OUT1)) withrs2 = TfT (rs1); ms2 = TfT (ms1) ,�̂Proof. We have to show that f s(s1) 2 StepsIGG2.1. xs1 2 dom(fN): In this case, there is xs2 = fN (xs1). Let n1(xs1) = rs1. By de�nitionof graph grammar morphisms (Def. 4.1) we have that n2(xs2) = rs2 �r TfT (rs1). Thusthere are total and injective morphisms iL and iR such that (1) below is a pushout.As ms1 is a match, it is total and thus by Lemma C.1 TfT (ms1) is also total. Thus,ms2 = iL � TfT (ms1) is a match for rs2. Diagram (3) (TfT (S1)) is a pushout becauseS1 is a pushout of an injective and a total morphisms and the functor TfT preservesthese pushouts (Prop. 3.12). Thus, S2 = (1) + (3) = (TfT (IN1) xs2:ms2=) TfT (OUT1)) isalso a pushout. As rs2 is a rule of GG2 and ms2 is a match for rs2, the derivation step(xs2; S2) is in StepsGG2 � StepsIGG2.TfT (Ls1) TfT (Rs1)Ls2 Rs2TfT (IN1) TfT (OUT1)_��TfT (ms1) R2dd iLJJJJJJJJJ //TfT (rs1) S3ee iRLLLLLLLLLL//rs24zz ms2ttttttttt ��// yy m�s2rrrrrrrrrr(2) (1)(3)2. xs1 62 dom(fN): By Lemma 4.5, if xs1 62 dom(fN) then TfT (n1(xs1)) = TfT (rs1) is anisomorphism. Like for the �rst case, we have that TfT (ms1) is total because ms1 is total.As pushout of an injective and a total morphism are preserved by TfT , we conclude thatf s(s1) = S2 is a pushout in TGraphP(T2), and as pushouts of an isomorphism and atotal match are empty steps (see Def. 3.35), f s(s1) 2 StepsIGG2.TfT (Ls1) TfT (Rs1)Ls2 Rs2TfT (IN1) TfT (OUT1)_��TfT (ms1) iL=idJJJJJJJJJJJJJJJJJJ //TfT (rs1) iR=idLLLLLLLLLLLLLLLLLLLL//rs24zz ms2ttttttttt ��// yy m�s2rrrrrrrrrr(2) (1) p



68 4. Parallel Composition of Graph GrammarsThe next construction will be used to transform derivation sequences from one grammarinto derivation sequences of another grammar. This transformation will be done in two steps:1. Translation: Translate the derivation sequences of one grammar into sequences of stepsof the second grammar according to a given graph grammar morphism. As morphismsare allowed to be partial, this translation may lead to sequences including empty steps.2. Normalization: Remove the empty steps from the derivation obtained in the �rst step.This step will give raise to a sequential derivation of the second grammar.De�nition 4.7 (Normalization) Let GG be a graph grammar and l 2 StepsI1GG such thatl = � or OUTi�1 = INi, for all i = 2::jlj. Then the normalization of l, denoted by norm(l),is de�ned as followsnorm(l) = 8>>>><>>>>: �; if (l = �) or (l = s1 and rs1 is an isomorphism)s1 � norm(l1); if l = s1 � l1 and rs1 is not an isomorphismnorm(l10); if l = s1 � l1 and rs1 is an isomorphism, wherel10 = � �; if l1 = �s20 � l2; if l1 = s2 � l2Ls1 Rs1 Ls2 Rs2INs1 OUTs1 = INs2 OUTs2//rs1� 00r�s1 �pp (r�s1)�1_��ms1 &&NNNNNNNNNNN //rs20=rs2//r�s20xx ms2ppppppppppp�uu ms20=(r�s1)�1�ms2 �� m�s2=m�s2044r�s20=r�s2�r�s1 ,�̂Remark. The 3 cases of the de�nition of the normalization can be explained as follows:norm(l) = �: This is the case if l is the empty list or a list with only one empty step.norm(l) = s1 � norm(l1): In this case the �rst step of the list l is not an empty step.Then the normalization of this list leaves this step as it is and concatenate it with thenormalization of the rest of the list.norm(l) = norm(l10): Here the head of the list (s1) was an empty step. Therefore this stepshall not be part of the result. But as we want to get as a result a list in which theoutput graph of one step coincides with the input graph of the following step, we haveto make the input graph of the next step of the list become the input graph of the emptystep that will be deleted (this step is possibly the output of some other step). As s1 is anempty step, its rule rs1 is an isomorphism and therefore r�s1 is also an isomorphism andcan be inverted. Thus the match of the new step s20 is de�ned as ms20 = (r�s1)�1 �ms2,and the co-rule is de�ned as r�s20 = r�s2 � r�s1. As (r�s1)�1 is an isomorphism, the resultingdiagram S20 is also a pushout. ,�̂



4.1. Graph Grammar Morphisms 69The next proposition shows that the normalization of l is a sequence of derivation stepsof the grammar GG that doesn't include empty steps. Moreover, the output of each step inthis sequence is equal to the input of the subsequent step.Proposition 4.8 Let GG be a graph grammar and l 2 StepsI1GG such that l = � orOUTi�1 = INi, for all i = 2::jlj. Then norm(l) 2 Steps1GG and norm(l) = � orOUTi�1 = INi, for all i = 2::jnorm(l)j. Moreover, if l 2 SDerIGG then norm(l) 2 SDerGG.,�̂Proof. See Appendix C. pDe�nition 4.9 (Normalized-Translation of Derivation Sequences) Let f : GG1 !GG2 be a graph grammar morphism, f s be a corresponding translation of derivation stepsand � 2 SDerGG1. Then the normalized translation of � induced by f s, denoted byntranfs(�) is de�ned as follows:1. Translation: tranfs(�) = 8<: �; if � = � orf s(s1); if � = s1f s(s1) � tranfs(�1); if � = s1 � �12. Normalization: ntranfs(�) = norm(tranfs(�)) ,�̂The next proposition describes the fact that if there is a morphism f : GG1! GG2 thenthere is a corresponding translation of derivation sequences fD : SDer(GG1)! SDer(GG2).Proposition 4.10 Let f : GG1! GG2 be a graph grammar morphism and f s be a transla-tion of derivation steps. Then there is a total function fS : SDer(GG1) ! SDer(GG2), called a translation of derivation sequences, such that for all �1 2 SDerGG1 asfS(�1) �= ntranfs(�1). ,�̂Proof. The translation of derivation steps f s exists due to Prop. 4.6. Let ntranfs(�1) = �10.The initial graph of GG2 must be isomorphic to the initial graph of the derivation �10 becausef is a graph grammar morphism (and thus there is an iso if { see diagram below) and thetranslation of derivation steps also guarantees this (there is an iso iI). Thus, we can changethe initial graph of �0 and maintain the rest as in �0, obtaining a derivation sequence �2 inGG2. The initial graph of �2 is the initial graph of GG2 by construction and all rules usedin �2 are rules of GG2 (assured by the normalization construction). For all subsequent stepsi and i+1 of �2, we have that OUTi = INi+1 because �1 is a sequential derivation, and thusful�lls this requirement, the translation preserves this property because TfT is a functor andthe normalization construction preserve this property due to Prop. 4.8.TfT (INGG1) Ls1 Rs1INGG2 IN�10 OUTs1
ff iIMMMMMMMMMM_OOif //rs1_�� ms1� //(iI)�1�if ��// p



70 4. Parallel Composition of Graph GrammarsTheorem 4.11 Let f : GG1 ! GG2 be a graph grammar morphism. Then f is compatiblewith the sequential semantics of graph grammars: All sequential derivations of GG1 can betranslated according to a translation of derivation sequences fS to sequential derivations ofGG2. ,�̂Proof. According to Prop. 4.10, a morphism between graph grammars induces a correspondingtranslation of sequential derivations. pIn fact, graph grammar morphisms are also compatible with the concurrent semantics ofgraph grammars. Concurrent derivations are obtained from sequential derivations by gluingitems (the intermediate graphs). Therefore the translation of sequential derivations could beused to de�ne a corresponding translation of concurrent derivations. We will establish thisrelationship by using the unfolding of a graph grammar. In Chap. 6, it will be shown that theunfolding of a graph grammar includes all its concurrent derivations and that the unfoldingconstruction induces a functor from the category of graph grammars into the category of oc-currence graph grammars (in which all concurrent derivations are included). The applicationof this functor to a graph grammar morphism gives automatically a translation of concurrentderivations.4.2 Parallel Composition of Graph GrammarsIn this section we will present two kinds of parallel composition of graph grammars: pureparallel composition and cooperative parallel composition.The pure parallel composition describes a composition of grammars without any interface.The resulting grammar is the disjoint union of the component grammars plus the parallelrules that may be built using one rule of each component grammar. These parallel rulesdescribe explicitly the possibility of rules of both grammars to be applied in parallel. Thus therules of the composed grammar may express synchronous operations between the componentgrammars (by means of parallel rules) as well as asynchronous operations (via the rules thatbelong to one of the components).The cooperative parallel composition can be used to �nd a common extension to twodi�erent extensions of a grammar. The basic idea is that we have a grammar GG thatrepresents a description of a whole system, called abstract view, and this grammar is specialized(or re�ned) in two di�erent ways, giving raise to grammars GG1 and GG2. A specialization ofGG may add new types, rules and have a bigger initial graph than GG. These specializationrelationships are described by (special) graph grammar morphisms s1 : GG1 ! GG ands2 : GG2 ! GG. Specialization morphisms assure that GG1 and GG2 are in a senseconservative extensions of GG, i.e., the added parts of GG1 and GG2 with respect to GGdo not change the behaviour of the abstract view. The cooperative parallel composition ofGG1 and GG2 with respect to GG is constructed as a union of these three grammars: thetype and initial graph of the composition are union of the corresponding type and initialgraphs, and the rules are the rules obtained as the union of corresponding rules in GG, GG1and GG2 (amalgamated rules), the rules that are in GG1 and GG2 and not in GG and theparallel rules obtained from the latter ones. The amalgamated rules put together the di�erentspecializations made in GG1 and GG2 of the same rule of GG. Therefore we say that GG1and GG2 cooperate to build the description of the whole system (described by the resulting



4.2. Parallel Composition of Graph Grammars 71composed graph grammar). The parallel and other rules represent, as in the pure parallelcomposition, the synchronous and asynchronous compositions respectively. Obviously, thepure parallel composition is a special case of the cooperative parallel composition, namelywhen the abstract view is empty.4.2.1 Pure Parallel CompositionIn this section the pure parallel composition of graph grammars will be de�ned. As discussedabove, the type and initial graphs of the composition is the disjoint union of the types andinitial graphs of the components, and the rules of the composition gives us more than just thedisjoint union of the rules of the component, namely all possible synchronized behaviours ofrules belonging to the component grammars. These synchronized behaviours are expressedby parallel rules. The basic idea is that the parallel composition of grammars GG1 and GG2yields a grammar GG12 containing all rules of each component grammar and all parallel rulesthat can be build using one rule of each component grammar.For graph grammars such a parallel composition has not been de�ned yet. Most ofthe binary composition operators presented until now are based on disjoint union construc-tions (e.g., [CH95, TS95, Jan96, KK96, PP96]), what implies that only the asynchronousparallelism between the components is expressed by the composed system. In some otherformalisms, similar kinds of parallel composition as de�ned here for graph grammars have al-ready been de�ned. For transition systems such a parallel composition was de�ned in [WN94]and for place/transition nets in [MMS96].De�nition 4.12 (Pure Parallel Composition) The pure parallel composition GG1kGG2of two grammars GGi = (Ti; IiT i; Ni; ni), for i = 1; 2, is constructed as follows GG1kGG2 =(T; IT ; N; n) where:� T is the coproduct of T1 and T2 in GraphP, i.e., the disjoint union of type graphs(see Def. B.8)� IT is the coproduct of I1T1 and I2T2 in TGraphP, i.e., the disjoint union of initialgraphs (see Def. B.10� N = N1 ]N2 ] (N1�N2),i.e., the product of N1 and N2 in SetP(see Def. B.2)� n : N ! Rules(T ) is de�ned for all nr 2 N as followsn(nr) = 8<: T(p1T )�1(n1(nr)); if nr 2 N1T(p2T )�1(n2(nr)); if nr 2 N2n1(a)kTn2(b); if nr = (a; b) 2 N1�N2where p1T : T1! T12 and p2T : T2! T12 are inclusions induced by the coproduct T .,�̂Example 4.13 (Pure Parallel Composition { See Def. 4.12) The parallel composition ofthe grammars PLV and CLV shown in Figures 2.3 and 2.4 respectively is the gram-mar PLV jjCLV = (T; IT ; N; n) where T is the disjoint union of PType and CType, Iis the disjoint union of PIni and CIni and the rules all the ones of PLV and CLV plus



72 4. Parallel Composition of Graph Grammarsthe rules Pr1jjCr1, Pr1jjCr2, Pr1jjCr3, Pr2:1jjCr1, Pr2:1jjCr2, Pr2:1jjCr3, Pr2:2jjCr1,Pr2:2jjCr2, Pr2:2jjCr3, Pr3jjCr1, Pr3jjCr2, Pr3jjCr3. three of these rules can be seen inFigure 4.2, where the indices C and P indicate to which type graph (Central or Phone) theitems belong (the items representing data types shall be mapped correspondingly). Note that inthe composed grammar PLV jjCLV , whenever a parallel rule, say Pr1jjCr2, can be applied, sodo the component rules Pr1 and Cr2 because the matches must be completely disjoint (becausethe component rules are typed over disjoint parts of the composed type graph). Moreover, theresults of applying the parallel rule and applying the components in any order will be the same.Obviously, as rules in this case may be applied concurrently, Pr1 and Cr2 may be applied concur-rently (asynchronously). The parallel rule application forces a synchronization between Pr1 andCr2, i.e., these two rules must start begin applied and end at the same time. The fact that theserules may be applied asynchronously means that there can be a situation in which we observe thatthese two rules are being applied, but they don't need necessarily to start and end together. ,�̂
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Figure 4.2: Rules belonging to PV LjjCLVProposition 4.14 The parallel composition of graph grammars is well-de�ned. ,�̂



4.2. Parallel Composition of Graph Grammars 73Proof. We have to show that GG1kGG2 is a graph grammar. The type graph of this grammaris T . As coproducts in TGraphP are constructed componentwise, the graph I is typed overT . As N is a set by construction, we just have to show that the images of n are rules with typegraph T . As p1T is total and injective it can be inverted, giving raise to (p1T )�1 : T ! T1.Moreover, (p1T )�1 is injective and surjective, what implies (by Lemma C.2) that the retypeconstruction T(p1T )�1 : TGraphP(T1) ! TGraphP(T12) transform each rules rT1 intoa morphism r0T12 where r �= r0, what implies that r0T is a rule and the type graph is T .Therefore, for all x 2 N1, n(x) = T(p1T )�1(n1(x)) is a rule with type graph T . Analogously,all images of n(x) for x 2 N2 are also rules with respect to T . Let (a; b) 2 (N1� N2). ByProp. 3.22, the parallel rule is a rule having as type the coproduct to the component types.Thus, n1(a)kTn2(b) = n12(x) is a rule with type T . pThe following proposition assures that the morphisms of the coproduct of type graphs andof the product of sets of rule names give raise to graph grammar morphisms p1 : GG! GG1and p2 : GG ! GG2. In Theo. 4.16 it will be shown GG is the categorical product of GG1and GG2 and that these morphisms are the corresponding projection morphisms.Proposition 4.15 Let GG1 and GG2 be graph grammars, and GG = GG1kGG2 be theirpure parallel composition. Let p1T and p2T be the morphisms of the coproduct of type graphsand p1N and p2N the projection morphisms of the product of sets of rule names. Thenp1 = (p1OPT ; p1N) : GG ! GG1 and p2 = (p2OPT ; p2N) : GG ! GG2 are graph grammarmorphisms. ,�̂Proof. We have to show that the pairs p1 and p2 satisfy the conditions of graph grammarmorphisms (see Def. 4.1). In fact, we will show that in this case, the �rst condition of sub-commutativity can be substituted by commutativity (that is a stronger requirement). Wewill show this for p1, the proof for p2 can be done analogously.1. Commutativity: N1 NR(T1) R(T )_��n1 _�� noooo p1NooooRp1T(1)Let x 2 N and n(x) = rT . Then we have 3 cases:(a) x 2 N1:Rp1T � n(x) = Rp1T ([rT ]) Def. of n1 and n(x) = rT= [Tp1T (rT )] Def. 3.17= [rT1] Lemma C.2= n1(x) Def. of n1= n1 � p1N(x) p1N (x) = x if x 2 N1(b) x 2 N2:Rp1T � n(x) = Rp1T ([Tp2T (n2(x))]) Def. 4.12= undef Def. 3.17 and rng(p1T) \ rng(tL) \ rng(tR) = ;



74 4. Parallel Composition of Graph Grammars(c) x = (a; b) 2 (N1�N2):Rp1T � n(x) = Rp1T ([n1(a)kTn2(b)]) Def. 4.12= [Tp1T ([n1(a)kTn2(b)])] Def. 3.17= [n1(a)] Prop. 3.28 and Def. 3.20= n1(a) Def. of n1= n1 � p1N(x) p1N(x) = a if x = (a; b) 2 N1�N2Therefore (1) commutes.2. Isomorphism of initial graphs: By Lemma C.3 (2) is a pullback. As p1T is total and (2)is a pullback, by Def. 3.8, Tp1T (IT ) �= I1T1.I1 IT1 T_��tI1 _�� tI� � //p1�T� � //p1T(2) pThe next theorem shows that the construction of the parallel composition GG1kGG2given above is the categorical product in the category of graph grammars GG. This factimplies that the pure parallel composition describes the maximal degree of parallelism thatthe two component grammars may have when composed. This is assured by the universalproperty of products, that says that whenever there is another grammar that includes GG1and GG2, this grammar is also included in the composition GG1kGG2 (this assertion holdsnot only for inclusions). Moreover, the fact that the pure parallel composition is a productwill be very useful to prove that the unfolding semantics of a graph grammar that will bede�ned in Chap. 6 is compatible with this kind of composition.Theorem 4.16 The parallel composition of graph grammars is the categorical product (ob-ject) in the category of graph grammars. ,�̂Proof. Let the product morphisms p1 = (p1OPT ; p1N) : GG1kGG2 ! GG1, p2 =(p2OPT ; p2N)GG1kGG2! GG2 be de�ned componentwise in the categories GraphPOP andSetP, where the components are the product morphisms induced by the products of typegraphs and sets of rule names. Let X be a graph grammar and x1 = (x1OPT ; x1N) : X ! GG1and x2 = (x2OPT ; x2N) : X ! GG2 be graph grammar morphisms. Then u = (uOPT ; uN) :X ! GG1kGG2 is de�ned componentwise where the components are the corresponding uni-versal morphisms induced by the products of types and rule names. Due to Prop. 4.15, p1and p2 are graph grammar morphism. Thus it remains to show that u is a graph grammarmorphism and that the universal property is satis�ed.1. u is a graph grammar morphism:(a) Commutativity: By Prop. 4.15 we have that squares (1) and (2) below commute.As x1 and x2 are graph grammar morphisms, squares (3) and (4) below sub-commute. As uN is the universal morphism induced by the coproduct of sets ofrule names, we have



4.2. Parallel Composition of Graph Grammars 75(5) p1N � uN = x1N(6) p2N � uN = x2NAs uT is the universal morphism induced by the coproduct of type graphs and Ris a functor we have(7) Rp1t � RuT = Rx1T(8) Rp2t � RuT = Rx2TWe have to show that (9) sub-commutes, i.e., n � uN �R RuT � nx.N1 R(T1) N2 R(T2)N R(T )NX R(TX)� //n1 � //n2� //n� //nxii p1NSSSSSSSSSSSSSSSSSSSS 55p2N kkkkkkkkkkkkkkkkkkkkkii Rp1TSSSSSSSSSSSSSSSSS 55Rp2T kkkkkkkkkkkkkkkkOOuN OO RuTXX x1N FFx2NYY Rx1T FFRx2T(1)(3) (2) (4)(9)Assume that this does not hold. Let ex 2 NX . As n � uN 6�R RuT � nx byassumption, one of the following cases must be true:i. n � uN (ex) = undef and RuT � nx(ex) = e:As n is total we have that uN(ex) = undef. Then (5) implies that x1N (ex) =undef, and thus Rx1T � nx(ex) = undef because of (3). Analogously weconclude that Rx2T � nx(ex) = undef. By Prop. 3.28 and Def. 3.17 e 2dom(Rp1T ) or e 2 dom(Rp2T ) or both. Assume e 2 dom(Rp1T ). Then by(7) we conclude that Rx1T � nx(ex) must be de�ned, and this contradictsRx1T �nx(ex) = undef. If we assume that e 2 dom(Rp2T ) we get analogouslya contradiction. Therefore this case (i.) can never happen.ii. n � uN (ex) = e0 and RuT � nx(ex) = undef:Analogous to the �rst case.iii. n � uN (ex) = e0, RuT � nx(ex) = e and e0 6�R e:By Prop. 3.28 the rules ofR(T ) can be decomposed, yielding a rule in R(T1) orin R(T2) or both. Let e = [r]; e0 = [r0], decomp(r) = (r1; r2) and decomp(r0) =(r10; r20). Then we have the following cases:� r1, r2, r10 and r20 are not isomorphisms: By Def. 3.17 and 3.26 we havethat Rp1T (e) = [r1T1] and Rp1T (e0) = [r10T1]. As (7) commutes wehave that Rx1T � nx(ex) = Rp1T � RuT � nx(ex) = Rp1T (e) = [r1T1].Then (3) yields that n1 � x1N(ex) �R [r1T1]. By de�nition of e0 we havethat Rp1T (e0) = Rp1T � n � uN (ex). Then (1) yields that Rp1T (e0) =n1 � p1N � uN (ex). This yields that Rp1T (e0) = n1 � x1N (ex) by (5).Then by (3) we conclude that Rp1T (e0) = [r10T1] �R [r1T1] = Rp1T (e).Analogously, we obtain thatRp2T (e0) = [r20T2] �R [r2T2] = Rp2T (e). Thusby Prop. 3.29 we conclude that e0 � e, what contradicts the hypothesisthat e 6�R e0.� r1; r10 are isomorphisms, r2; r20 are not isomorphisms: By Def. 3.17and 3.26 we have that Rp1T (e) = undef, Rp1T (e0) = undef, Rp2T (e) =[r2T2] and Rp2T (e0) = [r20T2]. Analogously to the previous case we ob-tain that Rp2T (e0) = [r20T2] �R [r2T2] = Rp2T (e). As e0 2 rng(n) and



76 4. Parallel Composition of Graph Grammarse0 =2 dom(Rp1T ) we have that r10T1 = ;T1 (by de�nition of pure par-allel composition) and this is trivially a subrule of r1T1. Therefore, byProp. 3.29 we conclude that e0 �R e, what contradicts the hypothesis.� r2; r20 are isomorphisms, r1; r10 are not isomorphisms: Analogous to theprevious case.� Other cases: Let r1T1 be an isomorphism. Then Rp1T (e) = undef. As (7)commutes we have that Rx1T � nx(ex) = undef, and this implies (by (3))that n1 �x1N(ex) = undef. As (5) commutes, n1 � p1N �uN (ex) = undef.Thus (1) yields that Rp1T � n � uN(ex) = undef, i.e., Rp1T (e0) = undef.By Def. 3.17 this implies that r10T1 is an isomorphism. Thus we have againcase ii. If we start with r10T1 we obtain that r1T1 is also an isomorphism.If r2T2 is an isomorphism we obtain analogously that r20T2 is also anisomorphism and vice versa. By Prop. 3.28, there can not be the case inwhich r1 and r2 are isomorphisms.(b) Isomorphism of initial graphs: Here we have to prove that (1) is a pullback and(2) commutes. I IXT dom(uT ) TX6zz tIvvvvvvvvvvv? _oo uHT � //uI _�� tIX_�� a � //uT !(1)(2)As x1 is a morphism, there is a total morphism a1 : I1 ! dom(x1T ) such thattI1 = a1 � x1HT (the pullback morphism from the retyping construction). Thesame holds for x2, yielding a morphism a2 : I2 ! dom(x2T ). uT : T ! TX isthe universal morphism induced by the coproduct T using comparison morphismsx1T and x2T . Therefore dom(uT) consists of all elements of T that are mappedvia one of these comparison morphisms, and thus dom(uT ) is the disjoint union(coproduct) of dom(x1T ) and dom(x2T ). As I is a coproduct, there is a (total)morphism a : I ! dom(u) such that (5) and (6) commute. Thus, by Lemma C.3,(5) and (6) are pullbacks. Squares (7) and (8) are pullbacks because x1 and x2 aregraph grammar morphisms. Now we can apply Lemma C.5 having as hypothesisthe facts that I and dom(uT ) are coproducts and squares (5){(8) are pullbacks inGraph, obtaining that (1) in also a pullback in Graph. As T is a coproduct, uHas well as tI are coproduct morphism, and by uniqueness of coproduct morphisms,we conclude that tI = uHT � a, i.e., diagram (2) commutes.I1 I2dom(x1T ) I dom(x2T )T1 dom(uT ) T2T12� t ''NNNNNNNNNNNN J jwwpppppppppppp� t ''NNNNNNNNNNNNNN J jwwpppppppppppppp� s &&MMMMMMMMMMM K kxxqqqqqqqqqqq_�� a1 _��a2_�� a� _�� uHT � _��x2HT� _�� x1HTA��tI1 }�� tI2(5) (6)= = TXdom(x1T ) IX dom(x2T)I1 I23 99sssssssssss �eeKKKKKKKKKKK3 99x1T ! ssssssssss �ee x2T !KKKKKKKKKK_OOa1 _OO a2_OO tIX(7) (8)



4.2. Parallel Composition of Graph Grammars 772. Universal property: Follows from the componentwise construction of u and from thecorresponding properties of the components. pWe will now introduce a new way of composing grammars using an interface grammar.As already discussed in the example (Chap. 2), it is very useful for practical applicationsto allow the splitting of a speci�cation into smaller parts, that can than be worked outseparately. Obviously, one wants to have the property that, when the pieces are put together,the behaviour of the whole can be totally inferred from the behaviours of the parts. One of thebiggest problems in concurrent and distributed system is to assure this property, because inmany cases we observe that putting components together in a naive way leads to behavioursthat can not be observed in any of the components. Thus, the question that arises is: Whichkinds of restrictions have to be made to de�ne a composition in which this property can beassured? In the next section, we give one possible answer for this question.4.2.2 Cooperative Parallel CompositionVery often in the literature, composition of parts of a system with respect to some interface arede�ned via colimit constructions (gluing all components together on the common interface).This is the case e.g., in algebraic speci�cation [EM90], Petri nets [Jen92, PER95], and graphtransformation systems [Jan93, CH95, TS95, PP96]. For the case of graph grammars, i.e.,transformation systems with initial graph, although this kind of gluing seems to be a naturalway of putting parts together, it is well known that it is not compatible with the most basicsemantics of grammars, namely sequential derivations. This is also the case if we think ofPetri nets with initial markings or even transition systems with initial state. The reason forthis is that the semantics of a grammar usually only consider applications of rules over graphsthat can be generated by the grammar itself. To illustrate this fact, we will give an example.Example 4.17 Consider the graph grammars shown in Figure 4.3, where the type graphs of allof them is the graph T . Grammar GG3 is the union (gluing)2 of GG1 and GG2 over GG0. Asgrammar GG0 has no rules, its sequential semantics SDerGG0 is the set consisting only of theempty derivation sequence. The rule r1 of grammar GG1 can not be applied to graph IN1, andtherefore SDerGG1 = f�g. Analogously, SDerGG2 = f�g. In grammar GG3, both rules can beapplied, and thus its sequential semantics SDerGG3 consists of the empty derivation sequence,and derivation sequences corresponding to all applications of rules r1 and r2 (due to the fact thatisomorphic copies are represented, these are in�nitely many). Thus we can notice that, althoughGG3 can be obtained by gluing GG1 and GG2 along GG0, its semantics can not be obtained asa suitable composition of the semantics of the components. ,�̂In [CH95] a composition operation similar to the one described in the example abovewas presented, just that the grammars do not have initial graphs, and as thus called graphtransformation systems. In this case, the sequential semantics consists of all possible sequencesof applications of rules starting at all possible graphs [CEL+96a]. If we take our example2The kind of union of grammars used in this example is analogous to the ones de�ned for graph transforma-tion systems, for example in [CH95], but gluing also the initial graphs. This example is used just to illustratethe e�ect of such a composition on graph grammars with initial graphs.



78 4. Parallel Composition of Graph Grammars
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GG2Figure 4.3: Rules belonging to PV LjjCLVforgetting the initial graphs, we will observe that the semantics of the transformation systemdescribed by the rules of GG3 can be obtained as a suitable composition of the semantics ofthe corresponding components.One of the reasons why initial graphs are used for speci�cation is to restrict the deriva-tions to the \wanted" ones, in other words, to specify which derivations describe the desiredbehaviour of a system. As graph grammars specify a system in terms of changes of state, froma speci�cation point of view, the description of the initial state of the system is an interestingfeature. Moreover, di�erent initial states usually lead to di�erent behaviours of systems, whatimplies that if we are interested in some kinds of correctness properties of systems, like, e.g.,that some error states are never reached, the speci�cation of the initial state in mandatory.As the initial states complement a set of rules for the speci�cation of a system andspeci�cation of a whole system based on components is a desired property of a speci�cationformalism, suitable means of composing grammars (including initial state) with respect to aninterface shall be developed. The basic idea for the composition developed here is that thecomponents shall not add rules that would modify the behaviour of the interface, because thiscould lead to problems in other components. The interface, called abstract view, shall be seenas a global, abstract speci�cation of the whole system. Each component is a specializationof the interface. This specialization may be done in two ways: i) by adding new items torules/types/initial graph to the ones in the abstract view, ii) by adding new rules. Thecondition for the �rst way of specialization is that the new added items belong only to typesthat are not in the abstract view. Using this kind of specialization, the same rule may bespecialized in many di�erent ways. The condition for the second kind of specialization is thatthe items that are created/deleted by the newly added rules are local, in the sense that theyonly use local types.This idea of is captured by the notion of specialization morphisms.



4.2. Parallel Composition of Graph Grammars 79The next de�nition (specialization morphisms) is (with the appropriate changes of ap-proach) a specialization of the de�nition of morphisms called re�nements of DPO-graphtransformation systems presented in [HCEL96]. With respect to these re�nement morphisms,the main restrictions made here are that specialization morphisms are required to be injectiveon types and that the translation of rules induced by type morphism must be isomorphic tothe corresponding rule of the target grammar.De�nition 4.18 (Specialization Morphism) Let f = (fOPT ; fN) : GG1! GG2 be graphgrammar morphism. Then f is called a specialization morphism, and GG1 and GG2 arecalled specialized grammar and abstract grammar, respectively, i�1. fT is total and injective,2. fN is surjective,3. 8nr 2 dom(fN) : n2 � fN (nr) �= TfT � n1(nr), and4. 8nr =2 dom(fN) : TfT � n1(nr) is the empty typed graph morphism, i.e., ;idT2 : ;T2 !;T2. ,�̂Remarks. The intuitive meaning of the conditions is:1. The type graph of the specialized grammar includes the type of the abstract grammar.This is reasonable because this means that there are no elements of the abstract grammarthat are \forgotten" in the specialization.2. All rules of the abstract grammar are in the specialized grammar. Again, this meansthat the specialized grammar does not forget rules. But note that the same rule ofthe abstract grammar may specialized by many rules of the specialized grammar. Thisallows us to model situations in which actions that seems to be the same at a moreabstract level are distinguishable if we look at a more concrete level.3. This requirement assures that the rules of the components only add elements belongingto local types to the rules of the abstract grammar.4. This requirement assures that rules that are local to a component do not use elementsof types belonging to the abstract grammar, that is, they may only use local types. ,�̂Example 4.19 (Specialization Morphisms) The grammars PLV and CLV (Figures 2.3and 2.4) are two di�erent specializations of the grammar AGV (Figure 2.2). In grammar PLV ,no new rule is added with respect to rules that were in the interface, but the same rule of theinterface r2 in specialized in two di�erent ways (Pr2:1 and Pr2:2). One can check whether thisis a specialization or not by forgetting from the rules (type, initial graph) of PLV items that havetypes that are not in the type of AGV (Figure 2.1). In this example, we have that this forgettingfrom PLV yields the grammar AGV (notice that r2 is yielded by forgetting corresponding itemsfrom Pr2:1 as well as from Pr2:2). ,�̂



80 4. Parallel Composition of Graph GrammarsAs discussed in Chap. 2, the idea of composition introduced here is based on a top-down development of the system: �rst an abstract description of the components and theirinterconnections is �xed, then each component is specialized separately and at the end theyare put together. This composition is called cooperative parallel composition because thethe components cooperate to do the speci�cation of the whole system. This cooperationcan be re
ected in the fact that both specializations done in the components do not changethe behaviour of the abstract view, and that in the resulting system, specializations madeby di�erent components for the same rule of the abstract view are glued together (via anamalgamated rule). One could ask whether this kind of concept for speci�cation of systems isadequate for practical applications. Many discussions with the company Nutec have revealedthat such a concept can be quite useful for the development of concurrent/reactive systems(that are the ones they use to develop). The main aspect is that such a global, abstractspeci�cation of the system as we used here as interface is anyway necessary for the developmentof a product. It serves as a basis for the communication between members of di�erent teams.Moreover, it makes explicit which changes may a�ect other components. For example, ifa developer wants to specialize the interface in a way in which the interface would get anew rule, the formalism makes explicit that this is a \critical change" because the behaviourof other parts may change. \Safe" changes or specializations are given by graph grammarspecialization morphisms. This means that whenever there is a specialization morphismbetween a component and the abstract view, this component is a safe extension of the abstractview, what implies that the cooperative parallel composition of this component with otherones with respect to this abstract view will not show any unexpected (unspeci�ed) behaviour.Abstract View = GG0Component 1 = GG1 Component 2 = GG2System = GG344Specialization s1 hhhhhhhhhhhhhhhhhh jj Specialization s2VVVVVVVVVVVVVVVVVVjjVVVVVVVVVVVVVVVVV 44hhhhhhhhhhhhhhhhh(PB)Formally, this idea of composition gave raise to a de�nition based on pullbacks: if we havean interface GG0 and two specialization morphisms s1 : GG1! GG0 and s2 : GG2! GG0,we can build the cooperative parallel composition of GG1 and GG2 with respect to GG0 asa pullback in the category of graph grammars. This composition consists of the gluings ofthe types and initial graphs of GG1 and GG2 with respect to GG0 and the following set ofrules: rules that are in the components and not in the abstract view and rules that are in theabstract view specialized according to the specializations done in the components. For each ofthe rules r that is in the abstract view, there is a rule r0 (or more, depending on the morphismss1 and s2) in the composition that corresponds to it. This rule r0 contains the specializationsdone in GG1 and GG2 to the rule r, that is, r0 is constructed as the amalgamated rule of therules in GG1 and GG2 that correspond to r with respect to r.De�nition 4.20 (Cooperative Parallel Composition) Let GGi = (Ti; IiT i; Ni; ni), fori = 0; 1; 2 be graph grammars, GG0 be safe, and s1 = (s1OPT ; s1N) : GG1 ! GG0, s2 =(s2OPT ; s2N) : GG2 ! GG0 be specialization morphisms. Then the cooperative parallelcomposition GG1jjGG0GG2 of GG1 and GG2 with respect to GG0 using s1 and s2 isconstructed as follows GG1jjGG0GG2 = (T3; I3T3; N3; n3) where:



4.2. Parallel Composition of Graph Grammars 81� T3 is the pushout (object) of s1T and s2T in GraphP, i.e., the union with respect toT0 of the types T1 and T2 (see Def. B.8)� I3T3 is the pushout of i1s1T and i2s2T in TGraphP, i.e., is the union with respect toI0T0 of I1T1 and I2t2 (see Def. B.10), where i1 : I0 ! I1 and i2 : I0 ! I2 are thepullback morphisms of pullbacks (1) and (2) below.T0T1 T2T3p� !!s2�T CCCCCCCC nN}} s1�T{{{{{{{{N n}}s1T{{{{{{{{ � p !!s2TCCCCCCCC(PO) I0I1 I2I3T0T1 T2T3p� !!s2�T CCCCCCCC nN}} s1�T{{{{{{{{p� !!i2� CCCCCCCC nN}} i1�{{{{{{{{N n}}s1T{{{{{{{{ � p !!s2TCCCCCCCCN n}} i1{{{{{{{{ � p !!i2CCCCCCCC_��tI1 _�� tI2V��tI3 h�� tI0(3) (4)(1) (2) I0I1 I2I3p�   i2� BBBBBBBB nN~~ i1�||||||||N n~~ i1|||||||| � p   i2BBBBBBBB(PO)
� N3 = PBGraphP(N1 s1N! N0 s2N N2) is the pullback of N1 and N2 with respect toN0 in SetP(see Def. B.2) N0N1 N2N3<<s1N yyyyyyyy bb s2NEEEEEEEEbbs2�NEEEEEEEE <<s1�Nyyyyyyyy(PB)� n3 : N3! Rules(T3) is de�ned for all nr 2 N3 as followsn3(nr) = 8>>>>><>>>>>: T(s2�T )�1(n1(nr1)); if s2�N(nr) = nr1 and s1�N(nr) = undefT(s1�T )�1(n2(nr2)); if s1�N(nr) = nr2 and s2�N(x) = undefn1(nr1)kT3eTOn2(nr2); if s2�N(nr) = nr1; s1�N(nr) = nr2;nr1 62 dom(s1N) and nr2 62 dom(s2N)n1(s2�N (nr))kT3n0(nr0)n2(s1�N(nr)); if s1N � s2�N (nr) = s2N � s1�N (nr) = nr0where (s1�T )�1 and (s2�T )�1 are the inverses of the pushout morphisms s1�T ands2�T , n1(nr1)kT3eTOn2(nr2) is the amalgamated rule using morphisms (;siT ; ;siT ) :eT0 ! ni(nri), for i = 1; 2, with e being the empty graph morphism, andn1(s2�N(x))jjn0(x0)n2(s1�N(x)) is the amalgamated rule using morphisms (kisiTL ; kisiTR ) :r0T0 ! riT i, for i = 1; 2, with (kisiTL ; kisiTR ) being the composition of the retypingmorphisms of ri with the unique subrule relation from r0 to T(siT )�1(ri).



82 4. Parallel Composition of Graph GrammarsT0 L0 R0 T0Ti Li Ri Ti�oo tL0 //r0 � //tR0� _��siT � _�� kiL � _��kiR_?oo tLi //r1 � //tri _�� siT(5) (6) ,�̂Remarks.1. Diagrams (1) and (2) are pullbacks because s1 and s2 are graph grammar morphismsin which the type components s1T and s2T are total and injective. This implies thatmorphisms i1 and i2 are also total and injective.2. Analogously, diagrams (5) and (6) are also pullbacks.3. Due to the facts that GG0 is safe and to condition 3. of specialization morphisms, thereis a unique subrule relation from r0 to T(siT )�1(ri). ,�̂Example 4.21 (Cooperative Parallel Composition) The grammar CGV shown in Fig-ure 2.6 is thecooperative parallel composition of grammars PLV and CLV with respect to AGVusing the corresponding specialization morphisms (as described in the previous example). ,�̂Proposition 4.22 The cooperative parallel composition is well de�ned. ,�̂Proof. Here we have to show that GG3 is a well-de�ned graph grammar (Def. 3.33). This canbe done completely analogously to the proof of Prop. 4.14, where we proved that the pureparallel composition of grammars is well-de�ned. Here the proof is based on the facts thatpushouts in TGraph can be constructed componentwise (see Def. B.4), retyping preservesrules (Lemma C.1) and amalgamated rules are rules having as type the pushout of the typesof the components (Prop. 3.25). The uniqueness (up to isomorphism) of this result is due tothe safeness of GG0 and condition 3. of specialization morphisms. pProposition 4.23 Let GG0, GG1 and GG2 be graph grammars, s1 : GG1 ! GG0 ands2 : GG2! GG0 be specialization morphisms and GG1jjGG0GG2 be their cooperative parallelcomposition. Let s1�T and s2�T be the pullback morphisms type graphs and s1�N and s2�N thepullback morphisms of sets of rule names. Then s1� = (s1�OPT ; s1�N) : GG ! GG1 ands2� = (s2�OPT ; s2�N) : GG! GG2 are graph grammar morphisms. ,�̂Proof. We have to show that the pairs s1� and s2� satisfy the conditions of graph grammarmorphisms (see Def. 4.1). We will show this for s1�, the proof for s2� can be done analogously.



4.2. Parallel Composition of Graph Grammars 831. Sub-commutativity: N1 N3 N2R(T1) R(T3) R(T2)R(T0)_��n1 _�� n2_�� n3oooooo s2�N // // //s1�Noooo // //$$ $$R(s1T ) JJJJJJJJJ zzzz R(s2T )ttttttttt(1) (2)Let x 2 N3 and n3(x) = [r]. As s1N and s2N are surjective, we have 4 cases (seeDef. B.2 for pullback construction in SetP) { in the cases below a; b; c 6= ?:(a) x = (a;?;?): Analogous to item 1. of proof of Lemma 4.15.(b) x = (?;?; c): Analogous to item 2. of proof of Lemma 4.15.(c) x = (a;?; c): Analogous to item 3. of proof of Lemma 4.15.(d) x = (a; b; c):Rs2�T � n3(x) = Rs2�T ([n1(a)jjn0(b)n2(c)]) Def. 4.20= [Ts2�T ([n1(a)jjn0(b)n2(c)])] Def. 3.17= [n1(a)] Prop. 3.32= n1(a) Def. of n1= n1 � s2�N (x) s2�N(x) = a (N3 is a pullback)2. Isomorphism of initial graphs: Analogous to the proof of Prop. 4.15, using Lemma C.4and the facts that s1 and s2 are specialization morphisms. pTheorem 4.24 Let GGi = (Ti; Ii;Ni; ni), for i = 0; 1; 2 be graph grammars, and s1 =(s1OPT ; s1N) : GG1 ! GG0, s2 = (s2OPT ; s2N) : GG2 ! GG0 be specialization morphisms.Then the cooperative parallel composition GG3 = GG1kGG0GG2 using s1 and s2 is thepullback (object) of (GG1 i1! GG0 i2 GG2) in the category of graph grammars GG.GG0GG1 GG2GG3::s1 vvvvvvvvv dd s2HHHHHHHHHdd s3HHHHHHHHH ::s4 vvvvvvvvv(PB) ,�̂Proof. Let the pullback morphisms p1 = (p1OPT ; p1N) : GG3 ! GG1, p2 = (p2OPT ; p2N) :GG3 ! GG2 be de�ned componentwise in the categories GraphPOP and SetP, where thecomponents are the pullback morphisms induced by the pullbacks of types and rule names. LetX be a graph grammar and x1 = (x1OPT ; x1N) : X ! GG1 and x2 = (x2OPT ; x2N) : X ! GG2be graph grammar morphisms. Then u = (uOPT ; uN) : X ! GG3 is de�ned componentwisewhere the components are the corresponding universal morphisms induced by the pullbacks of



84 4. Parallel Composition of Graph Grammarstype graphs and sets of rule names. By Prop. 4.23, p1 and p2 are graph grammar morphisms.We have to show that u is a graph grammar morphism and that the universal property issatis�ed. The universal property follows from the componentwise construction of u and thecorresponding properties of the components. The proof that u is a graph grammar morphismcan be found in Appendix C. p



5Occurrence Graph GrammarsThe concepts introduced in this and in the next chapters are closely related to correspondingnotions for the area of Petri nets. In fact, they were inspired by these concepts for nets. In thefollowing we will brie
y discuss this relationship to motivate the de�nitions in this chapter.A more detailed discussion will be done in Sect. 7.3.Petri nets [Pet62] is a well-established formalism for specifying concurrent systems. Thebasic idea is that the structure (control 
ow) of a system is represented by a bipartite graph,where the vertices are called places and transitions (or conditions and events, dependingon the kind of net we are looking at). States are represented by sets (or multisets) ofplaces and the current state is described by tokens lying on places. A change of state isdescribed by the switching of a transition of the net. This switching removes some tokens ofsome places (the pre-conditions of a transition) and creates some new tokens in other places(the post-conditions of a transition). Like for graph grammars, there are many di�erentkinds of semantics for Petri nets. Usually, the sequential semantics of nets is based onswitching sequences. For the concurrent semantics, there are many di�erent approaches,for example [Pet77, NPW81, GR83, BD87, MM90, Vog92]. In particular, the notion of anet process (originally introduced in [GR83]) gives a semantical description of a net in whichthe occurrences of events (switchings of transitions) in computations are ruled by causaldependency relationships between them. The interesting feature of the process semantics ofnets is that the behaviour of a net is explained by a set of \special nets". These special nets arevery simple nets that enjoy a lot of properties (deterministic, acyclic, safe). Such semanticalnets were introduced in [NPW81] with the name of (deterministic) occurrence nets. They arecalled occurrence nets because each place of such a net represents the occurrence of some tokenin some place of the (syntactical) net, and each transition of the occurrence net representsthe occurrence of a switching of a transition of the (syntactical) net. In an occurrence netone can identify directly the relationships between the switchings of transitions of a net.These relationships are typically the causal dependency relation, the con
ict relation and theconcurrency relation (where the third relation is derived from the �rst two). These relationsgive a very good basis for the formal analysis of a net [GW91, PL91, McM92, McM95].Graph grammars can be considered as a generalization of Petri nets in the sense thatgraphs (instead of sets) represent the states and the pre-conditions of some transition areallowed to be read-only accessed, i.e., preserved. The latter feature can be also found in anextension of Petri nets called contextual nets [MR95]. Process semantics of graph grammars85



86 5. Occurrence Graph Grammarshave already been de�ned in [Kre83, KW86, Kor95, KR95, CMR96a], but only the processsemantics de�ned in [CMR96a] (for the DPO approach to graph grammars) introduces aconcept that can be seen as the counterpart of deterministic occurrence nets for the case of(DPO) graph grammars. There a causal dependency relation between the rules (and typegraph) of a graph grammar was de�ned in such a way that it corresponds exactly to thede�nition in the Petri nets case. But in this way, one of the most important features of graphgrammars, namely the ability to preserve items, was not very much explored, as it will beexplained as follows. Consider two rules r1 and r2 and matches into a graph G that overlaponly in one item x that is preserved by r1 and deletes by r2. There is a relationship betweenthese rules because r1 can not occur after r2 has occurred. In such a situation, it seemsthat r2 causally depends on r1. But, on the other hand, r2 may happen independently ofr1 because the items x is already present in G. Therefore, the relation between these tworules is not causality but an occurrence order (r1 may only occur before r2). Obviously,the causal dependency between rules implies a particular occurrence order. In [CMR96a] thisoccurrence order was confused with causal order. Here we will distinguish between occurrenceand causal orders. As we will see in Sect. 5 this is necessary to de�ne a suitable notion of (non-deterministic) occurrence graph grammars. Moreover, the interplay between these relations(causal dependency, occurrence order and con
ict relation) within a graph grammar yields avaluable means of reasoning about the semantics of this grammar.We are aiming at a semantics of a graph grammar GG that describes all possible statesand changes of states of GG and is a graph grammar itself. So the �rst problem is to �nd away to represent all possible states of GG in a suitable way. One could take a set of graphs torepresent the states, and then describe changes of states as relationships on this set. But thenthe speci�c way in which a state is related to another is lost. To preserve this information,we may relate the states through morphisms (the derivation morphisms). Thus we get agraph in which the states are (typed) graphs and the arrows are (typed) graph morphisms.This kind of semantics for graph grammars is called transition system semantics and waspresented in [CEL+96a]. But using this semantics it is very di�cult to check which actionsare dependent, independent or in con
ict because the same item may be represented manytimes: each time an item is preserved by a derivation step, this item is represented in theinput and in the output graphs. This discussion is completely analogous to the one thatled from sequential to concurrent derivations. So, what we really would like to have as arepresentation of the states is one graph, analogous to the core graph. One action then wouldbe a rule whose left- and right-hand sides are interpreted in terms of this core graph, as in thecase of concurrent derivations. But, contrastingly to concurrent derivations, we would like tobe able to represent non-deterministic actions in one object, what allows the description ofthe whole semantics of a graph grammar in one object (instead of using a category as in thecase of the concurrent semantics). In this way, not only concurrent but also non-determinismis represented explicitly.If we see the core graph as a type, and the set of actions as rules, we may notice thatthe de�nition of a concurrent derivation is very similar to the de�nition of a graph grammar.The only di�erence is that the core graph is a typed graph, whereas in a graph grammar thetype is a simple graph (an object in GraphP). The reason for the fact that the core graphis typed is that the core graph represents all states involved in a sequential derivation, andthese states are typed graphs. Thus, as the semantical entities represented by concurrentderivations shall give raise to grammars having core graphs as types, it seems reasonable tode�ne this kind of grammars, and this will be done in Sect. 5.1. If we see the concept of a



5.1. Doubly-Typed Graph Grammars 87graph more abstractly, we can de�ne a notion of `graph' grammar in which the type graph isalready a typed graph. One state of such a grammar will be then a typed graph that is typedinto the type typed graph. We will call these kind of grammars doubly-typed grammars, andthese will serve as a basis for de�ning a class of (doubly-typed) grammars that can be seen asa semantical framework for (typed) graph grammars, namely the occurrence graph grammars(Sect. 5). Although this concept was inspired by the corresponding one for Petri nets, ourde�nitions and results do not match directly the corresponding ones for Petri nets. The choiceof following this di�erent way was done to assure the compatibility of the unfolding semanticswith the parallel composition operators de�ned in Chap. 4 (a more detailed discussion on thistopic will be done in Sects. 7.1 and 7.3).The main aims, de�nitions and results of this chapter are:� De�nition of various relationships between the rules of a (doubly-typed) graph grammar(Defs. 5.20, 5.23, 5.25 and 5.27). These relations will be used to identify a classof (doubly-typed) graph grammars that can be seen as (possibly non-deterministic)computations of a graph grammar. These relationships are presented in Sect. 5.2 (thebasic de�nition of doubly-typed graph grammars are introduced in Sect. 5.1).� De�nition of occurrence graph grammars and occurrence graph grammar morphisms(Sect. 5.3). It is shown in Prop. 5.37 that occurrence graph grammar morphisms pre-serve some (independency) relations. Moreover, a class of occurrence graph grammarmorphism, namely pre�x morphisms is de�ned. Pre�x morphisms enjoy a lot of proper-ties. Particularly important are the preservation of many relations by pre�x morphisms(Prop. 5.41), and the fact that there can be at most one pre�x morphism between twooccurrence graph grammars (Prop. 5.43).� In Sect. 5.4, concurrent derivations and concurrent derivation morphisms are charac-terized as special kinds of occurrence graph grammars and graph grammar morphisms(Theo. 5.45 and Theo. 5.46). This will be used to establish a relationship between theconcurrent and the unfolding semantics of graph grammars that will be introduced inChap. 6.� De�nition of a folding construction for occurrence grammars (Def. 5.47). This fold-ing establishes a relationship between occurrence graph grammars and typed graphgrammars. In particular, it is shown that an occurrence graph grammar represents thederivations of its folded grammar (Prop. 5.50 and 5.51). This is presented in Sect. 5.5.5.1 Doubly-Typed Graph GrammarsThe de�nitions and results from this section are analogous to the ones in Sect. 3.1 and3.3, where typed graphs and (typed) graph grammars were de�ned. To get the categoryof doubly-typed graphs, one has just to take the corresponding de�nition of typed graphs(Def. 3.5) and substitute the category GraphP by TGraphP(T). Again, colimits areconstructed componentwise in the basis category, i.e., TGraphP(T) in this case, followedby a totalization construction (that makes the typing morphism total). The de�nitionsconcerning graph grammars are then obtained by substituting TGraphP byDTGraphP(T)(category of doubly-typed graphs) in the corresponding de�nitions from Sect. 3.3. Although



88 5. Occurrence Graph Grammarswe believe that it would be possible to carry over all results to this case, we will only de�neexplicitly what we will need in the rest of this thesis.De�nition 5.1 (Doubly-Typed Graph) Let T be a graph. A doubly-typed graphGTG%T over T is a tuple GTG%T = (GT ; tGT ; TGT ) where GT and TGT are typed-graphsand tGT : GT ! TGT is a total typed-graph morphism in TGraphP(T). The typed graphTGT is called double-type graph.We denote by x 2 GTG%T an element x 2 VG [EG. ,�̂Example 5.2 (Doubly-Typed Graph) The graph depicted in Figure 5.1 is a doubly-typedgraph with double-type C1T1. Usually we will draw only the typing morphisms from G1 to C1and from C1 to T1 (because the typing morphism from G1 to T1 is the composition of the othertwo). ,�̂
1 21

21

T1
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G1

Figure 5.1: Doubly-Typed Graph G1C1%T1We will de�ne three kinds of morphisms between double-typed graphs: the �rst onebetween (doubly-typed) graphs over di�erent type graphs; the second one between (doubly-typed) graphs over the same type graph; and the third between double-typed graphs overthe same double-type graph. The second kind of morphism is a special case of the �rst kind,and the third a special case of the second. These three kinds will be used to de�ne mor-phisms between doubly-typed graph grammars, morphisms between concurrent derivations(and unfoldings) of the same grammar and rules/matches of one grammar, respectively.De�nition 5.3 (Doubly-Typed Graph Morphisms) LetGTG%T andHTH%T 0 be doubly-typed graphs and gt0 : GT ! HT 0 and tt0 : TGT ! THT 0 be typed graph morphisms (mor-phisms in TGraphP).



5.1. Doubly-Typed Graph Grammars 89GT HT 0TGT THT 0//gt0 _____��tGT _�� tHT 0//tt0 ___ (1) GT HTTGT THT//gT _____��tGT _�� tHT//tT ___ (2) GT HTTGT TGT//gT _____��tGT _�� tHT//idTTG___ (3)1. The pair (gt0; tt0) is a doubly-typed graph morphism, denoted by gt%t0 : GTG%T !HTH%T 0, i� diagram (1) commutes weakly.2. If gt%t0 is a doubly-typed graph morphism and t0 = idT we say that gt%t0 is a T -doubly-typed graph morphism, denoted by gt%T . In this case, the weak commutativityrequirement reduces to the one shown in diagram (2).3. If gt%T is a T -doubly-typed graph morphism and t = idTG we say that gt%T is aTGT -doubly-typed graph morphism, denoted by gTG%T . In this case, the weakcommutativity requirement reduces to the one shown in diagram (3).The categories of doubly-typed graphs and doubly-typed graph morphisms, T -doubly-typed graph morphisms and TGT -doubly-typed graphmorphisms are denoted byDTGraphP,DTGraphP(T) and DTGraphP(TGT), respectively. ,�̂Remark. The weakly commuting diagrams shown in the previous de�nition are diagrams inTGraphP(T). The corresponding diagrams in GraphP(obtained by making all typingmorphisms explicit) are shown below. As tGT = (tG%; idT) and tHT 0 = (tH%; idT) are totaltyped graph morphisms, diagrams marked with \=" commute. As gt0 and tt0 are typed graphmorphisms, diagrams marked with \�" weakly commute. Thus, weak commutativity of themorphism gt%t0 means concretely that the outer squares commute weakly, i.e., tH% � g �t � tG% (in the right-most diagram we have t = idTG, and thus the weak commuting squarereduces to a weak commuting triangle).G HT T 0TG TH//g ________�� _��//t _______� !!BBBBBBBB< ==|||||||| � !!DDDDDDDD: ==zzzzzzzz //t0 ________ ��_��tG% = _�� tH%= G HTTG TH//g ________�� _��//t _______� !!CCCCCCCC; =={{{{{{{{ ;}}{{{{{{{{�aaCCCCCCCC_��tG% = _�� tH%=�� G HTTG //g ________q ��111111111111111 M��
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= =� ,�̂Example 5.4 (Doubly-Typed Graph Morphisms) Figure 5.2 shows two doubly-typed graphmorphisms f% = (f t1; t2t1) and g% = (gidT2 ; ididT2C2 ). The latter is a morphism inDTGraphP(C2T2). ,�̂Pushouts in DTGraphP(TGT) can be constructed componentwise in TGraphP(T),where the second component is the identity of TGT . For the explicit construction see Con-struction B.16.
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idFigure 5.2: Doubly-Typed Graph MorphismsDe�nition 5.5 (ReDoubletyping Functor) Let f t : TG2T2 ! TG1T1 be a morphism inTGraphP. Then there is a functor DT f t :DTGraphP(TG1T1)! DTGraphP(TG2T2)induced by f t. TG1T1 DTGraphP(TG1T1)TG2T2 DTGraphP(TG2T2)OOf t �� DT ftDT f t is de�ned for all object G1TG1%T1 = (G1T1; tG1T1 ; TG1T1) with typing morphismtG1T1 = (tG1%; idT1) and morphism gTG1%T1 = (gTG1; idTG1T1) : G1TG1%T1! H1TG1%T1 inDTGraphP(TG1T1) as follows:� Objects: DT f t(G1TG1%T1) = (G2T2; tG2T2 ; TG2T2), where G2TG2 = Tf (G1TG1) withtyping morphism tG2% : G2 ! TG2, tG2 = tTG2 � tG2 : G2 ! T2 and tG2T2 =(tG2%; idT2). G1 TG1 T1dom(f)G2 TG2 T2� //tG1%, ((tG1=_OOf !G 4 ::f ! ttttttttt6 ::(tG1%)� vvvvvvvvv� //tG2%PB � r $$fH JJJJJJJJJ OO tOO f � //tTG1� //tTG2� 66tG2= �= =



5.1. Doubly-Typed Graph Grammars 91� Morphisms: DT f t(gTG1%T1) = g0TG2%T2 = (g0TG2; idTG2T2), where g0TG2 = Tf(gTG1).G1 H1TG1G2 H2dom(f)TG2
//g	 $$tG1%IIIIIIIII 5zztH1%uuuuuuuuu_OOf !G _OO f !H//g0 _OO f !� _�� fH� $$(tG1%)� HHHHHHHHH 6zz (tH1%)�vvvvvvvvvPB PB ,�̂Proposition 5.6 DT f t is well-de�ned. ,�̂Proof. By construction, G2 is a graph and tG2 is a total graph morphism. Therefore, G2T2is a typed graph over T2. It remains to show that tG2T2 = (tG2; idT2) is a total typed graphmorphism, what is true by de�nition of tG2 (tG2 = tTG2 � tg2%). For the well-de�nednessof morphisms we have to show that tH2% � g0 � tG2%. This is assured by the fact thatg0TG2 = Tf(gTG1) is a morphism in TGraphP(T2) (Tf is well-de�ned { Prop. 3.11). pExample 5.7 (Double-Retyping Construction) Figure 5.3 shows the retyping of the double-typed graph G1C1%T1 using the typed graph morphism ct. In this retyping, each �-vertex isduplicated because there are two elements in dom(c) that are mapped to the same element of C1(remind that the morphisms are indicated by using same symbols and/or indices). The �-vertexis forgotten because this type is not in C2. Note that through a double-retyping, usually graphscan only become \smaller", in the sense that all elements of the retyped graph are in the originalgraph (maybe some are duplicated). Now look at Figure 5.4. There the retyping of the morphism(g1T1; C1T1) with respect to the same typed graph morphism ct is shown. The constructionis done in the following way: �rst the source and target graphs of the morphism are retyped(pullbacks (1) and (2)), then the domain of the retyped morphism is constructed (pullback (3))and is mapped to the target graph in a compatible way. ,�̂Proposition 5.8 Let r = (r1TG1%T1) : L1 ! R1 and m = (m1TG1%T1) : L1 ! G1 bemorphisms in DTGraphP(TG1T1) where r1 is injective and m1 is total, and (1) below bea pushout in DTGraphP(TG1T1) of r and m. Let f : TG2T2 ! TG1T1 be a typed graphmorphism. Then (2) is a pushout in DTGraphP(TG2T2).L1 R1G1 H1// //r_��m �� m�// //r�(1) DT f(L1) DT f (R1)DT f (G1) Tf (H1)// //DT f (r)_��DT f (m) �� DT f (m�// //DT f (r�)(2)
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Figure 5.3: Double-Retype of a Double-Typed Graph ,�̂Proof. As pushouts in DTGraphP(TGT) are constructed componentwise (see ConstructionB.16) and Tf preserves pushouts of one injective and one total morphisms (Prop. 3.12), weconclude that DT f t also preserves pushouts. pThe next de�nition establishes a relationships between doubly-typed and (single) typedgraphs and morphisms via a functor, called type-forgetful functor. As the name says, thisfunctor forgets one of the types of a double-type graph. Let GTG%T be a doubly-typedgraph. By de�nition, this graph consists of two typed graphs, GT and TGT and a typedgraph morphism tT : GT ! TGT connecting them. The type-forgetful functor forgets thecomponent TGT and the typing morphism, yielding the typed graph GT . This functor willbe used in Sect. 5.5 to de�ne a functor between the categories of occurrence graph grammars(that are grammars having a typed-graph as type) and of typed graph grammars.De�nition 5.9 (Type-forgetful Functor) Let DTGraphP and TGraphP be categoriesof doubly-typed and typed graphs, respectively. Then the type-forgetful functor VT :DTGraphP! TGraphP is de�ned as:� Objects: VT (GTG%T 0) = GT 0, for any GTG%T 0 = (GT 0; tGT 0 ; TGT 0) 2 DTGraphP.� Morphisms: VT (f t%t0) = f t0 , for any morphism f t%t0 = (f t0 ; tt0) 2 DTGraphP. ,�̂Proposition 5.10 The type-forgetful functor VT is well-de�ned. ,�̂
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H2Figure 5.4: Double-Retype of a Double-Typed Graph MorphismProof. Obviously, VT yields objects/morphisms in TGraphP. As identities, compositionin DTGraphP are constructed componentwise in TGraphP and VT is a projection, VTpreserves identities and composition. pExample 5.11 (Type-Forgetful Functor) Figure 5.3 shows the result of applying the type-forgetful functor to the doubly-typed graph morphisms of Figure 5.2. ,�̂De�nition 5.12 ((Doubly-typed) Rule) Given a doubly-type graph TGT . Then a rulewith respect to TGT is a morphism a = rTG%T = (rT ; idTGT ) : LTG%T ! RTG%T inDTGraphP(TGT) i� rT is a rule in TGraphP (see Def. 3.14).We denote by Rules(TGT ) the class of rules over the double-type graph TGT andDRules(TGT ) the corresponding extension to isomorphism classes of general rules.Let the typing morphisms from LTG%T and RTG%T be tLT and tRT , respectively. Thenwe de�ne
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Figure 5.5: Result of Applying the Type Forgetful Functor� La = LT and Ra = RT , the left- and right-hand sides of the rule a = rTG%T� prea = tLT : LT ! TGT , the pre-condition of the rule a = rTG%T� posta = tRT : RT ! TGT , the post-condition of the rule a = rTG%T� ra = rT , the rule pattern of the rule a = rTG%TA doubly-typed rule r1TG%T is a subrule of a doubly-typed rule r2TG%T , denoted byr1TG%T �r r2TG%T , i� r1TG is a subrule of r2TG (see Def. 3.16). ,�̂De�nition 5.13 (D-Rules Functor) DRules extends to a functorDR :DTGraphPOP !SetP, de�ned for all object TGT and morphism f t : TG2T2 ! TG1T1 of DTGraphP asfollows:� Objects: DR(TGT ) = IRules+(TGT )� Morphisms: DR(f t) = DRf t : IRules+(TG1T1) ! IRules+(TG2T2) is de�ned for all[r] 2 IRules+(TG1T1) asRf t([r]) = � [DT f t(r)]; if DT f t(r) is not an isomorphism;undef; otherwise ,�̂Proposition 5.14 DR is well-de�ned. ,�̂Proof. Analogous to the proof of the well-de�nedness of R (Prop. 3.18), based onLemma C.2, on Prop. 3.13 and the componentwise construction of identities and compo-sition in DTGraphP. pThe next de�nition introduces doubly-typed graph grammars. These are graph grammarsin which the type graph is a typed graph (compare Def. 3.33).De�nition 5.15 ((Doubly-Typed) Graph Grammar, Morphism) A doubly-typed graphgrammar is a tuple GG = (TGT ; ITG%T ; N; n) where



5.1. Doubly-Typed Graph Grammars 95� TGT is a double-type graph (the type of the grammar),� ITG%T is a doubly-typed graph in DTGraphP(TGT) (the initial graph of the gram-mar),� N is a set of rule names,� n : N ! Rules(TGT ) is a total function (the naming function, assigning to each rulename a rule with respect to the type TGT ).We denote by inGG the typing morphism of the initial graph, i.e., inGG = tIT : IT !TGT .Let GG1 = (TG1T1; I1TG1%T1; N1; n1) and GG2 = (TG2T2; I2TG2%T2; N2; n2) betwo graph grammars. Then a doubly-typed graph grammar morphism is a pairf = (fOPT ; fN) where fOPT is morphism in DTGraphPOP and fN is a function such that thefollowing conditions are satis�ed1. The following diagram sub-commutes, where n1 and n2 are the extensions of n1 andn2 (see Def. 3.33), i.e., for all x 2 domfN or x 2 dom(DRfT � n1), n2 � fN (x) �RDRfT � n1(x). N1 DR(TG1T1)N2 DR(TG2T2)� //n1��fN �� DRfT� //n2 �R2. I2TG2%T2 �= DT fT (I1TG1%T1).The category of doubly-typed graph grammars is denoted by DTGG. ,�̂Example 5.16 (Doubly-Typed Graph Grammar/Morphism) In Figure 5.6 we can seetwo doubly-typed graph grammars (GG1 and GG2) and a doubly-typed graph grammar morphismf = (fOPT ; fN) : GG1 ! GG2, where fT = ct and fN maps the only rule in GG1 to the onlyrule in GG2. We will call the typing morphisms from the left- and right-hand sides of rules bypre and post morphisms. The initial graph of GG2 is exactly the result obtained by (double-)retyping the initial graph of GG1. The rule r2 is not exactly the retyping of the rule r1, but asubrule of it (the retyping of r1 is T (r1) in the �gure). ,�̂De�nition 5.17 (Match,Derivation Step) Given a rule r : L ! R with respect to adouble-type TGT , a match m : L ! IN of r in a doubly-typed graph IN is a totalmorphism in DTGraphP(TGT). A derivation step of a graph INs with rule rs withname nrs at match ms, denoted by INs nrs:ms=) OUTs, is a tuple s = (ns; S), where S is apushout INs r�s! OUTs m�s Rs of ms and rs in DTGraphP(TGT) (see Construction B.16).The components INs, OUTs, r�s and m�s are called input graph, output graph, co-ruleand co-match, respectively. Ls RsINs OUTs//rs_��ms �� m�s//r�sPO
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Figure 5.6: Doubly-Typed Graph Grammar Morphism ,�̂5.2 Relations within a (Doubly-Typed) Graph GrammarIn this section we will investigate important relationships between rules and items of the(double-type) of a grammar. These relationships will be used in Sect. 5 to de�ne a suitablesubclass of doubly-typed graph grammars that can be considered as \behaviours" of (single)typed graph grammars, namely occurrence graph grammars. The basic idea is to interpretthe graph TG of a double-type graph TGT as a graph describing occurrences of items thatare typed over T . These items represent the vertices and edges that may occur in derivedgraphs of a typed graph grammar. This idea corresponds to the notion of a core graph ofa concurrent derivation (see Def. 3.39). Rather than constructing a core graph, as it wasthe case for concurrent derivations, we will de�ne it axiomatically. In Sect. 5.4 we will showthat concurrent derivations are special kinds of occurrence graph grammars, and that the



5.2. Relations within a (Doubly-Typed) Graph Grammar 97core graph of a concurrent derivation is a core graph in the sense of the next de�nition (andtherefore we used the same name).As a core graph shall describe the occurrences of items (vertices/edges), each element of acore graph must have a origin: either it has been present in the initial graph of the grammaror it was created by one rule of the grammar. Moreover, the origin of each item in the coregraph must be unique. This captures the idea that the same vertex can not be created twicein some derivation of a grammar.De�nition 5.18 (Core Graph) Let GG = (CT ; IC%T ; N; n) be a doubly-typed graphgrammar. Then CT is called a core graph i� it satis�es the following condition:8x 2 CT : 9!y 2 (IT ] (Uai2rng(n)Rai))such thatx = � inGG(y); if y 2 IT ;postai(y); if y 2 Rai and y 62 rng(rai)If CT is a core graph, then each element in rng(n) is called an action of GG. An actiona creates an element e 2 (VC [ EC) i� e 2 rng(posta) and e =2 rng(posta � ra). Action adeletes e i� e 2 rng(prea) and there is el 2 La such that prea(el) = e and el =2 dom(ra). ,�̂Remark. As the term \rule", the term \action" is also overloaded: sometimes we will speakabout an action meaning the element associates to a name via the naming function of agrammar, sometimes meaning the name itself of the action and sometimes meaning the pair(name,action). ,�̂Notation: Let GG be a doubly typed graph grammar whose double-type graph is a coregraph. Then the names of its components will be by default CT for the core graph, IC%T forthe initial graph, N for the set of rule names and n for the naming function. If the name ofthe grammar is indexed, for example GG1, the components will be indexed accordingly.Although it would be possible to de�ne the relationships between rules and/or items ofthe (double-)type graph of arbitrary doubly-typed graph grammar, we will here stick to thegrammars whose double-type is a core graph. This has the advantage that the interpretation ofthe relations in this case is directly the one that will be used in the next sections. For example,the causal dependency relation of a grammar that has a core graph as type (Def. 5.20) relatesactions that necessarily must occur before others within some derivation of the corresponding(single-typed) grammar. If the double-type is not a core graph, this relation expresses a\potential" causal relationship: there may be a derivation in which the corresponding actionsare causally related. Moreover, these relationships could have been de�ned for typed graphgrammars and we believe that these more general de�nitions may be useful for provingproperties of systems speci�ed with typed (or double-typed) graph grammars. But as provingproperties of grammars is out of the scope of this thesis, we preferred to study in more detailthe (very relevant) special case of grammars with core graphs as types.Some relations between rules and/or elements of the type graph of a grammar have alreadybeen de�ned in other works. In [Kor96] the causal dependency and the weak con
ict relationsas de�ned here were de�ned between actions of a concurrent derivation (that is a special typeof doubly-typed graph grammar { see Sect. 5.4). In [CMR96a] a causal relationship wasde�ned for (strongly safe DPO) graph grammars. But causality there has a di�erent meaning



98 5. Occurrence Graph Grammarsthan here. There a rule that preserves some elements that are needed by another rule areconsidered as cause of this second rule. Here only rules that create some item that is neededby another one can be considered as causes of this second rule. This stresses the idea thata cause provides the necessary conditions for some action. The causal relation in [CMR96a]corresponds here to the so-called occurrence relation, that describes possible orders in whichthe actions may occur.The �rst relationship of a graph grammar that will be investigated here is the causaldependency relation. The intuitive idea of this relation is thatAn action a is a (direct) cause of an action b if a creates some item that isneeded (preserved/deleted) by b. This implies that b can only happen after a hashappened.The causal dependency relation is also de�ned between types: we say that an item x of thecore graph is a cause of an item y if the \deletion" of x causes the \creation" (i.e., there issome action that deletes x and creates y).Notation:1. The set of pre-conditions of a element a 2 A with respect to a relation R � A � A,denoted by PreR(a), is de�ned byPreR(a) = fa0ja0Rag2. The set of minimal elements with respect to a relation R, denoted by MinR, isde�ned by MinR = fxj 6 9y : yRxg3. The restriction of a relation R to a set of elements S � A, denoted by RjS � S � S, isde�ned by RjS = faRbja; b 2 SgExample 5.19 ((Causal) Dependency Relation) Consider the double-typed graph grammarGG1 depicted in Figure 5.7. The typed graph C1T1 is a core graph: the black and white circleswere present in the initial graph, the white square was created by rule r1, the edge was createdby rule r2 and the black square was created by rule r3. To understand the causal dependenciesbetween the actions of GG1 better we draw the typing morphisms explicitly from the rules tothe core graph. The overlappings of these morphisms in the core graph can be used to �nd outwhich actions causally depend on other ones. For example, we can notice that the actions a1 anda2 overlap in the item �. This white square is created by action a1 (is in the right-hand side,but not in the left-hand side) and is deleted by action a2 (is in the left-hand side, but not in theright-hand side). Therefore we can say that a2 is causally dependent of a1, denoted by a1 � a2.The same relationship can be observed between actions a2 and a3: the edge is created by a2 anddeleted by a3, therefore a2 � a3. Although actions a2, a3 and a4 overlap in the white circle,actions a2 and a4 (and a3 and a4) are not causally dependent because action a2 does not createanything that is needed by a4. In fact, action a4 can occur without any other action occurring�rst. Therefore in this example we have the following dependencies between actions: a1 � a2,a2 � a3, a1 � a3 (obviously, is a3 depends on a2 and a2 depends on a1 we must have that a3depends on a1).
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C1I1 Figure 5.7: Doubly-Tuped Grammar GG1The dependencies between the elements of the core graph is derived from the deletion/creationrelation imposed by the rules. For example, � depends on � because � can only be created if a �is deleted (described by action a1). In the same way we get the following dependencies betweentypes: � � �, � �!, � �!, !� �, � � � and � � �. ,�̂The formalization of this intuitive idea of causal dependency is based on the applicationof an \inverse" rule: if we want to �nd out whether action a2 is dependent on action a1 weremove everything that was added by a1 from the core graph, then if all elements needed bya2 are in the resulting core graph a2 is not dependent on a1, otherwise a2 depends on a1.This removal of items of the core graph can be done by applying the inverse of the rule of a1.The de�nition given below corresponds to the notion of weak parallel dependency, that is arelation de�ned between derivation steps of a graph grammar.De�nition 5.20 ((Causal) Dependency Relation) Let GG = (CT ; I; N; n) be a doubly-typed graph grammar and CT be a core graph. Let n1; n2 2 N and n(n1) = a1 = r1TG%T ,n(n2) = a2 = r2TG%T , a1 6= a2. Let e1; e2 2 C, e1 6= e21.1. The action n2 is directly (causally) dependent of n1, written n1 EN n2, i� (ra1)�1��prea2 is not total, where (1) is a pushout in TGraphP(T). Otherwise, n2 is notdirectly dependent of n1, denoted by n1 6EN n2. If n1 6EN n2 and n2 6EN n1, we saythat n1 and n2 are directly independent.La1 Ra1 La2 Ra2X1 CToo(ra1)�1oo (ra1)�1��� � !!posta1DDDDDDDD //rTa2:}} prea2zzzzzzzz(1)1Remind that e1; e2 2 C means e1; e2 2 VC [EC .



100 5. Occurrence Graph Grammars2. The (causal) dependency relation between actions of a doubly-typed graph gram-mar �N� (N �N) is the re
exive and transitive closure of EN .3. The element e2 is directly (causally) dependent of e1 written e1 ET e2, i� there isan action n1 2 N such that n1 deletes e1 and creates e2.4. The (causal) dependency relation between types of a doubly-typed graph grammar�T� (C � C) is the re
exive and transitive closure of ET .5. The (causal) dependency relation of a doubly-typed graph grammar �� (N �N) [(C � C) is de�ned by (�N [ �T ). ,�̂Remarks.1. Note that, in the application of the inverse rule there can be no con
icts betweendeletion and preservation because the rule is injective and the elements added by a ruleare not identi�ed in the core graph (otherwise the double-type would not be a coregraph). There may be edges from the core graph that are deleted by the application ofthe inverse rule, although they are not speci�ed in the right-hand side of the originalrule (dangling edges). But this is not a problem because actions that need these edgeswill also need the action that created the corresponding vertex.2. If it is clear from the context, we will usually omit the superscripts N and T from �.3. We could have de�ned the causal dependency relation relating also rules and elementsof the core graph (as in [CMR96a]), but, as this will not be needed later on, we stick tothis de�nition (that makes is some cases the reasoning about the relationships easier).,�̂Example 5.21 In Figure 5.8 we can see that action a3 is causally dependent on action a2 (seegrammarGG1 in Figure 5.7). This is due to the fact that we can not prolongate the pre-conditionof a3 to graph H1 (the edge can not be mapped). ,�̂
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Figure 5.8: Causal Dependent Situation



5.2. Relations within a (Doubly-Typed) Graph Grammar 101The second relationship of a graph grammar that will be investigated here is the weakcon
ict relation. The intuitive idea of this relation is thatAn action a is in weak con
ict with an action b if a deletes some item thatis needed (preserved/deleted) by b. This implies that b can not happen if a hashappened (a excludes the occurrence of b).This relation is called a weak con
ict because it only states that the occurrence of one ofthe actions exclude the occurrence of the other (and not vice versa, as the usual de�nitionof a con
ict). In the case that a deletes something that is also deleted by b, we will obtainthat b is also in weak con
ict with a, and they are thus in (classical) con
ict: they aremutually exclusive. Asymmetric situations of weak con
ict arise from the fact that itemsmay be preserved (read-only accessed) by rules. The ability to model the preservation ofitems is a very important feature of graph grammars. It allows for the modeling of highlyparallel systems and in particular in which not only completely disjoint actions may occurin parallel [Tae96]. Items that are preserved by some action can be considered as \read-accessed" and therefore many other actions that also read these items may occur in parallelwith the �rst one. In the SPO approach, it is even allowed that one write-access (deletion)may occur in parallel with many read-accesses (preservation) of some item, and this allowseven more parallelism within a system speci�ed using SPO graph grammars. Although thepreservation of items is a very important feature for the speci�cation of parallel systems, itraises some situations between actions that can not be identi�ed as con
icts in the classicalsense (because they do not mutually exclude each other), are not causally dependent, but cannot be observed in any order.
r1 r2 r3

I2 C2

T2

b1 b2 b3

Figure 5.9: Grammar GG2Example 5.22 (Weak Con
ict Relation) Consider the doubly-typed graph grammar depictedin Figure 5.9. The action b1 preserves the item �, that is deleted by action b2. Moreover, action



102 5. Occurrence Graph Grammarsb1 does not create anything that is needed by b2 and vice versa,i.e., these two actions are causallyindependent. As they do not delete the same items, one would expect that they may occur in anyorder is we consider some derivation of this grammar. But this is not true because if b2 occurs,the � vertex is deleted, and then b1 can not occur anymore. On the contrary, if b1 occurs, b2 canstill occur because the � vertex will still be there after the occurrence of b1. In such a situation wesay that b2 in in weak con
ict with b1, and denote this by b1 #�! b2 (the direction of the arrowindicates which is the possible occurrence order for these actions). Now consider actions b1 andb3. We can observe that they exclude each other because both delete the vertex �. Thus, theweak con
ict relation between actions of this grammar contains the following elements b1 #�! b2,b1 #�! b3 and b3 #�! b1. ,�̂The weak con
ict relation is also de�ned between types, and the intuitive idea is thatan item is in weak con
ict with another one if the creation of the second item excludes thecreation of the �rst one. In the example above, we have that � �# �.The weak con
ict relation between actions will be de�ned analogously to the causaldependency relation: based on the overlappings of actions in the core graph. But here welook for overlappings between the pre-conditions of actions.De�nition 5.23 (Weak Con
ict Relation) Let GG = (CT ; I; N; n) be a doubly-typedgraph grammar and CT be a core graph. Let n1; n2 2 N and n(n1) = a1 = r1TG%T ,n(n2) = a2 = r2TG%T , a1 6= a2. Let e1; e2 2 C, e1 6= e2.1. The action n2 is in weak con
ict with n1, written n1 #�!N n2 i� r�a2 � prea1 is nottotal, where (1) is a pushout in TGraphP(T). Otherwise, n2 is not in direct weakcon
ict with n1, denoted by n1 #�!= Nn2.Ra1 La1 La2 Ra2CT H2oo ra1 � !!prea1 DDDDDDDD //ra2 �� pre�a2:}}prea2zzzzzzzz //r�a2(1)2. The element e2 is in weak con
ict with e1, written e1 #�!T e2 i� there are actions n1and n2 that create e1 and e2, respectively, and n1 #�!N n2.3. The weak con
ict relation of a doubly-typed graph grammar #�!� (N�N)[(C�C)is de�ned by ( #�!N [ #�!T ). ,�̂Example 5.24 In Figure 5.10 we can see that action b2 is in weak con
ict with action b1 (seegrammarGG2 in Figure 5.9). This is due to the fact that we can not prolongate the pre-conditionof b1 to graph H2 (the �-vertex can not be mapped). ,�̂As discussed before, weak con
ict situations give raise to con
ict situations when theyare symmetric. Therefore we will de�ne a con
ict relation of a graph grammar based on its
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PO?Figure 5.10: Weak Con
ict Situationweak con
ict relation. Con
icts are inherited under causal dependencies: if an action a isin con
ict with an action b then all actions that depend on a will also be in con
ict with bbecause if b occurs, all of them can not occur anymore (symmetrically, all actions that dependon b will also be in con
ict with a).De�nition 5.25 (Con
ict Relation) Let GG = (CT ; I; N; n) be a doubly-typed graphgrammar and CT be a core graph. Let x1; x2; x3 2 (N �N) [ (C � C).1. The inherited weak con
ict relation of GG, denoted by #=), is de�ned by #=)�(N �N) [ (C � C) such thatx1 #=) x2 i� 9x3 : x1 #�! x3 and x3 � x22. The con
ict relation of GG, denoted by #(), is de�ned by #()� (N �N)[ (C�C)such that x1 #() x2 i� x1 #=) x2 and x2 #=) x1 ,�̂Example 5.26 (Con
ict Relation) Consider the grammar GG3 depicted in Figure 5.11. Al-though it may not look like at �rst glimpse, actions c1 and c3 are in con
ict. They do not excludeeach other directly (the overlappings of their pre-conditions in the core graph is empty), but therecan be no sequential derivation of this grammar in which these two actions occur. This is becauseis action c1 occurs, action c4 must have occurred �rst (it creates the �-vertex that is needed byc1). But on the other hand, if c4 occurs, c3 can not occur anymore (the �-vertex needed byc3 is deleted by c4). Moreover, we observe that c4 is not in con
ict with c3 because there maybe a sequential derivation including both (c2; c3; c4). The possible sequential derivations of thisgrammar will be discussed in Example 5.28. ,�̂In many formalisms, for example Petri nets, transition systems and event structures,the possible orders in which a con
ict-free set of actions (transitions,events) may occur insome sequential computation depend only on the causal dependency relation: any total order
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Figure 5.11: Grammar GG3that is compatible with the dependency relation yields a possible sequentialization of theseactions. In the case of nets with inhibitor arcs, it was noticed in [JK91] that these relationswere not enough to describe suitably the computations of such a net. In graph grammarsthese relations are not enough due to the weak con
icts. We can observe that both relations,� and #�!, impose some restrictions on the order in which actions may occur in derivationsequences. If a � b then in any sequential derivation we must have that a occurs before bbecause b needs something that is created by a. If a #�! b then in any sequential derivationthat includes both we must have that a occurs before b because b excludes the occurrence ofa. That is, in the case of graph grammars we have to take not only causal but also sequentialdependencies (given by weak con
ict) into account in searching for an occurrence order ofactions of a grammar. Therefore the combination of these two relations gives us the possibleoccurrence orders of actions. This relation will be called occurrence relation, and the basicidea is thatIf the pair of actions (a; b) is in the occurrence relation then in any sequentialderivation including both action, b occurs after a.This relation is very important because it will be the basis for recognizing possible derivationsequences within a set of actions.De�nition 5.27 (Occurrence Relation) Let GG = (CT ; I; N; n) be a doubly-typed graphgrammar, CT be a core graph and � and #�! be the dependency and weak con
ict relationsof this grammar, respectively. Then the occurrence relation of GG, denoted by �#, isde�ned by �#� (N � N) [ (C � C) such that �# is the re
exive and transitive closure of(� [ #�!).Let a 2 N . Then the local occurrence relation with respect to the action a, denotedby �#a , is the re
exive and transitive closure of (� [ #�!)jPre�(a). Analogously, for a



5.2. Relations within a (Doubly-Typed) Graph Grammar 105set of actions A � N , �#A is the re
exive and transitive closure of (� [ #�!)jP , whereP = fa0ja 2 A and a0 � ag. ,�̂Remark.1. Although weak con
ict relationships are not transitive, if we have that a #�! b andb #�! c then a must occur before c in any sequential derivation that includes these 3actions. Therefore, for the occurrence relations (where we are interested in possibleoccurrence orders of actions) it is reasonable to consider a transitive closure of the weakcon
ict relation.2. The local occurrence relation expresses the occurrence relation between the causes of anaction a. Note that to de�ne this relation only the weak con
ict and causal dependenciesamong the causes of a were used (this relation is not the restriction of the occurrencerelation to the elements of Pre�(a)). ,�̂Example 5.28 (Occurrence Relation) Consider the grammar GG1 of Figure 5.7. The oc-currence relation between actions of this grammar is (disconsidering the pair due to re
exivity):� �# �, � �#!, � �#!, !�# �, � �# �, � �# �, a1 �# a2, a1 �# a3, a1 �# a4,a2 �# a3, a2 �# a4 and a3 �# a4. In this case, we can �nd a total order that is compatiblewith the occurrence relation, namely a1 < a2 < a3 < a4. Therefore this is a possible sequentialderivation of this grammar.Now consider the grammar GG2 of Figure 5.9. The occurrence relation between actions ofthis grammar is (again without the pairs due to re
exivity): b1 �# b2, b1 �# b3 and b3 �# b1.This means that there can be no sequential derivation that contains b1 and b3 because there isno possible total order including these two actions that is compatible with �#.Look now at grammar GG3 of Figure 5.11. As we have that c4 � c1, c1 #�! c2, c2 � c3and c3 #�! c4, each action is related to the other three via the occurrence relation. This impliesthat there can be no total order that is compatible with the occurrence relation that includesthese 4 actions (because there is a cycle). In particular, the sequences including c1 and c3 cannot become derivations of the grammar because if these actions are present, the actions c4 andc2 must also belong to this derivation (c1 and c3 causally depend on these actions), and thisis not possible because, as discussed above, there can be no total order of this actions that iscompatible with their (causal and sequential) dependencies. The next example is to illustrate thedi�erence between the occurrence relation and the local occurrence relation. In the grammarGG4(Figure 5.12) we can observe the following (direct) relations between actions: d1 � d2, d2 � d3and d3 #�! d1. If we then build the occurrence order of GG4 we will obtain, within others, therelationships d1 �# d2 and d2 �# d1. This hints on the fact that a sequential derivation usingall actions of this grammar is not possible because there are cycles in the occurrence relation. Inthe local occurrence relation with respect to the action d2 we would obtain the d1 �#d2 d2, butd2 6�#d2 d1. This means that there is a sequential derivation using the pre-conditions of d2 (andd2 itself). The local occurrence relation is used to �nd out if for each action there is at least onepossible sequential derivation that including it. ,�̂
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Figure 5.12: Grammar GG45.3 Occurrence Graph GrammarsThe main motivation for the de�nition of occurrence graph grammars is to identify a classof doubly-typed graph in which each object represents a (concurrent, non-deterministic)computation of a typed graph grammar. Such a class can then be used as a semanticaldomain where all behaviours of typed graph grammars are represented. The advantages ofsuch a semantical domain are twofold. On the one hand, it eases the understanding of thesemantics: if a developer understands the basic operational behaviour of a graph grammar,the semantics will be also clear to him/her because it is also a graph grammar. On the otherhand, theoretical investigations can be done within a uniform framework. In fact this kind oftight relationship between syntax and semantics can be also found in other formalisms. Forexample, in algebraic speci�cations [EM85] the quotient term algebra can be considered asthe semantics of an algebraic speci�cation. This algebra is a quite syntactical one obtained bygenerating all terms that are possible with respect to the corresponding signature and thengrouping them into equivalence classes using the equations of the speci�cation. In Petri nets[Pet62, Rei85], the semantics of a net can also be represented by a net itself (or by a set ofnets), the unfolding net [WN94, MMS96]. Each place of the unfolding net correspond to atoken of a reachable marking of the original net, and each transition to a possible switchingof a transition of the original net.For graph grammars, the idea we follow here is: the semantics shall describe all possiblederivable graphs and all possible derivations. The semantics of a graph grammar will bea special kind of doubly-typed graph grammar, called occurrence graph grammar. In anoccurrence graph grammar, the derivable graphs of the original grammar are represented inthe double-type graph and derivations of the original grammar are described by actions (therules of the occurrence graph grammar). As discussed in the introduction of this chapter,doubly-typed graph grammars are a good choice to obtain such semantical grammars becausethey are able to represent not only the occurrences of some type but also the type itself,



5.3. Occurrence Graph Grammars 107such that the relationship to the original grammar is maintained. The advantage is thatwe can directly consider an occurrence graph grammar as a process of its underlying graphgrammar (that can be obtained by folding the occurrence graph grammar). This approach isin accordance with the de�nition of graph grammar processes done in [Kre83, KW86], wherea graph grammar process is a partial order of direct derivations (these are here represented bythe actions of an occurrence graph grammar). Moreover, using this approach it will be possibleto show that the unfolding semantics (that is an occurrence graph grammar) is compatiblewith parallel composition of graph grammars.In fact, we will see that concurrent derivations, that can be used to describe the concurrentsemantics of a graph grammar, are (deterministic) occurrence graph grammars. An occurrencegraph grammar representing a computation of a typed graph grammar GG has two types:the type T of GG and a second type C representing the instances or occurrences of the itemsof T that appeared in the corresponding derivation(s) of GG. But this means that the secondtype (C) is not any type, but must consist only of items that are in the initial graph of GG orthat were created in some derivation of GG. This means, C must be a core graph (Def. 5.18).Moreover, each action (rule) of an occurrence graph grammar shall represent a derivation stepof some derivation sequence of GG. This means that each action must be applicable (and cannot occur twice) in some derivation of the occurrence graph grammar. This can be assuredby requiring that the causal dependency relation of an occurrence graph grammar is a partialorder and that all causes of each action are not in con
ict. We will formalize this idea of anoccurrence graph grammar in the next de�nition.De�nition 5.29 (Occurrence Graph Grammar) Let GG = (CT ; IC%T ; N; n) be adoubly-typed graph grammar. Then GG is an occurrence graph grammar i� it satis-�es the following conditions:1. Acyclic local occurrence relations: 8a 2 N : �#a is antisymmetric.2. No self-con
icts: #() is irre
exive.3. Finite (action) causes: 8a 2 N : Pre�N (a) is �nite.4. Core graph: CT is a core graph (see Def. 5.18).5. Deterministic action output: 8(nr; a); (nr; b) 2 N : prea = preb and ra = rb ) posta =postb.6. The elements of N are of the form (x; a), where a is a doubly-typed graph morphism,n(x; a) = a and for all (x; a1); (x; a2) 2 N : VT (a1) = VT (a2), where VT is the type-forgetful functor (see Def. 5.9). ,�̂Remarks. The informal interpretation of the axioms of an occurrence graph grammar are:1. Acyclic local occurrence relations: This axiom assures that the local occurrence relationwith respect to each action of GG is a partial order (by de�nition, this relation isre
exive and transitive). This means that there is a total oder that is compatible withthis occurrence relation and thus this action occurs in some sequential derivation of



108 5. Occurrence Graph Grammarsthis grammar. This axiom implies that the dependency relation � is a partial order,that is, there are no dependency cycles of actions or of types (due to axiom 3., � iswell-founded).2. No self-con
icts: There is no action that is in con
ict with itself. As the con
ictrelationship is inherited with respect to the dependency relationship, this also meansthat whenever two actions are causes of a third one, these two can not be in con
ict.3. Finite causes: Each action a has a �nite number of causes (actions that must occur �rstsuch that action a may occur).4. Core graph: Each item of CT has exactly one origin: either it has a pre-image in theinitial graph or in exactly one right-hand side of a rule of GG. This implies that ifsome item that was created by some action a appears in the right-hand side of anotheraction b, it must be preserved by b. Analogously for the items that were in the initialgraph. Moreover, this means that all actions must use items that either belong to theinitial graph or were created by some other action(s) only using (directly or indirectly)items of the initial graph. As all rules are consuming, this implies that all the minimalelements with respect to � belong to the initial graph.5. Deterministic action output: The same rule is applied at most once at the same match.This makes sure that rule applications are deterministic with respect to representationnon-determinism (see discussion in Sect. 3.3),i.e., the application of a rule to a matchyields one result (and not in�nitely many isomorphic results).6. This item justi�es the name \occurrence" graph grammar: each item (x; a) of N is anoccurrence (a) of the rule x. The names of the occurrences are pairs containing thename of the corresponding rule that was used and the corresponding occurrence itself(used as an index to di�erentiate di�erent occurrences of the same rule). Moreover,all occurrences having the same name of rule must use the same rule (this is modeledby the fact that, forgetting the concrete occurrence, the rule must be the same). Thisitem is a technical convenience that will be used later on in some constructions usingoccurrence grammars. ,�̂Example 5.30 (Occurrence Graph Grammars) If we consider the set of action namesN1 = f(r1; a1); (r2; a2); (r3; a3); (r4; a4)g, the grammar GG1 of Figure 5.7 is an occurrencegraph grammar. This also holds for grammars GG2 and GG3 (Figures 5.9 and 5.11). The gram-mar GG4 (Figure 5.12) is not an occurrence graph grammar because the �rst and second axiomsare violated by action d3: its local occurrence relation is not antisymmetric (we have, for example,d1 �#d3 d3 and d3 �#d3 d1) and the con
ict relation is no irre
exive (d3 #() d3 because d3 #�! d1and d1 � d3). ,�̂Relationships between occurrence graph grammars will be expressed by occurrence graphgrammar morphisms. These morphisms are doubly-typed graph grammar morphisms thatpreserve the special structure of the occurrence graph grammar. As each element of the coregraph CT represents an occurrence of some element of T , the morphisms between occurrencegraph grammars shall map these occurrences compatibly, that is, using the retyping induced



5.3. Occurrence Graph Grammars 109by the mapping of T . Moreover, the occurrence graph grammar morphisms shall respect thenames of the actions: if some action name (na; a) is mapped to an action name (nb; b), allother actions that use the rule name na must also be mapped to actions that use the rulename nb. This guarantees the di�erent occurrence of the same rule in the source occurrencegrammar will be mapped to occurrences of the same rule in the target occurrence graphgrammar.De�nition 5.31 (Occurrence Graph Grammar Morphism) Let Occ1 and Occ2 be oc-currence graph grammars and f = (fOPT ; fN) : Occ1! Occ2 be a doubly-typed graph gram-mar morphism, where fT = ct : C1T1 ! C2T2. Then f is an occurrence graph grammarmorphism i� the following conditions are satis�ed:1. 8(rn; a1); (rn; b1) 2 dom(fN) : fN (rn; a1) = (rn1; a2); fN(rn; b1) = (rn2; b2)) rn1 =rn2.2. Diagram (1) below is a pullback in GraphP(see Def. B.6 in the appendix), wheretdom(c) = (tH)�1 � tC2 � cH (this morphism must be total because ct weakly commutes).C1 T1dom(c) dom(t)C2 T2� //tC1� //tC2_OOc! � _��cH _OO t!� _�� tH� //tdom(c)(1)=The category of occurrence graph grammars and occurrence graph grammar morphismsis denoted by OccGG. ,�̂Proposition 5.32 OccGG is well-de�ned. ,�̂Proof. OccGG is a subcategory of DTGG, that is well-de�ned. Therefore, we just have toshow that the identities of DTGG are occurrence graph grammar morphisms and the compo-sition of occurrence graph grammar morphisms yields again an occurrence graph morphisms.1. Let id = (idOPT ; idN) be the identity of the occurrence grammar Occ. The �rst condi-tion of occurrence graph grammar morphism is trivially satis�ed by idN . The secondcondition requires that diagram (1) below is a pullback, what is obviously true.C1 T1dom(idC1) = C1 dom(idT1) = T1� //tC1_OOidC1 _OO idT1� //tC1(1)2. Let f = (fOPT ; fN) : Occ1 ! Occ2 and g = (gOPT ; gN) : Occ2 ! Occ3 be occurrencegraph grammar morphisms, where fT = c1t1 and gT = c2t2. Then we have to show that



110 5. Occurrence Graph Grammarsg � f = ((gT � fT )OP ; gN � fN ). Let (rn; a1); (rn; a2) 2 dom(gN � fN ). Let fN (rn; a1) =(rn1; a2); fN(rn; b1) = (rn2; b2) and gN(rn1; a2) = (rn3; a3); gN(rn2; b2) = (rn4; b3).As f is an occurrence graph grammar morphism we conclude that rn1 = rn2. As g isalso an occurrence graph grammar morphism we conclude that rn3 = rn4. Therefore,the �rst condition of occurrence graph grammar morphisms is satis�ed. For the secondcondition, we have to show that diagram (2)=(3)+(7) below is a pullback, where(7) is the square with tips in dom(c2 � c1), dom(c1), dom(t1) and dom(t2 � t1):As f and g ful�ll this condition, squares (3) and (4) are pullbacks. Moreover, squares (5)and (6) are also pullbacks (the domain of a composed function is standardly constructedas a pullback { see [Ken91]). Pullbacks (5) and (4) can be composed yielding a pullback(5)+(4). Square (7) commutes because gT �fT is a morphism in TGraphP(this followsfrom the weak commutativity requirement of morphisms in this category and from thede�nition of tdom(gT �fT ) { see Def. 5.31). As (5)+(4) and (6) are pullbacks and (7)commutes, decomposition of pullbacks yields that (7) is also a pullback. Therefore, (2)is obtained as a composition of pullbacks (3) and (7) and is thus also a pullback.C1 T1dom(c1) dom(t1)C2 T2dom(c2) dom(t2)dom(c2 � c1) dom(t2 � t1)
� //tC1� //tC2_OOc1! � _��c1H _OO t1!� _�� t1H_OOc2! _OO t2!� //tdom(c1)� //tdom(c2)� //tdom(c2�c1)* 
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(3)=(4)(5) (6) pThe elements of the core graph of an occurrence graph grammar represent instances ofthe elements of the type graph that have been created by some action or have been present inthe initial graph. An occurrence graph grammar shall represent a computation and the coregraph shall represent all states that were reached by this computation. But as the core graphis only one graph where all these intermediate states are glued, the question arises whichsubgraphs of the core graph can be really found in some state. For example, if an elementx was created because an element y was deleted, these two elements can never occur in thesame reachable graph. The next de�nition gives the conditions for the subgraphs G of a coregraph C such that G may occur as a subgraph of some computation. These graphs will becalled concurrent graphs (as they are the analogous to the concurrent places of Petri nets[MMS96]). The fact that the concurrent graphs of an occurrence grammar can be reached bysome derivation will be shown in Prop. 5.50.The intuitive idea of the de�nition of a concurrent graph is that all its elements shall notdepend on each other nor be in con
ict with each other.



5.3. Occurrence Graph Grammars 111De�nition 5.33 (Concurrent Graph) Let Occ = (C; I;N; n) be an occurrence graphgrammar and G be a subgraph of C. Let A = fa 2 N ja 2 Pre�(x) and x 2 Gg. ThenG is a concurrent graph i� the following conditions are satis�ed for all x; y 2 G:1. x 6� y and y 6� x.2. x #()= y.3. �#A is antisymmetric.4. Pre�#A(x) is �nite. ,�̂Example 5.34 (Concurrent Graph) Consider the occurrence grammar depicted in Fig-ure 5.13. In this grammar, the causal dependency relation between actions �N is empty becauseall actions depend only on items that were present in the initial graph (note that the two �-verticeson the left-hand side of r1 are matched to the same vertex of C). The dependency relation be-tween elements of the type graph is: �1;2 � �,�1;2 �!, �1 � circ3 and � � �2. The weakdependency relation is: a1 #�! a2, a2 #�! a3, a3 #�! a1, ! #�! �2, � #�! �2 and �2 #�! �2.By the de�nition of the con
ict relation based on these two relations, we obtain that there are nocon
icts in this grammar, i.e., #()=. Now consider the subgraph G1 of C. The components ofthis graph are not related via the causal dependency relation, and there are obviously no con
ictsbetween them (because the grammar is con
ict-free). Moreover, there is a possible sequence inwhich actions a1 and a2 (that are necessary to obtain G1) can be applied. As this set of actionsfa1; a2g is �nite, we conclude that G1 is a concurrent graph of GG. The same holds for G2.Now consider the graph G3. As we have that � � �2, the �rst condition for concurrent graphsis violated, and thus G3 is not a concurrent graph. Intuitively this means that this graph cannever occur in some derivation because the the creation of �2 implies that � has been deleted.Although the the vertices in graph G4 are independent from each other with respect to �, G4is also not a concurrent graph because the existence of this graph implies that the actions a1,a2 and a3 must have occurred, and the occurrence relation considering these three action is notantisymmetric (there is a cycle of weak con
icts). Graph G5 is not a concurrent graph for thesame reason of G3: the edge ! is dependent on its (source and target) vertex �1;2. This meansthat there can be no derivation in which this edge is created. The reason why this edge is in thecore graph is that the post-conditions of a rule must be total, otherwise there may be elementsthat have no type. Such a situation happens whenever there are con
icts between preservationand deletion (what may lead to the fact that some items that should be created by the rule arenot created). The presence of this edge in the core graph is a technical convenience to make aderivation of some grammar to be again a graph grammar (where the typing is still given by totalmorphisms). ,�̂The next proposition shows that the pre-conditions (as well as the post-conditions) ofeach action in an occurrence grammar are concurrent graphs. This will be used later on toshow that each action in an occurrence graph grammar can really occur in some derivation(Prop. 5.51).
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G1 G2 G3 G4 G5Figure 5.13: Concurrent (G1; G2) and Non-Concurrent Graphs (G3; G4; G5)Proposition 5.35 Let Occ = (C; I;N; n) be an occurrence graph grammar and (na; a) 2 N .Then prea(La) and posta(Ra) are concurrent graphs. ,�̂Proof. We have to show that prea(La) and posta(Ra) ful�ll the four requirements of concurrentgraphs (Def. 5.33). Assume that there are x; y 2 prea(La) and x � y. By de�nition of causaldependency (Def. 5.20), this means the creation of y depends on the deletion of x. Thereforethere must be actions ax and ay that deletes x and creates y, respectively, and ax � ay. Asy 2 Prea(La), ay � a. Thus by transitivity of � we obtain that ax � a. But as x is neededby a and ax deletes x we must have that a #�! ax, and this implies that a #() a (by of thecon
ict relation { Def. 5.25). As Occ is an occurrence grammar, axiom 2. assures that thereare no self-con
icts. Therefore, we must have x 6� y. The other three requirements can beshown analogously, using additionally axioms 1. and 3. of occurrence grammars. pAs the relations of an occurrence graph grammar (dependency, weak con
ict, con
ict,occurrence) are special ones, the question arises whether they are preserved (or re
ected) byoccurrence graph grammar morphisms. In fact, independencies are preserved, but dependen-cies are not preserved. This will be illustrated by the next example.Example 5.36 (Dependency Relations and Occurrence Graph Grammar Morphisms)Figure 5.14 shows two actions a1 and a10 of an occurrence graph grammar having as core graphC1T1. Action a10 is causally dependent of action a1 because it needs the vertex � that is createdby a1. On the bottom of this �gure we �nd two actions of an occurrence graph grammar Occ2.These actions are independent because their overlapping in the core graph C2 is empty. The pair



5.3. Occurrence Graph Grammars 113(c; t), where c : C2! C1 and t : T2! T1, is a possible type component of an occurrence graphgrammar morphism: it is a morphism in TGraphP and domain restrictions yield a pullback (asrequired by axiom 2. of occurrence graph grammar morphisms). Moreover, the action componentmay map a1 to a2 and a10 to a20 because the rules of a2 and a20 are exactly the translation ofthe rules of a1 and a2 with respect to the mapping of the type graphs (in fact, they could beeven subrules of the corresponding translated rules). As a1 � a10 and a2 6� a20, we concludethat occurrence graph grammar morphisms do not preserve the dependency relation. This occursbecause the rules in the target occurrence grammar are allowed to be subrules of the original rules,and thus if the dependency between two actions was based on some items that was \forgotten"then the corresponding actions in the target occurrence grammar may be independent. Now let
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Figure 5.14: Occurrence Grammar Morphisms and Dependenceus consider the opposite situation: two actions a2 and a20 are independent and are mapped viaan occurrence graph grammar morphism to actions a3 and a30 respectively. This is shown inFigure 5.15. The morphisms c and t in this �gure identify both �-vertices and both �-vertices,and map � to �. Although the rules in the target grammar have more elements than the originalrules (because some elements of the type graph were splitted), the actions in the target grammarare also independent. The only way to make them dependent would be to force some overlappingof post3 and pre30 in the core graph C3, but this would make either diagram (1) or diagram(2) non-commuting, what implies that the corresponding mapping is not a doubly-typed graphgrammar morphism (because the translation of rules must be according to the core graphs {see Def. 5.5). This means that, if two actions are independent in one occurrence grammar, thecorresponding actions in the image of an occurrence grammar morphism will still be independent.
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2Figure 5.15: Occurrence Grammar Morphisms and IndependenceProposition 5.37 Occurrence graph grammar morphisms preserve 6�, 6�# and #()= . ,�̂Proof. Let f = (fTOP ; fN) : Occ1 ! Occ2 be an occurrence graph grammar morphism,a1; b1 2 dom(fN), fN (a1) = a2 and fN (b1) = b2. Let fT = ct:Causal independence : Let a1 6E b1. Assume that a2 E b2. This means that there mustbe e 2 C2 such that e is created by a2 and needed by b2. Diagrams (1){(4) commutebecause f is a double-typed graph grammar morphism. As (1) commutes, e 2 dom(c).As (2) commutes, c(e) is created by a1. Analogously, we conclude that c(e) is needed byb1. But this implies that a1 E b1, what contradicts the hypothesis. Thus we conclude



5.3. Occurrence Graph Grammars 115that a2 6E b2, i.e., f preserves 6E.La1 Ra1 Lb1 Rb1C1T1dom(c)La2 Ra2 C2T2 Lb2 Rb2
//rb1
//rb2

oo(ra1)�1 � $$posta1HHHHHHHHH 6zzpreb1vvvvvvvvvoo(ra2)�1 � //posta2 �oo preb26 ;;=vvvvvvvvv �cc =HHHHHHHHH� _��cH_OO c! _OO_OO_OO _OO(1) (3)(2) (4)Now let a1 6� b1. This means that for all c1 2 Pre�(b1), a1 6E c1. As f preserves 6E,a2 6E fN (c1). That is, for all pre-conditions of b2 that are in the image of fN , theseactions are independent from a2. If there is no action in Pre�(b1) that is not in theimage of fN , then we are ready. Assume that there is c2 2 Pre�(b1) and c2 =2 rng(fN).This means that c2 creates some item e that is (directly or indirectly) needed by b2.As c2 =2 rng(fN) we must have that e =2 dom(c) (because f is a doubly-typed grammarmorphism). But this implies that all actions that directly depend on c2 can not be inthe image of fN , and thus all actions that depend on these, like b2 can not also be inthe image of fN , what contradicts the hypothesis. Therefore we conclude that a2 6� b2.Occurrence Relation : Analogously to the �rst point, using the overlappings of the pre-conditions of actions, we obtain that a2 #�!= b2 if a1 #�!= b1. Now let d1 2 dom(fN)and a1 6�#d1 b1. By the de�nition of �#d1 (Def. 5.27), we have that there can be nochain of actions starting in a1 and ending in b1 in which the actions are related bycausal dependency or weak con
ict relationships. As 6� and #�!= are preserved by fand f is a double-typed graph grammar morphism, we conclude that a2 6�#d2 b2, whered2 = fN(d1).Con
ict Relation : Let a1 #()= b1. This means by de�nition of con
ict (Def 5.25) thata1 #=)= b1 or b1 #=)= a1. Assume the �rst case. By the de�nition of inherited weakcon
ict we have that for all c1 2 N1, a1 #�!= c1 or c1 6� b1. As #�!= and 6� arepreserved by f and f is a double-typed grammar morphism (what implies that allcauses of an action that is in the image of a morphism are also in the image) weconclude thata2 #()= b2. pThe notion of a concurrent graph is mostly based on independence of items/actions.As morphisms preserve independence, they also preserve concurrent graphs, as the nextproposition will show.Proposition 5.38 Occurrence graph grammar morphisms preserve concurrent graphs. ,�̂



116 5. Occurrence Graph GrammarsProof. Directly follows from the de�nition of concurrent graphs (Def. 5.33), Prop. 5.37 andthe fact that if some element is in the image of an occurrence grammar morphism, all itspre-conditions with respect to the dependency relation must also be in the image of thismorphism (see Prop. 5.37). pAlthough dependencies and weak con
icts are not preserved by arbitrary occurrence graphgrammar morphisms, there are some that do preserve these relations. The next de�nitionidenti�es a special class of occurrence graph grammar morphism, called pre�x morphisms. Ifwe consider occurrence graph grammars as (possibly non-deterministic) computations, pre�xmorphisms can be seen as pre�x relations,i.e., if a morphism p : Occ1 ! Occ2 is a pre�xmorphism then the computation described by the occurrence grammar Occ1 is a \beginning"of the computation described by the occurrence grammar Occ2. Pre�x morphisms enjoy a lotof properties (see Props. 5.40, 5.41, 5.42 and 5.43), and will be mainly used to relate di�erentcomputations of the same typed graph grammar. Therefore, it is reasonable to require thatthe type graph, the initial graph and the rules that are used are the same (because they arethe rules of the typed grammar that originated these computations).De�nition 5.39 (Pre�x Morphisms) Let Occ1 = (C1T1; I1C1%T1; N1; n1) and Occ2 =(C2T2; I2C2%T2; N2; n2) be two occurrence graph grammars and p = (pOPT ; pN) : Occ1 !Occ2 be a morphism in OccGG, where pT = ct : C2T2! C1T1. Then p is a pre�x morphismi� the following conditions are satis�ed1. I2T2 = I1T1.2. t = idT1 .3. 8(rn; a1) 2 N1: pN (rn; a1) = (rn0; a2)) rn = rn0 and ra1 = ra2. ,�̂Proposition 5.40 Let p = (pTOP ; pN) : Occ1 ! Occ2 be a pre�x morphism and pT = ct.Then c is injective and surjective and fN is total and injective. ,�̂Proof. As p is an occurrence grammar morphism, (1) is a pullback. By de�nition of a pre�xmorphism, t = idT . As idT is an isomorphism and (1) is a pullback, c! is also an isomorphism.Therefore c = c! � (cH)�1 is injective and surjective. As c! is surjective, the �rst requirementof doubly-typed graph grammar morphisms (Def. 5.15) implies that pN must be total. Nowassume that there are two actions a1; b1 2 N1 such that pN(a1) = pN (b1) = a2. By the thirdcondition of pre�x morphisms, the rules used in these three actions must be the same, i.e.,ra1 = rb1 = ra2. As a1 and b1 are mapped to a2, diagram (2) must commute with prea1and with preb2, what implies that prea1 = preb1. Thus, using axiom 5. of occurrence graphgrammars (deterministic action output), we conclude that a1 = b1.



5.3. Occurrence Graph Grammars 117C1 Tdom(c) dom(t) = TC2 T� //tC1� //tC2_OOc! � _��cH _OO idT� _�� idT� //tdom(c)(1)= La1 = Lb1 = La2dom(c) C2T2.vv prea2nnnnnnnnnnnn � ''prea1 OOOOOOOOOOOO� ''preb1 OOOOOOOOOOOO� � // //c!(3) p
In Example 5.36 it was shown that occurrence grammar morphisms in general do notpreserve the causal dependency relation. The reason was mainly that the rules in the targetoccurrence grammar were allowed to be subrules of the (translation of) original rules. Thenext proposition shows that pre�x morphisms preserve not only the dependency relation,but also the local occurrence and con
ict relations. Thus, the existence of a pre�x morphismbetween two occurrence grammars expresses the existence of a very tight relationship betweenthese two grammars.Proposition 5.41 Pre�x morphisms preserve �, �#a and #(). ,�̂Proof. Let p = (pOPT ; pN) : Occ1! Occ2 be a pre�x morphism with pT = ct : C2T2 ! C1T1.Then by Prop. 5.40, pT is injective and surjective (because both components are injective andsurjective) and pN is a total and injective.Let a1; b1 2 N1 and a1 6= b1. As pN is total and injective there are a2 = pN(a1) andb2 = pN (b1) and a2 6= b2.La1 Ra1 Lb1H1 C1TH2 C2TLa2 Ra2 Lb2

oo(ra1)�1oo x1�� y1 � ""posta1EEEEEEEE 9||preb1yyyyyyyy(1)oo(ra2)�1oo x2OO y2 9 <<posta2yyyyyyyy �bbpreb2EEEEEEEE(2)��(8) u � _��pHT g�� idL2W��(7) idR1D��idL1 (4) (5) La1 Ra1La2 Ra2oo(ra1)�1_��idL1 _�� idR1oo(ra2)�1(3)Dependency relation: Let a1 � b1. Assume that b1 is directly dependent of a1, i.e.,a1 EN b1. By de�nition of direct dependency (Def. 5.20) this means that the morphismx1�preb1 in the diagram above is not total, where (1) is a pushout in TGraphP(T). Let(2) be the pushout of (La2 (ra2)�1 Ra2 posta2! C2T2) in TGraphP(T). We have to showthat x2�preb2 is not total. As p is a pre�x morphism, there are identities idL1, idL2 andidR1. Moreover diagram (3) commutes because p (ra2 = ra1) is thus trivially a pushout.As p is a doubly-typed graph grammar morphism, the translated rules are compatiblewith the mapping of the doubly-type, i.e., posta1 � (idR2)�1 = posta1 = pT�posta2 andpreb1 � (idL2)�1 == preb1 = pT � preb2. Let pHT be the inverse of pT (pH is total andinjective because pt is injective and surjective). As pHT � pT = idC1T and pT is surjective



118 5. Occurrence Graph Grammarswe obtain commutativity of (4). Analogously we obtain commutativity of (5). Wecan compose pushouts and (2) and (3) yielding pushout (6)=(2)+(3). As (6) and (4)commute and (1) is a pushout we obtain an universal morphism u : H1 ! H2 thatmakes (7) commute. As x1 � preb1 is not total u � x1 � preb1 is also not total. Thereforewe obtain that u � x1 � preb1 = x2 � fHT � preb1 = x2 � preb2 � idL2 is also not total, andas idL2 is an isomorphism and thus total, x2 � preb2 must be not total. This means thata2 EN b2.If b1 is not directly dependent of a1 there must be a sequence a1 EN c1 EN : : : ENcn EN b1, where all ci 2 N1, for i = 1::n. As pN is total, all these actions mustbe mapped to Occ22 and the direct dependencies must be preserved. Therefore bytransitivity of �N we obtain that a2 �N b2.The dependency relation between types is derived from the fact that rules create/deletesomething. As the rules are mapped to identical ones and pT is injective and surjective,�T is also preserved. Thus, we conclude that � is preserved by p.Weak con
ict relation: Analogous to the �rst item, considering the morphisms prea1 andpreb1.Con
ict and Occurrence Relations: As these relations are obtained from the depen-dency and the weak con
ict relations (see Defs. 5.25 and 5.27) and the latter are pre-served by p, the con
ict and occurrence pProposition 5.42 Pre�x morphisms preserve and re
ect concurrent graphs. ,�̂Proof. Preservation is due to Prop. 5.38. The fact that pre�x morphisms re
ect concurrentgraphs follows from the fact that pre�x morphisms preserve �, #() and �#a. pA very important property of pre�x morphisms will be proven in the next proposition,namely that there can be at most one pre�x morphism between two occurrence grammars.The reason for this is that each element of the core graph is uniquely determined by its history,that is, by the elements that were deleted and created by rules until this element was created.Note that, if non-consuming rules would be allowed or axiom 5. of occurrence grammarswould be dropped, this proposition would not hold because there may be elements of the coregraph that do not depend on the existence of any other item, and thus the histories of twoof these elements would be the same, i.e., they are indistinguishable. The fact that therecan be only one pre�x morphism between two occurrence grammars will be used in Chap. 6to de�ne suitable equivalence classes of occurrence grammars, giving raise to a well-de�nedcategory of abstract occurrence grammars.Proposition 5.43 There is at most one pre�x morphism between two occurrence grammars.,�̂Proof. Let Occ1 and Occ2 be graph grammars as in Def. 5.39, and f = (fOPT ; fN) andg = (gOPT ; gN) be pre�x morphisms f; g : Occ1! Occ2. We have to show that f = g, that is,that both components are equal:



5.3. Occurrence Graph Grammars 119Type component: Let x2 2 C2T2. By axiom 4. (core graph) of occurrence graph grammars(Def 5.29) we can have two cases:1. x2 = inOcc2(y); y 2 I2T2: As f is a pre�x morphism, I1T1 = I2T2. Diagram (1)must commute using fT and gT because both are doubly-typed graph grammarmorphisms (in fact, (1) must be a pullback). Let fT (x2) = x1. As inOcc1, inOcc2and gT are injective and (1) commutes using gT , we conclude that gT (x2) = x1 =fT (x2). I1T1 = I2T2C1T1 C2T2K kxx inOcc1qqqqqqqqqqq � s &&inOcc2MMMMMMMMMMM oooooo fT oooooo gT(1) Rc10 = Rc20 = Rc200C1T1 C2T2.vv postc10nnnnnnnnnnnn � ((postc20=postc200PPPPPPPPPPPP oooooo fT oooooo gT(2)2. x2 = posta2(y); y 2 Ra2; y 62 rng(ra2): Here we have two cases:(a) x2 2 dom(fT ): Let x1 = fT (x2). By axiom 4. of occurrence graph grammars,there is a unique action a1 2 N1 that creates x1. As f is a pre�x morphism,requirement 1. of Def 5.39 assures that ra2 = ra1. As g is also a pre�xmorphism it is total (Prop. 5.40). Let (na20 ; a20) = gN(n[a1]; a1). Again,requirement 1. of pre�x morphisms assures that ra20 = ra1 = ra2. By axiom 1.of occurrence grammars, the local occurrence relation �#a1 is a partial order.Letn be a total oder that is compatible with �#a1. This total oder is well-founded and �nite due to axiom 3. of occurrence graph grammars. We willprove that fT (x2) = gT (x2) by induction onn. The idea is that each elementof a core graph is uniquely determined by its history (the initial graph andall rules that were applied to obtain this element). Therefore, if we use thesame initial graph and the same rules, there can be only one way to relatethe corresponding core graphs that is compatible with all actions and initialgraph mappings. Remind that, if an action is mapped via an occurrencegraph grammar morphism, all its pre-conditions must also be mapped (seeProp. 5.37).Ind. Basis : c10 is the minimal element ofn:Let c20 = fN (c10) and c200 = gN(c10). As c10 is the minimal element ofn,it does not depend on any other actions. This means that all pre-conditionsof c10 are in the initial graph. As for all elements e 2 I1T1 = I2T2 we havethat fN (e) = gN(e), we conclude that prec20 = prec200 (the commutativityrequirement for morphisms requires that fT �prec20 = prec10 = gT �prec200).Therefore axiom 5. of occurrence grammars (deterministic action output)yields that postc20 = postc200 . Diagram (2) commutes with fT and gTbecause f and g are doubly-typed graph grammar morphisms. Let x20 bean item created by c20 and fT (x20) = x10. As fT � postc20 = posta1 =gT � postc20 , we conclude that gT (x20) = x10.Ind. Hyp. : c1i is the ith element ofn and for all e created by Rc2i = Rc20iwe have that fT (e) = gT (e).Ind. Step : Analogous to the induction basis, we obtain that prec2i+1 =prec20i+1 because all elements needed in prec1i+1 must have been createdin previous actions, and for the elements created by these actions it holds



120 5. Occurrence Graph Grammarsthat fT = gT . Then we can use axiom 4. of occurrence grammars andobtain that for all e created by c2i+1 = c20i+1 we have that fN(e) = gN(e).(b) x2 62 dom(fT ): As fT is surjective, there is no element in C1T1 that have nopre-image in C2T2 under fT . Assume x2 2 dom(gT). Then there must be anaction a1 2 Occ1 that creates gT (x2) (gT(x2) can be an element of the initialgraph of Occ1 because this would immediately imply that x2 2 dom(fT )).Analogously to the item before, we conclude that a1 must have an image inOcc2, what implies that diagram (2) (using a1 instead of c10) must commutewith fT and therefore x2 2 dom(fT ), what is a contradiction.Therefore, we conclude that fT = gT .Action component: Let (na1; a1) 2 N1. As fN and gN are total, there are fN (na1; a1) =(na2; a2) and fN (na1; a1) = (na20 ; a20). As f and g are pre�x morphisms we have thatra2 = ra1 = ra20 and na2 = na1 = na20 . Diagram (3) commutes with the pre-conditionsof a2 and a20, respectively, because f and g are graph grammar morphisms (fT = gT byitem 1. of this proof). As fT is injective and surjective and fT � prea2 = fT � prea20 =prea1, we conclude that prea2 = prea20. Then, using axiom 5. of occurrence graphgrammars we obtain that posta2 = posta20 , i.e., fN (na1; a1) = (na2; a2) = (na20 ; a20) =gN(na1; a1). That is, fN = gN . La1 = La2 = La20C1T1 C2T2.ww prea1nnnnnnnnnnnn � ''prea2 PPPPPPPPPPPP� ''prea20 PPPPPPPPPPPP oooooo fT=gT(3) p5.4 Concurrent Derivations and Occurrence Graph GrammarsIn this section we will show that concurrent derivations are occurrence graph grammars.Thus, the concurrent semantics of a graph grammar can be described by its concurrentderivations, and, if the latter are doubly-typed graph grammars, they should belong to theclass of \semantical grammars", that is, occurrence grammars. As one concurrent derivationsis obtained from a sequential one, this concurrent derivation does not contain any con
ict(because otherwise there would be two steps of the corresponding sequential derivationsthat are in con
ict with each other, and this is not possible). But weak con
icts mayoccur. Therefore, concurrent derivations are special occurrence grammars. Vice versa, wemay restrict to a class of occurrence graph grammars that can be considered as concurrentderivations. The main condition for these grammars is that the con
ict relation is empty.Moreover, the occurrence relation of the grammar shall be a partial order. This implies thatthere exist a total order of actions that may be considered as a sequential derivation. The thirdcondition is that the pre-conditions of each action with respect to the occurrence relation shallbe �nite. This assures that there is a sequential derivation with a countable number of stepsthat is represented by this occurrence grammar. Because there are no con
icts, this specialclass of occurrence grammars will be called deterministic occurrence grammars. The termdeterministic shall be understood in the sense that if all actions of a deterministic occurrencegrammar appear in some sequential derivation, then the result is (up to isomorphism) the



5.4. Concurrent Derivations and Occurrence Graph Grammars 121same. This kind of occurrence grammars have been also de�ned for the DPO-approach in[CMR96a] (where only �nite occurrence grammars were considered).De�nition 5.44 (Deterministic Occurrence Graph Grammars) LetOcc = (CT ; IC%T ; N; n)be an occurrence graph grammar. Then Occ is deterministic i� it satis�es the followingconditions:1. �# is antisymmetric.2. #()= ;.3. 8a 2 N : Pre�#(a) is �nite. ,�̂Remarks. Note that these conditions imply the corresponding conditions (given by same num-bers) of the de�nition of occurrence graph grammars (Def 5.29). If �# is antisymmetric thenall restrictions of it must be also antisymmetric, and in particular �#a must be antisym-metric, for all a 2 N . If # != ; then #() must also be the empty relation that is triviallyirre
exive. If for all actions we have that Pre�#(a) is �nite, we also have that Pre�(a) is�nite because Pre�(a) � Pre�#(a). These 3 conditions assure that there is a possible totalorder using all actions of Occ that is compatible with �#. ,�̂The next two theorems show that concurrent derivations are deterministic occurrencegrammars and that concurrent derivation morphisms are pre�x morphisms. These resultswill be used to relate the concurrency and the unfolding semantics of typed graph grammar(Theo. 6.9).Theorem 5.45 Concurrent derivations are deterministic occurrence grammars and viceversa. ,�̂Proof. ): This direction follows basically from the construction of a concurrent derivation(Def. 3.40). By construction, a concurrent derivation is a doubly-typed graph grammarwith type CT (the core graph is the type). Thus it remains to show that the conditionsfor deterministic occurrence grammars (axioms 1{3 of Def. 5.44 and axioms 4{6 ofDef. 5.29) are satis�ed. In [Kor96] it was shown that for each concurrent derivationthere is at least one sequential derivation where all actions of the concurrent derivationare represented by derivation steps. Therefore, as it is possible to �nd a total orderincluding all actions of the concurrent derivation, the weak dependency relation mustbe antisymmetric (axiom 2. is satis�ed). Obviously, as one sequential derivation cannot have con
icting derivation steps (i.e., there can not exist two steps that can not besequentialized in any order because a sequential derivation is a total order of steps), aconcurrent derivation also do not have con
icting actions. Thus, axiom 3. is satis�ed. Aconcurrent derivation is constructed from a sequential one, where each action necessarilyoccurs after a �nite number of actions ( thus, axiom 1. is satis�ed).Axiom 4. follows from the construction of the core graph as a colimit. Axiom 5.is satis�ed because all rules are consuming, and therefore by the construction of a



122 5. Occurrence Graph Grammarsconcurrent derivation based on a colimit and on the fact that there are no con
icts, thesame item of the core graph can be deleted by at most one rule. Item 6. follows fromthe construction of a concurrent derivation (Def. 3.40).(: Here we start with an occurrence graph grammar Occ = (CT ; IC%T ; N; n) and haveto show that there is a sequential derivation whose concurrent derivation is Occ. Toconstruct this sequential derivation, we take some total ordern of the actions in Occthat is compatible with �#, and start with the initial graph applying the correspondingrules in this total order (this total order exists because �# is a partial order). Moreover,this total order is well-founded because of axiom 1. of Def. 5.44. If Occ has no actions,then the corresponding sequential derivation is the empty one. If there are actions, thecorresponding sequential derivation � will be constructed inductively as follows:Ind. Basis: Let (na; a) be the minimal element ofn.Then �1 = s1 and u1 = inOcc,where s1 = (na; S1), S1 the pushout depicted indiagram (1), IT = VT (IC%T ) and ma = (inOcc)�1 � prea. Axiom 4. of Def. 5.29guarantees that ma is total (action (na; a) is minimal with respect to ��n, andtherefore can not use elements created by other actions).La RaIT OT1//ra_��ma �� m�a//r�a(1)Ind. Hypothesis: Let i and (ni; ai) be the ith element according to the total ordern. Then there is a sequential derivation �i in which all actions (na; a) 2 N suchthat (na; a)n (nai; ai) and an injective and total morphism ui : OTi ! CTInd. Step: Let j = i+ 1 and (naj ; aj) be the jth element according to the total ordern. Then sj = (naj ; Sj), where Sj is the pushout depicted in diagram (2) andmaj = (ui)�1 � preaj . As the total order n is compatible with �#, all actionson which action (naj ; aj) depends must have occurred before. Therefore the onlypossibility for maj not to be total would be that some action, say ak, deleted anelement that is needed by aj. This means that aj #�! ak, and thus aj�#ak bythe de�nition of �# (Def 5.27). But this is not possible because the ordern iscompatible with �#. Thus we conclude that maj is a match.Lai Rai Laj RajIsi Osi = Isj OsjCT// //rai // //raj// //r�ai // //r�aj_��mai 5zz majuuuuuuuuu$$IIIIIIIII }}{{{{{{{{S|| preaj :ss postaj� _��ui (2)Now we have to �nd an injective and total morphism uj : OTsj ! CT . Consider thestep-core of sj given by core(s) = (IOsj; insj ; outsj) (see Def. 3.39 and diagram



5.4. Concurrent Derivations and Occurrence Graph Grammars 123below). By construction, (3) and (4) are pushouts. As rC%Taj is a morphism inDTGraphP(CT), it must hold that preaj�rHaj = postaj �raj ! (weak commutativityrequirement { see Def. 5.3). Therefore there must be an universal morphismuLR : LRsj ! CT induced by the pushout (3) such that ouLR � aLsj = preaj anduLR �aRsj = postaj . By de�nition of maj we have that ui�maj = preaj . Thereforethere must be an universal morphism uIO : IOsj ! CT induced by pushout (4)such that uIO �mxsj = uLR and uIO � insj = ui.dom(raj)Laj RajLRsjIsj OsjIOsjCT
//rajM��maj
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The morphism uj is than de�ned by uj = uIO � outsj . If both componentsare total and injective, uj is also total and injective. The component outsj istotal and injective by construction (see Def. 3.39). The morphism uIO is totalbecause all pushout morphisms and comparison morphisms used to get uIO weretotal. To show that uIO is injective, we will use the facts that insj is injectiveand that all elements that are created by Raj are injectively included in IOsj.Let x; y 2 IOsj , x 6= y. Assume x; y 2 rng(insj). Then as ui and insj areinjective and insj � uIO = ui, we conclude that uIO(x) 6= uIO(y). Now assumethat x; y 2 rng(mXsj) � rng(insj). In this case there are no items in Laj thatare pre-image for x and y. As LRsj is a pushout, this means that x and ymust have pre-images zx and zy in Raj. Moreover, this means that rule rajcreates zx and zy. Axiom 4. of occurrence graph grammars guarantees then thatpostaj(zx) 6= postaj(zy), what implies that uIO(x) 6= uIO(y). Now consider thatx 2 rng(insj) and y 2 rng(mxsj)� rng(insj). Analogously to the previous case, wehave here an element z 2 Raj that is created by raj . Therefore, axiom 4. assuresthat there is no other action that creates postaj(z) and postaj(z) is not an item ofthe initial graph. If there is an element k 2 Ij such that ui(k) = postaj(z), then kmust have been created by some action that occurred before aj, what contradictsaxiom 4. Therefore we conclude that uIO is injective.The morphism uj is than de�ned by uj = uIO � outsj . As both components aretotal and injective, uj is also total and injective.



124 5. Occurrence Graph GrammarsNow it remains to show that CT is the colimit of the corresponding core structurediagram of �. By construction, the morphisms ui obtained above make all diagrams ofthe core structure of � commute. All these morphisms are injective and total, as thecore morphisms must be. By axiom 4., there can not be any element in CT that wasnot in the initial graph and is not the image of a right-hand side of a rule. Therefore,we all ui must be together surjective on CT . Thus, CT is the colimit of the constructeddiagram. pTo relate concurrent derivation morphisms with pre�x morphisms, we have to substitute atotal and injective morphism fC : C1T1! C2T2 from the de�nition of a concurrent derivationby its inverse, that is an injective and surjective one in the other direction.Theorem 5.46 Let �1 = (C1T ; IC1%T ; N1; n1) and �2 = (C2T ; IC2%T ; N2; n2) be con-current derivations with respect to a grammar GG, fC : C1T1 ! C2T2 be a morphism inTGraphP(T) and fN : N1! N2 be a morphism in SetP. Thenf = (fC ; fN) is a concurrent derivation morphism () p = ((fC)�1; fN) is a pre�x morphism:,�̂Proof. ): Let f = (fC ; fN) : �1 ! �2 be a concurrent derivation morphism. By de�nition(see Def. 3.42) fC = ct is total and injective and fN is total. In [Kor96] it was shownthat fN is also always injective. Therefore we may de�ne a pair p = (pOPT ; pN) wherepT = (fC)�1 and pN = fN . As rule names are mapped via fN to identical rule namesand the corresponding rule morphism must be identical, the commutativity requirementof doubly-typed graph grammar morphisms is trivially satis�ed (see Def. 4.1). As con-current derivations have the same initial graph of their originating grammar, the secondrequirement for doubly-typed graph grammar morphisms is also satis�ed. Thus, p isa doubly-typed graph grammar morphism. The �rst requirement for occurrence gram-mar morphisms is satis�ed because of condition 2. of concurrent derivation morphisms.The second requirement is satis�ed because fT is total and injective (then (fT )�1! is anisomorphism). Moreover, as fC is a morphism in TGraphP(T), we have that t = idT .As pT = (fC)�1, it is injective and surjective, and as pN = fN , it is total and injective.The requirement 2. of pre�x morphisms that rules to can only be mapped to ruleshaving the same name and same rule morphism is satis�ed by the requirement 2. of thede�nition of concurrent derivation morphisms (Def. 3.42).Thus, p is a pre�x morphism.(: Let p = ((fC)�1; fN) : �1 ! �2 be a pre�x morphism. We have to show that the pairf = (fC ; fN) is a concurrent derivation morphism. By Prop. 5.40, fN is total and (fC)�1is injective and surjective. Therefore, fC is total and injective. The commutativityrequirements from the de�nition of concurrent derivation morphisms can be derivedfrom the commutativity requirement of the (double-)retyping construction and therequirements that the initial graphs of �1 and �2 are the same (item 1. of Def. 5.39)and that rule names and rule morphisms must be mapped to identical ones (item 3. ofDef. 5.39). Therefore we conclude that f is a concurrent derivation morphism. p



5.5. Folding of Occurrence Graph Grammars 1255.5 Folding of Occurrence Graph GrammarsOccurrence graph grammars shall serve as semantical models for graph grammars. Thereforewe will de�ne a relationship between occurrence grammars and typed graph grammars. Theidea is that is an occurrence graph grammarOcc is related to a grammarGG, theOcc describesa (possibly non-deterministic) computation of GG. This relation will be expressed by afunctor from the category of occurrence grammarsOccGG into the category of (typed) graphgrammars GG. This functor will be called folding functor because the di�erent occurrencesof elements of the same element of the type graph as well as di�erent occurrences of the samerule will be folded together to obtain the grammar GG.De�nition 5.47 (Folding Functor) Let OccGG and GG be the categories of occurrenceand typed graph grammars respectively. Let Occ = (CT ; I; N; n) be an object in OccGGand f = (fOPT ; fN) : Occ1! Occ2 be an occurrence graph grammar morphism, with fT = ct.Then the folding functor F : OccGG! GG is de�ned as:� Objects: F(Occ) = (T;VT (I); N 0; n0), where N 0 = fxj(x; a) 2 Ng, n0(x) = VT (n(x; a))and VT : DTGraphP! TGraphP is the type-forgetful functor (see Def. 5.9).� Morphisms: F(f) = (tOP ; f 0N), where f 0N (x) = x0 if fN (x; a) = (x0; a0). ,�̂Proposition 5.48 The folding functor is well-de�ned. ,�̂Proof. F(Occ) is obviously a graph grammar. Axiom 6. of occurrence graph grammarsassure that f 0N is a well-de�ned function. The second requirement of occurrence graphgrammar morphisms assures that the double-retyping (see Def. 5.5) of some doubly-typedgraph G1C1%T1 is compatible with the type-forgetful functor VT (because the composition ofpullbacks is again a pullback). That is,DT f t(G1C1%T1) = G2C2%T2 ) Tf(VT (G1C1%T1)) �= VT (G2C2%T2)G1 C1 T1G2 dom(c) dom(t)� //tG1C1 � //tC1� //OOc!G _OOc!� // _OO t!PBPBAs both conditions of doubly-typed graph grammar morphisms are ful�lled by Occ and theseconditions are based on double-retyping constructions, the corresponding conditions will bealso satis�ed by F(Occ). pExample 5.49 (Folding Functor) Figure 5.16 shows an occurrence graph grammar Occ andits folding F(Occ). Note that the two di�erent actions a1 and a2 were folded to the same rule ofF(Occ) because, if we forget the di�erent matches in the core graph, the resulting rules can notbe distinguished anymore, and as a grammars consists of a set of rules, they must be the samerule. The requirement 6. of occurrence graph grammars assures that actions that have the samerule name use also the same rule, and therefore there can not be the case that two rule namesshould be mapped to two di�erent rules in the folded grammar. ,�̂
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Figure 5.16: Folding of Occurrence Graph GrammarsThe next two propositions con�rm our choice of axioms for an occurrence graph grammar,in the sense that they show that an occurrence graph grammar represents derivations of agrammar. The �rst proposition is concerned about the elements of the core graph and theirrelationship with the derivable graphs of a grammar and the second with the actions and theirrelationship to the derivation steps of a grammar. Prop. 5.50 shows that for each concurrentgraph of an occurrence graph grammar, there is a concurrent derivation that has this graphas an output graph with respect to the folding of this occurrence grammar. This meansthat each concurrent graph is (a subgraph of) some derivable graph. Prop. 5.51 shows thateach action of an occurrence graph grammar can be used in at least one derivation its foldedgrammar.Proposition 5.50 Let Occ = (CT ; IC%T ; N; n) be an occurrence graph grammar, G � C,and G be a concurrent graph. Then there is a concurrent derivation � of F(Occ) such thatG � OUT�. ,�̂Proof. Let A = f(na; a) 2 N j 9x 2 G : a0 creates x and (na; a) � (na0 ; a0)g0. Then we de�ne� = (CT�; IC�%T ; N�; n�), where� cT� is the smallest subgraph of CT such that rng(inOcc)[ rng(prea)[ rng(posta) 2 CT� ,for all (na; a) 2 A. Let i : CT� ! CT be the corresponding inclusion morphism.



5.5. Folding of Occurrence Graph Grammars 127� IC�%T is a doubly typed graph having as type morphism tIT� = tidT , where t =(i)�1 � tITOcc.� N� = f(na; a0) j (na; a) 2 A; ra = ra0; prea0 = (i)�1 � prea; posta0 = (i)�1 � postagLa = La0 Ra = Ra0CTCT�
 $$preaJJJJJJJJJ � //ra=ra0v ��prea0 6666666666666666 G�� posta0����������������4zzpostattttttttt?� OO i� n�(na; a0) = a0, for all (na; a0) 2 N�Now, if � is a deterministic occurrence graph grammar then it is a concurrent derivationof the grammar F(�) � F(Occ).The construction of � yields that the initial graph and all rules are typed over CT� . Thetyping morphisms are total due to the construction of CT� . The rules are well-de�ned becausethe rules of Occ are well-de�ned. Thus, � is a doubly-typed graph grammar. Conditions 4{6of occurrence graph grammars (Def. 5.29) follow from the construction and from the fact thatOcc satis�es these properties (for condition 4. we additionally need that A is closed undercausal dependencies). Conditions 1{3 of deterministic occurrence grammars (Def. 5.44), thatsubsume the corresponding conditions of occurrence grammars, and the fact that G � OUT�follow from the properties of concurrent graphs (Def. 5.33). pProposition 5.51 Let Occ = (CT ; I; N; n) be an occurrence graph grammar. Then for alla 2 N there exists at least one concurrent derivation � with respect to F(Occ) such that thereis a pre�x morphism p : �! Occ and a 2 rng(pN). ,�̂Proof. By Prop.5.35 we have that prea(La) is a concurrent graph. This implies that�#Pre�(a)is antisymmetric, Pre�#Pre�(a) is �nite and there are no con
icts between the elements ofPre�(a). Therefore we can build a deterministic occurrence graph grammar (concurrentderivation) � by restricting the actions of Occ to the actions of Pre�(a) (analogous to theconstruction given in the proof of Prop. 5.50) and the corresponding inclusion in Occ will bethen a pre�x morphism. pThe following de�nitions and propositions of this chapter will be used as auxiliary de�-nitions and proofs for the proofs of theorems 6.9 and 6.15 of Chap. 6. De�nitions 5.52 and5.53 and Prop. 5.54 are concerned with identifying subgrammars of an occurrence grammar.In Def. 5.55 the maximal pre�x derivation with respect to a (special) diagram of concurrentderivations is de�ned. This maximal pre�x is the least-upper bound of this diagram (in[Kor96] it was shown that least-upper bounds of diagrams of concurrent derivations exist).



128 5. Occurrence Graph GrammarsDe�nition 5.52 (Depth of an Occurrence Graph Grammar) Let Occ = (C; I;N; n)be an occurrence graph grammar. Then the depth of an element a 2 N is given bydepth(a) = � 0; if a 2Min�maxfdepth(b) j b � ag+ 1; otherwiseThe depth of an occurrence graph grammar, denoted by Depth(Occ) is de�ned asDepth(Occ) = maxfdepth(a) j a 2 Ng, if max is de�ned, otherwise Depth(Occ) = !. ,�̂Remarks.1. max delivers the maximum value of a set of values. If there is no maximum value, maxis unde�ned.2. The well-de�nedness of the depth of an action is due to axiom 3. of occurrence graphgrammars (�nite action causes). ,�̂De�nition 5.53 (Subgrammar of Depth d) Let Occ = (C; IC; N; n) be an occurrencegraph grammar and N 0 = fx 2 N j depth(x) � dg. Then its subgrammar of depth d,denoted by Occ(d), is de�ned as follows: Occ(d) = (Cd; IdCd; Nd; nd) where� Cd is the smallest subgraph of C such that for all (na; a) 2 N 0: (iT )�1 � prea, (iT )�1 �posta and (iT )�1 � inOcc are total, where iT : Cd! C is the obvious inclusion.� IdCd = ICd with typing morphism tId = (iT )�1 � inOcc.� Nd = f(na; a0) j (na; a) 2 N 0; ra0 = ra; prea0 = (iT )�1 � prea; posta0 = (iT)�1 � postag.� nd(na; a0) = a0, for all (na; a0) 2 Nd.The induced subgrammar inclusion i : Occ(d) ! Occ is de�ned by i = (iOPT ; iN)where iT is the inclusion de�ned above and iN(na; a0) = (na; a) where ra = ra0; prea =iT � prea0; posta = iT � posta0 ,�̂Remarks.1. Occ(d) is obviously a graph grammar (all rules and the initial graph are typed overCd). The requirements for an occurrence graph grammar are also satis�ed because Occis an occurrence graph grammar and by the construction of Occ(d) (see the proof ofProp. 5.50).2. The inclusion i is trivially a pre�x morphism. ,�̂Proposition 5.54 Let Occ be a deterministic occurrence graph grammar. Then a subgram-mar Occ(d) for each d is a deterministic occurrence graph grammar. ,�̂



5.5. Folding of Occurrence Graph Grammars 129Proof. As Occ(d) is a subgrammar of Occ, there is a subgrammar inclusion i : Occ(d) ! Occ,that is a pre�x morphism. By Prop. 5.41, these morphisms preserve �, �#a and #().Therefore, Occ(d) must be a deterministic occurrence grammar, too. pDe�nition 5.55 (Maximal Pre�x) Let GG be a graph grammar and � be a concurrentderivation of depth n + 1 of GG. Let D be a diagram having as objects all concurrentderivations �i of GG such that there is a pre�x morphism pi : �i ! �, and as morphismsall pre�x morphisms px : �i ! �j, for all �i; �j 2 D. Let �P 2 D and p : �P ! � be itscorresponding pre�x morphism into �. Then �P is called maximal pre�x derivation of� i� for all �i 2 D there are pre�x morphisms piP : �i ! �P such that diagram (1) belowcommute. The morphism p is then called maximal pre�x morphism.�i �P� ~~ p}}}}}}}}��pi @@@@@@@@ //piP(1) ,�̂Proposition 5.56 Let GG be a graph grammar and � be a concurrent derivation of depthn + 1 of GG. Let D be a diagram having as objects all concurrent derivations �i of GGsuch that there is a pre�x morphism pi : �i ! �, and as morphisms all pre�x morphismspx : �i ! �j, for all �i; �j 2 D. Then there is a maximal pre�x derivation �P for D anddepth(�P ) = n. ,�̂Proof. The proof for the existence of such a construction can be found in [Kor96]. Theconcurrent derivation �P is constructed as a colimit of the diagram D in the category ofconcurrent derivations with respect to GG. Now assume that �P is not of depth n. As thereare pre�x morphisms piP : �i! �P and p : �P ! �, the only possibility is that the depth of�P is n + 1. This means that there is at least one action a in �P that depends on an actiona0 of depth n. As �P is constructed as a colimit the action a must belong to some concurrentderivation �i 2 D. But such a concurrent derivation can not be in D because this wouldmean that depth(�i) = n + 1. Therefore we conclude that depth(�P ) = n. pProposition 5.57 Let p = (pOPT ; pN) : Occ1 ! Occ2 be a maximal pre�x morphism. ThenpT � prea is total, for all a 2 N2. ,�̂Proof. Let a 2 rng(pN). Then the (sub-)commutativity requirement of graph grammarmorphisms morphisms assures that prea 2 dom(pT). Let a =2 rng(pN). Assume that prea =2dom(pT ). This means that some item needed by a is created by some action in N2, say a0,that is not in rng(pN). As Occ1 is the maximal pre�x derivation of depth n, we must havethat depth(a0) = n + 1. But this leads to a contradiction because then we must have thatdepth(a) = depth(a0) + 1 = n+ 2. Therefore we conclude that prea 2 dom(pT ). p



6Unfolding Semantics of GraphGrammarsOne of the main features of graph grammars is that each change a of state can be describedin a very detailed way: we may have items that are deleted, items that are added and itemsthat are preserved. In many of the other formalisms for concurrent systems, e.g., Petri nets,CCS [Mil89], transition categories [Gro96], conditional rewriting systems [Mes92], there isno di�erence between deletion followed by re-creation and preservation of items. Therefore,it seems to be adequate for graph grammars, even more that for other formalisms, to havethese changes of state explicitely at the semantical level. This means that we do not wantto \forget" all states and de�ne a semantics for graph grammars based only on actions, like,e.g., an event structures semantics [Win89]. Obviously there may be applications in whichthis level of abstraction would be more adequate, and in fact it is possible to de�ne suitableevent structure semantics for graph grammars [CEL+94a, Sch94, Kor95, CEL+96b]. Thiskind of semantics gives a very nice way to reason about actions (or events) and relationshipsbetween them (dependencies and con
icts)1. But here we are mostly interested in de�ninga semantics in which it is possible, in addition to actions, to analyze the states and possiblerelationships between components of states. This semantics will be thus quite rich, and fromit it is still possible to get the corresponding event structure of a grammar (by abstractingfrom the states) and also the language semantics of a grammar (by abstracting from theactions).In the last chapter we introduced the concept of an occurrence grammar and showedthat such a grammar is able to describe suitably the derivations of a graph grammar, in-cluding rules and derived graphs. In this chapter we will, starting from a graph grammarGG, construct an occurrence graph grammar that represents all its computations. Such anoccurrence grammar is called unfolding of a grammar. In the area of Petri nets, unfolding ofnets have been presented in [NPW81, MMS94, Sas94], and they are particularly suited forthe investigation of reachability and deadlock properties of nets [McM92]. Moreover, anothersigni�cant advantage is that the unfolding avoids (to a certain extent) the state explosion1However, one should remark that the usual con�gurations analysis used for event structures does not re
ectfaithfully the kind of parallelism that may be possible in graph grammar because the ability to preserve itemsmay give raise to asymmetric con
icts, that in turn lead to \non interleavable" parallelism (i.e., two actionsthat may occur in parallel can be only sequentialized in one order).130



6.1. Construction of the Unfolding of a Graph Grammar 131problem in constructing the semantics of a net (it was shown in [McM92] that the unfoldingsize grows linearly, whereas the number of states needed in the state space grows exponen-tially). Therefore, an unfolding semantics for graph grammars seems to be promising as abasis for analysis.The main de�nition, aims and results of this chapter are:� De�nition of the unfolding of a graph grammar (Def. 6.7). This unfolding is constructedin two steps: �rst, the �nite unfoldings are constructed inductively by applying at eachstep all rules of the grammar to the result of the previous step; and second, the unfoldingis constructed as a colimit of the �nite unfoldings in the category of graph grammars.Prop. 6.6 and Prop. 6.8 show that the unfolding of a graph grammar is an occurrencegraph grammar. The unfolding construction is presented in Sect. 6.1.� Establish a relationship between the unfolding and the concurrent semantics of a gram-mar (Sect 6.2). This is done by showing that the unfolding is the colimit of all concur-rent derivations of a grammar (Theo. 6.9), what implies that the unfolding describes alldeterministic computations of a graph grammar.� Establishment of a tight relationship between the categories of graph grammars andof (abstract) occurrence graph grammars (Sect 6.3). This relationship is given byan adjunction where the functor involved are the folding and the unfolding functors(Theo. 6.15). The fact that the unfolding functor is a right-adjoint implies that allcomputations (deterministic and non-deterministic) of a grammar are represented inthe unfolding of this grammar (Theo. 6.16).� Investigation of the compatibility of the unfolding semantics with parallel compositionoperators on grammars de�ned in Chap. 4 (Sect. 6.4). It is shown in Theo. 6.18 thatthe unfolding semantics is compatible with parallel composition. This means that theparallel composition operators and unfolding semantics seem to be good candidates tobe used as a basis for a suitable module concept for graph grammars.6.1 Construction of the Unfolding of a Graph GrammarThe �nite unfoldings of a graph grammar will be obtained by an inductive construction.Let GG be a graph grammar. To construct the unfolding of GG, we start with the emptyunfolding (the unfolding of depth 0). In the next step, we have to check which rules of GGare applicable at the initial graph of GG. This search for the set of applicable rules at someunfolding step is de�ned in Def. 6.1. Then we have to apply this rules to the initial graph.We will apply all these rules at once, by applying a corresponding parallel rule (Def. 6.3).But, as we want to have all derived graphs represented in the unfolding, no item shall bedeleted from the initial graph. This will be achieved by applying the parallel rule only fromits domain (thus, considering only the items that are preserved and that are added). Thenext step is to \make" this result become an occurrence grammar. This means practicallythat we have to make sure that all rules and initial graph are typed over the same core graph.This can be done by just composing some morphisms. In the second step, the search for theapplicable rules is more di�cult because we have to identify subgraphs of the core graph ofthe �rst step that are concurrent, i.e., that may occur in some derivation step. It is enoughto identify the subgraphs of some derivable graph because if there is a match to a subgraph



132 6. Unfolding Semantics of Graph Grammarsof a derivable graph, it is also a match in the derivable graph. Therefore, we can use thede�nition of concurrent graph (Def. 5.33) to �nd the applicable rules. Then we apply theparallel applicable rule as in the �rst step, and again have to make the result an occurrencegraph grammar. But at this step we have to take into account also the rules that were appliedin the step before: these rules must also be mapped to the new core graph. This constructioncan be summarized by the following steps: The unfolding of depth d of a graph grammar GGis obtained by induction on the depth d:Ind. Basis (Depth 0) The unfolding of depth 0 is the empty unfolding. It consists of theinitial graph IT of GG as a core graph, IT typed with the identity morphism as initialgraph, the empty set of rule names and the empty naming function.Ind. Step (Depth i+ 1) : The unfolding of depth i+ 1 is constructed in four steps:1. Construct the set ApplRulesi+1 of rules that are applicable to some output graphof the unfolding step i. This set consists of triples of a rule name, a rule and acorresponding match (see Def. 6.1).2. Apply all the rules in ApplRulesi+1 to the core graph of step i in such a way thatnothing is deleted, only the items created by these rules are added. This means toapply a parallel rule (see Def. 6.3 containing all the rules in ApplRulesi+1 to thecorresponding parallel match, but starting not from the left-hand side but fromthe domain of this parallel rule (this way nothing will de deleted).3. Retype the left-hand sides from rules in ApplRulesi+1 to the new core graph (theright-hand sides are already correctly typed by the construction of the new typegraph).4. Retype all actions that were present in unfolding i to the new core graph.De�nition 6.1 (Set of Applicable Rules) Let Occ be an occurrence graph grammar withcore graph CT and GG = (T; I;N; n) be a typed graph grammar. Then the set of applicablerules of GG into CT is de�ned asApplRules(Occ;GG) = f (nr; rT ; mT )jnr 2 N; n(nr) = rT : LT ! RT ; mT = mOUT : LT ! CT ;mOUT is a match and rng(mOUT) is a concurrent graphg ,�̂De�nition 6.2 (Set of Applied Rules) Let Occ = (CT ; I; N; n) be an occurrence graphgrammar. Then the set of applied rules of Occ is de�ned byApplied(Occ) = f(na; ra; prea)j(na; a) 2 Ng ,�̂De�nition 6.3 (Parallel Applicable Rule) Let A = ApplRule(Occ;GG) be the set of ap-plicable rules of GG into the core graph CT of Occ. Let L+ be the coproduct in TGraphP(T)of all left-hand sides of rules in A, and R+ TGraphP(T) be the coproduct of all right-handsides of rules in A. Then the parallel applicable rule is a pair (r+; m+) where r+ : L+ ! R+



6.1. Construction of the Unfolding of a Graph Grammar 133and m+ : L+ ! C are the universal morphisms induced by the coproduct generating the left-hand side L+. LiT RiTL1T R1TL+ R+CT //r1T //riT� q ""l1TEEEEEEEE s S�� liT���������������a $$m1T _�� miT � q ""s1TEEEEEEEE s S�� siT���������������//r+_�� m+ ,�̂De�nition 6.4 (Unfolding of depth d) The (�nite) unfolding Ud(GG) of depth d of a(typed) graph grammar GG = (T; IT ; N; n) is obtained inductively as follows:Ind. Basis: Unfolding of depth 0: U0(GG) = (IT ; II%T ; ;; ;)Ind. Hyp.: Let U i = (CTi ; INCi%T ; Ni; ni) be an unfolding of depth i.Ind. Step: Unfolding of depth i+ 1:The unfolding of depth i + 1, U i+1 = (CTi+1; INCi+1%T ; Ni+1; ni+1) is constructed in 4steps:1. Construct the set of applicable rules ApplRulesi+1:ApplRulesi+1 = ApplRules(U i; GG)�Applied(U i)2. Construct the new core graph Ci+1 and inclusion cTi+1:Let (r+; m+) be the parallel applicable rule of ApplRulesi+1. Then the core graphof step i + 1 is constructed as the pushout object of diagram (1) below (pushoutin TGraphP(T) { see Construction B.14), and the corresponding core graphinclusion is given by the pushout morphism cTi+1 : CTi ! CTi+1.L+ dom(r+) R+CTi CTi+1� //r+!_�� m0? _oo r+H _�� m0�� � //cTi+1� ##m+ HHHHHHHHHH (1)=3. Add the rules in ApplRulesi+1 to U i+1(GG):For all (nr; rT ; mT ) 2 ApplRulesi+1, (nr; a) 2 Ni+1, where ra = rT , prea =



134 6. Unfolding Semantics of Graph GrammarscTi+1 �mT , posta = m0� � sT (see also Def. 6.3)LT RT R+CTi CTi+1//rT_��mT r ��prea222222222222222 _�� posta� � //cTi+1 � q ""sT EEEEEEEE :|| m0�zzzzzzzz= =4. Add the actions in Ni to U i+1(GG):For all (nr; b) 2 Ni, (nr; a) 2 Ni+1, where ra = rb, prea = cTi+1 � preb, posta =cTi+1 � postb. La = Lb Ra = RbCTi CTi+1//ra=rb_��preb � &&preaLLLLLLLLLL _�� posta2yypostbrrrrrrrrrrr� � //cTi+1 ,�̂Remark.1. Note that between unfoldings U i and U i+1 there is a corresponding inclusion (pre�xmorphism) induced by the inclusion of core graphs cTi+1.2. As the construction of colimits and pushouts is only unique up to isomorphism, thede�nition above is not deterministic, but all results are isomorphic (a coproduct con-struction was used to get the parallel applicable rule and a pushout to obtain the coregraph of a step i+ 1). ,�̂Before we show that the unfolding is well-de�ned, we will give an example of its construc-tion.Example 6.5 (Unfolding Construction) Consider the graph grammar GG depicted in Fig-ure 6.1. Rule r deletes the looping edge and preserves the �1-vertex. Rule s deletes the edge andits source vertex, preserves the target vertex and creates a looping edge. All these vertices havethe same type (�). The indices just indicate that they are di�erent occurrences of the same typeelement. By de�nition, the unfolding of depth 0 is an occurrence grammar consisting only of theinitial graph and a core graph. This unfolding U0(GG) is shown in Figure 6.2.All subgraphs of C0 are trivially concurrent graphs. Rule r can not be applied at C0 becausethere is no looping edge in this graph. For rule s, there are three possible matches. The setof applicable rules of step 1 is shown in Figure 6.3, together with their corresponding parallelapplicable rule s+ : L+ ! R+. The next step is to apply this parallel rule to the core graphC0. This is also shown in Figure 6.3. Then we have to prolongate the matches of each rule tothe new core graph (C1). The result U1 of this step is shown in Figure 6.2, where the rules are
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c Figure 6.1: Grammar GGnot explicitely represented, just the core graph and the pre- and post-conditions of the rules. Therules are numbered for convenience (such that it is easier to talk about them). If some edge is inthe range of a pre- or post-condition of a rule, the corresponding source and target vertices mustobviously also be in the image of this morphism (and therefore this is not drawn).Now let us analyze the relationships between these actions and elements of the core graph.All actions are causally independent, and the weak con
ict relation is s3 #�! s1, s1 #�! s2 ands2 #�! s3. There are no con
icts. Between elements of the core graph, we have the followingdependencies: �1 � e!, a!� e!, �2 � f!, c!� f!, �3 � d!, b!� d!. The weak con
icts betweentypes are d! #�! e!, e! #�! f! and f! #�! d!.The graphs G1 to G4 in Figure 6.4 are concurrent graphs of C1. The graph G5 is not aconcurrent graph because �3 � d!. If we choose subgraph G1 we can apply rules r and s. Thesame holds for the subgraphs G2 and G3. By considering other subgraphs, we can only get rulesthat have already been applied. Thus we can build the parallel applicable rule using these six rules,do the retyping and obtain the unfolding of depth 2. Note that in this unfolding, the newly creatededges causally depend on their vertices (due to the con
ict between deletion and preservation).Therefore, these edges can not belong to any concurrent graph. From now on, there can notbe any rule that is applicable that was not applied yet. Therefore, all other unfoldings of depthgreater than two will yield the same result as this step. ,�̂
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138 6. Unfolding Semantics of Graph GrammarsProposition 6.6 The unfolding of depth d is well-de�ned and is an occurrence graph gram-mar, for all d 2 N. ,�̂Proof. Ud is a doubly-typed graph grammar with type CTd . The weak commutativity require-ment for the rules is satis�ed because each rule rT of GG satis�es this condition (and thereforealso r+) and by the construction of the typing morphism pre and post (the rule r+ is weaklycommuting with type graph cTi+1 by the pushout construction (1) of step 2. of the unfoldingconstruction). Thus it remains to show that Ud satis�es the requirements of occurrence graphgrammars (see Def. 5.29). This will be proven by induction on the depth d.Ind. Basis (Depth 0) : In this case U0(GG) = (IT ; II%T ; ;; ;) by de�nition. As there areno actions, the relations �, �# and #() are empty, what implies that axioms 1., 2., 3.,5. and 6. are trivially satis�ed. As inU0(GG) = idIT , axiom 5. is also satis�ed.Ind. Hyp. (Depth i) : The unfolding of depth i is well-de�ned and an occurrence gram-mar.Ind. Step (Depth i+ 1) : Let p = (pOPT ; pN) : U i(GG) ! U i+1(GG) be the pre�x mor-phism induced by the core graph inclusion of step i+ 1.1. Acyclic local occurrence relations: For each a 2 Ni+1, the relation �#a is antisym-metric because by de�nition of unfolding, prea(La) is a concurrent graph and byaxiom 3. of concurrent graphs.2. No se
-con
icts: Assume that there is a 2 Ni+1 such that a #() a. By de�nitionof the con
ict relations (Def. 5.25) this means that a #=) a. i.e., there is an actionb 2 Ni+1 such that a #�! b and b � a (Def. 5.25 of inherited weak con
ict relation).As a #�! b, b deletes some item, say x, that is needed by a, and as b � a, b createssome item, say y, that is needed by a. This imples, by Def. 5.20 of dependencyrelation, that x � y. Therefore, as x 2 prea(La) and b � a (i.e., b 2 Pre�a),prea(La) can not be a concurrent graph because condition 1. of concurrent graphs(Def. 5.33) is violated. But by the construction of the unfolding, prea(La) is aconcurrent graph (see step 1. of the construction). Therefore we conclude thata #�!= b, and this implies that a #=)= a and that a #()= a.3. Finite causes: Assume that there is a 2 Ni+1 such that Pre�(a) is in�nite. Theneither there is an in�nite sequence of causally dependent actions that are causes ofa or a depends on in�nitely many actions that are that are independent from eachother. Assume that there is an in�nite decreasing sequence of actions s = : : : Ea2 E a1 E a. As a1 E a, a1 must belong to rng(pN). As U i(GG) is an occurrencegraph grammar by hypothesis, p is a pre�x morphism and pre�x morphisms preservcausal dependencies (Prop. 5.41), Pre�(a1)) is �nite. As pre�x morphisms re
ect� (Prop. 5.41), s must also be �nite. Now assume that a depends on in�nitelymany actions that are independent. Let S = fa0 2 Ni+1 j a0 E ag. S is in�niteby assumption, thus Pre�jS (a) is in�nite. This means that there are in�nitelymany actions that create items that are needed by a. But by the de�nition ofthe applicable rules (Def. 6.1), prea(La) can not be a possible match in this case



6.1. Construction of the Unfolding of a Graph Grammar 139because prea(La) is not a concurrent graph (it violates axiom 4. of Def. 5.33).Therefore we conclude that Pre�(a) is �nite.4. Core graph: The fact that each item of CTi+1 is created only once and that thereare no items that are not in the image of some right-hand side of rule or initialgraph is assured by the pushout construction of step 2. of the construction of theunfolding and by the fact that U i satis�es this condition.5. The construction of ApplRuledi+1 in step 1. of the unfolding as a set assures thatthe same triple consisting of a rule name, a rule and a match are not selected twiceto be applied in the same unfolding step. Moreover, all triples of already appliedrules/matches are not in this set, what implies that the same triple can never beapplied twice in two di�erent unfolding steps.6. The last axiom is satis�ed by the construction of the unfolding and by the factthat each rule name in GG is associated to only one rule pattern. pDe�nition 6.7 (Unfolding Semantics of a Graph Grammar) The (in�nite) unfoldingUnf(GG) of a graph grammar GG is obtained as the colimit in OccGG of the diagramconsisting of all �nite unfoldings of GG and the corresponding inclusions (pre�x morphisms).The unfolding semantics of a graph grammar GG is its unfolding Unf(GG). ,�̂Proposition 6.8 The unfolding semantics of a graph grammar is well-de�ned. ,�̂Proof. We have to prove that the colimit of the diagram of �nite unfoldings and pre�x mor-phisms exists in the category OccGG. The following construction of this colimit is anal-ogous to the construction of colimits of directed diagrams of concurrent derivations pre-sented in [Kor96]. The colimit object U = (CTU ; ICU%T ; NU ; nU) and the colimit morphismsqi = (qiOPT ; qiN) : U i ! U , for each �nite unfolding U i of GG, are constructed as follows:� CTU is the colimit in TGraphP(T) of the diagram CT0 c1T,! CT1 c2T,! CT2 � � � of all coregraphs and core graph inclusions of the unfoldings of depth i 2 N. This colimit existsand as all morphisms in this diagram are total and injective, the colimit morphismsdiT : CTj ! CTU are also total and injective (see [Kor96] for a proof).� ICU%T = (IT ; tIT ; CTU), where tIT = dT0� NU : Let S be the colimit object in SetP of the diagram N1 p2N,! N2 p3N,! N3 � � � ofall sets of action names and action names components of the pre�x morphisms pi =(piOPT ; piN) : U i�1 ! U i induced by the unfolding construction. Let si : Ni ! S bethe colimit morphisms. Then NU = f(na; a) j 9x = si(na; a0) 2 S; ra = ra0 ; prea =diT � prea0 ; posta = diT � posta0g.� nU (na; a) = a, for all (na; a) 2 NU� qiT = (diT )�1 and qiN(na; a0) = (na; a), where ra = ra0, prea = diT � prea0 , posta =diT � posta0



140 6. Unfolding Semantics of Graph GrammarsNote that NU is isomorphic to S (and thus also a colimit of the diagram of action names)because for each element x 2 S, all si(na; a0) = x use the same rule and the pre- and post-conditions of a0 have the same image in the core graph CTU (all pi are pre�x morphisms).U is obviously a doubly-typed graph grammar with double-type CTU and the conditions ofoccurrence graph grammars are satis�ed because all U i are occurrence graph grammars andthe grammar U is just the gluing of all these grammars (where neither actions nor elementsof the core graphs are glued together from some U i into U). Moreover, it is easy to checkthat the pairs qi are pre�x morphisms.The commutativity requirement and universal property of colimits follows from the con-struction of U and all qi based on the colimits of their core graph and set of rule namescomponents. p6.2 Unfoldings and Concurrent SemanticsThe next theorem establishes a connection between the unfolding and the concurrent seman-tics of a graph grammar. This relationship isThe unfolding semantics Unf(GG) represents exactly the \gluing" of all con-current derivations of a graph grammar GG along the concurrent derivation mor-phisms.This gluing construction as a de�nition for the unfolding of a graph grammar was introducedin [KR95], where non-deterministic processes for graph grammars were investigated. Now weprove that the constructive way of obtaining the unfolding given in Defs. 6.4 and 6.7 and the\categorical" way via a colimit construction of a diagram of concurrent derivations yield thesame result. As the concurrent derivations represent all sequential derivations of a grammar(see [Kor96] for a proof), the next theorem implies that the unfolding semantics describesalso exactly all sequential derivations of a grammar.Theorem 6.9 Let GG be a graph grammar and Unf(GG) be its unfolding. Then Unf(GG)is isomorphic to the colimit of the diagram consisting of all concurrent derivation in CDerGGand all pre�x morphisms between them. ,�̂Proof. The proof will be done for all �nite unfoldings and concurrent derivations by inductionon their depth. Then as the unfolding is the colimit of all �nite unfoldings and in�nitederivations are also colimits of their �nite pre�xes, we conclude that Unf(GG) is the desiredcolimit.Ind. Basis (Depth 0) : The unfolding of depth 0 is de�ned as U0(GG) = (IT ; II%T ; ;; ;).All concurrent derivations of depth 0 have also an isomorphism as the inclusion of theinitial graph into the core graph and an empty set of actions. All pre�x morphismsbetween these concurrent derivations are isomorphisms. Therefore we conclude thatU0(GG) is the desired colimit.Ind. Hyp. (Depth d) : The unfolding Ud(GG) = (CTd ; INCd%T ; Nd; nd) is the colimit ofthe diagram Dd consisting of all concurrent derivations of depth j � d and all pre�xmorphisms between them, where the colimit morphisms are cd : � ! Ud(GG) for each� 2 Dd. Moreover, the colimit morphisms are pre�x morphisms.



6.2. Unfoldings and Concurrent Semantics 141Ind. Step (Depth d+1) : Let Ud+1(GG) = (CTd+1; INCd+1%T ; Nd+1; nd+1) be the unfold-ing of GG of depth d+ 1 and i : Ud(GG)! Ud+1(GG) be the corresponding inclusion.Let Dd+1 be the diagram of all concurrent derivations of depth j � d+ 1 and all pre�xmorphisms between them. We have to �nd, for each �jd+1 2 Dd+1, a pre�x morphismcjd+1 : �jd+1 ! Ud+1(GG) that commutes with all morphisms in Dd+1, and show thatUd+1(GG) has the universal property of colimits.�jd Ud(GG)�jd+1 Ud+1(GG)� � //cjd� _��pj � _�� i� � //cjd+1___ (1)Obviously we have that Dd � Dd+1. Let �jd+1 2 Dd+1 and depth(�jd+1) < d + 1. Then�jd+1 2 Dd. In this case we de�ne the colimit morphism cjd+1 : �jd+1 ! Ud+1(GG) bycjd+1 = i�cjd. Now let �jd+1 2 Dd+1�Dd. Obviously we have that depth(�jd+1) = d+1.Let Dd�jd+1 be the diagram consisting of all concurrent derivations �0d in Dd such thatthere are pre�x morphisms pi : �0d ! �jd+1. This diagram must contain at leastone concurrent derivation with depth d because depth(�jd+1) = d + 1. Let �jd bethe maximal pre�x derivation of depth d of the diagram consisting of Dd)�jd+1 , �jd+1and all pre�x morphisms between them, and pj : �jd ! �jd+1 be the correspondingmaximal pre�x morphism (see Def. 5.55). As depth(�jd) = d there is a colimit morphismcjd = (c1OPT ; c1N) : �jd ! Ud(GG). Then the morphism cjd+1 = (c2OPT ; c2N) :cdjd+1 ! Ud+1(GG) is constructed as follows:� Action component: 8(na; a) 2 Nd+1:c2N(na; a) = � iN � c1N(na; a0); if = pjN(na; a0) = (na; a(na; a00); otherwisewhere ra00 = ra, prea00 = (iT )�1 � (c1T )�1 � pjT � prea.N�jd NdN�jd+1 Nd+1� � //c1N� _��pjN � _�� iN� � //c2N ______ = C�jd CdC�jd+1 Cd+1La oooooo c1TOOOOOOpjT OOOOOO iToooooo c2T_ _ _ _ _ _ _�ccpreaGGGGGGGGG 9 <<prea00yyyyyyyy==The pre-condition prea00 must be total because �jd is the maximal pre�x derivationof depth d (see Prop. 5.57). Moreover, prea00(La) is a concurrent graph becauseprea(La) is a concurrent graph and pre�x morphisms preserve and re
ect con-current graphs (Prop. 5.35). Therefore the triple (na00 ; ra00; prea00) is a possibleapplicable rule and must be in ApplRulesd+1, what implies that the correspondingaction must be in Nd+1. As Ud+1(GG) is an occurrence graph grammar, axiom 5.of Def. 5.29 assures that there is only one possibility of mapping a00 to an actionof Nd+1 (posta00 is uniquely determined by ra00 and prea00).



142 6. Unfolding Semantics of Graph Grammars� Type component: 8x 2 Cd+1:c2T (x) = � c1T � iT (x0); if = pjT (x0) = xx00; otherwisewhere x is created by (na00 ; a00), posta00(y) = x, c2N(na; a) = (na00 ; a00) andposta(y) = x00. (Remind that each element of a core graph that is not in theinitial graph is created by only one rule.)As each of the rules of N�jd+1 is mapped to a rule with identical pattern, all rules aremapped and the initial graphs are equal, cjd+1 is a graph grammar morphism. It isinjective because it is de�ned as a composition of injective morphisms on the items thatare in the image of pj and because posta00 is injective on the created items. For analogousreasons, c2T is surjective. The type component of the morphism c2T is the identity ofT because all involved morphisms have idT as the corresponding component. Thereforerequirement 2. of occurrence graph grammars is satis�ed. The �rst requirement issatis�ed because pj, cjd and i are occurrence graph grammars morphisms. Moreover,as these are pre�x morphisms, the construction of cjd+1 assures that cjd+1 is a pre�xmorphism. Ud(GG)�jd+1 Ud+1(GG) X� _��i� � //cjd+1 //xd+1 ��ud $$ud+1JJJJJ= =By de�nition, cjd+1 makes diagram (1) commute. Thus it remains to show the universalproperty of the colimit. Let X be an occurrence graph grammar and xj = (xjOPT ; xjN) :�jd+1 ! X be occurrence graph grammar morphisms that make all diagrams withmorphisms of Dd+1 commute. In particular this object and morphisms commute withDd because this diagram is contained in Dd+1. As Ud(GG) is the colimit of Dd, thereis a universal morphism ud : Ud(GG) ! X . Thus let us de�ne ud+1 = (uOPT ; uN) :Ud+1(GG)! X as follows:uN(na; a) = � udN(na0 ; a0); if = iN(na; a) = (na0 ; a0)xjN(na00 ; a00); if c2N(na; a) = (na00 ; a00)By Prop. 5.51 each action of Nd+1 must be in the image of at least one morphism cjd+1(the concurrent derivation obtained by restricting the unfolding of the causes of thisaction must be a concurrent derivation of GG). Moreover, it can not be the case thatto actions of di�erent concurrent derivations in Dd+1 are mapped to the same actionin �jd+1 and to di�erent actions in X because the morphisms xj must commute withall pre�x morphisms in Dd+1. The mapping uT of type graphs can be derived from themapping uN (analogously to the construction of cjd+1 above). Based on the facts thatudN and xjN are occurrence graph grammar morphisms, we conclude that ud+1 is alsoan occurrence graph grammar morphism. Uniqueness of ud+1 follows from the fact thatall morphisms cjd+1 are together surjective on Ud+1(GG). p



6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 1436.3 Relationship between Typed-Graph Grammars and TheirUnfolding SemanticsIn Sect. 6.1 we showed how to construct an unfolding of a graph grammar. Then one can askwhether this construction can be extended to a functor yielding for each graph grammar itsunfolding semantics and for each graph grammar morphism an occurrence graph grammarmorphism. Such a functorial relationship is interesting because it means that, if two grammarsare related by a morphism, their semantics are also related by a corresponding morphism, thatis, syntactical relationship between grammars induce semantical ones. The �rst problem wehave to face towards the de�nition of such a functor is that the unfolding construction de�nedin the last section is only unique up to isomorphism. One way to solve this problem wouldbe to make a suitable \choice of occurrence grammars" and then take the unfolding fromthis distinguished class (a suitable choice should be based on pre�x-isomorphism classes ofoccurrence nets { see below). The second problem is how to map a graph grammar morphismto an occurrence graph grammar morphism. In general, there are many choices of morphismsthat are possible to be associated with a concrete graph grammar morphism via an unfoldingfunctor. This is because of the graph grammar morphisms that were chosen. We wanted tohave a quite 
exible relationship between two graph grammars, and therefore there is no tightconnection between the rules and the initial graphs of two grammar that are connected by amorphism. We know that there exists suitable morphisms mapping left- and right-hand sidesof the rules of one grammar into the rules of the other grammar, but we do not know exactlyhow these morphisms look like. Depending on the morphisms that are chosen, the core graphswill be mapped in one or another way. This will be illustrated in the next examples.Example 6.10 (Morphisms between Occurrence Grammars) In the examples we willpresent here we will always assume that the morphism mapping the type graphs of the occur-rence grammars (not the core graphs) is given, as well as the mapping of rule names. This isbecause these are the component that we have in a graph grammar morphism, and we want nowto investigate which would be the possible occurrence grammar morphisms that could be associ-ated to this given morphism via an unfolding functor. Consider the occurrence grammars Occ1and Occ2 shown in Figure 6.5. There we can see that there are two ways of mapping the coregraph C2 to the core graph C1 that are compatible with the initial graph and with the mappingof the rule r. The only requirement for such a morphism for initial graph is that the initial graphof Occ2 is isomorphic to the retyping of the initial graph of Occ1. Therefore, if we choose theisomorphism mapping �1 ! �1 and �2 ! �2 we will �nd out the the core component givenby the solid arrows yields a graph grammar morphism. If we instead choose the isomorphism�1 ! �2 and �2 ! �1, we will obtain that the core mapping given by the dashed arrows yieldsan occurrence graph grammar morphism.Now consider the occurrence graph grammars depicted in Figure 6.6. Again we have a similarsituation as in the �rst case, just that there is only one way to map the initial graph. But again wehave two di�erent morphisms because the vertices created by action a1 are not directly related tothe vertices created by action b1 (only by this \there exists one morphism" relation). Note that,for each morphism between R1 and R2 that is chosen, there exists then only one way to mapthe actions a2 and a3. The aim of this last example is to show that occurrence graph grammarmorphisms describe very close relationships between two occurrence grammars. Figure 6.7 showstwo occurrence graph grammars where there is no occurrence graph grammar morphism from
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Figure 6.7:Occ5 to Occ6. First of all, the two actions a1 and a2 can not be both mapped to the action b1because this mapping of the core graph would either not commute with a1 or with a2. As partialmorphisms are allowed, we could try not to map one of these actions. But this trial would also failbecause this would violate condition 2. of occurrence graph grammar morphisms (Def. 5.31): thediagram using the domain restriction of such a core graph component would not yield a pullback.Note that Occ2 is not an unfolding because if the rule r2 is a rule of the grammar, then it shouldhave been applied at the other existing match to become an unfolding. ,�̂These examples show that, when there is an occurrence grammar morphism betweentwo grammars, the other occurrence grammar morphisms that may exist using the sametype graph morphism and same mapping of rules describe practically the same relationship.This is not accidentally this way, but is basically a consequence of the second requirementof occurrence graph grammars (Def. 5.31). This requirement is quite reasonable becauseit assures that all instances in the core graph of some item of the type graph are mappedcompatibly, where compatibly here means via a pullback (because the translation of graphsis made via pullbacks). The di�erent choices for pullbacks that can be made for the domainrestriction yield di�erent occurrence graph grammar morphisms.After this deeper investigation of occurrence grammar morphisms, we will now de�ne acategory of abstract occurrence graph grammars and abstract occurrence grammar morphisms,and, by using this category and a suitable modi�cation of the folding functor de�ned inSect. 5.5, we will be able to de�ne an adjunction between the categories of graph grammarsand abstract occurrence grammars.The �rst step towards the category of abstract occurrence grammars is to de�ne a suitablenotion of an abstract occurrence grammar. This will be based on pre�x (iso)morphisms. Apre�x-isomorphism class of occurrence grammars is an isomorphism class which is determined



146 6. Unfolding Semantics of Graph Grammarsby pre�x morphisms. Pre�x-isomorphisms assure that all elements of this class use exactlythe same rules and initial graph, but the core graph is up to isomorphism. As the core graphrepresents the intermediate graphs obtained during the application of rules of a grammar, thefact that we choose it here only up to isomorphism corresponds to the idea of derivation of thealgebraic approach to graph grammars: the result of a derivation is unique up to isomorphism,and thus it is natural to say that the \results" of all derivation steps shall also be unique upto isomorphism only.De�nition 6.11 (Pre�x-Equivalence Classes) A pre�x-equivalence class of occur-rence graph grammars is an equivalence class de�ned as follows:Occ = fOcc0jp : Occ0 ! Occ is an isomorphism and a pre�x-morphismg ,�̂Remark. Pre�x isomorphisms can be seen as a kind of \standard isomorphism" between occur-rence grammars [CEL+94b]. Standard isomorphisms are obtained as a choice of isomorphismswhich includes identities and is compatible with composition. As identities are pre�x mor-phisms, pre�x morphisms compose and there is at most one pre�x morphism between twooccurrence graph grammar, pre�x morphism can almost be considered as standard isomor-phisms. \Almost" because pre�x isomorphisms only exist between occurrence graph gram-mars having the same initial graph, same type and using the same rules (only the core graphsmay be di�erent). ,�̂Now we will de�ne abstract occurrence graph grammars as pre�x equivalence classes ofoccurrence grammars. The abstract morphisms are, as discussed above, determined by themapping of the type graph and the rule names. Therefore, we consider two morphisms asbelonging to the same class if they have the same corresponding components (this is formalizedby using the folding functor).De�nition 6.12 (Abstract Occurrence Graph Grammars) An abstract occurrencegraph grammar is a pre�x-equivalence class of occurrence graph grammars. An abstractoccurrence graph grammar morphism f : Occ ! Occ1 is de�ned as f = fg j F(g) =F(f)g, where f; g : Occ1! Occ2 are morphisms in OccGG.The category of abstract occurrence graph grammars and abstract occurrence graph gram-mar morphisms is denoted by OccGG, where identities are de�ned by idOcc and compositionby g � f = g � f . ,�̂Remark. In an abstract occurrence graph grammar, only the core graph is up to isomorphism,and is an abstract occurrence graph grammar morphisms, only the mapping of core graphsis up to isomorphism (assured by the occurrence graph grammar morphism conditions {Def. 5.31 and Def. 5.15). ,�̂



6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 147Proposition 6.13 The category OccGG is well-de�ned. ,�̂Proof.1. Identities are well-de�ned: By the de�nition of Occ as a pre�x-equivalence class andthe de�nition of pre�x morphisms (Def. 5.39), all occurrence grammars in Occ have thesame rules and the same type. Therefore we must have that for each Occ1; Occ2 2 Occ,FidOcc1 = FidOcc2.2. Composition is well-de�ned: This is basically due to the fact that between two oc-currence grammars Occ1; Occ2 in Occ there can be only one pre�x (iso)morphism(Prop. 5.43). Let f : Occ1 ! Occ2 and g : Occ2 ! Occ3 be abstract occurrencegrammar morphisms, (f : Occ1 ! Occ2); (f 0 : Occ10 ! Occ20) 2 f and (g : Occ2 !Occ3; (g0 : Occ20! Occ30) 2 g. We obviously have that F(g � f) = F(g) �F(f) becausethe composition of morphisms is de�ned componentwise. The same holds for g0 � f 0. Itremains to show that F(g0 � f 0) = F(g � f). This holds because the type componentand the rules mapping between the objects Occi and Occi0, for i = 1::3 are identities.pDe�nition 6.14 (Folding Functor II) The abstract folding functor F : OccGG ! GGis de�ned as follows:Objects : F(Occ) = F(Occ), for all Occ 2 OccGG, Occ 2 OccMorphisms : F(f) = F(f) for all morphism f 2 OccGG, f 2 f ,�̂Remarks. Well-de�nedness of the abstract folding functor follows from the fact that the objectsof OccGG are equivalence classes of occurrence grammars that have the same initial graphand use the same rules, and that morphisms of OccGG are equivalence classes of morphismsthat have the same components mapping type graphs and rules. ,�̂Now we will show that the unfolding of graph grammars is a co-free construction withrespect to the (abstract) folding functor. This means that there is an unfolding functor thatis a right-adjoint to the (abstract) folding functor. The co-unit of this construction is theinclusion i : F(Unf(GG)) ! GG. The co-unit is in general not the identity because theremay be rules of GG that are never used, and thus are not in Unf(GG). As Unf(GG) isconstructed using the initial graph and the rules of GG, i can be de�ned as an inclusion.Theorem 6.15 Given a graph grammar GG. Then its unfolding Unf(GG) together withthe inclusion morphism i : F(Unf(GG)) ! GG is a co-free construction with respect to thefolding functor F. ,�̂Proof. Let GG = (T; IT ; NGG; nGG) be a graph grammar and Unf(GG) = (CT ; IC%T ; N; n)be the unfolding of GG. Then we have to show that the inclusion i : F(Unf(GG))! GG isuniversal from any other folding to GG, i.e., for any (abstract) occurrence graph grammar



148 6. Unfolding Semantics of Graph GrammarsU = (CUTU ; IUCU%TU ; NU; nu) and any graph grammar morphism k : F(U) ! GG thereexists a unique h : U ! Unf(GG) in OccGG such that k = u � F(h). That isGGF(U)OO8k : Unf(GG)UOO9!h such that F(Unf(GG)) GGF(U) //iOOF(h) 99k rrrrrrrrrrr(1)We will make this proof by induction on the depth of Unf(GG) proving that for allapproximations n of Unf(GG) there is a unique hn : Un(U) ! Un(GG) such that (1)ncommutes. As Unf(GG) and U are the colimits of their approximations then there mustbe a unique h such that (1) commutes. It is enough to �nd one morphism that makes (1)commute, uniqueness follow from the de�nition of OccGG(if there are two morphisms thatmake (1) commute, they must be the same).n=0 : By deg�nition of the unfolding of depth 0, we have that CT0 = IT and CUTU0 = IUTU .Let h0 = ((hkTc0 )OP ; ;), where hc0 is the composition of the universal morphism inducedby the retyping of IU and the corresponding pullback morphism of the retyping (seeDef. 5.5). Diagram (2) is a pullback and (3) commutes because k is a graph grammarmorphism. Thus, h0 is an occurrence graph grammar morphism. Let h0 2 h0. ThenF(h0) = (kTOP ; ;). Thus (1)0 trivially commutes and h0 is the only morphism suchthat this happens (by de�nition of OccGG).CU = IU TUdom(hc0) = C dom(kT )C = I T� //� //_OOhc0!=hc0 � _��cH=id _OO kT !� _�� kHT� //(2)(3)n+1 : By induction hypothesis we have that there is a unique hn that makes (1)n commute.Let hn = ((hkTcn )OP ; hnn) 2 hn, iU : Un(U) ! Un+1(U) and i : Un(GG) ! Un+1(GG)be the unfolding inclusions, iU 2 iU and i 2 i.Un(U) Un(GG)Un+1(U) Un+1(GG)//hn� _��iU � _�� i� � //hn+1___ =Because hn is an occurrence graph grammar morphism, diagram (4) is a pullback and (5)commutes. Let (6) be the pullback of morphisms tCUn+1 and kT ! with pullback objectP . As iU is a graph grammar morphism we have that tCUn+1 = tCUn � iUT . This impliesthat there is a universal morphism u : P ! dom(hcn) induced by pullback (4). Moreoveru makes (7) commute and thus (7) is pullback (because (4) and (6) are pullbacks). LetTkT (La) be the retyping of La with respect to the morphism kT (that is TkT (La) is thepullback object of morphisms kT ! and tLa). Diagram (8) commutes because Un+1(U)is a doubly-typed graph grammar. Thus, analogously to the obtention of u, we obtain



6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 149an universal morphism p2 that makes (9) be a pullback. Let hnn+1 : NUn+1 ! Nn+1be de�ned as follows: 8(na; a) 2 NUn+1:hnn+1(na; a) = 8<: undef; if na =2 dom(kN)iN � hnn(na0 ; a0); if = iUN (na0 ; a0)(na00 ; a00); otherwisewhere na00 = kN (na), ra00 = nGG � kN(na), prea00 = (iT )�1 � hHcn � u � p2 � iLa00 andposta00 is the post-condition of the action having prea00 as pre-condition and ra00 as rule.The morphism iLa00 is the left-hand side component of the subrule inclusion of La (thatmust exist because k is a graph grammar morphism). This inclusion is not unique, butall choices will lead to the same morphism in OccGG(because the same rule and typegraph are used). TU dom(kT) TCUn dom(hcn) CnCUn+1 P Cn+1La TkT (La) La0�oo hcn! � � //hHcn�oo kT ! � � //kHT_OO tCUn _OO_OOOOOOOO iUT OOOOOO u OOOOOOiT1 88p2 qqqqqqqqqqqq7 ;;prea wwwwwwwww _OO prea00�oo p1 �oo p3 _?oo iLa00[ AAtLa mHHtCUn+1 W ?? nHH QVV(4) (5)(7)(8) (9)Well-de�nedness of hnn+1: assume that prea00 is not total. By construction, this can onlyhappen if there is x 2 p2� iLa00(La00) and x =2 dom(u). As (7) commutes, this means thatp3(x) is created is Un+1(U) (that is, p3(x) =2 dom(iUT )), what is not possible becausep3(x) 2 rng(prea) (because (9) commutes). As prea is a concurrent graph, occurrencegraph grammar morphisms preserve concurrent graphs and pre�x morphisms re
ectconcurrent graphs, prea00 is also a concurrent graph. Therefore, by the de�nition of theunfolding, there must be a unique action a00 of Un+1(GG) using rule ra00 and matchprea00 .The type component of hn+1 is completely determined by hnn+1 and hcn because allitems of the core graph must have been either in the initial graph present or created byexactly one rule. The items that have been created by actions that are not in the imageof hnn+1 can not be mapped and the items that have been created by actions that arein the image o hnn+1 , otherwise hn+1 would not become a graph grammar morphism.Let p : P ! Cn be de�ned as follows:p(x) = � (iT )�1 � hHcn � u(x); if = x 2 dom(u)posta00(y); otherwisewhere a00 is the action in Unfn that creates x, and p20 � iRa00(x) = y (again, this isnon-deterministic, but any choice will lead to an isomorphic result). The morphismp is total by de�nition, and injective because iT , hHcn and u are injective and p20 is



150 6. Unfolding Semantics of Graph Grammarsinjective on items that are created. Thus we de�ne hcn+1 as being the morphism wheredom(hcn+1) �= P and the span representation is isomorphic to (p; p3).Analogously to the proof of Theo. 6.9, this pair is an occurrence graph grammar mor-phism. Therefore hn+1 is in OccGG and makes (1) commute. pThe existence of an adjunction in which the unfolding functor is the right-adjoint as-sures that all (deterministic and non-deterministic) computations of a graph grammar GG,described by (abstract) occurrence graph grammars Occ such that there is an inclusioni : F(Occ) ! GG, are included in the unfolding of GG. This will be shown in the nexttheorem.Theorem 6.16 The unfolding semantics Unf(GG) describes all deterministic and non-deterministic computations of a graph grammar GG, that is, for all (abstract) occurrencegraph grammars Occ such that there is an inclusion i : F(Occ)! GG, there is a pre�x mor-phism p : Occ! Unf , where Occ 2 Occ and Unf 2 Unf(GG). ,�̂Proof. Due to Theo. 6.15, there is a morphism p : Occ ! Unf(GG) that is compatible withthe type and rules mappings. The construction of p is described in the proof of Theo. 6.15.By the fact that k is an inclusion, the construction of p yields a pre�x morphism. p6.4 Parallel Composition and Unfolding of Graph GrammarsSimilar to the composition of graph grammars in general there should be also a compositionof occurrence graph grammars. Occurrence graph grammars are graph grammars based onmore ellaborated graphs and that satisfy some additional conditions. In other formalisms, liketransition systems and Petri nets, the composition of their unfoldings was de�ned in terms oflimit constructions [WN94, MMS94]. For these reasons, analogous to the synctactical case, acomposition based on limits (or more concretely, pullbacks) seems to be a good candidate forthe composition of unfoldings. Therefore, we will take advantage of our categorical setting(in which some operations like pullbacks are described abstractly) and directly de�ne it asa pullback (having products as special cases). In Theo. 6.18 and Example 6.19 we will seethat this choice is really adequate, and stresses the fact that the explicit construction of thisparallel composition can be made analogous to the one of parallel composition of typed graphgrammars.De�nition 6.17 (Occ-Cooperative Parallel Composition) Let Occi, for i = 0; 1; 2 beabstract occurrence graph grammars, and s1 : Occ1 ! Occ0 and s2 : Occ2 ! Occ0 beabstract occurrence graph grammar morphisms. Then the occ-cooperative parallel com-position Occ1jjOcc0Occ2 of Occ1 and Occ2 with respect to Occ0 using s1 and s2 is thepullback of s1 and s2 in the category OccGG, if it exists. ,�̂Remark. From this de�nition it follows that not every occurrence grammars can be composed.But this is also the case for typed graph grammars, where the composition was only de�nedfor special morphisms and interface grammar. A deeper investigation on the existence of



6.4. Parallel Composition and Unfolding of Graph Grammars 151arbitrary pullbacks in OccGG, as well as in GG, and their interpretation is left for futurework. The pullbacks that were shown to exist and have an interpretation in terms of parallelcomposition in GG will have a correspondence in OccGG (Theo. 6.18). ,�̂Having de�ned syntactical and semantical composition operators immediately raises thequestionabout their relation. The next theorem shows that the parallel composition operatorsof graph grammars de�ned in Chap. 4 are compatible with the unfolding semantics. Thisresult allows for speci�cations of a system based on the speci�cations of its components:whenmerging the components to get the whole system, the semantics can be obtained be a suitablemerge of the semantics of the components. Thus, analogously to the theory of modulesdeveloped in [EM90] for algebraic speci�cations, we believe that this composition operatorsand the unfolding semantics can be used as a basis for a similar module concept for graphgrammars (but using limits instead of colimits as in [EM90]).Theorem 6.18 The unfolding semantics is compatible with the parallel composition of gram-mars, that is given graph grammars GGi, for i = 0; 1; 2 with GG1jjGG0GG2 being theircooperative parallel composition with respect to morphisms s1 and s2 we have thatUnf(GG1jjGG0GG) = Unf(GG1)jjUnf(GG0)Unf(GG1): ,�̂Proof. The functors U and F form an adjunction in which U is the right-adjoint (Theo. 6.15).The fact that right-adjoints preserve limits and that the composition of graph grammarsand of unfoldings are based on limits (Theos. 4.16, 4.24 and Def. 6.17) yields the desiredcompatibility. pExample 6.19 Figure 2.9 shows part of the unfolding of the PBX system (actions a1, a2 and a5are obtained in the �rst unfolding step, and action a6 in the second unfolding step). The rules thatare used in these actions are already in the interface grammarAGV . Thus, the unfolding of AGVwill have also actions corresponding to these ones (all elements needed by these AGV -rules are inthe initial graph of the abstract view). Analogously, we may �nd unfoldings for PLV and CLVand these actions will also be in these unfoldings. In fact, the unfolding ofAGV may contain manymore actions than Unf(CGV ) because the rules of AGV have less elements in the left-hand sidesthat have to be present. Thus, in the case of this example, where the specialization morphisms aretotal on the rules component, the unfolding Unf(CGV ) will have less actions than the unfoldingsof the other grammars. It can be considered as an intersection of the actions that may occur inboth components (this means, each action of Unf(CGV ) represents a synchronization of actionsof Unf(PLV ) and Unf(CLV )). ,�̂



7Related WorkThe purpose of this chapter is to discuss in more details the relationships between the conceptsintroduced in this thesis and the already existing ones in the literature.The main aims of this thesis are to present parallel composition operators for graph gram-mars and an unfolding semantics that is compatible with these operators and is particularlywell-suited to concurrent systems. Therefore, the relationships to other approaches will bedone in two parts: relationships between the parallel composition of graph grammars andother composition operators, and relationship between unfolding semantics and other seman-tics. In Sect. 7.1 other kinds of composition of graph grammars are considered and in Sect. 7.2other kinds of concurrent semantics for graph grammars are discussed.A lot of inspiration for the concepts developed here for graph grammars came from thearea of Petri nets. Therefore, some of the main results, like unfolding semantics and pureparallel composition, are (non-trivial) generalizations of corresponding concepts for Petri nets.In Sect. 7.3 we discuss concepts of Petri nets that are related to this work. Moreover, we willdiscuss how the concept of cooperative parallel composition can be seen as a reasonable newcomposition operator for nets. This means that the specialization of some concepts presentedhere may enrich the theory of Petri nets.7.1 Other Approaches to the Composition of Graph Gram-marsParallel and Distributed Graph Grammars: Specially in the algebraic approach tograph grammars, the suitability of graph grammars to concurrent and distributed systemswas an aspect of major interest. This led to the de�nition of parallel and distributed graphgrammars. In [Tae96] an overview of di�erent approaches (not only the algebraic one) to par-allelism and distribution in graph grammars is given, and corresponding concepts of paralleland distributed graph grammars in the DPO approach are investigated in more detail. Thebasic idea of parallel graph grammars is to allow not only one rule to be applied at a timebut many. A set of applicable rules is summarized into a single rule via parallel rule and/oramalgamation constructions and this composed rule is then applied to the actual graph. Dis-tributed grammars are based on distributed graphs, that are diagrams of graphs. This ideawas originally de�ned for the DPO approach in [EBHL88] and was later on adapted for theSPO approach in [EL93b]. Each distributed graph represents a global state of one system,152



7.1. Other Approaches to the Composition of Graph Grammars 153and this state can be decomposed into local states. Then, rules may be applied separatelyto the local states and the results may be joined together to build again a global state. Therules of such grammars can then be local to one component or global, where global rulesare obtained by parallel/amalgamated composition of local rules. Both concepts of paralleland distributed graph grammars give the impression that a system is a collection of smallersubsystems. The operational semantics of these grammars is based on parallel/amalgamatedderivations. But, although one can see some structuring in the states/rules, no operators forconstructing the graph grammar representing the whole system based on graph grammars rep-resenting the components is given. The aim of this kind of grammars is di�erent than the aimof the parallel composition of graph grammars presented in this thesis. Parallel/Distributedgraph grammars are meant to describe a parallel/distributed system as a whole and give ita semantics that takes into account this structuring (therefore, usually a distributed state isnot \
attened" to a simple graph). The parallel composition of graph grammars has as mainaim to allow the construction of a system based on smaller components. In other words, aparallel/distributed graph grammar is one grammar in which rules may be applied in par-allel (or synchronously via amalgamated rules) and a parallel composition of grammars is agrammar whose rules are based on the rules of the component grammars. Obviously, rulesof a parallelly composed grammar may also be applied in parallel. This is assured becausethe semantics given to such a grammar (the unfolding semantics) is a true concurrency se-mantics. In the case of parallel/distributed graph grammars, parallelism is expressed at thesemantical level by explicitly including derivations using parallel/amalgamated rules whereasin a parallelly composed grammar, parallelism is expressed by the absence of causal rela-tionships between corresponding actions (synchronization is expressed by the application ofparallel/amalgamated rules).DIEGO: In [TS95] a concept for building graph grammars from smaller components wasintroduced. This concept is called DIEGO and is based on (hierarchically) distributed graphgrammars. According to the idea of distributed graph grammars, the DIEGO components arenot glued together, but they just execute together (the semantics of a DIEGO speci�cationis based on a distributed graph grammar). Relationships between components are given bysuitable graph grammar morphisms.For DIEGO, the issue of compatibility of the compositionof DIEGO-modules with respect to some semantical model was not yet investigated. However,it should be said that DIEGO is still under development and provides a promising concept ofencapsulation and distribution of data for graph grammars. Moreover, it can be considereda s an instance of a general module concept for graph transformations introduced in [EE95].Classes: In [Kor94, Kor96] �rst ideas about a way of combining graph grammars (withinthe SPO approach) that represented classes of a class-based system were sketched. There, aclass based system was de�ned to be a doubly-typed graph grammar (using our terminology),where the double-type graph was called class graph. The idea suggested (but not formallyde�ned) for the composition of such classes was that the composition of di�erent classesalong a common subclass should be induced by the gluing of the class graphs. This idea isimplemented in the de�nition of cooperative parallel composition (Sect. 4.2.2) and thereforewe believe that this composition can be used to formalize the intuitive composition of classesof [Kor96].TROLL light: In [WG96] a graph grammar description of the object description lan-guage TROLL light [CGH92] was presented. The SPO approach used in this work is an



154 7. Related Workextension of the SPO approach of [L�ow90] by considering attributes (as in [LKW93]) andpartial algebras. Each template (kind of object) of a TROLL light speci�cation becomesa kind of vertex and relationships between vertices become edges. The event of a TROLLlight speci�cation are described by (valuation) rules. The interesting aspect of this approachis that the execution of events that involve more than one object is done via amalgamatedrules. These rules are used to force the synchronization of events that necessarily must occurtogether. In [WG96] amalgamated rules were used just at the semantical level to explainthe operational behaviour of TROLL light. As the cooperative parallel composition of graphgrammars is based on amalgamated rules, one can think of another possibility to describethe semantics of TROLL light: each template of TROLL is described by one graph grammarand the synchronization points are collected in a common interface grammar. Then the be-haviour of such an speci�cation can be given by the unfolding of the corresponding composedgrammar (obtained by the cooperative parallel composition). Obviously, to realize this theconcepts de�ned in this thesis should be extended with the necessary notions of attributedand partial graphs.Composition of Graph Transformation Systems: A notion of composition of graphtransformation systems (graph grammars without initial graphs) was introduced in [CH95,HCEL96]. This composition corresponds to a union (gluing) of graph transformation systemsand is realized by colimit constructions on graph transformation systems. The (interleavingand concrete) semantics of graph transformation system based on graph transition systemsis compositional with respect to this union operator. It was noticed in [HCEL96] that forthe de�nition of the union operator it is a necessary condition that initial graphs are notconsidered. A signi�cant di�erence between the union and the parallel composition operatorsare that for the union a rule of the interface can only be specialized in by one rule in eachcomponent, whereas in the cooperative parallel composition the same rule of the interfacemay be specialized by many rules of each component. The latter allows the interpretation ofthe components as specializations (or re�nements) of the interface. The rules of a parallellycomposed system are based on the composition of the rules of the component systems (usingparallel and amalgamated rules). Moreover, the parallel composition is compatible with theunfolding semantics, that is truly concurrent and representation independent.ESM-Systems: ESM systems [Jan93] are a kind of graph rewriting systems that origi-nated from actor grammars [JR89]. For these systems, a kind of composition based on gluingof computation structures on a common subpart have been de�ned. Formally, this gluingis obtained by a pushout construction. In [Jan93, Jan96] it is shown that this compositionis compatible with a true concurrency semantics for ESM systems based on processes. AsESM systems do not have an initial state, this composition corresponds to the one of graphtransformation systems and the comparison to the parallel composition introduced in thisthesis is analogous to that case.GRACE: The main aim of the language GRACE [Kre95, KK96] is to provide an approachto build large graph rewriting systems from smaller ones independently from a concretegraph grammar approach. The idea is that GRACE provides a kind of abstract interfacebetween di�erent kinds of graph grammar components. The basic units of GRACE are calledtransformation units. Such a transformation unit can be seen as a graph grammar withapplication conditions and that may use (in the sense of include) other transformation units.



7.2. Other Approaches to Concurrent Semantics of Graph Grammars 155The semantics of a transformation unit is given by the input/output relations induced by theapplication of rules of the transformation unit (that is, the semantics abstracts out from thetransformation process). As one of the main aims of GRACE is to build a big system bycomposing smaller ones, composition operators are of great importance. In particular, thesemantics of the union operator shall be the union of the relations describing the semanticsof the components (see [KK96]). The union operator describes a kind of union like of graphtransformation systems in the DPO-approach discussed before. It is an interesting topic ofresearch to �nd out whether the parallel composition operators presented here can be also areasonable operators for GRACE.7.2 Other Approaches to Concurrent Semantics of GraphGrammarsConcurrent Derivations: The introduction of the unfolding semantics for graph grammarsin Chap. 6 had the main aim to provide a semantics for graph grammars in which theaspects of concurrency and compositionality are the most important ones. Other semantics forgraph grammars that also describe suitably concurrent aspects are the concurrent semantics(Def. 3.46) and the processes semantics de�ned in [KR95]. These two semantics describe thebehaviour of a graph grammar by a category of (deterministic or non-deterministic in thecase of [KR95]) concurrent derivations. Thus, both include some redundancy because it canbe that the same action is represented in di�erent objects. In the unfolding semantics, eachaction is represented only once, and all actions are described together in the same structure.This makes the analysis of relationships between them easier. Moreover, it is not investigatedwhether the concurrency and the process semantics are compositional with respect to theparallel composition of graph grammars. The formal relationship between the concurrentand unfolding semantics is given by Theo. 6.9.Actor Grammars: In [JR91] a structure called computation graph was introduced asa representation of rewriting processes in actor grammars [JR89]. These graphs are labeled,bipartite, directed, acyclic graphs in which one kind of nodes represent actions (or events) andthe other kind represent nodes of states. Computation graphs can be seen as the counterpartsfor actor grammars of (deterministic) occurrence nets in net theory. The correspondencebetween computation graphs and occurrence grammars as de�ned in Def. 5.29 is roughly asfollows: the nodes representing states of a computation graph are the vertices of the coregraph of the occurrence grammar, and the node representing actions correspond to actions ofan occurrence grammar, where the pre- and post-morphisms correspond to the incoming andoutcoming edges connecting the action-nodes to their corresponding state-nodes.Event Structure Semantics: A true concurrent, branching structure semantics forgraph grammars is the event structure semantics [Sch94, CEL+94a, Kor95, CEL+96b]. In[Cor95] there is a discussion about the adequacy of event structures as a semantics for graphgrammars. Graph grammars allow a very elaborated description of states and states changes,whereas the relationships between di�erent rules are not explicitly described (but implicitlythrough the overlappings in the type graph). In an event structure semantics, states are notrepresented, but only events and relationships among them. Therefore, an event structuresemantics for graph grammars puts emphasis on the relationships between derivation steps.Instead, an unfolding semantics also represents the states of a system.



156 7. Related WorkGraph Grammar Processes: There are di�erent notions of graph grammar processes.In [Kre83, KW86] and [KR95] graph grammar processes are described as partial order ofderivation steps (called derivation processes and concurrent derivations, respectively). Anoccurrence graph grammar here represents a process following this idea. The unfoldingsemantics is thus the \biggest" process of a graph grammar (it includes all other processes).In [CMR96a] another approach to graph grammar processes was presented, mainly inspiredby Petri nets processes: a graph process is a morphism from an occurrence grammar tothe original grammar. Thus, this work introduces occurrence grammars, and therefore wewill make a more detailed comparison to our de�nition of occurrence graph grammars. Wewill refer to the occurrence grammars de�ned in [CMR96a] as DPO-occurrence grammarsin the following. A DPO-occurrence grammar is a (simply) typed graph grammar, whereasan occurrence graph grammar is a doubly-typed graph grammar. Therefore, to describea computation of a graph grammar GG using a DPO-occurrence grammar Occ requires amapping p : Occ! GG that indicates in which way the rules (and items of the type graphs)of Occ are related to the ones of GG. This mapping p is then called a graph process. Forexample, a graph process p of a graph grammar GG = (T; I; frg; n), where n(r) = (L ! R)(here we abstract from the fact that DPO rules are spans of morphisms), can be the oneillustrated in diagram (1) of Figure 7.1 (where I and IOcc are isomorphic). 1 The samecomputation of GG can be described by using an occurrence graph grammar DGG shownin diagram (2) of Figure 7.1. The basic di�erence is that the mapping p : Occ ! GG is\internalized" in the occurrence graph grammar DGG: the component pT became the typingmorphism of TOcc and the mapping of rules is restricted to identities (by using a mappingPN , a rule r1 : L! R of Occ may be mapped to an isomorphic one r : L0 ! R0 of GG).
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(2)Figure 7.1: (1) Graph Process p (2) Occurrence Grammar DGGNow we will compare in more detail the axioms of DPO-occurrence grammars with theaxioms of occurrence grammars. As discussed in the introduction of Chap. 5, the causal orderof DPO-occurrence grammars corresponds here to the occurrence order. DPO-occurrencegrammars are �nite (the initial graph is �nite and the set of rules is �nite) and deterministic1Note that, to be able to de�ne a graph grammar process in this way, it is necessary that graph grammarmorphisms allow the identi�cation of elements of the type graph. This is not possible using the kind ofmorphisms de�ned here, but these, in turn, allow for splitting of types, that is a necessary condition for theuniversality of the parallel composition of graph grammars.



7.3. Petri Nets 157(there are no con
icts). Therefore, DPO-occurrence grammars correspond to deterministicoccurrence grammars (Def. 5.44). In a DPO-occurrence grammar, each item of the coregraph is created and consumed by at most one production. This is assured in deterministicoccurrence grammars by axiom 4. (the type graph is a core graph). This axiom also assuresthe strong safety requirement of DPO-occurrence grammars and (together with axiom 1.) thatthe minimal elements with respect to the occurrence order correspond to the initial graph.The fact that the causal relation of a DPO-occurrence grammar is a partial order ful�llsaxiom 1. Axiom 3. is trivially satis�ed by DPO-occurrence grammars because they are �nite.Axiom 5. is satis�ed by DPO-occurrence grammars because they have no con
icts. Howeverthere is not a bijective correspondence between DPO-occurrence grammars and deterministicoccurrence grammars. In DPO-occurrence grammars it is required that the pre-conditionsof the actions satisfy the gluing condition of DPO-grammars, and such an axiom is notpresent in deterministic occurrence grammars (because there is no gluing condition in theSPO-approach). For deterministic grammars, a special structure is imposed on the names ofrules (through axiom 6.), and this is not the case for DPO-occurrence grammars.7.3 Petri NetsPetri nets [Pet62] have been used since the early 70's as a formalism to describe concurrentsystems ([Rei85] provides a good introduction to Petri nets). The main reasons for the successof Petri nets is that they rely on a simple concept of states and transitions and that theyprovide a graphical representation of the system, what makes the understanding of the modeland its behaviour easier even for non specialists. Moreover, Petri nets have a rich theory ofconcurrency and a large number of speci�cation and analysis tools.There is a series of works concerned about the relation between Petri nets and graphgrammars (some of them are [Kre81, Rei81, KW86, CEL+94a, KR96]). In [Sch96] a survey ofdi�erent ways of syntactically representing Petri nets with graph grammars, and in [Cor95]the semantical aspects of such relationship are considered in more details. The basic idea ofthe di�erent ways of representing nets with grammars is always the same: the markings of anet are represented by graphs and the transitions are represented by rules. The di�erencesoccur in the choice of the graphs that represent the markings. In spite of the di�erentrepresentations for states, practically all ways of translating nets into graph grammars yieldanalogous theoretical results. These results are related to suitability of the translation: forexample, one of the desired results is that whenever a transition is enabled by a marking ofa net, then the corresponding rule is applicable at the translated match.For the purposes of the comparison done in this thesis, we will stick to the `minimalway' of modeling Petri nets by algebraic graph grammars as given in [CEL+94a, KR96]. Inthis approach, Petri nets appear as a very simple kind of graph grammars, namely graphgrammars over discrete graphs (graphs without edges) where all rules are completely partial(nothing is preserved from the left- to the right-hand side). In more detail, we have that theplaces of the net become vertices in a type graph T , the tokens are vertices in a graph typedover T and the transitions are rules.Example 7.1 Consider the net N on the left-side of Figure 7.2. A corresponding graph grammarGG is shown on the right. For each transition of N there is a corresponding rule in GG. Theplaces of N become are described by vertices of the type graph T of GG. Formally,GG is a tuple



158 7. Related Work(T; IT ; N; n) where2� T = (fa; bg; ;; ;; ;g (a discrete graph having two vertices)� IT = (I tG! T ), where G = (fag; ;; ;; ;g (a discrete graph having only one vertex) andtG(a) = a (the type of a is a);� N = ft; sg;� n(t) and n(s) are depicted in Figure 7.2, where the types of the vertices of the involvedgraphs indicate their corresponding names.
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Figure 7.2: (1) P/T-Net N (2) (Typed-)Graph Grammar GG ,�̂Roughly speaking, the relationship between Petri nets and (SPO)-graph grammars canbe summarized as in the following table. 3 To get this correspondence we have to restrictthe graph grammar matches to injective ones (because in Petri nets tokens can not be\identi�ed"). Note that most of the concepts of Petri nets relate to \abstract" ones forgraph grammars. This is because the tokens in the nets have no individuality by assumption.Only in the process semantics tokens gain individuality and thus the correspondence is moreimmediate (here we consider net processes for P/T-nets as given in [MMS94, MMS96], thatare a a re�nement of the non-sequential processes of [GR83]). In the paper [KR96] thesemantical relationship between nets and grammars was de�ned having trees as semanticaldomain (reachability trees in the case of nets and sequential derivation trees in the case ofgraph grammars). There it is was shown that the semantics is only compatible if we considerabstract graph grammar semantics (that is, derivations up to isomorphism). This matter isexplained in more details in [Cor95].2For the formal de�nitions of the translations shown in the examples of this section see [KR96].3Here we will only compare Petri nets with SPO graph grammars. In the case of grammars representingPetri nets, the DPO and SPO approaches yield corresponding derivations sequences.



7.3. Petri Nets 159Petri Nets Graph Grammarssyntax net graph grammarstate set of tokens (discrete abstract) graphstate change switching of a transition (abstract) derivation stepsequences of changes switching sequence (abstract) sequential derivationseq. semantics set of switching sequences (abstract) sequential semanticsconcurrent history net process concurrent derivationconc. semantics process semantics category ADerGGunfolding semantics unfolding semantics7.3.1 Petri Nets and Parallel CompositionThe following example shows the result of applying the pure parallel composition of graphgrammars to graph grammars that can be considered as translation of Petri nets. After theexample, this composition will be compared with other parallel composition operators of thearea of Petri nets.Example 7.2 Consider nets N1 and N2 and their corresponding graph grammars GG1 and GG2in Figure 7.3. The pure parallel composition of GG1 and GG2 is the grammar GG3, thatcorresponds to the net N3. ,�̂
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160 7. Related WorkThis kind of parallel composition corresponds to the parallel composition of nets described(using di�erent frameworks) in [Win87b, WN94, MMS94, Men94]. we will call this compo-sition of Petri nets as net parallel composition. To restrict the possible synchronizationsbetween the transitions of the nets in their net parallel composition, a restriction operatorwas used in [Win87b]. The restriction operator is a unary operator whose application deletessome transitions of the original net. One can obtain di�erent kinds of compositions of netsbased on the net parallel composition followed by an application of the restriction operator(see [Win87b] for more details). Similar constructions for restriction (in a di�erent framework)were presented in [Vog92]. The cooperative parallel composition can be used to perform thesetwo operations (net parallel composition and restriction) in one step, and has an importantadvantage with respect to the net parallel composition with restriction of [Win87b, Vog92],namely that places (and also initial markings) may be shared. A composition of nets sharinga common subnet will be illustrated in the following example.Example 7.3 To build a parallel composition of nets with restriction using the cooperative parallelcomposition, the transitions that shall necessarily be synchronized must be in the interface net.In this example, the interface net is net N0 of Figure 7.4 and the transition t of nets N1 and N2shall be synchronized in the parallel composition. Moreover, places a of these two nets shall beglued together, and therefore it is also part of N0. In this example, we will not draw explicitlythe grammars that correspond to the involved nets, although they are used as basis to constructthe composition described in this example. Net N3 shows the result of the cooperative parallelcomposition of nets N1 and N2 with respect to the net N0, where the morphisms are indicatedby same names for places and transitions. ,�̂Analogously to graph grammars, the interface net can be considered as an abstract globaldescription of a system that is specialized in the component nets. The advantages of thecooperative parallel composition for nets are thus the same as for graph grammars: thiscomposition allows sharing of substructures and is compatible with the unfolding semantics(that is also a suitable concurrent semantics for Petri nets { see Sect. 7.3.2).There are other kinds of composition of nets based on gluing places [Vog92, Val94, PER95]or even subnets [PER95, Men94]. Using arbitrary nets, these composition operators areusually not compatible with semantic models of nets that take the initial marking into account.In [Vog92] and [Men94], strong conditions are imposed to the nets to assure a compositionalsemantics. In [PER95] nets without initial markings are considered (and then we have a caseanalogous to graph transformation systems).7.3.2 Petri Nets and Unfolding SemanticsPetri net processes [GR83, BD87, MMS94] de�ne the deterministic, concurrent behavioursof a net. They are the concurrent correspondent to the switching sequences. The unfoldingsemantics for nets was introduced in [NPW81] and was based on a kind of Petri nets calledoccurrence nets, which are, roughly speaking, acyclic, safe nets without backwards con
icts.Now we will discuss the relationship between the notion of occurrence grammar of this thesis(specialized for the case of nets) and occurrence nets. For the case of graph grammarsrepresenting Petri nets, the weak con
ict relation #�! (Def. 5.23) is always symmetric becauseno items are preserved. This implies that #()= #=) (Def. 5.25). Let GG be an occurrence
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N3Figure 7.4: Cooperative Parallel Composition of Petri Netsgrammar and N be a net. Then the fact that N is acyclic follows from axioms 1. and 2. ofoccurrence grammars (Def. 5.29). Safeness and the absence of backward con
icts follows fromaxiom 4. Axioms 3. and 4. assure that each transition of N has a �nite number of causesand that N is free of auto-concurrency, respectively. Axiom 6. imposes an speci�c shapefor the names of places of the occurrence net. This last axiom is originally not an axiom ofoccurrence nets, but it is also reasonable for the case of nets. It assures that the names of thetransitions of an occurrence net are the name of a transition of the original net indexed bythe occurrence of this transition. This allows us to relate the occurrence of a transition withthe original transition without needing a morphism. The opposite direction, namely thatan occurrence net yields via a translation an occurrence graph grammar, holds analogously(provided the names of the transitions have the special form required by axiom 6.).The construction of the unfolding of a net usually starts with an inductive de�nition:1. The initial state of the net is represented by places in the unfolding net. Multiple tokensin one place are represented by multiple places.2. Add each switchable transition to the actual unfolding net, together with the corre-sponding pre- and post-conditions (again, multiplicities are represented by multipleplaces).At each iteration step we obtain via this construction an approximation of the expected



162 7. Related Workresult. Then, if we take the set of all (maybe in�nitely many) iteration steps and do a directedcolimit, we obtain the (possibly in�nite) unfolding of a net. This unfolding is by constructionan occurrence net. The unfolding described above was de�ned formally in [MMS94], whereunfolding semantics for arbitrary place/transition nets was introduced. One should noticethat in this semantics, tokens are distinguishable. Therefore, the unfolding semantics of graphgrammars introduced in this thesis seems to deliver, for the case of grammars representingPetri nets and if only injective matches are considered, the same result as the unfolding ofnets de�ned in [MMS94] This will be illustrated in the following example.Example 7.4 The unfolding U(N) of the net N shown in Figure 7.2 is shown in Figure 7.5.
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Figure 7.5: Unfolding of NThe unfolding of the graph grammar GG is given in Figure 7.6. The usual graphical repre-sentation of the graph grammar unfolding looks like (1): the unfolding consists of an initial graphand set of actions, all typed over the core graph C. The dependencies between the actions are, asin the case of nets, given by the post/pre relationships between them. For example, the action s2depends on t1 because t1 generates something (in its post-condition) that is needed by s2 (in itspre-condition). In the case of grammars representing nets, one can give a more explicit graphicalrepresentation of these dependencies, as shown in (2), where the actions are drawn \within thecore graph". ,�̂Besides the cooperative parallel composition for place/transition nets, another possibleapplication of the concepts and results obtained here in the area of Petri nets is by consideringthe specialization of graph grammars into contextual nets [MR95] (that are nets that allow thepreservation of tokens by a transition). It would be interesting to check whether the unfoldingsemantics and the parallel composition operators yield suitable notions for this kind of nets.



7.3. Petri Nets 163
a t a

a
b1

2

1
a s

a

a a b

a a b a a b43 2 5 6 3

121
a

I

t a
a
b

a a s

t a
a
b

a a s

3

4

2

5

6

3

C

po
st

pr
epo

st

pr
e

post

prepre

post

pre

post pre

post

t

t s

1t s1

2 s2

3 3

1 1

2 2

(1)

(2)

a

post post

post

pre pre pre pre

pre pre

t s

st

a a b

t s

baa aa b543 2

22 3 3

6 3

1 1

121

Figure 7.6: Unfolding of GG



8ConclusionIn this thesis we introduced parallel composition and unfolding semantics for graph grammars.The next three points say how these concepts contribute to ful�ll the aim of this thesis ofproviding an approach to parallel composition and unfolding semantics for graph grammarsin which the aspects of concurrency and compositionality play a central role.� Parallel composition (Defs. 4.12 and 4.20) allows for the composition of di�erent graphgrammars with or without sharing of subparts. The rules of the composed grammarare obtained as (parallel/amalgamated) compositions of the rules of the componentgrammars, and the initial graph of the composed grammar is obtained by gluing theinitial graphs of the components along the initial graph of the interface grammar.Theorems 4.16 and 4.24 assure that the composed graph grammar is syntacticallyrelated (via morphisms) to the component grammars, and Theo. 4.11 then yields theresult that all derivations of the composed grammar can be translated into derivationsof the component grammars, that is, a semantical relationship between the composedgrammar and the component grammars is established.� The unfolding of a graph grammar (Def. 6.4 and 6.7) is constructed incrementally andyields a true concurrent, branching structure semantics in which the states as well asthe changes of states are explicitly represented. Besides the incremental construction,the unfolding can also be constructed as a suitable gluing of all concurrent derivations ofa graph grammar. This result is shown in Theo. 6.9 and gives the relationship betweenthe unfolding and the concurrent semantics of a graph grammar. This result impliesalso that the unfolding represents exactly all sequential derivations of a graph grammar(because the concurrent derivations represent exactly all sequential derivations). Theunfolding of a graph grammar is a special kind of graph grammars, an occurrence graphgrammar (Def. 5.29 and Prop. 6.6). Therefore, a number of relationships between theactions of the unfolding may be used to reason about the computations described by thisunfolding. These relationships are also de�ned between elements of the core graph of anunfolding, and this allows us to reason about reachable states (graphs) described in thisunfolding. The existence of an adjunction (Theo. 6.15) induced by the unfolding con-struction relating the categories of graph grammar and of (abstract) occurrence graphgrammars can be used to show that any (deterministic or non-deterministic) computa-tion of a grammar expressed in terms of an occurrence graph grammar is contained in164



165the unfolding semantics of this grammar. Moreover, it assures that each syntactical re-lationship between two graph grammars expressed through a graph grammar morphisminduces a semantical relationship between the corresponding unfoldings.� The compatibility of the unfolding semantics with the parallel composition operators isgiven by Theo. 6.18, and is based on the facts that the parallel composition operatorscorrespond to the product and pullback in the category of graph grammars (Theo.4.16and Theo. 4.24) and that these categorical constructions are preserved by the unfoldingfunctor (assured by Theo. 6.15 and the fact that the unfolding is a right-adjoint). Thismeans that we obtained a framework for the speci�cation of concurrent and reactivesystems in which the semantics of the whole system can be obtained from the semanticsof its components using suitable syntactical and semantical composition operators.The concepts of parallel composition and unfolding of graph grammars seem to be verypromising. A number of interesting extensions/generalizations that can be done having theseconcepts as starting points. In the following we list some of them. First, we will considerpossibilities to weaken some of the requirements that have been made in this thesis. Topics 2.to 7. are concerned with extensions of this work by using di�erent graph/derivation concepts,structuring and practical applicational aspects. Topic 8. discusses the embedding of thiswork on the general theory of concurrency. Topics 9. and 10. provide ideas related to Petrinets, and 11. discusses the possibility to de�ne corresponding concepts for DPO grammarsas introduced here for SPO grammars.1. Weaker RequirementsFor constructing and obtaining the results concerned with parallel composition andunfolding, a number of restrictions had to be made. For the well-de�nedness of thecooperative parallel composition, we considered a safe interface grammar and special-ization morphisms. It would be probably possible to drop these requirements if weconsider more concrete graph grammar morphisms including the subrule relationshipsexplicitly. For this kind of morphisms, an associative choice of pullbacks may be needed.For the unfolding semantics, injective and consuming rules were required. If theserequirements are dropped, the axiomatization of occurrence grammars would have tobe changed (these axioms are needed to �nd the concurrent graphs to be used in thenext step of an unfolding). Moreover, we used doubly-typed graphs as occurrence graphgrammars. It would be possible to use (practically) the same axioms (without the lastone) to de�ne a notion of occurrence graph grammars using (simply) typed grammars.However, to construct the unfolding the information about the second type is neededfor identifying the concurrent graphs. Maybe it is possible to code this type informationinto the names of the vertices/edges. This would lead to an unfolding that is closer tothe Petri nets unfolding. For graph grammars, the use of the core graph as a typed graphseems to be more natural than to code this type information into the vertices/edges.It would be interesting to �nd out which are the advantages and disadvantages of eachapproach.2. Attributed Graph GrammarsFor the speci�cation of real systems, usually just using typed graphs gives raise to quitecomplex description of states because everything (including the data types involved in



166 8. Conclusionthe system) has to be coded graphically. A higher-level representation is obtained ingraph grammars by using attributed graphs [LKW93], that are graphs equipped withalgebraic data types, called attributes. This allows to use variables (and terms) inthe rules and therefore reduces considerably the number of rules that are necessary todescribe a system. Moreover, this makes the rules easier to understand. In [KR96]it was shown that attributed graph grammars can be transformed into labeled graphgrammars.As attributed graph grammars are particularly interesting for practical applications, itis important to develop theory for this kind of grammars. Therefore, it is a subject offurther research to lift the concepts of parallel composition and unfolding de�ned in thisthesis for this kind of grammars.3. Other Graph StructuresNot only attributed graph grammars have many practical applications. Other kindsof graphs structures, like hypergraphs, labeled and attributed hypergraphs, labeledgraphs, typed attributed graphs, seem to have their own application �elds. Therefore itshould be interesting to investigate if it is possible to describe the concepts introducedin this thesis in a more general way such that all these kinds of graphs become instancesof this general framework. This work can be based on the concept generalized graphstructures [Kor93, Kor96] or a combination of this with high-level replacement systems[EHKP91, EL93a].4. Module ConceptThe concept of cooperative parallel composition hints on the fact that it is possible toglue two di�erent grammars with respect to a third one in such a way that there isa semantical compatibility. This can be used to de�ne a module concept like the onefor algebraic speci�cation developed in [EM90]. For the case of graph grammars, itseems that, instead of using composition operators based on colimits as it is the casefor algebraic speci�cations, composition operators of graph grammar modules shall bede�ned by limit constructions. In this �eld there is still a lot of work to be done. Firste�orts towards a module concept for graph grammars have been done in [EE95]. Oneof the important extensions that are necessary towards a suitable notion of a moduleconcept is a more general notion of a graph grammar morphism, that allows us to mapa rule to a suitable re�nement on the target grammar. This kind of morphism can beuseful for the actualization of formal parameters, as well as for hiding informations fromthe export to the body of a module. Probably then a more abstract semantics based onsome kind of observability concept for derivations of graph grammars will be adequate,that is, rather than requiring that the formal parameter and the actual parameter havethe same semantics we can require that they have the same observable semantics.5. Methodology for Practical ApplicationsThe work together with the company Nutec for the development of the speci�cation ofthe telephone system using graph grammars stressed the lack of a methodology to builda graph grammar speci�cation of a problem. Such a methodology shall contain a com-prehensive description of graph grammars and their behaviour (for non-specialists) anda series of steps that shall be followed to solve a problem using graph grammars. This



167is of great importance such that graph grammars become a well accepted speci�cationmethod in the industry.6. Analysis of Graph GrammarsAnother important aspect that shall increase the acceptance of graph grammars as afeasible speci�cation formalism is the existence of analysis methods. In the area of Petrinets, a lot of work have been made in the area of analysis. Basically, there are two kindof analysis: statical and dynamic. Statical analysis is for example the invariant analysis.For graph grammars, statical aspects may follow from the relationships between rules(induced by their overlappings on the type graph). Dynamic analysis is usually basedon reachability graphs or unfoldings. By the inductive construction of the unfolding,we believe that many properties can be also shown based on the unfolding for thecase of graph grammars. For proving some properties of a Petri net automatically, it isimportant to reduce the possibly in�nite semantical graph to an equivalent �nite one (viacoverability methods). For graph grammars, such analysis would need a correspondingnotion of coverability to make the unfolding of a grammar �nite.7. Application ConditionsSometimes, the speci�cation of complex operations require the use of some mechanismto restrict the application of rules, besides the existence of some match. This can bedone in graph grammars through application conditions [Hec95, HHT96] and consistencyconditions [Kor94]. An application condition is a condition that has to be satis�ed bya morphism from the left-hand side of a rule to an actual graph to become a match.Thus, application conditions restrict the possible matches of a rule to an actual graph.This has an in
uence at the semantics of a grammar because some derivations that arepossible without application conditions become impossible with them. To construct anunfolding semantics for a grammar with application conditions, this conditions have tobe checked in step 1. of the construction of the unfolding (Def. 6.7) to �nd the possiblematches. Moreover, if negative conditions shall be checked, the notion of concurrentgraph have also to be changed. This will be explained in more details in item 11, wherewe discuss unfoldings for DPO grammars (that have an inherent application condition,the gluing condition).8. Structure of ConcurrencyIn the introduction of this thesis we already discussed shortly the fact that only causalityand con
ict relationships may not be enough to tackle adequately with the descriptionof concurrency in some frameworks. In [JK93] an axiomatic model was introducedin order to capture more precisely the concurrent aspects of a system. Like eventstructures, this model is based on a set of events and relations between them that haveto satisfy some conditions. The important relations in this model are a precedenceand a weak causality relations. This is done in an abstract way, that is, for a concretespeci�cation formalism like graph grammars, we have to �nd out what the precedenceand weak causality relations mean. Here, we have de�ned a number of relationshipsbetween actions (and also between types) of an occurrence grammar. It is still open inwhich way these relationships can be seen as suitable interpretations (or instantiations)of the precedence and weak causality relations.



168 8. Conclusion9. Relationships to Petri NetsWe already discussed in Sect. 7.3 some relationships between graph grammars andPetri nets. It is a subject of future work to establish a formal relationship betweenthe concepts of occurrence grammars and occurrence nets, and unfoldings of grammarsand nets. However, we should say here that, due to our choice of morphisms (that inturn was made to allow for parallel composition in the framework of graph grammars),the adjunction we have between the categories of graph grammars and occurrencegraph grammars does not specialize to the one described in [MMS94] for Petri nets.Nevertheless, it seems that analogous concepts as developed in this thesis for graphgrammars can be interesting also for the case of Petri nets.10. Algebraic High-Level NetsIn [KR96] it was shown that algebraic high-level nets [EPR94] can be seen as a specialcase of attributed graph grammars in the same way that place/transition nets can beseen as a special case of labeled (or typed) graph grammars. Therefore, if the conceptsof parallel composition and unfolding can be lifted to attributed graph grammars (seepoint 2) it is probably possible to use them also for algebraic high-level nets. Theseparallel composition operators would than allow for a composition of nets with an initialmarking that is compatible with a true-concurrency semantics.11. Parallel Composition and Unfolding of DPO GrammarsThe concept of parallel composition can be probably without problems de�ned also forDPO graph grammars. But for unfoldings the situation is more complex because ofthe gluing condition. This has an e�ect in the constructions of the matches for eachstep of the unfolding (step 1. of Def. 6.7). In our approach, the it was only necessaryto check whether the image of a \match candidate" was a concurrent graph, that is,a subgraph of a reachable graph. This is enough in the SPO approach because thereare no extra conditions that have to be checked with respect to the items of the actualgraph that are not in the image of the match. For the DPO approach, it would haveto be checked whether the \match candidate" ful�lls the gluing condition and that itsimage is a reachable graph (and not a subgraph of it). This means that some extraconditions would be needed in the de�nition of concurrent graph (Def. 5.33).



ANotationUsually the following conventions will be used:Symbol : Meaningdom(f) : domain of frng(f) : range of ffH : domain inclusionf ! : domain restriction(f)�1 : inversefOP : dual morphism to the morphism f! : partial morphism7! : total morphism� : injective morphism� : surjective morphism,! : total and injective morphismundef : unde�ned valueGT : typed graph (G; TG; T ), tG : G 7! TfT : typed graph morphism (f; idT )card(S) : cardinality of S (card(S) 2 N[ f!g)A1 : lists over AA� : �nite lists over AL1 � L2 : concatenation of lists� : empty list�i : ith element of the list �j�j : number of elements of � (j�j 2 N[ f!g)[r] : equivalence classx 2 G : x 2 VG [ EG, if G is a graph169



BCategorical ConstructionsB.1 Basic Concepts of Category Theory� Category: A category Cat consists of a class ObjCat of objects, for each pairA;B 2 ObjCat a set MorCat(A;B) of morphisms, written f : A ! B for eachf 2 MorCat(A;B), and a composition g � f : A ! C for each pair of morphismsf : A! B and g : B ! C such that we have1. (h � g) � f = h � (g � f) for all morphisms f; g; h if at least one side is de�ned, and2. for each object A of Cat there is a distinguished identity morphism idA withf � idA = f and idA � g = g whenever the left-hand sides are de�ned.� Isomorphism: A morphism f : A ! B in a category Cat is called an isomorphismprovided there exists a morphism g : B ! A such that g � f = idA and f � g = idB.� Dual Category: The dual or opposite category CatOP of Cat has the same class ofobjects, for each f : A! B in Cat we have a dual morphism fOP : B ! A in CatOP ,and the composition in CatOP is de�ned by fOP � gOP = (g � f)OP . For each propertyPROP in the category Cat, the dual property COPROP is obtained by reversing thearrows of all morphisms.� Product: The (binary) product of a pair A1; A2 of objects in Cat is an object Ptogether with morphisms pi : P ! Ai, for i = 1; 2, such that for all objects X and allmorphisms xi : X ! Ai in Cat there is a unique u : X ! P with pi � u = xi, fori = 1; 2. A1 A2PXaa p1BBBBBBBB ==p2 ||||||||RRx1 LLx2OO u170



B.1. Basic Concepts of Category Theory 171� (Binary) Coproduct: The (binary) coproduct of a pair A1; A2 of objects in Cat is anobject C together with morphisms gi : Ai! C, for i = 1; 2, such that for all objects Xand all morphisms xi : Ai ! X in Cat there is a unique u : C ! X with u � gi = xi,for i = 1; 2. A1 A2CX!!g1BBBBBBBB }} g2||||||||  x1 ~~ x2��u� Pullback: The pullback of a pair of morphisms f1 : A1 ! A0 and f2 : A2 ! A0 inCat is an object PB together with morphisms f2� : PB ! A1 and f1� : PB ! A2such that for all objectsX and all morphisms xi : X ! Ai in Cat with f1�x1 = f2�x2there is a unique u : X ! PB with fi� � u = xi, for i = 1; 2.A0 A1A2 PB Xoo f1OOf2 OO f2�oo f1� bb x2`` x1 aa uDDDDDDDD= =(PB)� Pushout: The pushout of a pair of morphisms f1 : A0! A1 and f2 : A0! A2 in Catis an object PO together with morphisms f2� : A1 ! PO and f1� : A2 ! PO suchthat for all objects X and all morphisms xi : Ai ! X in Cat with x1 � f1 = x2 � f2there is a unique u : PO ! X with u � fi� = xi, for i = 1; 2.A0 A1A2 PO X//f1��f2 �� f2�//f1� ��x2  //x1 !!u CCCCCCCC(PO) = =� Functor: A functor F : Cat1 ! Cat2 between categories Cat1 and Cat2 assigns toeach object A1 in Cat1 an object F (A1) in Cat2 and to each morphism f : A1! B1in Cat1 a morphism F (f) in Cat2 such that we have1. F (g � f) = F (g) � F (f), for all g � f in Cat1, and2. F (idA) = idF (A), for all objects A in Cat1Notation: As in category theory usually the result of a construction consists not onlyof one object, but also of some morphisms, we will use in th following the notation: if theresulting object is called C, the resulting morphisms are listed in !C .



172 B. Categorical ConstructionsB.2 Categories of SetsDe�nition B.1 (Categories Set and SetP) The categories Set and SetP have all sets asobjects, and total resp. partial functions as morphisms. Identities are the identity functionsand composition is the composition of functions. ,�̂De�nition B.2 (Constructions in Set) Consider the sets Ai, for i = 1::10, and the totalfunctions fj, for j = 1::4 and ? 62 Ai, for i = 1::10.A1 A2Prod�cc p1GGGGGGGG 7 ;;p2 wwwwwwww A3 A4Coprod� $$i1 HHHHHHHHH 6zz i2vvvvvvvvvA5 A6A7 PB�oo f1_OOf2 _OO f2��oo f1�= A8 A9A10 PO� //f3_��f4 _�� f4�� //f3�=Then we de�ne the following constructions:� P = ProdSet(A1; A2) = A1� A2 (cartesian product of sets)!P= (p1; p2), where p1(a; b) = a and p2(a; b) = b (projection functions)� C = CoprodSet(A3; A4) = (A3� f?g) [ (f?g� A4) (disjoint union of sets)!C= (i1; i2), where i1(a) = (a;?) and i2(b) = (?; b)� B = PBSet(A7 f2! A5 f1 A6) = f(a; b) 2 A7� A6jf2(a) = f1(b)g!B= (f2�; f1�), where f2�(a; b) = a and f1�(a; b) = b� O = POSet(B10 g4 B8 g3! B9) = fQ � (B10 � f?g) [ (f?g � B9) j (a;?) 2 Q; a =g4(x) implies (?; g3(x)) 2 Q and (?; b) 2 Q; b = g3(x) implies (g4(x);?) 2 Qg!O= (g4�; g3�), where g3�(a) = fQ j (a;?) 2 Qg and g4�(b) = fQ j (?; b) 2 Qg ,�̂Theorem B.3 The constructions de�ned in Def. B.2 correspond to product, coproduct,pullback and pushout constructions in the category Set, respectively. ,�̂Proof. See [AHS90]. pDe�nition B.4 (Constructions in SetP) Consider the sets Bi, for i = 1::10, and thefunctions gj, for j = 1::4 and ? is not an element of any of these sets.B1 B2Prodcc p1GGGGGGGG ;;p2 wwwwwwww B3 B4Coprod	 $$i1 IIIIIIIII 5zz i2uuuuuuuuu



B.3. Categories of Graphs 173B5 B6B7 PBoo g1OOg2 OO g2�oo g1�= B8 B9B10 PO//g3��g4 �� g4�//g3�=Then we de�ne the following constructions:� P = ProdSetP(B1; B2) = (B1 �B2) [ (B1� f?g) [ (f?g� B2)!P= (p1; p2), where p1(a; b) = � a; if a 6= ?undef; otherwise and p2(a; b) = � b; if b 6= ?undef; otherwise� C = CoprodSetP(B3; B4) = (B3� f?g) [ (f?g� B4) (disjoint union of sets)!C= (i1; i2), where i1(a) = (a;?) and i2(b) = (?; b)� B = PBSetP(B7 g2! B5 g1 B6) = f(a; b) 2 dom(g2)� dom(g1)jg2(a) = g1(b)g[f(a; b)ja 2 B7 and a 62 dom(g2) and b 2 B6 and b 62 dom(g1)g[f(a;?)ja 2 B7 and a 62 dom(g2)g[ f(?; b)jb 2 B6 and b 62 dom(g1)g!B= (g2�; g1�), where g1�(a; b) = � a; if a 6= ?undef; otherwise and g2�(a; b) = � b; if b 6= ?undef; otherwise� O = POSetP(B10 g4 B8 g3! B9) = fQ � (B10� f?g) [ (f?g � B9) j (a;?) 2 Q; a =g4(x) implies (?; g3(x)) 2 Q and (?; b) 2 Q; b = g3(x) implies (g4(x);?) 2 Qg!O= (g4�; g3�), where g3�(a) = � [(a;?)]; if [(a;?)] 2 Oundef; otherwiseandg4�(b) = � [(?; b)]; if [(?; b)] 2 Oundef; otherwise ,�̂Theorem B.5 The constructions de�ned in Def. B.4 correspond to product, coproduct,pullback and pushout constructions in the category SetP, respectively. ,�̂Proof. The category SetP considered here is a special case of the graph structures de�ned in[L�ow90], namely as a graph structure with respect to a signature containing one sort s and oneoperation f : s! s. The constructions de�ned above are specializations of the constructionsin [L�ow90] for this special case (see also [Kor93] for set-theoretical characterizations). pB.3 Categories of GraphsThe constructions on the categories of graphs are based on the constructions of correspondingcategories of sets.De�nition B.6 (Constructions in Graph) Consider the graphs Gi = (VGi; EGi; sGi; tGi),for i = 1::8, and the total graph morphisms fj, for j = 1::4 and ? is not an element of anyset of vertices or edges of these graphs.



174 B. Categorical ConstructionsG1 G2Coprod	 $$i1 IIIIIIIII 6zz i2vvvvvvvvvG3 G4G5 PB�oo f1_OOf2 _OO f2��oo f1�= G6 G7G8 PO� //f3_��f4 _�� f4�� //f3�=Then we de�ne the following constructions:� C = CoprodGraph(G1; G2) = (CoprodSet(VG1; VG2); CoprodSet(EG1; EG2); source;target), where source(e1; e2) = (sourceG1(e1); sourceG2(e2)) and target(e1; e2) =(targetG1(e1); targetG2(e2))!C= (i1; i2), where i1 = (i1V ; i1E) and i2 = (i2V ; i2E), where the components are theinclusions de�ned by the coproducts in Set.� B = PBGraph(G5 f2! G3 f1 G4) = (PBSet(VG5 f2V! VG3 f1V VG4); PBSet(EG5 f2E!EG3 f1E EG4); source; target),where source(e5; e4) = (sourceG5(e5); sourceG4(e4)) and target(e5; e4) = (targetG5(e5);targetG4(e4))!B= (f2�; f1�), where f1� = (f1�V ; f1�E) and f2� = (f2�V ; f2�E)� O = POGraph(G8 f4 G6 f3! G7) = (POSet(VG8 f4V! VG6 f3V VG7); POSet(EG8 f4E!EG6 f3E EG7); source; target),where source : EPO ! VPO is obtained as the unique functions such that f3�V �sourceG8 = source�f3�E and f4�V �sourceG7 = source�f4�E and target : EPO ! VPO isobtained analogously. !O= (f4�; f3�), where f3� = (f3�V ; f3�E) and f4� = (f4�V ; f4�E),�̂Theorem B.7 The constructions de�ned in Def. 5.33 correspond to coproduct, pullback andpushout constructions in the category Graph, respectively. ,�̂Proof. These constructions are special cases from the next ones, and thus can be considered asgraph structures, for which, in the case of total morphisms, limits and colimits are constructedcomponentwise. pDe�nition B.8 (Constructions in GraphP) Consider the graphs Hi, for i = 1::5, andthe functions gj, for j = 1::2 and ? is not an element of any of these sets.H1 H2Coprod	 $$i1 IIIIIIIII 5zz i2uuuuuuuuu H3 H4H5 PO//g1��g2 �� g2�//g1�=Then we de�ne the following constructions:



B.4. Categories of Typed Graphs 175� C = CoprodGraphP(H1; H2) = CoprodGraph(H1; H2)!C= (i1; i2), where i1 = (i1V ; i1E) and i2 = (i2V ; i2E), where the components are theinclusions de�ned by the coproducts in Set.� O = POGraphP(H5 g2 H3 g1! H4) = (V;E; source; target),where V = POSetP(VH5 g2V! VH3 f1V VH4), E = POSetP(EH5 g2E! EG3 g1E EH4) �f[(e5; e4)]j(sourceG5(e5) 62 V or targetG5(e5) 62 V or e5 = ?) and (sourceG4(e4) 62V or targetG4(e4) 62 V or e4 = ?)g,source : EPO ! VPO is obtained as the unique total functions such that g2�V �sourceH4 = source � g2�E and g1�V � sourceH5 = source � g1�E and target : EPO ! VPOis obtained analogously (such a function exists by the construction of E and is uniquebecause of the pushout properties of VPO). !O= (g2�; g1�), where g1� = (g1�V ; g1�E)and g2� = (g2�V ; g2�E) ,�̂Theorem B.9 The constructions de�ned in Def. B.8 correspond to coproduct and pushoutconstructions in the category GraphP. ,�̂Proof. Analogously to SetP, GraphP is a special graph structure category, namely to thesignature having two sorts V and E and two operations s : E ! V and t : E ! V . Thus, theconstructions here are specializations of the constructions of [L�ow90]. pB.4 Categories of Typed GraphsDe�nition B.10 (Constructions in TGraph) Consider the typed graphs GiT i, for i =1::8, and the morphisms fjtj , for j = 1::4 and ? is not an element of any of the involved sets.G1T1 G2T2Coprod
 %%i1t1JJJJJJJJJ 4zz i2t2tttttttttG3T3 G4T4G5T5 PB�oo f1t1_OOf2t2 _OO f2�t1��oof1�t2�= G6T6 G7T7G8T8 POT0� //f3t3_��f4t4 _�� f4�t4�� //f3�t3�=Then we de�ne the following constructions:� C = CoprodTGraph(G1T1; G2T2) = (CoprodGraph(G1; G2); t; CoprodGraph(T1; T2)),where t(x) = � t1 � tG1(x); if x 2 G1t2 � tG2(x); if x 2 G2!C= (i1t1; i2t2), where i1t1 = (i1; t1) and i2t2 = (i2; t2), where i1, i2, t1 and t2 are theinclusions de�ned by the corresponding coproducts in Graph.� B = PBTGraph(G5T5 f2t2! G3T3 f1t1 G4T4) = (PBGraph(G5 f2! G3 f1 G4); t; PBGraph(T5 t2! T3 t1 T4)),where t(x) = (tG5 � f1�(x); tG4 � f2�(x))



176 B. Categorical Constructions!B= (f2�t2�; f1�t1�), where f1�t1� = (f1�; t1�) and f2�t2� = (f2�; t2�) are the mor-phisms of pullbacks of the component graphs.� O = POTGraph(G8T8 f4t4 G6T6 f3t3! G7T7) = (POGraph(G8 f4! G6 f3 G7); t; POGraph(T8 t4! T6 t3 T7)),where t : PO ! TO is the unique total graph morphism such that t � f3� = t3� � tG8and t � f4� = t4� � tG7.!O= (f4�t4�; f3�t3�), where f3�t3� = (f3�; t3�) and f4�t4� = (f4�; t4�) ,�̂Theorem B.11 The constructions de�ned in Def. B.10 correspond to coproduct, pullbackand pushout constructions in the category TGraph, respectively. ,�̂Proof. This category is in fact a comma category constructed using twice the functorIdGraph. Constructions in comma categories are done componentwise, provided that theunderlying categories allow these constructions and that the corresponding functors preservethem. This is the case for the category TGraph, what gives raise to the constructions de�nedabove. pDe�nition B.12 (Constructions in TGraphP) Consider the typed graphs HiT i, for i =1::5, and the morphisms gjtj, for j = 1::2 and ? is not an element of any of the involved sets.H1T1 H2T2Coprod
 %%i1t1JJJJJJJJJ 4yy i2t2ttttttttt H3T3 H4T4H5T5 POTO//g1t1��g2t2 �� g2�t2�//g1�t1�=Then we de�ne the following constructions:� C = CoprodTGraphP(H1T1; H2T2) = CoprodTGraph(H1T1; H2T2)!C= (i1t1; i2t2), where i1t1 = (i1; t1) and i2t2 = (i2; t2), where i1, i2, t1 and t2 are theinclusions de�ned by the corresponding coproducts in Graph.� O = POTGraphP(H5T5 g2t2 H3T3 g1t1! H4T4) = (H; t; T ),where T = POGraphP(T5 t2! T3 t1 T4), H is the biggest subgraph of POGP (H5 g2!H3 g1 H4) that is completely typed in T and t : PO ! TO is the unique total graphmorphism such that t � g1� = t1� � tH5 and t � g2� = t2� � tH4 (this morphism existsbecause of the construction of H and is unique due to pushout properties of T ).!O= (g2�t2�; g1�t1�), where g1�t1� = (g1�; t1�) and g2�t2� = (g2�; t2�) ,�̂Theorem B.13 The constructions de�ned in Def. B.12 correspond to coproduct and pushoutconstructions in the category TGraphP. ,�̂



B.4. Categories of Typed Graphs 177Proof. Similar to TGraph, constructions in TGraphP can be obtained componentwise,followed by a \totalization construction" in the case of pushouts. For example, in the pushoutconstruction, �rst we constructed the pushout objects H and T , and then took everythingfrom H that didn't have a type in T (because types may have been deleted by the pushoutof types). This way of constructing colimits is due to the fact that this category can bede�ned as a generalized graph structure category (GGS category) [Kor96]. These categoriesare a generalization of comma categories in view of partial morphisms. The fact that theseconstructions exist in TGraphP(T) is based on the fact that they exist in GraphP and thatthe functor IdGraphP preserves them. pand the inclusion functor Besides the constructions given above, the construction of pushoutspreserving the type component are very important because the computation units of (typed)graph grammars will be de�ned based on them. Thus, although these pushouts can beconsidered as special cases of the constructions above, we'll give them explicitly in the nextde�nition.De�nition B.14 (Pushouts in TGraphP(T)) Consider the typed graphs GiT , for i =1::3 and the partial (typed) graph morphisms f1T and f2T .G1T G2TG3T POT//f1T��f2T �� f2�T//f1�T=Then we de�ne the following construction� O = POTGraphP(T)(G3T f2T G1T f1T! G2T ) = (POGraphP(G3 f2! G1 f1 G2); t; T ), where t : PO ! T is the unique total graph morphism such that t�f1� = tG3and t � f2� = tG2.!O= (f2�T ; f1�T), where f1�T = (f1�; idT) and f2�T = (f2�; idT) ,�̂Remark. Pushouts in TGraph(T) are special cases of pushouts in TGraphP(T). ,�̂Proposition B.15 The construction de�ned in Def. B.14 is the pushout in the categoryTGraphP(T). ,�̂Proof. The category TGraphP(T) can be de�ned as a GGS category using the functorsIdGraphP and IncTP : T ! GraphP. As the only morphism in T is total, pushouts hereare also de�ned componentwise (the totalization construction is not necessary because notypes are deleted). p



178 B. Categorical ConstructionsB.5 Categories of Double-Typed GraphsDe�nition B.16 (Pushouts in DTGraphP(TGT)) Consider the double-typed graphsGiTG%T , for i = 1::3, and the double-typed graph morphisms g1TG%T and g2TG%T . Thenwe de�ne the following construction:O = PODTGraphP(T)(G3TG%T g2TG%T � G1TG%T g1TG%T�! G2TG%T )= (POTGraphP(T)(G3T g2T! G4T g1T G2T ); t; TGT), where t : POT ! TGT is the uniquetotal graph morphism such that t�g1�T = tG3 and t�g2�T = tG2. !O= (g2�TG%T ; g1�TG%T),where g1�TG%T = (g1�T ; idTGT ) and g2�TG%T = (g2�T ; idTGT ) ,�̂Proposition B.17 The construction de�ned in Def. B.16 is the pushout in the categoryDTGraphP(T). ,�̂Proof. Analogous to the proof of Prop. B.15. p



CProofsLemma C.1 Let gT1 : G1T1! H1T1 be total (injective, isomorphism). Then Tf (gT1) = g0T2is also total (injective, isomorphism). ,�̂Proof. For the diagrams of this proof see the proof of Prop. 3.10. Remind that g2 =g2! � (g2H)�1, g2H is total and injective and g2! is total.1. Let g1T1 be total: In this case, dom(g1) = G1 and g1H = idG1. The pullback construc-tion (2) yields dom(g2) = G2 and g2H = idG2. Therefore, g2 must be total.2. Let g1T1 be injective: In this case g1! is injective. By Prop. 3.10 we have that (3) is apullback. Injectivity is inherited by pullbacks of total graph morphisms and thereforeg2! is also injective. This implies that g2 is injective.3. Let gT1 be an isomorphism: In this case g1H and g1! are isomorphisms. As (2) and (3) arepullbacks, g2H and g2! are also isomorphisms. This implies that g2 is an isomorphism.pLemma C.2 Let f : T2 ! T1 be an injective (typed) graph morphism, G1T1 2TGraphP(T1), and G2T2 = Tf (G1T1). Then if rng(tG1) � rng(f) then G1 �= G2, andthe same holds for morphisms. ,�̂Proof. If f is injective, f ! : dom(f)! T1 is also injective. Pullback of total graph morphismsinherit injectivity and thus f !G is also injective. It is total because it is a pullback morphismof total morphisms. By hypothesis, rng(tG1) � rng(f). As f ! is the domain restriction off , rng(f) = rng(f !) and therefore rng(tG1) � rng(f !). This means that for all x 2 G1there is t 2 dom(f !) such that tG1(x) = f !(t). Thus by pullback construction of G2, there isy 2 G2 such that f !G(y) = x and tG1�(y) = t, what implies that f !G is surjective and thus anisomorphism.Let g be a morphism with type T1 and T f (g) = g0T2. Above we proved that the retypingof the source and target objects of g with respect to the morphism f are isomorphic to theoriginal ones. As the retyped morphism g0 commute with g using the retyping morphisms ofthe objects (that are isomorphisms), g and g0 are isomorphic. p179



180 C. ProofsProposition 3.12Proof. Let Tf(x1T1) = x2T2, for x 2 fL;R;G;H; r;m; r�; m�g. Pushouts in the categoryTGraphP(T1) are constructed componentwise in GraphP and IdT1 (see Def. B.14).Therefore (3) is a pushout in GraphP. As pushouts in TGraphP(T2) are also constructedcomponentwise in GraphP and IdT2, it is enough to prove that (4) is a pushout (becauseT2 is trivially the pushout of the second component). By assumption we have that r1 isinjective and m1 is total. As (3) is a pushout in GraphP, r1� is also injective (but m1� isnot necessarily total). Lemma C.1 yields that r2 and r2� are injective and m2 is total.Let P together with morphisms x1 : G2 ! P and x2 : R2 ! P be the pushout of r2and m2 in GraphP. We have to prove that there exists an isomorphism u : P ! H2 suchthat (5) and (6) commute. As Tf is a functor, diagram (4) commutes. Therefore, there is auniversal morphism u : P ! H2 such that (5) and (6) commute. It remains to show that uis an isomorphism:L1 R1G1 H1// //r1_��m1 �� m1�// //r1�(3) L2 R2G2 H2 P// //r2_��m2 �� m2�// //r2� ��x2�� //x1 aa uBBBBBBBB(4) (5) (6) L1 R1L2 R2G1 H1G2 H2_��m1 �aa f !LDDDDDDDD// //r1 �� m1� �bb f !REEEEEEEE// //r1��aaf !GDDDDDDDD // //r2_�� m2 �bb f !HEEEEEEEE �� m2�// //r2�(9)(7) (10)(8)1. Total: Let e 2 P . As P is a pushout object, there must be a pre-image for e in G2,R2 or both. Assume there is e1 2 G2 and x1(e1) = e. If e1 2 rng(m2) then thereexists e2 2 rng(r2) such that x2(e2) = e because P is a pushout object. Let e0 2 L2such that m2(e0 = e1) and r2(e0) = e2. As (4), (5) and (6) commute, if r2�(e1)is de�ned then m2bullet(e2) = r2�(e1). In this case, e 2 dom(u) because (5) and (6)commute. If r2�(e1) = undef then m2�(e2) = undef as well (because (4), (5) and (6)commute), and this would imply that e =2 dom(u). But this is not possible because (8)and (10) commute and (3) is a pushout. If e1 =2 rng(m2) then there is no a0 2 L1such that m1(a0) = f !G(e1) because (7) is a pullback. As (3) is a pushout in GraphP,either (f !G(e1) 2 dom(r1�)) or (f !G(e1) =2 dom(r1�) and a0 is an edge having v0 2 G1as source or target vertex and v0 2 rng(m1) and v0 =2 dom(r1�). In the �rst case(f !G(e1) 2 dom(r1�)), as (8) commutes, e1 2 dom(r2�). Then commutativity of (5)yields that r2�(e1) = u(e). In the second case, as dom(r2�) is obtained as pullbackof r1H and f !G, we must have that e1 =2 dom(r2�). Let v1 be the pre-image of v0in G2, i.e., f !G(v1) = v0. As (7) is a pullback, v1 2 rng(m2). As (9) commutes,v1 =2 dom(r2). Therefore, as P is a pushout object, v1 =2 dom(x1), what implies thate1 =2 dom(x1). But this means that there is no e 2 P such that x1(e1) = e, whatcontradicts the hypothesis.Now assume that e2 2 R2 and x2(e2) = e. Analogously to the �rst case, if e2 2 rng(r2)then e 2 dom(u) because (4), (5), (6), (8) and (10) commute and (3) is a pushout.If e2 =2 rng(r2) then there is no a1 2 dom(r1) such that r1!(a1) = f !H�(e2) becausedom(r2) is a pullback of r1! and f !H (see Prop. 3.10). As (3) is a pushout, either



181e1 2 dom(m1�) or (e1 =2 dom(m1�) and a1 is an edge whose target or source vertexv1 2 dom(r1) is in deletion con
ict with another vertex v10, i.e., m1(v1) = m1(v10) andv10 =2 dom(r1)). In the �rst case (e1 2 dom(m1�)) commutativity of (10) and (6) assurethat u(e) = m2�(e2). In the second case, we obtain that there must be v2; v20 2 L2such that f !G(v2) = v1 and f !G(v20) = v10 because v1 and v10 must have the same typein the type graph (as they are identi�ed by m1) and L2 is obtained as a pullback withrespect to the type morphism (that must map the type of v1 and v10 because the typeof e1 is mapped). As (7) is a pullback, m2(v10) = undef. As P is a pushout of m2 andr2, we have that e =2 P , what contradicts the hypothesis.2. Injective: Let e; e0 2 P , e 6= e0. Assume per absurd that u(e) = u(e0). As (5) and (6)commute, we have 3 cases:(a) e; e0 2 rng(x1): As x1 is injective, this would mean that there are two di�erentitems in G2 that are identi�ed via r2�, and this is not possible because r2� isinjective.(b) e; e0 2 rng(x2)� rng(x1): In this case as P is a pushout object we must have thatthere are e2; e20 2 R2 such that x2(e2) = e and x2(e20) = e0 (obviously in this casewe have that e2 6= e20). Moreover, as (6) commutes and u(e) = u(e0) by assumptionwe must have that m2�(e2) = m2�(e20). This implies that the types of e2 ande20 must be the same (because they are identi�ed by a morphism an morphismspreserve types). As P is a pushout and e; e0 =2 rng(x1) we conclude that e2; e20 =2rng(r2), what implies that e2; e20 =2 rng(r2!). As the dom(r2) is constructed as apullback of f !R and dom(r1), we conclude that there are no f !H(e2); f !H(e20) =2rng(r1!). As (3) is a pushout and (10) commutes, f !H(e2); f !H(e20) 2 dom(m1�).If f !H(e2) = f !H(e20) then e2 and e20 must have di�erent types because R2 isobtained as a pullback of tR1 and f !. But this contradicts the fact that theyhave the same type (see above). If f !H(e2) 6= f !H(e20) then we must have thatm1�(f !H(e2)) 6= m1�(f !H(e20)) because (3) is a pushout. As (10) commutes, wemust have that m2�(e2) 6= m2�(e20), and this contradicts the hypothesis. Thus,commutativity of (6) yields that u(e) 6= u(e0).(c) e 2 rng(x1),e0 2 rng(x2)� rng(x1): In this case, we must have that the pre-imagee20 of e0 under x2 in not in the range of r2, i.e., e20 =2 rng(r2). Then analogouslyto the previous case, we have that f !R(e20) =2 rng(r1) and as (3) is a pushout,m1� � f !R(e20) =2 rng(r1) and this element must be di�erent from any other inthe image of r1�. Commutativity of (8) yields then that there can be no elemente1 2 G2 such that r2�(e1) = m2�(e2). This implies that u(e) 6= u(e0).3. Surjective: Let e3 2 H2. Assume that e3 =2 rng(u). As (3) is a pushout, eitherf !H(e3) 2 rng(m1�) or f !H(e3) 2 rng(r1�) or both. Analogously to the previous cases,we then conclude that e3 2 rng(m2�) or e3 2 rng(r2�) or both. As (5) and (6) commute,we conclude that e3 2 rng(u). p



182 C. ProofsProposition 3.13Proof. Let f : T2 ! T1 and g : T3 ! T2 be morphisms in GraphP. We have to showthat Tg�f �= Tg � Tf . This means that for each object I1T1 2 TGraphP(T1), there isan isomorphism uT3I : Tg�f(I1T1) ! Tg � Tf(I1T1) that is compatible with the applicationof the corresponding functors to morphisms (i.e., there is a natural isomorphism betweenthese functors). We will �rst de�ne uT3I and then show that the compatibility requirement isatis�ed.uT3I : Let I1T1 2 TGraphP(T1), Tf(I1T1) = I2T2, Tg � Tf (I1T1) = I3T3 and Tg�f(I1T1) =I30T3 (the morphisms obtained via the corresponding retyping constructions are shownin the diagrams below). As f and g are morphisms, the diagrams (1) and (2) beloware pullbacks (by de�nition of the retyping construction). Diagram (3) is a pullbackby construction (the intersection of domains of partial morphisms { see [Ken91]). Theretyping construction of I2 also assures that t2 = fH � t1�. Thus, there is a universalmorphism u : I3 ! dom(g � f) induced by pullback (3) such that t2� = y � u andt1� � i2 = x � u. Let (1) be the square de�ned by the morphisms i2,t1�, u and x.Obviously, (4) commutes. As (2) and (3) are pullbacks and (4) commutes, (4) is alsoa pullback. As (1) and (4) are pullbacks, (1)+(4) is also a pullback. As I3 and I30are pullback objects of the same diagram, we conclude that I3 �= I30, t10� �= t2� andi3 �= i1�i2. Therefore, I3T3 �= I30T3. Let uT3I : I3T3! I30T3 be the unique isomorphismsuch that i1 � i2 � uI = i3 and t3 � uI = t30 T1I1 dom(f)I2 T2 dom(g � f)I3 dom(g)
) 44t1 iiiiiiiiiiiiiiiiiiiiiii_OOi1 ) 44t1� iiiiiiiiiiiiiiiiiiiii _OO f !� //t2 0xx fHppppppppppp_OOi2 � //t2� _OOg!) 44u iiiiiiiiiiiiiiiiiiii _OO x1xx yqqqqqqqqqq(1)(2) (3)(4)Compatibility requirement: Let r1T1 : L1T1 ! I1T1 be a morphism in TGraphP(T1),Tf (r1T1) = r2T2, Tg � Tf(r1T1) = r3T3 and Tg�f(r1T1) = r30T3. We have to show thatthe a pair of isomorphisms uL : L3 ! L30 and uI : I3 ! I30 makes (5) commute. Letf !r1 and f !r2 be the pullback morphisms obtained by the domain constructions of r1and r2, respectively (see Def. 3.8).



183L1 I1L2 I2//r1 //r2_OOuL _OO uI(5) L1 dom(r1) I1L dom(r) IL2 dom(r2) I2_?oo r1H � //r1!_?oo r2H � //r2!_?oo rH � //r!@ ??f !L2�������� }^f̂ !I2========~ ��f !L1>>>>>>>> A��f !I1��������� _�� f !r1_OO f !r2_OOuL _OO uI(6) (7)(8) (9)(10) (11)Let diagram (14) be the pullback of f ! and tL with pullback object L2 and diagram(15) be the pullback of f ! and tR with pullback object R2. Assume that (5) doesn'tcommute. Then we have three cases:1. There is e 2 L2such that r1 � uL(e) = e3 and uI � r2(e) = undef:As uI is total, r2(e) = undef,i.e., e =2 dom(r2). As (6) is a pullback we havethat f !L2(e) =2 dom(r). As (10) commutes and (8) is a pullback we conclude thatuL(e) =2 dom(r1). this means that r1 � uI(e) = undef. But this contradicts ourhypothesis.2. There is e 2 L2such that r1 � uL(e) = undef and uI � r2(e) = e4:Analogous to the �rst case.3. There is e 2 L2such that r1 � uL(e) = e3, uI � r2(e) = e4 and e3 6= e4:Let e1 = r1H � uL(e) and e2 = r2H(e). Due to the commutativity of (6){(11) wehave that f !I1�r1�uL(e) = f !I1�uI�r2(e). As f !I1 is total and r1�uL(e) 6= uI�r2(2)by assumption, the only possibility is that f !I1(e3) = f !I1(e4). The graph I1 isobtained as a retyping of I with respect tof (pullback (13)). Therefore the onlypossibility to have items identi�ed by f I1 is that these items have di�erent typesin dom(f), and these types are identi�ed by f !. As I2 is also the retyping of Iwith respect to f , there must be also two items in I2 with di�erent types that areidenti�ed in f !I2. As uI is an isomorphism, there can be only one way to mapthese items to I1 such that this mapping is compatible with the type T2. Thisimplies that e3 = e4 (because if they are di�erent, they must have di�erent types).But this contradicts our hypothesis that e3 6= e4.Thus, we conclude that (5) commutes.L T1 IL1 dom(f) I1L2 I2� //tL �oo tI� //tL1 �ootI1 ==tL2 �aa tI2_OOf !L1 _OO f !I1\ <<f !L2 abb f !I2_OO f !< >>uL |||||||| �`` uIAAAAAAAA(12) (13)(16) (17)(5) (6) pLemma C.3 Let T1 i1! T12 i2 T2 be a coproduct in GraphP, (1) and (2) commute inGraph. Then L1 l1! L l2 L2 is a coproduct in GraphP i� (1) and (2) are pullbacks in



184 C. ProofsGraph. L1 L2LT1 T2T12� q ""i1 EEEEEEEE M m|| i2yyyyyyyy� q ""l1 EEEEEEEEE M m|| l2yyyyyyyyy_��t1 _�� t2_��t12(1) (2) ,�̂Proof. (: Let (1) and (2) be pullbacks.L is a coproduct i� l1 and l2 are total, injective, jointly surjective and rng(l1)\rng(l2) =;. 1. As (1) and (2) are pullbacks in Graph and i1 and i2 are total and injective, l1and l2 are total and injective.2. Assume that l1 and l2 are not jointly surjective. Then there must be an elementz 2 Lsuch that x 62 rng(l1) and x 62 rng(l2). As t is total, t(x) 2 T12. As i1 andi2 are jointly surjective, there is x1 2 T1such that i1(x1) = t(x) or x2 2 T2suchthat i2(x2) = t(x). Assume we have the �rst case (x1). As (1) is a pullback andi1(x1) = t(x), there must be e1 2 L1such that l1(e1) = x and t1(e1) = x1. Thus,x 2 rng(l1). Analogously, if we use x2 we obtain that x 2 rng(l2). Therefore, l1and l2 are jointly surjective.3. Assume that rng(l1) \ rng(l2) 6= ;. Then there is x 2 Lsuch that l1(x1) = x =l2(x2). This implies that t � l1(x1) = x = t � l2(x2). Thus i1 � t1(x1) = i2 � t2(x2)(because (1) and (2) commute). i1 and i2 are coproduct morphisms and thusrng(i1)\ rng(i2) = ;. As t1 and t2 are total, there can not be any x1 and x2 suchthat i1�t1(x1) = i2�t2(x2). As t is total, this implies that l1(x1) must be di�erentfrom l2(x2). But this contradicts the hypothesis, and thus, rng(l1)\ rng(l2) = ;.): Let L be a coproduct. L1 L2PB LT1 T12� q ##i1 FFFFFFFF_�� x2� q ##l1 FFFFFFFFF M m|| l2yyyyyyyyG��t1 � 22x1 �� t12_�� u qq u0(3)Assume that L1 is not the desired pullback object, but PB together with morphismsx1 : PB ! T1 and x2 : PB ! L (diagram (3)). As (1) commutes, there is an universalmorphism u : L1! PB such that l1 = x1�u and t1 = x2�u. As i1 is injective, x1 is also



185injective and can be inverted. Thus we get a partial morphism (x1)�1 � l2 : L2! PBthat is also injective and is surjective and (x1)�1 � x1 = idL (the inverse is not truebecause (x1)�1 may be partial). As L is a coproduct in GraphP, there is and universalmorphism u0 : L! PB such that (x1)�1 � l2 = u0 � l2 and u = u0 � l1. From x1 � u = l1we derive that (x1)�1 � x1 � u = (x1)�1 � l1 and thus u = (x1)�1 � l1. Obviously,(x1)�1 � l2 = (x1)�1 � l2, and thus by uniqueness of universal morphisms we concludethat (x1)�1 = u0. Totality of u follows from the fact that it is the universal morphisminduced by a pullback in Graph. As u = (x1)�1 � l1, and l1 and (x1)�1 are injective, uis also injective. As (x1)�1 is surjective, u is surjective. Thus u is an isomorphism andthe square (1) is a pullback.That square (2) is also a pullback can be shown analogously. pLemma C.4 Let T1 i2�! T3 i1� T2 be the pushout in GraphPof T1 i21 T0 i2! T2, and i1 andi2 be total and injective. Let (5){(6) be pullbacks in Graph and (2){(3) commute in Graph.Then (6) is a pushout in GraphP i� (2){(3) are pullbacks in Graph.T0T1 T2T3!! !!i2� CCCCCCCC }}}} i1�{{{{{{{{}}}} i1{{{{{{{{ !! !!i2CCCCCCCC(1) L0L1 L2L3T0T1 T2T3!! !!i2� CCCCCCCC }}}} i1�{{{{{{{{!! !!l2� CCCCCCCC }}}} l1�{{{{{{{{}}}} i1{{{{{{{{ !! !!i2 CCCCCCCC}}}} l1{{{{{{{{ !! !!l2 CCCCCCCC_��t1 _�� t2V��t3 h�� t0(2) (3)(4) (5) L0L1 L2L3!! !!l2� CCCCCCCC }}}} l1�{{{{{{{{}}}} l1{{{{{{{{ !! !!l2CCCCCCCC(6) ,�̂
Proof. (: Let (2){(3) be pullbacks.Let (7) be a pushout with pushout object P . Then we have to show that there is anisomorphism u : P ! L3 and that (8) and (9) commute.L0L1 L2PL3}}}} l1{{{{{{{{ !! !!l2CCCCCCCC��u!!x1CCCCCCCC }} x2{{{{{{{{%%l1� yy l2�(7)(8) (9)



186 C. ProofsThe square (6) commutes because all other squares (1){(5) commute. As (6) commutesand (7) is a pushout, there is an universal morphism u : P ! L3 such that (8) and (9)commute. l1� and l2� are total and injective because i1� and i2� are total and injectiveand (2) and (3) are pullbacks. Analogously, l1 and l2 are total and injective becausei1 and i2 are injective and (5) and (6) are pullbacks. As (7) is a pushout, x1 and x2are also total and injective. As (8) and (9) commute, x1, x2, l1� and l2� are total andinjective, and x1 and x2 are pushout morphisms (and thus together surjective), u mustbe total and injective. Thus it remains to show that u is surjective.Assume that u is not surjective. Then there is x 2 L3 such that x 62 rng(u). This impliesthat x 62 rng(l1�) and x 62 rng(l2�) because (8) and (9) commute. Let t3(x) = t000. As L2is a pullback, there is no t00 2 T2 such that (i)i1�(t00) = t3(x). As L1 is a pullback, thereis no t0 2 T1 such that (ii)i2�(t0) = t3(x). As i1� and i2� are pushout morphisms, theyare together surjective. Thus as t000 2 T3, either there is t00 2 T2 such that i1�(t00) = t000or there is t0 2 T1 such that i1�(t0) = t000. But these two cases contradict (i) and (ii)resp. Thus x 2 rng(u), what implies that u is surjective, and thus an isomorphism.): Let (6) be a pushout.Analogously to the proof of the corresponding part of Lemma C.3 we obtain that (2)and (3) are pullbacks (one just have to substitute coproduct by pushout in the proof).pProposition 4.8Proof. This proof will be done in 2 steps: �rst we prove that norm(l) 2 Steps1GG (if thecorresponding requirements are ful�lled), and then that norm(l) 2 SDerGG if l 2 SDerIGG.1. Let l 2 StepsI1GG and l = � or OUTi�1 = INi for all i = 2::jlj. The proof thatnorm(l) 2 Steps1GG will be done by induction on the length of l:Induction Basis: jlj = 0In this case, norm(l) = �, that is a trivial sequence of GG.Induction Basis: jlj = 1Let l = s1. Here we may have two cases:(a) rs1 is iso: Then norm(l) = � and thus norm(l) 2 Steps1GG.(b) rs1 is not iso: Then by de�nition of StepsIGG, s1 2 StepsGG. As norm(l) = s1,we conclude that norm(l) 2 StepsGG � Steps1GG.Induction Hypothesis: For l such that jlj � n, norm(l) 2 Steps1GG and OUTi�1 =INi, for all i = 2::jnorm(l)j.Induction Step: jlj = n+ 1Let l = s1 � l1. We have two cases:(a) rs1 is not iso: In this case, norm(l) = s1 � norm(l1). As rs1 is not iso, s1 2StepsGG. By induction hypothesis norm(l1) 2 Steps1GG because jl1j = jlj�1 =n + 1 � 1 = n. Thus by de�nition of Steps1GG, norm(l) = s1 � l1 2 Steps1GG.Moreover, l1 satis�es the condition: norm(l1) = � or OUTi � 1 = INi, for alli = 2::jnorm(l1)j. If norm(l1) = �, OUTs1 is the last derivation step of thenormalized sequence, and then we are ready. If norm(l1) 6= � we have to show



187that OUTs1 = INnorm(l1). By hypothesis, OUTs1 = INs2 where l1 = s2 � l2.Here we have 2 cases:i. rs2 is not iso: Then norm(l1) = s2�norm(l2), what means that norm(l) =s1 � s2 � norm(l2). Then we obviously have that OUTs1 = INnorm(l1) =INs2.ii. rs2 is iso: Then norm(l1) = norm(s30�l3), where l2 = s3�l3. By de�nitionof s30, we have that INs30 = INs2, and thus INnorm(l1) = INs2 = OUTs1.(b) rs1 is iso: We have 3 cases:i. l1 = �: Then norm(l) = � 2 Steps1GG.ii. l1 = s2 � l2 and l2 = �: Then norm(l1) = norm(s20). Assume thats20 2 StepsIGG. Then norm(s20) 2 Steps1GG because js20j = 1. Thus itremains to show that s20 2 StepsIGG. As rs20 = rs2 by de�nition, rs20 iseither an isomorphism or a rule of GG. By de�nition, the derivation stepof s20 is S20 =(1)+(2) as shown below. As (2) is the derivation step of s2,it is a pushout. (1) is a trivial pushout: it commutes by de�nition of ms20and id and r�s1 are isomorphisms. Thus (1)+(2)= S20 is also a pushout.As ms20 is total by de�nition, we conclude that s20 2 StepsIGG .Ls2 Ls2 Rs2INs1 OUTs1 = INs2 OUTs2� //id_��ms20 //rs2_�� ms2� //r�s1 ��//(1) (2)iii. l1 = s2 � l2 and l2 6= �: Then norm(l) = norm(s20 � l2). Analo-gously to the previous case, we conclude that s20 2 StepsIGG. Thus,s20 � l2 = l10 2 StepsIGG. By construction, l10 ful�lls the condition thatOUTi = INi+1 (l2 ful�lls this requirement and OUTs20 = OUTs2 = INl2).Moreover, jl10j = jlj � 1 because the step s1 was removed. Thus by in-duction hypothesis we have that norm(l10) 2 StepsI1GG , what implies thatnorm(l) 2 StepsI1GG.2. Let l 2 SDerIGG. We have to show that norm(l) 2 SDerGG:(a) norm(l) = �: Trivial.(b) norm(l) 6= �: Here we have to show that the initial graph is the one of GG andoutput graphs of steps are the same as the input graph of the subsequent steps.Ls1 Rs1 Ls2 Rs2 Lsi RsiINs1 OUTs1 = INs2 OUTs2 � � � OUTsi�1 = INsi OUTsi//rs1_��ms1 // &&NNNNNNNNNNN //rs20 //_�� _�� zz ms20 //rsi0 //_�� _���ss msi0 ��Initial Graph : By hypothesis, l 2 SDerIGG, what implies that INl = INGG.Let si be the �rst step of l such that rsi is not an isomorphism. Then, by def.of norm, norm(l) = norm(s20 � l2) = norm(s30 � l3) = : : := norm(si0 � li). Byde�nition of norm, INs20 = INl, INs30 = INs20 and so on. Thus INsi0 = INl.As rsi is not iso, norm(si0 � li) = si0 � norm(li). Therefore we conclude thatINl = INGG is the initial graph of norm(l).



188 C. ProofsIntermediate Graphs : By hypothesis, OUTi�1 = OUTi for all i = 2::jlj. Thisproof may be reduced to the proof that the output graph OUTk�1 of an alreadynormalized part of l is equal to the initial graph of the next normalized step.This can be shown analogously to the �rst item, and thus we conclude thatOUTj�1 = INj for all j = 2::jnorm(l)j.Lsk Rsk Lsk+1 Rsk+1 Lsi RsiINsk OUTsk = INsk+1 OUTsk � � � OUTsi�1 = INsi OUTsi//rsk_��msk // ''OOOOOOOOOOOO //rs2k+10 //_�� _�� //rsi0 //_�� _���uu msi0 ��pLemma C.5 Let I1 ,! I12 - I2 and T1 ,! T12 - T2 below be coproducts inGraphP, andsquares (1){(4) be pullbacks in Graph. Then square (5) is also a pullback in Graph, whereuT and uI are the universal morphisms induced by the coproducts T12 and I12, respectively.I1I12 IXI2T1T12 TXT2Q1bb t2EEEEEEEE 9 <<y2 yyyyyyyyQ1bb i2EEEEEEEE 9 <<x2yyyyyyyymM|| t1yyyyyyyy � ""y1 EEEEEEEEmM|| i1yyyyyyyy � ""x1EEEEEEEE_��tI12 _�� tIXV��tI2 h�� tI1(1) (2)(3) (4) I12 IXT12 TX_�� tIX� //uT� //uI_��tI12 (5)
,�̂Proof. As coproducts are special pushouts in GraphP, this is a special case of Lemma C.6that will be proved next. pLemma C.6 Let squares (1) and (2) be pushouts in GraphP, where i1, i2,t1 and t2 aretotal and injective, and squares (3){(8) be pullbacks in Graph. Then square (9) is also apullback in Graph, where uT and uI are the universal morphisms induced by the pushoutsT3 and I3, respectively.



189I1I0 I3 IXI2T1T0 T3 TXT2
� //uI� **x1 UUUUUUUUUUUUUUUUUUUUU) 44x2 iiiiiiiiiiiiiiiiiiiii � //uT� **y1 UUUUUUUUUUUUUUUUUUUUU) 44y2 iiiiiiiiiiiiiiiiiiiii

_�� tIX� p !!t2 CCCCCCCC . � ==t4 {{{{{{{{
� p !!i2CCCCCCCC . � ==i4{{{{{{{{. � ==t1 {{{{{{{{ � p !!t3 CCCCCCCC. � ==i1{{{{{{{{ � p !!i3CCCCCCCC_��tI0 _�� tI3V��tI2 h�� tI1(3) (4)(5) (6) (7)(8) I3 IXT3 TX_�� tIX� //uT� //uI_��tI3 (9) ,�̂Proof. We have to show that (9) commutes and has the universal property.Commutativity : Follows from the commutativity of (5){(8), the universal properties of uIand uT and the fact that i3 and i4 (resp. t3 and t4) are jointly surjective (because (1)and (2) are pushouts).Universal Property : Let (10) below be a pullback in Graph. As (9) commutes and uIand tI3 are total, there is an universal morphism u : I3 ! PB such that (11) and(12) commute. We'll show that u is an isomorphism in Graph, i.e., total,injective andsurjective. Totality follows from the fact that it is an universal morphism in Graph.I3 PB IXT3 TX_�� tIX� //uT�   uI� !!uTDDDDDDDDc ##tI3 � //z1_��z2 (10)(11) (12)Injectivity : Let a1; a2 2 I3, a1 6= a2. As I3 is a pushout, there are 3 possibilities tobe considered (the others may be derived from these ones):1. a1; a2 2 rng(i3): In these case, there are b1; b2 2 I1 such that i3(b1) = a1and i3(b2) = a2. Obviously, b1 6= b2. As (8) is a pullback, b1 and b2 must bemapped to di�erent items of IX or T1 ,! T3 or both. These 3 cases lead tothe conclusion that there must be d1; d2 2 PB, d1 6= d2 such that u(a1) = d1and u(a2) = d2 (using the facts that (6) is a pullback and (11) and (12) mustcommute).2. a1; a2 2 rng(i4): Analogous to the �rst case.3. (a1 2 rng(i3) and a1 62 rng(i4)) and (a2 2 rng(i4) and a2 62 rng(i3)) : Inthese case, there are b 2 I1; c 2 I2 such that i3(b) = a1 and i4(c) = a2. As(5) and (6) are pullbacks we conclude that tI3(a1) 6= tI3(a2). Therefore, there



190 C. Proofsare d1; d2 2 PB, d1 6= d2 such that z2(d1) = tI3(a1) and z2(d2) = tI3(a2). As(11) commutes, we conclude that u(a1) 6= u(a2).4. a1; a2 2 rng(i3) and a1; a2 2 rng(i4):Subjectivity : Let d 2 PB and d 62 rng(u). As (11) commutes, z2(d) 6= rng(tI3),what implies that z2(d) 6= rng(tI3 � i3) = rng(t3 � tI2. Analogously we obtain thatz2(d) 6= rng(t4 � tI1). But this means that z2(d) 6= rng(t3) and z2(d) 6= rng(t4)what is a contradiction because t3 and t4 are pushout morphisms and thus togethersurjective. Therefore we conclude that d 2 rng(u), i.e., u is surjective. pTheorem 4.24Proof. The proof that u is a graph grammar morphism is analogous to the corresponding prooffor products. However there is an additional case where one rule nrx 2 NX is mapped to rulesnr1 2 N1; n2 2 N2. Then there must be a common subrule nr0 2 N0, nr0 = s1N (nr1) andnr0 = s2N (nr2). By construction of the cooperative parallel composition, in this case thereis a rule nr3 2 N3 such that nr1 = p1N (nr3) and nr2 = p2N(nr3). Let the rule morphismscorresponding to nr0; nr1; nr2; nr3; nrx be r0; r1; r2; r3; rx, respectively. By construction r3is the amalgamation of r1 and r2 with respect to r0.We must show now that r3 is a subruleof a rx.All these rules are related by a kind of subrule relation which are formally captured bycomposing the subrule morphism with the corresponding retyping morphism. Recall that, ingeneral, the resulting morphism is not unique. However specialization morphisms s1; s2 assurethat there are unique subrule relations s1r = (s1L; s1R) : r0 ! r1 and s2r = (s2L; s2R) :r0 ! r2. The morphisms pir = (piL; piR) : ri ! r3, for i = 1; 2, are uniquely given by theamalgamation construction. In the following, many properties will only be shown for one ofthe components (usually the left hand side) the other then holds by analogy.By explicitly referring also to the left and right hand components of these morphisms weobtain the commuting squares depicted in the following diagram in the category TGraphP.L0 R0L2 R2L1 R1L3 R3LX RX
� _��s1L � p !!s2LCCCCCCCC// //r0 � _�� s1R� p !!s2RDDDDDDDD// //r1� p !!p1LCCCCCCCC // //r2� _�� p2L � p !!p1RDDDDDDDD � _�� p2R// //r3// //rxr ((x1L v ��x2L r ((x1R v ��x2R""uLDDDD ""uREEEE(1)First we will show that the mapping of rule names induces a commuting diagramIn order to see this, consider an element o0 2 L0 for which there are two di�erent imagesox = x1L � s1L(o0) and zx = x2L � s2L(o0) in LX , i.e., ox 6= zx. Let to0; tox; tzx be



191their types. By construction x1T � s1T = x2T � s2T which yields a common type tox =x1T � s1T (to0) = tzx 2 TX . Thus the retyping of LX with respect to x1T � s1T will yieldtwo di�erent items ox0 and zx0 in Tx1�s1(LX). By construction Tx1�s1(rx) is a subrule ofr0 which contradictory requires that both items ox0 and zx0 have di�erent preimages in L0.This implies that x1L � s1L = x2L � s2L and analogous for right-hand sides.By using this commutativity and the fact that the squares with tips in L3 and R3have been constructed as pushouts, we infer the existence of a pair of universal morphismsuL : L3! LX and uR : L3! LX which uniquely satisfy uL � p1L = x1L, uL � p2L = x2L,uR � p1R = x1R and uR � p2R = x2R. As p1L and p2L are total, injective and jointlysurjective we conclude that (1) commutes.This leaves to show that (1) gives indeed raise to a subrule diagram, i.e., diagram (1) canbe splitted into two subdiagrams (2) and (3) such that (3) is a retyping of rx with respect touT and (2) is a subrule relation between r3 and the retyped rule TuT (rx).L3 R3TuT (LX) TuT (RX)LX RX// //r3� _��suL � _�� suR// //TuT (rx_��TuL _�� TuR// //rx(2)(3)So we �rst perform the retyping of rx with respect to uT which yields the commutingdiagram (3) with the retyped rule TuT (rx) : TuT (LX) ! TuT (RX) and total morphismsTuL : TuT (LX)! LX and TuR : TuT (RX)! RX . The retyping is essentially obtained fromconstructing the pullback of (tLX ; uT !) and symmetrically of (tRX ; uT !). Due to the pullbackproperty of TuT (LX) we obtain a unique morphism suL such that (uHT )�1�tL3 = tLX��suL anduL = TuL � suL. We proceed by showing that suL is total and injective. The correspondingarguments for suR are analogous. We therefore omit them.Total: Consider an element o3 2 L3 with type to3 = tL3(o3). Each type element in T3 hasa preimage in T1 or T2 (p1T and p2T are jointly surjective by pushout construction).Assume that to3 has a preimage to1 2 T1, i.e., uT (to1) = to3. By construction of r3there is a preimage o1 2 L1 of o3 with type to1. Moreover, by the de�nition of subrulesit is required that o1 has an image in the retyping Tx1T (LX) and thus o1 2 dom(x1L)because retyping morphisms are total. Let x1L(o1) = ox. As uL is a universal morphismit satis�es x1L = uL � p1L. So we infer o3 2 dom(uL) which directly implies that suLmust be total. Analogously, we obtain the same result if we assume that to3 has apreimage in T2.Injective: Let o3 and z3 be two di�erent elements in L3. Assume that they are identi�edby suL, i.e., ox3 = suL(o3) = suL(z3), which requires that all these elements havethe same type to3. Since retyping morphisms are total, there is a single image ox =TuL � suL(o3) and hence only a single type tox. Retyping of L3 with respect to p1Tprovides two di�erent preimages o31 and z31 of o3 and z3; The subrule relation thenensures that each of this has a distinguished preimage o1 and z1 in L1. Consequentlyo1 and z1 have a common type to1. But retyping of LX with respect to x1T leads to asingle preimage of ox which contradicts the subrule condition.



192 C. ProofsNow, we are going to proof that (2) is a commuting diagram. Therefore consider an elemento3 2 L3 with type to3 and an element zx3 2 RX with type tox3 for which we will show thefollowing facts:1. zx3 = TuT (rx) � suL(o3) implies zx3 = suR � r3(o3) and2. zx3 = suR � r3(o3) implies zx3 = TuT (rx) � suL(o3).For the �rst task recall that suL is total and let ox3 = suL(o3) be the image of o3in TuL(LX). The retyping construction requires the existence of di�erent images ox =TuL(ox3) and zx = TuR(zx3) with type tox = uT (to3) and related via TuT (rx). Assumethere is a preimage to1 of to3 with respect to p1T (again, due to the fact that p1T and p2Tare jointly surjective we will show the property for p1T , the other case is analogous). Thede�nition of subrules provides two di�erent elements o1 2 L1 and z1 2 R1 in being preimagesof ox and zx respectively and related via the rule r1. The subrule relation carried by p1 �nallyensures the existence of an item z3 2 R3 and the missing link between o3 and z3 providedby r3.In order to see the second property recall (again) that suL is total and thus there is anelement ox3 = suL(o3). This leaves to show that zx3 = TuT (rx)(ox3). Totality of retypingmorphisms provides items TuL(ox3) and TuR(zx3) in rx. Due to the fact that the diagram(2)+(3) commutes by construction, we infer that zx = rx(ox). Now the desired connectionzx3 = TuT (rx)(ox3) follows from the retyping construction.The next step will prove that (2) is indeed a pushout in TGraphP(T3). As pushoutsin this category are constructed componentwise in GraphP and IdT3, we will consideronly the �rst component (the pushout in IdT3 is trivially satis�ed by all morphisms inTGraphP(T3)). The pushout construction in GraphP (see Appendix B.3) ensures that acommuting diagram as that above where all morphisms are injective and one pair (suL; suR)is total is a pushout provided that the following conditions are satis�ed:1a) a vertex vx3 is preserved i� there is no preimage to be deleted, i.e., vx3 2 dom(TuT (rx))i� (6 9v3 2 L3� dom(r3) such that vx3 = suL(v3)).1b) an edge ex3 is preserved i� there is no preimage to be deleted and it does not have asource or target vertex to be deleted, i.e., ex3 2 dom(TuT (rx)) i� (6 9e3 2 L3�dom(r3) :ex3 = suL(e3) and source(ex3); target(ex3) 2 dom(TuT (rx))).2) TuT (rx) and suR are jointly surjective.1a): Consider a vertex vx3 2 TuT (LX) with type tvx3 2 T3.Assume that there is a preimage v3 2 L3� dom(r3). Since diagram (2) commutes thisimmediately ensures vx3 62 dom(TuT (rx)). Assume that there is no preimage v3 2 L3but vx3 62 dom(TuT (rx)). Its type tvx3 must have a preimage in T1 (or T2). Retypingrx with respect to x1T yields a preimage vx1 2 Tx1T (LX) of TuL(vx). which in turnrequires a preimage v1 2 L1 by de�nition of subrules (and analogously for x2T ). Theamalgamation construction then ensures that the image of v1 must be a preimage ofvx3. Assume that there is a preserved preimage v3 2 dom(r3). Since suR is total, anddiagram (2) commutes this clearly implies that vx 2 dom(TuT (rx)).



1931b): Consider an edge ex 2 LX . Basically the arguments are the same as for that concernedabout vertices above. We discuss the remaining cases where source(ex) 62 dom(TuT (rx))which analogously holds for target(ex) 62 dom(TuT (rx)) then. More precisely we addi-tionally have to show that source(ex) 2 dom(TuT (rx)) is implied if either (i) the edgeis preserved ex 2 dom(TuT (rx)) or (ii) the edge is deleted and there is a preservedpreimage, i.e., ex 2 suL(dom(r3))� dom(TuT (rx)) Case (i) is a straight consequence ofthe fact that TuT (rx) is a (typed) graph morphism. Case (ii) is already contradicted bythe fact that the diagram (2) commutes and suR is total which require that ex and itspreimage have an image in TuT (RX).2) Let zx 2 TuT (RX) be an element which neither has a preimage with respect to suRnor with respect to TuT (rx). Its type tzx = tL3(zx) must have a preimage in T1 (or in T2). Retyping rx with respect to x1T yields a preimage zx1 2 TX1T (RX) ofTuR(zx). Since the subrule diagram corresponding to x1T is a pushout, zx1 musteither have a preimage with respect to sx1R or with respect to Tx1T (rx). In both casesthe amalgamation construction yields a preimage of zx: the �rst with respect to suRand the second with respect to TuT (rx).Finally, we will show that su = (suL; suR) ful�lls the safety property of subrules. Soconsider some ox 2 LX such that there is a type to3 2 T3 with uT (to3) = tox = tLX(ox).Assume that to3 has a preimage to1 2 T1 with respect to p1T (the case for T2 is analogous).Retyping of LX with respect to x1T yields a preimage o1 2 L1 then because x1T = uT � p1Tand due to the de�nition of subrules. This however provides an element o3 2 L3 which mustbe an image of o1 and the desired preimage of ox. p
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