Parallel Composition and Unfolding Semantics
of

Graph Grammars

vorgelegt von
Master in Science (M.Sc.)

Leila Ribeiro

aus Porto Alegre (Brasilien)

Vom Fachbereich 13 — Informatik —
der Technischen Universitat Berlin
zur Frlangung des akademischen Grades eines

Doktorin der Ingenieurswissenschaften

— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuf}:

Vorsitzender: Prof. Dr. Stefan Jahnichen, Technische Universitat Berlin
Berichter: Prof. Dr. Hartmut Ehrig, Technische Universitat Berlin
Berichter: Prof. Dr. Annegret Habel, Universitat Hildesheim

Zusatzlicher Gutachter: Dr. Andrea Corradini, Universtat Pisa

Tag der wissenschaftlichen Aussprache: 14. Juni 1996

Berlin 1996
D 83

Parallel Composition and Unfolding Semantics
of

Graph Grammars

vorgelegt von
Master in Science (M.Sc.)

Leila Ribeiro

aus Porto Alegre (Brasilien)

Vom Fachbereich 13 — Informatik —
der Technischen Universitat Berlin
zur Frlangung des akademischen Grades eines

Doktorin der Ingenieurswissenschaften

— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuf}:

Vorsitzender: Prof. Dr. Stefan Jahnichen, Technische Universitat Berlin
Berichter: Prof. Dr. Hartmut Ehrig, Technische Universitat Berlin
Berichter: Prof. Dr. Annegret Habel, Universitat Hildesheim

Zusatzlicher Gutachter: Dr. Andrea Corradini, Universtat Pisa

Tag der wissenschaftlichen Aussprache: 14. Juni 1996

Berlin 1996
D 83

To My Family

Abstract

The main aims of this thesis are to provide an approach to the parallel composition of graph
grammars and a semantics for graph grammars, called the unfolding semantics, in which the
aspects of concurrency and compositionality with respect to the parallel composition play a
central role.

The parallel composition of graph grammar allows the composition of grammars with
respect to a shared part (that may be empty), and is based on parallel and amalgamated
composition of the rules of the component grammars. Moreover, the result of the composition
is suitably syntactically and semantically related to the component grammars.

The unfolding semantics of a graph grammar is a true concurrent, branching structure
semantics in which states (graphs) as well as changes of states (derivations) are represented.
The unfolding can be constructed incrementally, and we show that this yields the same result
as a construction based on gluing of the deterministic computations of a grammar. Moreover,
the unfolding of a graph grammar is itself a graph grammar that belong to a special class of
graph grammars: the occurrence graph grammars. Here this class is defined axiomatically,
and the members of this class can be seen as grammars that represent (deterministic and
non-deterministic) computations of another grammars.

The semantics of a grammar obtained as the parallel composition of other grammars is
isomorphic to the composition of the semantics of the component grammars. As the purpose
of the parallel composition is to be a composition for concurrent and reactive systems, the
fact that this composition is compatible with a true concurrency semantics is an attractive
result.

Zusammenfassung

Das Hauptziel dieser Arbeit ist es, einen Ansatz fiir die parallele Komposition von Graph-
Grammatiken und eine Unfolding-Semantik genannte Semantik fiir Graph-Grammatiken
bereitzustellen, in der die Aspekte Nebenldufigkeit und Kompositionalitit bzgl. der paral-
lelen Komposition eine zentrale Rolle einnehmen.

Die parallele Komposition von Graph-Grammatiken erlaubt die Komposition von Gram-
matiken bzgl. eines gemeinsamen (méglicherweise leeren) Anteils und basiert auf der parallelen
und amalgamierten Komposition von Regeln der komponierten Grammtiken. Dariiber hin-
aus ist das Kompositionsergebnis syntaktisch und semantisch in geeigneter Weise mit den
komponierten Grammatiken verkniipft.

Die Unfolding-Semantik einer Graph-Grammatik ist eine echt nebenldufige, verzweigende
Semantik, in der sowohl Zustdnde (Graphen) als auch Zustandsinderungen (Ableitungen)
reprédsentiert sind. Das Unfolding kann inkrementell konstruiert werden und es wird gezeigt,
dafl dies das gleiche Result liefert wie die Verklebung der deterministischen Berechnungen
einer Grammatik Dariiberhinaus ist das Unfolding einer Graph-Grammatik selbst eine Graph-
Grammatik, die einer speziellen Klasse von Graph-Grammatiken angehort: den Occurrence-
Grammatiken. Hier wird diese Klasse axiomatisch definiert und die Elemente dieser Klasse
konnen als Grammatiken gesehen werden, die (deterministische und nicht-deterministische)
Berechnungen einer anderen Grammatik reprisentieren.

Die Semantik einer Grammatik, die aus der parallelen Komposition anderer Grammati-
ken entstanden ist, ist isomorph zur Komposition der Semantiken der komponierten Gram-
matiken. Dieses Kompatibilititsresultat verbindet die parallele Komposition und die Un-
folding Semantik in enger Weise. Da der Zweck der parallelen Komposition die Kom-
position nebenldufiger Systeme ist, stellt die Kompatibilitit von Komposition und Ne-
benldufigkeitssemantik ein attraktives Ergebnis dar.

ii

Foreword

Originally, my doctoral thesis was supposed to be on the area of Petri nets. Therefore, in
the first years of my stay in Berlin I concentrated my studies on this area, more precisely on
algebraic high-level nets [EPR94, PER95]. My interest in issues related to object-orientation
made me take a closer look into graph grammars, where references (that are a very important
subject for object-orientation) can be represented very naturally. The participation in various
COMPUGRAPH workshops, in which I could learn a lot about the different approaches and
application areas of graph grammars, and the discussions with Andrea Corradini and Martin
Korfl influenced my growing interest for this very exiting field. My first works on graph
grammars were on the topic of relating graph grammars and Petri nets. These works (and
also the many talks from Andrea Corradini on this topic) made clear to me that graph
grammars can be seen as a generalization of Petri nets. However, the relationship between
Petri nets and graph grammars with respect to practical use was not yet investigated deeply.
Some efforts towards this relation were done within the project GRAPHIT (German/Brazilian
Cooperation supported by CNPq and GMD), in which specifications of the same telephone
system using graph grammars and Petri nets were developed and discussed with members
of the Brazilian company Nutec. It turned out, within other results, that graph grammars
are very useful to describe complex states in an natural way, whereas Petri nets are able to
describe relationships between actions (transitions) more explicitly. The GRAPHIT project
was of great importance for the development of the theory presented in this thesis because
the concepts defined here were applied in the case study about the telephone system, and
then I got a lot of feedback and new ideas from Nutec (specially from Paulo Castro) about
using parallel composition for the specification of practical systems, and about the topics of
research that still are needed and interesting from the industrial point of view.

Acknowledgments:

First of all, I would like to thank my referees:

Prof. Dr. Hartmut Ehrig (TU Berlin) not only gave me the chance to do my Ph.D. studies
in his group in Berlin, but also supported me during my stay there. I am also thankful
to his family, that was always so friendly to me.

Prof. Dr. Annegret Habel (University of Hildesheim) read this thesis very carefully, in spite
of the considerably short period of time that she had to write the referee report, and

gave many valuable comments (and long lists of “open questions”) that helped a lot to
improve previous versions of this thesis.

Dr. Andrea Corradini (University of Pisa) is an expert for semantics of concurrency, and
therefore he was invited to be an external referee of my thesis. He was also one of
the persons that influenced me to make research on the area of graph grammars. The
discussions with Andrea about concurrency, Petri nets and graph grammars were always
very fruitful and helped me to have a deeper understanding of these areas. Moreover,
he also read and discussed with me previous versions of this thesis, and wrote a referee
report in record time (as an external referee, his report had to be ready before the
others).

Not only the referees were engaged in the (sometimes hard) job of reading and commenting
my thesis. [am very thankful to Dr. Martin Korff, for reading and discussing with me (many
times via oversee calls) about a big part of the contents of this thesis. Reiko Heckel had also
read many parts of my thesis, mainly concerned with parallel composition of graph grammars.

Within the project GRAPHIT, Paulo Castro, from the company Nutec, gave interesting
comments and ideas for the specification of practical problems using parallel composition of
graph grammars.

There is one more person that contributed, although not directly, to this thesis: Prof. Dr.
Daltro José Nunes (Federal University of Rio Grande do Sul, Brazil). He always supported me
since the beginning of my studies in the university, and gave me valuable advices concerning
my academical life (not only about technical but also about organizational issues).

There are a lot of persons here in Germany that made my stay here become a very nice
experience to me. From the university, the TFS-group was always very friendly to me, in
particular Rosi Bardohl, Gabi Taentzer, Reiko Heckel, Alfio Martiti and Frau Barnewitz. The
Korff family had contributed a lot in making Germany a second home for me. In Italy, the
Corradini family became very good friends of mine.

Last but not least, I would like to thank my family in Brazil, that supported me so much
during these years in Berlin (and also during the years before). To express these thanks,
I would like to switch to Portuguese... Muito obrigado por todo o apoio que vocés me
deram sempre, apesar de muitas vezes a distancia ter atrapalhado “um pouco”. Esta tese é
dedicada a vocés que, mesmo estando longe, participaram ativamente de todas as etapas de
sua elaboracao e sempre torceram muito para o sucesso de meu Doutorado.

Contents

1

2

Introduction

Parallel Composition and Unfolding of Graph Grammars: An Example
2.1 Telephone System
2.2 Specification of the PBX System using Graph Grammars
2.2.1 Abstract Global View of the PBX System
2.2.2 PHONE Local View of the PBX System: Grammar PLV
2.2.3 CENTRAL Local View of the PBX System: Grammar C'LV
2.2.4 Concrete Global View of the PBX System: Grammar CGV
2.2.5 Semantics of the PBX System

Graph Grammars
3.1 Typed Graphs
3.2 Rules
3.3 Graph Grammars and their Behaviour
3.3.1 Sequential Semantics
3.3.2 Concurrent Semantics

Parallel Composition of Graph Grammars
4.1 Graph Grammar Morphisms
4.2 Parallel Composition of Graph Grammars
4.2.1 Pure Parallel Composition
4.2.2 Cooperative Parallel Composition

Occurrence Graph Grammars
5.1 Doubly-Typed Graph Grammars
5.2 Relations within a (Doubly-Typed) Graph Grammar
5.3 Occurrence Graph Grammars
5.4 Concurrent Derivations and Occurrence Graph Grammars
5.5 Folding of Occurrence Graph Grammars

Unfolding Semantics of Graph Grammars
6.1 Construction of the Unfolding of a Graph Grammar
6.2 Unfoldings and Concurrent Semantics

N

12
12
15
16

23
24
36
47
50
52

60
61
70
71
77

85
87
96
106
120
125

130
131
140

6.3 Relationship between Typed-Graph Grammars and Their Unfolding Semantics 143

6.4 Parallel Composition and Unfolding of Graph Grammars

150

7 Related Work
7.1 Other Approaches to the Composition of Graph Grammars
7.2 Other Approaches to Concurrent Semantics of Graph Grammars
7.3 Petri Nets
7.3.1 Petri Nets and Parallel Composition
7.3.2 Petri Nets and Unfolding Semantics

8 Conclusion
A Notation

Categorical Constructions
B.1 Basic Concepts of Category Theory
B.2 Categories of Sets
B.3 Categories of Graphs
B.4 Categories of Typed Graphs
B.5 Categories of Double-Typed Graphs

C Proofs
Bibliography

Index

152
152
155
157
159
160

164

169

170
170
172
173
175
178

179

194

201

Introduction

In the last years, concurrent systems have gained more and more importance. This kind of
systems usually consists of several autonomous components that run in parallel and interact
with each other (for example, via messages). Although there are already many concurrent
systems implemented and working, there is still a great amount of fear that there may be
undiscovered bugs within each of these systems, that probably will only be discovered in crit-
ical situations. The complexity of a concurrent system is much bigger than the complexity of
a sequential system because the interactions of independent components affects the behaviour
of the whole system, such that it is not enough to know that each component works as ex-
pected to know that the whole system works as expected, but we also have to know how each
component reacts to outside influences and how each component influences its outside while
it is running. Many systems that work “correctly” when they run as stand-alone systems may
generate many unexpected and unwanted results when combined with others. Therefore, the
existence of formal methods that allow to prove that the system really works as expected is
even more important than for the sequential case. Moreover, as concurrent systems are usu-
ally composed of smaller systems that work cooperatively together to reach some goal, ways
of composing a concurrent system from smaller components are needed. This composition
shall obviously be not only a syntactical way of composing systems, but shall assure that
the system generated from the components by applying this composition operator does not
behave in an unexpected (or unspecified) way.

Graph grammars [Ehr79] have originated from Chomsky grammars by substituting the
replacement of strings through the replacement of graphs. Very soon it was noticed that
graph grammars are very well suited to the specification of concurrent systems: a state of the
system is represented by a graph in which different rules may be applied at the same time. To
reach consistent results, not every set of rules may be applied at the same time to the graph
representing the state. A great part of the theory of algebraic graph grammars deals with
finding conditions under which the concurrent application of a set of rules leads to the same
results as corresponding sequential applications of the same rules. By using different kinds
of graphical representation for vertices and edges for different kinds of objects of a system,
a graph becomes even more a powerful and expressive means of describing complex states.
By representing states via graphs and changes of states via rules (whose left- and right-hand
sides are graphs and are connected in some compatible way) one can achieve a quite good
and understandable description of a complex system. Therefore, graph grammars seem to be

2 1. Introduction

a promising formalism for the description of concurrent and reactive systems.

Recently, graph grammars have started being used for the specification of bigger systems.
This raised the question about compatible syntactical and semantical composition operators
for graph grammars. Classically, a graph grammar is defined as a whole and not obtained by
its component grammars. Correspondingly, the usual semantics of graph grammars (based
on the application of rules) does not rely on the semantics of the possible “subgrammars” of
a grammar, although the application of rules has a local character. In the last years, first
attempts have been made towards a compositional semantics for graph grammars.Indeed,
compositional semantics for graph transformation systems (graph grammars without initial
graph) have been achieved in the framework of Double-Pushout graph grammars in [CH95,
HCEL96] using an interleaving semantics that is compatible with a union operator, and in
the framework of ESM (Extended Structure Morphism) systems in [Jan93, Jan96] using a
process semantics that is compatible with the union of ESM systems. These two approaches
are based on graph transformation systems, that is, graph grammars without an initial graph.
The ability to specify an initial state for a system may have advantages for some applications.
For specification purposes, theinitial state has the role of restricting the computations that are
allowed in the system and also the reachable states. Therefore, the specification of a initial
state has a considerable effect on the language semantics of a graph grammar (reachable
graphs) — because without an initial graph the language semantics would always consist of
all graphs — and thus also on the analysis properties of a grammar, like deadlock, mutual
exclusion, reachability and liveness properties. The same set of rules, with different initial
states may exhibit very different behaviours.

The main aims of this thesis are to provide an approach to the paral-
lel composition of graph grammars and a semantics for graph grammars,
called the unfolding semantics, in which the aspects of concurrency and
compositionality with respect to the parallel composition play a central
role.

According to this general aim, syntactical operators to compose grammars will be intro-
duced, as well as a semantical model that is particularly well-suited for concurrent systems,
and it will be shown that this semantics, called unfolding semantics, is compositional with
respect to the syntactical composition operators. More concretely, the following results are
achieved in this thesis:

Parallel Composition : A new concept of parallel composition of graph grammars is pre-
sented. The characteristics of this composition are:

e The initial (start) graph is taken into account.

e The composition of two grammars can be based on a shared part (cooperative
parallel composition), or be a composition without any shared parts (pure parallel
composition).

e The composition is based on specialization morphisms. These morphisms express
the fact that both components to be composed are specializations of the shared
parts.

e The result of the composition is suitably syntactically and semantically related to
the component grammars.

Unfolding Semantics : A new semantical model, called unfolding semantics, for graph
grammars in which the aspects of concurrency and compositionality play a central role
is presented. The main characteristics of this semantics are:

e It is a true concurrency semantics.

o It is a branching-structure semantics: non-determinism is represented explicitly.
o It is abstract: results of derivations are described up to isomorphism.

e The initial graph is taken into account at the semantical level.

e Not only actions (and relationships among them) but also data (states) are repre-
sented at the semantical level.

e The unfolding is constructed incrementally.

e A number of important relationships that describe a system specified by a graph
grammar, like the causal dependency, conflict and occurrence relations, are rep-
resented in the unfolding semantics. These relationships provide a good starting
point to for analysis techniques for graph grammars.

e The unfolding semantics represents all sequential (and concurrent) derivations of
a graph grammar.

Compositionality : The unfolding semantics is compositional with respect to the parallel
composition of graph grammars.

Although parallel composition and unfolding semantics can be considered as stand-alone
topics, to achieve the desired compositionality of the semantics many decisions taken in
defining each of these constructions have influenced each other. These decisions will be
discussed when the corresponding restrictions are made.

Many different ways of composing graph grammars have already been defined in the
literature, for example the composition of classes in [Kor96] and the DIEGO approach [TS95].
There are also many different kinds of concurrent semantics for graph grammars, for example
process semantics [Jan93, KR95, CMR96a] and event structures semantics [Sch94, CEL194a,
Kor95, CELT96b]. The relationship between these approaches and the one introduced in this
thesis will be discussed in more details in Chap. 7. The main advantage of our approach
with respect to other existing ones is the compatibility of a true concurrency semantics with
respect to the parallel composition operators within a framework of graph grammars. The
compositionality of the unfolding with respect to the parallel composition gives an interesting
aspect for the choice of type of composition and/or semantics to use. If one is interested
in a concurrent semantics, the unfolding semantics is a good choice because, besides being
a true-concurrent, branching structure semantics, it offers syntactical parallel composition
operators that are compatible with it. If one is interested in composition operators for graph
grammars, the parallel composition offers an unfolding semantics that is compatible with it.

Another contribution of this thesis is the definition of a class of graph grammars that can
be considered as computations, in the sense that each rule of such a grammar represents a
derivation step (of another grammar). These grammars, called occurrence graph grammars,
can be used to represent deterministic and non-deterministic processes of graph grammars
in the same way occurrence nets [NPW81] can be used to describe processes of Petri nets
[GR&3, BD8T7]. In the case of nets, occurrence nets are nets that are acyclic in which the
relationships between transitions can be described by a causal and a conflict relationships.

4 1. Introduction

In the case of graph grammars, these two relationships may not be enough to characterize
the computation of a graph grammar. The fact that, especially in view of the preservation
of items, the causality and conflict relationships may not be enough to describe suitably a
concurrent system have been discussed in [JK93]. We will define concrete relationships that
seem to capture the kernel of graph grammar computations. Moreover, it turns out that
the unfolding of a graph grammar is an occurrence graph grammar. This fact means that
the unfolding semantics enjoys one of the main advantages of an event structure semantics,
that is the ability to reason about computations based on suitable relationships between
the computation units (derivation steps) of a system. The unfolding also enjoys one of the
advantages of the process semantics for graph grammars, that is the ability to describe states
(as graphs). Therefore we believe that the unfolding semantics is a quite promising semantics
for graph grammars, and that it can be used as a basis for analysis methods for graph
grammars (as the unfolding semantics of Petri nets — see [McM92, McM95]).

The basic idea of parallel composition and unfolding presented in this thesis for graph
grammars was inspired in corresponding ones for Petri nets as they can be found in [MMS94].
However, here there are two remarks that shall be made. The first one is that the most
interesting form of parallel composition introduced here, namely the cooperative parallel com-
position, was not defined for Petri nets. This kind of composition allows to compose two
components that share a common interface and we believe that this can be very useful also
in the case of Petri nets (see Sect. 7.3 for more details). The other remark is that, although
the idea of what is an unfolding is quite related to the corresponding idea of Petri nets, it is
not an aim of this work to generalize the theory of Petri nets with respect to the adjunction
between categories of Petri nets and occurrence nets, although this is a very interesting topic
of research. Nevertheless, there are tight relationships between Petri nets and their unfoldings
and the unfoldings of graph grammars and they will be discussed in Sect. 7.3.

The framework considered for the theoretical investigations developed in this thesis is the
Single-PushOut approach, short SPO approach, to graph grammars [L6w90, Low93]. The
choice of this formalism was based on the fact that SPO graph grammars already provide
a notion of a concurrent derivation, from which the unfolding semantics is a further devel-
opment. Moreover, the absence of gluing conditions made the construction of the unfolding
easier. We believe that it is possible to defined the concepts of unfolding semantics, as well as
the parallel composition, for other kinds of graph grammars, like the DPO graph grammars
(a discussion on this is made in Sect. 11). The formal investigations in this work will be done
using category theory [AHS90, BW90]. Basic concepts are shortly reviewed in Appendix B.

Structure of the Thesis:

Chapter 2 : In this chapter an example of a specification of a telephone system using graph
grammars is presented. The specification is done in 3 parts: an interface part, called
global view, a phone component and a central component. This chapter serves as an
informal introduction and motivation for the main concepts presented in this thesis.

Chapter 3 : This chapter reviews the basic notions of SPO graph grammars, including their
sequential an concurrent semantics, using a kind of graphs called “typed graphs”.

Chapter 4 : In this chapter graph grammar morphisms and the parallel composition opera-
tors for graph grammars are introduced. It is shown that a composed graph grammar is
suitably related to its components (by the existence of corresponding morphisms), and

that the composition operators correspond to special categorical construction, namely
product and pullbacks. This has the advantage that, from standard categorical results,
we obtain that the parallel composition operators are compatible with each other, that
they are unique (up to isomorphism) and that they are associative.

Chapter 5 : A semantical framework for graph grammars, namely occurrence graph gram-
mars, is introduced in this chapter. An occurrence graph grammar is a grammar that
represents (deterministic or non-deterministic) computations of some graph grammar.
A relationship between an occurrence graph grammar and a grammar from which it
represents some computations is provided by a folding of the occurrence graph gram-
mar. This folding is formally described by a functor. It is shown that each rule of
an occurrence graph grammar corresponds to an application of a corresponding rule in
some derivation of its folded grammar. Moreover, it is shown that concurrent deriva-
tions (that can be considered as deterministic computations of a grammar) are indeed
occurrence graph grammars.

Chapter 6 : This chapter introduces the unfoldings of graph grammars. The unfolding of a
graph grammar is obtained inductively by applying the rules of the grammar starting
from the initial graph of the grammar. An important result is that the unfolding is
not only a graph grammar, but an occurrence graph grammar, and thus enjoys a lot of
special properties that may be useful for analysis of the original graph grammar. It is
also shown that the unfolding describes exactly all sequential and concurrent derivations
of a graph grammar. Then a connection between parallel composition and unfoldings is
established: we show that the unfolding semantics is compositional with respect to the
parallel composition operators (formally this is expressed by the fact that the unfolding
construction can be extended to a functor that preserves products and pullbacks).

Chap. 7 : This chapter contains relationships to other works in the areas of composition and
concurrent semantics of graph grammars. Special attention is given to Petri nets and
the relationships of Petri net concepts with the constructions developed in this thesis.

Appendix A : This appendix contains some mathematical conventions we use.

Appendix B : This appendix provides basic notions of category theory and set-theoretical
characterizations of many of the categorical constructions in the categories we use.

Appendix C : This appendix contains some proofs and lemmas.

Parallel Composition and Unfolding
of Graph Grammars: An Example

Graph grammars are well-suited as a specification formalism for parallel and concurrent
systems (see, e.g., [Tae96]). In this chapter we will present (part of) the modeling of a Private
Branching Exchange System, short PBX System, using graph grammars. This specification
was developed within the project “Graphical Support and Integration of Formal and Semi-
Formal Methods for Software Specification and Development”, short GRAPHIT. GRAPHIT is
a project within the German/Brazilian cooperation “Information and Technology” supported
by DFG and CNPq, and the main aim of the project is to integrate semi-formal and formal
methods to provide a specification method meeting the requirements of industries. The
partners of the GRAPHIT project are the Brazilian company Nutec, the German company
MSB, the Brazilian Federal University of Rio Grande do Sul (UFRGS) and the German
Technical University of Berlin (TU Berlin). The PBX system is an ongoing project of the
company Nutec, that develops corresponding software and hardware. The main aim of this
system is to control a private telephone net.

This chapter shall serve as an example and practical motivation for the theory that will
be developed in the following chapters of this thesis. Although the theory will be developed
for SPO graph grammars, as far as possible we will explain the constructions in this chapter
independently of this concrete approach. Section 2.1 describes the telephone system to be
modeled and Sect. 2.2 presents the main ideas of the modeling of the PBX system using graph
grammars and how a specification of the whole system can be obtained from the specification
of the components by using one of the parallel composition operators presented in this thesis
(in Chap. 4). Section 2.2.5 contains some insights on three possible formal semantics for the
system: one based on sequential computations, one based on concurrent computations and
one based on unfoldings, where the latter semantics for graph grammars is newly introduced
in Chap. 6 of this thesis.

Only a very small part of the specification is presented here. Besides the big reduction
of the number of rules that describe the system, a further simplification made here is the
absence of attributes used to specify the data-types involved in the system. We use a simple
concept of typed graphs to specify different types. A full version of this case study using
graphs with attributes can be found in [Rib96].

2.1. Telephone System 7

2.1 Telephone System

The kind of telephone system to be considered here is known as a Private Branch Exchange
(PBX) system. A PBX provides an intelligent connection between a (small) telephone pool
— as it can typically be found in companies — and several external lines giving access to an
already existing (public) telephone net. The heart of such a system is a piece of hardware—
often called a CENTRAL. The CENTRAL controls the (internal) communications between
the PHONEs and manages the connection of PHONESs inside the system with PHONEs outside
belonging to a second (external) telephone CENTRAL. Modern PBX systems additionally
provide a number of features as, e.g., programmable keys, last number redialing, call-back,
follow-me, or automatic-answering mechanisms. For simplicity, we will restrict to the internal
side of such a telephone system, i.e., one CENTRAL connected to several standard PHONEs.
Therefore, the main aim of a PBX system presented here is to control the calls between the
telephones that are connected to it. The messages it receives from its phones are usually
informations about the state of the hook of the phones and the digits dialed by the users of
the phones. The reaction to these messages is to send appropriate tone/ring signals to the
phones and establish a connection with the called phones. For a more complete description
we refer to [Rib96].

2.2 Specification of the PBX System using Graph Grammars

A graph grammar specifies a system in terms of states and state changes, where the states
are described by graphs and the state changes are described by rules having graphs at the
left- and right-hand sides. The relationship between the left- and right-hand sides of a rule
is given by mapping vertices and edges from the left- to the right-hand side in a compatible
way. Compatible way means that is an edge el is mapped to an edge €2 then the source
(target) vertex of el must be mapped to the source (target) vertex of e2. Such a compatible
mapping between graphs is a called a graph homomorphism, or simply graph morphism. A
rule of a graph grammar may express preservation, deletion and/or creation of vertices and
edges. This is expressed by a graph morphism f in the following way:

e Preservation: An item belonging to the left-hand side of a rule and mapped via the
morphism f to the right-hand side of this rule is preserved by this rule.

e Deletion: An item belonging to the left-hand side of a rule and not mapped via the
morphism f to the right-hand side of this rule is deleted by this rule.

e ('reation: An item belonging to the right-hand side of a rule that is not the image under
the morphism f from any item of the left-hand side of the rule is created by this rule.

To allow the deletion of items by a rule the relationship between its left- and right-hand
sides may be partial.

The operational behaviour of a system described by a graph grammar is described by
applying the rules of the grammar to actual graphs representing the states of the system
(starting from a given initial state). The application of a rule to an actual graph, called
derivation step, is possible is there is an occurrence of the left-hand side of this rule into
the actual graph. This occurrence, called match, is a total graph morphism because one
intuitively expects that all elements of the left-hand side must be present at the actual graph

8 2. Parallel Composition and Unfolding of Graph Grammars: An Example

to apply the rule. The result of the application of a rule is obtained by deleting from the
actual graph all items that are deleted by the rule and adding to the actual graph the items
that are created by the rule (in fact, in the approach to graph grammars used here other
effects like identification of items and deletion of context are possible — these cases will be
discussed in Chap. 3).

For specifying practical applications, there are usually a large number of vertices and
edges in the graphs used to model the system. To make them easier to understand, a way to
distinguish different kinds of vertices/edges is helpful. In the PBX example, we would like to
distinguish vertices that correspond to telephones from vertices that represent PBX centrals,
for example. A typing mechanism can be used to make this distinction. One can implement
this typing mechanism in many different ways, for example using labeled graphs or graphs
having different sets of vertices/edges. Here we will use a graph, called type graph, to specify
the types of elements of the system: each vertex of the type graph represents one distinct type
of vertex and each edge of the type graph represents one distinct type of edge. Each actual
graph of the system must then have an interpretation in terms of this type graph. Formally,
the concept of type graph was introduced in [Kor93, CMR96a].

A graph grammar consists of the following components:

e Type graph: specifying the different kinds of items that may occur in the system;
e Initial graph: specifying the initial state of the system;

e Rules: specifying the possible changes of state of the system. Each rule consists of a
rule name and the rule itself (left- and right-hand sides connected by a morphism).

A telephone system is characterized by a high communication traffic and, in particular
when more than one PHONE is involved, there is a high degree of desirable parallelism.
Therefore specification methods that allow (at the syntactical and semantical levels) the
modeling of parallelism are more suitable for this kind of system. Graph grammars is an
example of such formalisms. Moreover, this system is a reactive system: the behaviour of
each component is described by the reaction performed by the component to some message
that was received by it. Reactive systems are very common in the area of concurrent systems
where the communication is done through message passing (see [MP92] for more details).

We will present a way of specifying a system by composition of the specifications of
the components. Obviously, the first step that has to be done towards such a specification
is the identification of the components of the system. Moreover, we have to identify the
relationships between the components and how these components cooperate to perform the
tasks of a PBX system. The result of this specification task will be called abstract global
view of the system. This view can be seen as an abstract interface for the development of the
concrete components of the system. Then we may specify each component separately. These
specifications can be seen as implementations (or specializations) of the abstract behaviour
described by the abstract global view. Each of such specifications is called [local view of the
system. When all specifications of the components are ready, they can be suitably composed
yielding a concrete specification for the whole system, called concrete global view of the
system.

For the PBX system, we can recognize 3 components: CENTRAL, PHONE and
ENVIRONMENT. The third component corresponds to the users. We included this component
here for two reasons: i) the PBX system works as a reaction to the messages it gets from

2.2. Specification of the PBX System using Graph Grammars 9

the users, and thus the inclusion of users is necessary to model suitably the whole system,
ii) discussions with the company Nutec (to whom this specification was developed) led to the
result that the specification of the user’s behaviour can be very useful to produce a high-level
user’s manual for the system. The specification of the ENVIRONMENT component will not be
further specialized here, it suffices to give an abstract view for it. Therefore we will have only
two local components for the PBX system: CENTRAL and PHONE. This idea is summarized
in the picture below, where “AG” stands for abstract global and “CG” for concrete global.
The arrows between the components mean specialization (or refinement) relationships. Both
the PHONE and the CENTRAL views are specializations of the abstract view, and the con-
crete global view can be seen as the smallest specialization of the abstract view including the
specializations described by the PHONE and the CENTRAL components.

PBX — AGView

/\

PHONE View CENTRAL View

\/

PBX — CGView

Each of these views will be described by a graph grammar, and the relationships among
them will be described by graph grammar morphisms. The composition of the local views
(taking into account their connections established in the abstract global view) to get the
concrete global view of the system will be described by an operation on graph grammars
called cooperative parallel composition, that will be defined in Chap. 4.

2.2.1 Abstract Global View of the PBX System

The idea of the specification of the abstract global view is to model the telephone system “in
the large”, i.e., to say which are the components of the system, which are the relationships
between these components and what are the messages that are exchanged between them (in
an action/reaction way). At this global level, the internal structure of each component is
not considered. The abstract global view of the telephone system is described by a graph
grammar called AGV consisting of the following components (type graph, initial graph and
rules):

Type Graph: We may recognize two main types in the PBX system: the type PHONE
and the type CENTRAL. As there are many operations of phones and of centrals that are
reactions to stimulus from their environments (users), we will also include an ENVIRONMENT

type in the system. These types are drawn as D, N and %, respectively, in Figure 2.1,
and the arrows between them correspond to “knows” relationships. For example, the arrow
from the PHONE to the CENTRAL means that the PHONE knows this CENTRAL and thus can
send messages to it. PHONEs may also send messages to users (for example, ringing signal).
Therefore there is a knows relationship from PHONE to ENVIRONMENT. In our specification
of the PBX system, CENTRALsS must never send messages to users, and therefore there is no
arrow from CENTRAL to IENVIRONMENT.

Messages are also represented types. There is one message type for each kind of message
that can be sent in the system. Messages are drawn as envelopes carrying a name (the

10 2. Parallel Composition and Unfolding of Graph Grammars: An Example

Sgnal >

E-Sgnal E-Act

'

/ 4 \ /
Bool = P-Hook C-NewPh
Digit = P-Digit Bool C-Hook
Sgndl = 5 gonal Digit= c_pigit

Figure 2.1: Type Graph Type

name of the message). Messages always have a target entity (in our case, a PHONE, a
CENTRAL or an ENVIRONMENT). This is represented by an arrow from the message to
the corresponding target type. Messages may also have parameters, and these are obviously
elements of some type. Parameter types may be references to some PHONE or CENTRAL
but also basic data types like natural numbers, booleans, digits, etc. Although basic data
types are also modeled by vertices, they will be indicated just by their names in the graphical
representation. Parameters are indicated by edges connecting the parameter type and the
message. The data types used in this example are:

Bool :=0n(T)|Of f(F)

Signal == Mute|Free|Busy|Call|Carrier| Ring|Wrong

Digit := 0]1]2|3]4|5|6/|7|8|9

Userld ::= {userl, user2, user3, userd, userb}

The graphical notation used in Figure 2.1 is in fact a shorthand. For example, the vertex
P-Hook describes two messages: P-Hook(On) and P-Hook(0ff). That is, there is one message
for each possible data type carried by this message.! Messages of type Hook are used to inform
PHoNEs and CENTRALs about changes on the state of the hook of a telephone. Messages
of type Digit are used to inform PHONEs and CENTRALs that a digit has been dialed (this
digit is sent as a parameter of the message). Messages of kind Signal are used to send audio
signals to PHONEs and ENVIRONMENTs (ring, carrier-tone, busy-tone, mute, etc). The kind
of signal is the parameter of the message.

Initial State: We start the system from a state in which 4 telephones are already
connected to the PBX system. Thus, the initial state of the system consists of 4 PHONEs
connected to a CENTRAL, together with the corresponding users (the user-ids are used for the
case of checking the rights of some user to perform some activity, for example, a user must
have special rights to connect a new telephone in the net). Moreover, the users are able to
act (this is indicated by the E-Act messages connected to them). The initial state is depicted
in graph In: of Figure 2.2.

Rules: In a PBX system there are a number of actions such as sending dialed digits,

'In the model described in [Rib96] using graph grammars with attributes it is not necessary to have one
message for each possible parameter it may carry because variables may be used.

2.2. Specification of the PBX System using Graph Grammars 11

T

—
c 7
8

N
"
/

v/

s)
\userz

Dialing of the digit Pd:

~_ _
%% ri_ %% T

Forwarding of the digit Pd to the central:

Storing of thefirst dialed digit:

—_—= r3 —_—
|

Pd~{ o | Mut
P-Sgnal |=— Mute

Figure 2.2: Abstract Global View: Initial State and Rules of AGV

establishing connections between phones, connecting new phones to the net, etc. These
actions are modeled by rules. Three rules of these rules are shown in Figure 2.2 (the other
can be found in [Rib96]). The first rule describes an action of the user, namely the dialing of
the digit Pd. This is modeled by a rule that deletes the user’s E-Act message and creates a
message P-Digit(Pd) on its corresponding PHONE. The purpose of the E-Act message is to
model the fact that a user is able to act (therefore, a message E-Act is also created by the
rule r1 indicated that the user is still able to act after dialing one digit). In the graphical
notation, items that are in both left- and right-hand sides of rules are preserved. To be more
precise, sometimes items are indexed (for example, the message E-Act of the left-hand side
of rule r1 is different from the message E-Act of the right-hand side). The second rule (r2)

12 2. Parallel Composition and Unfolding of Graph Grammars: An Example

describes the forwarding of a digit Pd to the central, and the third rule (r3) describes the the
behaviour of the central if this number is the first one dialed by this phone (in this case, the
central just has to store this number and wait for a second one to establish a connection).
At this level of abstraction — where we can not see the internal states of the components —
it seems that the C-Digit(Pd) message was merely deleted. It is the task of the CENTRAL
component to specify the storing of this digit in its internal variables.

2.2.2 PHONE Local View of the PBX System: Grammar PLV

In this part the PHONE component is further specified in grammar PLV. The internal state
of a PHONE is specified in the corresponding type graph PType (see Figure 2.3).This internal
state consists of three vertices describing the hook status (P.h), the phone status (P.st) and
if the phone has some digit to be sent to the central (P.pd). The identifiers of the edges will
be used to describe the typing of the instances of this type graph. The rules of the grammar
shown in Figure 2.2 are specialized to include the internal state of the PHONE. For example,
there are two rules that specialize rule r2, namely Pr2.1 and Pr2.2. The first rule sends the
first dialed digit to the CENTRAL (when there is a carrier tone), and the second sends the
second digit (when there is no tone). The initial graph PIni is the initial graph Ini plus the
internal structure of all phones, namely P.h = On (the hook is on), P.st = I'ree (the phone
is free), P.pd = I’ (no digit was dialed).

2.2.3 CENTRAL Local View of the PBX System: Grammar C' LV

The specification of the CENTRAL component is shown in Figure 2.4 (grammar C'LV). The
type graph includes a component TAB that carries informations about each PHONEthat is
connected to the CENTRAL. These informations are the status of the PHONE (C'.st), the
number of the PHONE (C.pnr), the number dialed by a PuoNE (C.dnr), the information
whether a PHONE have dialed a digit (C.pd) and an established connection between two
PHONEs (indicated by the c-edge). Rule C'r2 describes the situation in which a digit is sent
from a PHONE to the CENTRAL if the PHONE status is C'arrier, that is, it models the sending
of the first digit of a telephone number to the CENTRAL. The component C.pd assures that
the order of sending digits from PHONEs to CENTRALs is preserved. Rule C'r3 models the
behaviour of the CENTRAL when it receives a digit message and the PHONE status is C'arrier:
the PHONE status is set to Mute, a corresponding signal message is sent to PHONE and the
dialed digit is stored in C'.dn. In the initial graph C'Ini, we have the initial graph I'ni plus
the initial internal state of the CENTRAL: there is one TAB entry for each PHONE, and the
parameters are set correspondingly.

2.2. Specification of the PBX System using Graph Grammars

13

Bool

Sgnal =

Bool Satu:

E-Sgnal

/p_/ Userl

w

e

B —

E-Act

“\

PType: I —
Bool | p-Hook C-NewPh
Digit = P-Digit Bool C-Hook
S0 b Ggnal Digit= c_pigit

Plni: Seetext.

Prules. Pr3=r3

Dialing of the digit Pd:

Pri E-Act 2| e
EAC | _ > P-? T
P.pd
F Pd—=| p-oig
Forwarding of Pd to the central (Pd isthefirst dialed digit):
Pd—~| Pr2.1 2
P-Digit | —_— > P.h
P.p P‘ h&\ﬂ off P.st
T iﬁCarrier carrier pd —| - Bigit
Forwarding of Pd to the central (Pd is the second dialed digit):
P. —_—
Pd=l poigt [— —_— I:)r2'2> Fpok
P.p P‘h o off* Pt
T ci)ﬁ Mute Mute Pd — ¢ Bigit

Figure 2.3: PHONE Local View

14 2. Parallel Composition and Unfolding of Graph Grammars: An Example

/ “\

By
Bool =

CType: | Pigit=

Sgnal

Bool Nat Satus Nat

Clni: Seetext.

CRules: Cr1=r1
Forwarding of Pd to the central:

~_— Cr2
e S
TAB | S E [TAB] Crd

Storing of the first dialed digit:
T

F
TC.pd
.dn .
SR TAR | S Cari 03 _ | [T] cacerraaics wue

S "3 |~

Figure 2.4: CENTRAL Local View

2.2. Specification of the PBX System using Graph Grammars 15

2.2.4 Concrete Global View of the PBX System: Grammar CGV
o (o] -5
Bw\fo‘{?pc;a;:/ Usirld\

Digit

P-Digit

Sgnal

Bool Nat Satus Nat

Figure 2.5: Concrete Global View: Type Graph

To get the concrete global view of the telephone system, we put both specializations (of
PHONE and CENTRAL components) together gluing them along the shared items. First, the
type graph is constructed in this way, giving raise to the graph shown in Figure 2.5. Then
the initial graph is constructed in the same way (see graph PBXIni of Figure 2.6). The
construction of the rules of the system is also done by gluing corresponding rules. According
to the way in which the rules of the interface are specialized in the components, we may have
the following situations:

1. A rule of the interface is not specialized in any component. In this case, the same rule
will be part of the composed system (in our example, there is no rule in this situation).

2. A rule of the interface is specialized by one rule of only one component. This is the
case of rules r1 (that is specialized only by the PHONE local component) and r3 (that
is specialized only by the CENTRAL local component). In this case, the specialized rule
is part of the composed system, i.e., rules Pr1l = PBXrl and Cr3 = PBXr3 are in
the concrete global view of the telephone system.

3. One rule of the interface is specialized in both components. This is the case of rule
r2. The result is that the resulting rule(s) of the composed system is(are) a gluing of
the two specializations. This kind of composition models a synchronization between
the components. If there are different specializations for the same interface rule within
one component (for example Pr2.1 and Pr2.2), both these specializations are combined
with the specialization of this rule done in the other component (in our example, giving
raise to rules PBXr2.1 and PBXr2.2). Obviously, if there are more specializations for
the same interface rule in both components, all combinations will become rules of the
composed system. Rules PBXr2.1 and PBXr2.2 describe the fact that the PHONEs

16 2. Parallel Composition and Unfolding of Graph Grammars: An Example

can only send a digit to the CENTRAL when there is no pending digit (modeled by
C.pd = F in the left-hand sides of these rules).

4. A rule of one component is not in the interface. In this case, this rule shall be added to
the composed system. If there are also rules in this situation in the other component,
they will also be added to the composed system, and also their parallel compositions
will be added. (In the example, there are no such rules.)

2.2.5 Semantics of the PBX System

Depending on the aspects of a system we are interested in, one semantical model may be
more appropriate than others. For the telephone system, the main aspect we are interested
in is concurrency. Therefore semantical models that describe concurrency seem to be more
adequate in this case. This means that the reachable states are not so important but the
way they are reached. A suitable semantics for concurrent systems shall provide means for
reasoning about computations, for example, how they are obtained, which actions may happen
in parallel, what are the relationships between different computations and between actions of
the same computation, etc. To understand which kinds of relationships may occur between
different actions of a system, we will give a small example. These relationships are described
in different ways by different semantical models.

Example 2.1 The following actions are possible in the PBX system:
1. PHONE 12 gets a Digit(5) message.
2. PHONE 52 gets a Digit(4) message.
3. PHONE 12 gets a Digit(3) message.
4. PHONE 12 forwards the Digit(3) message (received in action 3.) to its central.

Obviously, actions 1 and 2 may occur in parallel because they involve different telephones.
Actions 1 and 3 are in conflict because only one digit may be dialed at each time (phone numbers
are sequences of digits). Action 4 depends on action 3 (PHONE 12 can only send a digit that was
dialed to the central). @)

Next, we will present three kinds of semantics for the PBX system: one based on sequential
computations, one based on concurrent computations and one based on unfoldings. In this
thesis, we will newly introduce an unfolding semantics for (SPO) graph grammars. The aim
of describing the already existing sequential and concurrent semantics of graph grammars
here is to compare and motivate the unfolding semantics.

Sequential Semantics
A computation step of a system described by a graph grammar is modeled by a derivation
step, i.e., an application of a rule to a graph with respect to a match. Thus the (opera-
tional) semantics of the system can be described by sequences of such derivation steps, called
sequential derivations. This kind of semantics is called sequential semantics.

One derivation sequence of the PBX system, namely derivation ¢4, is shown in Figure
2.7. The matches used for the applications of the rules are indicated by corresponding indices.

2.2. Specification of the PBX System using Graph Grammars

17

PBXIni:

T Usert

AN,

E-Act

E-Act
F
i

Free <s—

%/”

> user2

Diadling of the digit Pd:

E-Act

— - -
P.
E

—

Pd |

P-Digit

—_— =

Off

P
P
T ™ carrie

—

Pd —

P-Digit

—_— =

P.

Off

" W Pﬁfme TAB | Crd ¢

Storing of thefirst dialed digit:
T

C.pd

-p
e AB S Carrier

Cd -+ C-Digit

PBXrl
>

E-Act 2

— NN — =

P.p

|
E

Pd-~

P-Digit

PBXr2.1
=

PBXr2.2
=

Forwarding of Pd to the central (Pd isthefirst dialed digit):

/P.stdic-mgn 7
TAB [£Cpd

Forwarding of Pd to the central (Pd isthe second dialed digit):

PBXr3
=

g_Ppd

Of

Mute

—_— =

%F’.-y =
ff p.g Rd]

C-Digit

fra

L

cd C.dnr

P-Sgnal

=Mute

F
C.pd

TAB CL Mute

Figure 2.6: Concrete Global View: Initial Graph and Rules

18 2. Parallel Composition and Unfolding of Graph Grammars: An Example

F Bl 23] (Al 100

o

mi (s1) m2 (2)

PBXIni v

IN2

% IN1
1

12 Carrier 0

4—|
= 55) =
2 TABJ2
%ﬂ \gdn \gdn F‘Cn AN
F 52 CarnerO Pd 5 52 CarrlerO Pdd \Pst 52 Carrier 0
% off F Camer Off F Carrier Off T Carrier
> user2 > user2 > user2

Figure 2.7: Derivation Sequence o4

In this derivation sequence the user of PHONE 12 generates a P-Digit(5) message (step sl)
and then the user of PHONE 52 generates a P-Digit(4) message (step s2). Let derivations
b and o6 be defined as follows: In derivation o5 these two messages are sent in the inverse
order; and in derivation o6 the first step (s5) represents the generation of a P-Digit(3)
message on PHONE 12 and the second step (s6) represents the forwarding of this digit to
the CENTRAL. We can observe that, among others, the following sequences belong to the
sequential semantics SeqSem(CGV) (%7 denotes sequential composition):

ol = (sl),
02 = (s3),

= (55,

i (o0
b= (53 s4),
o6 = (s5; 56)

9

As the telephone system is highly parallel, many derivation steps may occur concurrently.
In a sequential semantics, concurrency is derived from arbitrary interleavings, i.e., if two
actions @ and b may occur in any order, then they may occur concurrently. This means that
concurrency is the same as sequential independence. The notion of sequential independence
of graph grammars can be used to find out which steps “mean” the same action. In the
example, all steps s1 to s6 are different, but one can see that s1 and s4 (respectively s2 and
s3) mean the same action: the sending of a P-Digit(5) (P-Digit(4)) message to PHONE 12
(PHONE 52). Formally, to find out whether two steps are sequential independent or not we

2.2. Specification of the PBX System using Graph Grammars 19

have to try to prolongate the match of the second derivation until the graph where the first
rule was applied. If we succeed, the steps are sequential independent and may be performed
in the inverse order (and this means that they may also be performed in parallel). If not, the
steps are sequentially dependent, and may only be performed in this order.

Concurrent Semantics

The main idea of the concurrent semantics of graph grammars is to use causal indepen-
dence (instead of sequential independence) to describe concurrency. Roughly speaking, we say
that one step s2 is causally dependent of a step sl, written sl < s2, if sl creates something
that is needed for s2, i.e., , s2 can not occur if sl had not occurred before. Thus, we are not
anymore interested in sequences of steps, but in sets of actions related by a causal relationship.
(We use the term ‘step’ only for a unit of a sequential derivation, and the term ‘action’ as a
unit of a concurrent derivation.) A concurrent derivation is obtained from a sequential one
by abstracting out from the intermediate graphs of the sequential derivation. The basic idea
to construct a concurrent derivation is to glue all intermediate graphs into a graph C called
core graph of a derivation (because it represents the kernel of this derivation). A concurrent
derivation consists of an initial graph, a core graph and a set of rules, where the initial graph
and each rule are connected (via morphisms) to the core graph. An action consists of a rule
and the matches (morphisms) of the left- and right-hand sides of this rule into the core graph.
These matches are called pre- and post-conditions of the action, respectively. For example,
the sequential derivation o4 gives raise to the concurrent derivation x4, written o4 ~+ k4,
shown in Figure 2.8. Although in this example the concurrent and the sequential derivation
are quite similar, this is not always true. No matter how long a sequential derivation is, its
concurrent derivation always consists of one core graph, one initial graph (together with its
morphism into the core graph) and a set of actions (rules together with morphisms into the
core graph).

If we look at the concurrent derivation k4, we can not say which of the actions al or
a2 shall occur “first” (in a corresponding sequential derivation). This is because the pre-
and post-conditions of these actions do not overlap in the core graph, i.e., the images of
the pre- and post-conditions of these rules are disjoint. Moreover, k4 is also the concurrent
derivation of the sequential derivation &5, i.e., 05 ~+ k4. This stresses the fact that ¢4 and
ob represent in fact the same computation if we abstract from the sequential order. Let x6
be the concurrent derivation generated from 06 (06 ~ x6). In the concurrent derivation
k6, the pre-condition of action a6 overlaps with the post-condition of action a5 on the item
C-Digit(3) of the core graph, and this item was created by the action a5. This implies that
action ab is causally dependent of action a5, written b < a6, and thus there is only one
possible sequential order in which these action can be observed: ab;a6. Thus, the following
concurrent derivations are included in ConcSem(CGV) (“” denotes that two actions are
causally unrelated and < denotes causal dependency):

kl = (al),

k2 = (a2),

k3 = (ab),

k4 = (al, a2),
kD = (ab < ab)

With respect to the sequential derivations described before, here there is one derivation
less because 04 and o5 are represented by the same concurrent derivation (x4).

20 2. Parallel Composition and Unfolding of Graph Grammars: An Example

prel

%r CH %

F 12 carrier 0

TAB|2

|

Off £ Carrier

Figure 2.8: Concurrent Derivation x4

We observe that the core graph plays a role that is analogous to the role of the type graph
of a grammar: it is a static structure in which all rules and the initial graph find compatible
interpretations. But the core graph (as well as all rules and the initial graph of the grammar)
are already typed (over the type graph PBXType). Therefore a concurrent derivation may be
seen as a “doubly-typed” graph grammar (having the original type and the core graph as types
and where the core graph itself is typed over PBX Type). We will call this kind of grammars
doubly-typed graph grammars. The fact that a concurrent derivation can be considered as a
grammar gives an interesting view on the semantics of graph grammars: the behaviour of a
graph grammar GGG may be represented by a set of graph grammars (where each of these
graph grammars represents one concurrent derivation of GG). As the application of the rules
of one graph grammar may be non-deterministic, this raises the question whether it is possible
to describe the behaviour of a graph grammar by only one graph grammar (intuitively as a
suitable union of all graph grammars representing the concurrent derivations). Indeed, this
is possible, and this kind of semantics will be called unfolding semantics here.

Unfoldings Semantics

As concurrent derivations are obtained by gluing the intermediate graphs from sequential
derivations, they can not describe non-deterministic (conflict) situations explicitly, such situ-
ations are described by the non-existence of a derivation including the two “conflicting ones”.
In the example, k1 and x2 are not in conflict because there is a concurrent derivation, namely
k4, that contains both. But x1 and x5 are in conflict because there can be no concurrent
derivation containing both (due to the fact that both actions a1 and a5 delete the same item
E-Act from the core graph, and an item can be deleted at most once in each derivation).

2.2. Specification of the PBX System using Graph Grammars 21

The interplay between non-determinism and concurrency gives a very rich description of
the behaviour of a system. A well-accepted way to describe this interplay is by modeling a
system using a causal and a conflict relationships (as it is done in event structures [Win87a)).
The unfolding semantics of a system presented here is able to express these relationships
in a natural way. Moreover, these relationships are defined not only between actions but also
between items from the state graphs (this gives us a good basis for analysis of a grammar).

Graph grammars are usually cyclic, in the sense that the same rule may be applied
many times (each time in a different context). The idea of the unfolding is to construct a
grammar that represents all possible rule applications in all different contexts. The unfolding
is constructed inductively starting with the initial graph of the grammar and in which in each
step all possible applicable rules are applied to the results of the last step. As each item of
the core graph can be created by at most rule, the unfolding is an acyclic grammar (each rule
of the unfolding — that represents an application of a rule of the original grammar — can be
applied at most once). We will show that the unfolding constructed inductively is actually
the union of all concurrent derivations. The big advantage of the unfolding semantics with
respect to the concurrent semantics is that conflicts are described explicitly.

PBXIni

Ugy 2 % .
P, PBXr1 P.pd
$ 2 K > § 2 T
U A | [od * o]
. (a2)
:P,DJ:L PBXr1 :p.pJ;L
i
(&)
(26)

Figure 2.9: Part of the Unfolding of CGV

22 2. Parallel Composition and Unfolding of Graph Grammars: An Example

Figure 2.9 shows the (part of) the unfolding of the C'GV grammar that includes the
concurrent derivations k1 to k5. We can notice that there are only 4 actions (that are exactly
the actions involved in the concurrent derivations). From the overlappings of these actions in
the core graph, we can derive (among others) the following relationships between actions:

e Causal Dependency: based on overlappings of post- with pre-conditions of actions
on created/deleted items. (a5 creates an item that is needed by a6.)

ab < ab

e Conflict: based on overlappings of pre- with pre-conditions of actions on deleted items.
(al and a5 delete the same item, as al is in conflict with a5 and a6 depends on a5, al

in also in conflict with ¢6.)

al &5 45,01 & a6

Graph Grammars

In this chapter the basic definitions of Single-Pushout graph grammars[Lo6w90, Léw93], short
SPO graph grammars, will be reviewed for the case of typed graphs [Kor93, CMR96a).

For practical applications, often graphs consisting only of vertices and edges lead to very
low-level specifications of states (everything has to be coded into these two kinds of entities).
Therefore many efforts had been made enriching the concept of a graph. The most basic
enrichment is to add a label alphabet to a graph, over which vertices and edges may be
labeled. A more sophisticated extension is to use variables and terms of some algebraic
specification as attributes for vertices and edges. These kind of graphs are called attributed
graphs [LKW93], and are of great practical relevance, not only because the readability of
the graph grammar specification is increased but also because it reduces significantly the
number of rules that are necessary to specify some problem. Other possible extension is to
use different kinds of edges, like ,e.g., hyperedges [Hab92] or edges between edges [Low90]. As
we saw in the description of the PBX system (Chap. 2), graphs are very suitable to describe
types and their relationships within a system. Formally, this can is captured by the notion
of typed graphs [Kor93, CMR96a]. The basic idea of a typed graph is that, instead of a set
of labels, a graph (called type graph) is used as a label for another graph, and the labeling
mechanism, called typing here, must preserve the sources and targets of edges. Practically,
this has the advantage that some inconsistent states of a system are ruled out by the typing
(in)compatibility, i.e., the concept of typing offered by typed graphs is stronger than the
the one offered by labeled graphs. For example, if there is no edge between two vertices in
the type graph, there can not be a state of the corresponding grammar in which instances
of these two vertices are connected by an edge. This kind of restriction can not be done
directly by using labeled graphs (it must be required additionally). This kind of consistency
check is used, for example, in the PROGRESS system [Sch91] (based on a programmed
approach to graph grammars), where typed graphs have been successfully used for many
applications. Theoretically, the use of type graphs brings the advantage that instances and
types are represented in a uniform way. In this chapter we will show how this typing concept
can be used as a basis for relationships between different graph grammars (these relationships,
given by morphisms, will be defined in the next chapter). The theory we developed will be
based on graph grammars in which states are described by typed graphs and rules by typed
graph morphisms. Here we will use as type graph a simple graph (i.e., a graph consisting
of a set of vertices, a set of edges and source and target functions), but we believe that the

23

24 3. Graph Grammars

results can be generalized for other kinds of type graphs, for example, for attributed graphs
or hypergraphs.
The main aims, definitions and results presented in this chapter are:

e Definition of basic notions of graph grammars: typed graphs (Sect. 3.1), rules (Sect. 3.2),
graph grammars and their behaviour (Sect.3.3).

e Establishment of a relationship between type graph morphisms and correspondingly
typed graphs: this is given by a retyping construction (Def. 3.8) that turns out to be a
functor (Prop. 3.11). This is a very important result because it allows for a definition
of relationships between graph grammars that are induced by relationships between the
corresponding type graphs.

e Establishment of a relationship between type graph morphisms and sets of rules over
these types: this is given by a functor transforming rules with respect to one type into
rules with respect to the other type (Def. 3.17). Moreover, as rules will be translated up
to isomorphism, this allows for a representation independent definition of relationships
between graph grammars.

e Definition and discussion about the semantics of graph grammars (Sect. 3.3): here
we will present the basic idea of changes of states specified by graph grammars, that
are derivation steps. These can be combined sequentially, giving raise to a sequential
semantics for graph grammars. Recently, another kind of semantics for SPO graph
grammars was proposed in which the emphasis is put on describing the concurrency of
the grammar. This semantics is based on concurrent, rather than sequential, derivations
[Kor95, Kor96].

3.1 Typed Graphs

A graph G consists of a set V' of vertices and a set IV of edges connecting the vertices of V'
(this connections are expressed by total functions source,target : ' — V assigning to each
edge its source and target vertices respectively). A graph morphism expresses a structural
compatibility between graphs. This structural compatibility may be total or partial, given
by total and partial morphisms respectively. A graph morphism f : G — G’ from a graph G
into a graph G’ consist of two components: a function fyr mapping vertices of GG into vertices
of G' and a function fr mapping edges of (& into edges of (G/. These components must obey
some compatibility restrictions: every edge that is mapped by fr must be compatible with
the mapping of its source and target vertices by fy. Graphs can be seen as algebras with
respect to a signature having two sorts (vertices and edges) and two operations (source and
target functions from edges to vertices), and graph morphisms can be seen as (total or partial)
algebra homomorphisms. This view on graphs as algebras gave raise to the algebraic approach
to graph grammars [Ehr79].

We will use the Single-PushOut (SPO) approach to graph grammars, that is one of the
algebraic approaches. The basic concept of a rule in the SPO approach is described by a partial
graph morphism. The SPO approach was developed by Léwe in [L6w90, Léw93], and there it
was described using a category of graphs seen as algebras with respect to (special) algebraic
specifications and partial morphisms described by a total morphism from a subgraph of the
source graph. To keep this work more comprehensible, we will avoid speaking about algebras,

3.1. Typed Graphs 25

and will rather see graphs as tuples consisting of two sets (vertices and edges) and two total
functions (source and target of edges). Relationships between graphs will be expressed by a
pair of partial functions mapping vertices and edges that are weakly commuting with source
and target functions (in [Kor96] it was shown that using a pair of weakly commuting functions
yields the same category as the original definition of category of graphs and partial morphisms
in [L6w90]).

Definition 3.1 (Weak Commutativity) For a (partial) function f : A — B with domain
dom(f), let f¥ : A « dom(f) and f!: dom(f) — B denote the corresponding domain
inclusion and the domain restriction. (fY, f!) is called the span of f.

fY f! !
A <——dom(f)—B A——B
N i
—

N Y

A’ 17 B’ A 7 B
Given functions as shown above, where a and b are total, we write f'oa > bo f and say
that the diagram commutes weakly iff f'oao fY =bo f!. @)

Remarl{s.

1. If f is an injective function, its inverse is usually denoted by (f)~'. The inverse of the
domain restriction fV is an injective and partial function. In particular f = flo(fV)7!,
and thus ((fY)™1, f!) is a factorization of f.

2. If f and f' are total, weak commutativity coincides with commutativity.

©

The compatibility condition defined above means that everything that is preserved
(mapped) by the morphism must be compatible. The term “weak” is used because the
compatibility is just required on preserved items, not on all items.

We assume that the reader is familiar with basic notions of category theory [AHS90,
BW90]. Set-theoretical characterizations of all categorical constructions that we use can be
found in Appendix B.

The mathematical notation can be found in Appendix A. By default, morphisms are par-
tial, i.e., morphism denotes a partial morphism and total morphism denotes a total morphism.

With the notion of weak compatibility defined above, we can now define graphs and partial
graph morphisms.

Definition 3.2 (Graph, Graph Morphism) A graph G = (Vg, Eq, source®, target™)
consists of a set of vertices Vi, a set of edges Eg, and total functions source® and
target® : Eq — Vg, called source and target operations respectively. x € G denotes an
item © € Vg U Fg. A graph is finite if Vg and Fg are finite.

A (partial) graph morphism g : G — H from a graph G to a graph H is a tuple
g = (9v, 9g) consisting of two partial functions gy : Vg — Vi and gg : Eq¢ — Ey which are
weakly homomorphic, i.e., the diagrams below commute weakly.

26 3. Graph Grammars

9E 9E
Fo——=Fy Eq——FEpy
sourceGI > IsourceH tar’getGI > ItargetH
Vo —=Vr Vo —=Vu

A morphism ¢ is called total, injective, surjective, inclusion or empty if both components
are total, injective, surjective, inclusions or empty functions, respectively. A graph G is a
subgraph of H, written G C H if there is an inclusion g : G — H.

The category of graphs and partial graph morphisms is denoted by GraphP (identities
and composition are defined componentwise). The subcategory of GraphP consisting of all
graphs and total graph morphisms is denoted by Graph. @)

Remarl{s.

1. Note that if commutativity instead of weak commutativity would be required, a mor-
phism would not allow that an edge is not mapped if its source or target vertices are
mapped.

2. If g is an inclusion it is denoted by ¢Y. Like partial functions, each partial graph
morphism f has a span representation (fV, f!) where the components are componentwise
domain inclusions and restrictions, and ((f¥)™!, f!) is a factorization of f.

©

Example 3.3 (Graph,Graph Morphism) The graph shown in Figure 3.1 is given by G =
(V, E, source,target), where V = {D7 D, , 73,4}, E ={a,b,c,de, f, g}, source =
{a — DJ) — D,C — 7d — 3e — D,f — 7g — 4}, target = {a — D,b —
D,C|—> D,d»—>,e»—>,f»—> D,g|—>}.

d c a
3~ pDigt [~ =
\ f
C-Digit
J
4

Figure 3.1: Graph

Graphical Notation: To simplify the graphical representation, we will usually only write the

name of an edge in the picture if we need to differentiate it from another one (and the information
about source and target is not enough) or if we want to make some comment on this edge.
To differentiate vertices with the same graphical representation we will usually index them with
numbers.

3.1. Typed Graphs 27

Figure 3.2 shows two mappings (f and ¢). The mapping f is a (partial) graph morphism.
The mapping ¢ is not a graph morphism because the source vertex of edge ¢ is not mapped and
source and/or target of the edges a and b are not mapped compatibly, i.e.,

fv (source®(c)) = undef # U_ source” (gp(c))
fv(target®(a)) = [, + [eoa], = targetG/(fE(a))
fv (source® (b)) = Dl #+ Dz = source (fg (b))
fv(target®(b)) = undef # U_ target™ (fu(b))

G G

la —b% la —b%
= -
Cc

v V
v A
V
o | == Lo [=
1 1 :

5 5 V.

P-Digit

Figure 3.2: f: Graph Morphism g: Not a Graph Morphism

Graphical Notation: As the mapping of edges must be compatible with the mapping of vertices
we will sometimes omit this mapping (when it is clear from the context). Items that are preserved
via a morphism (are in the domain) will be indicated by corresponding indexes in source and target
graphs (if there is no confusion, these indexes are omitted). @)

Theorem 3.4 The categories Graph and GraphP have limits and colimits and the inclu-
ston functor T : Graph — GraphP preserves colimits and pullbacks. @)

Proof. Tt is well known that Graph has limits and colimits. The proof that GraphP has
limits and that Z preserves pullbacks can be found in [L6w90]. The proof that GraphP has
colimits can be found in [Kor96], where it is also shown that Z preserves colimits. The proof
that GraphP has limits and that Z preserves pullbacks can be found in [LEw90]. Vv

Remark. The inclusion functor I does not preserve initial objects, and therefore it does not
preserve arbitrary limits (in particular, products are not preserved). @)

28 3. Graph Grammars

Definition 3.5 (Typed Graph) A typed graph G' is a tuple GT = (G,t%,T) where &
and T are graphs and t© : G — T is a total graph morphism.

Usually we will use x € GT meaning that z is a vertex or an edge of (.

A typed graph morphism g¢' : GT' — HT? between typed graphs G'! and H*? is a
pair of graph morphisms g' = (g,t) with g : G — H and t : T1 — T2 such that the diagram
below commutes weakly in GraphP, i.e., tot%ogY =t" o g!.

G—-m

tGI > ItH

T1 —t>T2

A typed graph morphism is called an injective/surjective/total if both components are
injective/surjective/total. A typed graph automorphism is an isomorphism f*:GT — G7
that is different from the identity on G7T.

The category of typed graphs and typed graph morphisms is denoted by TGraphP. If
we fix one type graph T, a subcategory of TGraphP denoted by TGraphP(T), is obtained
having as objects all typed graphs over T' and as morphisms all morphisms of TGraphP in
which the type component is the identity. The restriction of the categories above to total
morphisms are denoted by TGraph and TGraph(T), respectively. @)

Notation: If it is clear from the context, we will denote a typed graph G7 by G, and a
morphism 197 = (f,idr) in TGraphP by f7.

Example 3.6 (Typed Graph, Morphism) Let us consider the graph 7 shown in Figure 3.3
as the type graph of our system. Then an actual graph [is an instance of this type graph, i.e.,
a graph in which possibly many occurrences of each type occur. To describe the relationship
between an instance I and the type graph 7', we use a total graph morphism ¢! : I — T. This
morphism describes the typing of all vertices and edges of the instance graph, and assures that the
instance graph is consistent with respect to the type graph (via the compatibility requirements of
morphisms). A typed graph will usually be denoted by I7, where I is the instance graph having
T as type.

Graphical Notation: Usually we will indicate the typing morphism by giving the same graphical
symbols to vertices in the instances and in the type graph.

As graphs represent states, it is natural that state changes are represented by relationships
between graphs. Again, we may use graph morphisms to express this relationships. In this case,
we require that not only vertices and edges are mapped compatibly, but also that the typing

[]

information is preserved. This means, for example, that vertex of type can not be mapped via

0

Figure 3.4 depicts a typed graph morphism f7 between the (typed-) graphs I and I'T. This

a morphism to a vertex of type

morphism deletes DQ, and the corresponding edges (i.e., these items are not in the domain
of f). Phone Dl, N and are preserved by the morphism (are in the domain of f).

Graphical Notation: As it is clear from the context, we will usually just indicate the existence
of graph morphisms by an arrow between the corresponding graphs. When necessary, items in the

3.1. Typed Graphs

29

|
3% P-Digit [— s
C-Digit B
4
- .:ﬁ : .
3—| pDigt [~ .
\ .
41— p.Digit -
C-Digit
4T2 o
Figure 3.3: Typed Graph IT
I I’
3~ poigt [; 3= pDigt [~
f
C-Digit 45— p.Digit
4
f ot
o
T
83— poigt [| f/——=
4— p.pigit \ _ /
C-Digit
.

Figure 3.4: Typed Graph Morphism T

30 3. Graph Grammars

source and target of the morphisms will get indexes to avoid confusion. We will also often omit
the type-graph if the mapping of instances into it is clear. @)

The categorical constructions in the categories of typed graphs that are relevant for this
work are given in Appendix. B.4.

In the next sections, we will be interested in relationships between graph grammars that
may have different type graphs. Thus it is important to define how a graph (morphism) with
respect to one type can be converted to a graph (morphism) with respect to another type
based on a type morphism. Roughly speaking, the conversion of a typed graph G17" into a
typed graph G272 based on a type graph morphism f: 72 — T'1 yields that G2 is the biggest
subgraph of G'1 whose elements are typed over elements of the type graph T'1 that are in
the range of f (in fact, if f is not injective, G2 may not be a subgraph of G'1 because some
elements of GG1 may be splited in G2).

The retyping of graphs and morphisms must have some properties such that the preserva-
tion of derivation steps (and sequences) by graph grammar morphisms can be assured. The
kind of retyping presented here is similar to the one presented in [CELT96a] for the DPO-
approach. The basic differences are that the construction given below is a functor between
categories of typed graphs and partial morphisms and that the morphism that induces this
functor is a partial morphism, instead of a span of total morphisms as in [CELT96a]. In
[CH95, HCEL96] a partial morphism was also used (in the DPO context) to induce the re-
typing of graphs, but there a partial morphism in the opposite direction as the one presented
here was used. An important remark is that the retyping functor induced by a morphism is
contravariant with respect to this morphism. This means that the retyping is done in fact in
the opposite direction from the graph morphism that induced the retyping. The advantage
of this kind of retyping is that it allows to split types (this splitting allows for the definition
of suitable products in the category of graph grammars — this will be presented in Chap. 4).

The definition of the retyping construction will be based on pullbacks in the category
GraphP. Pullbacks are only unique up to isomorphism and to define a deterministic con-
struction we need exactly one result. Thus, we will use a “choice of pullbacks” [CELT96a],
but without assuming associativity. A choice of pullbacks means that we take a concrete
pullback for each pullback diagram. For the rest of the constructions, it is not relevant which
is the concrete choice that was done to define the retyping, but that one was done. Therefore
we will not take care of defining concretely such a choice of pullbacks.

Definition 3.7 (Choice of Pullbacks) A choice of pullbacks in a category Cat that
has pullbacks is a fixed pullback PB(G3 % G1 L G2) = (G1 Laus G2) for each diagram
3% c1 L G2) in Cat. o

(eneral Assumption 3.1 Let PB be a choice of pullbacks in the category GraphP. @)

Remark. The pullbacks that we will construct in categories of graphs will be always from
total graph morphisms. The construction of pullbacks in Graph is done componentwise (see
Appendix B). In [L6w90] it was shown that the category GraphP has pullbacks and that the
inclusion functor 7 : Graph — GraphP preserves pullbacks. Although the pullbacks here

3.1. Typed Graphs 31

will be always of total graph morphisms, we will use the category GraphP because in some
situations it is necessary to find an universal morphism induced by the pullback in which one
of the comparison morphisms is partial. @)

Definition 3.8 (Retyping Functor) Let f : T2 — T'1 be a morphism in GraphP. Then
there is a functor T; : TGraphP(T1) — TGraphP(T2), called retyping functor, induced

by f.

T1 TGraphP(T1)
T
T2 TGraphP(T2)

T; is defined for each object (G1,t“!,T1) and morphism g¢'* : G1 — H1 in
TGraphP(T1) as

e Objects: T;(G1,t9Y, T1) = (G2, f¥ o t“1* T2), where (1) below is a choice of pullback in
1G . - 1
Graph, ie, (G1 ety dom(f)) = PB(G1 Sl dom(f)).

Gl

Gl——=T1
f!Gl (1) If!
G2 Iﬁ dom(f)(f'—> T2

e Morphisms: T;(g171) = g272, where g2 = g2!0 (g27)7! is defined as follows: Let (3) be
the pullback in GraphP of ¢V : dom(g1) — G1 and 1% : G2 — G'1 where the pullback
morphism g2V : dom(g2) — G2 is an inclusion. The morphism ¢2!: dom(g2) — H2 is
obtained as the universal morphism induced by pullback (2).

dom(g1)

gl' \
gl
+G1

H1
s
fre

G1

)
J1e (1) £ S
dom (g2) (2)
G2 22 i H2
x 1 %

dom ()

32 3. Graph Grammars

Remarl{s.

1. The morphism ¢2Y may be chosen as an inclusion because by pullback properties it
shall be injective and total, and thus, an inclusion up to isomorphism.

2. The morphism ¢2! is defined in the following way: As (3) is a pullback we have g1¥o f1* =
f1%0¢2". This implies that t“ 0 g1V o f1* = %10 f1%0¢2Y. As g1T" is a morphism and
(1) commutes we obtain that t7'ogllo f1* = flot%20g2". Therefore as (2) is a pullback
there is a universal morphism ¢2!: dom(g2) — H?2 such that f! o g2! = g1!o f!1* and
tH20 92! =192 0 g27. The latter assures that 272 is a morphism in TGraphP(T2) (it
assures the weak commutativity requirement).

©

This retyping will be illustrated in the following example.

Example 3.9 (Retyping Construction) Figure 3.5 shows three examples of retyping. The
basic idea is that types that are in 72 but not in T'1 do not affect the translation (see example
(1)), instances of types that are in 7'1 and not in the image of f are forgotten (see example (2)),
and instances of types that are duplicated are also duplicated (see example (3)). @)

G1 T1 G T G T1

L~ =

G2 T2 G2 T2
T > WP ————— =

D))

Figure 3.5: Retyping

Before we show that 7¢ is a functor, we will show that gl o F18 = f1H o g2,

Proposition 3.10 Let g272 = T;(g1T1). Then the square (5) below commutes and square
(4) is a pullback. If g1 is total then (5) is also a pullback. @)

3.1. Typed Graphs 33

dom(gl) G1 & H1

gl¥ g1! 161 +H1

g1 1
! ! 92

f1o dom(g2) F1H G2 T H?2
g2" g2! \ {/
GQTHQ Gl tHte

G2 2 dom(f)

Proof. First we will show that (5) commutes. Assume that glo f!1% # f!7 0 g2. Then we have
three cases:

1. Jel € G2: glo f1%(el) = undef and f!7 0 g2(el) = €2
As f19 is total, there is €3 = f!%(el) € G1. Then as gl o f!%(el) = undef, we must
have that g1(e3) = undeft, i.e., €3 ¢ dom(gl). As f1H o0 g2(el) = €2, €2 € dom(g2).
As (2) is a pullback and g1V is an inclusion, there must be €3 € dom(g1). But this
contradicts the fact that g1(e3) = undef.

2. Jel € G2:glo f1%l) = €2 and f! 0 g2(el) = undef
As f1 is total and f! o g2(el) = undef, el ¢ dom(g2). As glo f1%(el) = €2, there
is €3 € G'lsuch that f1%(el) = e3 and g1(e3) = €2. This means that €3 € dom(g1). As
(2) is a pullback, there must be el € dom(g2), but this contradicts el ¢ dom(g2).

3. Jel € G2:glo f1%el) = €2, f17 0g2(el) = €3 and €2 # €3
In this case el € dom(g2) and f!%(el) = e4 € dom(g2). As (2) is a pullback, f19*(el) =
ed. As (3) must commute fI o g2!(el) = g1!(e4). By definition of g1 and g2 we have
that g2(el) = ¢2!(el) and gl(e4)! = gl(ed) if el and e4 belong to the corresponding
domains. Therefore €2 = e3.

As (3) and (1) are pullbacks, (3)+(1) is also a pullback. As g17!is and ¢g27? are morphisms
in TGraphP(T1) and TGraphP(T2), we have that t%1 0 g1V = tH#! 0 g1! and t%1* 0 g2 =
tH1% o g21. This implies that (3)+(1)=(4)+(2). Then as (4)4(2) and (2) are pullbacks and
since (4) commutes, (4) is also a pullback.

If g1 is total then g1! = ¢g1. This implies that g2! = ¢2 and as (4) is a pullback, (5) is also

a pullback in this case. Vv
Proposition 3.11 7; is a well-defined functor. ©)
PrOOf.

1. Ty is well-defined: Obviously, T¢(G1) is a typed graph in TGraphP (T2) (G2 is a graph
and the typing morphism is total). As discussed in the remarks of Def. 3.8, g2"% s a
morphism in TGraphP(T2).

34

3. Graph Grammars

2. T; preserves identities: Let g1T! = idngl. In this case, G2 = H2 and f!¢ = fIf

because they are pullback object and morphism of the same diagram. As the identity
is total, dom(idg1) = G'1 and thus an isomorphism. Isomorphisms are inherited under
pullbacks, what implies that dom(g2) = GG2. Therefore the only possible morphism ¢2!
such that t72 0 ¢2' = t92 0 idy and f1% 0 ¢2! = idg; o 19 is the identity of G2.

. Ty preserves composition: Let g™ 1T — H1TV and A1TY 2 HITY — 1177 be

morphisms in TGraphP(T1) and (hl o g1)T" be their composition (by definition,
obtained componentwise). Let T;((hlogl)T1) = kT2 T;(h1TY) = h2T? and T;(g17!) =
272, Then we have to show that k72 = h2720 ¢272. As the composition of morphisms
is defined componentwise in TGraphP (T2), it suffices to show that k = h2 0 ¢2.

/dom (el \
a1 <—)d0m gl) g)dom (h1) A
f!GT (1) I ®3) Tf'H (2) (4) Tfll
G2 -<—3d0m g2) 1 o)dom (h2) |—>]2

2!
\J /
dom(k

By the definition of the retyping construction we have that (1), (2), (3) and (4) are
pullbacks (see Prop. 3.10). As k is obtained by retyping g1 o k1, squares (5), with tips
in dom(gl), dom(g2), dom(hlogl) and dom(k) (see below), and (6), with tipsin I1, 2,
dom(hlogl) and dom(k) are also pullbacks. Square (7) is a pullback because this is the
characterization of the domain of a composed function. Based on pullbacks (1) and (4)
we can find universal morphisms ul : dom(k) — dom(¢2) and u2 : dom(k) — dom(h2)
such that (8) and (9) commute. As g2¥ and kY are inclusions and (8) commutes, u1 is
also an inclusion. As k!is total and (9) commutes, u2 is also total. As (3)—(7) commute
(see diagrams above and below), (10) also commutes. Then as (5)4(7) and (2) are
pullbacks and (10) commutes, (10) is also a pullback. The facts that (10) is a pullback
and that kY is an inclusion imply that dom(k) = dom(h2 o0 g2). As (8), (9) and (10)
commute we conclude that k& = h2 o ¢2.

3.1. Typed Graphs 35

dom(hlo gl)

dom

dom(gl

\\ “

dom 92) dom(h2)

_/

H2

v

Proposition 3.12 states that the retyping functor preserves special pushouts (the ones that
are considered as derivation steps). This fact will be used to prove that morphisms between
graph grammars induce a translation of derivations (this will be shown in Sect. 3.3).

Proposition 3.12 Let r = (r17') : L1 — R1 and m = (m17Y) : L1 — G1 be morphisms
in TGraphP(TG1TY) where r1 is injective and m1 is total, and (1) below be a pushout in
TGraphP(T1) of r and m. Let f : T2 — T1 be a typed graph morphism. Then (2) is a
pushout in TGraphP(T2).

Te(r
"> R1 T —" (R

ml 1) lm ﬂ«(m>l (2) lﬂm'

G H1 THCE) Ty (1)
fT’
©)

Proof. See Appendix C. vV

Proposition 3.13 states that the retyping construction is (up to isomorphism) compatible
with the composition of morphisms in the category GraphP. This is important for the
well-definedness of the category of graph grammars (see Sect. 3.3).

Proposition 3.13 Let f:T1 — T2 and g : T2 — T3 be morphisms in GraphP. Then

Tgor = Tg07T;

36 3. Graph Grammars

Proof. See Appendix C. vV

A stronger statement would be 7 or = 7, 0 Ty. This would require that the choice of
pullbacks (Def. 3.7) on which the retyping functor is based is associative. As it is not clear
whether there is a choice of pullbacks that is associative, we prefer to skip this requirement.

3.2 Rules

Graphs may be used to represent states of a system. In the graph grammar formalism, state
changes are specified via rules. Rules describe a state change in the following way: the left-
hand side describes what has to be present in a state such that the rule can be applied,
and the right-hand side describes the changes that occur in the state via the application of
the rule. The relationship between left- and right-hand sides expresses the basic operations
involved in a change of state, namely preservation, deletion and addition of items by the rule.
In the SPO approach to graph grammars, the relationship between left- and right-hand sides
is described by a (partial) morphism.

The idea of using a partial morphism to describe a change of state is quite simple. Let
r : L. = R be a partial morphism. The basic operations involved in a change of state are
described as follows:

Deletion : Everything that is in I and is not mapped to R via r is deleted.
Addition : Everything that is in R and is not in the range of r is created.
Preservation : Everything that is mapped via r is preserved by the rule.

We will put two restrictions on rules: the first restriction is that rules shall not iden-
tify items and the second is that rules shall delete something. Although these restrictions
were motivated by theoretical reasons (some of the definitions/results would not be achieved
without these restrictions), they are also reasonable from a practical point of view. The first
restriction is formalized by requiring that rules must be injective. This allows rules to be
“inverted”, what is a necessary property for the construction of the concurrency semantics
of grammars and for the construction and interpretation of the unfolding of grammars. The
restriction to injective rules does not represent a strong limitation for many practical appli-
cations. The main purpose of the graph grammars that we have in mind in this thesis is the
specification of concurrent and reactive systems, and not the generation of (graph) languages.
Examples of reactive systems are object-oriented systems, actor systems and other systems
in which message passing is the basis for calling and performing operations. Practically, a
reaction to some message is often specified by deleting the message and doing the required
actions. Non-deleting rules in this context would mean that (if the message requiring a reac-
tion is not deleted) there may be infinitely many (isomorphic) reactions for the same action.
If we then think that this system is concurrent, all these reaction are not in conflict with
each other (because nothing is deleted) and may thus occur in parallel. Theoretically, if we
are interested in true-concurrency semantics, non-deleting rules are problematic because they
lead to interpretation problems with respect to the causal dependencies between actions of a
grammar (also in other formalisms, e.g., Petri nets, the existence of transitions without pre-
conditions is forbidden in order to obtain true-concurrency semantics models as unfoldings or
event structures).

3.2. Rules 37

Definition 3.14 (Rule) Let T be a graph. Then a rule with respect to T is a morphism
v LT — RT in TGraphP(T) iff

1. r* is injective and
2. rT is consuming (not total).

The class of all rules with respect to one type graph is denoted by Rules(T). If we replace
the second requirement by

2'. r is not an isomorphism

we obtain a general rule. The class of all general rules with respect to a type graph T is
denoted by G'Rules(T). Obviously, there is an inclusion ¢ : Rules(T') — GRules(T). The
sets of isomorphism classes of rules and of general rules with respect to a type graph T are
denoted by IRules(T) and IGRules(1). The function ¢ is defined for all r € Rules(T) as

c(r) = [r]. The composition of gcoi = gioc is denoted by ir.

Rules(T)% GRules(T')

IRules(T);m} IGRulesz(T)

©

Remark. General rules were defined for technical reasons. For the definition of graph gram-
mars, only rules are allowed, but the set IG Rules(T') of isomorphism classes of general rules
is used to define the morphisms between graph grammars. @)

Example 3.15 (Rule) The rule described in Figure 3.6 deletes the and 4, vertices, preserves

the PHONE and the CENTRAL and creates a and a 4; vertices (obviously, the corresponding
edges are also deleted/preserved/created). The type graph of this rule is the graph 7" of Figure

33, o
L R
4~ poigt [| fF——= -_——
C-Digit
!
%

Figure 3.6: Rule

Definition 3.16 (Subrule) Let r1 : L1 — R1 and r2 : L2 — R2 be rules over type T.
Then rl is a subrule of r2, denoted by r1 C" r2, iff there are total and injective morphisms

38 3. Graph Grammars

ir, : L1 — L2 and ip : R1 — R2 such that the diagram below is a pushout in TGraphP(T)

11— Rl
iL\[\ PO JAZ'R
L2 TRQ

and the safety condition below is satisfied by iy, and iRg.

(Safety Condition) A total and injective morphism iy, : L1 — L2 satisfies the safety
condition ifl for all element e € L2 : if t*2(e) € rng(t™!) then there exists p € L1 such that
ir,(p) =e.

Two rules r1 and r2 are isomorphic, denoted by r1 = r2, if r1 C” r2 and iy and
ir are isomorphisms. The pair (idy,idg) is called the rule-identity. Let r1 C" rl using
isomorphisms iy, and ig, then the pair (iy,tr) is called rule-automorphism if (i, ir) is not
the rule-identity of r1. We denote by [r1] C¥ [r2] the extension of the subrule relationship to
isomorphism classes of rules. @)

Remarl{s.

1. The safety condition assures that L2 does not contain any element that has the same
type as an element in the image of iy, and is not in the image of 1y,.

2. The relation [r1] C? [r2] is well-defined because if 11 C" 12 and r2 = r2' then r1 C" 12’
because total and injective morphisms compose, the composition of pushouts is again a
pushout (if r2 =2 r2' then the diagram above is trivially a pushout) and the condition
on elements is transitive.

3. We will sometimes use the notion of a subrule when considering general rules or even
isomorphisms.

©

Using the construction of sets of (isomorphism classes of)) rules over some type, we can
define a functor called Rules functor. The idea is to associate with each type graph its set
of rules and with each type graph morphism the corresponding translation of rules (given
by the retyping functor). As the retyping of graphs and morphisms is done in the opposite
direction of the direction of the type graph morphism, the rules functor will be a contravariant
functor. That is, it transforms objects and morphisms from the dual (or opposite) category
of the category GraphP, called GraphP®FY into objects and morphisms of SetP. The
category GraphP®F has the same objects as GraphP and, except for the direction, the
same morphisms of GraphP (see Appendix B).

Definition 3.17 (Rules Functor) IGRules extends to a functor R : GraphP°F — SetP,
defined for all objects T1,T2 and morphism fOF : T1 — T2 in GraphP©°F as follows

e Objects: R(1T'1) = IGRules(T1)

3.2. Rules 39

e Morphisms: R(f) = Ry : IGRules(Tl) — IGRules(12) is defined for all [r] €
IGRules(T'1) as
T+(r)], if T¢(r) is not an isomorphism,
Rf([f‘]):{[f()] £(r) p

undef, otherwise

©

Proposition 3.18 R is well-defined. @)

Proof. By definition, R(T'1) is a set and R(f) is a partial function. If f is the identity then,
R(f)([r]) = [Ts(r)] = [r] for all [r] € IRulest(T'1) by the definition of 7; and the fact that
applying 7 to each general rule 7177 yields a general rule 7272 such that r1 2 12 (Lemma
C.2). Let f:T1 — T2 and g : 72 — T3. By Prop. 3.13 we have that 7,0y = 7, 0 7;.
Therefore [Tyor(r)] = [T, 0 T4(r)]. Vv

Proposition 3.19 Let fO7 : T1 — T2. Then R; preserves subrules, that is if [r1],[r1’] €
dom(R;) and [r1] CF [r1'] then R;([r1]) CF R;([r1]). e

Proof. By the definition of subrules (Def. 3.16) there are total and injective morphisms iy,
and ip connecting the left- and right-hand sides of r1 and r1’ such that the square obtained
this way is a pushout and the safety condition is satisfied. Lemma C.1 assures that there
are total and injective T;(ir) and T;(ir) between the corresponding retyped rules. Moreover,
as Ty is a functor, the translated square commutes and Prop. 3.12 assures that it is also a
pushout (because iy, is total and r1 is injective). As the safety condition is satisfied by ¢L and
1R and the retyping yields exactly the translation of the source and target graphs of ¢L and
iR (without any other elements), we conclude that 7;(iz) and T;(ir) also satisfy the safety
condition and thus R ([r1]) CF R;([r1']). vV

Rules can be combined with each other, giving raise to more complex rules. There are
many ways to combine rules, giving raise to parallel, amalgamated, synchronized, concurrent
rules (see [EHKT96, CMRT96b] for an overview). Here we will present a slightly different
approach to the construction of parallel and amalgamated rules. This difference arises from
the fact that we here have a different motivation for these constructions, as will be explained
below for the case of parallel rules.

The idea of the construction of a parallel rule from rules r1 and r2 is that the resulting
rule r1 + r2 shall be able to simulate the effect of r1 and r2 acting in parallel. Standardly, a
parallel rule is constructed based on rules of the same grammar (and thus having the same
type), and the resulting rule has also the same type as the component rules. We are mostly
interested in composing graph grammars, and this brings the necessity to compose rules that
may belong to different grammars (and thus have possibly different type graphs). Like the
standard construction of parallel rules, the construction presented here can also be seen as a
disjoint union of rules and therefore we will call it also parallel rule. To make a distinction,
we will use a different notation: we write r1||r2 instead of the standard notation r1 4 r2.

Definition 3.20 (Parallel Rule) Let 171 : L17' — R1TY and r272 : 1272 — R272 be
rules with respect to tvpes T1 and T2 respectively, and T be the coproduct of T1 and

40 3. Graph Grammars

T2 in GraphP (see Appendix B.3). Then the parallel rule of r17" and r272, denoted by
r17Yr272, is the morphism in TGraphP

r1T1Hr2T2 LT s RT

where LT is the coproduct of L17! and L27% in TGraphP (see Appendix B.4), RT is the
coproduct of R1T" and R2"? in TGraphP, and r1T1Hr2T2 is the universal morphism induced
by the coproduct of left-hand sides.

r17T1

R11!

T2 TQTZ)\“R T2
il L2 R2
25 2R

T RT

r1T1Hr2T2

LlTl

If we fix a coproduct T of type graphs T'l and T2, we denote by rlTIHTrQTQ the parallel rule
using this fixed type graph. @)

Example 3.21 (Parallel Rule) Consider the rule r2 in Figure 2.2. The result of constructing
the parallel rule 72||r2 is shown in Figure 3.7. The type graph of the parallel rule consists of two
disjoint copies T'1 and T2 of the type graph of Figure 2.1. The mapping into this type graph is
indicated by corresponding indices on the elements of the left- and right-hand side of the parallel
rule. This parallel rule describes a situation in which there are two independent PBX systems and
that messages (in this case digits) from phones belonging to different centrals happen in parallel.
Moreover, as the type of the parallel rule is the disjoint union of the types of the component
rules (7'1 and 7'2), there can be no connections between items from these two type graphs in
the resulting type graph. In the example, this means that the two PBX systems that were put
together are completely unconnected to each other (there can be no communication from phones
belonging to different centrals). In Def. 3.23 another way of composing rules that allow such

connections will be presented. @)
J—
ri T1
Pdr? P-Digit [=
T1 T1
1 P
r2||r2 A coige |
J—
P71 poigt [> T2 2
T2 T2
Pd— —
C-Digit
7| oo |,

Figure 3.7: Parallel Rule

Proposition 3.22 The parallel rule is well-defined. ©)

3.2. Rules 41

Proof. Coproducts in TGraphP are constructed componentwise in GraphP. As the T was
constructed as a coproduct, LT and R”T are well-defined. Moreover, this implies that the type
component of the parallel rule is idy. Therefore r171||r272 is a morphism in TGraphP(T).

Now we have to show that r171|r272 is injective and consuming.

1. Injectivity: Follows from injectivity of ilg, i2g, r17" and r272.

2. Consuming: Follows from the consuming property of the component rules from the
definition of the parallel rule as the corresponding universal morphism.

v

Now we will define the composition of two rules with respect to a third rule. This kind
of composition is usually called amalgamated rule [BFH87]. Again, here we will consider
amalgamation construction of rules of different grammars. The relationships between the
interface rule and the rules to be composed will be described by total and injective (typed)
graph morphisms. It would be possible to define more general amalgamated rules, but for
the purposes of this paper, only this kind is necessary.

Definition 3.23 (Amalgamated Rule) Let r07° : L07° — R0TC, r171 : L1701 — R1T!
and 1272 : 1L27? — R2T? be rules with respect to types T0, T1 and T2 respectively. Let
S D070 — 1Tt 1t ROTO — R1TL) 2120 L0T0 — [272, f212 : ROTO — R2T2 be total
and injective typed graph morphisms such that the squares (1) and (2) in the diagram below
commute. Let T be the pushout of t1 :T0 — T1 and 2 : T0 — T2 in GraphP.

Loro——" ROTY
f2
ﬁx\ (2) {\ R
ng| T pgre 2 R21?
! {(1) [flﬁi
LlTl\rl\Tl[RlT\
LT R

7,1T1 ”rOTO 7,2T2

Then the amalgamated rule of r1 and r2 with respect to r0, denoted by r17|,oror272,
is defined as the morphism in TGraphP(T)

r1Y,oror2t? . LT — RT

where LT is the pushout of f11' and f2!! in TGraphP, RT is the pushout of f14} and f243
in TGraphP, and r17!|[,oror27? is the universal morphism induced by the pushout of the
left-hand sides of the rules.

If we fix a pushout object T of t1 and t2, we denote by rlTlﬂzOTOrQTQ the amalgamated
rule using this fixed type graph. @)

Example 3.24 (Amalgamated Rule) Consider the rules r2, Pr2.1 and Cr2 of Figures 2.2,
2.3 and 2.4. It is easy to see that the rule r2 is included in both Pr2.1 and C'r2,i.e., the type

42 3. Graph Grammars

graph of 72 is included in the other two and the left- and right-hand sides of r2 are also included
in the corresponding left- and right-hand sides of Pr2.1 and Cr2. To construct the amalgamated
rule we can first construct the resulting type graph by gluing the type graphs of Pr2.1 and Cr2
along the type graph of r2. The resulting type graph can be seen in Figure 2.5. The we do the
same procedure with the left- and right-hand sides of the rules, giving raise to the rule PBXr2.1
in Figure 2.6. This amalgamated rule, denoted by Pr2.1||,,Cr2, describes a synchronization
between the PHONE and CENTRAL components: the PHONE can only send a digit message to
the CENTRAL if the CENTRAL is waiting for it. @)

Proposition 3.25 The amalgamated rule is well-defined. ©)

Proof. Pushouts of total morphisms in TGraphP are constructed componentwise in
GraphP (see Appendix B.4). As the T was constructed as a corresponding pushout, L7
and RT are well-defined. Moreover, this implies that the type component of the amalga-
mated rule is idy. Therefore r17|| oror27? is a morphism in TGraphP(T). Now we have
to show that r171||,gror27? is injective and consuming.

1. Injectivity: Follows from injectivity of f14, f213, 7070, 171 272 from the definition
of the amalgamated rule as a universal morphism, and from the fact that injectivity is
inherited from pushout morphisms in Graph.

2. Consuming: Follows from the consuming property of the component rules and the
componentwise definition of the parallel rule.

v

We just showed how to compose rules with and without an interface rule. Next we will
define how to split (decompose) a rule according to a given splitting of its type. This will
be done for splitting a type into two disjoint types, called parallel decomposition, and for
splitting a type into two types and an interface, called amalgamated decomposition of rules.
For example, if we decompose a parallel rule with respect to the original types, we get again
the component rules (up to isomorphism). Depending on how the items of left- and right-
hand sides of the rule are typed, it can be that we do not get two rules when we decompose a
rule with respect to two types. But this decomposition of a rule always gives raise to at least
one rule. This is very important for the proof that the category of (typed) graph grammars
has products (Theo. 4.16), and that these products will be shown to correspond to a parallel
composition of (typed) graph grammars (see Sect. 4).

Definition 3.26 (Parallel Decomposition of Rules) Let T'1 AT L27T2bea coproduct
diagram in GraphPand r € GRules(T). Then the parallel decomposition of r with
respect to T'1|T2 is defined as

decomprryra(r) = (Ta (), Tior)

3.2. Rules 43

L1 Rlc_ . , oL2 R2
i a1 (L2 i2°
tLl tR2
T1 L . R T2
tL th
t1 2
T

©

Notation: When it is clear from the context the decomposition decompry|ro(r) will be
denoted by decomp(r).

Remarl{s.

1. By the definition of the retyping (Def. 3.8), the four squares described by (Li,T, L, T,
(Ri,Ti,R,T), for i = 1,2, are pullbacks (because the coproduct inclusions are total).

2. The parallel decomposition is the inverse (up to isomorphism) of the parallel composi-
tion. This is assured by Lemma C.3 (see Appendix C).

©

Example 3.27 (Parallel Decomposition of Rules) Consider the rule r* in Figure 3.8. We
want to decompose this rule with respect to to the decomposition of the type T into T'1 and
T2. To obtain the component with respect to T'1 we just have to remove from r all items whose
types are not in T'1, in this case, we remove the CENTRAL from the left- and right-hand sides of
r and obtain r1. r2 is obtained analogously. In this case, the result of the parallel decomposition
is decompry|r2(r) = (r1,72). Note that r2 is an isomorphism and thus not a rule. @)

Proposition 3.28 Let (r1,72) € {decomprypy(r)|r € GRules(T)}. Then exactly one of the
following cases is true:

1. r1 € GRules(T'1) and r2 is an isomorphism;
2. r2 € GRules(12) and rl is an isomorphism;

3. rl € GRules(T1) and r2 € G Rules(12).
S

Proof. By definition of G'Rules (Def. 3.14), if ri € G'Rules(Ti), for i = 1,2, then ri is not an
isomorphism and vice versa. Therefore, the 3 cases are mutually exclusive. Thus it remains
to show that there can’t be the case in which r1 and r2 are both isomorphisms.

By Lemma C.3 we obtain that L is the coproduct of L1 and L2 and R is the coproduct
of R1 and R2. Thus, r must be the parallel rule of r1 and r2 (because of uniqueness of
universal morphisms), i.e., r = rl||r2. By hypothesis, r € GRules(T) and thus r is not an
isomorphism and is injective. This means that there is at least one € L such that r(z)
is undefined or y € R such that y € rng(r). Assume we have the first case (). As L is a

44 3. Graph Grammars

P-Digit -

P-Digit

T12

P-Digit =

Figure 3.8: Parallel Decomposition of the Rule r

coproduct of L1 and L2, must have a pre-image in one of these two graphs. Assume it has
a pre-image in L1. Let z € L1 such that [1(z) = . As the coproduct morphisms {1: L1 — L
and i1*: R1 — R are total and r o[l = ¢1® o r1 we conclude that r1(z) = undef. Thus rl is
not an isomorphism. If we assume that = has a pre-image in L2, we get that r2 can’t be an
isomorphism, and if we assume the second case (y € R), we analogously obtain that either r1
or 12 can’t be isomorphisms in this case. Thus, we conclude that if r is not an isomorphism,
either r1 or r2 or both are not isomorphisms. Vv

The next proposition expresses the fact that the parallel rule construction is compatible
with the subrule relation.

Proposition 3.29 Let[rl],[r1'] € R(T1), [r2],[r2] € R(T2), r1 C" r1" and r2 C" r2'. Then
[r1]|r2] CF [r1!||r21]. @)

Proof. The construction of the parallel rule is based on coproducts in TGraphP. The rela-
tions 1 C" 1" and r2 C" r2’ mean that there are pushouts (1) and (2) in TGraphP(T1) and
TGraphP(T2) using the rule morphisms and corresponding inclusions such that the safety
condition is satisfied. Pushouts in the latter categories are also pushouts in TGraphP (see
Def. B.10 and Def. B.14). Let (3) be the square consisting of the rules r1||r2 and r1’||r2" and
the total and injective morphisms i71 + 272 and tg1 + tRr2, where the component morphisms
are the corresponding inclusions of pushouts (1) and (2). Due to standard categorical results,
if (1) and (2) are pushouts and (3) is obtained componentwise by coproducts, then (3) is also
a pushout (see [BWOI0] for a proof). As the safety condition is satisfied by the components
and the parallel rules are obtained as coproducts, we conclude that [r1|[r2] CF [r1'||r2]. /

3.2. Rules 45

Now, analogously to the parallel decomposition, we will define the amalgamated decom-

position.

Definition 3.30 (Amalgamated Decomposition of Rules) Let il : 70 — T'1 and 2 :
T0 — T2 be total and injective and (1) be a pushout. Let r € Rules™(T). Then the
amalgamated decomposition of r with respect to T'1|poT?2 is defined as

decompT1|T0T2(r) = (Tize (1), Tizeoir(r), Tire (1))

r0

L0 R0

Remarl{s.

1. All (four) squares connecting the square of left-hand sides to the square of type graphs,
as well as the (four) squares connecting the square of right-hand sides to the square of
type graphs, are pullbacks.

2. Lemma C.4 assures that the amalgamated decomposition is the inverse of the amal-
gamated composition of rules (up to isomorphism) if we use the pairs ({1, s1°!) and
(122'27 82i2) as basis to construct the amalgamated rule, where the morphisms li and st,
for 1 = 1,2, are obtained by the retyping construction.

©

Example 3.31 (Amalgamated Decomposition) Consider rule r in Figure 3.9. The type
graph 7' is obtained as a gluing of 7’1 and 72 with respect to 70 (via the inclusions i1 and

46 3. Graph Grammars

i2). To decompose rule r with respect to this decomposition of the type we proceed analogously
to the parallel decomposition. For example, r1 is obtained by deleting from r everything whose
type is not present in T'1. Thus the amalgamated decomposition of r with respect to7°0,71 and

T2, is decompT1|T0T2(r) = (rl,r0,72). ©)

TO A

Figure 3.9: Amalgamated Decomposition of the Rule r

Proposition 3.32 Let (r1,70,r2) € {decompry|,,r2(7)|r € GRules(T)}. Then exactly one
of the following cases is true:

1. r1 € GRules(T'1) and r0 and r2 are isomorphisms;
2. r2 € GRules(12) and r0 and r1 are isomorphisms;
3. rl € GRules(T'1), r2 € GRules(T2) and r0 is an isomorphism;

4. r1 € GRules(T1), r2 € GRules(T2) and r0 € GRules(T0)

Proofidea. Analogous to proof of Prop. 3.28, using Lemma C.4. Vv

3.3. Graph Grammars and their Behaviour 47

3.3 Graph Grammars and their Behaviour

The basic idea of graph grammars is to specify a system by specifying its initial state (by a
graph) and the possible changes of states (by graph rules). The behaviour of a graph grammar
is given by applying rules to graphs representing the states of the system, called state graphs
in the following. The application of a rule to a state graph is possible if there is a match for
this rule, i.e., there is a subgraph of the state that corresponds to the left-hand side of the
rule (this correspondence do not have to be an isomorphism because different items from the
left-hand side may be mapped to the same items in the state graph).

The operational semantics of a graph grammar is based on the applications of the rules
to state graphs. In particular the algebraic approach to graph grammars [Ehr79, Low93]
stresses the fact that rules may be applied in parallel to a state graph. This may happen if
the matches of the rules are not mutually exclusive in the sense that the rules do not delete the
same items of the state graph. Moreover, graph grammars are inherently non-deterministic:
if many rules are applicable to some state then the choice of which will be the next one to
be applied is non-deterministic. Even the same rule may have different ways of being applied
to the same graph (depending on the existing matches), and the choice of which match will
be first applied is non-deterministic. If we have two rules r1 and r2 that can be applied to a
graph G, there may be three different situations, that lead to three kinds of non-determinism:

Sequential Independent Situation: This is the case when, after applying one of the rules,
we can still apply the other one and vice-versa. The kind of non-determinism described
by this situation arises from the wish to apply these rules in some sequence, that is, the
choice is made just in order to sequentialize the applications of these rules. Therefore,
this kind of non-determinism will be called interleaving non-determinism.

Mutually Exclusive Situation: In this case, the application of one rule disables the ap-
plication of the other and vice-versa. This happens if (at least) one item of the state
graph is deleted by both rules.! This kind of non-determinism will be called mutual
exclusion non-determinism.

Mixed Situation: The fact that graph grammars allow items to be preserved by the ap-
plication of rules gives raise to the possibility of having situations in which, although
two rules are not mutually exclusive, there is only one possible order in which we may
apply these two rules. This happens if these two rules overlap on items of the state
graph that are preserved by one rule and deleted by the other. On the one hand, these
rules are not mutually exclusive because they do not delete the same items. But on
the other hand, they can not be applied in any sequence because if the deleting rule
is applied first, the other one can not be applied anymore. This situation was mostly
investigated in the SPO approach, and is called a weak parallel situation [Kor95] (for
the DPO approach see [CR96]). The kind of non-determinism described here will de
called asymmetric non-determinism.

In the case of algebraic graph grammars, there is another kind of non-determinism that
may occur: the application of a rule to a match may have infinitely many different results.
All of these results are isomorphic, but nevertheless it makes a difference whether all of these

'In the DPO approach to graph grammars there may be other situations that lead to this kind of conflict.
These are related to the gluing condition [Ehr79].

48 3. Graph Grammars

results are distinguished at the semantical level or not. If the semantics includes all these
derivation steps, they shall be considered as different, what really means that the result of a
derivation step is non-deterministic. If these derivation steps are identified at the semantical
level, then they are just different syntactical representation for “the same” computation step.
We will call this kind of non-determinism representation non-determinism.

A sequential view on a (specification of a) system is to see it as a description of the possible
sequences of steps that may happen in this system. Looking at these sequences, we may
notice that different forms of non-determinism may describe different phenomena. Usually,
the interleaving non-determinism is the basis for describing the concurrency of a system
(see [Mil89, MM90, MP92, CEL*94a, WN94]) and the mutually exclusion non-determinism
is used to describe the conflicts of a system. If we relax the requirement that all actions
of a system must happen in some sequence, and instead say that actions that are causally
dependent from others must happen in some order, but the other actions do not have to be
represented in a sequence, we have a more concurrent view on the system. In such a view,
interleaving non-determinism is not really a non-deterministic choice because there is only
one possibility to describe this situation: as a concurrent application of the involved rules
(note that ‘concurrent’ does not mean that they must happen together, but that they may
happen together). In some approaches in which concurrency is not obtained from arbitrary
interleavings, interleaving non-determinism is a consequence of concurrency (these approaches
are mostly based on partial orders of actions [Pra86, BD87, Vog92, MMS94, Kor96]). Thus,
forgetting for a moment about asymmetric non-determinism, in a concurrent semantics there
is only one kind of non-determinism, and it describes the conflict situations of the system.
Asymmetric non-deterministic situations can only occur if the formalism allows that items of
a state are preserved from one state to the other, where ‘preservation’ of an item is different
from ‘deletion and re-creation’ of some item. In formalisms like Petri nets [Pet80], rewriting
logic [Mes92], various kinds of process calculus [Hoa85, Hen88, Mil89] there is usually no
difference between preservation and deletion/re-creation. The great advantage of making
this difference is that a bigger amount of parallelism is allowed in a system because various
read-accesses of the same item may happen in parallel. In [MR95] an extension of Petri nets,
called contextual nets, was presented adding this feature to Petri nets. In graph grammars,
the ability to preserve items gave raise to a very rich theory of parallelism. However, the
theory was mostly concerned about situations in which an item is read-accessed by many
processes at the same time. The situation in which one item is write-accessed by one process
and read-accessed by many others was mostly not investigated. Therefore there is no consense
yet about which phenomena is described by asymmetric non-determinism. In [Kor96] it was
used to describe concurrency, whereas in [CELT94a] it was used to describe conflicts.

The sequential semantics of graph grammars given in Def. 3.37 is based on sequences
of applications of rules (sequential derivations). In such a semantics, non-determinism is
described implicitly by different sequences having a common subsequence. Thus, concurrency
and conflicts are described implicitly. Moreover, as this semantics is based on concrete graphs,
there is representation non-determinism.

The concurrent semantics of graph grammars given in Def. 3.46 is based on concurrent
applications of rules (concurrent derivations). In such a semantics, interleaving and asymmet-
ric non-determinism are explicitly expressed by the absence of causal relationships between
applications of rules. Thus concurrency is explicitly described. If two derivations have a
common subderivation, a mutually exclusive situation may occur if there is no concurrent
derivation containing these two. Thus, conflicts are described implicitly by the concurrent

3.3. Graph Grammars and their Behaviour 49

semantics. By the use of suitable equivalence classes of concurrent derivations, representation
non-determinism is avoided.

In Chap. 6 we will present a semantics for graph grammars, namely the wunfolding
semantics, in which both concurrency and conflicts are described explicitly, and in which
representation non-determinism is not present.

A (typed) graph grammar (see following definition) consists of

e a type graph, that specifies the type of all graphs involved in this grammar and is
therefore called type of the grammar,

e an initial graph, that specifies the initial state of the system,
e a set of rule names, that shall be used to identify the rules of the grammar and

e a function associating with each rule name a corresponding rule.

The initial graph and all rules must be typed according to the type of the grammar.

Definition 3.33 (Graph Grammar) A (typed) graph grammar is a tuple GG =
(T, I, N,n) where

e 1 is a type graph (the type of the grammar),
e [is a typed graph in TGraphP(T) (the initial graph of the grammar),
e N is a set of rule names,

e n: N — Rules(T) is a total function (the naming function, assigning to each rule
name a rule with respect to the type T').

We denote by @ the extension of n to equivalence classes of rules, i.e., T(z) = [n(z)] for
each z € N.

A graph grammar G is safe if its initial graph I has no automorphisms and each of its
rules r has no rule-automorphisms. @)

Remark. The word ‘rule’ will be used in many contexts. It may sometimes mean an element
of N, some times a morphism n(z), and sometimes a pair (z,n(z)), for ¥ € N. A morphism
n(z) is usually be called a rule pattern. @)

Example 3.34 (Graph Grammar) The grammar PBX described in Chap. 2 is an example of
graph grammar having as components: i) type graph: PBXType shown in Figure 2.5, ii) initial
graph: PBX Ini shown in Figure 2.6, iii) rule names: { PBXr1, PBXr2.1, PBXr2.2, PBXr3},
iv) association of names to rules: given in Figure 2.6. @)

50 3. Graph Grammars

3.3.1 Sequential Semantics

The operational behaviour of a graph grammar is defined in terms of derivation steps, that
are applications of the rules of the grammar to some state graph. A rule » can be applied to
a state I N if the pattern of the left-hand side L of the rule is found in IN. Formally, this
is described by the existence of a total typed graph morphism m from L to T, called match.
The application of this rule r to the match m consists, roughly speaking, of taking from IV
everything that is deleted by the rule and adding everything that is created by the rule (see
Sect. 3.2 for a description of how these operations are modeled by a rule). As there are some
conflict situations that may occur (see [EHK196]), we describe the process of application of
arule r: L — R to a graph IN via a match m : L — I'N by first adding then deleting;:

1. Add to IN all items that shall be added by the rule, that is, all elements e that are
in the right-hand side R (e € R) and that are not in the range of the rule morphism

e ¢ (rng(r)).

2. Delete from the result of the first step all elements that shall be deleted by the rule
(elements e € L such that e ¢ dom(r)), and the items that depend on deleted items
(dangling edges).

Formally, the construction of the result of a rule application, called a derivation step, is
given by a pushout of the rule r and the match m in the category of graphs typed over a fixed
graph 7.

A description of a no-operation step is done by the empty steps. There we use an empty-
rule (that is an isomorphism) as a rule. The result is that nothing is deleted and nothing is
created, i.e., we have the same output graph as the input. Empty steps will be useful for
defining translations of derivation sequences from one grammar to another (based on graph
grammar morphisms — see Sect. 4.1).

The following definition is the standard one for derivations in the single pushout approach,
except for the fact that the derivation step is not only a pushout, but a pushout together
with the name of the rule that was used (a corresponding definition for the DPO approach
can be found in [CMR196b]).

Definition 3.35 (Match, Derivation Step) Given a rule r : L — R with respect to a type
graph T, a match m : L — IN of r in a graph IN is a total morphism in TGraphP(T).
A derivation step s of a graph INg with rule r; with name nry at match my is a tuple
s = (nrs,), where S is a pushout diagram of mg and rs in TGraphP(T) (see Def. B.14 for
the explicit construction).

INS %.OUTS

A derivation step is denoted by IN, "=2° OUT,. IN,, OUT,, r* and m? are called input
graph, output graph, co-rule and co-match respectively.

For a graph grammar GG, the class of all derivation steps using rules in GG is denoted
by Stepsgg. Let i : L — R be an isomorphism and m : L — IN be a total morphism in

3.3. Graph Grammars and their Behaviour 51

TGraphP(T). The the pushout of i and m is called an empty step of GG and denoted

by IN £& OUT. The class of all steps including the empty steps, denoted by Stepslgq, is
defined by Stepslgg = Stepsga U {s |s is an empty step}. @)

Example 3.36 (Derivation Step) Square (s1) of Figure 2.7 described the application of the
rule PBXrl to the graph I N. The match is indicated by the indices, and describes that PHONE
12 receives a P-Digit(5) message. Following the steps to construct /N1, we first have to add to
IN the messages E-Acts and P-Digit(5), and the new vertex T’ together with a corresponding
edge 5. Then, we delete the message E-Act; and the vertex F' of PHONE; with the corresponding

edge 5. ©

A derivation step describes a unit of a computation using a graph grammar. Whole
(sequential) computations may be described by sequences of derivation steps in which the
output graph of one step is the input graph of the subsequent step. These sequences are
called derivation sequences. The sequential semantics of a graph grammars is defined as the
class of all derivation sequences of this grammar.

Notation: Let A be a set (or class). Then the set (or class) of all sequences over A is
denoted by A™. The restriction of A* to finite sequences is denoted by A*. The empty
sequence is denoted by A. Let 0 € A%, Then |o| € NU {w} denoted the length of ¢. The i
element of a sequence ¢ is denoted by o;. Concatenation of sequences o1 and ¢2 is denoted
by o1 e g2.

Definition 3.37 (Sequential Derivation, Sequential Semantics) Given a graph gram-
mar GG = (T,1,N,n). The class of sequential derivations with respect to GG is defined

by
SDergg = {0 € Stepsgig |0 =X or INg = INg, =1 and OUTgy;, = INg,,, for all 1 <i < |o|}

If a sequential derivation ¢ € SDerge is finite, we define its output graph as OUTgy =
OUTo'lo.l. The class of sequential derivations including empty steps with respect to

GG is defined by
SDerlgg = {0 € Stepslgy |0 = Aor INg = INg, = I and OUTy, = INg,,, forall 1 <i<|o|}

The sequential semantics of GG is the class of sequential derivations of GG, i.e.,

SDeraa. @)

Example 3.38 Figure 2.7 shows a sequential derivation of the grammar PBX consisting of two
derivation steps sl and s2. There we can see that the output graph of sl, namely I N1, is the
same as the input graph of s2. @)

For concurrent systems, the sequential semantics has at least three drawbacks:

1. As discussed in the introduction of this section, concurrency in a sequential semantics
is usually expressed by the fact that the “same” derivation steps may be observed in

52 3. Graph Grammars

two different orders.? If we consider just the total order of derivation steps given by
one sequential derivation, then it is impossible to say which steps can be observed
in different orders. If we look ‘inside’ the sequential derivation, then we may find out
which steps are independent from each other, but this task is not at all easy because the
concepts of parallel and sequential independence of steps [EHKT96] are defined only for
subsequent derivation steps and the generalization of these concepts for sequences is not
straightforward. There are some approaches that go in the direction of defining classes of
sequential derivations that are equivalent, like the canonical derivations [Kre77, LD94]
and shift-equivalences [Sch94, CELT94a], but neither of them gives the answer to the
question whether two arbitrary steps of a sequential derivation are independent or not
(the comparison is made on the level of sequences and not on the level of derivation
steps). Therefore one can say that concurrency is described implicitly in the sequential
semantics.

2. To find out whether two derivation steps are mutually exclusive, one has to search for
a bigger sequential derivation containing these two steps. If such a derivation can be
found, the steps are not mutually exclusive. Otherwise, they are mutually exclusive.
Thus, non-determinism is described implicitly.

3. In the algebraic approach to graph grammars, the result of a derivation step is unique
only up to isomorphism. This means that, if some rule creating a vertex is applicable
to a graph IN, there will be infinitely many sequential derivations in the sequential
semantics that represent this application, namely one for each possible (isomorphic)
resulting graph. In the sequential semantics presented here, all these isomorphic results
are present, that is representation non-determinism occurs.

Two of these drawbacks (1. and 3.) were solved by the introduction of the concurrent
semantics of (SPO) graph grammars [Kor95, Kor96].

3.3.2 Concurrent Semantics

The main aim of developing a concurrent semantics for graph grammars was to represent
concurrency explicitly. This is achieved by substituting sequential by concurrent derivations
as the basis for the semantics. Moreover, this allows one to define morphisms between
derivations leading to a category of concurrent derivations. This category has a special
property that allows the definition of a quotient category based on isomorphism classes of
concurrent derivations. This quotient category identifies computations that shall be “the
same” (that are just different because different choices of results were done for each derivation
step). Using this category as semantics, we avoid representation non-determinism.

A concurrent derivation defines a class of sequential derivations that are in some sense
equivalent with respect to concurrency. The definitions given below are slight variations from
the ones in [Kor96]: the difference is that here we include explicitly the component “names
of actions” that was not present in the original version. This (syntactical) change does not
affect the results obtained in [Kor96].

The construction of a concurrent derivation k with respect to one sequential derivation o
will be done in three steps:

2To find out which derivation steps are the same, one may use concepts like parallel or sequential indepen-
dence of derivations (see [EHK196] for an overview).

3.3. Graph Grammars and their Behaviour 53

1. For each derivation step s of o, the input and output graphs are glued accordingly,
giving raise to graphs IO, and total morphisms embedding I'N,, OUT,, L, and R, in
10;.

2. Glue all IO graphs, giving raise to the core graph C' and embeddings of all IN;, OUT},
L, and R, in C'. The diagram consisting of the core graph and the corresponding
embeddings is called core structure of o. By construction, the core graph contains all
occurrences of the left- and right-hand sides of used rules.

3. Build the concurrent derivation x, consisting of the core graph, the embedding of the
initial graph of ¢ in the core graph, a set of action names, and a function mapping
action names to actions. The actions are obtained from the embeddings of the left- and
right-hand sides of rules used in ¢ in the core graph. The action names consist of the
name of the rule used in the action and the action itself. As the output graph can be
derived from the other components, it will not be an explicit part of the concurrent
derivation.

Remind that a derivation step of a grammar GG consists of a rule name and of a pushout
in TGraphP(T), where T is the type of the grammar. Therefore the graphs contained in a
concurrent derivation will also be typed over T.

Definition 3.39 (Core Structure) Let GG be a graph grammar.

1. Given a step s = (n,S) € Stepsgqg, we define the step-core of s as core(s) =
(105, ins, outs) constructed as follows (see diagram below):

v
a) Construct pushout (1) of L & dom(rs) 'S R, in TGraphP(T).
b) This leads to a factorization of ry = (aRs)™' oalL.?
c) Thus the pushout S (of the derivation step) can be decomposed into pushouts (2)
and (3).
d) As (aRs)™! is injective and surjective, the pushout morphism (outs)™' is also
injective and surjective and can be inverted, giving raise to the morphism out

dom(rs)

Ts

®Due to the fact that inverting the morphisms r} and aR. yields also a pushout (see [Kor96]).

54 3. Graph Grammars

2. Given a sequential derivation o € SDergg, let inout(oc) = (core(o;))icq1.jo|} be
the diagram containing all cores of steps of o. Then the colimit Core(o) =
(C, cing, ¢;, couti)ieqy. |0y in TGraphP(T) is called the core structure of 0. Fach
colimit morphism ¢; is called core morphism and the colimit graph C' is called core

graph.
L : R; Lt o R
h\ A am %
LR; LR
mf+1w
OUT; = IN;j OUT; 41

[]
T+t
inj41 A
1041
/

Remark. The diagram inout(o) is a diagram containing only total morphisms. The inclusion
functor T : TGraph(T) — TGraphP(T) preserves colimits (see [Kor96]), and thus the
colimit Core(o) is also the colimit of the same diagram in TGraph(T), i.e., all colimit
morphisms are total. The fact that diagram inout(c) can be seen as a partial order (there
are no cycles) and that all morphisms in this diagram are injective implies that all colimit
morphisms are also injective (see [Kor96] for a proof). @)

©

A concurrent derivation describes a computation of a grammar in which some actions
may occur in parallel. This computation is represented by the changes of states caused by the
application of rules to an initial graph (initial state). States, as well as left- and right-hand
sides of rules, are represented by typed graphs. The construction of the core structure provides
a way to describe all state graphs in one (typed) graph, and the corresponding applications of
rules as (total) morphisms having the core graph as target. Thus, we can see the core graph
as a kind of type graph in which the initial graph and all rules of the considered derivation
are interpreted. Therefore, the following definition will use the same notation as for typed
graphs. In this context, a “typing morphism” is a (total) morphism that has the core graph
as target. However, we shall remark here that the typing used in this definition is not the
same as the one used on typed graphs because the core graph is already a typed graph (this
kind of typing will be formally defined in Sect. 5.1 and called double-typing). Moreover, in
Sect. 5.4 we will also show that a concurrent derivation can be seen as a graph grammar that
has special properties (can be considered as a “deterministic” graph grammar).

Definition 3.40 (Concurrent Derivation) Let GG = (1,1, N,n) be a graph grammar,
o € SDergg and Core(o) = (C, cing, ¢;, cout;)iciom(oy be the core structure of o. Then

3.3. Graph Grammars and their Behaviour 55

the concurrent derivation k = (C% % N® n®) corresponding to o, written k ~ o, is
defined as follows (see diagrams of Def. 3.39):

e Core graph: C* =C.
e Initial graph: I = cin; : I — C.

T’C T’C
e Action names: N% = {(nrj,L]C Ci> R]C) | 7 € {1..|o|} and n(nr;) :C(L]C N R]C)} The
typing morphisms are given by th = cijomtoal;:L; — C and R = c;om¥oaR;

J J
RJ‘—>C.

e Actions: n" : N* — Rules(C) is defined for all x = (nr,r) € N¥ as n®(2) = r. This
function assigns for each action name a corresponding action.

For each r% : L — RY € rng(n") we define prefe = L rf = r¢, post’y = RS called
pre-condition, rule and post-condition of r¢ respectively.

The length of a concurrent derivation r is defined by |k| = card(N*®). If a concurrent
derivation is finite (N is finite), its output graph OUTj, is defined as OUTy = oul|g| :
OUTy — C.

The class of all concurrent derivations obtainable from SDergq is denoted by C'Dergg.

©

Remarl{s.

1. As C is a typed graph, the initial graph I" of k is a typed graph that has a typed
graph as type. We will call these kind of graphs double-typed graphs, and they will be
defined in Sect. 5. Rules(C') is the set of rules that have the typed graph C' as type.
The definition of Rules(C') is thus analogous to Def. 3.14 of Rules(T') in which T is a

graph.

2. In [Kor95] it was shown that each concurrent derivation induces a partial order on its
set of rules, that describes the causal relationships between them. This order is defined
by the way in which the pre- and post- conditions of each rule overlap in the core graph.
This dependency relation will be defined in Sect. 5.1.

3. In fact, usually there are infinitely many concurrent derivations with respect to the same
sequential derivation because the construction of the core graph delivers a result that
is unique up to isomorphism only. All these concurrent derivations are isomorphic, and
this will be expressed via morphisms between concurrent derivations (Def. 3.42. For
each sequential derivation, there exists exactly one abstract concurrent derivation (Def.
3.45) associated to it, where abstract concurrent derivations are defined as isomorphism
classes of concurrent derivations.

4. An axiomatic characterization of concurrent derivations as special graph grammars will
be given in Sect. 5.4.

©

Example 3.41 (Concurrent Derivation) Concurrent derivations are constructed from se-
quential ones by identifying items in different intermediate graphs that shall be the same (are

56 3. Graph Grammars

connected by morphisms). Figure 2.8 shows the concurrent derivation corresponding to the se-
quential derivation shown in Figure 2.7. We can see that the input (and output) graphs are the
same, and the rules that were applied are also the same. The basic difference is that all matches
of the rules have now the same graph as target, namely the core graph C'4. Roughly speaking,
this graph is obtained by gluing the graphs I N,IN1 and I N2 compatibly with the derivation
morphisms. Note that no matter which length a sequential derivation has, the corresponding
concurrent derivation will always consist of the initial graph of the derivation, the core graph and
the set of rules that were applied (together with their matches into the core graph). The output
graph will usually not be represented because it can be derived from the other components. From
the overlappings of the left- and right-hand sides of rules in this graph, dependencies between
rules can be derived. For example, as the matches prel/postl and pre2/post2 are completely
disjoint, actions al and a2 are independent and may be executed concurrently. It is interesting to
notice here that the total order of applications of rules described in the sequential derivation o4 is
not anymore present in x4. It is replaced by a partial order that indicates the causal dependencies
between rule applications. @)

Relationships between concurrent derivations can be expressed by concurrent derivation
morphisms. These relationships express a kind of concurrent prefiz relationship between
derivations, i.e., there may be a morphism f from a concurrent derivation k1 to x2 if these
derivations have the same input graphs, the rules used in 1 are included in the rules used
in k2 and the applications of the same rule in x1 and k2 are isomorphic (that means, they
are the same action up to isomorphism). This “being the same action” can be expressed by
commutativity of the corresponding images in the core graphs with the transformation of the
core graph of k1 into the core graph of k2. Moreover, the embeddings of the input graph of
k1 and k2 in the corresponding core graphs must also be compatible with the transformation
of the core graph. The intuitive meaning of a concurrent derivation morphism f : xl — &2
is that k1 is a (concurrent) prefiz of k2, that is, the computation k1 may evolve (maybe in
parallel with others) to the computation k2.

Definition 3.42 (Concurrent Derivation Morphism) Let GG be a graph grammar and
kl = (C1,119Y, N1,n1), k2 = (C1,12°? N2,n2) € CDergg. Then a concurrent deriva-
tion morphism f : kKl — k2 is a pair f = (fc, fv) where

e fc :C1— C2is a total and injective typed graph morphism in TGraphP(T) and
e fnv: N1 — N2is a total function
such that

1. I1 =12 and (1) commutes

1¢1

2. for all z = (rn, L197 "= R1°Y) € N1, n20 fy(z) = (rn, L2¢? r2? R29?), where
L2=L1, R2= R1, r2=rl and (2) and (3) commute.

I11=12

c1 1 2 c2 c1 1 2 c2
. . rl T2 rl T2
in'? 1) e pr/ (2) K pOSt/ (3) L
o fe fe fe C2

2 (16 2 (16

3.3. Graph Grammars and their Behaviour 57

The category of all concurrent derivations with respect to GG and all concurrent derivation
morphisms between them is denoted by CDergg.
Two concurrent derivations are isomorphic when both components fo and fy are isomor-

phisms. @)

Example 3.43 (Concurrent Derivation Morphisms) Consider the concurrent derivations
k1, k2 and x4 of Figure 3.10. These are the same derivations discussed in Sect. 2.2.5, we
just omitted the context items from the graphical representation to ease the understanding. All
these derivations have the same input graph /N, and use the same rule PBXr1 (in k4, this rule
is used twice). Intuitively, we may expect that k1 and k2 may evolve to k4 because we may find
in k4 actions that correspond to the ones performed in these two derivations. That is, k1 and k2
are (concurrent) prefixes of k4. But k1 may never evolve to k2 because they represent completely
distinct actions. As morphisms shall represent this prefix relationship, we expect that there are
morphisms [: k1l — k4, g : K2 — &4, but no morphism h : k1l — k2.

To find out whether there is a concurrent derivation morphism between two concurrent deriva-
tions, we have to map all actions of one concurrent derivation into the other (fx) and find a
morphism fo between the corresponding core graphs that commute with the pre and post im-
ages of the rules in these core graphs. Consider fo as being the inclusion of C'2 into C'4 and
fn(al) = al’. In this case, it is trivial to see that fo o prel(z) = prel’(z) for all items z of
L1, and that the same holds for postl. Thus there is a morphism f = (fc, fn) @ K2 — k4.
Analogously we may find a morphism g : k1 — k4. However, there is no concurrent derivation
morphism between k1 and k2 because the PHONE vertex of the rule PBXrl is mapped by prel
to PHONE; and by pre2 to PHONE;. The only possibility to find a morphism £ : k1 — k2 would
be to map PHONE; of k1 to PHONE; of k2 via . But such a mapping wouldn’t be compatible
with the inclusion of the input graph IV into C'1 and (2, and is thus forbidden. @)

Proposition 3.44 let kl1,k2 € CDerga. Then there is at most one concurrent derivation
morphism [kl = k2. @)

Proofidea. For a formal proof of this Proposition, see [Kor96]. This proof is based on the fact
that each application of a rule depends in a unique way on the initial graph and on the rules
that created items that are necessary for this rule to be applied. The basic requirement to
assure this uniqueness is that all rules must delete something. In a concurrent derivation,
there can’t be an item that is deleted by more than one rule. Assume that a rule r of x1
deletes an item z. As the core graph component of a morphism must be injective, there can
be only one way (if there is one) to map r to a corresponding rule in another concurrent
derivation. Vv

The fact that there is at most one concurrent derivation morphism between two concurrent
derivations (in each direction) is quite useful as a suitable means to find out which computa-
tions are equivalent with respect to isomorphism non-determinism. Consider two derivations
k1 and k2 and morphisms f: k1l — k2 and ¢ : K2 — k1. Intuitively, this means that 1 is a
(concurrent) prefix of K2 and vice versa, i.e., they represent the same computation. Formally,
the existence of morphisms assures that both derivations have the same initial graphs and
the same rules are used in the same way. Moreover, the core graphs are isomorphic (there
are total and injective morphisms in both directions, and as the sets of used rules are the

58 3. Graph Grammars

same, these morphisms must be surjective too). This means that x1 and k2 are the same
derivation, except for the core graphs (that are isomorphic). But this implies that they are
equivalent with respect to isomorphism non-determinism and shall be considered as the same
computation. Therefore, the concurrent semantics of a graph grammar (Def. 3.46) is based
on isomorphism classes of concurrent derivations (Def. 3.45).

Definition 3.45 (Abstract Concurrent Derivation) Let k1,2 € Cderge be concur-
rent derivations and [: k1l — k2 be a concurrent derivation morphism. Then an abstract
concurrent derivation [k1] is the class of concurrent derivations isomorphic to k1. An ab-
stract concurrent derivation morphism is the equivalence class [f] of morphisms between
elements of [k1] and [K2].

Abstract concurrent derivations and morphisms form a category denoted by ADergg.

©

Remark. Prop. 3.44 assures that ADergq is well-defined. ©

Definition 3.46 (Concurrent Semantics) The concurrent semantics of a graph gram-
mar GG is given by the category ADerga. @)

As discussed at the end of last section, the concurrency semantics does not have two of
the drawbacks of the sequential one:

1. Concurrency is represented explicitly. 1If two actions may happen concurrently, there
is only one concurrent derivation that represent this computation. Moreover, due to
the partial order on actions induced by a concurrent derivation, one can see directly
whether each two actions belonging to a concurrent derivation are or not independent
from each other. (This partial order will be defined in Chap. 5 for a more general class
of concurrent derivations, called occurrence graph grammars.)

3. There is no representation non-determinism because isomorphic derivations are consid-
ered to be the same computation.

However, there is still one point, namely point 2., that is not yet suitably described by
the concurrent semantics. This item is concerned about mutually exclusive situations. To
find out whether two concurrent derivations x1 and x2 are mutually exclusive or not one has
to search for a bigger concurrent derivation that is an evolution of both of them. If such a
derivation can be found, k1 and k2 are not mutually exclusive. Otherwise, they are mutually
exclusive. Thus, non-determinism is described implicitly by the non-existence of some upper
bounds. The unfolding semantics presented in Chap. 6 will also solve this drawback.

3.3. Graph Grammars and their Behaviour

59

C1

L PBXri1 R
prel (al) postl
AV

>0

L PBXrl R L PBXrl R

prel’ (al’) postl’ pre2’ (a21) post2’

AV

L PBXrl1 R

pre2 (a2) post2

c2

Figure 3.10: Concurrent Derivation Morphisms

Parallel Composition of Graph
Grammars

The specification of complex systems is usually done by the “divide and conquer” idea: the
system is divided into smaller, less complex components that are developed separately and
then merged in some way to form the specification of the whole system. A suitable formalism
that supports such a development shall assure that the composition operators used to merge
the component specifications are compatible with the semantics of the system. Compatibility
here means that the behaviour of the whole system can be derived from the behaviours of
its components, i.e., the composed system does not shows a behaviour that is not specified
in any of its components. This property is very desirable for a specification formalism, but
it is not easy to achieve in formalisms in which initial states are considered, such as graph
grammars, Petri nets with initial markings and transition systems. The reasons for this will
be discussed in Sect. 4.2, where parallel composition operators for graph grammars will be
presented. Specially the cooperative parallel composition (Sect. 4.2.2) seems to be a very
promising kind of composition of graph grammars. This kind of composition formalizes the
intuitive idea of divide and conquer described above: an abstract description of a system
is divided into components that are further specialized and then merged together to form
the specification of the whole system. The important requirement is that each component
is a kind of conservative extension of the abstract description of the system, in the sense
that the specialization of the abstract view defined in the component does not imply that
the behaviour of the abstract level would change. Such specializations are formalized by
graph grammar morphisms (Sect. 4.1). These morphisms are not only interesting to describe
specializations (refinements) of grammars, but also to express structural and behavioural
compatibilities between graph grammars.
The main aims, definitions and results of this chapter are:

e Definition of syntactical relationships (morphisms) between graph grammars (Def. 4.1)
that are compatible with their operational behaviour (Theo. 4.11). This is presented in
Sect. 4.1.

e Definition of two parallel composition operators for graph grammars: pure parallel
composition (Def. 4.12), that is a composition without any interface, and cooperative
parallel composition (Def. 4.20). Moreover, it is shown that these composition operators

60

4.1. Graph Grammar Morphisms 61

correspond to the product (Theo. 4.16) and the pullback (Theo. 4.24) in the category of
graph grammars, respectively. From the fact that these operators correspond to these
categorical constructions it follows that these operators are associative and compatible
with each other. Moreover, this fact will be used to show that the unfolding semantics
is compatible with the parallel composition.

As discussed above, suitable composition operators should be compatible with semantics.
In Chap. 6 (Theo. 6.18) it will be shown that the parallel composition operators defined here
are compatible with the unfolding semantics of graph grammars, that is a semantics specially
suitable for concurrent systems.

4.1 Graph Grammar Morphisms

Different definitions of morphisms may describe different kinds of relationships between ob-
jects. The ‘right’ definition of a morphism is therefore dependent on which kinds of relation-
ships one expect to describe. The basic application of morphisms we have in mind is to use
them to compose graph grammars. Therefore, we are interested in relationships that express
a structural (syntactical) compatibility between grammars. Moreover, as we expect that com-
position is compatible with semantics, morphisms should imply a corresponding semantical
compatibilities. Many kinds of morphisms between graph grammars (and graph transforma-
tion systems) have already been defined [CH95, CELT96a, HCEL96, Kor96, PP96]. Most of
them were defined for the DPO approach to graph grammars, but the aims were different
than the aim of the morphisms that will be defined here. In [PP96] the aim is to transform
graph grammars in such a way that the graph language is preserved, but not necessarily the
sequential derivations. For reactive and concurrent systems often the way in which compu-
tations evolve is more important than the states that are reached [MP92]. Therefore, as our
aim is to model this kind of systems, we will rather concentrate on morphisms that preserve
derivations. In [CELT96a] a powerful notion of morphism based on spans of graph mor-
phisms was defined and was shown to preserve sequential derivations. But as the category
of graph-spans is known not to have all pushouts [Wag93, Mue95], interesting constructions
like the cooperative parallel composition (see Sect. 4.2.2) would probably not be possible in
this more general framework. The kind of morphism presented here is a specialization of
this kind of morphism by substituting the span by a partial graph morphism (contrastingly
to [CELT96a], here we allow rules to be mapped to arbitrary ones that are isomorphic to
the corresponding retyping). In [CH95, HCEL96] a different specialization of the morphisms
of [CELT96a] was done, namely to substitute the span by a partial morphism in the other
direction as we do (that is, the partial morphism here goes in the direction of the graph trans-
formation system morphism). This kind of morphism was defined for graph transformation
systems (graph grammars without initial graph) and were also shown to preserve sequential
derivations. Moreover, disjoint union and union with interface of graph transformation sys-
tems were presented and were shown to be compatible with the sequential derivations (in
fact, with the sequential derivations starting from any graph). As the initial graph is an
important component of the specification of a system (see discussion in Sect. 4.2.2), it is
worthwhile to investigate such composition operators for this case (that is not a trivial exten-
sion of the case without initial graph). In [Kor96] morphisms between concurrent derivations,
that are special graph grammars, were defined. The purpose of these morphisms is to express
relationships between concurrent computations of one grammar (see Sect. 3.3.2). These mor-

62 4. Parallel Composition of Graph Grammars

phisms not only preserve sequential derivations, but also the dependencies between the steps
(or actions). However, these morphisms are very restricted to be used as a general kind of
relationship between graph grammars.

The following are the main requirements that should be satisfied by the definition of a
suitable morphism of graph grammars in view of composition operators:

1. The morphisms shall describe reasonable syntactical relationships between the rules and
initial graphs of grammars.

2. Morphisms shall be compatible with derivation sequences, i.e., if two grammars are
connected by a morphism, there should be a reasonable way to translate derivations of
the first grammar into derivations of the second one.

3. Morphism shall be composable such that they are able to express transitive relationships
between grammars (allowing the definition of a category).

4. Morphisms shall allow for the definition of a category in which some syntactical construc-
tions exist (e.g. products and pullbacks) and these constructions shall have a reasonable
interpretation in terms of operations on graph grammars (e.g. parallel composition).

The definition of graph grammar morphism presented here was inspired from the definition
of morphisms between transition systems in [WN94] and between Petri nets in [MMS96]. A
graph grammar morphism f : GG1 — GG2 consists of two components: a (partial) graph
morphism fr : 72 — T'1 of types and a (partial) function fy : N1 — N2 of rule names. The
mapping of types allows to split types, whereas the mapping of rule names allows to identify
rules. The fact that types and rule names are mapped in opposite directions expresses a
kind of duality between types, that represent static aspects of a system, and rules, that
represent dynamic aspects of a system. Moreover, f;r and fy must be compatible with each
other, and this compatibility assures a structural relationship between these two grammars.
Compatibility here means that the rule associated to a translated rule name must be a subrule
of the translation of the corresponding rule induced by the type translation, and that the
initial graph of GG?2 is isomorphic to the translation of the initial graph of GG1 induced by
fr. Both fy and fr may be partial, what implies that GG1 may have more rules and types
than GG2, and a bigger initial graph. The compatibility condition of the morphism assures
additionally that the rules of GG1 that are not mapped do not affect the behaviour of the
target grammar (i.e., it is possible to translate derivations of GG'1 into derivations of GG'2).
G'G2 may also have more rules and types that are not in the image of f, but the retyping of
its initial graph must be (up to isomorphism) a subgraph of the initial graph of GG2.

Formally, we will define a graph grammar morphism as being a pair of morphisms that go
in the same direction, but the mapping of types will be a morphism in the dual category of
GraphP, and therefore usually denoted by fgp. We will denote the corresponding morphism
in GraphP by fr.

Definition 4.1 (Graph Grammar Morphism) Let GG1 = (T1,117' N1,n1) and GG2 =
(T2, 1272, N2,n2) be two graph grammars. Then a graph grammar morphism f : GG1 —
GG?2 is a pair f = (f&F, fy) where f2F : T1 — T2 is morphism in GraphP°t and
fn i N1 — N2 is a partial function such that the following conditions are satisfied:

4.1. Graph Grammar Morphisms 63

1. Sub-commutativity: n2 o fy CF R;. onl, where nl and n2 are the extensions of nl
and n2 (see Def. 3.33) and C* is the subrule relation (Def. 3.16).

N1FLs R(T1)
fNj QR lRfT
N2 |T2> R(TQ)

2. 12T =7, (11T

A morphism in which fy and (fr)~! are inclusions and is called inclusion.! We say that

GG1 C GG?2 is there is an inclusion 1 : GG1 — GG2. @)

Remark. The informal meaning of the conditions of the morphism are:

1. Whenever a rule name nr is mapped via fy then the rule r2 associated to fy(nr)
(i.e., n2o fyx(nr) = r2) must be a subrule of the translation of the rule associated
to nr (fx(nr)). This means that graph grammar morphisms allow to map a rule to
a subrule (up to translation and isomorphism). The sub-commutativity condition also
assures that if a rule name is not mapped then the corresponding rule pattern is also
not mapped. The use of IG Rules instead of I Rules (that is considering also general
rules) assures that is a rule name is not mapped, the corresponding “rule” in the second
grammar would be an isomorphism (that is not a rule). Intuitively this means that rules
that are not mapped necessarily lead to a no-op (no-operation) in the target grammar.
This requirement (using general rules) is necessary for the preservation of derivations
via morphisms (this will be discussed in Example 4.4).

2. The initial graph of GG?2 is isomorphic to the translation of the initial graph of GG1 to
GG2. This means that the initial graph of GG2 must be in some sense included in the
one of GG1.

©

Example 4.2 (Graph Grammar Morphism) Consider the graph grammars AGV and PLV
depicted in Figures 2.2 and 2.3 resp. A graph grammar morphism f : PLV — AGYV can be
defined by the following components: fr is the inclusion of T'ype (Figure 2.1) into PType and
v =A{Prl = r1,Pr2.1 — r2,Pr2.2 — r2,r3 — r3}. The compatibility conditions of a
morphism require that:

1. r1 is a subrule of the rule obtained from Prl by forgetting all items that are typed over
items PType that are not in T'ype (in this example, r1 is isomorphic to the retyping of
Pr1). This “forgetting” is done by the retyping construction induced by fr. Analogously,
this requirement must also be satisfied for the other rules that are mapped via fy.

2. Ini must be isomorphic to the graph obtained from PIni by forgetting all items that are
typed over items PType that are not in Type.

'Note that an inclusion morphism is only possible if fr is injective and surjective.

64 4. Parallel Composition of Graph Grammars

In the same way, we may find graph grammar morphisms g : CLV — AGV, f*: CGV — CLV
and ¢* : CGV — PLV. @)

Proposition 4.3 Graph grammars and graph grammar morphisms form a category, denoted
by GG, in which identities and composition are defined componentwise. @)

PI’OOf

1. Identities are well-defined morphisms: Let GG = (T,17, N,n) be a graph grammar.
Then we have to show that the pair id = (idgp, idy) is a graph grammar morphism,
i.e., it must satisfies conditions i) and ii) of the Def. 4.1

(a) Diagram (1) commutes because R is a functor, and thus transforms identities into
identities. Therefore, we trivially obtain that @ o idy C Riqp om.

N —=R(T)
ile (1) IRing
N ——==R(T)

(b) Let GT = T4, (IT). As the diagram below is a pullback, i is an isomorphism and
thus GT = 7T,

1 s T

] e Jor

G

|—>T

2. Composition is well-defined: Let GGi = (Ti, Ii"", Ni,ni) be graph grammars, for i =
1.3, and f = (f2F fn) : GG1 — GG2 and g = (927, gn) : GG2 — GG3 be graph
grammar morphisms. Then we have to show that go f = (¢7 or o OP7gN o fn) is a
well-defined morphism:

(a) Diagrams (2) and (3) sub-commute because f and g are morphisms. As (3) sub-
commutes we have that n3 o gy o fy CE Ryron2o fy. Prop. 3.19 assures
that R, preserves the subrule relation, and thus as (2) sub-commutes we get that
n3ogyo fn CE R, 0Ryonl,ie., (2)+(3) sub-commute.

N1—"LR(T1)
In (2) lRfT
N2 "2 R(T2)
gNl (3) leT
N3|%>R(T3)

(b) IS;? = 72,/<T33Tf(11T1. Let 1373 = T, 07, (11TY). By Prop. 3.13 we conclude that
13+° =13+~

4.1. Graph Grammar Morphisms 65

3. Neutrality of identity and associativity of composition follow from these properties in
GraphPOF and SetP and from the componentwise construction of morphisms.
v

Now, until the end of this section, we will prove that graph grammar morphisms are
compatible with the sequential and concurrent semantics of graph grammars, i.e., if there is
a morphism f : GG'1 — GG2, we can translate the (concurrent and sequential) derivations
of GG into corresponding ones of GG2. This is stated in Theo. 4.11. The basic idea of this
translation will be illustrated in the following example.

Example 4.4 (Translation of Derivation Sequences) Consider the graph grammar GG'1 =
(T1,11,{r1,r2,r3},nl) and GG2 = (T2,12,{r1’,r3'},n2) where T1 = ({o,% W}, 0,0,0),
T2 = ({o,0},0,0,0) and the initial graphs and rules are depicted in Figure 4.1. Let f: GG1 —
GGG2 be a graph grammar morphism having the following components fr = ({o — ¢, 0 — W}, ()
and fy = {rl — r1’,r2 — undef,r3 — r3'} (i.e., rule r2 is not mapped by the morphism).
The sequential derivation o1 of GG1 depicted in Figure 4.1 can be translated to the sequential
derivation 2 of GG2. This is done in 2 steps:

1. Translate each derivation step of o1 according to the morphism f. This step gives raise to
a sequence [that is not a sequential derivation of GG2 because the empty rule 72’ is not a

rule of GG2.

2. Delete the empty steps from [. This step is called normalization (in the sense that a
sequential derivation is a normal form of a sequence including empty steps) and gives raise
to the sequential derivation ¢2. It may also be necessary to substitute the initial graph of [
by the initial graph of GG2 (they must be isomorphic due to condition 2. of graph grammar
morphisms).

Note that, if the rule 2 would create something, say a B such that the rule r3 would become
dependent on this rule (by changing the current match to this new W), then the retyping 7;,(r2)
of r2 would yield a rule I, =+ R where L is the empty graph and R has a B vertex. In this
case, 77, (r2) would not be an isomorphism and its corresponding isomorphism class would belong
to Ry, (12). Therefore f would not be a graph grammar morphism (condition 1. is violated:
n2o fy(r2) = undef # [T;,.(r2)]). An analogous situation would occur if 72 would delete some
item created by the rule r1. @)

The next lemma will be used to prove that graph grammar morphisms preserve sequential
semantics. The basic idea is that rules that are not mapped by the morphism must lead
to a no-operation in the second grammar. Isomorphisms denote no-operations because the
application of a “rule” that is an isomorphism would leave the input graph unchanged.

Lemma 4.5 Let [: GG1 — GG2 be a graph grammar morphism and x € N1 be a rule
name in GG1 such that fy(z) is undefined (i.e., x ¢ dom(fn)). Then Ty (nl(z)) is an

isomorphism. @)

Proof. Let n1(z) = r1 and [r1] = nl(z) (this is defined because n1 and nl are total). By
definition of a graph grammar morphism (Def 4.1) we have that n2o fy C* Ryi.onl. Asnl

66 4. Parallel Composition of Graph Grammars

@ ‘
N | !
JAmpI i

Figure 4.1: Translation of Derivation Sequences

is total and fn(2) is undefined, R, ([r1]) must be undefined too. By definition of the functor
R (Def. 3.14), this can only be the case if T;,.(r1) is an isomorphism. Vv

Before we can prove Theo. 4.11, we have to define how sequential derivations of one
grammar can be translated into sequential derivation of a second grammar using a graph
grammar morphism. This translation will be based on the translation of derivation steps.

Proposition 4.6 Let f = (fror, fv) : GG1 — GG2 be a graph grammar morphism. Then
a total function f° : Stepsga1 — Stepslags is called translation of derivation steps iff
for all s1 = (nrg,S1) € Stepsgar, where S1 = (IN1 ""2££°" OUT1)), we have a subrule

4.1. Graph Grammar Morphisms 67

relation (ir,,1Rr) : nl(nrs) — n2o fx(nrs) and

(fn(s1),52), if 21 € dom(fn), where

§2 = (T;, (IN1) VL™ 2 = (OUT1)) with
fo(s1) = iyt Ly = Ty (IN1) = g © Ty (mn),
S2, if x1 ¢ dom(fn), where

S2 = (T;,(IN1) &2 T, (OUT1)) with

rs2 = Tpp(rsi)s sz = Tpp (ms1)

Proof. We have to show that f*(s1) € Stepslcgs.

1. z51 € dom(fn): In this case, there is 252 = fn(2s1). Let nl(zs1) = rs1. By definition
of graph grammar morphisms (Def. 4.1) we have that n2(zs) = rso C" Tf,.(rs1). Thus
there are total and injective morphisms ¢z, and ig such that (1) below is a pushout.
As mg is a match, it is total and thus by Lemma C.1 Ty, (ms) is also total. Thus,
Mgz = i1, 0 Ty, (Mg1) is a match for rg. Diagram (3) (7;,(51)) is a pushout because
S1 is a pushout of an injective and a total morphisms and the functor 7y, preserves
these pushouts (Prop. 3.12). Thus, S2 = (1) + (3) = (T4, (IN1) “Z2= T, (OUT1)) is
also a pushout. As rs is a rule of GG2 and mys is a match for ro, the derivation step
(2s2,52) is in Stepsaae C Stepslaaa.

2. 251 & dom(fn): By Lemma 4.5, if 24 ¢ dom(fn) then T, (nl(zs)) = Ts,(rs1) is an
isomorphism. Like for the first case, we have that 77, (m,) is total because mg; is total.
As pushout of an injective and a total morphism are preserved by 7;,, we conclude that
f2(s1) = 52 is a pushout in TGraphP(T2), and as pushouts of an isomorphism and a
total match are empty steps (see Def. 3.35), f*(s1) € Stepslaaz.

Ty (rs1)
Tsr(Lst) - Tir(Bs1)
W) ‘ ip=id
TfT (ms1) LSQ . RSQ
(2) L
Tr(IN1) — T3 (OUT1)

68 4. Parallel Composition of Graph Grammars

The next construction will be used to transform derivation sequences from one grammar
into derivation sequences of another grammar. This transformation will be done in two steps:

1. Translation: Translate the derivation sequences of one grammar into sequences of steps
of the second grammar according to a given graph grammar morphism. As morphisms
are allowed to be partial, this translation may lead to sequences including empty steps.

2. Normalization: Remove the empty steps from the derivation obtained in the first step.
This step will give raise to a sequential derivation of the second grammar.

Definition 4.7 (Normalization) Let GG be a graph grammar and | € StepsIgy, such that
l=XorOUT;—1 = IN,, for all i = 2..|l|. Then the normalization of [, denoted by norm(l),

is defined as follows

A, if (I=A)or(l=sl and ry is an isomorphism)
sl enorm(ll), if | =slell and rs is not an isomorphism
norm(l) = ¢ norm(I1'), if |=slell and rg is an isomorphism, where

DY RIE
)| s2el2, if 11 =52e12

Tsl m oo =(r® omg V2! =Ts2
$ s2! (51) $2 L52 s R52

ms2 o _ o
/ lmﬂ—mg/
(r?

)—1
INg ;<:—__;‘IOUT51 = I[Ny OUTy
sl

.
r Ts2

L] —_ @ L]
P =T 2072

Remark. The 3 cases of the definition of the normalization can be explained as follows:
norm(l) = A: This is the case if | is the empty list or a list with only one empty step.

norm(l) = sl e norm(l1): In this case the first step of the list | is not an empty step.
Then the normalization of this list leaves this step as it is and concatenate it with the
normalization of the rest of the list.

norm(l) = norm(l1'): Here the head of the list (s1) was an empty step. Therefore this step
shall not be part of the result. But as we want to get as a result a list in which the
output graph of one step coincides with the input graph of the following step, we have
to make the input graph of the next step of the list become the input graph of the empty
step that will be deleted (this step is possibly the output of some other step). As sl is an
empty step, its rule rs is an isomorphism and therefore r$, is also an isomorphism and
can be inverted. Thus the match of the new step s2' is defined as mzy = (r®) ! omg,
and the co-rule is defined as r®, = r%or® . As (r®)~! is an isomorphism, the resulting

diagram S?2' is also a pushout.

©

4.1. Graph Grammar Morphisms 69

The next proposition shows that the normalization of [is a sequence of derivation steps
of the grammar GG that doesn’t include empty steps. Moreover, the output of each step in
this sequence is equal to the input of the subsequent step.

Proposition 4.8 Let GG be a graph grammar and | € Stepslzy, such that | = X or
OUT;—y = IN;, for all i = 2.]l|. Then norm(l) € StepsZ, and norm(l) = X or
OUT;_y = IN;, for all i = 2..|norm(l)|. Moreover, if | € SDerlgq then norm(l) € SDergq.

©

Proof. See Appendix C. vV

Definition 4.9 (Normalized-Translation of Derivation Sequences) Let f : GG1 —
GG?2 be a graph grammar morphism, f* be a corresponding translation of derivation steps
and 0 € SDerga. Then the normalized translation of ¢ induced by f°, denoted by
ntrangs (o) is defined as follows:

1. Translation: A, if o= \or
trangs (o) = ¢ f*(s1), if 0=sl
f?(sl) etrangs(cl), if o =sleol

2. Normalization: ntrang:(c) = norm(transs(o))

©

The next proposition describes the fact that if there is a morphism f : GG1 — GG2 then
there is a corresponding translation of derivation sequences f¥ : SDer(GG1) — SDer(GG2).

Proposition 4.10 lLet [: GG1 — GG2 be a graph grammar morphism and f° be a transla-
tion of derivation steps. Then there is a total function f% : SDer(GG1) — SDer(GG2)
, called a translation of derivation sequences, such that for all o1 € SDerge as
[P (ol) 2 ntrangs (o). ©)

Proof. The translation of derivation steps f* exists due to Prop. 4.6. Let ntrangs(ol) = ol’.
The initial graph of GG2 must be isomorphic to the initial graph of the derivation o1’ because
[is a graph grammar morphism (and thus there is an iso iy — see diagram below) and the
translation of derivation steps also guarantees this (there is an iso ¢7). Thus, we can change
the initial graph of ¢’ and maintain the rest as in ¢/, obtaining a derivation sequence o2 in
G'G2. The initial graph of ¢2 is the initial graph of GG2 by construction and all rules used
in 02 are rules of GG2 (assured by the normalization construction). For all subsequent steps
v and 7+ 1 of 02, we have that OUT; = I N;41 because o1 is a sequential derivation, and thus
fulfills this requirement, the translation preserves this property because 7y, is a functor and
the normalization construction preserve this property due to Prop. 4.8.

T+ (INGG1) L R

1S T

INGG2 '(.)T>IN01/ —OUTy
(¥3 Otyf

70 4. Parallel Composition of Graph Grammars

Theorem 4.11 Let [: GG1 — GG?2 be a graph grammar morphism. Then [is compatible
with the sequential semantics of graph grammars: All sequential derivations of GG1 can be
translated according to a translation of derivation sequences f° to sequential derivations of

GG2. ©

Proof. According to Prop. 4.10, a morphism between graph grammars induces a corresponding
translation of sequential derivations. Vv

In fact, graph grammar morphisms are also compatible with the concurrent semantics of
graph grammars. Concurrent derivations are obtained from sequential derivations by gluing
items (the intermediate graphs). Therefore the translation of sequential derivations could be
used to define a corresponding translation of concurrent derivations. We will establish this
relationship by using the unfolding of a graph grammar. In Chap. 6, it will be shown that the
unfolding of a graph grammar includes all its concurrent derivations and that the unfolding
construction induces a functor from the category of graph grammars into the category of oc-
currence graph grammars (in which all concurrent derivations are included). The application
of this functor to a graph grammar morphism gives automatically a translation of concurrent
derivations.

4.2 Parallel Composition of Graph Grammars

In this section we will present two kinds of parallel composition of graph grammars: pure
parallel composition and cooperative parallel composition.

The pure parallel composition describes a composition of grammars without any interface.
The resulting grammar is the disjoint union of the component grammars plus the parallel
rules that may be built using one rule of each component grammar. These parallel rules
describe explicitly the possibility of rules of both grammars to be applied in parallel. Thus the
rules of the composed grammar may express synchronous operations between the component
grammars (by means of parallel rules) as well as asynchronous operations (via the rules that
belong to one of the components).

The cooperative parallel composition can be used to find a common extension to two
different extensions of a grammar. The basic idea is that we have a grammar GG that
represents a description of a whole system, called abstract view, and this grammar is specialized
(or refined) in two different ways, giving raise to grammars GG1 and GG2. A specialization of
GG may add new types, rules and have a bigger initial graph than GG. These specialization
relationships are described by (special) graph grammar morphisms sl : GG1 — GG and
s2 1 GG2 — GG. Specialization morphisms assure that GG1 and GG2 are in a sense
conservative extensions of GG, i.e., the added parts of GG1 and GG2 with respect to GG
do not change the behaviour of the abstract view. The cooperative parallel composition of
GG1 and GG2 with respect to GG is constructed as a union of these three grammars: the
type and initial graph of the composition are union of the corresponding type and initial
graphs, and the rules are the rules obtained as the union of corresponding rules in GG, GG1
and GG2 (amalgamated rules), the rules that are in GG1 and GG2 and not in GG and the
parallel rules obtained from the latter ones. The amalgamated rules put together the different
specializations made in GG1 and GG2 of the same rule of GG. Therefore we say that GG1
and GGG2 cooperate to build the description of the whole system (described by the resulting

4.2. Parallel Composition of Graph Grammars 71

composed graph grammar). The parallel and other rules represent, as in the pure parallel
composition, the synchronous and asynchronous compositions respectively. Obviously, the
pure parallel composition is a special case of the cooperative parallel composition, namely
when the abstract view is empty.

4.2.1 Pure Parallel Composition

In this section the pure parallel composition of graph grammars will be defined. As discussed
above, the type and initial graphs of the composition is the disjoint union of the types and
initial graphs of the components, and the rules of the composition gives us more than just the
disjoint union of the rules of the component, namely all possible synchronized behaviours of
rules belonging to the component grammars. These synchronized behaviours are expressed
by parallel rules. The basic idea is that the parallel composition of grammars GG1 and GG?2
yields a grammar GG12 containing all rules of each component grammar and all parallel rules
that can be build using one rule of each component grammar.

For graph grammars such a parallel composition has not been defined yet. Most of
the binary composition operators presented until now are based on disjoint union construc-
tions (e.g., [CH95, TS95, Jan96, KK96, PP96]), what implies that only the asynchronous
parallelism between the components is expressed by the composed system. In some other
formalisms, similar kinds of parallel composition as defined here for graph grammars have al-
ready been defined. For transition systems such a parallel composition was defined in [WN94]
and for place/transition nets in [MMS96].

Definition 4.12 (Pure Parallel Composition) The pure parallel composition GG1||GG2
of two grammars GGi = (T4, i7", Ni,ni), for i = 1,2, is constructed as follows GG1||GG2 =
(T, I, N, n) where:

e T’ is the coproduct of T'l and T2 in GraphP, i.e., the disjoint union of type graphs
(see Def. B.8)

o IT is the coproduct of 117" and 1272 in TGraphP, i.e., the disjoint union of initial
graphs (see Def. B.10

e N=N1wN2W(N1x N2),ie., the product of N1 and N2 in SetP (see Def. B.2)

o n: N — Rules(T) is defined for all nr € N as follows

plT i(nl(nr)), if nr€ N1
n(nr) = q Tpag-1(n2(nr)), if nr € N2
nl(a)||"n2(b), if nr=(a,b) € N1x N2

where ply : T1 — T12 and p27 : T2 — T'12 are inclusions induced by the coproduct T.
©

Example 4.13 (Pure Parallel Composition — See Def. 4.12) The parallel composition of
the grammars PLV and C'LV shown in Figures 2.3 and 2.4 respectively is the gram-
mar PLVI||[CLV = (T,17,N,n) where T is the disjoint union of PType and CType, I
is the disjoint union of PIn: and C'In: and the rules all the ones of PLV and C'LV plus

72 4. Parallel Composition of Graph Grammars

the rules Pr1||Crl, Pr1||Cr2, Prl||Cr3, Pr2.1||Crl, Pr2.1]|Cr2, Pr2.1||Cr3, Pr2.2||Crl,
Pr2.2||Cr2, Pr2.2||Cr3, Pr3||Crl, Pr3||Cr2, Pr3||Cr3. three of these rules can be seen in
Figure 4.2, where the indices C and P indicate to which type graph (CENTRAL or PHONE) the
items belong (the items representing data types shall be mapped correspondingly). Note that in
the composed grammar PLV||C'LV, whenever a parallel rule, say Pr1||Cr2, can be applied, so
do the component rules Prl and C'r2 because the matches must be completely disjoint (because
the component rules are typed over disjoint parts of the composed type graph). Moreover, the
results of applying the parallel rule and applying the components in any order will be the same.
Obviously, as rules in this case may be applied concurrently, Pr1 and C'r2 may be applied concur-
rently (asynchronously). The parallel rule application forces a synchronization between Prl and
C'r2, i.e., these two rules must start begin applied and end at the same time. The fact that these
rules may be applied asynchronously means that there can be a situation in which we observe that
these two rules are being applied, but they don’t need necessarily to start and end together. &

G i - - 8 EAC o = _ = I
P P.pd P P'Bg \
P . s
F
Prl||Cr2 Pd— P Dig
_—
R N S i L= e
C-Digit /
EQ Carrier TAB [“Cs. Carrier
P P
P P P o]
Pd— P-Digit [[oh
P.p \\.st off JP'St o
pd Pih Carrier S e
o Pr2.1/|Cr3 5
nr-C.dn | C. . >
[TAB[—= Carrier | cocimmos wye
C | c A‘ In
=—Mute
Cd— C-Digit [P-Signal .
P P
i i i o D —
Pd—~ ppigt - = b
P. P‘h\s off JP.st .
pd iﬁ Mute Pr22||Cr3 Mute Pd— C-Digit
O
nr-C.dn C. . >
[TAB|— Carrier | csem—cs e
© C c L=
| T
Cd— C-Digit c P-Signal ?Mute

Figure 4.2: Rules belonging to PV L||C'LV

Proposition 4.14 The parallel composition of graph grammars is well-defined. @)

4.2. Parallel Composition of Graph Grammars 73

Proof. We have to show that GG1||GG2is a graph grammar. The type graph of this grammar
is T'. As coproducts in TGraphP are constructed componentwise, the graph [is typed over
T. As N is a set by construction, we just have to show that the images of n are rules with type
graph T. As ply is total and injective it can be inverted, giving raise to (plp)™' : T — T1.
Moreover, (ply)~! is injective and surjective, what implies (by Lemma C.2) that the retype
construction 7(p1,)-1 : TGraphP(T1) — TGraphP(T12) transform each rules rTt into
a morphism 7712 where r = ¢/, what implies that 7 is a rule and the type graph is 7.
Therefore, for all @ € N1, n(x) = T(,1,)-1(nl(z)) is a rule with type graph 7. Analogously,
all images of n(x) for # € N2 are also rules with respect to 7. Let (a,b) € (N1 x N2). By
Prop. 3.22, the parallel rule is a rule having as type the coproduct to the component types.
Thus, nl(a)||*n2(b) = n12(z) is a rule with type 7. Vv

The following proposition assures that the morphisms of the coproduct of type graphs and
of the product of sets of rule names give raise to graph grammar morphisms pl : GG — GG1
and p2 : GG — GG2. In Theo. 4.16 it will be shown GG is the categorical product of GG1

and GG?2 and that these morphisms are the corresponding projection morphisms.

Proposition 4.15 Let GG1 and GG2 be graph grammars, and GG = GG1||GG2 be their
pure parallel composition. Let ply and p27 be the morphisms of the coproduct of type graphs
and ply and p2y the projection morphisms of the product of sets of rule names. Then
pl = (p1$F,ply) : GG — GG and p2 = (p297,p2n) : GG — GG2 are graph grammar
morphisms. @)

Proof. We have to show that the pairs pl and p2 satisfy the conditions of graph grammar
morphisms (see Def. 4.1). In fact, we will show that in this case, the first condition of sub-
commutativity can be substituted by commutativity (that is a stronger requirement). We
will show this for pl, the proof for p2 can be done analogously.

1. Commutativity:

ply

N1 N

HI 1) 7

R(T1) —R(T)

Let # € N and n(x) = rT. Then we have 3 cases:

(a) 2 € N1:
Rpipon(z) =Rp([rT]) Def. of nl and n(z) = rT
= [T (rT)] Def. 3.17
= [rT1 Lemma C.2
= nl(x) Def. of nl

=nloply(z) ply(z)==zifz e N1

Rotp 07(x) = Rysp([Tyan(n2(x))]) Def. 4.12

= undef Def. 3.17 and rng(plr) Nrag(t?) Nrag(tF) =0

74 4. Parallel Composition of Graph Grammars

(¢) = (a,b) € (N1 x N2):
Rpipoi(z) = Rpip([nl(a)||Tn2(b)]) Def. 4.12
= Ty (@lT2()])] Def. 3.17
= [nl(a) Prop. 3.28 and Def. 3.20
= nl(a) Def. of nl
=nloply(z) pln(z) =aif 2 = (a,b) € N1 X N2

Therefore (1) commutes.

2. Isomorphism of initial graphs: By Lemma C.3 (2) is a pullback. As ply is total and (2)
is a pullback, by Def. 3.8, T, (IT) = 1171,

]1Cpl_T> I

tIlI (2) Itl

T1——T
ply
Vv

The next theorem shows that the construction of the parallel composition GG1||GG2
given above is the categorical product in the category of graph grammars GG. This fact
implies that the pure parallel composition describes the maximal degree of parallelism that
the two component grammars may have when composed. This is assured by the universal
property of products, that says that whenever there is another grammar that includes GG1
and G'G2, this grammar is also included in the composition GG1||GG2 (this assertion holds
not only for inclusions). Moreover, the fact that the pure parallel composition is a product
will be very useful to prove that the unfolding semantics of a graph grammar that will be
defined in Chap. 6 is compatible with this kind of composition.

Theorem 4.16 The parallel composition of graph grammars is the categorical product (ob-
ject) in the category of graph grammars. @)

Proof. Let the product morphisms pl = (p1$F, ply) : GG1|GG2 — GG1, p2 =
(p22F, p2N)GG1|GG2 — GG2 be defined componentwise in the categories GraphP©F and
SetP, where the components are the product morphisms induced by the products of type
graphs and sets of rule names. Let X be a graph grammar and 21 = (aclgp, zly) : X = GG1
and 22 = (2297, 22y) : X — GG2 be graph grammar morphisms. Then u = (u$F uy) :
X — GG1||GG2 is defined componentwise where the components are the corresponding uni-
versal morphisms induced by the products of types and rule names. Due to Prop. 4.15, pl
and p2 are graph grammar morphism. Thus it remains to show that « is a graph grammar

morphism and that the universal property is satisfied.
1. w is a graph grammar morphism:

(a) Commutativity: By Prop. 4.15 we have that squares (1) and (2) below commute.
As 21 and 22 are graph grammar morphisms, squares (3) and (4) below sub-
commute. As uy is the universal morphism induced by the coproduct of sets of
rule names, we have

4.2. Parallel Composition of Graph Grammars 75

(5) plN oOUN = xlN
(6) p2N oOUN = $2N
As up is the universal morphism induced by the coproduct of type graphs and R

is a functor we have
(7) Rplt © RUT = Rl’lT
(8) RPQt © RUT = 7QGL’QT

We have to show that (9) sub-commutes, i.e., Touy CF R, o7nz.

N1 R(T1) N2 "2 R(T2)

S R(TX)

Assume that this does not hold. Let ez € NX. As moupn /@R Ru, 0 7T by
assumption, one of the following cases must be true:

i.

ii.

iii.

moun(exr) =undef and R,, oz (ex) = e:

As 7 is total we have that un(exz) = undef. Then (5) implies that 21y (ex) =
undef, and thus R, o 7Z(ex) = undef because of (3). Analogously we
conclude that R;q, o mz(ex) = undef. By Prop. 3.28 and Def. 3.17 ¢ €
dom(Rp1,) or e € dom(Rpz,) or both. Assume e € dom(Rp1,). Then by
(7) we conclude that R;q, o nZ(ex) must be defined, and this contradicts
Ry1, onz(ex) = undef. If we assume that e € dom(R,2,) we get analogously
a contradiction. Therefore this case (i.) can never happen.

noun(exr) =€ and R,, o nZ(ex) = undef:

Analogous to the first case.

noun(ex) =e', Ry, onz(ex) = e and ¢’ ZF e:

By Prop. 3.28 the rules of R(7') can be decomposed, yielding a rule in R(7'1) or
in R(1'2) or both. Let e = [r], ¢’ = [r'], decomp(r) = (r1,r2) and decomp(r') =
(r1’,r2"). Then we have the following cases:

e r1, r2, r1’ and r2’ are not isomorphisms: By Def. 3.17 and 3.26 we have
that Rp1,.(e) = [r17Y and R,i.(¢/) = [r1'TY. As (7) commutes we
have that Ry1, o n@(ex) = Ry1p 0 Rup o Bx(ex) = Rpip(e) = [r171].
Then (3) yields that nl o z1y(ex) CF [r171]. By definition of ¢/ we have
that Rp1,.(¢') = Ry, oo un(ex). Then (1) yields that R,i,(¢') =
nl o ply o uy(ex). This yields that Rp1,.(¢') = nl o zly(ex) by (5).
Then by (3) we conclude that R, (e) = [r1’T1] CE [r1T] = R,1,.(e).
Analogously, we obtain that Ra. (e') = [r2/7?] CF [r272] = R,2,(¢). Thus
by Prop. 3.29 we conclude that ¢ C e, what contradicts the hypothesis
that e ZF ¢

e rl,r1’ are isomorphisms, r2,r2" are not isomorphisms: By Def. 3.17
and 3.26 we have that R, (e) = undef, R,1,(¢’) = undef, R 2, (e) =
[272] and R,2,(€') = [r2'T%. Analogously to the previous case we ob-
tain that Rpa, (') = [r2/72] CF [r27%] = Rya.(e). As € € rng(n) and

76

4. Parallel Composition of Graph Grammars

e’ ¢ dom(R,1,) we have that r1'T! = @T! (by definition of pure par-
allel composition) and this is trivially a subrule of r1T1. Therefore, by
Prop. 3.29 we conclude that ¢/ CF e, what contradicts the hypothesis.

e 2, 72" are isomorphisms, r1,r1’ are not isomorphisms: Analogous to the
previous case.

e Other cases: Let 717! be an isomorphism. Then R, (e) = undef. As (7)
commutes we have that Ry, o nZ(ex) = undef, and this implies (by (3))
that nloxly(ex) = undef. As (5) commutes, nloplyouy(ex) = undef.
Thus (1) yields that R,i, o W o un(ex) = undef, i.e., Rp1,(¢/) = undef.
By Def. 3.17 this implies that 71’7 is an isomorphism. Thus we have again

case ii. If we start with r1'7! we obtain that 177 is also an isomorphism.
If 7272 is an isomorphism we obtain analogously that 7272 is also an
isomorphism and vice versa. By Prop. 3.28, there can not be the case in

which r1 and r2 are isomorphisms.

(b) Isomorphism of initial graphs: Here we have to prove that (1) is a pullback and

(2) commutes.

As 21 is a morphism, there is a total morphism al : I1 — dom(z17) such that
th = alo 21Y. (the pullback morphism from the retyping construction). The
same holds for 22, yielding a morphism a2 : I2 — dom(a27). ur : T — TX is
the universal morphism induced by the coproduct T using comparison morphisms
17 and 227. Therefore dom(ur) consists of all elements of 7" that are mapped
via one of these comparison morphisms, and thus dom(ur) is the disjoint union
(coproduct) of dom(z17) and dom(z27). As I is a coproduct, there is a (total)
morphism @ : I — dom(u) such that (5) and (6) commute. Thus, by Lemma C.3,
(5) and (6) are pullbacks. Squares (7) and (8) are pullbacks because 21 and 22 are
graph grammar morphisms. Now we can apply Lemma C.5 having as hypothesis
the facts that I and dom(ur) are coproducts and squares (5)—(8) are pullbacks in
Graph, obtaining that (1) in also a pullback in Graph. As T is a coproduct, u"
as well as t! are Coproduct morphism, and by uniqueness of coproduct morphisms,

we conclude that ¢t/ = uY oa, ie., diagram (2) commutes.
11 TX
\ / zlp! ItIX z2p!
om(xl 6 dom(xQT dom(xlT (N) dom(z27)

1
x1;]a xz; / \
)

4.2. Parallel Composition of Graph Grammars 77

2. Universal property: Follows from the componentwise construction of « and from the
corresponding properties of the components.
v

We will now introduce a new way of composing grammars using an interface grammar.
As already discussed in the example (Chap. 2), it is very useful for practical applications
to allow the splitting of a specification into smaller parts, that can than be worked out
separately. Obviously, one wants to have the property that, when the pieces are put together,
the behaviour of the whole can be totally inferred from the behaviours of the parts. One of the
biggest problems in concurrent and distributed system is to assure this property, because in
many cases we observe that putting components together in a naive way leads to behaviours
that can not be observed in any of the components. Thus, the question that arises is: Which
kinds of restrictions have to be made to define a composition in which this property can be
assured? In the next section, we give one possible answer for this question.

4.2.2 Cooperative Parallel Composition

Very often in the literature, composition of parts of a system with respect to some interface are
defined via colimit constructions (gluing all components together on the common interface).
This is the case e.g., in algebraic specification [EM90], Petri nets [Jen92, PER95], and graph
transformation systems [Jan93, CH95, TS95, PP96]. For the case of graph grammars, i.e.,

transformation systems with initial graph, although this kind of gluing seems to be a natural
way of putting parts together, it is well known that it is not compatible with the most basic
semantics of grammars, namely sequential derivations. This is also the case if we think of
Petri nets with initial markings or even transition systems with initial state. The reason for
this is that the semantics of a grammar usually only consider applications of rules over graphs
that can be generated by the grammar itself. To illustrate this fact, we will give an example.

Example 4.17 Consider the graph grammars shown in Figure 4.3, where the type graphs of all
of them is the graph 7. Grammar (GG3 is the union (gluing)? of GG'1 and GG2 over GGO. As
grammar GGO0 has no rules, its sequential semantics S Dergego is the set consisting only of the
empty derivation sequence. The rule r1 of grammar GG1 can not be applied to graph /N1, and
therefore SDergagr = {A}. Analogously, SDergge = {A}. In grammar GG3, both rules can be
applied, and thus its sequential semantics .S Dergeas consists of the empty derivation sequence,
and derivation sequences corresponding to all applications of rules r1 and r2 (due to the fact that
isomorphic copies are represented, these are infinitely many). Thus we can notice that, although
(GG3 can be obtained by gluing GG'1 and GG2 along GG, its semantics can not be obtained as
a suitable composition of the semantics of the components. @)

In [CH95] a composition operation similar to the one described in the example above
was presented, just that the grammars do not have initial graphs, and as thus called graph
transformation systems. In this case, the sequential semantics consists of all possible sequences
of applications of rules starting at all possible graphs [CELT96a]. If we take our example

2The kind of union of grammars used in this example is analogous to the ones defined for graph transforma-
tion systems, for example in [CH95], but gluing also the initial graphs. This example is used just to illustrate
the effect of such a composition on graph grammars with initial graphs.

78 4. Parallel Composition of Graph Grammars

Figure 4.3: Rules belonging to PV L||C'LV

forgetting the initial graphs, we will observe that the semantics of the transformation system
described by the rules of GG3 can be obtained as a suitable composition of the semantics of
the corresponding components.

One of the reasons why initial graphs are used for specification is to restrict the deriva-
tions to the “wanted” ones, in other words, to specify which derivations describe the desired
behaviour of a system. As graph grammars specify a system in terms of changes of state, from
a specification point of view, the description of the initial state of the system is an interesting
feature. Moreover, different initial states usually lead to different behaviours of systems, what
implies that if we are interested in some kinds of correctness properties of systems, like, e.g.,
that some error states are never reached, the specification of the initial state in mandatory.

As the initial states complement a set of rules for the specification of a system and
specification of a whole system based on components is a desired property of a specification
formalism, suitable means of composing grammars (including initial state) with respect to an
interface shall be developed. The basic idea for the composition developed here is that the
components shall not add rules that would modify the behaviour of the interface, because this
could lead to problems in other components. The interface, called abstract view, shall be seen
as a global, abstract specification of the whole system. Each component is a specialization
of the interface. This specialization may be done in two ways: i) by adding new items to
rules/types/initial graph to the ones in the abstract view, ii) by adding new rules. The
condition for the first way of specialization is that the new added items belong only to types
that are not in the abstract view. Using this kind of specialization, the same rule may be
specialized in many different ways. The condition for the second kind of specialization is that
the items that are created /deleted by the newly added rules are local, in the sense that they
only use local types.This idea of is captured by the notion of specialization morphisms.

4.2. Parallel Composition of Graph Grammars 79

The next definition (specialization morphisms) is (with the appropriate changes of ap-
proach) a specialization of the definition of morphisms called refinements of DPO-graph
transformation systems presented in [HCEL96]. With respect to these refinement morphisms,
the main restrictions made here are that specialization morphisms are required to be injective
on types and that the translation of rules induced by type morphism must be isomorphic to
the corresponding rule of the target grammar.

Definition 4.18 (Specialization Morphism) Let f = (f&7, fy) : GG1 — GG2 be graph
grammar morphism. Then f is called a specialization morphism, and GG1 and GG?2 are
called specialized grammar and abstract grammar, respectively, iff

1. fr is total and injective,
2. fn Is surjective,
3. Vnr € dom(fn) : n20 fn(nr) = Tz, onl(nr), and

4. Vnr ¢ dom(fn) : Ty o nl(nr) is the empty typed graph morphism, i.e., (72 : (72 —
@Tz.

©

Remarks. The intuitive meaning of the conditions is:

1. The type graph of the specialized grammar includes the type of the abstract grammar.
This is reasonable because this means that there are no elements of the abstract grammar
that are “forgotten” in the specialization.

2. All rules of the abstract grammar are in the specialized grammar. Again, this means
that the specialized grammar does not forget rules. But note that the same rule of
the abstract grammar may specialized by many rules of the specialized grammar. This
allows us to model situations in which actions that seems to be the same at a more
abstract level are distinguishable if we look at a more concrete level.

3. This requirement assures that the rules of the components only add elements belonging
to local types to the rules of the abstract grammar.

4. This requirement assures that rules that are local to a component do not use elements
of types belonging to the abstract grammar, that is, they may only use local types.

©

Example 4.19 (Specialization Morphisms) The grammars PLV and CLV (Figures 2.3
and 2.4) are two different specializations of the grammar AG'V (Figure 2.2). In grammar PLV/,
no new rule is added with respect to rules that were in the interface, but the same rule of the
interface r2 in specialized in two different ways (Pr2.1 and Pr2.2). One can check whether this
is a specialization or not by forgetting from the rules (type, initial graph) of PLV items that have
types that are not in the type of AG'V (Figure 2.1). In this example, we have that this forgetting
from PLV yields the grammar AGV (notice that r2 is yielded by forgetting corresponding items
from Pr2.1 as well as from Pr2.2). @)

80 4. Parallel Composition of Graph Grammars

As discussed in Chap. 2, the idea of composition introduced here is based on a top-
down development of the system: first an abstract description of the components and their
interconnections is fixed, then each component is specialized separately and at the end they
are put together. This composition is called cooperative parallel composition because the
the components cooperate to do the specification of the whole system. This cooperation
can be reflected in the fact that both specializations done in the components do not change
the behaviour of the abstract view, and that in the resulting system, specializations made
by different components for the same rule of the abstract view are glued together (via an
amalgamated rule). One could ask whether this kind of concept for specification of systems is
adequate for practical applications. Many discussions with the company Nutec have revealed
that such a concept can be quite useful for the development of concurrent/reactive systems
(that are the ones they use to develop). The main aspect is that such a global, abstract
specification of the system as we used here as interface is anyway necessary for the development
of a product. It serves as a basis for the communication between members of different teams.
Moreover, it makes explicit which changes may affect other components. For example, if
a developer wants to specialize the interface in a way in which the interface would get a
new rule, the formalism makes explicit that this is a “critical change” because the behaviour
of other parts may change. “Safe” changes or specializations are given by graph grammar
specialization morphisms. This means that whenever there is a specialization morphism
between a component and the abstract view, this component is a safe extension of the abstract
view, what implies that the cooperative parallel composition of this component with other
ones with respect to this abstract view will not show any unexpected (unspecified) behaviour.

Abstract View = GG0

Specialization s1 Specialization s2
Component 1 = GG1 (PB) Component 2 = GG2
System = GG3

Formally, this idea of composition gave raise to a definition based on pullbacks: if we have
an interface GGO0 and two specialization morphisms sl : GG1 — GGO and s2 : GG2 — GGO,
we can build the cooperative parallel composition of GG1 and GG2 with respect to GGO as
a pullback in the category of graph grammars. This composition consists of the gluings of
the types and initial graphs of GG1 and GG2 with respect to GGO0 and the following set of
rules: rules that are in the components and not in the abstract view and rules that are in the
abstract view specialized according to the specializations done in the components. For each of
the rules r that is in the abstract view, there is a rule r’ (or more, depending on the morphisms
sl and s2) in the composition that corresponds to it. This rule »’ contains the specializations
done in GG'1 and GG2 to the rule r, that is, r’ is constructed as the amalgamated rule of the
rules in GG1 and GG?2 that correspond to r with respect to r.

Definition 4.20 (Cooperative Parallel Composition) Let GGi = (T4, [i7?, Ni,ni), for
i = 0,1,2 be graph grammars, GGO be safe, and s1 = (5197 sly) : GG1 — GGO, s2 =
(82%]3782]\7) : GG2 — GGO be specialization morphisms. Then the cooperative parallel
composition GG1||aaoGG2 of GG1 and GG2 with respect to GGO using sl and s2 is
constructed as follows GG1||gaoGG2 = (T3, 1373, N3, n3) where:

4.2. Parallel Composition of Graph Grammars 81

e 13 is the pushout (object) of sly and s27 in GraphP, i.e., the union with respect to
T0 of the types Tl and T2 (see Def. B.8)

e 1373 is the pushout of i1°'T and i2°?7 in TGraphP, i.e., is the union with respect to
1070 of 1171 and 12'% (see Def. B.10), where il : 10 — I1 and i2 : 10 — I2 are the
pullback morphisms of pullbacks (1) and (2) below.

10

2N
1 (PO) 12

12 I

13

+12

e N3 = PBGraphP(Nl Ly N B N2) is the pullback of N1 and N2 with respect to
NO in SetP (see Def. B.2)

e 13 : N3 — Rules(1'3) is defined for all nr € N3 as follows

T(s28)-1 (nl(nrl)), if s2%(nr) = nrl and s1%;(nr) = undef
T(s18)-1(n2(nr2)), if s1%(nr) = nr2 and s2%(x) = undef
n3(nr) =< nl(nrl)||Zion2(nr2), if 2% (nr) = nrl, s1%(nr) = nr2,

nrl € dom(sly) and nr2 ¢ dom(s2y)
nl(s2% (nr))] Zg’(wo)nQ(sl]’V(nr)), if sly o 82%(nr) = s2y o sl (nr) = nr0

where (s1%)7! and (s2%)~! are the inverses of the pushout morphisms sl¥. and
2%, nl(nr1)||Zion2(nr2) is the amalgamated rule using morphisms (07, (%7)
e® = ni(nri), for ¢ = 1,2, with e being the empty graph morphism, and
n1(s2%(2))[|no(z0yn2(s1y(x)) is the amalgamated rule using morphisms (kifT,ki%T) :
r07% — Tt for i = 1,2, with (kifT,ki%T) being the composition of the retyping
morphisms of ri with the unique subrule relation from r0 to Tz~ (r).

82 4. Parallel Composition of Graph Grammars

Lo r RO
70 <—— 10— ROH—T0
sty (5) kip kigr (6) ISZT
T r) =] Rt po T

Remarl{s.

1. Diagrams (1) and (2) are pullbacks because sl and s2 are graph grammar morphisms
in which the type components sly and s27 are total and injective. This implies that
morphisms 11 and 12 are also total and injective.

2. Analogously, diagrams (5) and (6) are also pullbacks.

3. Due to the facts that GGO is safe and to condition 3. of specialization morphisms, there
is a unique subrule relation from r0 to T(s,y-1(r).

©

Example 4.21 (Cooperative Parallel Composition) The grammar C'GV shown in Fig-
ure 2.6 is thecooperative parallel composition of grammars PLV and C'LV with respect to AGV
using the corresponding specialization morphisms (as described in the previous example). @)

Proposition 4.22 The cooperative parallel composition is well defined. @)

Proof. Here we have to show that GG3 is a well-defined graph grammar (Def. 3.33). This can
be done completely analogously to the proof of Prop. 4.14, where we proved that the pure
parallel composition of grammars is well-defined. Here the proof is based on the facts that
pushouts in TGraph can be constructed componentwise (see Def. B.4), retyping preserves
rules (Lemma C.1) and amalgamated rules are rules having as type the pushout of the types
of the components (Prop. 3.25). The uniqueness (up to isomorphism) of this result is due to
the safeness of GG0 and condition 3. of specialization morphisms. Vv

Proposition 4.23 Let GG0, GG1 and GG2 be graph grammars, sl : GG1 — GG0 and
s2 : GG2 — GGO be specialization morphisms and GG1||aaoGG2 be their cooperative parallel
composition. Let s1% and s2% be the pullback morphisms type graphs and s1%; and s2%; the
pullback morphisms of sets of rule names. Then s1® = (sl'TOP,slj\,) : GG — GG and
s2* = (52397 s2%) : GG — GG2 are graph grammar morphisms. @)

Proof. We have to show that the pairs s1° and s2* satisfy the conditions of graph grammar
morphisms (see Def. 4.1). We will show this for s1°, the proof for s2* can be done analogously.

4.2. Parallel Composition of Graph Grammars 83

1. Sub-commutativity:

529

N1 N3 N2

A o e |

T3) —=R(T?2)

R(T1) <— R(
Rhﬂ %ﬂ

T0)

Let € N3 and n3(z) = [r]. As sly and s2y are surjective, we have 4 cases (see
Def. B.2 for pullback construction in SetP) — in the cases below a,b,c # L:

(a, L, 1): Analogous to item 1. of proof of Lemma 4.15.
x = (L, L,c): Analogous to item 2. of proof of Lemma 4.15.
(

Rs?% on_3($) =

82%([711(“)”710(6)”2(0)]) Def. 4.20
Tsas ([n1(a)||noyn2(c)])] Def. 3.17

—

= [nl(a)] Prop. 3.32
= nl(a) Def. of nl
= nlos2%(z) s2%(z) = a (V3 is a pullback)

2. Isomorphism of initial graphs: Analogous to the proof of Prop. 4.15, using Lemma C.4
and the facts that sl and s2 are specialization morphisms.

v

Theorem 4.24 Let GGi = (T4,1i,Ni,ni), for i = 0,1,2 be graph grammars, and sl =
(s19F s1y) : GG1 — GGO, s2 = (5227, s2n) : GG2 — GGO be specialization morphisms.
Then the cooperative parallel composition GG3 = GG1||gaoGG2 using sl and s2 is the

pullback (object) of (GG'1 A aco GG?2) in the category of graph grammars GG.

©

Proof. Let the pullback morphisms pl = (p12F ply) : GG3 — GG1, p2 = (p22F,p2n) :
GG3 — GG2 be defined componentwise in the categories GraphPOFP and SetP, where the
components are the pullback morphisms induced by the pullbacks of types and rule names. Let
X be a graph grammar and 21 = (2197, 21y) : X — GG1 and 22 = (2227, 22x) : X — GG2
be graph grammar morphisms. Then u = (ugp7 un) : X = GGG3 is defined componentwise

where the components are the corresponding universal morphisms induced by the pullbacks of

84 4. Parallel Composition of Graph Grammars

type graphs and sets of rule names. By Prop. 4.23, pl and p2 are graph grammar morphisms.
We have to show that u is a graph grammar morphism and that the universal property is
satisfied. The universal property follows from the componentwise construction of u and the
corresponding properties of the components. The proof that u is a graph grammar morphism

can be found in Appendix C. Vv

Occurrence Graph Grammars

The concepts introduced in this and in the next chapters are closely related to corresponding
notions for the area of Petri nets. In fact, they were inspired by these concepts for nets. In the
following we will briefly discuss this relationship to motivate the definitions in this chapter.
A more detailed discussion will be done in Sect. 7.3.

Petri nets [Pet62] is a well-established formalism for specifying concurrent systems. The
basic idea is that the structure (control flow) of a system is represented by a bipartite graph,
where the vertices are called places and transitions (or conditions and events, depending
on the kind of net we are looking at). States are represented by sets (or multisets) of
places and the current state is described by tokens lying on places. A change of state is
described by the switching of a transition of the net. This switching removes some tokens of
some places (the pre-conditions of a transition) and creates some new tokens in other places
(the post-conditions of a transition). Like for graph grammars, there are many different
kinds of semantics for Petri nets. Usually, the sequential semantics of nets is based on
switching sequences. For the concurrent semantics, there are many different approaches,
for example [Pet77, NPW81, GR&3, BD&7, MM90, Vog92]. In particular, the notion of a
net process (originally introduced in [GR83]) gives a semantical description of a net in which
the occurrences of events (switchings of transitions) in computations are ruled by causal
dependency relationships between them. The interesting feature of the process semantics of
nets is that the behaviour of a net is explained by a set of “special nets”. These special nets are
very simple nets that enjoy a lot of properties (deterministic, acyclic, safe). Such semantical
nets were introduced in [NPW81] with the name of (deterministic) occurrence nets. They are
called occurrence nets because each place of such a net represents the occurrence of some token
in some place of the (syntactical) net, and each transition of the occurrence net represents
the occurrence of a switching of a transition of the (syntactical) net. In an occurrence net
one can identify directly the relationships between the switchings of transitions of a net.
These relationships are typically the causal dependency relation, the conflict relation and the
concurrency relation (where the third relation is derived from the first two). These relations
give a very good basis for the formal analysis of a net [GW91, PL91, McM92, McM95].

Graph grammars can be considered as a generalization of Petri nets in the sense that
graphs (instead of sets) represent the states and the pre-conditions of some transition are
allowed to be read-only accessed, i.e., preserved. The latter feature can be also found in an
extension of Petri nets called contextual nets [MR95]. Process semantics of graph grammars

85

86 5. Occurrence Graph Grammars

have already been defined in [Kre83, KW&86, Kor95, KR95, CMR96a], but only the process
semantics defined in [CMR96a] (for the DPO approach to graph grammars) introduces a
concept that can be seen as the counterpart of deterministic occurrence nets for the case of
(DPO) graph grammars. There a causal dependency relation between the rules (and type
graph) of a graph grammar was defined in such a way that it corresponds exactly to the
definition in the Petri nets case. But in this way, one of the most important features of graph
grammars, namely the ability to preserve items, was not very much explored, as it will be
explained as follows. Consider two rules r1 and r2 and matches into a graph G that overlap
only in one item x that is preserved by r1 and deletes by r2. There is a relationship between
these rules because rl can not occur after r2 has occurred. In such a situation, it seems
that r2 causally depends on rl1. But, on the other hand, r2 may happen independently of
r1 because the items z is already present in G. Therefore, the relation between these two
rules is not causality but an occurrence order (rl may only occur before r2). Obviously,
the causal dependency between rules implies a particular occurrence order. In [CMR96a] this
occurrence order was confused with causal order. Here we will distinguish between occurrence
and causal orders. As we will see in Sect. 5 this is necessary to define a suitable notion of (non-
deterministic) occurrence graph grammars. Moreover, the interplay between these relations
(causal dependency, occurrence order and conflict relation) within a graph grammar yields a
valuable means of reasoning about the semantics of this grammar.

We are aiming at a semantics of a graph grammar GG that describes all possible states
and changes of states of GG and is a graph grammar itself. So the first problem is to find a
way to represent all possible states of GG in a suitable way. One could take a set of graphs to
represent the states, and then describe changes of states as relationships on this set. But then
the specific way in which a state is related to another is lost. To preserve this information,
we may relate the states through morphisms (the derivation morphisms). Thus we get a
graph in which the states are (typed) graphs and the arrows are (typed) graph morphisms.
This kind of semantics for graph grammars is called transition system semantics and was
presented in [CEL196a]. But using this semantics it is very difficult to check which actions
are dependent, independent or in conflict because the same item may be represented many
times: each time an item is preserved by a derivation step, this item is represented in the
input and in the output graphs. This discussion is completely analogous to the one that
led from sequential to concurrent derivations. So, what we really would like to have as a
representation of the states is one graph, analogous to the core graph. One action then would
be a rule whose left- and right-hand sides are interpreted in terms of this core graph, as in the
case of concurrent derivations. But, contrastingly to concurrent derivations, we would like to
be able to represent non-deterministic actions in one object, what allows the description of
the whole semantics of a graph grammar in one object (instead of using a category as in the
case of the concurrent semantics). In this way, not only concurrent but also non-determinism
is represented explicitly.

If we see the core graph as a type, and the set of actions as rules, we may notice that
the definition of a concurrent derivation is very similar to the definition of a graph grammar.
The only difference is that the core graph is a typed graph, whereas in a graph grammar the
type is a simple graph (an object in GraphP). The reason for the fact that the core graph
is typed is that the core graph represents all states involved in a sequential derivation, and
these states are typed graphs. Thus, as the semantical entities represented by concurrent
derivations shall give raise to grammars having core graphs as types, it seems reasonable to
define this kind of grammars, and this will be done in Sect. 5.1. If we see the concept of a

5.1. Doubly-Typed Graph Grammars 87

graph more abstractly, we can define a notion of ‘graph’ grammar in which the type graph is
already a typed graph. One state of such a grammar will be then a typed graph that is typed
into the type typed graph. We will call these kind of grammars doubly-typed grammars, and
these will serve as a basis for defining a class of (doubly-typed) grammars that can be seen as
a semantical framework for (typed) graph grammars, namely the occurrence graph grammars
(Sect. 5). Although this concept was inspired by the corresponding one for Petri nets, our
definitions and results do not match directly the corresponding ones for Petri nets. The choice
of following this different way was done to assure the compatibility of the unfolding semantics
with the parallel composition operators defined in Chap. 4 (a more detailed discussion on this
topic will be done in Sects. 7.1 and 7.3).
The main aims, definitions and results of this chapter are:

e Definition of various relationships between the rules of a (doubly-typed) graph grammar
(Defs. 5.20, 5.23, 5.25 and 5.27). These relations will be used to identify a class
of (doubly-typed) graph grammars that can be seen as (possibly non-deterministic)
computations of a graph grammar. These relationships are presented in Sect. 5.2 (the
basic definition of doubly-typed graph grammars are introduced in Sect. 5.1).

e Definition of occurrence graph grammars and occurrence graph grammar morphisms
(Sect. 5.3). It is shown in Prop. 5.37 that occurrence graph grammar morphisms pre-
serve some (independency) relations. Moreover, a class of occurrence graph grammar
morphism, namely prefiz morphisms is defined. Prefix morphisms enjoy a lot of proper-
ties. Particularly important are the preservation of many relations by prefix morphisms
(Prop. 5.41), and the fact that there can be at most one prefix morphism between two
occurrence graph grammars (Prop. 5.43).

e In Sect. 5.4, concurrent derivations and concurrent derivation morphisms are charac-
terized as special kinds of occurrence graph grammars and graph grammar morphisms
(Theo. 5.45 and Theo. 5.46). This will be used to establish a relationship between the
concurrent and the unfolding semantics of graph grammars that will be introduced in

Chap. 6.

e Definition of a folding construction for occurrence grammars (Def. 5.47). This fold-
ing establishes a relationship between occurrence graph grammars and typed graph
grammars. In particular, it is shown that an occurrence graph grammar represents the
derivations of its folded grammar (Prop. 5.50 and 5.51). This is presented in Sect. 5.5.

5.1 Doubly-Typed Graph Grammars

The definitions and results from this section are analogous to the ones in Sect. 3.1 and
3.3, where typed graphs and (typed) graph grammars were defined. To get the category
of doubly-typed graphs, one has just to take the corresponding definition of typed graphs
(Def. 3.5) and substitute the category GraphP by TGraphP(T). Again, colimits are
constructed componentwise in the basis category, i.e., TGraphP(T) in this case, followed
by a totalization construction (that makes the typing morphism total). The definitions
concerning graph grammars are then obtained by substituting TGraphP by DT GraphP (T)
(category of doubly-typed graphs) in the corresponding definitions from Sect. 3.3. Although

88 5. Occurrence Graph Grammars

we believe that it would be possible to carry over all results to this case, we will only define
explicitly what we will need in the rest of this thesis.

Definition 5.1 (Doubly-Typed Graph) Let T be a graph. A doubly-typed graph
GTG/T over T is a tuple GTG/T = (GT,tGT,TGT) where GT and TG"T are typed-graphs
and t 1 GT — TGT is a total typed-graph morphism in TGraphP(T). The typed graph
TGT is called double-type graph.

We denote by © € GTG/T an element © € Vo U Eg. ©)

Example 5.2 (Doubly-Typed Graph) The graph depicted in Figure 5.1 is a doubly-typed
graph with double-type C'17". Usually we will draw only the typing morphisms from G'1 to C'1
and from C'1 to T'1 (because the typing morphism from (1 to 1’1 is the composition of the other

two). @)

C1

T1

Figure 5.1: Doubly-Typed Graph G1¢1/T1

We will define three kinds of morphisms between double-typed graphs: the first one
between (doubly-typed) graphs over different type graphs; the second one between (doubly-
typed) graphs over the same type graph; and the third between double-typed graphs over
the same double-type graph. The second kind of morphism is a special case of the first kind,
and the third a special case of the second. These three kinds will be used to define mor-
phisms between doubly-typed graph grammars, morphisms between concurrent derivations
(and unfoldings) of the same grammar and rules/matches of one grammar, respectively.

Definition 5.3 (Doubly-Typed Graph Morphisms) Let GT¢/T and HTH/T be doubly-
typed graphs and g GT = HT and t' : TGT — TH™ be typed graph morphisms (mor-
phisms in TGraphP).

5.1. Doubly-Typed Graph Grammars 89

r_ 9 T r_ 9 T r_ 9 T
GT----H GT---~H GT----H
tGTI 1) ItHT/ tGTI (2) ItHT tGTI (3) ItHT
TGT - —>1TH" TGT - Z>THT TGt - 2 >=TGaT
1t t szG

1. The pair (¢",t") is a doubly-typed graph morphism, denoted by ¢'/'" : GTG/T _
HTH/T' iff diagram (1) commutes weakly.

2. If g'/" is a doubly-typed graph morphism and t' = idy we say that ¢*/" is a T-doubly-
typed graph morphism, denoted by ¢'/T. In this case, the weak commutativity
requirement reduces to the one shown in diagram (2).

3. If g7 is a T-doubly-typed graph morphism and t = idrg we say that ¢'/'T is a
TGT-doubly-typed graph morphism, denoted by ¢7%/T. In this case, the weak
commutativity requirement reduces to the one shown in diagram (3).

The categories of doubly-typed graphs and doubly-typed graph morphisms, T-doubly-
typed graph morphisms and TG -doubly-typed graph morphisms are denoted by DT GraphP,
DTGraphP(T) and DTGraphP(TG7T), respectively. @)

Remark. The weakly commuting diagrams shown in the previous definition are diagrams in
TGraphP(T). The corresponding diagrams in GraphP (obtained by making all typing
morphisms explicit) are shown below. As t% = (t5/7 idr) and " (t7 7 idr) are total
typed graph morphisms, diagrams marked with “=” commute. As ¢! and t'" are typed graph
morphisms, diagrams marked with “<” weakly commute. Thus, weak commutativity of the
morphism ¢'/"" means concretely that the outer squares commute weakly, i.e., t77 0 g <
tote/ (in the right-most diagram we have t = idrq, and thus the weak commuting square
reduces to a weak commuting triangle).

———g——> G———g——> ————g———>H @
> > >
G = ——t/———z—>T/ eye = T = H A ey T = S
/ - / /Z\ I
—————— ~TH - TG

Example 5.4 (Doubly-Typed Graph Morphisms) Figure 5.2 shows two doubly-typed graph
morphisms [/ = (f,12"") and ¢~ = (g'%7, idlggz’). The latter is a morphism in
DTGraphP(C272). @

Pushouts in DTGraphP(TGT) can be constructed componentwise in TGraphP(T),
where the second component is the identity of TGT. For the explicit construction see Con-
struction B.16.

90 5. Occurrence Graph Grammars

Figure 5.2: Doubly-Typed Graph Morphisms

Definition 5.5 (ReDoubletyping Functor) Let f':TG27? — TG1™T" be a morphism in
TGraphP. Then there is a functor DT ;o : DTGraphP(TG1T!) - DTGraphP(TG212)
induced by f°.

TG1T DTGraphP(TG1T?)
ft lDTft
TG2T? DTGraphP(TG27?)

171

DT 4+ is defined for all object G1TA T — (1T @177 TG1™TY) with typing morphism
1T — (t9Y7 idry) and morphism g7 /Tt = (¢TGN idpeyr) : GITOV T 5 gTGL/TL
DTGraphP(TG11?) as follows:

e Objects: DT ;(G1TGL/ Ty = (G272152" TG2T?), where G275 = T;(G1T4Y) with
typing morphism t*7 : G2 — TG2, t7% = T2 6192 . G2 — T2 and G2 =
(th/,idTg).

tGl

G +TG1

G111 TGlu T1

TG21 12

tG2

5.1. Doubly-Typed Graph Grammars 91

e Morphisms: DTft(gTGl/‘Tl) — g/TGz/‘Tz — (g/TGz7 idTsz), where g/TGz — 7}(gTG1).

a1 : H1
w ty\
1o TG1 nE

PB PB
G2 < 2
Iz
(t% 1 A)‘
dom(f)
f'
TG2
©
Proposition 5.6 D7 ;i is well-defined. ©)

Proof. By construction, G2 is a graph and t%? is a total graph morphism. Therefore, G272
is a typed graph over T2. It remains to show that G277 — (th, idrs) is a total typed graph
morphism, what is true by definition of t9% (%2 = 762 o t92/). For the well-definedness
of morphisms we have to show that t727" o ¢’ < t@2/'. This is assured by the fact that
g'T%? = T;(g79") is a morphism in TGraphP(T2) (7; is well-defined — Prop. 3.11). vV

Example 5.7 (Double-Retyping Construction) Figure 5.3 shows the retyping of the double-
typed graph G191/ T! using the typed graph morphism ¢!. In this retyping, each C-vertex is
duplicated because there are two elements in dom(c) that are mapped to the same element of C'1
(remind that the morphisms are indicated by using same symbols and/or indices). The e-vertex
is forgotten because this type is not in C2. Note that through a double-retyping, usually graphs
can only become “smaller”, in the sense that all elements of the retyped graph are in the original
graph (maybe some are duplicated). Now look at Figure 5.4. There the retyping of the morphism
(g1T1, C'17") with respect to the same typed graph morphism ¢! is shown. The construction
is done in the following way: first the source and target graphs of the morphism are retyped
(pullbacks (1) and (2)), then the domain of the retyped morphism is constructed (pullback (3))

and is mapped to the target graph in a compatible way. @)

Proposition 5.8 Let r = (r179/ Ty © L1 — R1 and m = (m1T9/TY ¢+ L1 — G1 be
morphisms in DTGraphP(TG1TY) where rl is injective and m1 is total, and (1) below be
a pushout in DTGraphP(TG1TY) of r and m. Let f : TG2T? — TG1™" be a typed graph
morphism. Then (2) is a pushout in DTGraphP(TG2T%).

) DT (v
"> R PT (L —" . pT(RY)

ml (1) lm DTf(m)I (2) lDTf(m-

Gh—3=H1 DT 4 (G1p———— T4 (H1
£ DT 00 f(H1)

92 5. Occurrence Graph Grammars

T1

T2

Figure 5.3: Double-Retype of a Double-Typed Graph

©

Proof. As pushouts in DTGraphP(TGT) are constructed componentwise (see Construction
B.16) and 7; preserves pushouts of one injective and one total morphisms (Prop. 3.12), we
conclude that D7 ;: also preserves pushouts. Vv

The next definition establishes a relationships between doubly-typed and (single) typed
graphs and morphisms via a functor, called type-forgetful functor. As the name says, this
functor forgets one of the types of a double-type graph. Let GTE/T be a doubly-typed
graph. By definition, this graph consists of two typed graphs, GT and TGT and a typed
graph morphism ¢ : G — TGT connecting them. The type-forgetful functor forgets the
component TGT and the typing morphism, yielding the typed graph GT. This functor will
be used in Sect. 5.5 to define a functor between the categories of occurrence graph grammars
(that are grammars having a typed-graph as type) and of typed graph grammars.

Definition 5.9 (Type-forgetful Functor) Let DTGraphP and TGraphP be categories
of doubly-typed and typed graphs, respectively. Then the type-forgetful functor Vr :
DTGraphP — TGraphP is defined as:

e Objects: V7(GTG/ Ty = GT', for any GTG/T' = (GT/,tGT/,TGT/) € DTGraphP.

e Morphisms: Vr(f'7") = f¥, for any morphism " = (f*,#'') €¢ DTGraphP.
©

Proposition 5.10 The type-forgetful functor V1 is well-defined. @)

5.1. Doubly-Typed Graph Grammars 93

dom(g1)

O 1

!

@ o 3)
(4)
dom(gzi)
U
" O 13 O 1.4
HEP ' Y
H2

]
U
O

C2 T2

Figure 5.4: Double-Retype of a Double-Typed Graph Morphism

rool. viously, Vr yields objects/morphisms in raphP. As identities, composition
Proof. Obviously, V7 yields object hi in TGraphP. As identiti iti

in DTGraphP are constructed componentwise in TGraphP and V7 is a projection, Vr
preserves identities and composition. Vv

Example 5.11 (Type-Forgetful Functor) Figure 5.3 shows the result of applying the type-
forgetful functor to the doubly-typed graph morphisms of Figure 5.2. @)

Definition 5.12 ((Doubly-typed) Rule) Given a doubly-type graph TG". Then a rule
with respect to TGT is a morphism a = 79T = (T idpor) « LTG/T - RTG/T ip
DTGraphP(TGT) iff r7 is a rule in TGraphP (see Def. 3.14).

We denote by Rules(TGT) the class of rules over the double-type graph TG' and
DRules(TGT) the corresponding extension to isomorphism classes of general rules.

Let the typing morphisms from LT%”T and RTG/T pe " and tRT, respectively. Then
we define

94 5. Occurrence Graph Grammars

G3

T1 T2 T2

Figure 5.5: Result of Applying the Type Forgetful Functor

e I,=L" and R, = RT, the left- and right-hand sides of the rule a = p TG/ T
e pre, — LT TGT, the pre-condition of the rule a = rT¢/T

e post, — BT RT TGT, the post-condition of the rule a = r7¢/T
TG T

e 7, =1’ the rule pattern of the rule a = r

A doubly-typed rule r1T¢/T is a subrule of a doubly-typed rule r27¢/T denoted by
r1TG/T Cr p2TG/T i p1TC s a subrule of 1279 (see Def. 3.16). ©)

Definition 5.13 (D-Rules Functor) DRules extends to a functor DR : DT GraphP°Y —
SetP, defined for all object TGT and morphism f! : TG2T? — TG1T" of DTGraphP as
follows:

e Objects: DR(TG") = IRulest (TGT)

e Morphisms: DR(f") = DR : [Rulest(TG1"") — IRulest(TG2"%) is defined for all
[r] € IRulesT(TG1T1) as

_ | [DT 4e(r)], if DT 4:(r) is not an isomorphism,
Ryellr)) = { undef, otherwise
©
Proposition 5.14 DR is well-defined. @)

Proof. Analogous to the proof of the well-definedness of R (Prop. 3.18), based on
Lemma C.2, on Prop. 3.13 and the componentwise construction of identities and compo-
sition in DTGraphP. Vv

The next definition introduces doubly-typed graph grammars. These are graph grammars
in which the type graph is a typed graph (compare Def. 3.33).

Definition 5.15 ((Doubly-Typed) Graph Grammar, Morphism) A doubly-typed graph
grammar is a tuple GG = (TGT IT¢/T N n) where

5.1. Doubly-Typed Graph Grammars 95

e TGT is a double-type graph (the type of the grammar),

o [TG/T is a doubly-typed graph in DTGraphP(TGT) (the initial graph of the gram-
mar),

N is a set of rule names,

n: N — Rules(TGT) is a total function (the naming function, assigning to each rule
name a rule with respect to the type TGT).

We denote by ingeg the typing morphism of the initial graph, i.e., ingg = T
TGT.

Let GG1 = (TG1TY, 1TV T N1, nl) and GG2 = (TG2T2, 12742/ T2 N2 n2) be
two graph grammars. Then a doubly-typed graph grammar morphism is a pair
f= %)P, fn) where fgp is morphism in DTGraphPOF and fy is a function such that the

following conditions are satisfied

—

1. The following diagram sub-commutes, where nl and n2 are the extensions of nl and
n2 (see Def. 3.33), ie., for all x € domfy or @ € dom(DRy, onl), n2 o fy(z) CE
DRy, onl(x).

N1 DR(TGITY)
le CR lDRfT

N2t—> DR(TG27?)

2. IQTGZ/‘TZ o DTfT (IlTGl/‘Tl)‘

The category of doubly-typed graph grammars is denoted by DTGG. @)

Example 5.16 (Doubly-Typed Graph Grammar/Morphism) In Figure 5.6 we can see
two doubly-typed graph grammars (GG'1 and GG2) and a doubly-typed graph grammar morphism
[= (27, fn) : GG1 — GG2, where fr = ¢! and fx maps the only rule in GG1 to the only
rule in GG2. We will call the typing morphisms from the left- and right-hand sides of rules by
pre and post morphisms. The initial graph of GG2 is exactly the result obtained by (double-)
retyping the initial graph of GG1. The rule r2 is not exactly the retyping of the rule r1, but a
subrule of it (the retyping of r1 is 7 (r1) in the figure). @)

Definition 5.17 (Match,Derivation Step) Given a rule r : . — R with respect to a
double-type TG", a match m : L — IN of r in a doubly-typed graph IN is a total
morphism in DTGraphP(TGT). A derivation step of a graph IN, with rule r, with

nreiMe

name nr, at match mg, denoted by IN, =" OUTj, is a tuple s = (ns, S), where S is a

pushout IN, S OUT, & R, of my and 1, in DTGraphP(TGT) (see Construction B.16).
The components IN;, OUT;, r? and m? are called input graph, output graph, co-rule
and co-match, respectively.

96 5. Occurrence Graph Grammars

GG1
e
2 n T1
RO
1 :
i T(L1) T(R)
Qo
12 T2
pre2 po
[l 1 O 1
° r2 o
GG2 L2 R2
Figure 5.6: Doubly-Typed Graph Grammar Morphism
©

5.2 Relations within a (Doubly-Typed) Graph Grammar

In this section we will investigate important relationships between rules and items of the
(double-type) of a grammar. These relationships will be used in Sect. 5 to define a suitable
subclass of doubly-typed graph grammars that can be considered as “behaviours” of (single)
typed graph grammars, namely occurrence graph grammars. The basic idea is to interpret
the graph TG of a double-type graph TGT as a graph describing occurrences of items that
are typed over T'. These items represent the vertices and edges that may occur in derived
graphs of a typed graph grammar. This idea corresponds to the notion of a core graph of
a concurrent derivation (see Def. 3.39). Rather than constructing a core graph, as it was
the case for concurrent derivations, we will define it axiomatically. In Sect. 5.4 we will show
that concurrent derivations are special kinds of occurrence graph grammars, and that the

5.2. Relations within a (Doubly-Typed) Graph Grammar 97

core graph of a concurrent derivation is a core graph in the sense of the next definition (and
therefore we used the same name).

As a core graph shall describe the occurrences of items (vertices/edges), each element of a
core graph must have a origin: either it has been present in the initial graph of the grammar
or it was created by one rule of the grammar. Moreover, the origin of each item in the core
graph must be unique. This captures the idea that the same vertex can not be created twice
in some derivation of a grammar.

Definition 5.18 (Core Graph) Let GG = (CT,1°7T N,n) be a doubly-typed graph
grammar. Then C7 is called a core graph iff it satisfies the following condition:
VeeCT: Ay e (ITw (Haierng(n) Fai))such that

. inga(y), ifyell,
| postai(y), if y € Ry; and y & rng(rqy)

If CT is a core graph, then each element in rng(n) is called an action of GG. An action
a creates an element e € (Vo U L) iff e € rng(post,) and e ¢ rng(post, or,). Action a
deletes ¢ iff e € rng(pre,) and there is el € L, such that pre,(el) = e and el ¢ dom(r,). O

Remark. As the term “rule”, the term “action” is also overloaded: sometimes we will speak
about an action meaning the element associates to a name via the naming function of a
grammar, sometimes meaning the name itself of the action and sometimes meaning the pair
(name,action). @)

Notation: Let GG be a doubly typed graph grammar whose double-type graph is a core
graph. Then the names of its components will be by default C'T for the core graph, I¢/'T for
the initial graph, N for the set of rule names and n for the naming function. If the name of
the grammar is indexed, for example GG, the components will be indexed accordingly.

Although it would be possible to define the relationships between rules and/or items of
the (double-)type graph of arbitrary doubly-typed graph grammar, we will here stick to the
grammars whose double-type is a core graph. This has the advantage that the interpretation of
the relations in this case is directly the one that will be used in the next sections. For example,
the causal dependency relation of a grammar that has a core graph as type (Def. 5.20) relates
actions that necessarily must occur before others within some derivation of the corresponding
(single-typed) grammar. If the double-type is not a core graph, this relation expresses a
“potential” causal relationship: there may be a derivation in which the corresponding actions
are causally related. Moreover, these relationships could have been defined for typed graph
grammars and we believe that these more general definitions may be useful for proving
properties of systems specified with typed (or double-typed) graph grammars. But as proving
properties of grammars is out of the scope of this thesis, we preferred to study in more detail
the (very relevant) special case of grammars with core graphs as types.

Some relations between rules and /or elements of the type graph of a grammar have already
been defined in other works. In [Kor96] the causal dependency and the weak conflict relations
as defined here were defined between actions of a concurrent derivation (that is a special type
of doubly-typed graph grammar — see Sect. 5.4). In [CMR96a] a causal relationship was
defined for (strongly safe DPO) graph grammars. But causality there has a different meaning

98 5. Occurrence Graph Grammars

than here. There a rule that preserves some elements that are needed by another rule are
considered as cause of this second rule. Here only rules that create some item that is needed
by another one can be considered as causes of this second rule. This stresses the idea that
a cause provides the necessary conditions for some action. The causal relation in [CMR96a]
corresponds here to the so-called occurrence relation, that describes possible orders in which
the actions may occur.

The first relationship of a graph grammar that will be investigated here is the causal
dependency relation. The intuitive idea of this relation is that

An action «a is a (direct) cause of an action b if a creates some item that is
needed (preserved/deleted) by b. This implies that b can only happen after a has
happened.

The causal dependency relation is also defined between types: we say that an item z of the
core graph is a cause of an item y if the “deletion” of @ causes the “creation” (i.e., there is
some action that deletes 2 and creates y).

Notation:

1. The set of pre-conditions of a element ¢ € A with respect to a relation R C A x A,
denoted by Pref*(a), is defined by

Pref(a) = {d'|d'Ra}

2. The set of minimal elements with respect to a relation R, denoted by Min®, is
defined by
Min® = {z| Ay :yRz}

3. The restriction of a relation R to a set of elements S C A, denoted by R|s C S x 9, is
defined by
R|s ={aRbla,be S}

Example 5.19 ((Causal) Dependency Relation) Consider the double-typed graph grammar
G/G'1 depicted in Figure 5.7. The typed graph C'171 is a core graph: the black and white circles
were present in the initial graph, the white square was created by rule r1, the edge was created
by rule 2 and the black square was created by rule 3. To understand the causal dependencies
between the actions of G(G'1 better we draw the typing morphisms explicitly from the rules to
the core graph. The overlappings of these morphisms in the core graph can be used to find out
which actions causally depend on other ones. For example, we can notice that the actions a1 and
a2 overlap in the item 0. This white square is created by action al (is in the right-hand side,
but not in the left-hand side) and is deleted by action a2 (is in the left-hand side, but not in the
right-hand side). Therefore we can say that a2 is causally dependent of a1, denoted by al < a2.
The same relationship can be observed between actions ¢2 and a3: the edge is created by a2 and
deleted by a3, therefore a2 < a3. Although actions a2, a3 and a4 overlap in the white circle,
actions a2 and a4 (and a3 and a4) are not causally dependent because action a2 does not create
anything that is needed by a4. In fact, action a4 can occur without any other action occurring
first. Therefore in this example we have the following dependencies between actions: a1l < a2,
a2 < a3, al < a3 (obviously, is a3 depends on a2 and a2 depends on al we must have that a3
depends on al).

5.2. Relations within a (Doubly-Typed) Graph Grammar 99

9 —

al a2 ‘a3 S aa

-0
11 C1
v v 5 \
e[l O N
T1

Figure 5.7: Doubly-Tuped Grammar GG1

The dependencies between the elements of the core graph is derived from the deletion /creation
relation imposed by the rules. For example, 0 depends on e because [can only be created if a o
is deleted (described by action al). In the same way we get the following dependencies between
types: e <[, <=, e <—, o< E <MW and e <L @)

The formalization of this intuitive idea of causal dependency is based on the application
of an “inverse” rule: if we want to find out whether action a2 is dependent on action al we
remove everything that was added by al from the core graph, then if all elements needed by
a2 are in the resulting core graph a2 is not dependent on al, otherwise a2 depends on al.
This removal of items of the core graph can be done by applying the inverse of the rule of al.
The definition given below corresponds to the notion of weak parallel dependency, that is a
relation defined between derivation steps of a graph grammar.

Definition 5.20 ((Causal) Dependency Relation) Let GG = (CT, 1, N, n) be a doubly-
typed graph grammar and CT be a core graph. Let nl,n2 € N and n(nl) = al = r1TG/ T,
n(n2) = a2 = 27977 a1l # a2. Let el,e2 € C, el # €21,

1. The action n2 is directly (causally) dependent ofnl, written nl <V n2, iff (r,;)"'%0
preqs is not total, where (1) is a pushout in TGraphP(T). Otherwise, n2 is not
directly dependent of nl, denoted by nl 4V n2. If n1 4N n2 and n2 4V nl, we say
that nl and n2 are directly independent.

(ral

Lal < Ral a2 E Ra2
postar
Prea2
X1
ral

'Remind that el,e2 € C means el,e2 € Vo U Fc.

100 5. Occurrence Graph Grammars
2. The (causal) dependency relation between actions of a doubly-typed graph gram-
mar <N C (N x N) is the reflexive and transitive closure of <.
3. The element €2 is directly (causally) dependent of el written el <7 €2, iff there is
an action nl € N such that nl deletes el and creates e2.
4. The (causal) dependency relation between types of a doubly-typed graph grammar
TC (C x C) is the reflexive and transitive closure of 7.
5. The (causal) dependency relation of a doubly-typed graph grammar <C (N x N)U
(C x C) is defined by (<N U <T).
©
Remarl{s.

1. Note that, in the application of the inverse rule there can be no conflicts between

deletion and preservation because the rule is injective and the elements added by a rule
are not identified in the core graph (otherwise the double-type would not be a core
graph). There may be edges from the core graph that are deleted by the application of
the inverse rule, although they are not specified in the right-hand side of the original
rule (dangling edges). But this is not a problem because actions that need these edges
will also need the action that created the corresponding vertex.

If it is clear from the context, we will usually omit the superscripts N and T from <.

We could have defined the causal dependency relation relating also rules and elements
of the core graph (as in [CMR96a]), but, as this will not be needed later on, we stick to
this definition (that makes is some cases the reasoning about the relationships easier).

©

Example 5.21 In Figure 5.8 we can see that action a3 is causally dependent on action a2 (see
grammar GG'1 in Figure 5.7). This is due to the fact that we can not prolongate the pre-condition
of a3 to graph H1 (the edge can not be mapped). @)

pre

_ ') a3

post k

P .

.)
e, WM = e, H
H1 c1

Figure 5.8: Causal Dependent Situation

5.2. Relations within a (Doubly-Typed) Graph Grammar 101

The second relationship of a graph grammar that will be investigated here is the weak
conflict relation. The intuitive idea of this relation is that

An action « is in weak conflict with an action b if a deletes some item that
is needed (preserved/deleted) by b. This implies that b can not happen if @ has
happened (a excludes the occurrence of b).

This relation is called a weak conflict because it only states that the occurrence of one of
the actions exclude the occurrence of the other (and not vice versa, as the usual definition
of a conflict). In the case that a deletes something that is also deleted by b, we will obtain
that b is also in weak conflict with a, and they are thus in (classical) conflict: they are
mutually exclusive. Asymmetric situations of weak conflict arise from the fact that items
may be preserved (read-only accessed) by rules. The ability to model the preservation of
items is a very important feature of graph grammars. It allows for the modeling of highly
parallel systems and in particular in which not only completely disjoint actions may occur
in parallel [Tae96]. Items that are preserved by some action can be considered as “read-
accessed” and therefore many other actions that also read these items may occur in parallel
with the first one. In the SPO approach, it is even allowed that one write-access (deletion)
may occur in parallel with many read-accesses (preservation) of some item, and this allows
even more parallelism within a system specified using SPO graph grammars. Although the
preservation of items is a very important feature for the specification of parallel systems, it
raises some situations between actions that can not be identified as conflicts in the classical
sense (because they do not mutually exclude each other), are not causally dependent, but can
not be observed in any order.

- B : @ :

bl b2 b3

Qy L Ny Y
e H_O [
12 c2
voovo Y v
o B o [J
T2

Figure 5.9: Grammar GG?2

Example 5.22 (Weak Conflict Relation) Consider the doubly-typed graph grammar depicted
in Figure 5.9. The action b1 preserves the item e, that is deleted by action 2. Moreover, action

102 5. Occurrence Graph Grammars

b1 does not create anything that is needed by b2 and vice versa,i.e., these two actions are causally
independent. As they do not delete the same items, one would expect that they may occur in any
order is we consider some derivation of this grammar. But this is not true because if b2 occurs,
the e vertex is deleted, and then b1 can not occur anymore. On the contrary, if b1 occurs, b2 can
still occur because the e vertex will still be there after the occurrence of b1. In such a situation we
say that b2 in in weak conflict with b1, and denote this by b1 i b2 (the direction of the arrow
indicates which is the possible occurrence order for these actions). Now consider actions b1 and
b3. We can observe that they exclude each other because both delete the vertex o. Thus, the

weak conflict relation between actions of this grammar contains the following elements b1 #, b2,
b1 5 53 and b3 5 b1, e

The weak conflict relation is also defined between types, and the intuitive idea is that
an item is in weak conflict with another one if the creation of the second item excludes the
creation of the first one. In the example above, we have that B <# .

The weak conflict relation between actions will be defined analogously to the causal
dependency relation: based on the overlappings of actions in the core graph. But here we
look for overlappings between the pre-conditions of actions.

Definition 5.23 (Weak Conflict Relation) Let GG = (CT,I,N,n) be a doubly-typed
graph grammar and CT be a core graph. Let nl,n2 € N and n(nl) = al = r1TG/ T,
n(n2) = a2 = 127977 a1l # a2. Let el,e2 € C, el # €2.
N
1. The action n2 is in weak conflict with nl, written nl i> n2 iff r3, 0 pre,; is not
total, where (1) is a pushout in TGraphP(T). Otherwise, n2 is not in direct weak

conflict with nl, denoted by nl j% Np2

Prea2 .
preat Pr€az
H?2
. # T
2. The element €2 is in weak conflict with el, written el — €2 ifl there are actions nl

N
and n2 that create el and €2, respectively, and nl i n2.

3. The weak conflict relation of a doubly-typed graph grammar ig (N xN)U(C'x(C)
N T
is defined by (i U).
©)

Example 5.24 In Figure 5.10 we can see that action b2 is in weak conflict with action b1 (see
grammar GG'2 in Figure 5.9). This is due to the fact that we can not prolongate the pre-condition
of bl to graph H?2 (the e-vertex can not be mapped). @)

As discussed before, weak conflict situations give raise to conflict situations when they
are symmetric. Therefore we will define a conflict relation of a graph grammar based on its

5.2. Relations within a (Doubly-Typed) Graph Grammar 103

rl r2
- _— Dz

5. PO

c2 H2

Figure 5.10: Weak Conflict Situation

weak conflict relation. Conflicts are inherited under causal dependencies: if an action a is
in conflict with an action b then all actions that depend on @ will also be in conflict with b
because if b occurs, all of them can not occur anymore (symmetrically, all actions that depend
on b will also be in conflict with a).

Definition 5.25 (Conflict Relation) Let GG = (CT,I,N,n) be a doubly-typed graph
grammar and C'T be a core graph. Let z1,22,23 € (N x N)U (C x C).

1. The inherited weak conflict relation of G, denoted by :#>, is defined by :#>§
(N x N)U (C' x C') such that

x1:#>x2iﬁﬂx3:x1i>x3 and 3 < z2

2. The conflict relation of GG, denoted by é, is defined by ég (NxN)U(CxC)
such that
. #
vl <= 22 iff 1 = 22 and 22 = 21

©

Example 5.26 (Conflict Relation) Consider the grammar GG'3 depicted in Figure 5.11. Al-
though it may not look like at first glimpse, actions ¢l and ¢3 are in conflict. They do not exclude
each other directly (the overlappings of their pre-conditions in the core graph is empty), but there
can be no sequential derivation of this grammar in which these two actions occur. This is because
is action ¢l occurs, action ¢4 must have occurred first (it creates the o-vertex that is needed by
cl). But on the other hand, if ¢4 occurs, ¢3 can not occur anymore (the O-vertex needed by
3 is deleted by ¢4). Moreover, we observe that ¢4 is not in conflict with ¢3 because there may
be a sequential derivation including both (¢2,¢3, ¢4). The possible sequential derivations of this
grammar will be discussed in Example 5.28. @)

In many formalisms, for example Petri nets, transition systems and event structures,
the possible orders in which a conflict-free set of actions (transitions,events) may occur in
some sequential computation depend only on the causal dependency relation: any total order

104 5. Occurrence Graph Grammars

L] o] [0

cl c2 c3 : c4

) j 7
= el _inl
13 Cc3
v v A
e O H [
T3

Figure 5.11: Grammar GG3

that is compatible with the dependency relation yields a possible sequentialization of these
actions. In the case of nets with inhibitor arcs, it was noticed in [JK91] that these relations
were not enough to describe suitably the computations of such a net. In graph grammars
these relations are not enough due to the weak conflicts. We can observe that both relations,

< and i>, impose some restrictions on the order in which actions may occur in derivation
sequences. If ¢ < b then in any sequential derivation we must have that a occurs before b

because b needs something that is created by a. If a i> b then in any sequential derivation
that includes both we must have that ¢ occurs before b because b excludes the occurrence of
a. That is, in the case of graph grammars we have to take not only causal but also sequential
dependencies (given by weak conflict) into account in searching for an occurrence order of
actions of a grammar. Therefore the combination of these two relations gives us the possible
occurrence orders of actions. This relation will be called occurrence relation, and the basic
idea is that

If the pair of actions (a,b) is in the occurrence relation then in any sequential
derivation including both action, b occurs after a.

This relation is very important because it will be the basis for recognizing possible derivation
sequences within a set of actions.

Definition 5.27 (Occurrence Relation) Let GG = (CT,I, N, n) be a doubly-typed graph

grammar, CT be a core graph and < and i> be the dependency and weak conflict relations
of this grammar, respectively. Then the occurrence relation of GG, denoted by <#, is
defined by <#*C (N x N)U (C x C) such that <¥ is the reflexive and transitive closure of

(<u-ty).
Let a € N. Then the local occurrence relation with respect to the action a, denoted

by gf, is the reflexive and transitive closure of (< U i)h;,,es(a). Analogously, for a

5.2. Relations within a (Doubly-Typed) Graph Grammar 105

set of actions A C N, gﬁ is the reflexive and transitive closure of (< U i>)|p, where
P={d]a € A and o <a}. @)

Remarl{.

1. Although weak conflict relationships are not transitive, if we have that a i> b and

b i> ¢ then a must occur before ¢ in any sequential derivation that includes these 3
actions. Therefore, for the occurrence relations (where we are interested in possible
occurrence orders of actions) it is reasonable to consider a transitive closure of the weak
conflict relation.

2. The local occurrence relation expresses the occurrence relation between the causes of an
action a. Note that to define this relation only the weak conflict and causal dependencies
among the causes of a were used (this relation is not the restriction of the occurrence
relation to the elements of Pre<(a)).

©

Example 5.28 (Occurrence Relation) Consider the grammar GG1 of Figure 5.7. The oc-
currence relation between actions of this grammar is (disconsidering the pair due to reflexivity):
o <# [O<#— o<# <#¥MW O<#* M o <# W al <# a2, al <# a3, al <# a4,
a2 <#* a3, a2 <# a4 and a3 <# a4. In this case, we can find a total order that is compatible
with the occurrence relation, namely al < a2 < a3 < a4. Therefore this is a possible sequential
derivation of this grammar.

Now consider the grammar GG?2 of Figure 5.9. The occurrence relation between actions of
this grammar is (again without the pairs due to reflexivity): b1 <# b2, b1 <# b3 and b3 <¥ bl.
This means that there can be no sequential derivation that contains b1 and b3 because there is
no possible total order including these two actions that is compatible with <#,

Look now at grammar GG3 of Figure 5.11. As we have that ¢4 < ¢, ¢l #, c2, c2 < c3

and ¢3 i> c4, each action is related to the other three via the occurrence relation. This implies
that there can be no total order that is compatible with the occurrence relation that includes
these 4 actions (because there is a cycle). In particular, the sequences including ¢l and ¢3 can
not become derivations of the grammar because if these actions are present, the actions ¢4 and
¢2 must also belong to this derivation (c1 and ¢3 causally depend on these actions), and this
is not possible because, as discussed above, there can be no total order of this actions that is
compatible with their (causal and sequential) dependencies. The next example is to illustrate the
difference between the occurrence relation and the local occurrence relation. In the grammar GG4
(Figure 5.12) we can observe the following (direct) relations between actions: d1 < d2, d2 < d3

and d3 i dl. If we then build the occurrence order of GG4 we will obtain, within others, the
relationships d1 <# d2 and d2 <# d1. This hints on the fact that a sequential derivation using
all actions of this grammar is not possible because there are cycles in the occurrence relation. In
the local occurrence relation with respect to the action d2 we would obtain the d1 gjj; d2, but
d2 gjﬁg d1l. This means that there is a sequential derivation using the pre-conditions of d2 (and
d2 itself). The local occurrence relation is used to find out if for each action there is at least one
possible sequential derivation that including it. @)

106 5. Occurrence Graph Grammars

ef) Blef) B

di d2 d3

14 c4

=

T4

Figure 5.12: Grammar GG4

5.3 Occurrence Graph Grammars

The main motivation for the definition of occurrence graph grammars is to identify a class
of doubly-typed graph in which each object represents a (concurrent, non-deterministic)
computation of a typed graph grammar. Such a class can then be used as a semantical
domain where all behaviours of typed graph grammars are represented. The advantages of
such a semantical domain are twofold. On the one hand, it eases the understanding of the
semantics: if a developer understands the basic operational behaviour of a graph grammar,
the semantics will be also clear to him /her because it is also a graph grammar. On the other
hand, theoretical investigations can be done within a uniform framework. In fact this kind of
tight relationship between syntax and semantics can be also found in other formalisms. For
example, in algebraic specifications [EM85] the quotient term algebra can be considered as
the semantics of an algebraic specification. This algebra is a quite syntactical one obtained by
generating all terms that are possible with respect to the corresponding signature and then
grouping them into equivalence classes using the equations of the specification. In Petri nets
[Pet62, Rei85], the semantics of a net can also be represented by a net itself (or by a set of
nets), the unfolding net [WN94, MMS96]. Each place of the unfolding net correspond to a
token of a reachable marking of the original net, and each transition to a possible switching
of a transition of the original net.

For graph grammars, the idea we follow here is: the semantics shall describe all possible
derivable graphs and all possible derivations. The semantics of a graph grammar will be
a special kind of doubly-typed graph grammar, called occurrence graph grammar. In an
occurrence graph grammar, the derivable graphs of the original grammar are represented in
the double-type graph and derivations of the original grammar are described by actions (the
rules of the occurrence graph grammar). As discussed in the introduction of this chapter,
doubly-typed graph grammars are a good choice to obtain such semantical grammars because
they are able to represent not only the occurrences of some type but also the type itself,

5.3. Occurrence Graph Grammars 107

such that the relationship to the original grammar is maintained. The advantage is that
we can directly consider an occurrence graph grammar as a process of its underlying graph
grammar (that can be obtained by folding the occurrence graph grammar). This approach is
in accordance with the definition of graph grammar processes done in [Kre83, KW86], where
a graph grammar process is a partial order of direct derivations (these are here represented by
the actions of an occurrence graph grammar). Moreover, using this approach it will be possible
to show that the unfolding semantics (that is an occurrence graph grammar) is compatible
with parallel composition of graph grammars.

In fact, we will see that concurrent derivations, that can be used to describe the concurrent
semantics of a graph grammar, are (deterministic) occurrence graph grammars. An occurrence
graph grammar representing a computation of a typed graph grammar GG has two types:
the type T of GG and a second type C representing the instances or occurrences of the items
of T' that appeared in the corresponding derivation(s) of GG. But this means that the second
type (C) is not any type, but must consist only of items that are in the initial graph of GG or
that were created in some derivation of GG. This means, C' must be a core graph (Def. 5.18).
Moreover, each action (rule) of an occurrence graph grammar shall represent a derivation step
of some derivation sequence of GG'. This means that each action must be applicable (and can
not occur twice) in some derivation of the occurrence graph grammar. This can be assured
by requiring that the causal dependency relation of an occurrence graph grammar is a partial
order and that all causes of each action are not in conflict. We will formalize this idea of an
occurrence graph grammar in the next definition.

Definition 5.29 (Occurrence Graph Grammar) Let GG = (CT, 17T N,n) be a
doubly-typed graph grammar. Then GG is an occurrence graph grammar ifl it satis-
fies the following conditions:

1. Acyclic local occurrence relations: Ya € N : <#, is antisymmetric.

2. No self-conflicts: < is irreflexive.
3. Finite (action) causes: Ya € N: Pre<" (a) is finite.
4. Core graph: CT is a core graph (see Def. 5.18).

5. Deterministic action output: V(nr,a), (nr,b) € N: pre, = prey and r, = r, = post, =
posty.

6. The elements of N are of the form (x,a), where a is a doubly-typed graph morphism,
n(x,a) = a and for all (z,al),(x,a2) € N: Vr(al) = Vr(a2), where Vr is the type-
forgetful functor (see Def. 5.9).

©

Remarks. The informal interpretation of the axioms of an occurrence graph grammar are:

1. Acyclic local occurrence relations: This axiom assures that the local occurrence relation
with respect to each action of GG is a partial order (by definition, this relation is
reflexive and transitive). This means that there is a total oder that is compatible with
this occurrence relation and thus this action occurs in some sequential derivation of

108 5. Occurrence Graph Grammars

this grammar. This axiom implies that the dependency relation < is a partial order,
that is, there are no dependency cycles of actions or of types (due to axiom 3., < is

well-founded).

2. No self-conflicts: There is no action that is in conflict with itself. As the conflict
relationship is inherited with respect to the dependency relationship, this also means
that whenever two actions are causes of a third one, these two can not be in conflict.

3. Finite causes: Fach action a has a finite number of causes (actions that must occur first
such that action ¢ may occur).

4. Core graph: Each item of CT has exactly one origin: either it has a pre-image in the
initial graph or in exactly one right-hand side of a rule of GG. This implies that if
some item that was created by some action a appears in the right-hand side of another
action b, it must be preserved by b. Analogously for the items that were in the initial
graph. Moreover, this means that all actions must use items that either belong to the
initial graph or were created by some other action(s) only using (directly or indirectly)
items of the initial graph. As all rules are consuming, this implies that all the minimal
elements with respect to < belong to the initial graph.

5. Deterministic action output: The same rule is applied at most once at the same match.
This makes sure that rule applications are deterministic with respect to representation
non-determinism (see discussion in Sect. 3.3),i.e., the application of a rule to a match
yields one result (and not infinitely many isomorphic results).

6. This item justifies the name “occurrence” graph grammar: each item (x,a) of N is an
occurrence (a) of the rule x. The names of the occurrences are pairs containing the
name of the corresponding rule that was used and the corresponding occurrence itself
(used as an index to differentiate different occurrences of the same rule). Moreover,
all occurrences having the same name of rule must use the same rule (this is modeled
by the fact that, forgetting the concrete occurrence, the rule must be the same). This
item is a technical convenience that will be used later on in some constructions using
occurrence grammars.

©

Example 5.30 (Occurrence Graph Grammars) If we consider the set of action names
N1 = {(rl,al),(r2,a2),(r3,a3), (r4,a4)}, the grammar GG1 of Figure 5.7 is an occurrence
graph grammar. This also holds for grammars GG2 and GGG'3 (Figures 5.9 and 5.11). The gram-
mar GGG4 (Figure 5.12) is not an occurrence graph grammar because the first and second axioms
are violated by action d3: its local occurrence relation is not antisymmetric (we have, for example,

dl gjjg d3 and d3 gjjg d1) and the conflict relation is no irreflexive (d3 < 43 because d3 5 d1
and d1 < d3). ©)

Relationships between occurrence graph grammars will be expressed by occurrence graph
grammar morphisms. These morphisms are doubly-typed graph grammar morphisms that
preserve the special structure of the occurrence graph grammar. As each element of the core
graph CT represents an occurrence of some element of T', the morphisms between occurrence
graph grammars shall map these occurrences compatibly, that is, using the retyping induced

5.3. Occurrence Graph Grammars 109

by the mapping of T'. Moreover, the occurrence graph grammar morphisms shall respect the
names of the actions: if some action name (n,,a) is mapped to an action name (nyp,b), all
other actions that use the rule name n, must also be mapped to actions that use the rule
name ny. This guarantees the different occurrence of the same rule in the source occurrence
grammar will be mapped to occurrences of the same rule in the target occurrence graph
grammar.

Definition 5.31 (Occurrence Graph Grammar Morphism) Let Occl and Oce2 be oc-
currence graph grammars and f = (%P, fn) 1 Ocel — Occe2 be a doubly-typed graph gram-
mar morphism, where fr = ¢! : C1T' — €272, Then f is an occurrence graph grammar
morphism iff the following conditions are satisfied:

1. Y(rn,al), (rn,bl) € dom(fn) : fn(rn,al) = (rnl, a2), fy(rn,bl) = (rn2,b02) = rnl =
rn2.

2. Diagram (1) below is a pullback in GraphP (see Def. B.6 in the appendix), where

t4ome) = (tY)=1 0t o ¢V (this morphism must be total because ¢! weakly commutes).

tCl
Cl——=1T1

CII (1) It!

dom(c) ——= dom(t)

tdom(c)

CQ'TTQ
t

The category of occurrence graph grammars and occurrence graph grammar morphisms
is denoted by OccGG. @)

Proposition 5.32 OccGG is well-defined. ©)

Proof. OceGG is a subcategory of DTGG, that is well-defined. Therefore, we just have to
show that the identities of DT GG are occurrence graph grammar morphisms and the compo-
sition of occurrence graph grammar morphisms yields again an occurrence graph morphisms.

1. Let id = (id2¥ idy) be the identity of the occurrence grammar Occ. The first condi-
tion of occurrence graph grammar morphism is trivially satisfied by 2dy. The second
condition requires that diagram (1) below is a pullback, what is obviously true.

+C1

C1 T1

idc1I (1) Iidm

dom(idcy) = C'1 e dom(idry) =11

2. Let f = (f2F, fn) : Ocel — Oce2 and g = (¢9%, gn) : Oce2 — Oce3 be occurrence
graph grammar morphisms, where fr = ¢1' and g7 = ¢22. Then we have to show that

110 5. Occurrence Graph Grammars

gof= (970 fr)°F,gno fn). Let (rn,al), (rn,a2) € dom(gy o fn). Let fy(rn,al) =
(rnl,a2), fn(rn,bl) = (rn2,b2) and gn(rnl,a2) = (rn3,a3), gn(rn2,02) = (rnd, b3).
As f is an occurrence graph grammar morphism we conclude that rnl = rn2. As ¢ is
also an occurrence graph grammar morphism we conclude that rn3 = rnd. Therefore,
the first condition of occurrence graph grammar morphisms is satisfied. For the second
condition, we have to show that diagram (2)=(3)+(7) below is a pullback, where

(7) is the square with tips in dom(c2 o cl), dom(cl), dom(t1) and dom(t2otl).

As f and g fulfill this condition, squares (3) and (4) are pullbacks. Moreover, squares (5)
and (6) are also pullbacks (the domain of a composed function is standardly constructed
as a pullback —see [Ken91]). Pullbacks (5) and (4) can be composed yielding a pullback
(5)+(4). Square (7) commutes because gro fr is a morphism in TGraphP (this follows
from the weak commutativity requirement of morphisms in this category and from the
definition of t9m97°/1) — see Def. 5.31). As (5)+(4) and (6) are pullbacks and (7)
commutes, decomposition of pullbacks yields that (7) is also a pullback. Therefore, (2)
is obtained as a composition of pullbacks (3) and (7) and is thus also a pullback.

+C1
Cl——>T1
cl! (3) t1!
domr(\cl)tldm—(;) dom(t1)
v = t1
C2 12
¢
c2! (4) 21
(5) don:e_(CQ) lm)don:c_(tQ) (6)
t om(

dom(c2 o0 cl)

dom(t2otl)

¢dom(c2ocl)

v

The elements of the core graph of an occurrence graph grammar represent instances of
the elements of the type graph that have been created by some action or have been present in
the initial graph. An occurrence graph grammar shall represent a computation and the core
graph shall represent all states that were reached by this computation. But as the core graph
is only one graph where all these intermediate states are glued, the question arises which
subgraphs of the core graph can be really found in some state. For example, if an element
x was created because an element y was deleted, these two elements can never occur in the
same reachable graph. The next definition gives the conditions for the subgraphs GG of a core
graph C' such that G may occur as a subgraph of some computation. These graphs will be
called concurrent graphs (as they are the analogous to the concurrent places of Petri nets
[MMS96]). The fact that the concurrent graphs of an occurrence grammar can be reached by
some derivation will be shown in Prop. 5.50.

The intuitive idea of the definition of a concurrent graph is that all its elements shall not
depend on each other nor be in conflict with each other.

5.3. Occurrence Graph Grammars 111

Definition 5.33 (Concurrent Graph) Let Occ = (C,I,N,n) be an occurrence graph
grammar and G be a subgraph of C. Let A = {a € Nla € Pre<(z) and x € G}. Then
G is a concurrent graph ifl the following conditions are satisfied for all x,y € G:

I.aLyandy £ .

2.x<#a#:>y.

3. <#, is antisymmetric.

4. PreS#A(ac) is finite.

©

Example 5.34 (Concurrent Graph) Consider the occurrence grammar depicted in Fig-
ure 5.13. In this grammar, the causal dependency relation between actions <" is empty because
all actions depend only on items that were present in the initial graph (note that the two o-vertices
on the left-hand side of r1 are matched to the same vertex of (). The dependency relation be-
tween elements of the type graph is: 013 < Wo;5 <—, e < circz and [0 < ;. The weak

dependency relation is: al i> a2, a2 i a3, a3 i al, —>i> o9, H i o9 and oq i o;.
By the definition of the conflict relation based on these two relations, we obtain that there are no

conflicts in this grammar, i.e., é:. Now consider the subgraph GG'1 of C'. The components of
this graph are not related via the causal dependency relation, and there are obviously no conflicts
between them (because the grammar is conflict-free). Moreover, there is a possible sequence in
which actions a1 and a2 (that are necessary to obtain (G1) can be applied. As this set of actions
{al,a2} is finite, we conclude that (G1 is a concurrent graph of GG. The same holds for G2.
Now consider the graph G3. As we have that [J < ey, the first condition for concurrent graphs
is violated, and thus (G3 is not a concurrent graph. Intuitively this means that this graph can
never occur in some derivation because the the creation of e, implies that [1 has been deleted.
Although the the vertices in graph (G4 are independent from each other with respect to <, G4
is also not a concurrent graph because the existence of this graph implies that the actions «al,
a2 and a3 must have occurred, and the occurrence relation considering these three action is not
antisymmetric (there is a cycle of weak conflicts). Graph G5 is not a concurrent graph for the
same reason of (G3: the edge — is dependent on its (source and target) vertex oy 5. This means
that there can be no derivation in which this edge is created. The reason why this edge is in the
core graph is that the post-conditions of a rule must be total, otherwise there may be elements
that have no type. Such a situation happens whenever there are conflicts between preservation
and deletion (what may lead to the fact that some items that should be created by the rule are
not created). The presence of this edge in the core graph is a technical convenience to make a
derivation of some grammar to be again a graph grammar (where the typing is still given by total
morphisms). @)

The next proposition shows that the pre-conditions (as well as the post-conditions) of
each action in an occurrence grammar are concurrent graphs. This will be used later on to
show that each action in an occurrence graph grammar can really occur in some derivation
(Prop. 5.51).

112 5. Occurrence Graph Grammars

©s0 O, = 3 O
[| o, o, o, N O12
Gl G2 G3 G4 G5

Figure 5.13: Concurrent (G'1,G2) and Non-Concurrent Graphs (G3, G4, G5)

Proposition 5.35 Let Occ = (C, 1, N,n) be an occurrence graph grammar and (na,a) € N.
Then preq(L,) and post,(R,) are concurrent graphs. ©)

Proof. We have to show that pre,(L,) and post,(R,) fulfill the four requirements of concurrent
graphs (Def. 5.33). Assume that there are z,y € pre,(L,) and z < y. By definition of causal
dependency (Def. 5.20), this means the creation of y depends on the deletion of z. Therefore
there must be actions ax and ay that deletes x and creates y, respectively, and az < ay. As
y € Prey(L,), ay < a. Thus by transitivity of < we obtain that az < a. But as z is needed

by a and ax deletes @ we must have that a i> ax, and this implies that a é a (by of the
conflict relation — Def. 5.25). As Occ is an occurrence grammar, axiom 2. assures that there
are no self-conflicts. Therefore, we must have @ € y. The other three requirements can be
shown analogously, using additionally axioms 1. and 3. of occurrence grammars.

v

As the relations of an occurrence graph grammar (dependency, weak conflict, conflict,
occurrence) are special ones, the question arises whether they are preserved (or reflected) by
occurrence graph grammar morphisms. In fact, independencies are preserved, but dependen-
cies are not preserved. This will be illustrated by the next example.

Example 5.36 (Dependency Relations and Occurrence Graph Grammar Morphisms)
Figure 5.14 shows two actions a1 and al’ of an occurrence graph grammar having as core graph
C171. Action al’ is causally dependent of action al because it needs the vertex e that is created
by al. On the bottom of this figure we find two actions of an occurrence graph grammar Occ2.
These actions are independent because their overlapping in the core graph C2 is empty. The pair

5.3. Occurrence Graph Grammars 113

(c,t), where ¢: C2 — Cland t: T2 — T1, is a possible type component of an occurrence graph
grammar morphism: it is a morphism in TGraphP and domain restrictions yield a pullback (as
required by axiom 2. of occurrence graph grammar morphisms). Moreover, the action component
may map al to a2 and al’ to a2’ because the rules of a2 and a2’ are exactly the translation of
the rules of al and a2 with respect to the mapping of the type graphs (in fact, they could be
even subrules of the corresponding translated rules). As a1 < al’ and a2 £ a2', we conclude
that occurrence graph grammar morphisms do not preserve the dependency relation. This occurs
because the rules in the target occurrence grammar are allowed to be subrules of the original rules,
and thus if the dependency between two actions was based on some items that was “forgotten”
then the corresponding actions in the target occurrence grammar may be independent. Now let

Figure 5.14: Occurrence Grammar Morphisms and Dependence

us consider the opposite situation: two actions a2 and @2’ are independent and are mapped via
an occurrence graph grammar morphism to actions a3 and a3’ respectively. This is shown in
Figure 5.15. The morphisms ¢ and ¢ in this figure identify both B-vertices and both o-vertices,
and map O to [I. Although the rules in the target grammar have more elements than the original
rules (because some elements of the type graph were splitted), the actions in the target grammar
are also independent. The only way to make them dependent would be to force some overlapping
of post3 and pre3’ in the core graph C3, but this would make either diagram (1) or diagram
(2) non-commuting, what implies that the corresponding mapping is not a doubly-typed graph
grammar morphism (because the translation of rules must be according to the core graphs —
see Def. 5.5). This means that, if two actions are independent in one occurrence grammar, the
corresponding actions in the image of an occurrence grammar morphism will still be independent.

114 5. Occurrence Graph Grammars

©
rat r2
- E—
a2 / =
cz T
t (2
C3
a3 a3
o, O4
r3l F o r3
Figure 5.15: Occurrence Grammar Morphisms and Independence
Proposition 5.37 Occurrence graph grammar morphisms preserve £, £# and éﬁﬁ . ©)

Proof. Let f = (fror, fn) + Occl — Oce2 be an occurrence graph grammar morphism,
al,bl € dom(fn), fn(al) = a2 and fy(bl) = b2. Let fr = c'.

Causal independence : Let al 4 b1. Assume that a2 < b2. This means that there must
be e € C2 such that e is created by a2 and needed by b2. Diagrams (1)—(4) commute
because f is a double-typed graph grammar morphism. As (1) commutes, e € dom(c).
As (2) commutes, c(e) is created by al. Analogously, we conclude that ¢(e) is needed by
b1. But this implies that el < b1, what contradicts the hypothesis. Thus we conclude

5.3. Occurrence Graph Grammars 115

that a2 4 b2, i.e., f preserves 4.

(ra)™!

Lo == B Ly —> Ry
Wl py\
ClTl
(2) (1) Ic! (3) (4)
dom(c)
/a{ 1\
La2(ra2)_1Ra2 | postaz 2" Prepe ' L2 Tb2 Ry

Now let al £ b1. This means that for all 1 € Pre<(b1), al A cl. As f preserves ,
a2 4 fn(cl). That is, for all pre-conditions of 2 that are in the image of fuy, these
actions are independent from a2. If there is no action in Pre<(bl) that is not in the
image of fy, then we are ready. Assume that there is ¢2 € Pre<(b1) and ¢2 ¢ rng(fn).
This means that ¢2 creates some item e that is (directly or indirectly) needed by 2.
As ¢2 ¢ rng(fn) we must have that e ¢ dom(c) (because f is a doubly-typed grammar
morphism). But this implies that all actions that directly depend on ¢2 can not be in
the image of fn, and thus all actions that depend on these, like b2 can not also be in
the image of fy, what contradicts the hypothesis. Therefore we conclude that a2 £ b2.

Occurrence Relation : Analogously to the first point, using the overlappings of the pre-

conditions of actions, we obtain that a2 j/ﬁ b2 if al j/ﬁ bl. Now let d1 € dom(fn)
and al gjfl bl. By the definition of gjﬁ (Def. 5.27), we have that there can be no
chain of actions starting in el and ending in bl in which the actions are related by

causal dependency or weak conflict relationships. As £ and j@ are preserved by f
and f is a double-typed graph grammar morphism, we conclude that a2 gjﬁg b2, where

d2 = fn(a)-

Conflict Relation : Let al é& bl. This means by definition of conflict (Def 5.25) that
al $> bl or b1 $> al. Assume the first case. By the definition of inherited weak

conflict we have that for all ¢1 € N1, al ﬁ#é cl or el £ bl. As ﬁ#é and £ are
preserved by f and f is a double-typed grammar morphism (what implies that all
causes of an action that is in the image of a morphism are also in the image) we

conclude thata2 éﬁi b2.
v

The notion of a concurrent graph is mostly based on independence of items/actions.
As morphisms preserve independence, they also preserve concurrent graphs, as the next
proposition will show.

Proposition 5.38 Occurrence graph grammar morphisms preserve concurrent graphs. &

116 5. Occurrence Graph Grammars

Proof. Directly follows from the definition of concurrent graphs (Def. 5.33), Prop. 5.37 and
the fact that if some element is in the image of an occurrence grammar morphism, all its
pre-conditions with respect to the dependency relation must also be in the image of this
morphism (see Prop. 5.37). Vv

Although dependencies and weak conflicts are not preserved by arbitrary occurrence graph
grammar morphisms, there are some that do preserve these relations. The next definition
identifies a special class of occurrence graph grammar morphism, called prefix morphisms. If
we consider occurrence graph grammars as (possibly non-deterministic) computations, prefix
morphisms can be seen as prefix relations,i.e., if a morphism p : Ocel — Oce2 is a prefix
morphism then the computation described by the occurrence grammar Occl is a “beginning”
of the computation described by the occurrence grammar Oce2. Prefix morphisms enjoy a lot
of properties (see Props. 5.40, 5.41, 5.42 and 5.43), and will be mainly used to relate different
computations of the same typed graph grammar. Therefore, it is reasonable to require that
the type graph, the initial graph and the rules that are used are the same (because they are
the rules of the typed grammar that originated these computations).

Definition 5.39 (Prefix Morphisms) Let Occl = (C17! 11TV N1,n1) and Oce2 =
(C2T2, 12602772 N2 n2) be two occurrence graph grammars and p = (p2F pN) : Ocel —
Occ2 be a morphism in OccGG, where pr = ¢ : €272 — C17Y. Then p is a prefix morphism
iff the following conditions are satisfied

1. 1972 = 111,
2.t =14dpy .

3. VY(rn,al) € N1: py(rn,al) = (rn',a2) = rn=rn' and r,; = rqs.

©

Proposition 5.40 Let p = (pror,pn) : Occl — Occ2 be a prefix morphism and pr = .

Then c is injective and surjective and fx is total and injective. @)

Proof. As pis an occurrence grammar morphism, (1) is a pullback. By definition of a prefix
morphism, ¢t = idy. As idr is an isomorphism and (1) is a pullback, ¢!is also an isomorphism.
Therefore ¢ = clo (¢¥)™}
of doubly-typed graph grammar morphisms (Def. 5.15) implies that py must be total. Now
assume that there are two actions al, bl € N1 such that py(al) = pn(bl) = a2. By the third
condition of prefix morphisms, the rules used in these three actions must be the same, i.e.,

is injective and surjective. As ¢! is surjective, the first requirement

rq1 = Tp1 = Ta2. As al and bl are mapped to a2, diagram (2) must commute with pre,;
and with prey, what implies that pre,; = prep;. Thus, using axiom 5. of occurrence graph
grammars (deterministic action output), we conclude that al = b1.

5.3. Occurrence Graph Grammars 117

Cl———s7 Loy = Ly = Lo) V4
red2 pre®
C'I (1) idy b (3)
pr’ebl
dom(c) ——dom(t) =T dom(c)C C27?

In Example 5.36 it was shown that occurrence grammar morphisms in general do not
preserve the causal dependency relation. The reason was mainly that the rules in the target
occurrence grammar were allowed to be subrules of the (translation of) original rules. The
next proposition shows that prefix morphisms preserve not only the dependency relation,
but also the local occurrence and conflict relations. Thus, the existence of a prefix morphism
between two occurrence grammars expresses the existence of a very tight relationship between
these two grammars.

Proposition 5.41 Prefiz morphisms preserve <, gf and é @)

Proof. Let p = (p@F, pn) : Occl = Oce2 be a prefix morphism with pr = ¢ : €272 - C111,
Then by Prop. 5.40, p” is injective and surjective (because both components are injective and
surjective) and py is a total and injective.

Let al,bl € N1 and al # bl. As py is total and injective there are a2 = py(al) and
b2 = py(b1) and a2 #£ b2.

(ra1)™? (ra1)™?

Lal — Ral Lbl Lal — Ral
postar T T
yl (1) \ prejl/\
H1 ol c1T
idpy (3) 1dpR1
idp | (8) |u idr1 (4) pY. (5) idro
H?2 — o2t
y2 (2) / pr’;z\ Lag =—— Ra2
postagn (Ta2)_
La2 ~ Ra2 Lb?
(ra2)™"

Dependency relation: Let al < bl. Assume that b1 is directly dependent of al, i.e.,
al <V b1. By definition of direct dependency (Def. 5.20) this means that the morphism
x1loprep; in the diagram above is not total, where (1) is a pushout in TGraphP(T). Let

(2) be the pushout of (L, (reg) 1 Ry P72 C272%) in TGraphP(T). We have to show
that 220 preps is not total. As pis a prefix morphism, there are identities idy4, idrs and
idp1. Moreover diagram (3) commutes because p (r,2 = rq1) is thus trivially a pushout.
As pis a doubly-typed graph grammar morphism, the translated rules are compatible
with the mapping of the doubly-type, i.e., post,; o (idp2)~! = post,; = propost,s and
prepy o (idp2) ™" == prey = pr o prepy. Let pY. be the inverse of pr (p¥ is total and
injective because py is injective and surjective). As pY o pr = idgr and pr is surjective

118 5. Occurrence Graph Grammars

we obtain commutativity of (4). Analogously we obtain commutativity of (5). We
can compose pushouts and (2) and (3) yielding pushout (6)=(2)4+(3). As (6) and (4)
commute and (1) is a pushout we obtain an universal morphism » : H1 — H?2 that
makes (7) commute. As 1o prey; is not total uwozloprey is also not total. Therefore
we obtain that woxlo prey; = 220 f% o prep; = x2 0 prepy o idry is also not total, and
as tdys is an isomorphism and thus total, 2 o preys must be not total. This means that
a2 <N b2,

If b1 is not directly dependent of al there must be a sequence al <4V ¢1 <V ... <N
en <IN b1, where all ¢i € N1, for i = 1.n. As py is total, all these actions must

be mapped to Oce22 and the direct dependencies must be preserved. Therefore by
transitivity of <V we obtain that a2 <V b2.

The dependency relation between types is derived from the fact that rules create/delete
something. As the rules are mapped to identical ones and pr is injective and surjective,
<T is also preserved. Thus, we conclude that < is preserved by p.

Weak conflict relation: Analogous to the first item, considering the morphisms pre,; and
Prepy.

Conflict and Occurrence Relations: As these relations are obtained from the depen-
dency and the weak conflict relations (see Defs. 5.25 and 5.27) and the latter are pre-
served by p, the conflict and occurrence

v

Proposition 5.42 Prefiz morphisms preserve and reflect concurrent graphs. @)

Proof. Preservation is due to Prop. 5.38. The fact that prefix morphisms reflect concurrent

graphs follows from the fact that prefix morphisms preserve <, é and <#,_. Vv

A very important property of prefix morphisms will be proven in the next proposition,
namely that there can be at most one prefix morphism between two occurrence grammars.
The reason for this is that each element of the core graph is uniquely determined by its history,
that is, by the elements that were deleted and created by rules until this element was created.
Note that, if non-consuming rules would be allowed or axiom 5. of occurrence grammars
would be dropped, this proposition would not hold because there may be elements of the core
graph that do not depend on the existence of any other item, and thus the histories of two
of these elements would be the same, i.e., they are indistinguishable. The fact that there
can be only one prefix morphism between two occurrence grammars will be used in Chap. 6
to define suitable equivalence classes of occurrence grammars, giving raise to a well-defined
category of abstract occurrence grammars.

Proposition 5.43 There is at most one prefic morphism between two occurrence grammars.

©

Proof. Let Ocel and Oce2 be graph grammars as in Def. 5.39, and f = (%P,fN) and
g = (g(T)P,gN) be prefix morphisms f, g : Occl — Occ2. We have to show that f = g, that is,
that both components are equal:

5.3. Occurrence Graph Grammars 119

Type component: Let 22 € C272, By axiom 4. (core graph) of occurrence graph grammars
(Def 5.29) we can have two cases:

1. 22 = inoee2(y),y € 1272 As f is a prefix morphism, 17! = 1272, Diagram (1)
must commute using fr and gr because both are doubly-typed graph grammar
morphisms (in fact, (1) must be a pullback). Let fr(z2) = 1. As inoece1, in0ce2
and g7 are injective and (1) commutes using g7, we conclude that gr(22) =21 =

fr(az2).

IlTl — 7 T2 Rclo = R020 — Rc%
R : 1
W - INOce2 y @ /\%:postc%
Jr I

ClTl Y*QTQ ClTl YYQTQ
gr gr

2. 22 = postaa(y),y € Raz,y & rng(rqz): Here we have two cases:

(a) 22 € dom(fr): Let 21 = fr(22). By axiom 4. of occurrence graph grammars,
there is a unique action al € N1 that creates z1. As f is a prefix morphism,
requirement 1. of Def 5.39 assures that r,o = r,1. As ¢ is also a prefix
morphism it is total (Prop. 5.40). Let (ng2,a2') = gn(n[a),al). Again,
requirement 1. of prefix morphisms assures that r,or = r41 = r42. By axiom 1.
of occurrence grammars, the local occurrence relation gjﬁ is a partial order.
Let <« be a total oder that is compatible with gjﬁ. This total oder is well-
founded and finite due to axiom 3. of occurrence graph grammars. We will
prove that fr(22) = gr(22) by induction on <. The idea is that each element
of a core graph is uniquely determined by its history (the initial graph and
all rules that were applied to obtain this element). Therefore, if we use the
same initial graph and the same rules, there can be only one way to relate
the corresponding core graphs that is compatible with all actions and initial
graph mappings. Remind that, if an action is mapped via an occurrence
graph grammar morphism, all its pre-conditions must also be mapped (see
Prop. 5.37).

Ind. Basis : cly is the minimal element of <:
Let 29 = fn(clo) and €2 = gn(clp). As clpis the minimal element of <&,
it does not depend on any other actions. This means that all pre-conditions
of ¢lg are in the initial graph. As for all elements e € 117" = 1272 we have
that fy(e) = gn(e), we conclude that pre., = precy (the commutativity
requirement for morphisms requires that fropre.y, = pre.;, = gToprec%).
Therefore axiom 5. of occurrence grammars (deterministic action output)
yields that post.y, = post.y . Diagram (2) commutes with fr and gr
because f and ¢ are doubly-typed graph grammar morphisms. Let 22" be
an item created by ¢2¢ and fr(22') = 21’. As fr o post.p, = post, =
g1 © post.y,, we conclude that gr(22') = 21’

Ind. Hyp. : cl; is the i*" element of << and for all e created by Ry, = R
we have that fr(e) = gr(e). l

Ind. Step : Analogous to the induction basis, we obtain that pre.

precy because all elements needed in pre,,,
in previous actions, and for the elements created by these actions it holds

i+l
must have been created

120 5. Occurrence Graph Grammars

that fr = gr. Then we can use axiom 4. of occurrence grammars and
obtain that for all e created by ¢2;4; = ¢2;,; we have that fx(e) = gn(e).

(b) 22 ¢ dom(fr): As fr is surjective, there is no element in C'17! that have no
pre-image in €272 under fr. Assume 22 € dom(gr). Then there must be an
action al € Occl that creates gr(22) (g7(22) can be an element of the initial
graph of Occl because this would immediately imply that 22 € dom(fr)).
Analogously to the item before, we conclude that a1 must have an image in
Occ2, what implies that diagram (2) (using al instead of ¢lp) must commute
with fr and therefore 22 € dom(fr), what is a contradiction.

Therefore, we conclude that f;r = g7.

Action component: Let (n41,al) € N1. As fy and gy are total, there are fn(n.1,al) =
(naz,a2) and fy(nq1,al) = (ng2,a2'). As f and g are prefix morphisms we have that
Ta2 = a1 = Tao and g2 = ng1 = N,y . Diagram (3) commutes with the pre-conditions
of a2 and a2’, respectively, because f and g are graph grammar morphisms (fr = g7 by
item 1. of this proof). As fr is injective and surjective and fr o pre,s = fropregy =
preqr, we conclude that pre,o = pregor. Then, using axiom 5. of occurrence graph
grammars we obtain that post,s = post,or, i.e., fn(na1,al) = (N2, a2) = (Reer,a2') =
gN(nq1,al). That is, fnv = gn.

prel

'

Lal - La2 = La2’
pre®?
(3)
pre??

T1 71912
¢l fr=gr 2

v

5.4 Concurrent Derivations and Occurrence Graph Grammars

In this section we will show that concurrent derivations are occurrence graph grammars.
Thus, the concurrent semantics of a graph grammar can be described by its concurrent
derivations, and, if the latter are doubly-typed graph grammars, they should belong to the
class of “semantical grammars”, that is, occurrence grammars. As one concurrent derivations
is obtained from a sequential one, this concurrent derivation does not contain any conflict
(because otherwise there would be two steps of the corresponding sequential derivations
that are in conflict with each other, and this is not possible). But weak conflicts may
occur. Therefore, concurrent derivations are special occurrence grammars. Vice versa, we
may restrict to a class of occurrence graph grammars that can be considered as concurrent
derivations. The main condition for these grammars is that the conflict relation is empty.
Moreover, the occurrence relation of the grammar shall be a partial order. This implies that
there exist a total order of actions that may be considered as a sequential derivation. The third
condition is that the pre-conditions of each action with respect to the occurrence relation shall
be finite. This assures that there is a sequential derivation with a countable number of steps
that is represented by this occurrence grammar. Because there are no conflicts, this special
class of occurrence grammars will be called deterministic occurrence grammars. The term
deterministic shall be understood in the sense that if all actions of a deterministic occurrence
grammar appear in some sequential derivation, then the result is (up to isomorphism) the

5.4. Concurrent Derivations and Occurrence Graph Grammars 121

same. This kind of occurrence grammars have been also defined for the DPO-approach in
[CMR96a] (where only finite occurrence grammars were considered).

Definition 5.44 (Deterministic Occurrence Graph Grammars) Let Occ = (CT, 1977 N, n)
be an occurrence graph grammar. Then Occ is deterministic iff it satisfies the following
conditions:

1. <# is antisymmetric.

2 oy,

3. Ya € N: Pre<* (a) is finite.
S

Remarks. Note that these conditions imply the corresponding conditions (given by same num-
bers) of the definition of occurrence graph grammars (Def 5.29). If <# is antisymmetric then
all restrictions of it must be also antisymmetric, and in particular <#, must be antisym-

metric, for all a € N. If i>: () then é must also be the empty relation that is trivially
irreflexive. If for all actions we have that Pre<" (a) is finite, we also have that Pre<(a) is
finite because Pre<(a) C Pre<® (a). These 3 conditions assure that there is a possible total
order using all actions of Occ that is compatible with <#. @)

The next two theorems show that concurrent derivations are deterministic occurrence
grammars and that concurrent derivation morphisms are prefix morphisms. These results
will be used to relate the concurrency and the unfolding semantics of typed graph grammar

(Theo. 6.9).

Theorem 5.45 Concurrent derivations are deterministic occurrence grammars and vice
versa. ©

Proof. =: This direction follows basically from the construction of a concurrent derivation
(Def. 3.40). By construction, a concurrent derivation is a doubly-typed graph grammar
with type CT (the core graph is the type). Thus it remains to show that the conditions
for deterministic occurrence grammars (axioms 1-3 of Def. 5.44 and axioms 4-6 of
Def. 5.29) are satisfied. In [Kor96] it was shown that for each concurrent derivation
there is at least one sequential derivation where all actions of the concurrent derivation
are represented by derivation steps. Therefore, as it is possible to find a total order
including all actions of the concurrent derivation, the weak dependency relation must
be antisymmetric (axiom 2. is satisfied). Obviously, as one sequential derivation can
not have conflicting derivation steps (i.e., there can not exist two steps that can not be
sequentialized in any order because a sequential derivation is a total order of steps), a
concurrent derivation also do not have conflicting actions. Thus, axiom 3. is satisfied. A
concurrent derivation is constructed from a sequential one, where each action necessarily
occurs after a finite number of actions (thus, axiom 1. is satisfied).

Axiom 4. follows from the construction of the core graph as a colimit. Axiom 5.
is satisfied because all rules are consuming, and therefore by the construction of a

122 5. Occurrence Graph Grammars

concurrent derivation based on a colimit and on the fact that there are no conflicts, the
same item of the core graph can be deleted by at most one rule. Item 6. follows from
the construction of a concurrent derivation (Def. 3.40).

<: Here we start with an occurrence graph grammar Occ = (C’T,IC/‘T,N7 n) and have
to show that there is a sequential derivation whose concurrent derivation is Oce. To
construct this sequential derivation, we take some total order < of the actions in Occ
that is compatible with <#, and start with the initial graph applying the corresponding
rules in this total order (this total order exists because <# is a partial order). Moreover,
this total order is well-founded because of axiom 1. of Def. 5.44. If Occ has no actions,
then the corresponding sequential derivation is the empty one. If there are actions, the
corresponding sequential derivation ¢ will be constructed inductively as follows:

Ind. Basis: Let (n4,a) be the minimal element of <.
Then o1 = sl and w1 = inge.,where sl = (na, S1), S1 the pushout depicted in
diagram (1), IT = Vr(I°7T) and m, = (ingc.) ™" o pre,. Axiom 4. of Def. 5.29
guarantees that m, is total (action (na,a) is minimal with respect to <C<, and
therefore can not use elements created by other actions).

Lar%aRa

mal (1) lm;

1T —=o0f
r(l

Ind. Hypothesis: Let i and (n;,a;) be the i** element according to the total order
<. Then there is a sequential derivation o; in which all actions (n,,a) € N such
that (n,,a) < (nq;,ai) and an injective and total morphism wi : OF — CT

Ind. Step: Let j =i+ 1 and (n,;,aj) be the 7t element according to the total order
<. Then sj = (n4;,597), where Sj is the pushout depicted in diagram (2) and
maj = (u;)7" o preyj. As the total order < is compatible with <# . all actions
on which action (n,;,aj) depends must have occurred before. Therefore the only
possibility for m,; not to be total would be that some action, say ak, deleted an

element that is needed by aj. This means that aj i> ak, and thus aj<#ak by
the definition of <# (Def 5.27). But this is not possible because the order << is
compatible with <#. Thus we conclude that Mg; is @ match.

Tai
Lyp———— Ry, Ly

mml \ e (2)
Preay

Isz' . Osi = 157 .

Tai ul\[\ Tay

CT

Now we have to find an injective and total morphism wj : OZ} — CT. Consider the
step-core of sj given by core(s) = (1O;, ing;, outy;) (see Def. 3.39 and diagram

5.4. Concurrent Derivations and Occurrence Graph Grammars 123

below). By construction, (3) and (4) are pushouts. As rgj/T is a morphism in

DTGraphP(C7T), it must hold that preajor;]« = postg;or,;! (weak commutativity
requirement — see Def. 5.3). Therefore there must be an universal morphism
ul : LRy; — CT induced by the pushout (3) such that oul® o aL,; = pre,; and
uLRoast = post,;. By definition of m,; we have that uiom,; = pre,;. Therefore
there must be an universal morphism u’© : 10,; — CT induced by pushout (4)

such that «19 o mfj = o and w'© o iNg; = Ul.

dom(rq;)

I,

ut

The morphism wuj is than defined by uj = u!© o outs;. If both components

are total and injective, uj is also total and injective. The component outy; is
total and injective by construction (see Def. 3.39). The morphism u/© is total
because all pushout morphisms and comparison morphisms used to get u/© were
total. To show that w/© is injective, we will use the facts that ing; is injective
and that all elements that are created by R,; are injectively included in IO;.
Let 2,y € 104, © # y. Assume 2,y € rng(ins;). Then as ui and ing; are
injective and ing; o ul® = wi, we conclude that u!®(z) # uw!9(y). Now assume
that z,y € rng(mg) — rng(ing;). In this case there are no items in L,; that
are pre-image for z and y. As LR,; is a pushout, this means that z and y
must have pre-images zz and zy in R,;. Moreover, this means that rule r;
creates zx and zy. Axiom 4. of occurrence graph grammars guarantees then that
post,;(zx) # post,;(zy), what implies that u!9(z) # u!9(y). Now consider that
v € rng(ins;) and y € rng(ms;) —rng(ins;). Analogously to the previous case, we
have here an element z € R,; that is created by r,;. Therefore, axiom 4. assures
that there is no other action that creates post,;(z) and post,;(z) is not an item of
the initial graph. If there is an element k € I; such that ui(k) = post,;(z), then k
must have been created by some action that occurred before aj, what contradicts
axiom 4. Therefore we conclude that u!© is injective.

The morphism uj is than defined by uj = u!© o outs;. As both components are

total and injective, uj is also total and injective.

124 5. Occurrence Graph Grammars

Now it remains to show that C7 is the colimit of the corresponding core structure
diagram of ¢. By construction, the morphisms u¢ obtained above make all diagrams of
the core structure of ¢ commute. All these morphisms are injective and total, as the
core morphisms must be. By axiom 4., there can not be any element in C7 that was
not in the initial graph and is not the image of a right-hand side of a rule. Therefore,
we all ui must be together surjective on CT. Thus, C'T is the colimit of the constructed

diagram.
v

To relate concurrent derivation morphisms with prefix morphisms, we have to substitute a
total and injective morphism fo : C171 — €272 from the definition of a concurrent derivation
by its inverse, that is an injective and surjective one in the other direction.

Theorem 5.46 Let k1 = (C17, 19T N1,nl) and k2 = (C27, 19?277 N2,n2) be con-
current derivations with respect to a grammar GG, fo : C1TY — C272 be a morphism in
TGraphP(T) and fiv : N1 — N2 be a morphism in SetP. Then

f = (fo, fn) is a concurrent derivation morphism <= p= ((fo)™', fn) is a prefix morphism.

©

Proof. =: Let f = (fc, fn) : K1 — K2 be a concurrent derivation morphism. By definition
(see Def. 3.42) fo = ' is total and injective and fy is total. In [Kor96] it was shown
that fy is also always injective. Therefore we may define a pair p = (pgp,pN) where
pr = (fo)7! and py = f. As rule names are mapped via fy to identical rule names
and the corresponding rule morphism must be identical, the commutativity requirement
of doubly-typed graph grammar morphisms is trivially satisfied (see Def. 4.1). As con-
current derivations have the same initial graph of their originating grammar, the second
requirement for doubly-typed graph grammar morphisms is also satisfied. Thus, p is
a doubly-typed graph grammar morphism. The first requirement for occurrence gram-
mar morphisms is satisfied because of condition 2. of concurrent derivation morphisms.
The second requirement is satisfied because fr is total and injective (then (fr)~!!is an
isomorphism). Moreover, as fc is a morphism in TGraphP(T), we have that t = id7.
As pr = (fo)™1, it is injective and surjective, and as py = fu, it is total and injective.
The requirement 2. of prefix morphisms that rules to can only be mapped to rules
having the same name and same rule morphism is satisfied by the requirement 2. of the
definition of concurrent derivation morphisms (Def. 3.42).Thus, p is a prefix morphism.

<: Let p = ((fo)™%, fn) : K1 — K2 be a prefix morphism. We have to show that the pair
[= (fc, fn) is a concurrent derivation morphism. By Prop. 5.40, fx is total and (fo)™?
is injective and surjective. Therefore, fo is total and injective. The commutativity
requirements from the definition of concurrent derivation morphisms can be derived
from the commutativity requirement of the (double-)retyping construction and the
requirements that the initial graphs of k1 and x2 are the same (item 1. of Def. 5.39)
and that rule names and rule morphisms must be mapped to identical ones (item 3. of

Def. 5.39). Therefore we conclude that f is a concurrent derivation morphism.
v

5.5. Folding of Occurrence Graph Grammars 125

5.5 Folding of Occurrence Graph Grammars

Occurrence graph grammars shall serve as semantical models for graph grammars. Therefore
we will define a relationship between occurrence grammars and typed graph grammars. The
idea is that is an occurrence graph grammar Occ is related to a grammar GG, the Oce describes
a (possibly non-deterministic) computation of G'G. This relation will be expressed by a
functor from the category of occurrence grammars OccGG into the category of (typed) graph
grammars GG. This functor will be called folding functor because the different occurrences
of elements of the same element of the type graph as well as different occurrences of the same
rule will be folded together to obtain the grammar GG'.

Definition 5.47 (Folding Functor) Let OccGG and GG be the categories of occurrence
and typed graph grammars respectively. Let Occ = (C’T,I,N7 n) be an object in OccGG
and f = (%P, In) : Ocecl — Oce2 be an occurrence graph grammar morphism, with fr = c'.

Then the folding functor F : OccGG — GG is defined as:
e Objects: F(Occ) = (T, Vr(I),N',n'), where N' = {z|(z,a) € N}, n'(z) = Vr(n(z,a))
and V7 : DTGraphP — TGraphP is the type-forgetful functor (see Def. 5.9).
e Morphisms: F(f) = (t9F, fy), where fi(z) = 2" if fy(z,a) = (2',d').
©

Proposition 5.48 The folding functor is well-defined. ©)

Proof. F(Occ) is obviously a graph grammar. Axiom 6. of occurrence graph grammars
assure that fj; is a well-defined function. The second requirement of occurrence graph
grammar morphisms assures that the double-retyping (see Def. 5.5) of some doubly-typed
graph G1917T1 is compatible with the type-forgetful functor Vo (because the composition of
pullbacks is again a pullback). That is,

DTft(Gch/Tl) — (202/T2 7}(VT(G101/T1)) ~ VT(GQCQ/‘TQ)

1
tGl tCl

G1t C1i T1

CIGT PB c!I PB 17:!

G2+ dom(c) —— dom/(t)

As both conditions of doubly-typed graph grammar morphisms are fulfilled by Occ and these
conditions are based on double-retyping constructions, the corresponding conditions will be

also satisfied by F(Oce). vV

Example 5.49 (Folding Functor) Figure 5.16 shows an occurrence graph grammar Occ and
its folding F(Occ). Note that the two different actions a1l and a2 were folded to the same rule of
F(Occ) because, if we forget the different matches in the core graph, the resulting rules can not
be distinguished anymore, and as a grammars consists of a set of rules, they must be the same
rule. The requirement 6. of occurrence graph grammars assures that actions that have the same
rule name use also the same rule, and therefore there can not be the case that two rule names
should be mapped to two different rules in the folded grammar. @)

126 5. Occurrence Graph Grammars

F(Occ) " ol r3
e, — L, o, o,
.l
o,
)

Figure 5.16: Folding of Occurrence Graph Grammars

The next two propositions confirm our choice of axioms for an occurrence graph grammar,
in the sense that they show that an occurrence graph grammar represents derivations of a
grammar. The first proposition is concerned about the elements of the core graph and their
relationship with the derivable graphs of a grammar and the second with the actions and their
relationship to the derivation steps of a grammar. Prop. 5.50 shows that for each concurrent
graph of an occurrence graph grammar, there is a concurrent derivation that has this graph
as an output graph with respect to the folding of this occurrence grammar. This means
that each concurrent graph is (a subgraph of) some derivable graph. Prop. 5.51 shows that
each action of an occurrence graph grammar can be used in at least one derivation its folded
grammar.

Proposition 5.50 Let Occ = (C’T,IC/‘T,N7 n) be an occurrence graph grammar, G C C,
and G be a concurrent graph. Then there is a concurrent derivation x of F(Occ) such that

G COUTg. ©

Proof. Let A = {(n,,a) € N |3z € G : a’ creates x and (n,,a) < (n4,a’)}. Then we define
k= (CE, I°67T Ny, n'), where

o cl is the smallest subgraph of CT such that rng(inoe.) Urng(pres) Urng(post,) € CFL,
for all (ng,a) € A. Let i : CE — CT be the corresponding inclusion morphism.

5.5. Folding of Occurrence Graph Grammars 127

e JCA/T is a doubly typed graph having as type morphism téT = {97 where t =
. T
(7’)_1 © técc‘

o N ={(ng,a") | (ng,a) € A,ry = ro,preq = (i) Lo preg, posty = (1)1 o post, }

Ta=Tg,t

Ly=Ly+———" > R,=Ry
N
T
pregs C post 41
Ji
T
Ck

o nf(n,,d') =d, for all (n,,a’) € Ng

Now, if k is a deterministic occurrence graph grammar then it is a concurrent derivation
of the grammar F (k) C F(Occ).

The construction of # yields that the initial graph and all rules are typed over CL. The
typing morphisms are total due to the construction of C'L. The rules are well-defined because
the rules of Occ are well-defined. Thus, & is a doubly-typed graph grammar. Conditions 4-6
of occurrence graph grammars (Def. 5.29) follow from the construction and from the fact that
Occ satisfies these properties (for condition 4. we additionally need that A is closed under
causal dependencies). Conditions 1-3 of deterministic occurrence grammars (Def. 5.44), that
subsume the corresponding conditions of occurrence grammars, and the fact that G C OUTg
follow from the properties of concurrent graphs (Def. 5.33). vV

Proposition 5.51 Let Oce = (C’T,I,N7 n) be an occurrence graph grammar. Then for all
a € N there exists at least one concurrent derivation r with respect to F(Occ) such that there
is a prefix morphism p: x — Occ and a € rng(pn). @)

Proof. By Prop.5.35 we have that pre,(L,) is a concurrent graph. This implies that g#Pms(a)

. . . <# . . .
is antisymmetric, Pre= Pre=(e) is finite and there are no conflicts between the elements of

Pre<(a). Therefore we can build a deterministic occurrence graph grammar (concurrent
derivation) # by restricting the actions of Occ to the actions of Pre<(a) (analogous to the
construction given in the proof of Prop. 5.50) and the corresponding inclusion in Oce will be
then a prefix morphism. Vv

The following definitions and propositions of this chapter will be used as auxiliary defi-
nitions and proofs for the proofs of theorems 6.9 and 6.15 of Chap. 6. Definitions 5.52 and
5.53 and Prop. 5.54 are concerned with identifying subgrammars of an occurrence grammar.
In Def. 5.55 the mazimal prefiz derivation with respect to a (special) diagram of concurrent
derivations is defined. This maximal prefix is the least-upper bound of this diagram (in
[Kor96] it was shown that least-upper bounds of diagrams of concurrent derivations exist).

128 5. Occurrence Graph Grammars

Definition 5.52 (Depth of an Occurrence Graph Grammar) Let Occ = (C,I,N,n)
be an occurrence graph grammar. Then the depth of an element a € N is given by

0, if a € Min<

depth(a) = { max{depth(b) | b < a} 4+ 1, otherwise

The depth of an occurrence graph grammar, denoted by Depth(Occ) is defined as
Depth(Occ) = maz{depth(a) | « € N}, if max is defined, otherwise Depth(Occ) = w. ©)

Remarl{s.

1. max delivers the maximum value of a set of values. If there is no maximum value, max
is undefined.

2. The well-definedness of the depth of an action is due to axiom 3. of occurrence graph
grammars (finite action causes).

©

Definition 5.53 (Subgrammar of Depth d) Let Occ = (C,I9 N,n) be an occurrence
graph grammar and N’ = {& € N | depth(x) < d}. Then its subgrammar of depth d,
denoted by Occ\?, is defined as follows: Occl®) = (Cd, Id°?, Nd, nd) where

e (Cd is the smallest subgraph of C' such that for all (na,a) € N': (i7)™' o pre,, (ir)~'o
post, and (iT)_l 0 inpe are total, where 17 : C'd — C' is the obvious inclusion.

o 1d°! = 19 with typing morphism t'¢ = (ir)7t o inoee.
o Nd={(na,d') | (na,a) € N',ry =r,, preq, = (ir) "' o preg, posty = (ir) ™" o post, }.

o nd(na,d’) =d, for all (na,d’) € Nd.

The induced subgrammar inclusion i : Occ) — Occ is defined by i = (i2F,iy)
where ir is the inclusion defined above and iy(na,d’) = (na,a) where ry = ro,pre, =
UT O pregs, post, = iT O Post, ©
Remarl{s.

1. Oce'® s obviously a graph grammar (all rules and the initial graph are typed over
Cd). The requirements for an occurrence graph grammar are also satisfied because Occ
is an occurrence graph grammar and by the construction of Occ(? (see the proof of

Prop. 5.50).

2. The inclusion 1 is trivially a prefix morphism.

©

Proposition 5.54 Let Oce be a deterministic occurrence graph grammar. Then a subgram-
mar OccD for each d is a deterministic occurrence graph grammar. @)

5.5. Folding of Occurrence Graph Grammars 129

Proof. As Ocel?® is a subgrammar of Oce, there is a subgrammar inclusion i : Occ® — Oce,

that is a prefix morphism. By Prop. 5.41, these morphisms preserve <, gf and é
Therefore, Occl® must be a deterministic occurrence grammar, t0o. Vv

Definition 5.55 (Maximal Prefix) Let GG be a graph grammar and k be a concurrent
derivation of depth n + 1 of GG. Let D be a diagram having as objects all concurrent
derivations ki of GG such that there is a prefix morphism pi : ki — K, and as morphisms
all prefix morphisms px : ki — kj, for all ki,kj € D. Let k¥ € D and p : k¥ — &k be its
corresponding prefix morphism into . Then k¥ is called maximal prefix derivation of
iff for all ki € D there are prefix morphisms pit’ : ki — k¥ such that diagram (1) below
commute. The morphism p is then called maximal prefix morphism.

) pit P
Kl ————

\(1) /
Pt p

K

©

Proposition 5.56 Let GG be a graph grammar and k be a concurrent derivation of depth
n+1 of GG. Let D be a diagram having as objects all concurrent derivations ki of GG
such that there is a prefix morphism pt : ki — &, and as morphisms all prefix morphisms
px ki — Kj, for all ki,kj € D. Then there is a maximal prefiz derivation k¥ for D and

depth(k”) = n. @)

Proof. The proof for the existence of such a construction can be found in [Kor96]. The
concurrent derivation P is constructed as a colimit of the diagram D in the category of
concurrent derivations with respect to GG. Now assume that x° is not of depth n. As there
are prefix morphisms pif’ : ki — & and p : k¥ — &, the only possibility is that the depth of
k¥ is m 4+ 1. This means that there is at least one action @ in «* that depends on an action
a’ of depth n. As k¥ is constructed as a colimit the action @ must belong to some concurrent
derivation k¢ € D. But such a concurrent derivation can not be in D because this would

mean that depth(xi) = n 4 1. Therefore we conclude that depth(x”) = n. Vv

Proposition 5.57 let p = (pgp,pN) : Ocel — Oce2 be a mazimal prefiz morphism. Then
pr o preg is total, for all a € N2. ©)

Proof. Let @ € rng(py). Then the (sub-)commutativity requirement of graph grammar
morphisms morphisms assures that pre, € dom(pr). Let a ¢ rng(pn). Assume that pre, ¢
dom(pr). This means that some item needed by «a is created by some action in N2, say @/,
that is not in rng(py). As Ocel is the maximal prefix derivation of depth n, we must have
that depth(a’) = n + 1. But this leads to a contradiction because then we must have that
depth(a) = depth(a’) + 1 = n 4 2. Therefore we conclude that pre, € dom(pr). Vv

Unfolding Semantics of Graph
Grammars

One of the main features of graph grammars is that each change a of state can be described
in a very detailed way: we may have items that are deleted, items that are added and items
that are preserved. In many of the other formalisms for concurrent systems, e.g., Petri nets,
CCS [Mil89], transition categories [Gro96], conditional rewriting systems [Mes92], there is
no difference between deletion followed by re-creation and preservation of items. Therefore,
it seems to be adequate for graph grammars, even more that for other formalisms, to have
these changes of state explicitely at the semantical level. This means that we do not want
to “forget” all states and define a semantics for graph grammars based only on actions, like,
e.g., an event structures semantics [Win89]. Obviously there may be applications in which
this level of abstraction would be more adequate, and in fact it is possible to define suitable
event structure semantics for graph grammars [CEL194a, Sch94, Kor95, CELT96b]. This
kind of semantics gives a very nice way to reason about actions (or events) and relationships
between them (dependencies and conflicts)!. But here we are mostly interested in defining
a semantics in which it is possible, in addition to actions, to analyze the states and possible
relationships between components of states. This semantics will be thus quite rich, and from
it it is still possible to get the corresponding event structure of a grammar (by abstracting
from the states) and also the language semantics of a grammar (by abstracting from the
actions).

In the last chapter we introduced the concept of an occurrence grammar and showed
that such a grammar is able to describe suitably the derivations of a graph grammar, in-
cluding rules and derived graphs. In this chapter we will, starting from a graph grammar
GG, construct an occurrence graph grammar that represents all its computations. Such an
occurrence grammar is called unfolding of a grammar. In the area of Petri nets, unfolding of
nets have been presented in [NPW81, MMS94, Sas94], and they are particularly suited for
the investigation of reachability and deadlock properties of nets [McM92]. Moreover, another
significant advantage is that the unfolding avoids (to a certain extent) the state explosion

!However, one should remark that the usual configurations analysis used for event structures does not reflect
faithfully the kind of parallelism that may be possible in graph grammar because the ability to preserve items
may give raise to asymmetric conflicts, that in turn lead to “non interleavable” parallelism (i.e., two actions
that may occur in parallel can be only sequentialized in one order).

130

6.1. Construction of the Unfolding of a Graph Grammar 131

problem in constructing the semantics of a net (it was shown in [McM92] that the unfolding
size grows linearly, whereas the number of states needed in the state space grows exponen-
tially). Therefore, an unfolding semantics for graph grammars seems to be promising as a
basis for analysis.

The main definition, aims and results of this chapter are:

e Definition of the unfolding of a graph grammar (Def. 6.7). This unfolding is constructed
in two steps: first, the finite unfoldings are constructed inductively by applying at each
step all rules of the grammar to the result of the previous step; and second, the unfolding
is constructed as a colimit of the finite unfoldings in the category of graph grammars.
Prop. 6.6 and Prop. 6.8 show that the unfolding of a graph grammar is an occurrence
graph grammar. The unfolding construction is presented in Sect. 6.1.

e Establish a relationship between the unfolding and the concurrent semantics of a gram-
mar (Sect 6.2). This is done by showing that the unfolding is the colimit of all concur-
rent derivations of a grammar (Theo. 6.9), what implies that the unfolding describes all
deterministic computations of a graph grammar.

e Establishment of a tight relationship between the categories of graph grammars and
of (abstract) occurrence graph grammars (Sect 6.3). This relationship is given by
an adjunction where the functor involved are the folding and the unfolding functors
(Theo. 6.15). The fact that the unfolding functor is a right-adjoint implies that all
computations (deterministic and non-deterministic) of a grammar are represented in
the unfolding of this grammar (Theo. 6.16).

e Investigation of the compatibility of the unfolding semantics with parallel composition
operators on grammars defined in Chap. 4 (Sect. 6.4). It is shown in Theo. 6.18 that
the unfolding semantics is compatible with parallel composition. This means that the
parallel composition operators and unfolding semantics seem to be good candidates to
be used as a basis for a suitable module concept for graph grammars.

6.1 Construction of the Unfolding of a Graph Grammar

The finite unfoldings of a graph grammar will be obtained by an inductive construction.
Let GG be a graph grammar. To construct the unfolding of GG, we start with the empty
unfolding (the unfolding of depth 0). In the next step, we have to check which rules of GG
are applicable at the initial graph of G(G. This search for the set of applicable rules at some
unfolding step is defined in Def. 6.1. Then we have to apply this rules to the initial graph.
We will apply all these rules at once, by applying a corresponding parallel rule (Def. 6.3).
But, as we want to have all derived graphs represented in the unfolding, no item shall be
deleted from the initial graph. This will be achieved by applying the parallel rule only from
its domain (thus, considering only the items that are preserved and that are added). The
next step is to “make” this result become an occurrence grammar. This means practically
that we have to make sure that all rules and initial graph are typed over the same core graph.
This can be done by just composing some morphisms. In the second step, the search for the
applicable rules is more difficult because we have to identify subgraphs of the core graph of
the first step that are concurrent, i.e., that may occur in some derivation step. It is enough
to identify the subgraphs of some derivable graph because if there is a match to a subgraph

132 6. Unfolding Semantics of Graph Grammars

of a derivable graph, it is also a match in the derivable graph. Therefore, we can use the
definition of concurrent graph (Def. 5.33) to find the applicable rules. Then we apply the
parallel applicable rule as in the first step, and again have to make the result an occurrence
graph grammar. But at this step we have to take into account also the rules that were applied
in the step before: these rules must also be mapped to the new core graph. This construction
can be summarized by the following steps: The unfolding of depth d of a graph grammar GG
is obtained by induction on the depth d:

Ind. Basis (Depth 0) The unfolding of depth 0 is the empty unfolding. It consists of the
initial graph I7 of GG as a core graph, IT typed with the identity morphism as initial
graph, the empty set of rule names and the empty naming function.

Ind. Step (Depth i+ 1) : The unfolding of depth ¢+ 1 is constructed in four steps:

1. Construct the set ApplRules*t! of rules that are applicable to some output graph
of the unfolding step ¢. This set consists of triples of a rule name, a rule and a
corresponding match (see Def. 6.1).

2. Apply all the rules in ApplRules’t! to the core graph of step 7 in such a way that
nothing is deleted, only the items created by these rules are added. This means to
apply a parallel rule (see Def. 6.3 containing all the rules in Appl Rules't" to the
corresponding parallel match, but starting not from the left-hand side but from
the domain of this parallel rule (this way nothing will de deleted).

3. Retype the left-hand sides from rules in ApplRules't! to the new core graph (the
right-hand sides are already correctly typed by the construction of the new type
graph).

4. Retype all actions that were present in unfolding ¢ to the new core graph.

Definition 6.1 (Set of Applicable Rules) Let Occ be an occurrence graph grammar with
core graph CT and GG = (T, I, N,n) be a typed graph grammar. Then the set of applicable
rules of GG into C7 is defined as

ApplRules(Oce, GG)={ (nr,rT,mT)|nr € Nyn(nr) =T : LT — RT mT = mOUT . [T & T,
mOUT is a match and rng(m®UT) is a concurrent graph}

©

Definition 6.2 (Set of Applied Rules) Let Occ = (CT, I, N,n) be an occurrence graph
grammar. Then the set of applied rules of Occ is defined by

Applied(Occ) = {(na, 7o, preq)|(na, a) € N}

©

Definition 6.3 (Parallel Applicable Rule) Let A = ApplRule(Ocec, GG) be the set of ap-
plicable rules of GG into the core graph CT of Oce. Let LT be the coproduct in TGraphP(T)
of all left-hand sides of rules in A, and Rt TGraphP(T) be the coproduct of all right-hand
sides of rules in A. Then the parallel applicable rule is a pair (r*, m*) wherer* : Lt — R*

6.1. Construction of the Unfolding of a Graph Grammar 133

and m* : Lt — C are the universal morphisms induced by the coproduct generating the left-
hand side L.

LiT

©

Definition 6.4 (Unfolding of depth d) The (finite) unfolding U¢(GG) of depth d of a
(typed) graph grammar GG = (T, 17, N, n) is obtained inductively as follows:

Ind. Basis: Unfolding of depth 0:

UGG = (I, 1'77,0,0)

Ind. Hyp.: Let U' = (CT,IN%/T N, n') be an unfolding of depth i.

Ind. Step: Unfolding of depth ¢ + 1:
The unfolding of depth i 4+ 1, Ut! = (CZ»T_|_1,INO"+1/T,NZ'+1,M+1) is constructed in 4
steps:

1. Construct the set of applicable rules Appl Rules'™":

ApplRules'tt = Apleules(Ui7 GG) - Applied(Ui)

2. Construct the new core graph C*T! and inclusion CZT_H.'
Let (rT,m%) be the parallel applicable rule of Appl Rules't'. Then the core graph
of step ¢ + 1 is constructed as the pushout object of diagram (1) below (pushout
in TGraphP(T) - see Construction B.14), and the corresponding core graph

inclusion is given by the pushout morphism CZT_H : C’Z»T — Cz'T+1'

Lt <r+—'7d0m(r+) - jt

SN

T T
cfe——ck,
41

3. Add the rules in Appl Rules't! to Ut (GG):

For all (nr,rT,mT) € ApplRules't', (nr,a) € N;yi, where r, = r’, pre, =

134 6. Unfolding Semantics of Graph Grammars

CiT-|-1 omT, posty = m'® o sT (see also Def. 6.3)

LTT’_T>RT

5T
o prea posta_ R-l—
e
m
T T
Ci T Ci-l—l

Cit1

4. Add the actions in N; to Ut (GG):
For all (nr,b) € N;, (nr,a) € Nii1, where ry, = 1y, preg = CiT-|-1 o prep, post, =
CZT_H o posty.

Ta=Tp

L,.=L,——=R,=R,

preprONa Iposta

& T
Ci T Ci-l-l
Cit1

Remarl{.

1. Note that between unfoldings U’ and U'T! there is a corresponding inclusion (prefix
morphism) induced by the inclusion of core graphs CZT_H.

2. As the construction of colimits and pushouts is only unique up to isomorphism, the
definition above is not deterministic, but all results are isomorphic (a coproduct con-
struction was used to get the parallel applicable rule and a pushout to obtain the core
graph of a step i +1).

©

Before we show that the unfolding is well-defined, we will give an example of its construc-
tion.

Example 6.5 (Unfolding Construction) Consider the graph grammar GG depicted in Fig-
ure 6.1. Rule r deletes the looping edge and preserves the e;-vertex. Rule s deletes the edge and
its source vertex, preserves the target vertex and creates a looping edge. All these vertices have
the same type (o). The indices just indicate that they are different occurrences of the same type
element. By definition, the unfolding of depth 0 is an occurrence grammar consisting only of the
initial graph and a core graph. This unfolding U°(G() is shown in Figure 6.2.

All subgraphs of C? are trivially concurrent graphs. Rule r can not be applied at C° because
there is no looping edge in this graph. For rule s, there are three possible matches. The set
of applicable rules of step 1 is shown in Figure 6.3, together with their corresponding parallel
applicable rule s : LT — RT. The next step is to apply this parallel rule to the core graph
C°. This is also shown in Figure 6.3. Then we have to prolongate the matches of each rule to
the new core graph (C!). The result U! of this step is shown in Figure 6.2, where the rules are

6.1. Construction of the Unfolding of a Graph Grammar 135

Figure 6.1: Grammar GG

not explicitely represented, just the core graph and the pre- and post-conditions of the rules. The
rules are numbered for convenience (such that it is easier to talk about them). If some edge is in
the range of a pre- or post-condition of a rule, the corresponding source and target vertices must
obviously also be in the image of this morphism (and therefore this is not drawn).

Now let us analyze the relationships between these actions and elements of the core graph.

All actions are causally independent, and the weak conflict relation is s3 i sl, s1 i s2 and

52 74 s3. There are no conflicts. Between elements of the core graph, we have the following
. d b d .
dependencies: o; <5, 5<5, o §i>, —C>§i>, o3 <—, »<—. The weak conflicts between

types are ii—eh S and L E A

The graphs G'1 to G4 in Figure 6.4 are concurrent graphs of C''. The graph G5 is not a

concurrent graph because o3 §i>. If we choose subgraph G'1 we can apply rules r and s. The
same holds for the subgraphs G2 and (3. By considering other subgraphs, we can only get rules
that have already been applied. Thus we can build the parallel applicable rule using these six rules,
do the retyping and obtain the unfolding of depth 2. Note that in this unfolding, the newly created
edges causally depend on their vertices (due to the conflict between deletion and preservation).
Therefore, these edges can not belong to any concurrent graph. From now on, there can not
be any rule that is applicable that was not applied yet. Therefore, all other unfoldings of depth
greater than two will yield the same result as this step. @)

136 6. Unfolding Semantics of Graph Grammars

"o
o
s
"o
N]
(s
pog/ y\: 2 C /’I. V\p93
=) R .
UZ ,gr,e A ot post/'/®«§r9
pre Pre -7 hpre

2 [l 13

Figure 6.2: Finite Unfoldings of GG

6.1. Construction of the Unfolding of a Graph Grammar 137

Figure 6.3: Applicable Rules and New Core Graph

G4

Figure 6.4: Subgraphs of C*

138 6. Unfolding Semantics of Graph Grammars

Proposition 6.6 The unfolding of depth d is well-defined and is an occurrence graph gram-
mar, for all d € N. @

Proof. U%is a doubly-typed graph grammar with type CdT. The weak commutativity require-
ment for the rules is satisfied because each rule r! of GG satisfies this condition (and therefore
also r*) and by the construction of the typing morphism pre and post (the rule r* is weakly
commuting with type graph ciT_H by the pushout construction (1) of step 2. of the unfolding
construction). Thus it remains to show that U? satisfies the requirements of occurrence graph
grammars (see Def. 5.29). This will be proven by induction on the depth d.

Ind. Basis (Depth 0) : In this case U°(GG) = (IT,I'7T ,0) by definition. As there are

no actions, the relations <, <# and é are empty, what implies that axioms 1., 2., 3.,
5. and 6. are trivially satisfied. As ingogg) = id;r, axiom 5. is also satisfied.

Ind. Hyp. (Depth i) : The unfolding of depth ¢ is well-defined and an occurrence gram-
mar.

Ind. Step (Depth i+ 1) : Let p = (p2F,pn) : U(GG) — UTH(GG) be the prefix mor-
phism induced by the core graph inclusion of step ¢ + 1.

1. Acyclic local occurrence relations: For each a@ € N;14, the relation g# is antisym-
metric because by definition of unfolding, pre,(L,) is a concurrent graph and by
axiom 3. of concurrent graphs.

2. No sefl-conflicts: Assume that there is @ € N;4q such that a é a. By definition
of the conflict relations (Def. 5.25) this means that a =+ 4. i.e., thereis an action
b € N;11 such that a #s band b < a (Def. 5.25 of inherited weak conflict relation).

Asa i> b, b deletes some item, say , that is needed by a, and as b < a, b creates
some item, say y, that is needed by a. This imples, by Def. 5.20 of dependency
relation, that = < y. Therefore, as @ € pre,(L,) and b < a (i.e., b € PreSa),
preq(L,) can not be a concurrent graph because condition 1. of concurrent graphs
(Def. 5.33) is violated. But by the construction of the unfolding, pre,(L,) is a
concurrent graph (see step 1. of the construction). Therefore we conclude that

a j% b, and this implies that a ;.#é a and that a éﬁi a.

3. Finite causes: Assume that there is @ € N;41 such that Pre<(a) is infinite. Then
either there is an infinite sequence of causally dependent actions that are causes of
a or a depends on infinitely many actions that are that are independent from each
other. Assume that there is an infinite decreasing sequence of actions s = ... <
a2 dal 4 a. As al < a, al must belong to rng(py). As U'(GG) is an occurrence
graph grammar by hypothesis, pis a prefix morphism and prefix morphisms preserv
causal dependencies (Prop. 5.41), Pre<(al)) is finite. As prefix morphisms reflect
< (Prop. 5.41), s must also be finite. Now assume that @ depends on infinitely
many actions that are independent. Let S = {a’ € N;y1 | ' < a}. 9 is infinite
by assumption, thus Pr65|5(a) is infinite. This means that there are infinitely
many actions that create items that are needed by a. But by the definition of
the applicable rules (Def. 6.1), pre,(L,) can not be a possible match in this case

6.1. Construction of the Unfolding of a Graph Grammar 139

because pre,(L,) is not a concurrent graph (it violates axiom 4. of Def. 5.33).
Therefore we conclude that Pre<(a) is finite.

4. Core graph: The fact that each item of Cz'T+1 is created only once and that there
are no items that are not in the image of some right-hand side of rule or initial
graph is assured by the pushout construction of step 2. of the construction of the
unfolding and by the fact that U® satisfies this condition.

5. The construction of Appl Ruledt" in step 1. of the unfolding as a set assures that
the same triple consisting of a rule name, a rule and a match are not selected twice
to be applied in the same unfolding step. Moreover, all triples of already applied
rules/matches are not in this set, what implies that the same triple can never be
applied twice in two different unfolding steps.

6. The last axiom is satisfied by the construction of the unfolding and by the fact
that each rule name in GG is associated to only one rule pattern.
v

Definition 6.7 (Unfolding Semantics of a Graph Grammar) The (infinite) unfolding
Unf(GG) of a graph grammar GG is obtained as the colimit in OccGG of the diagram
consisting of all finite unfoldings of GG and the corresponding inclusions (prefix morphisms).

The unfolding semantics of a graph grammar GG is its unfolding Un f(GG). @)

Proposition 6.8 The unfolding semantics of a graph grammar is well-defined. @)

Proof. We have to prove that the colimit of the diagram of finite unfoldings and prefix mor-
phisms exists in the category OceGG. The following construction of this colimit is anal-
ogous to the construction of colimits of directed diagrams of concurrent derivations pre-
sented in [Kor96]. The colimit object U = (CF, I1€07T Ny, nV) and the colimit morphisms
q = (qigp, qin) U' — U, for each finite unfolding U? of GG, are constructed as follows:

c1T 2T

e O is the colimit in TGraphP(T) of the diagram CI < CT < CT... of all core
graphs and core graph inclusions of the unfoldings of depth 7 € N. This colimit exists
and as all morphisms in this diagram are total and injective, the colimit morphisms
dil CjT — CF are also total and injective (see [Kor96] for a proof).

o [CU/T — (IT,tIT,Cg), where ¢I" = df
. D . p2™ p3™
e Ny: Let S be the colimit object in SetP of the diagram N; — Ny — Nj3--- of
all sets of action names and action names components of the prefix morphisms pi =
(pigp,piN) : U=! = U' induced by the unfolding construction. Let si : N; — S be
the colimit morphisms. Then Ny = {(n4,a) | 32 = si(ng,d') € S,ry = ry,pre, =
di’ o pre,, post, = di’ o post,}.

o 1Y (n4,a) = a, for all (n,,a) € Ny

o gir = (di")™" and qin(ng,a’) = (n4,a), where r, = rq, pre, = di’ o pregs, post, =
di™ o post

140 6. Unfolding Semantics of Graph Grammars

Note that Ny is isomorphic to S (and thus also a colimit of the diagram of action names)
because for each element @ € S, all si(ng,a’) = ¢ use the same rule and the pre- and post-
conditions of @’ have the same image in the core graph C’g (all pi are prefix morphisms).

U is obviously a doubly-typed graph grammar with double-type C’g and the conditions of
occurrence graph grammars are satisfied because all U are occurrence graph grammars and
the grammar U is just the gluing of all these grammars (where neither actions nor elements
of the core graphs are glued together from some U’ into U/). Moreover, it is easy to check
that the pairs ¢i are prefix morphisms.

The commutativity requirement and universal property of colimits follows from the con-
struction of U and all g¢ based on the colimits of their core graph and set of rule names
components. Vv

6.2 Unfoldings and Concurrent Semantics

The next theorem establishes a connection between the unfolding and the concurrent seman-
tics of a graph grammar. This relationship is

The unfolding semantics Un f(GG) represents exactly the “gluing” of all con-
current derivations of a graph grammar GGG along the concurrent derivation mor-
phisms.

This gluing construction as a definition for the unfolding of a graph grammar was introduced
in [KR95], where non-deterministic processes for graph grammars were investigated. Now we
prove that the constructive way of obtaining the unfolding given in Defs. 6.4 and 6.7 and the
“categorical” way via a colimit construction of a diagram of concurrent derivations yield the
same result. As the concurrent derivations represent all sequential derivations of a grammar
(see [Kor96] for a proof), the next theorem implies that the unfolding semantics describes
also exactly all sequential derivations of a grammar.

Theorem 6.9 Let GG be a graph grammar and Unf(GG) be its unfolding. Then Unf(GG)
s isomorphic to the colimit of the diagram consisting of all concurrent derivation in C Derga
and all prefiz morphisms between them. @)

Proof. The proof will be done for all finite unfoldings and concurrent derivations by induction
on their depth. Then as the unfolding is the colimit of all finite unfoldings and infinite
derivations are also colimits of their finite prefixes, we conclude that Un f(GG) is the desired
colimit.

Ind. Basis (Depth 0) : The unfolding of depth 0 is defined as U%(GG) = (IT, 17T 0, ().
All concurrent derivations of depth 0 have also an isomorphism as the inclusion of the
initial graph into the core graph and an empty set of actions. All prefix morphisms
between these concurrent derivations are isomorphisms. Therefore we conclude that

U%(G@) is the desired colimit.
Ind. Hyp. (Depth d) : The unfolding U4(GG) = (CdT,INOd/T,Nd,nd) is the colimit of

the diagram D? consisting of all concurrent derivations of depth j < d and all prefix
morphisms between them, where the colimit morphisms are ¢4 : K — Ud(GG) for each
x € D?. Moreover, the colimit morphisms are prefix morphisms.

6.2. Unfoldings and Concurrent Semantics 141

Ind. Step (Depth d+1) : Let Ut (GG) = (CdTH,INOdH/T,Nd_|_1,nd_|_1) be the unfold-
ing of GG of depth d + 1 and i : UY(GG) — U (GG) be the corresponding inclusion.
Let D! be the diagram of all concurrent derivations of depth j < d 4 1 and all prefix
morphisms between them. We have to find, for each kjy.1 € D!, a prefix morphism
Cld41 * Kld+1 — Ud"'l(GG) that commutes with all morphisms in D%*', and show that

Ut (GG) has the universal property of colimits.

Kj e U(GE)

pj[(1) JAZ

Kjan & = = U GG)
Cld+1

Obviously we have that DY C D*!. Let xjgqy € D! and depth(kjysr1) < d + 1. Then
Kjd+1 € D?. In this case we define the colimit morphism ¢jgiq @ Kjge1 — Ud"'l(GG) by
Cjgr1 = tocjq. Now let kjg41 € DI —D?. Obviously we have that depth(kjii1) = d+1.
Let Dy,
there are prefix morphisms pi : s, — kjisp1. This diagram must contain at least
one concurrent derivation with depth d because depth(kjir1) = d+ 1. Let xjgz be
the maximal prefix derivation of depth d of the diagram consisting of Dd),{jdﬂ, KJd+1
and all prefix morphisms between them, and pj : k33 — Kjg+1 be the corresponding
maximal prefix morphism (see Def. 5.55). As depth(kjq) = d there is a colimit morphism
cja = (19, cln) @ Kjg — U(GG). Then the morphism cjgpy = (227, c2n) -
cdjayr — UTH(GG) is constructed as follows:

be the diagram consisting of all concurrent derivations x in D? such that

e Action component: V(ng,,a) € Ngy1:

invocly(ng,a), if =pjn(ng ad) = (nga
2 =
2N (M, @) { (nq,a”), otherwise

where rn =1, pre,s = (i)' o (clr) ™t o pjr o pre,.

. cl . cl
Nrj—Y N, Crjy z <y
ijl\ = \[;N pJTT = TiT
NKjap1™ - = — = > Napr CKJapr <— -~ — = it
02]\7 02T

Lq

The pre-condition pre,» must be total because k74 is the maximal prefix derivation
of depth d (see Prop. 5.57). Moreover, pre,«(L,) is a concurrent graph because
preq(L,) is a concurrent graph and prefix morphisms preserve and reflect con-
current graphs (Prop. 5.35). Therefore the triple (ngn, ryu, preg) is a possible
applicable rule and must be in Appl Rules®t', what implies that the corresponding
action must be in Ngy1. As Ut (GG) is an occurrence graph grammar, axiom 5.
of Def. 5.29 assures that there is only one possibility of mapping ¢” to an action
of Ngy1 (post,r is uniquely determined by r,» and pre,»).

142

6. Unfolding Semantics of Graph Grammars

e Type component: Va € Cyqq:

| clpoip(a)), if =pjra’) =2
c2r(v) = { 2", otherwise

where x is created by (ngr,a”), postun(y) = z, 2n(ng,a) = (ngr,a”) and
post,(y) = z”. (Remind that each element of a core graph that is not in the
initial graph is created by only one rule.)

As each of the rules of Nrjz4q is mapped to a rule with identical pattern, all rules are
mapped and the initial graphs are equal, ¢jg+1 is a graph grammar morphism. It is
injective because it is defined as a composition of injective morphisms on the items that
are in the image of pj and because post,» is injective on the created items. For analogous
reasons, c27 is surjective. The type component of the morphism ¢27 is the identity of
T because all involved morphisms have tdr as the corresponding component. Therefore
requirement 2. of occurrence graph grammars is satisfied. The first requirement is
satisfied because pj, ¢jq and 7 are occurrence graph grammars morphisms. Moreover,
as these are prefix morphisms, the construction of ¢jg4; assures that cjgyq is a prefix
morphism.

UUGG)

. Cld+1 _
Kjan ——= U GG) =
_ S Udt1

- ~
~
N

Td41 X

By definition, ¢jz41 makes diagram (1) commute. Thus it remains to show the universal
property of the colimit. Let X be an occurrence graph grammar and zj = (xjgp, TIN) -
Kjiy1 — X be occurrence graph grammar morphisms that make all diagrams with
morphisms of D! commute. In particular this object and morphisms commute with
D? because this diagram is contained in D!, As U?(GG) is the colimit of D¢, there
is a universal morphism ug : UY(GG) — X. Thus let us define ugyy = (u@F, un) :
UHL(GGE) — X as follows:

. udN(na’7 a/)v if = iN(nav a) = (na’7 a/)
uN(nm a) - { $jN(na“7 a//)7 if CQN(nm a) — (na//7 a//)

By Prop. 5.51 each action of N4y must be in the image of at least one morphism ¢j441
(the concurrent derivation obtained by restricting the unfolding of the causes of this
action must be a concurrent derivation of G(G'). Moreover, it can not be the case that
to actions of different concurrent derivations in D**! are mapped to the same action
in Kj4+1 and to different actions in X because the morphisms 27 must commute with
all prefix morphisms in D', The mapping ur of type graphs can be derived from the
mapping un (analogously to the construction of ¢jzq1 above). Based on the facts that
ugny and zjy are occurrence graph grammar morphisms, we conclude that ugyq is also
an occurrence graph grammar morphism. Uniqueness of w411 follows from the fact that
all morphisms cjzq; are together surjective on U (GG).

v

6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 143

6.3 Relationship between Typed-Graph Grammars and Their
Unfolding Semantics

In Sect. 6.1 we showed how to construct an unfolding of a graph grammar. Then one can ask
whether this construction can be extended to a functor yielding for each graph grammar its
unfolding semantics and for each graph grammar morphism an occurrence graph grammar
morphism. Such a functorial relationship is interesting because it means that, if two grammars
are related by a morphism, their semantics are also related by a corresponding morphism, that
is, syntactical relationship between grammars induce semantical ones. The first problem we
have to face towards the definition of such a functor is that the unfolding construction defined
in the last section is only unique up to isomorphism. One way to solve this problem would
be to make a suitable “choice of occurrence grammars” and then take the unfolding from
this distinguished class (a suitable choice should be based on prefix-isomorphism classes of
occurrence nets — see below). The second problem is how to map a graph grammar morphism
to an occurrence graph grammar morphism. In general, there are many choices of morphisms
that are possible to be associated with a concrete graph grammar morphism via an unfolding
functor. This is because of the graph grammar morphisms that were chosen. We wanted to
have a quite flexible relationship between two graph grammars, and therefore there is no tight
connection between the rules and the initial graphs of two grammar that are connected by a
morphism. We know that there exists suitable morphisms mapping left- and right-hand sides
of the rules of one grammar into the rules of the other grammar, but we do not know exactly
how these morphisms look like. Depending on the morphisms that are chosen, the core graphs
will be mapped in one or another way. This will be illustrated in the next examples.

Example 6.10 (Morphisms between Occurrence Grammars) In the examples we will
present here we will always assume that the morphism mapping the type graphs of the occur-
rence grammars (not the core graphs) is given, as well as the mapping of rule names. This is
because these are the component that we have in a graph grammar morphism, and we want now
to investigate which would be the possible occurrence grammar morphisms that could be associ-
ated to this given morphism via an unfolding functor. Consider the occurrence grammars Occl
and Occ2 shown in Figure 6.5. There we can see that there are two ways of mapping the core
graph C2 to the core graph C'1 that are compatible with the initial graph and with the mapping
of the rule r. The only requirement for such a morphism for initial graph is that the initial graph
of Occ2 is isomorphic to the retyping of the initial graph of Occl. Therefore, if we choose the
isomorphism mapping ¢; — B and e; — My we will find out the the core component given
by the solid arrows yields a graph grammar morphism. If we instead choose the isomorphism
o; — M, and e; — My, we will obtain that the core mapping given by the dashed arrows yields
an occurrence graph grammar morphism.

Now consider the occurrence graph grammars depicted in Figure 6.6. Again we have a similar
situation as in the first case, just that there is only one way to map the initial graph. But again we
have two different morphisms because the vertices created by action al are not directly related to
the vertices created by action b1 (only by this “there exists one morphism” relation). Note that,
for each morphism between R1 and R2 that is chosen, there exists then only one way to map
the actions a2 and a3. The aim of this last example is to show that occurrence graph grammar
morphisms describe very close relationships between two occurrence grammars. Figure 6.7 shows
two occurrence graph grammars where there is no occurrence graph grammar morphism from

144 6. Unfolding Semantics of Graph Grammars

Occl Occ2
o W, 2
'2 .2
al a2
o, o — - -, u,

o L -l o,
il e e 12
Y [|

T1 T2
Figure 6.5:
Occ3 , Occ4
rl
o,
'1 rl
a3

13

T3

T4

Figure 6.6:

6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 145

Occh Occb
rl’
o,
o rl m 2
a2
al bl
e, o, 1 .1
() L] [|
15| 92 _?Jcs Jce 216
o n
TS T6l
Figure 6.7:

Oceb to Occh. First of all, the two actions al and a2 can not be both mapped to the action b1
because this mapping of the core graph would either not commute with al or with a2. As partial
morphisms are allowed, we could try not to map one of these actions. But this trial would also fail
because this would violate condition 2. of occurrence graph grammar morphisms (Def. 5.31): the
diagram using the domain restriction of such a core graph component would not yield a pullback.
Note that Occ2 is not an unfolding because if the rule 2 is a rule of the grammar, then it should
have been applied at the other existing match to become an unfolding. @)

These examples show that, when there is an occurrence grammar morphism between
two grammars, the other occurrence grammar morphisms that may exist using the same
type graph morphism and same mapping of rules describe practically the same relationship.
This is not accidentally this way, but is basically a consequence of the second requirement
of occurrence graph grammars (Def. 5.31). This requirement is quite reasonable because
it assures that all instances in the core graph of some item of the type graph are mapped
compatibly, where compatibly here means via a pullback (because the translation of graphs
is made via pullbacks). The different choices for pullbacks that can be made for the domain
restriction yield different occurrence graph grammar morphisms.

After this deeper investigation of occurrence grammar morphisms, we will now define a
category of abstract occurrence graph grammars and abstract occurrence grammar morphisms,
and, by using this category and a suitable modification of the folding functor defined in
Sect. 5.5, we will be able to define an adjunction between the categories of graph grammars
and abstract occurrence grammars.

The first step towards the category of abstract occurrence grammars is to define a suitable
notion of an abstract occurrence grammar. This will be based on prefix (iso)morphisms. A
prefix-isomorphism class of occurrence grammars is an isomorphism class which is determined

146 6. Unfolding Semantics of Graph Grammars

by prefix morphisms. Prefix-isomorphisms assure that all elements of this class use exactly
the same rules and initial graph, but the core graph is up to isomorphism. As the core graph
represents the intermediate graphs obtained during the application of rules of a grammar, the
fact that we choose it here only up to isomorphism corresponds to the idea of derivation of the
algebraic approach to graph grammars: the result of a derivation is unique up to isomorphism,
and thus it is natural to say that the “results” of all derivation steps shall also be unique up
to isomorphism only.

Definition 6.11 (Prefix-Equivalence Classes) A prefix-equivalence class of occur-
rence graph grammars is an equivalence class defined as follows:

Occ = {Occ|p : Occ’ — Occ is an isomorphism and a prefix-morphism}

©

Remark. Prefix isomorphisms can be seen as a kind of “standard isomorphism” between occur-
rence grammars [CELT 94b]. Standard isomorphisms are obtained as a choice of isomorphisms
which includes identities and is compatible with composition. As identities are prefix mor-
phisms, prefix morphisms compose and there is at most one prefix morphism between two
occurrence graph grammar, prefix morphism can almost be considered as standard isomor-
phisms. “Almost” because prefix isomorphisms only exist between occurrence graph gram-
mars having the same initial graph, same type and using the same rules (only the core graphs

may be different). @)

Now we will define abstract occurrence graph grammars as prefix equivalence classes of
occurrence grammars. The abstract morphisms are, as discussed above, determined by the
mapping of the type graph and the rule names. Therefore, we consider two morphisms as
belonging to the same class if they have the same corresponding components (this is formalized
by using the folding functor).

Definition 6.12 (Abstract Occurrence Graph Grammars) An abstract occurrence
graph grammar is a prefix-equivalence class of occurrence graph grammars. An abstract
occurrence graph grammar morphism f : Occ — Occl is defined as f = {g | F(g) =
F(f)}, where f, g : Occl — Occ2 are morphisms in OccGG.

The category of abstract occurrence graph grammars and abstract occurrence graph gram-
mar morphisms is denoted by OceGG., where identities are defined by ido.. and composition

bygof=go/f. ©)

Remark. In an abstract occurrence graph grammar, only the core graph is up to isomorphism,
and is an abstract occurrence graph grammar morphisms, only the mapping of core graphs
is up to isomorphism (assured by the occurrence graph grammar morphism conditions —

Def. 5.31 and Def. 5.15). ©)

6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 147

Proposition 6.13 The category OccGG is well-defined. ©)

PI’OOf

1. Identities are well-defined: By the definition of Ocec as a prefix-equivalence class and
the definition of prefix morphisms (Def. 5.39), all occurrence grammars in Occ have the
same rules and the same type. Therefore we must have that for each Occl, Occ2 € Oce,

fidOccl - fidOccQ-

2. Composition is well-defined: This is basically due to the fact that between two oc-
currence grammars Ocel,Oce2 in Occ there can be only one prefix (iso)morphism
(Prop. 5.43). Let f : Occl — Occ2 and § : Occ2 — Oce3 be abstract occurrence
grammar morphisms, (f : Occl — Oce2), (f' : Occl’ = Oce2') € f and (g : Occ2 —
Oce3, (¢ : Oce2’ — Occed') € g. We obviously have that F(go f) = F(g) o F(f) because
the composition of morphisms is defined componentwise. The same holds for ¢’ o f'. It
remains to show that F(¢' o f') = F(go f). This holds because the type component
and the rules mapping between the objects Occi and Ocei’, for ¢ = 1..3 are identities.

v

Definition 6.14 (Folding Functor IT) The abstract folding functor F : OccGG — GG
is defined as follows:

Objects : F(Occ) = F(Occ), for all Occ € OceGG, Oce € Oce

Morphisms : F(f) = F(f) for all morphism f € OccGG, f € f
©

Remarks. Well-definedness of the abstract folding functor follows from the fact that the objects
of OccGG are equivalence classes of occurrence grammars that have the same initial graph
and use the same rules, and that morphisms of OccGG are equivalence classes of morphisms
that have the same components mapping type graphs and rules. @)

Now we will show that the unfolding of graph grammars is a co-free construction with
respect to the (abstract) folding functor. This means that there is an unfolding functor that
is a right-adjoint to the (abstract) folding functor. The co-unit of this construction is the
inclusion 7 : F(Unf(GG)) — GG. The co-unit is in general not the identity because there
may be rules of GG that are never used, and thus are not in Unf(GG). As Unf(GG) is

constructed using the initial graph and the rules of GG, ¢ can be defined as an inclusion.

Theorem 6.15 Given a graph grammar GG. Then its unfolding Unf(GG) together with
the inclusion morphism i : F(Unf(GG)) — GG is a co-free construction with respect to the
folding functor F. @)

Proof. Let GG = (T, IT, Ngg,n%“) be a graph grammar and Unf(GG) = (CT, 19T N, n)
be the unfolding of GG. Then we have to show that the inclusion i : F(Unf(GG)) = GG is

universal from any other folding to GG, i.e., for any (abstract) occurrence graph grammar

148 6. Unfolding Semantics of Graph Grammars

U= (CUTY [UCY/TU NU,nu) and any graph grammar morphism k : F(U) — GG there
exists a unique h : U — Unf(GG) in OceGG such that k = uwo F(h). That is

GG : Unf(GG) such that F(Unf(GG)) —=GG
VkT EI!ET ?(E)T @ .
F(U) U F(U)

We will make this proof by induction on the depth of Unf(G'G) proving that for all
approximations n of Unf(GG) there is a unique & : UM(U) — U™(GG) such that (1)"
commutes. As Unf(GG) and U are the colimits of their approximations then there must
be a unique h such that (1) commutes. It is enough to find one morphism that makes (1)
commute, uniqueness follow from the definition of OccGG(if there are two morphisms that
make (1) commute, they must be the same).

n=0 : By degfinition of the unfolding of depth 0, we have that C{ = I” and CUIY = [UTY,
Let h® = ((R*1)OF), where heo is the composition of the universal morphism induced
by the retyping of IU and the corresponding pullback morphism of the retyping (see

Def. 5.5). Diagram (2) is a pullback and (3) commutes because k is a graph grammar
morphism. Thus, A" is an occurrence graph grammar morphism. Let h° € 7°. Then

7@0) = (kpor,0). Thus (1)° trivially commutes and %° is the only morphism such

that this happens (by definition of OccGG).

CU=1U0r———>TU

th!:th (2) 11@!

dom(he) = C +——dom(kr)

c':id{ (3) JA

C=I+——"""—T
n+1 : By induction hypothesis we have that there is a unique 2" that makes (1) commute.

Let b = ((hF1)OF h,,) € ", iU : U(U) = U™tY(U) and 7 : UM (GG) — UTHGG)
be the unfolding inclusions, iU/ € iU and i € 1.

U (U) —“ > U(GG)
{ o]

Ut s et G a)

Because h™ is an occurrence graph grammar morphism, diagram (4) is a pullback and (5)
commutes. Let (6) be the pullback of morphisms t“U»+1 and kg! with pullback object
P. As iU is a graph grammar morphism we have that t“Unrt1 = t¢Un o Uz, This implies
that there is a universal morphism u : P — dom(h,,) induced by pullback (4). Moreover
u makes (7) commute and thus (7) is pullback (because (4) and (6) are pullbacks). Let
Tk, (Lg) be the retyping of L, with respect to the morphism kr (that is 73, (L,) is the
pullback object of morphisms k7! and =), Diagram (8) commutes because U™+ (U)
is a doubly-typed graph grammar. Thus, analogously to the obtention of u, we obtain

6.3. Relationship between Typed-Graph Grammars and Their Unfolding Semantics 149

an universal morphism p2 that makes (9) be a pullback. Let A,ny1 @ NUyp1 — Noga
be defined as follows: ¥(ng,a) € NU,41:

undef, if n, ¢ dom(ky)
hnn—l—l (nm a) — 7/]\7 o hnn (na'7 a/)7 if = 7:Uv]V(na'v a/)
(nar,a”), otherwise

GG 0 kin(na), prean = (ir)™ o hY, o wo p2 o ile" and

where ngn = kn(ng), rov = n
post,n is the post-condition of the action having pre,» as pre-condition and r,» as rule.
The morphism #~a" is the left-hand side component of the subrule inclusion of L, (that
must exist because k is a graph grammar morphism). This inclusion is not unique, but
all choices will lead to the same morphism in OceGG (because the same rule and type

graph are used).

Well-definedness of h,,4+1: assume that pre,» is not total. By construction, this can only
happen if there is @ € p2oita”(L,u) and z ¢ dom(u). As (7) commutes, this means that
p3(x) is created is U™t (U) (that is, p3(x) ¢ dom(iUr)), what is not possible because
p3(z) € rng(pre,) (because (9) commutes). As pre, is a concurrent graph, occurrence
graph grammar morphisms preserve concurrent graphs and prefix morphisms reflect
concurrent graphs, pre,» is also a concurrent graph. Therefore, by the definition of the
unfolding, there must be a unique action a” of U"T!(G() using rule r,» and match

pregr.

The type component of A"T! is completely determined by h,,41 and h., because all
items of the core graph must have been either in the initial graph present or created by
exactly one rule. The items that have been created by actions that are not in the image
of hpn+1 can not be mapped and the items that have been created by actions that are
in the image o h,,11, otherwise A”t! would not become a graph grammar morphism.
Let p: P — (), be defined as follows:

(2) = (ir)"tohY ou(z), if =a € dom(u)
)= post i (y), otherwise

where a” is the action in Unf" that creates z, and p2’ o if'a"(z) = y (again, this is
non-deterministic, but any choice will lead to an isomorphic result). The morphism

p is total by definition, and injective because iy, hY and u are injective and p2’ is

150 6. Unfolding Semantics of Graph Grammars

injective on items that are created. Thus we define h., 1 as being the morphism where
dom(heny1) = P and the span representation is isomorphic to (p, p3).

Analogously to the proof of Theo. 6.9, this pair is an occurrence graph grammar mor-
phism. Therefore 7"t is in OceGG and makes (1) commute.

v

The existence of an adjunction in which the unfolding functor is the right-adjoint as-
sures that all (deterministic and non-deterministic) computations of a graph grammar GG,
described by (abstract) occurrence graph grammars Occ such that there is an inclusion

i : F(Occ) — GG, are included in the unfolding of GG This will be shown in the next

theorem.

Theorem 6.16 The unfolding semantics Unf(GG) describes all deterministic and non-
deterministic computations of a graph grammar GG, that is, for all (abstract) occurrence

graph grammars Occ such that there is an inclusion t : F (Occ) — GG, there is a prefix mor-

phism p: Oce — Unf, where Occ € Occ and Unf € Unf(GG). @)

Proof. Due to Theo. 6.15, there is a morphism p : Oce — Unf(GG) that is compatible with
the type and rules mappings. The construction of p is described in the proof of Theo. 6.15.
By the fact that k is an inclusion, the construction of p yields a prefix morphism. Vv

6.4 Parallel Composition and Unfolding of Graph Grammars

Similar to the composition of graph grammars in general there should be also a composition
of occurrence graph grammars. Occurrence graph grammars are graph grammars based on
more ellaborated graphs and that satisfy some additional conditions. In other formalisms, like
transition systems and Petri nets, the composition of their unfoldings was defined in terms of
limit constructions [WN94, MMS94]. For these reasons, analogous to the synctactical case, a
composition based on limits (or more concretely, pullbacks) seems to be a good candidate for
the composition of unfoldings. Therefore, we will take advantage of our categorical setting
(in which some operations like pullbacks are described abstractly) and directly define it as
a pullback (having products as special cases). In Theo. 6.18 and Example 6.19 we will see
that this choice is really adequate, and stresses the fact that the explicit construction of this
parallel composition can be made analogous to the one of parallel composition of typed graph
grammars.

Definition 6.17 (Occ-Cooperative Parallel Composition) Let Occi, for i = 0,1,2 be
abstract occurrence graph grammars, and s1 : Occl — OccO and 52 : Occ2 — Occ0 be
abstract occurrence graph grammar morphisms. Then the occ-cooperative parallel com-
position Occl||5-50cc2 of Occl and Occ2 with respect to Occl using sl and s2 is the
pullback of s1 and s2 in the category OccGG, if it exists. @)

Remark. From this definition it follows that not every occurrence grammars can be composed.
But this is also the case for typed graph grammars, where the composition was only defined
for special morphisms and interface grammar. A deeper investigation on the existence of

6.4. Parallel Composition and Unfolding of Graph Grammars 151

arbitrary pullbacks in OccGG, as well as in GG, and their interpretation is left for future
work. The pullbacks that were shown to exist and have an interpretation in terms of parallel
composition in GG will have a correspondence in OccGG (Theo. 6.18). @)

Having defined syntactical and semantical composition operators immediately raises the
questionabout their relation. The next theorem shows that the parallel composition operators
of graph grammars defined in Chap. 4 are compatible with the unfolding semantics. This
result allows for specifications of a system based on the specifications of its components:when
merging the components to get the whole system, the semantics can be obtained be a suitable
merge of the semantics of the components. Thus, analogously to the theory of modules
developed in [EM90] for algebraic specifications, we believe that this composition operators
and the unfolding semantics can be used as a basis for a similar module concept for graph
grammars (but using limits instead of colimits as in [EM90]).

Theorem 6.18 The unfolding semantics is compatible with the parallel composition of gram-
mars, that is given graph grammars GGi, for i = 0,1,2 with GG1||GaoGG2 being their
cooperative parallel composition with respect to morphisms sl and s2 we have that

©

Proof. The functors ¢ and F form an adjunction in which ¢/ is the right-adjoint (Theo. 6.15).
The fact that right-adjoints preserve limits and that the composition of graph grammars
and of unfoldings are based on limits (Theos. 4.16, 4.24 and Def. 6.17) yields the desired
compatibility. Vv

Example 6.19 Figure 2.9 shows part of the unfolding of the PBX system (actions al, a2 and a5
are obtained in the first unfolding step, and action a6 in the second unfolding step). The rules that
are used in these actions are already in the interface grammar AG'V. Thus, the unfolding of AGV
will have also actions corresponding to these ones (all elements needed by these AGV -rules are in
the initial graph of the abstract view). Analogously, we may find unfoldings for PLV and C'LV
and these actions will also be in these unfoldings. In fact, the unfolding of AGV may contain many
more actions than Un f(C'GV') because the rules of AG'V have less elements in the left-hand sides
that have to be present. Thus, in the case of this example, where the specialization morphisms are
total on the rules component, the unfolding Un f(C'GV') will have less actions than the unfoldings
of the other grammars. It can be considered as an intersection of the actions that may occur in
both components (this means, each action of Un f(C'G'V') represents a synchronization of actions

of Unf(PLV) and Unf(CLV)). ©)

Related Work

The purpose of this chapter is to discuss in more details the relationships between the concepts
introduced in this thesis and the already existing ones in the literature.

The main aims of this thesis are to present parallel composition operators for graph gram-
mars and an unfolding semantics that is compatible with these operators and is particularly
well-suited to concurrent systems. Therefore, the relationships to other approaches will be
done in two parts: relationships between the parallel composition of graph grammars and
other composition operators, and relationship between unfolding semantics and other seman-
tics. In Sect. 7.1 other kinds of composition of graph grammars are considered and in Sect. 7.2
other kinds of concurrent semantics for graph grammars are discussed.

A lot of inspiration for the concepts developed here for graph grammars came from the
area of Petri nets. Therefore, some of the main results, like unfolding semantics and pure
parallel composition, are (non-trivial) generalizations of corresponding concepts for Petri nets.
In Sect. 7.3 we discuss concepts of Petri nets that are related to this work. Moreover, we will
discuss how the concept of cooperative parallel composition can be seen as a reasonable new
composition operator for nets. This means that the specialization of some concepts presented
here may enrich the theory of Petri nets.

7.1 Other Approaches to the Composition of Graph Gram-
mars

Parallel and Distributed Graph Grammars: Specially in the algebraic approach to
graph grammars, the suitability of graph grammars to concurrent and distributed systems
was an aspect of major interest. This led to the definition of parallel and distributed graph
grammars. In [Tae96] an overview of different approaches (not only the algebraic one) to par-
allelism and distribution in graph grammars is given, and corresponding concepts of parallel
and distributed graph grammars in the DPO approach are investigated in more detail. The
basic idea of parallel graph grammars is to allow not only one rule to be applied at a time
but many. A set of applicable rules is summarized into a single rule via parallel rule and/or
amalgamation constructions and this composed rule is then applied to the actual graph. Dis-
tributed grammars are based on distributed graphs, that are diagrams of graphs. This idea
was originally defined for the DPO approach in [EBHL88] and was later on adapted for the
SPO approach in [EL93b]. Each distributed graph represents a global state of one system,

152

7.1. Other Approaches to the Composition of Graph Grammars 153

and this state can be decomposed into local states. Then, rules may be applied separately
to the local states and the results may be joined together to build again a global state. The
rules of such grammars can then be local to one component or global, where global rules
are obtained by parallel/amalgamated composition of local rules. Both concepts of parallel
and distributed graph grammars give the impression that a system is a collection of smaller
subsystems. The operational semantics of these grammars is based on parallel/amalgamated
derivations. But, although one can see some structuring in the states/rules, no operators for
constructing the graph grammar representing the whole system based on graph grammars rep-
resenting the components is given. The aim of this kind of grammars is different than the aim
of the parallel composition of graph grammars presented in this thesis. Parallel /Distributed
graph grammars are meant to describe a parallel/distributed system as a whole and give it
a semantics that takes into account this structuring (therefore, usually a distributed state is
not “flattened” to a simple graph). The parallel composition of graph grammars has as main
aim to allow the construction of a system based on smaller components. In other words, a
parallel /distributed graph grammar is one grammar in which rules may be applied in par-
allel (or synchronously via amalgamated rules) and a parallel composition of grammars is a
grammar whose rules are based on the rules of the component grammars. Obviously, rules
of a parallelly composed grammar may also be applied in parallel. This is assured because
the semantics given to such a grammar (the unfolding semantics) is a true concurrency se-
mantics. In the case of parallel/distributed graph grammars, parallelism is expressed at the
semantical level by explicitly including derivations using parallel/amalgamated rules whereas
in a parallelly composed grammar, parallelism is expressed by the absence of causal rela-
tionships between corresponding actions (synchronization is expressed by the application of
parallel/amalgamated rules).

DIEGO: In [TS95] a concept for building graph grammars from smaller components was
introduced. This concept is called DIEGO and is based on (hierarchically) distributed graph
grammars. According to the idea of distributed graph grammars, the DIEGO components are
not glued together, but they just execute together (the semantics of a DIEGO specification
is based on a distributed graph grammar). Relationships between components are given by
suitable graph grammar morphisms.For DIEGQO, the issue of compatibility of the composition
of DIEGO-modules with respect to some semantical model was not yet investigated. However,
it should be said that DIEGO is still under development and provides a promising concept of
encapsulation and distribution of data for graph grammars. Moreover, it can be considered
a s an instance of a general module concept for graph transformations introduced in [EE95].

Classes: In [Kor94, Kor96] first ideas about a way of combining graph grammars (within
the SPO approach) that represented classes of a class-based system were sketched. There, a
class based system was defined to be a doubly-typed graph grammar (using our terminology),
where the double-type graph was called class graph. The idea suggested (but not formally
defined) for the composition of such classes was that the composition of different classes
along a common subclass should be induced by the gluing of the class graphs. This idea is
implemented in the definition of cooperative parallel composition (Sect. 4.2.2) and therefore
we believe that this composition can be used to formalize the intuitive composition of classes

of [Kor96].

TROLL light: In [WG96] a graph grammar description of the object description lan-
guage TROLL light [CGH92] was presented. The SPO approach used in this work is an

154 7. Related Work

extension of the SPO approach of [L6w90] by considering attributes (as in [LKW93]) and
partial algebras. Each template (kind of object) of a TROLL light specification becomes
a kind of vertex and relationships between vertices become edges. The event of a TROLL
light specification are described by (valuation) rules. The interesting aspect of this approach
is that the execution of events that involve more than one object is done via amalgamated
rules. These rules are used to force the synchronization of events that necessarily must occur
together. In [WG96] amalgamated rules were used just at the semantical level to explain
the operational behaviour of TROLL light. As the cooperative parallel composition of graph
grammars is based on amalgamated rules, one can think of another possibility to describe
the semantics of TROLL light: each template of TROLL is described by one graph grammar
and the synchronization points are collected in a common interface grammar. Then the be-
haviour of such an specification can be given by the unfolding of the corresponding composed
grammar (obtained by the cooperative parallel composition). Obviously, to realize this the
concepts defined in this thesis should be extended with the necessary notions of attributed
and partial graphs.

Composition of Graph Transformation Systems: A notion of composition of graph
transformation systems (graph grammars without initial graphs) was introduced in [CH95,
HCEL96]. This composition corresponds to a union (gluing) of graph transformation systems
and is realized by colimit constructions on graph transformation systems. The (interleaving
and concrete) semantics of graph transformation system based on graph transition systems
is compositional with respect to this union operator. It was noticed in [HCEL96] that for
the definition of the union operator it is a necessary condition that initial graphs are not
considered. A significant difference between the union and the parallel composition operators
are that for the union a rule of the interface can only be specialized in by one rule in each
component, whereas in the cooperative parallel composition the same rule of the interface
may be specialized by many rules of each component. The latter allows the interpretation of
the components as specializations (or refinements) of the interface. The rules of a parallelly
composed system are based on the composition of the rules of the component systems (using
parallel and amalgamated rules). Moreover, the parallel composition is compatible with the
unfolding semantics, that is truly concurrent and representation independent.

ESM-Systems: ESM systems [Jan93] are a kind of graph rewriting systems that origi-
nated from actor grammars [JR89]. For these systems, a kind of composition based on gluing
of computation structures on a common subpart have been defined. Formally, this gluing
is obtained by a pushout construction. In [Jan93, Jan96] it is shown that this composition
is compatible with a true concurrency semantics for ESM systems based on processes. As
ESM systems do not have an initial state, this composition corresponds to the one of graph
transformation systems and the comparison to the parallel composition introduced in this
thesis is analogous to that case.

GRACE: The main aim of the language GRACE [Kre95, KK96] is to provide an approach
to build large graph rewriting systems from smaller ones independently from a concrete
graph grammar approach. The idea is that GRACE provides a kind of abstract interface
between different kinds of graph grammar components. The basic units of GRACE are called
transformation units. Such a transformation unit can be seen as a graph grammar with
application conditions and that may use (in the sense of include) other transformation units.

7.2. Other Approaches to Concurrent Semantics of Graph Grammars 155

The semantics of a transformation unit is given by the input/output relations induced by the
application of rules of the transformation unit (that is, the semantics abstracts out from the
transformation process). As one of the main aims of GRACE is to build a big system by
composing smaller ones, composition operators are of great importance. In particular, the
semantics of the union operator shall be the union of the relations describing the semantics
of the components (see [KK96]). The union operator describes a kind of union like of graph
transformation systems in the DPO-approach discussed before. It is an interesting topic of
research to find out whether the parallel composition operators presented here can be also a
reasonable operators for GRACE.

7.2 Other Approaches to Concurrent Semantics of Graph
Grammars

Concurrent Derivations: The introduction of the unfolding semantics for graph grammars
in Chap. 6 had the main aim to provide a semantics for graph grammars in which the
aspects of concurrency and compositionality are the most important ones. Other semantics for
graph grammars that also describe suitably concurrent aspects are the concurrent semantics
(Def. 3.46) and the processes semantics defined in [KR95]. These two semantics describe the
behaviour of a graph grammar by a category of (deterministic or non-deterministic in the
case of [KR95]) concurrent derivations. Thus, both include some redundancy because it can
be that the same action is represented in different objects. In the unfolding semantics, each
action is represented only once, and all actions are described together in the same structure.
This makes the analysis of relationships between them easier. Moreover, it is not investigated
whether the concurrency and the process semantics are compositional with respect to the
parallel composition of graph grammars. The formal relationship between the concurrent
and unfolding semantics is given by Theo. 6.9.

Actor Grammars: In [JR91] a structure called computation graph was introduced as
a representation of rewriting processes in actor grammars [JR89]. These graphs are labeled,
bipartite, directed, acyclic graphs in which one kind of nodes represent actions (or events) and
the other kind represent nodes of states. Computation graphs can be seen as the counterparts
for actor grammars of (deterministic) occurrence nets in net theory. The correspondence
between computation graphs and occurrence grammars as defined in Def. 5.29 is roughly as
follows: the nodes representing states of a computation graph are the vertices of the core
graph of the occurrence grammar, and the node representing actions correspond to actions of
an occurrence grammar, where the pre- and post-morphisms correspond to the incoming and
outcoming edges connecting the action-nodes to their corresponding state-nodes.

Event Structure Semantics: A true concurrent, branching structure semantics for
graph grammars is the event structure semantics [Sch94, CELT94a, Kor95, CEL196b]. In
[Cor95] there is a discussion about the adequacy of event structures as a semantics for graph
grammars. Graph grammars allow a very elaborated description of states and states changes,
whereas the relationships between different rules are not explicitly described (but implicitly
through the overlappings in the type graph). In an event structure semantics, states are not
represented, but only events and relationships among them. Therefore, an event structure
semantics for graph grammars puts emphasis on the relationships between derivation steps.
Instead, an unfolding semantics also represents the states of a system.

156 7. Related Work

Graph Grammar Processes: There are different notions of graph grammar processes.
In [Kre83, KW86] and [KR95] graph grammar processes are described as partial order of
derivation steps (called derivation processes and concurrent derivations, respectively). An
occurrence graph grammar here represents a process following this idea. The unfolding
semantics is thus the “biggest” process of a graph grammar (it includes all other processes).
In [CMR96a] another approach to graph grammar processes was presented, mainly inspired
by Petri nets processes: a graph process is a morphism from an occurrence grammar to
the original grammar. Thus, this work introduces occurrence grammars, and therefore we
will make a more detailed comparison to our definition of occurrence graph grammars. We
will refer to the occurrence grammars defined in [CMR96a] as DPO-occurrence grammars
in the following. A DPO-occurrence grammar is a (simply) typed graph grammar, whereas
an occurrence graph grammar is a doubly-typed graph grammar. Therefore, to describe
a computation of a graph grammar GG using a DPO-occurrence grammar Oce requires a
mapping p : Occ — GG that indicates in which way the rules (and items of the type graphs)
of Occ are related to the ones of GG. This mapping p is then called a graph process. For
example, a graph process p of a graph grammar GG = (1, 1,{r},n), where n(r) = (L — R)
(here we abstract from the fact that DPO rules are spans of morphisms), can be the one
illustrated in diagram (1) of Figure 7.1 (where I and Ip.. are isomorphic). ' The same
computation of GG can be described by using an occurrence graph grammar DGG shown
in diagram (2) of Figure 7.1. The basic difference is that the mapping p : Occ — GG is
“internalized” in the occurrence graph grammar DGG': the component py became the typing
morphism of Tp.. and the mapping of rules is restricted to identities (by using a mapping
Py, arule ry : L — R of Oce may be mapped to an isomorphic one r : L' — R’ of GG).

) 2)
Figure 7.1: (1) Graph Process p (2) Occurrence Grammar DGG

Now we will compare in more detail the axioms of DPO-occurrence grammars with the
axioms of occurrence grammars. As discussed in the introduction of Chap. 5, the causal order
of DPO-occurrence grammars corresponds here to the occurrence order. DPO-occurrence
grammars are finite (the initial graph is finite and the set of rules is finite) and deterministic

!Note that, to be able to define a graph grammar process in this way, it is necessary that graph grammar
morphisms allow the identification of elements of the type graph. This is not possible using the kind of
morphisms defined here, but these, in turn, allow for splitting of types, that is a necessary condition for the
universality of the parallel composition of graph grammars.

7.3. Petri Nets 157

(there are no conflicts). Therefore, DPO-occurrence grammars correspond to deterministic
occurrence grammars (Def. 5.44). In a DPO-occurrence grammar, each item of the core
graph is created and consumed by at most one production. This is assured in deterministic
occurrence grammars by axiom 4. (the type graph is a core graph). This axiom also assures
the strong safety requirement of DPO-occurrence grammars and (together with axiom 1.) that
the minimal elements with respect to the occurrence order correspond to the initial graph.
The fact that the causal relation of a DPO-occurrence grammar is a partial order fulfills
axiom 1. Axiom 3. is trivially satisfied by DPO-occurrence grammars because they are finite.
Axiom 5. is satisfied by DPO-occurrence grammars because they have no conflicts. However
there is not a bijective correspondence between DPO-occurrence grammars and deterministic
occurrence grammars. In DPO-occurrence grammars it is required that the pre-conditions
of the actions satisfy the gluing condition of DPO-grammars, and such an axiom is not
present in deterministic occurrence grammars (because there is no gluing condition in the
SPO-approach). For deterministic grammars, a special structure is imposed on the names of
rules (through axiom 6.), and this is not the case for DPO-occurrence grammars.

7.3 Petri Nets

Petri nets [Pet62] have been used since the early 70’s as a formalism to describe concurrent
systems ([Rei85] provides a good introduction to Petri nets). The main reasons for the success
of Petri nets is that they rely on a simple concept of states and transitions and that they
provide a graphical representation of the system, what makes the understanding of the model
and its behaviour easier even for non specialists. Moreover, Petri nets have a rich theory of
concurrency and a large number of specification and analysis tools.

There is a series of works concerned about the relation between Petri nets and graph
grammars (some of them are [Kre81, Rei81, KW86, CELT94a, KR96]). In [Sch96] a survey of
different ways of syntactically representing Petri nets with graph grammars, and in [Cor95]
the semantical aspects of such relationship are considered in more details. The basic idea of
the different ways of representing nets with grammars is always the same: the markings of a
net are represented by graphs and the transitions are represented by rules. The differences
occur in the choice of the graphs that represent the markings. In spite of the different
representations for states, practically all ways of translating nets into graph grammars yield
analogous theoretical results. These results are related to suitability of the translation: for
example, one of the desired results is that whenever a transition is enabled by a marking of
a net, then the corresponding rule is applicable at the translated match.

For the purposes of the comparison done in this thesis, we will stick to the ‘minimal
way’ of modeling Petri nets by algebraic graph grammars as given in [CEL194a, KR96]. In
this approach, Petri nets appear as a very simple kind of graph grammars, namely graph
grammars over discrete graphs (graphs without edges) where all rules are completely partial
(nothing is preserved from the left- to the right-hand side). In more detail, we have that the
places of the net become vertices in a type graph T, the tokens are vertices in a graph typed
over T and the transitions are rules.

Example 7.1 Consider the net N on the left-side of Figure 7.2. A corresponding graph grammar
GG is shown on the right. For each transition of NV there is a corresponding rule in GG'. The
places of N become are described by vertices of the type graph T' of GG. Formally, GG is a tuple

158 7. Related Work

(T, 1", N, n) where?

T = ({a,b},0,0,0} (a discrete graph having two vertices)

(I = T), where G = ({a},0,0,0} (a discrete graph having only one vertex) and
= (the type of a is a);

<_>

N = {t, s};

n(t) and n(s) are depicted in Figure 7.2, where the types of the vertices of the involved
graphs indicate their corresponding names.

D) 2

Figure 7.2: (1) P/T-Net N (2) (Typed-)Graph Grammar GG

©

Roughly speaking, the relationship between Petri nets and (SPO)-graph grammars can
be summarized as in the following table. > To get this correspondence we have to restrict
the graph grammar matches to injective ones (because in Petri nets tokens can not be
“identified”). Note that most of the concepts of Petri nets relate to “abstract” ones for
graph grammars. This is because the tokens in the nets have no individuality by assumption.
Only in the process semantics tokens gain individuality and thus the correspondence is more
immediate (here we consider net processes for P/T-nets as given in [MMS94, MMS96], that
are a a refinement of the non-sequential processes of [GR83]). In the paper [KR96] the
semantical relationship between nets and grammars was defined having trees as semantical
domain (reachability trees in the case of nets and sequential derivation trees in the case of
graph grammars). There it is was shown that the semantics is only compatible if we consider
abstract graph grammar semantics (that is, derivations up to isomorphism). This matter is
explained in more details in [Cor95].

2For the formal definitions of the translations shown in the examples of this section see [KR96].
Here we will only compare Petri nets with SPO graph grammars. In the case of grammars representing
Petri nets, the DPO and SPO approaches yield corresponding derivations sequences.

7.3. Petri Nets 159

Petri Nets Graph Grammars
syntax net graph grammar
state set of tokens (discrete abstract) graph
state change switching of a transition (abstract) derivation step
sequences of changes | switching sequence (abstract) sequential derivation
seq. semantics set of switching sequences | (abstract) sequential semantics
concurrent history net process concurrent derivation
conc. semantics process semantics category ADergc

unfolding semantics unfolding semantics

7.3.1 Petri Nets and Parallel Composition

The following example shows the result of applying the pure parallel composition of graph
grammars to graph grammars that can be considered as translation of Petri nets. After the
example, this composition will be compared with other parallel composition operators of the
area of Petri nets.

Example 7.2 Consider nets N1 and N2 and their corresponding graph grammars GG'1 and GG2
in Figure 7.3. The pure parallel composition of GG1 and GG2 is the grammar GG3, that
corresponds to the net N3. @)

N1 N2 N3
_ _[c 1350 1, [BC
|1“=@ Tl— |2Té T2— 13524 T3= bd

t:@L S:L@ t:
GGl GG2

D

Y
&
coll o]lEo]

GG3

Figure 7.3: Pure Parallel Composition of Petri Nets

160 7. Related Work

This kind of parallel composition corresponds to the parallel composition of nets described
(using different frameworks) in [Win87b, WN94, MMS94, Men94]. we will call this compo-
sition of Petri nets as net parallel composition. To restrict the possible synchronizations
between the transitions of the nets in their net parallel composition, a restriction operator
was used in [Win87b]. The restriction operator is a unary operator whose application deletes
some transitions of the original net. One can obtain different kinds of compositions of nets
based on the net parallel composition followed by an application of the restriction operator
(see [Win87b] for more details). Similar constructions for restriction (in a different framework)
were presented in [Vog92]. The cooperative parallel composition can be used to perform these
two operations (net parallel composition and restriction) in one step, and has an important
advantage with respect to the net parallel composition with restriction of [Win87b, Vog92],
namely that places (and also initial markings) may be shared. A composition of nets sharing
a common subnet will be illustrated in the following example.

Example 7.3 To build a parallel composition of nets with restriction using the cooperative parallel
composition, the transitions that shall necessarily be synchronized must be in the interface net.
In this example, the interface net is net N0 of Figure 7.4 and the transition ¢ of nets N1 and N2
shall be synchronized in the parallel composition. Moreover, places a of these two nets shall be
glued together, and therefore it is also part of N0. In this example, we will not draw explicitly
the grammars that correspond to the involved nets, although they are used as basis to construct
the composition described in this example. Net N3 shows the result of the cooperative parallel
composition of nets N1 and N2 with respect to the net N0, where the morphisms are indicated
by same names for places and transitions. @)

Analogously to graph grammars, the interface net can be considered as an abstract global
description of a system that is specialized in the component nets. The advantages of the
cooperative parallel composition for nets are thus the same as for graph grammars: this
composition allows sharing of substructures and is compatible with the unfolding semantics
(that is also a suitable concurrent semantics for Petri nets — see Sect. 7.3.2).

There are other kinds of composition of nets based on gluing places [Vog92, Val94, PER95]
or even subnets [PER95, Men94]. Using arbitrary nets, these composition operators are
usually not compatible with semantic models of nets that take the initial marking into account.
In [Vog92] and [Men94], strong conditions are imposed to the nets to assure a compositional
semantics. In [PER95] nets without initial markings are considered (and then we have a case
analogous to graph transformation systems).

7.3.2 Petri Nets and Unfolding Semantics

Petri net processes [GR83, BD87, MMS94] define the deterministic, concurrent behaviours
of a net. They are the concurrent correspondent to the switching sequences. The unfolding
semantics for nets was introduced in [NPW81] and was based on a kind of Petri nets called
occurrence nets, which are, roughly speaking, acyclic, safe nets without backwards conflicts.
Now we will discuss the relationship between the notion of occurrence grammar of this thesis
(specialized for the case of nets) and occurrence nets. For the case of graph grammars

representing Petri nets, the weak conflict relation i> (Def. 5.23) is always symmetric because

no items are preserved. This implies that NS N (Def. 5.25). Let GG be an occurrence

7.3. Petri Nets 161

S0

N3

Figure 7.4: Cooperative Parallel Composition of Petri Nets

grammar and N be a net. Then the fact that N is acyclic follows from axioms 1. and 2. of
occurrence grammars (Def. 5.29). Safeness and the absence of backward conflicts follows from
axiom 4. Axioms 3. and 4. assure that each transition of N has a finite number of causes
and that N is free of auto-concurrency, respectively. Axiom 6. imposes an specific shape
for the names of places of the occurrence net. This last axiom is originally not an axiom of
occurrence nets, but it is also reasonable for the case of nets. It assures that the names of the
transitions of an occurrence net are the name of a transition of the original net indexed by
the occurrence of this transition. This allows us to relate the occurrence of a transition with
the original transition without needing a morphism. The opposite direction, namely that
an occurrence net yields via a translation an occurrence graph grammar, holds analogously
(provided the names of the transitions have the special form required by axiom 6.).
The construction of the unfolding of a net usually starts with an inductive definition:

1. The initial state of the net is represented by places in the unfolding net. Multiple tokens
in one place are represented by multiple places.

2. Add each switchable transition to the actual unfolding net, together with the corre-
sponding pre- and post-conditions (again, multiplicities are represented by multiple
places).

At each iteration step we obtain via this construction an approximation of the expected

162 7. Related Work

result. Then, if we take the set of all (maybe infinitely many) iteration steps and do a directed
colimit, we obtain the (possibly infinite) unfolding of a net. This unfolding is by construction
an occurrence net. The unfolding described above was defined formally in [MMS94], where
unfolding semantics for arbitrary place/transition nets was introduced. One should notice
that in this semantics, tokens are distinguishable. Therefore, the unfolding semantics of graph
grammars introduced in this thesis seems to deliver, for the case of grammars representing
Petri nets and if only injective matches are considered, the same result as the unfolding of
nets defined in [MMS94] This will be illustrated in the following example.

Example 7.4 The unfolding Z/(N) of the net N shown in Figure 7.2 is shown in Figure 7.5.

Figure 7.5: Unfolding of N

The unfolding of the graph grammar GG is given in Figure 7.6. The usual graphical repre-
sentation of the graph grammar unfolding looks like (1): the unfolding consists of an initial graph
and set of actions, all typed over the core graph . The dependencies between the actions are, as
in the case of nets, given by the post/pre relationships between them. For example, the action s,
depends on t; because ¢, generates something (in its post-condition) that is needed by sy (in its
pre-condition). In the case of grammars representing nets, one can give a more explicit graphical
representation of these dependencies, as shown in (2), where the actions are drawn “within the

core graph”. @)

Besides the cooperative parallel composition for place/transition nets, another possible
application of the concepts and results obtained here in the area of Petri nets is by considering
the specialization of graph grammars into contextual nets [MR95] (that are nets that allow the
preservation of tokens by a transition). It would be interesting to check whether the unfolding
semantics and the parallel composition operators yield suitable notions for this kind of nets.

7.3. Petri Nets 163

28
PRIL-ENE

t | s /
A VE @
bl T
H i /1 3/“’ , %
s : ‘g g,
@ @ D Looos § %
e J) S ee e
2 B 'S SS
\ 'é | ol |4
L 51\ ® Lo
20, AN \ \ i
L B \
'0’9 R I ol L
el g%x \‘Vi ‘W/ W w
a
@ a a, bl
| a, a, b, a, a; b
C .
(1)
a
pre” pre
t, S
“post’
. v N

pre” pre F\’r‘?\ - pe

£ Va N\ b

post st

v N “ v AN
a; L, bz a ds b,

()

Figure 7.6: Unfolding of GG

Conclusion

In this thesis we introduced parallel composition and unfolding semantics for graph grammars.
The next three points say how these concepts contribute to fulfill the aim of this thesis of
providing an approach to parallel composition and unfolding semantics for graph grammars
in which the aspects of concurrency and compositionality play a central role.

e Parallel composition (Defs. 4.12 and 4.20) allows for the composition of different graph
grammars with or without sharing of subparts. The rules of the composed grammar
are obtained as (parallel/amalgamated) compositions of the rules of the component
grammars, and the initial graph of the composed grammar is obtained by gluing the
initial graphs of the components along the initial graph of the interface grammar.
Theorems 4.16 and 4.24 assure that the composed graph grammar is syntactically
related (via morphisms) to the component grammars, and Theo. 4.11 then yields the
result that all derivations of the composed grammar can be translated into derivations
of the component grammars, that is, a semantical relationship between the composed
grammar and the component grammars is established.

e The unfolding of a graph grammar (Def. 6.4 and 6.7) is constructed incrementally and
yields a true concurrent, branching structure semantics in which the states as well as
the changes of states are explicitly represented. Besides the incremental construction,
the unfolding can also be constructed as a suitable gluing of all concurrent derivations of
a graph grammar. This result is shown in Theo. 6.9 and gives the relationship between
the unfolding and the concurrent semantics of a graph grammar. This result implies
also that the unfolding represents exactly all sequential derivations of a graph grammar
(because the concurrent derivations represent exactly all sequential derivations). The
unfolding of a graph grammar is a special kind of graph grammars, an occurrence graph
grammar (Def. 5.29 and Prop. 6.6). Therefore, a number of relationships between the
actions of the unfolding may be used to reason about the computations described by this
unfolding. These relationships are also defined between elements of the core graph of an
unfolding, and this allows us to reason about reachable states (graphs) described in this
unfolding. The existence of an adjunction (Theo. 6.15) induced by the unfolding con-
struction relating the categories of graph grammar and of (abstract) occurrence graph
grammars can be used to show that any (deterministic or non-deterministic) computa-
tion of a grammar expressed in terms of an occurrence graph grammar is contained in

164

165

the unfolding semantics of this grammar. Moreover, it assures that each syntactical re-
lationship between two graph grammars expressed through a graph grammar morphism
induces a semantical relationship between the corresponding unfoldings.

e The compatibility of the unfolding semantics with the parallel composition operators is
given by Theo. 6.18, and is based on the facts that the parallel composition operators
correspond to the product and pullback in the category of graph grammars (Theo.4.16
and Theo. 4.24) and that these categorical constructions are preserved by the unfolding
functor (assured by Theo. 6.15 and the fact that the unfolding is a right-adjoint). This
means that we obtained a framework for the specification of concurrent and reactive
systems in which the semantics of the whole system can be obtained from the semantics
of its components using suitable syntactical and semantical composition operators.

The concepts of parallel composition and unfolding of graph grammars seem to be very
promising. A number of interesting extensions/generalizations that can be done having these
concepts as starting points. In the following we list some of them. First, we will consider
possibilities to weaken some of the requirements that have been made in this thesis. Topics 2.
to 7. are concerned with extensions of this work by using different graph /derivation concepts,
structuring and practical applicational aspects. Topic 8. discusses the embedding of this
work on the general theory of concurrency. Topics 9. and 10. provide ideas related to Petri
nets, and 11. discusses the possibility to define corresponding concepts for DPO grammars
as introduced here for SPO grammars.

1. Weaker Requirements

For constructing and obtaining the results concerned with parallel composition and
unfolding, a number of restrictions had to be made. For the well-definedness of the
cooperative parallel composition, we considered a safe interface grammar and special-
ization morphisms. It would be probably possible to drop these requirements if we
consider more concrete graph grammar morphisms including the subrule relationships
explicitly. For this kind of morphisms, an associative choice of pullbacks may be needed.

For the unfolding semantics, injective and consuming rules were required. If these
requirements are dropped, the axiomatization of occurrence grammars would have to
be changed (these axioms are needed to find the concurrent graphs to be used in the
next step of an unfolding). Moreover, we used doubly-typed graphs as occurrence graph
grammars. It would be possible to use (practically) the same axioms (without the last
one) to define a notion of occurrence graph grammars using (simply) typed grammars.
However, to construct the unfolding the information about the second type is needed
for identifying the concurrent graphs. Maybe it is possible to code this type information
into the names of the vertices/edges. This would lead to an unfolding that is closer to
the Petri nets unfolding. For graph grammars, the use of the core graph as a typed graph
seems to be more natural than to code this type information into the vertices/edges.
It would be interesting to find out which are the advantages and disadvantages of each
approach.

2. Attributed Graph Grammars

For the specification of real systems, usually just using typed graphs gives raise to quite
complex description of states because everything (including the data types involved in

166

8. Conclusion

the system) has to be coded graphically. A higher-level representation is obtained in
graph grammars by using attributed graphs [LIKW93], that are graphs equipped with
algebraic data types, called attributes. This allows to use variables (and terms) in
the rules and therefore reduces considerably the number of rules that are necessary to
describe a system. Moreover, this makes the rules easier to understand. In [KR96]
it was shown that attributed graph grammars can be transformed into labeled graph
grammars.

As attributed graph grammars are particularly interesting for practical applications, it
is important to develop theory for this kind of grammars. Therefore, it is a subject of
further research to lift the concepts of parallel composition and unfolding defined in this
thesis for this kind of grammars.

. Other Graph Structures

Not only attributed graph grammars have many practical applications. Other kinds
of graphs structures, like hypergraphs, labeled and attributed hypergraphs, labeled
graphs, typed attributed graphs, seem to have their own application fields. Therefore it
should be interesting to investigate if it is possible to describe the concepts introduced
in this thesis in a more general way such that all these kinds of graphs become instances
of this general framework. This work can be based on the concept generalized graph

structures [Kor93, Kor96] or a combination of this with high-level replacement systems
[EHKP91, EL93a].

. Module Concept

The concept of cooperative parallel composition hints on the fact that it is possible to
glue two different grammars with respect to a third one in such a way that there is
a semantical compatibility. This can be used to define a module concept like the one
for algebraic specification developed in [EM90]. For the case of graph grammars, it
seems that, instead of using composition operators based on colimits as it is the case
for algebraic specifications, composition operators of graph grammar modules shall be
defined by limit constructions. In this field there is still a lot of work to be done. First
efforts towards a module concept for graph grammars have been done in [EE95]. One
of the important extensions that are necessary towards a suitable notion of a module
concept is a more general notion of a graph grammar morphism, that allows us to map
a rule to a suitable refinement on the target grammar. This kind of morphism can be
useful for the actualization of formal parameters, as well as for hiding informations from
the export to the body of a module. Probably then a more abstract semantics based on
some kind of observability concept for derivations of graph grammars will be adequate,
that is, rather than requiring that the formal parameter and the actual parameter have
the same semantics we can require that they have the same observable semantics.

. Methodology for Practical Applications

The work together with the company Nutec for the development of the specification of
the telephone system using graph grammars stressed the lack of a methodology to build
a graph grammar specification of a problem. Such a methodology shall contain a com-
prehensive description of graph grammars and their behaviour (for non-specialists) and
a series of steps that shall be followed to solve a problem using graph grammars. This

167

is of great importance such that graph grammars become a well accepted specification
method in the industry.

. Analysis of Graph Grammars

Another important aspect that shall increase the acceptance of graph grammars as a
feasible specification formalism is the existence of analysis methods. In the area of Petri
nets, a lot of work have been made in the area of analysis. Basically, there are two kind
of analysis: statical and dynamic. Statical analysis is for example the invariant analysis.
For graph grammars, statical aspects may follow from the relationships between rules
(induced by their overlappings on the type graph). Dynamic analysis is usually based
on reachability graphs or unfoldings. By the inductive construction of the unfolding,
we believe that many properties can be also shown based on the unfolding for the
case of graph grammars. For proving some properties of a Petri net automatically, it is
important to reduce the possibly infinite semantical graph to an equivalent finite one (via
coverability methods). For graph grammars, such analysis would need a corresponding
notion of coverability to make the unfolding of a grammar finite.

. Application Conditions

Sometimes, the specification of complex operations require the use of some mechanism
to restrict the application of rules, besides the existence of some match. This can be
done in graph grammars through application conditions[Hec95, HHT96] and consistency
conditions [Kor94]. An application condition is a condition that has to be satisfied by
a morphism from the left-hand side of a rule to an actual graph to become a match.
Thus, application conditions restrict the possible matches of a rule to an actual graph.
This has an influence at the semantics of a grammar because some derivations that are
possible without application conditions become impossible with them. To construct an
unfolding semantics for a grammar with application conditions, this conditions have to
be checked in step 1. of the construction of the unfolding (Def. 6.7) to find the possible
matches. Moreover, if negative conditions shall be checked, the notion of concurrent
graph have also to be changed. This will be explained in more details in item 11, where
we discuss unfoldings for DPO grammars (that have an inherent application condition,
the gluing condition).

. Structure of Concurrency

In the introduction of this thesis we already discussed shortly the fact that only causality
and conflict relationships may not be enough to tackle adequately with the description
of concurrency in some frameworks. In [JK93] an axiomatic model was introduced
in order to capture more precisely the concurrent aspects of a system. Like event
structures, this model is based on a set of events and relations between them that have
to satisfy some conditions. The important relations in this model are a precedence
and a weak causality relations. This is done in an abstract way, that is, for a concrete
specification formalism like graph grammars, we have to find out what the precedence
and weak causality relations mean. Here, we have defined a number of relationships
between actions (and also between types) of an occurrence grammar. It is still open in
which way these relationships can be seen as suitable interpretations (or instantiations)
of the precedence and weak causality relations.

168

8. Conclusion

9.

10.

11.

Relationships to Petri Nets

We already discussed in Sect. 7.3 some relationships between graph grammars and
Petri nets. It is a subject of future work to establish a formal relationship between
the concepts of occurrence grammars and occurrence nets, and unfoldings of grammars
and nets. However, we should say here that, due to our choice of morphisms (that in
turn was made to allow for parallel composition in the framework of graph grammars),
the adjunction we have between the categories of graph grammars and occurrence
graph grammars does not specialize to the one described in [MMS94] for Petri nets.
Nevertheless, it seems that analogous concepts as developed in this thesis for graph
grammars can be interesting also for the case of Petri nets.

Algebraic High-Level Nets

In [KR96] it was shown that algebraic high-level nets [EPR94] can be seen as a special
case of attributed graph grammars in the same way that place/transition nets can be
seen as a special case of labeled (or typed) graph grammars. Therefore, if the concepts
of parallel composition and unfolding can be lifted to attributed graph grammars (see
point 2) it is probably possible to use them also for algebraic high-level nets. These
parallel composition operators would than allow for a composition of nets with an initial
marking that is compatible with a true-concurrency semantics.

Parallel Composition and Unfolding of DPO Grammars

The concept of parallel composition can be probably without problems defined also for
DPO graph grammars. But for unfoldings the situation is more complex because of
the gluing condition. This has an effect in the constructions of the matches for each
step of the unfolding (step 1. of Def. 6.7). In our approach, the it was only necessary
to check whether the image of a “match candidate” was a concurrent graph, that is,
a subgraph of a reachable graph. This is enough in the SPO approach because there
are no extra conditions that have to be checked with respect to the items of the actual
graph that are not in the image of the match. For the DPO approach, it would have
to be checked whether the “match candidate” fulfills the gluing condition and that its
image is a reachable graph (and not a subgraph of it). This means that some extra
conditions would be needed in the definition of concurrent graph (Def. 5.33).

Notation

Usually the following conventions will be used:

Symbol

dom(f)
rng(f)
fV
/!
()"

fOP

114

undef
GT
fT
card(S)
AOO
A*

: Meaning

: domain of f

: range of f

: domain inclusion

: domain restriction

: inverse

: dual morphism to the morphism f

: partial morphism

: total morphism

: injective morphism

: surjective morphism

: total and injective morphism

: undefined value

: typed graph (G, T% T),t% : G+ T
: typed graph morphism (f,idr)

: cardinality of S (card(S) € NU{w})
: lists over A

: finite lists over A

: concatenation of lists

: empty list

: ith element of the list o

: number of elements of o (|o| € NU {w})
: equivalence class

tx € Vg U Eg, if G is a graph

169

Categorical Constructions

B.1 Basic Concepts of Category Theory

o Category: A category Cat consists of a class Objo,¢ of objects, for each pair
A, B € Objogat a set Morcgi(A, B) of morphisms, written f : A — B for each
[€ Morggat (A, B), and a composition go f : A — C for each pair of morphisms
f:A— Band g: B — C such that we have

1. (hog)o f="ho(go f) for all morphisms f, g, h if at least one side is defined, and

2. for each object A of Cat there is a distinguished identity morphism ¢d4 with
foids = f and 1d4 0 g = g whenever the left-hand sides are defined.

e [somorphism: A morphism f: A — B in a category Cat is called an isomorphism
provided there exists a morphism g : B — A such that go f =id4 and fog =1dp.

e Dual Category: The dual or opposite category Cat?" of Cat has the same class of
objects, for each f: A — B in Cat we have a dual morphism f°F : B — A in Cat®”,
and the composition in Cat?F is defined by fOF o ¢9F = (g0 f)°F. For each property
PROP in the category Cat, the dual property COPROP is obtained by reversing the
arrows of all morphisms.

e Product: The (binary) product of a pair Al, A2 of objects in Cat is an object P
together with morphisms pi : P — Ai, for ¢ = 1,2, such that for all objects X and all
morphisms z¢ : X — Az in Cat there is a unique v : X — P with ptou = a2, for

1=1,2.
Al A2
‘Y 7
P
xrl T r2
X

B.1. Basic Concepts of Category Theory 171

e (Binary) Coproduct. The (binary) coproduct of a pair A1, A2 of objects in Cat is an
object C together with morphisms gz : A7 — C, for ¢ = 1,2, such that for all objects X
and all morphisms z¢ : A2 — X in Cat there is a unique u : ' = X with v o gi = 2,

for:=1,2.
Al A2
N
C
zl l z2
X

o Pullback: The pullback of a pair of morphisms f1: A1 — A0 and f2: A2 — A0 in
Cat is an object PB together with morphisms f2* : PB — Al and f1*: PB — A2
such that for all objects X and all morphisms z¢ : X — A¢in Cat with flozl = f20x2
there is a unique uw : X — PB with fi*ou = 1, for i = 1, 2.

A0< Ay
sz (PB) Tﬁ'
2

A2 <fT PBi

X \

e Pushout: The pushout of a pair of morphisms f1: A0 — Al and f2: A0 — A2 in Cat
is an object PO together with morphisms f2°* : A1 — PO and f1°* : A2 — PO such

that for all objects X and all morphisms z¢ : A7 — X in Cat with 210 fl = 220 f2
there is a unique w : PO — X with wo fi* = 2¢, for ¢ =1, 2.

40— Ay
le (PO) lﬁ'
A ? PO

e Functor: A functor F': Catl — Cat2 between categories Catl and Cat2 assigns to
each object Al in Catl an object F/(Al) in Cat2 and to each morphism f: Al — Bl
in Catl a morphism F'(f) in Cat2 such that we have

1. F(go f)=F(g)o F(f), for all go f in Catl, and
2. F(ida) = tdpy), for all objects A in Catl

Notation: As in category theory usually the result of a construction consists not only
of one object, but also of some morphisms, we will use in th following the notation: if the
resulting object is called C', the resulting morphisms are listed in —¢.

172 B. Categorical Constructions

B.2 Categories of Sets

Definition B.1 (Categories Set and SetP) The categories Set and SetP have all sets as
objects, and total resp. partial functions as morphisms. Identities are the identity functions
and composition is the composition of functions. @)

Definition B.2 (Constructions in Set) Consider the sets Ai, for i = 1..10, and the total
functions fj, for j = 1..4 and L ¢ Av, for : = 1..10.

Al A2 A3 A4
N2 N

Prod Coprod
f1 3
A5 <=—— A6 A8 +—> A9
S
AT T PB Al0 'W) PO

Then we define the following constructions:

o P= Prodset(Al7 A2) = Al x A2 (cartesian product of sets)
—P= (p1,p2), where pl(a,b) = a and p2(a,b) = b (projection functions)

o (= C’oprodset(AS7 Ad) = (A3 x {L})U ({L} x A4) (disjoint union of sets)
—Y= (i1,42), where il(a) = (a, L) and i2(b) = (L,b)

o B=rB5t(A7 3 A5 L A6) = {(a,b) € AT x A6]f2(a) = f1(b)}
—B=(f2°, f1*), where f2*(a,b) = a and f1*(a,b) = b

e O =P0Set(B10 £ B8 & BY) = {Q C (B10 x {L}) U ({L} x BY) | (a, L) € Q,a =
g4(x) implies (L, ¢3(z)) € Q and (L,b) € Q,b = ¢g3(x) implies (g4(z), L) € Q}
—0=(g4°,¢3%), where g3*(a) ={Q | (¢, L) € Q} and g4*(b) ={Q | (1,) € Q}

©

Theorem B.3 The constructions defined in Def. B.2 correspond to product, coproduct,
pullback and pushout constructions in the category Set, respectively. @)

Proof. See [AHS90]. Vv

Definition B.4 (Constructions in SetP) Consider the sets Bi, for ¢ = 1..10, and the
functions ¢j, for j = 1..4 and L is not an element of any of these sets.

Bl B2 B3 B4

o T N

Prod Coprod

B.3. Categories of Graphs 173

1 3
B5 <—— B6 B8 ——= BY
A4 4
B7<—.PB BlO—.>PO
gl g3

Then we define the following constructions:

o P = Prod>®tP (B1,B2) = (B1 x B2) U (B1 x {L}) U ({1} x B2)

P _Joa, ifa# L _
—"= (pl, p2), where pl(a,b) = { wnde f, otherwise and p2(a,b) = {

b, ifb# L

unde f, otherwise

o (= C’oprodsetP(BS7 B4) = (B3 x {L}) U ({L} x B4) (disjoint union of sets)
—Y= (i1,i2), where i1(a) = (a, L) and i2(b) = (L, b)

o B=PrB5tP (3793 B5 £ B6) = {(a,b) € dom(g2) x dom(g1)|g2(a) = g1(b)}U
{(a,b)|a € BT and a € dom(g2) and b € B6 and b ¢ dom(g1)}U
{(a, L)|a € BT and a ¢ dom(¢2)}U {(L,b)|b € B6 and b & dom(gl)}
B_ / oe e R _Joa, ifa#L R b ifb#£E L
—7= (92", 91%), where g1*(a, b) = { undef, otherwise and g2*(a, b) = { undef, otherwise
o 0 =POSetP (B10 £ B8 L BY) = {Q C (B10 x {L}) U ({L} x BY) | (a, L) € Q,a =
gA(e) implies (L,g3(x)) € Q and (L,b) € Qb= g3(x) implies (ga(x), 1) € Q)

O_ (o4e 40 oy J e, L)), if[(a, L)] € O
—7=(g4%,93%), where g3*(a) = { undef, otherwise
and

ey = { (2D Tl 0T <0

undef, otherwise

©

Theorem B.5 The constructions defined in Def. B.4 correspond to product, coproduct,
pullback and pushout constructions in the category SetP, respectively. @)

Proof. The category SetP considered here is a special case of the graph structures defined in
[L6w90], namely as a graph structure with respect to a signature containing one sort s and one
operation f:s — s. The constructions defined above are specializations of the constructions
in [L6w90] for this special case (see also [Kor93] for set-theoretical characterizations). Vv

B.3 Categories of Graphs

The constructions on the categories of graphs are based on the constructions of corresponding
categories of sets.

Definition B.6 (Constructions in Graph) Consider the graphs Gi = (Vig;, Egi, s, %),
for i = 1..8, and the total graph morphisms fj, for j = 1..4 and L is not an element of any
set of vertices or edges of these graphs.

174 B. Categorical Constructions

G1 G2
Coprod
f1 3
G3=<=—1G4 G6——G7
'
G5 <f?| PB G8 'F) PO

Then we define the following constructions:

o (' = CoprodGraph(Gl,GQ) = (COprOdset(VG17VG2)700pr0dset(EG17EG2)780urC€7
target), where source(el,e2) = (source®(el),source?(e2)) and target(el,e2) =
(target® (el), target™?(e2))

—Y= (il1,i2), where il = (ily,ilg) and i2 = (i2y, i2g), where the components are the
inclusions defined by the coproducts in Set.

o B =pPBGraPh(5 12 o3 L Gy = (PBSe (Vs 1 Vs 1Y Vi), PBS®Y (s 1

Fes L F¢a), source, target),

where source(eb, ed) = (source“®(eb), source“*(e4)) and target(e5, e4) = (target®®(e5),
target®(e4))

—B=(f2°, f1*), where f1* = (f1%, f1%) and f2° = (f2%, f2%)

e 0 = POSTaPh (s L 6 13 7) = (POSet (Vs 1Y Ve "2 Viar), POSEY (1755 ¥
Fee Vil FEqr), source, target),
where source : Ilpo — Vpo is obtained as the unique functions such that f33, o
source® = sourceo 3% and f4{/osourceG7 = sourceo f4%, and target : Fpo — Vpo is
obtained analogously. —%= (f4°*, f3°%), where f3* = (f3%, f3%) and f4°* = (f4%,, f4%)

©

Theorem B.7 The constructions defined in Def. 5.33 correspond to coproduct, pullback and
pushout constructions in the category Graph, respectively. @)

Proof. These constructions are special cases from the next ones, and thus can be considered as
graph structures, for which, in the case of total morphisms, limits and colimits are constructed
componentwise. Vv

Definition B.8 (Constructions in GraphP) Consider the graphs Hi, for i = 1..5, and
the functions ¢gj, for j = 1..2 and L is not an element of any of these sets.

Hi H?2 03— m4
N o -l
Coprod H5?>PO

Then we define the following constructions:

B.4. Categories of Typed Graphs 175

o (= C’oprodc"”ﬁ'aphP(Hl7 H2)= C’oprodG’][""‘ph(Hl7 H?2)
—Y= (i1,2), where i1 = (ily,ilg) and i2 = (i2y,12g), where the components are the
inclusions defined by the coproducts in Set.

e 0= POGraphP(H5 2 34 H4) = (V, E, source,target),

where V = POSCtP (V0 2Y vy 1Y vy), B = POSCP (Bys 28 Boy %2 Bpy) -
{[(e5, e4)]|(source“®(e5) ¢ V ortarget™(e5) ¢ V ore5 = 1) and (source“(ed) ¢
V or target“(ed) ¢ V or ed = 1)},

source : Epo — Vpo is obtained as the unique total functions such that ¢23 o

source’ = source o g2%, and g1}, o source®

= source o g1y, and target : Epo — Vpo
is obtained analogously (such a function exists by the construction of £ and is unique
because of the pushout properties of Vpp). —%= (g2°,g1°*), where g1* = (g1%,g1%)
and g2°* = (92}, 92%;)

©

Theorem B.9 The constructions defined in Def. B.8 correspond to coproduct and pushout
constructions in the category GraphP. @)

Proof. Analogously to SetP, GraphP is a special graph structure category, namely to the
signature having two sorts V and F and two operations s: I — V and ¢ : /' — V. Thus, the
constructions here are specializations of the constructions of [L6w90]. vV

B.4 Categories of Typed Graphs

Definition B.10 (Constructions in TGraph) Consider the typed graphs Gi'', for i =
1..8, and the morphisms fj%, for j = 1..4 and L is not an element of any of the involved sets.

GlTl G2T2
Coprod
fltl f3t3
G313 <——Gatt G616 G717
f2t2I = Ifzoﬂ' f4t4l = If4ot4°
G5Te S B G8T® e POTO

Then we define the following constructions:

o (= CoprodTGraph(GlTl,GQTz) = (CoprodGraph(Gl,GQ),t,CoprodGraph(Tl,TQ)),
tlot9(z), ifz € G1
where t(z) = { t20t92(z), ifz € G2
—C= (11",12%2), where i1"' = (i1,t1) and i2%? = (i2,t2), where i1, i2, t1 and t2 are the
inclusions defined by the corresponding coproducts in Graph.

2 1
o B = pBTGraphgss /27 (ars S qyrey _ (ppGraphgs 3 3 [

G4),t, PBGTaPh (75 5 p3 L gy,
where t(z) = (t9° o f1*(z),t%* o f2°(z))

176 B. Categorical Constructions

—B= (f2°12" F1°11%), where f1°1" = (f1°,t1*) and f2°2" = (f2°,12%) are the mor-
phisms of pullbacks of the component graphs.

t4 t3
o 0 = poTGraphgrs I gt 120 o1ty (poGraphgs 14 g £
G7),t, POGTaPh(1g B 76 £ 77)),
where t : PO — TO is the unique total graph morphism such that t o f3* = t3® 0 t“®
and to f4* = t4® o t°7,
== (f4°1", f3*13°), where f3°3" = (f3°,13%) and f4°*™" = (f4°,t4°)
©

Theorem B.11 The constructions defined in Def. B.10 correspond to coproduct, pullback
and pushout constructions in the category TGraph, respectively. @)

Proof. This category is in fact a comma category constructed using twice the functor
Tdgyraph- Constructions in comma categories are done componentwise, provided that the
underlying categories allow these constructions and that the corresponding functors preserve
them. This is the case for the category TGraph, what gives raise to the constructions defined

above. Vv

Definition B.12 (Constructions in TGraphP) Consider the typed graphs Hi', fori =
1..5, and the morphisms ¢j, for j = 1..2 and L is not an element of any of the involved sets.

HlTl H2T2 H3T3 i H4T4
N 2T L=
g2t2 = g20t2°
Coprod H5T5 ——= pOTO

lotl.

Then we define the following constructions:

o (= C’opr‘odrI‘G’]['aphP(HlTl7 H2T?) = C’oprodTG’raph(HlTl7 H2T?)
—C= (11",12%2), where i1"' = (i1,t1) and i2%? = (i2,t2), where i1, i2, t1 and t2 are the
inclusions defined by the corresponding coproducts in Graph.

o O — POTGraphP(515 92 H3T3 H4T4) (H,t,T),
where T = pOGraphP (T5 B3l T4), H is the biggest subgraph of PO“T (H5 <kt
o3 H4) that is completely typed in T and t : PO — TO is the unique total graph
morphism such that t o g1* = t1* o t"° and t 0 ¢2* = 12* o t1* (this morphism exists
because of the construction of H and is unique due to pushout properties of T').
0= (g2°2" g1°1"), where g1*'1* = (g1°,¢1°%) and ¢2°'?" = (g2°,12*)
©

Theorem B.13 The constructions defined in Def. B.12 correspond to coproduct and pushout
constructions in the category TGraphP. @)

B.4. Categories of Typed Graphs 177

Proof. Similar to TGraph, constructions in TGraphP can be obtained componentwise,
followed by a “totalization construction” in the case of pushouts. For example, in the pushout
construction, first we constructed the pushout objects H and T, and then took everything
from H that didn’t have a type in T (because types may have been deleted by the pushout
of types). This way of constructing colimits is due to the fact that this category can be
defined as a generalized graph structure category (GGS category) [Kor96]. These categories
are a generalization of comma categories in view of partial morphisms. The fact that these
constructions exist in TGraphP(T) is based on the fact that they exist in GraphP and that
the functor IdGraphP preserves them. Vv

and the inclusion functor Besides the constructions given above, the construction of pushouts
preserving the type component are very important because the computation units of (typed)
graph grammars will be defined based on them. Thus, although these pushouts can be
considered as special cases of the constructions above, we’ll give them explicitly in the next
definition.

Definition B.14 (Pushouts in TGraphP(T)) Consider the typed graphs Gi', for i =
1..3 and the partial (typed) graph morphisms f17 and f27.

Then we define the following construction

T T
o 0 = pOTGraphP(T) (31 2 7 L qoTy = (poGraphP (g3 3 ¢y [
G2),t,T), wheret : PO — T is the unique total graph morphism such that to f1® = t%3
and to f2* =92,
—O0= (f2°7, f1°T), where f1°7 = (f1°,idr) and f2°7 = (f2*,idr)
©

Remark. Pushouts in TGraph(T) are special cases of pushouts in TGraphP(T). @)

Proposition B.15 The construction defined in Def. B.1/ is the pushout in the category
TGraphP(T). @)

Proof. The category TGraphP(T) can be defined as a GGS category using the functors
IdGraphP and Znepp : T — GraphP. As the only morphism in T is total, pushouts here

are also defined componentwise (the totalization construction is not necessary because no
types are deleted). Vv

178 B. Categorical Constructions

B.5 Categories of Double-Typed Graphs

Definition B.16 (Pushouts in DTGraphP(TGT)) Consider the double-typed graphs
GiTG/T | for i = 1..3, and the double-typed graph morphisms ¢g17¢/”T and ¢27¢/T. Then
we define the following construction:

0 = poDTGraphP(T) (G3TG/‘T 92£/T G1TG/T glﬁfT GQTG/‘T)

T T
= (POTGraphP(T) (G3T 2, AT % G21Y,t, TGT), where t : POT — TGT is the unique
total graph morphism such that togl®” = t% and tog2*T =192, 0= (g2°TG/T ¢ oTG/T),
where g1°T4/T = (g1°7T idpqr) and g2°TC7T = (27 idpor) @

Proposition B.17 The construction defined in Def. B.16 is the pushout in the category
DTGraphP(T). @)

Proof. Analogous to the proof of Prop. B.15. Vv

Proofs

Lemma C.1 Let g™ : G171 — H1T! be total (injective, isomorphism). Then T;(g*!) = g7
is also total (injective, isomorphism). @)

Proof. For the diagrams of this proof see the proof of Prop. 3.10. Remind that g2 =
g2'o (g2V)71, g2V is total and injective and ¢2!is total.

1. Let g1T1 be total: In this case, dom(gl) = G1 and g1 = idg1. The pullback construc-
tion (2) yields dom(g2) = G2 and ¢2Y = idge. Therefore, g2 must be total.

2. Let g171 be injective: In this case g1!is injective. By Prop. 3.10 we have that (3) is a
pullback. Injectivity is inherited by pullbacks of total graph morphisms and therefore
¢g2!is also injective. This implies that ¢2 is injective.

3. Let g™' be an isomorphism: In this case g1 and g1!areisomorphisms. As (2) and (3) are
pullbacks, ¢2¥ and ¢2! are also isomorphisms. This implies that ¢2 is an isomorphism.

v

Lemma C.2 Let f : T2 — T1 be an injective (typed) graph morphism, G1T ¢
TGraphP(T1), and G27% = T;(G1TY). Then if rng(t“') C rng(f) then G1 = G2, and
the same holds for morphisms. @)

Proof. If f is injective, f!: dom(f) — T'1 is also injective. Pullback of total graph morphisms
inherit injectivity and thus f!¢ is also injective. It is total because it is a pullback morphism
of total morphisms. By hypothesis, rng(t“!) C rng(f). As f!is the domain restriction of
f, rng(f) = rng(f!) and therefore rng(t“") C rng(f!). This means that for all z € G1
there is t € dom(f!) such that t“!(x) = f!(t). Thus by pullback construction of G2, there is
y € G2 such that f19(y) = = and t9*(y) = ¢, what implies that f!“ is surjective and thus an
isomorphism.

Let ¢ be a morphism with type 7'1 and 7 ¢(g) = g’Tz. Above we proved that the retyping
of the source and target objects of ¢ with respect to the morphism f are isomorphic to the
original ones. As the retyped morphism ¢’ commute with ¢ using the retyping morphisms of
the objects (that are isomorphisms), g and ¢’ are isomorphic. Vv

179

180 C. Proofs

Proposition 3.12

Proof. Let T;(217") = 2272, for « € {L,R,G,H,r,m,r*,m*}. Pushouts in the category
TGraphP(T1) are constructed componentwise in GraphP and Idrt; (see Def. B.14).
Therefore (3) is a pushout in GraphP. As pushouts in TGraphP(T2) are also constructed
componentwise in GraphP and Idrs, it is enough to prove that (4) is a pushout (because
T2 is trivially the pushout of the second component). By assumption we have that r1 is
injective and m1 is total. As (3) is a pushout in GraphP, r1° is also injective (but m1°® is
not necessarily total). Lemma C.1 yields that r2 and r2* are injective and m2 is total.

Let P together with morphisms 21 : G2 — P and z2 : R2 — P be the pushout of r2
and m2 in GraphP. We have to prove that there exists an isomorphism « : P — H2 such
that (5) and (6) commute. As 7} is a functor, diagram (4) commutes. Therefore, there is a
universal morphism u : P — H2 such that (5) and (6) commute. It remains to show that u
is an isomorphism:

L+ R1 12"~ R2
mll (3) lml‘ mZI (4) lmZ‘
2
GP? H1 G H2 (6)

1. Total: Let e € P. As P is a pushout object, there must be a pre-image for e in G2,
R2 or both. Assume there is el € G2 and zl(el) = e. If el € rng(m2) then there
exists €2 € rng(r2) such that z2(e2) = e because P is a pushout object. Let e0 € L2
such that m2(e0 = el) and r2(e0) = e2. As (4), (5) and (6) commute, if r2°(el)
is defined then m2°%/¢t(e2) = r2*(el). In this case, e € dom(u) because (5) and (6)
commute. If 72%(el) = undef then m2*(e2) = undef as well (because (4), (5) and (6)
commute), and this would imply that e ¢ dom(u). But this is not possible because (8)
and (10) commute and (3) is a pushout. If el ¢ rng(m2) then there is no a0 € L1
such that m1(a0) = f!%(el) because (7) is a pullback. As (3) is a pushout in GraphP,
either (f19(el) € dom(r1®)) or (f1%(el) ¢ dom(r1®) and a0 is an edge having v0 € G1
as source or target vertex and v0 € rng(ml) and v0 ¢ dom(rle). In the first case
(f1%(e1) € dom(r1®)), as (8) commutes, el € dom(r2®). Then commutativity of (5)
yields that r2%(el) = u(e). In the second case, as dom(r2*) is obtained as pullback
of r1¥ and f!9, we must have that el ¢ dom(r2®). Let vl be the pre-image of v0
in G2, i.e., fl90wl) = v0. As (7) is a pullback, vl € rng(m2). As (9) commutes,
vl ¢ dom(r2). Therefore, as P is a pushout object, v1 ¢ dom(z1), what implies that
el ¢ dom(z1). But this means that there is no e € Psuch that z1(el) = e, what
contradicts the hypothesis.

Now assume that €2 € R2 and z2(e2) = e. Analogously to the first case, if €2 € rng(r2)
then e € dom(u) because (4), (5), (6), (8) and (10) commute and (3) is a pushout.
If €2 ¢ rng(r2) then there is no al € dom(rl) such that r1!(al) = f*(e2) because
dom(r2) is a pullback of r1! and f!¥ (see Prop. 3.10). As (3) is a pushout, either

181

el € dom(m1®) or (el ¢ dom(m1®) and al is an edge whose target or source vertex
vl € dom(rl) is in deletion conflict with another vertex vl’, i.e., m1(vl) = m1(vl’) and
vl’ ¢ dom(rl)). In the first case (el € dom(m1®)) commutativity of (10) and (6) assure
that u(e) = m2°*(e2). In the second case, we obtain that there must be v2,v2' € L2
such that f19(v2) = vl and f19(v2') = v1’ because v1 and v1’ must have the same type
in the type graph (as they are identified by m1) and L2 is obtained as a pullback with
respect to the type morphism (that must map the type of v1 and v1’ because the type
of el is mapped). As (7) is a pullback, m2(vl’) = undef. As P is a pushout of m2 and
r2, we have that e ¢ P, what contradicts the hypothesis.

2. Injective: Let e, ¢’ € P, e # €'. Assume per absurd that u(e) = u(e’). As (5) and (6)
commute, we have 3 cases:

(a) e, e’ € rng(x1): As z1 is injective, this would mean that there are two different
items in G2 that are identified via r2®, and this is not possible because r2°® is
injective.

(b) e,¢’ € rng(x2) — rng(z1): In this case as P is a pushout object we must have that
there are €2, €2’ € R2 such that 22(e2) = e and z2(e2’) = €’ (obviously in this case
we have that e2 # €2'). Moreover, as (6) commutes and u(e) = u(€’) by assumption
we must have that m2°®(e2) = m2*(e2’). This implies that the types of €2 and
€2’ must be the same (because they are identified by a morphism an morphisms
preserve types). As P is a pushout and e, e’ ¢ rng(z1) we conclude that €2, e2’ ¢
rng(r2), what implies that 2,2’ ¢ rng(r2!). As the dom(r2) is constructed as a
pullback of f!® and dom(rl), we conclude that there are no f!f(e2), f1H(e2') ¢
rng(r1!). As (3) is a pushout and (10) commutes, f17 (€2), f1¥(e2') € dom(m1°*).
If f1H(e2) = f1H(e2') then €2 and €2’ must have different types because R2 is
obtained as a pullback of ¢/ and f!. But this contradicts the fact that they
have the same type (see above). If f1(e2) # f1(e2') then we must have that
ml1®(f1H (e2)) # m1*(f1H (€2')) because (3) is a pushout. As (10) commutes, we
must have that m2*(e2) # m2°*(e2'), and this contradicts the hypothesis. Thus,
commutativity of (6) yields that u(e) # u(€’).

(c) e € rng(al),e’ € rng(22) —rng(z1): In this case, we must have that the pre-image
€2’ of ¢ under 22 in not in the range of r2, i.e., €2’ ¢ rng(r2). Then analogously
to the previous case, we have that f17(e2’) ¢ rng(rl) and as (3) is a pushout,
ml1® o f1F(e2') ¢ rng(rl) and this element must be different from any other in
the image of r1*. Commutativity of (8) yields then that there can be no element
el € G2 such that r2*(el) = m2°®(e2). This implies that u(e) # u(e’).

3. Surjective: Let e3 € H2. Assume that e3 ¢ rng(u). As (3) is a pushout, either
fH (e3) € rng(m1°®) or fHH(e3) € rng(r1®) or both. Analogously to the previous cases,
we then conclude that e3 € rng(m2°®) or e3 € rng(r2*) or both. As (5) and (6) commute,
we conclude that e3 € rng(u).

v

182 C. Proofs

Proposition 3.13

Proof. Let f: T2 — T1 and g : T3 — T2 be morphisms in GraphP. We have to show
that T,y = T, o 7;. This means that for each object 717! € TGraphP(T1), there is
an isomorphism w3 : Too (1171 — T, o T;(I171) that is compatible with the application
of the corresponding functors to morphisms (i.e., there is a natural isomorphism between
these functors). We will first define u?3 and then show that the compatibility requirement i
satisfied.

ul? ¢ Let 117! € TGraphP(T1), T;(111Y) = 1272, T, 0 T, (117Y) = 1313 and Tyop(1171) =
1373 (the morphisms obtained via the corresponding retyping constructions are shown
in the diagrams below). As f and ¢ are morphisms, the diagrams (1) and (2) below
are pullbacks (by definition of the retyping construction). Diagram (3) is a pullback
by construction (the intersection of domains of partial morphisms — see [Ken91]). The
retyping construction of 72 also assures that {2 = fY o¢1®. Thus, there is a universal
morphism u : I3 — dom(g o f) induced by pullback (3) such that ¢2* = y o u and
t1° 042 = z ou. Let (1) be the square defined by the morphisms i2,t1°, v and z.
Obviously, (4) commutes. As (2) and (3) are pullbacks and (4) commutes, (4) is also
a pullback. As (1) and (4) are pullbacks, (1)+(4) is also a pullback. As I3 and I3’
are pullback objects of the same diagram, we conclude that I3 = I3/, t1'* = {2* and
i3 2 i1042. Therefore, 372 22 [3'T3, Let w1 : 137 — 1373 be the unique isomorphism
such that 110420 u;r =143 and t3our = t3’

T1
/
11 ft
(1)
il dom(f)
1°
f'
1R2F—/—=12 z
02 dom(:(_]o f)

dom(g)

Compatibility requirement: Let r17!: L17" — I171 be a morphism in TGraphP(T1),
Tr(r1TY = r212 T 0 T (r1TY) = 7372 and Tyos(r11h) = r3'73. We have to show that
the a pair of isomorphisms uy, : L3 — L3’ and uy : I3 — I3’ makes (5) commute. Let
f"1 and f!"2 be the pullback morphisms obtained by the domain constructions of rl
and r2, respectively (see Def. 3.8).

183

11—t 11 L1~ dom(rl)—Y
f!Ll f!II
uLI (5) qu \ (®) Jf!“ 9) /
L2=5= 12 oy L=—dom(r) =T gy |
/ (6) If!” (7) \
f!L2 f!I2
L2 <———dom(r2) ————J2
r2"¥ r2!

Let diagram (14) be the pullback of f! and t” with pullback object L2 and diagram
(15) be the pullback of f! and ¢¥ with pullback object R2. Assume that (5) doesn’t
commute. Then we have three cases:

1. There is e € L2such that r1owur(e) = €3 and uj o r2(e) = undef:
As uy is total, r2(e) = undef,.c., e ¢ dom(r2). As (6) is a pullback we have
that f12(e) ¢ dom(r). As (10) commutes and (8) is a pullback we conclude that
ur(e) ¢ dom(rl). this means that r1 o us(e) = undef. But this contradicts our
hypothesis.

2. There is e € L2such that r1o uy(e) = undef and ujor2(e) = e4:
Analogous to the first case.

3. There is e € L2such that rlowuyg(e) = €3, uy or2(e) = e4d and €3 # e4:

Let el = r1Y o up(e) and €2 = r2¥(e). Due to the commutativity of (6)—(11) we
have that f1'lorlou®(e) = ! oulor2(e). As f!'!is total and rlou”(e) # ulor2(2)
by assumption, the only possibility is that f!'!(e3) = f!''(e4). The graph I1 is
obtained as a retyping of I with respect tof (pullback (13)). Therefore the only
possibility to have items identified by f!! is that these items have different types
in dom(f), and these types are identified by f!. As 2 is also the retyping of [
with respect to f, there must be also two items in 12 with different types that are
identified in f!2. As u! is an isomorphism, there can be only one way to map
these items to I1 such that this mapping is compatible with the type T2. This
implies that e3 = e4 (because if they are different, they must have different types).
But this contradicts our hypothesis that e3 # e4.

Thus, we conclude that (5) commutes.

v

Lemma C.3 Let T1 2 T12 £ T2 be a coproduct in GraphP, (1) and (2) commute in
Graph. Then L1 L2 2isa coproduct in GraphP iff (1) and (2) are pullbacks in

184 C. Proofs
Graph.
L1 L2
X /
t1 '’ t2
1) (2)
T1 12 T2
T12
©

Proof. «=: Let (1) and (2) be pullbacks.
L is a coproduct iff {1 and {2 are total, injective, jointly surjective and rng(I1)Nrng(12) =

0.

1. As (1) and (2) are pullbacks in Graph and i1 and 2 are total and injective, [1

and [2 are total and injective.

. Assume that /1 and [2 are not jointly surjective. Then there must be an element

z € Lsuch that @ € rng(11) and a ¢ rng(I2). As t is total, t(z) € T12. As il and
i2 are jointly surjective, there is 21 € T'lsuch that ¢1(z1) = ¢(z) or 22 € T2such
that i2(22) = t(z). Assume we have the first case (z1). As (1) is a pullback and
i1(z1) = t(z), there must be el € Llsuch that [1(el) = 2 and t1(el) = z1. Thus,
z € rng(l1). Analogously, if we use 22 we obtain that = € rng(l2). Therefore, [1
and [2 are jointly surjective.

. Assume that rng(I1) N rng(I12) # 0. Then there is @ € Lsuch that [1(z1) = 2 =

[2(x2). This implies that toll(z1) =2 =tol2(22). Thus il otl(zl) = i2012(22)
(because (1) and (2) commute). 71 and 42 are coproduct morphisms and thus
rng(i1) Nrng(i2) = (. As t1 and 2 are total, there can not be any 21 and 22 such
that ilotl(z1) = 120¢2(22). Ast is total, this implies that [1(z1) must be different
from [2(22). But this contradicts the hypothesis, and thus, rng (/1) Nrng(I12) = 0.

=: Let L be a coproduct.

{1

Il 12
e, 27
PB ,il/? L

Ix? (3)

T1 t12

Assume that L1 is not the desired pullback object, but PB together with morphisms
21: PB —T1and 22: PB — L (diagram (3)). As (1) commutes, there is an universal
morphism u : L1 — PB such that /1 = xlow and t1 = 220u. As ¢l isinjective, x1 is also

185

injective and can be inverted. Thus we get a partial morphism (z1)710l2: L2 — PB
that is also injective and is surjective and (21)7! o 21 = idy, (the inverse is not true
because (z1)~! may be partial). As L is a coproduct in GraphP, there is and universal
morphism v’ : I, = PB such that (v1)7!10l2=4'0l2 and u = v'ol1. From zlou =1
we derive that (z1)™'ozlou = (z1)7!' ol and thus u = (z1)7! o /1. Obviously,
(z1)71 012 = (21)7! 012, and thus by uniqueness of universal morphisms we conclude
that (21)7! = «'. Totality of u follows from the fact that it is the universal morphism
induced by a pullback in Graph. As u = (21)71oll, and /1 and (z1)~! are injective, u
is also injective. As (21)7!is surjective, u is surjective. Thus u is an isomorphism and
the square (1) is a pullback.

That square (2) is also a pullback can be shown analogously.

v

Lemma C.4 Let T1'% T3 % T2 be the pushout in GraphPof T'1 Pty) P T2, and 1 and

i2 be total and injective. Let (5)-(6) be pullbacks in Graph and (2)-(3) commute in Graph.
Then (6) is a pushout in GraphP iff (2)-(3) are pullbacks in Graph.

11 12 1 2 1 2
t0

T (1) 2 L 2 L (6) 2
T [2¢ 1* T
72 71 [2¢ 1*
T3 @ L3 (5 L3
¢ . 2
(2) (3)
i1 72
T 2
72 71
T3

Proof. <« Let (2)-(3) be pullbacks.
Let (7) be a pushout with pushout object P. Then we have to show that there is an
isomorphism » : P — L3 and that (8) and (9) commute.

L1 (7) L2
K 7
® P (9

186

C. Proofs

The square (6) commutes because all other squares (1)—(5) commute. As (6) commutes
and (7) is a pushout, there is an universal morphism u : P — L3 such that (8) and (9)
commute. [1° and [2® are total and injective because 71 and 72° are total and injective
and (2) and (3) are pullbacks. Analogously, /1 and [2 are total and injective because
i1 and 42 are injective and (5) and (6) are pullbacks. As (7) is a pushout, z1 and 22
are also total and injective. As (8) and (9) commute, z1, 22, [1° and [2°® are total and
injective, and 1 and 22 are pushout morphisms (and thus together surjective), v must
be total and injective. Thus it remains to show that u is surjective.

Assume that u is not surjective. Then thereis # € L3 such that # € rng(u). This implies
that € rng({1°%) and z ¢ rng(I2°*) because (8) and (9) commute. Let t3(z) =", As L2
is a pullback, there is no ¢ € T2 such that (i)i1*(t") = ¢t3(2). As L1 is a pullback, there
is no t' € T'1 such that (ii)i2*°(¢') = t3(x). As i1® and 72°® are pushout morphisms, they
are together surjective. Thus as ¢ € T3, either there is t” € T2 such that ¢1°(t") ="
or there is t' € T'1 such that 71°(t') = t"’. But these two cases contradict (i) and (ii)
resp. Thus z € rng(u), what implies that u is surjective, and thus an isomorphism.

= Let (6) be a pushout.

Analogously to the proof of the corresponding part of Lemma C.3 we obtain that (2)
and (3) are pullbacks (one just have to substitute coproduct by pushout in the proof).
v

Proposition 4.8

Proof. This proof will be done in 2 steps: first we prove that norm(l) € StepsZ, (if the
corresponding requirements are fulfilled), and then that norm(l) € SDergq if | € SDerlgq.

1. Let [€ Stepslgy and [= X or OUT;_y = IN; for all i = 2..|l|. The proof that

norm(l) € Stepsg,, will be done by induction on the length of I

Induction Basis: |[| =0
In this case, norm(l) = A, that is a trivial sequence of GG.

Induction Basis: || =1

Let [= s1. Here we may have two cases:

(a) re1 is iso: Then norm(l) = X and thus norm(l) € Steps,.

(b) rs1 is notiso: Then by definition of Stepslae, sl € Stepsaa. As norm(l) = s1,
we conclude that norm(l) € Stepsqa C Stepsge.

Induction Hypothesis: For [such that |I| < n, norm(l) € StepsZ,, and OUT;_; =

IN;, for all ¢ = 2..|norm(l)|.

Induction Step: |{|=n+1

Let [= s1 e l1. We have two cases:

(a) rs is not iso: In this case, norm(l) = sl e norm(l1). As ry is not iso, sl €
Stepsga. By induction hypothesis norm(l1) € Stepsgy, because |[1| = |l|-1 =
n+1—1=n. Thus by definition of Steps,, norm(l) = sl o[l € StepsZ,..
Moreover, {1 satisfies the condition: norm(l1) = XA or OUT; — 1 = IN;, for all

i = 2.|norm(11)|. If norm(I1) = A, OUTy; is the last derivation step of the
normalized sequence, and then we are ready. If norm(l1) # A we have to show

187

that OUT,1 = INopp1)- By hypothesis, OUT, = INy; where [1 = s2 e [2.
Here we have 2 cases:

i. 72 is not iso: Then norm(l(1) = s2enorm((2), what means that norm(l)
s1 @ 52 @ norm(l2). Then we obviously have that OUTs1 = IN 1) =
INgs.

ii. rsoisiso: Then norm(I1) = norm(s3'el3), where [2 = s3e[3. By definition
of s3', we have that [Ny = [Ny, and thus I N, 1) = [Ngg = OUT;.

(b) rs is iso: We have 3 cases:

i. {1 = A: Then norm(l) = X € Stepsg..

ii. 1 = s2e[2 and {2 = A: Then norm(I1) = norm(s2’). Assume that
52" € Stepslgg. Then norm(s2’) € Stepsg,, because |s2/| = 1. Thus it
remains to show that s2’ € Stepslgg. As re = rs by definition, ryo is
either an isomorphism or a rule of GG. By definition, the derivation step
of 52" is S2' =(1)4(2) as shown below. As (2) is the derivation step of s2,
it is a pushout. (1) is a trivial pushout: it commutes by definition of my/
and id and r¢ are isomorphisms. Thus (1)4(2)= 52’ is also a pushout.
As mgqs is total by definition, we conclude that s2' € Stepslgg.

id T2

L52 { L52 Rs?

ms2ll (1) Ims2 (2) l

INSl I%.OUTsl = IN52 HO(]/‘TSQ
Ts1

iii. I1 = s2e12 and 12 # X: Then norm(l) = norm(s2’ e [2). Analo-
gously to the previous case, we conclude that s2' € Stepslga. Thus,
s2' @12 = 11" € Stepslgi. By construction, {1’ fulfills the condition that
OUT; = IN;y1 (12 fulfills this requirement and OUTsy = OUTsy = I Nj3).
Moreover, |{1’| = |l|] — 1 because the step sl was removed. Thus by in-
duction hypothesis we have that norm(I1’) € StepsIZ;., what implies that
norm(l) € Stepslg.,.

2. Let | € SDerlgg. We have to show that norm(l) € SDergg:

(a) norm(l) = A: Trivial.
(b) norm(l) # A: Here we have to show that the initial graph is the one of GG and
output graphs of steps are the same as the input graph of the subsequent steps.

Tant Tail

Lg—>Ryq M2 L, Ry s | Ly Ry
) | | |
INSl OUTSlleSQHOUTSQ OUTsi—IZINsiHOUTsi

Initial Graph : By hypothesis, [€ SDerlgg, what implies that IN; = I Ngg.
Let st be the first step of [such that rg; is not an isomorphism. Then, by def.
of norm, norm(l) = norm(s2'e12) = norm(s3'el3) = ... = norm(si’eli). By
definition of norm, IN, = IN;, IN;3 = I N, and so on. Thus IN; = IN;.
As rg; is not iso, norm(si’ e li) = si’ @ norm(li). Therefore we conclude that
IN; = I Ngg is the initial graph of norm(l).

188 C. Proofs

Intermediate Graphs : By hypothesis, OUT;_y = OUT; for all i = 2..|l|. This
proof may be reduced to the proof that the output graph OUTy_; of an already
normalized part of [is equal to the initial graph of the next normalized step.
This can be shown analogously to the first item, and thus we conclude that
OUT;_; = IN; for all j = 2..|norm(l)|.

Ly —%> Ry, Lsky1 Lok Ropq1 et — L Lo R
INsk OUTsk - INsk-I—l —>OUTsk OUTsi—l - IN52—>OUT52

v

Lemma C.5 Let Il — 112+ [2 andT1 — T12 < T2 below be coproducts in GraphP, and
squares (1)-(4) be pullbacks in Graph. Then square (5) is also a pullback in Graph, where
ur and uy are the universal morphisms induced by the coproducts T12 and 112, respectively.

1 12—>r1x
/ o rl 751121 (5) ItIX
112 IX T12——=>TX
‘X z2
(3) “I12f (1)
1112 o1 11X
1 |r1 (@
t1 yl
T12 TX
‘\K y
T2

©

Proof. As coproducts are special pushouts in GraphP, this is a special case of Lemma C.6
that will be proved next. Vv

Lemma C.6 Let squares (1) and (2) be pushouts in GraphP, where i1, i2,t1 and t2 are
total and injective, and squares (3)—(8) be pullbacks in Graph. Then square (9) is also a
pullback in Graph, where ur and uy are the universal morphisms induced by the pushouts
T3 and I3, respectively.

189

Proof. We have to show that (9) commutes and has the universal property.

Commutativity : Follows from the commutativity of (5)—(8), the universal properties of uj
and ur and the fact that ¢3 and i4 (resp. t3 and t4) are jointly surjective (because (1)
and (2) are pushouts).

Universal Property : Let (10) below be a pullback in Graph. As (9) commutes and uy
and t1% are total, there is an universal morphism u : I3 — PB such that (11) and
(12) commute. We’ll show that u is an isomorphism in Graph, i.e., total,injective and
surjective. Totality follows from the fact that it is an universal morphism in Graph.

13 uyr

xi(m)

(11) PB'?IX

tIS
221 (10) ItIX

T3+——>TX

Injectivity : Let al,a2 € I3, al # a2. As I3 is a pushout, there are 3 possibilities to
be considered (the others may be derived from these ones):

1. al,a2 € rng(i3): In these case, there are b1,b2 € I1 such that ¢3(b1) = al
and ¢3(b2) = a2. Obviously, b1 # b2. As (8) is a pullback, b1 and b2 must be
mapped to different items of I X or T'l < T3 or both. These 3 cases lead to
the conclusion that there must be d1,d2 € PB, d1 # d2 such that u(al) = d1
and u(a2) = d2 (using the facts that (6) is a pullback and (11) and (12) must
commute).

2. al,a2 € rng(i4): Analogous to the first case.

3. (al € rng(i3) and al ¢ rng(i4)) and (a2 € rng(i4) and a2 ¢ rng(i3)) : In
these case, there are b € I1,¢ € 12 such that ¢3(b) = al and i4(c) = a2. As
(5) and (6) are pullbacks we conclude that t/3(al) # t/3(a2). Therefore, there

190 C. Proofs

are d1,d2 € PB, d1 # d2 such that 22(d1) = t'*(al) and 22(d2) = t*(a2). As
(11) commutes, we conclude that u(al) # u(a2).

4. al,a2 € rng(i3) and al, a2 € rng(i4):

Subjectivity : Let d € PB and d ¢ rng(u). As (11) commutes, z2(d) # rag(t'?),
what implies that 22(d) # rng(t'?0i3) = rng(t3ot'?. Analogously we obtain that
22(d) # rng(td o t''). But this means that 22(d) # rng(t3) and 22(d) # rng(t4)
what is a contradiction because ¢3 and ¢4 are pushout morphisms and thus together
surjective. Therefore we conclude that d € rng(u), i.e., u is surjective.

v

Theorem 4.24

Proof. The proof that u is a graph grammar morphism is analogous to the corresponding proof
for products. However there is an additional case where one rule nrz € N.X is mapped to rules
nrl € N1,n2 € N2. Then there must be a common subrule nr0 € NO, nr0 = sly(nrl) and
nr0 = s2y(nr2). By construction of the cooperative parallel composition, in this case there
is a rule nr3 € N3 such that nrl = ply(nr3) and nr2 = p2x(nr3). Let the rule morphisms
corresponding to nr0, nrl, nr2, nr3, nrx be r0,rl, r2,r3, rz, respectively. By construction r3
is the amalgamation of r1 and r2 with respect to r0.We must show now that r3 is a subrule
of a rzx.

All these rules are related by a kind of subrule relation which are formally captured by
composing the subrule morphism with the corresponding retyping morphism. Recall that, in
general, the resulting morphism is not unique. However specialization morphisms s1, s2 assure
that there are unique subrule relations s1” = (s1L,s1R) : r0 — rl and s2" = (s2L,s2R) :
r0 — r2. The morphisms pi" = (piL, piR) : ri — r3, for i = 1,2, are uniquely given by the
amalgamation construction. In the following, many properties will only be shown for one of
the components (usually the left hand side) the other then holds by analogy.

By explicitly referring also to the left and right hand components of these morphisms we
obtain the commuting squares depicted in the following diagram in the category TGraphP.

r0

LG

\QL

s1L 2

r2

LX

First we will show that the mapping of rule names induces a commuting diagram
In order to see this, consider an element o0 € L0 for which there are two different images
or = z1L 0 s1L(00) and zz = 22L o s2L(00) in LX, ie., ox # zz. Let to0,tox,tzzx be

191

their types. By construction xzl7 o sly = x27 o s27 which yields a common type tox =
1y o sly(to0) = tza € TX. Thus the retyping of LX with respect to 17 o sly will yield
two different items 0z0 and zz0 in Ty1051(LX). By construction Ty10s1(rz) is a subrule of
r0 which contradictory requires that both items oxz0 and zz0 have different preimages in L0.
This implies that 1L o s1L = 22 o s2L and analogous for right-hand sides.

By using this commutativity and the fact that the squares with tips in L3 and R3
have been constructed as pushouts, we infer the existence of a pair of universal morphisms
wl 1 L3 = LX and uR : L3 — LX which uniquely satisfy uL o plL = z1L, ul o p2L, = 2L,
uR oplR = z1R and uR o p2R = 22R. As plL and p2L are total, injective and jointly
surjective we conclude that (1) commutes.

This leaves to show that (1) gives indeed raise to a subrule diagram, i.e., diagram (1) can
be splitted into two subdiagrams (2) and (3) such that (3) is a retyping of ra with respect to
ur and (2) is a subrule relation between r3 and the retyped rule 7, (rz).

L Z - R3
sul (2) suR
Tur (LX P2 T, (RX)
TuLI (3) ITuR

LX RX

rT

So we first perform the retyping of rz with respect to wr which yields the commuting
diagram (3) with the retyped rule 7,,(rz) : Ty, (LX) — Ty, (RX) and total morphisms
Tul : Ty, (LX) — LX and TuR : T, (RX) — RX. The retyping is essentially obtained from
constructing the pullback of (t*X, ur!) and symmetrically of (7% ur!). Due to the pullback
property of 7, (LX) we obtain a unique morphism suL such that (u%)_lotm = t!¥%sul and
wl. = Tul osul.. We proceed by showing that sul is total and injective. The corresponding

arguments for suR are analogous. We therefore omit them.

Total: Consider an element 03 € L3 with type to3 = tL3(03). Each type element in T'3 has
a preimage in 7’1 or T2 (ply and p27 are jointly surjective by pushout construction).
Assume that to3 has a preimage tol € T, i.e., ur(tol) = to3. By construction of r3
there is a preimage ol € L1 of 03 with type tol. Moreover, by the definition of subrules
it is required that ol has an image in the retyping 7,;1,(LX) and thus ol € dom(z1L)
because retyping morphisms are total. Let 21L(0ol) = ox. As ul is a universal morphism
it satisfies 1L = ul o p1L. So we infer 03 € dom(ul) which directly implies that sul
must be total. Analogously, we obtain the same result if we assume that to3 has a
preimage in T2.

Injective: Let 03 and z3 be two different elements in 3. Assume that they are identified
by sul, i.e., 023 = sul(03) = sul(z3), which requires that all these elements have
the same type to3. Since retyping morphisms are total, there is a single image ox =
Tul o sul(03) and hence only a single type toz. Retyping of L3 with respect to plp
provides two different preimages 031 and 231 of 03 and z3; The subrule relation then
ensures that each of this has a distinguished preimage ol and z1 in L1. Consequently
ol and z1 have a common type tol. But retyping of LX with respect to z1¢ leads to a
single preimage of ox which contradicts the subrule condition.

192 C. Proofs

Now, we are going to proof that (2) is a commuting diagram. Therefore consider an element
03 € L3 with type to3 and an element za3 € RX with type tox3 for which we will show the
following facts:

1. za3 = Ty, (rz) o suL(03) implies z23 = suR o r3(03) and
2. zz3 = suR or3(03) implies za3 = T, (rz) o sul(03).

For the first task recall that sul is total and let 023 = sul(03) be the image of 03
in Tul(LX). The retyping construction requires the existence of different images oz =
TuL(ox3) and zz = TuR(z23) with type tox = ur(to3) and related via 7, (rz). Assume
there is a preimage tol of to3 with respect to ply (again, due to the fact that ply and p27
are jointly surjective we will show the property for ply, the other case is analogous). The
definition of subrules provides two different elements ol € L1 and 21 € R1 in being preimages
of ox and zx respectively and related via the rule r1. The subrule relation carried by pl finally
ensures the existence of an item 23 € R3 and the missing link between 03 and 23 provided
by r3.

In order to see the second property recall (again) that sul is total and thus there is an
element 023 = sul(03). This leaves to show that z23 = 7, (rz)(023). Totality of retyping
morphisms provides items TuL(oz3) and TuR(z23) in rz. Due to the fact that the diagram
(2)+(3) commutes by construction, we infer that zz = rz(oz). Now the desired connection
za3 = Ty, (rz)(oxz3) follows from the retyping construction.

The next step will prove that (2) is indeed a pushout in TGraphP(T3). As pushouts
in this category are constructed componentwise in GraphP and Idrs, we will consider
only the first component (the pushout in Idzs is trivially satisfied by all morphisms in
TGraphP(T3)). The pushout construction in GraphP (see Appendix B.3) ensures that a
commuting diagram as that above where all morphisms are injective and one pair (sul, suR)
is total is a pushout provided that the following conditions are satisfied:

la) avertex va3 is preserved iff there is no preimage to be deleted, i.e., va3 € dom (7T, (rz))
iff (Av3 € L3 — dom(r3) such that va3 = sul(v3)).

1b) an edge ex3 is preserved iff there is no preimage to be deleted and it does not have a
source or target vertex to be deleted, i.e., ex3 € dom(T,,(rz))iff (Ae3 € L3—dom(r3) :
ex3 = sul(e3) and source(ex3),target(ex3) € dom(T,,(rz))).

2) Tup(rz) and suR are jointly surjective.

la): Consider a vertex va3 € 7,, (LX) with type tva3 € T'3.

Assume that there is a preimage v3 € L3 — dom(r3). Since diagram (2) commutes this
immediately ensures va3 ¢ dom(7,,(rz)). Assume that there is no preimage v3 € L3
but va3 € dom(7T,,(rz)). Its type tva3 must have a preimage in T'1 (or 72). Retyping
ra with respect to zl7 yields a preimage val € Ty, (LX) of Tul(vz). which in turn
requires a preimage vl € L1 by definition of subrules (and analogously for z27). The
amalgamation construction then ensures that the image of v1 must be a preimage of
va3. Assume that there is a preserved preimage v3 € dom(r3). Since suR is total, and
diagram (2) commutes this clearly implies that va € dom(7,,(rz)).

193

1b):

Consider an edge ex € LX. Basically the arguments are the same as for that concerned
about vertices above. We discuss the remaining cases where source(ex) ¢ dom(7T,,(rz))
which analogously holds for target(ex) ¢ dom(T,,(rz)) then. More precisely we addi-
tionally have to show that source(ex) € dom(T,,(rz)) is implied if either (i) the edge
is preserved ex € dom(T,,(rz)) or (ii) the edge is deleted and there is a preserved
preimage, i.e., ex € suL(dom(r3)) —dom(Ty,(rz)) Case (i) is a straight consequence of
the fact that 7, (rz) is a (typed) graph morphism. Case (ii) is already contradicted by
the fact that the diagram (2) commutes and suR is total which require that ez and its
preimage have an image in 7, (RX).

Let zz € T,,(RX) be an element which neither has a preimage with respect to suR
nor with respect to 7., (rz). Its type tzz = t"*(2z) must have a preimage in T1 (
or in T2). Retyping ra with respect to z17 yields a preimage 221 € Txy,(RX) of
TuR(zx). Since the subrule diagram corresponding to z17 is a pushout, zz1 must
either have a preimage with respect to sz1R or with respect to 71, (rz). In both cases
the amalgamation construction yields a preimage of zz: the first with respect to suR
and the second with respect to 7y, (rz).

Finally, we will show that su = (sul,suR) fulfills the safety property of subrules. So
consider some oz € LX such that there is a type to3 € T3 with ur(to3) = tox = t!¥ (ox).
Assume that to3 has a preimage tol € T'1 with respect to ply (the case for 72 is analogous).
Retyping of LX with respect to 217 yields a preimage ol € L1 then because 17 = up o ply
and due to the definition of subrules. This however provides an element 03 € L3 which must
be an image of ol and the desired preimage of oz.

v

Bibliography

[AHS90]
[BDS7]

[BFHS7]

[BW90]

[CELT94a]

[CELT94b]

[CELT96a]

[CEL*96b]

[CGH92]

[CHY5]

[CMR96a]

J. Adamek, H. Herrlich, and G. Strecker, Abstract and concrete categories, Series
in Pure and Applied Mathematics, John Wiley and Sons, 1990.

E. Best and R. Devillers, Sequential and concurrent behaviour in Petri net theory,
Theoretical Computer Science 55 (1987), 87-136.

P. Boehm, H.-R. Fonio, and A. Habel, Amalgamation of graph transformations:
a synchronization mechanism, Journal of Computer and System Science 34
(1987), 377-408.

M. Barr and C. Wells, Category theory for computing science, Series in Computer
Science, Prentice Hall International, London, 1990.

A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and F. Rossi, An event structure
semantics for safe graph grammars, Programming Concepts, Methods and
Calculi (E.-R. Olderog, ed.), North-Holland, 1994, IFIP Transactions A-56.

A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and F. Rossi, Note on stan-
dard representation of graphs and graph derivations, Proc. Graph Grammar
Workshop Dagstuhl’93, Springer Verlag, 1994, Lecture Notes in Computer
Science 776, pp. 104-118.

A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and J. Padberg, The category
of typed graph grammars and their adjunction with categories of derivations,
5th Int. Workshop on Graph Grammars and their Application to Computer
Science, Williamsburg’94, Lecture Notes in Computer Science, 1996, to ap-
pear.

A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and F. Rossi, An event structure
semantics for graph grammars with parallel productions, 5th Int. Workshop
on Graph Grammars and their Application to Computer Science, Williams-
burg’94, Lecture Notes in Computer Science, 1996, to appear.

S. Conrad, M. Gogolla, and R. Herzig, TROLL light: A core language for speci-
Sfying objects, Technical Report 92-02, Technical University of Braunschweig,
1992.

A. Corradini and R. Heckel, A compositional approach to structuring and refine-
ment of typed graph grammars, Electronic Notes in Theoretical Conmputer
Science 2 (1995), 167-176, Proc. of the SEGRAGRA’95 Workshop on Graph

Rewriting and Computation.

A. Corradini, U. Montanari, and F. Rossi, Graph processes, Fundamenta Infor-
maticae, to appear, 1996.

194

BIBLIOGRAPHY 195

[CMR+96b] A.

[Cor95] A.

[CR96] A.

[EBHLS8] H.

[EE95] H.

[EHK*+96] H.

[EHKP91] H.

[Ehr79] H.

[EL93a] H.

[EL93b] H.
[EMS5] H.
[EM90] H.

[EPR94] H.

Corradini, U. Montanari, FF. Rossi, H. Ehrig, R. Heckel, and M. Lowe, Al-
gebraic approaches to graph transformation I: Basic concepts and double
pushout approach, The Handbook of Graph Grammars, Volume 1: Foun-
dations, World Scientific, 1996, to appear.

Corradini, Concurrent computing: from Petri nets to graph grammars,
Eletronic Notes in Theoretical Computer Science 2 (1995), 245-260, Proc. of
the SEGRAGRA’95 Workshop on Graph Rewriting and Computation.

Corradini and F. Rossi, Synchronized composition of graph grammar produc-
tions, bth Int. Workshop on Graph Grammars and their Application to Com-
puter Science, Williamsburg’94, Lecture Notes in Computer Science, 1996,
to appear.

Ehrig, P. Boehm, U. Hummert, and M. Léwe, Distributed parallelism of
graph transformation, 13th Int. Workshop on Graph Theoretic Concepts in

Computer Science, Lecture Notes in Computer Science 314 (Berlin), Springer
Verlag, 1988, pp. 1-19.

Ehrig and G. Engels, Towards a module concept for graph transformation sys-
tems: The software perspective, Proc. Colloquium on Graph Transformation
and its Application in Computer Science (G. Valiente Feruglio and F. Rosello
Llompart, eds.), Technical Report B-19, Universitat de les llles Balears, 1995.

Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wagner, and A. Corradini,
Algebraic approaches to graph transformation I1: Single pushout approach and
comparison with double pushout approach, The Handbook of Graph Gram-
mars, Volume 1: Foundations, World Scientific, 1996, to appear.

Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce, Parallelism and con-
currency in high-level replacement systems, Math. Struct. in Comp. Science
1 (1991), 361-404.

Ehrig, Introduction to the algebraic theory of graph grammars, 1st Graph
Grammar Workshop, Lecture Notes in Computer Science 73 (V. Claus,
H. Ehrig, and G. Rozenberg, eds.), Springer Verlag, 1979, pp. 1-69.

Ehrig and M. Léwe, Categorical principles, techniques and results for high-
level replacement systems in computer science, Applied Categorical Struc-
tures 1 (1993), no. 1, 21-50.

Ehrig and M. Lowe, Parallel and distributed derivations in the single pushout
approach, Theoretical Computer Science 109 (1993), 123 — 143.

Ehrig and B. Mahr, Fundamentals of algebraic specification 1: Fquations
and initial semantics, EATCS Monographs on Theoretical Computer Science,
vol. 6, Springer, Berlin, 1985.

Ehrig and B. Mahr, Fundamentals of algebraic specification 2: Module speci-
fications and constraints, EATCS Monographs on Theoretical Computer Sci-
ence, vol. 21, Springer, Berlin, 1990.

Ehrig, J. Padberg, and L. Ribeiro, Algebraic high-level nets: Petri nets re-
visited, Recent Trends in Data Type Specification, Springer Verlag, 1994,
Lecture Notes in Computer Science 785, pp. 188-206.

196 BIBLIOGRAPHY

[GR&3] U. Goltz and W. Reisig, The non-sequential behaviour of Petlri nets, Information
and Computation (1983), no. 57, 125-147.

[Gro96] M. GroBle-Rhode, Transition specifications for dynamic abstract data types, Ap-
plied Categorical Structures, to appear, 1996.

[GWI1] P. Godefroid and P. Wolper, Using partial orders for the efficient verification
of deadlock freedom and safety properties, Computer Aided Verification —
CAV’91, 1991, Lecture Notes in Computer Science 575, pp. 332-342.

[Hab92] A. Habel, Hyperedge replacement: Grammars and languages, Lecture Notes in
Computer Science, vol. 643, Springer Verlag, Berlin, 1992.

[HCEL96] R. Heckel, A. Corradini, H. Ehrig, and M. Léwe, Horizontal and vertical struc-
turing of typed graph transformation systems, Mathematical Structures in
Computer Science, to appear, 1996.

[Hec95] R. Heckel, Algebraic graph transformations with application conditions, Master’s
thesis, Technical University of Berlin, 1995.

[Hen&8] M. Hennessy (ed.), Algebraic theory of processes, The MIT Press, Combridge,
Massachussets, 1988.

[HHT96] A. Habel, R. Heckel, and G. Taentzer, Graph grammars with negative application
conditions, Fundamenta Informaticae, to appear, 1996.

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[Jan93] D. Janssens, ESM systems and the composition of their computations, Proc.
Graph Grammar Workshop Dagstuhl 93, Springer Verlag, 1993, Lecture
Notes in Computer Science 776, pp. 203-217.

[Jan96] D. Janssens, The decomposition of ESM computations, 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, Williams-
burg’94, Lecture Notes in Computer Science, 1996, to appear.

[Jen92] K. Jensen, Coloured Petri nets. basic concepts, analysis methods and practical
use, Springer-Verlag, Berlin, 1992.

[JK91] R. Janicki and M. Koutny, Invariant semantics of nets with inhibitor arcs, CON-
CUR’91, Springer Verlag, 1991, Lecture Notes in Computer Science 527.

[JK93] R. Janicki and M. Koutny, Structure of concurrency, Theoretical Computer
Science 112 (1993), 5-52.

[JR&9] D. Janssens and G. Rozenberg, Actor grammars, Mathematical Systems Theory
22 (1989), 75-107.

[JRO1] D. Janssens and G. Rozenberg, Structured transformations and computation
graphs for actor grammars, 4th Int. Workshop on Graph Grammars and
their Application to Computer Science, Lecture Notes in Computer Science
532 (H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds.), Sringer Verlag, 1991,
pp- 446-460.

[Ken91] R. Kennaway, Graph rewriting in some categories of partial maps, 4th Int. Work-

shop on Graph Grammars and their Application to Computer Science, Lec-
ture Notes in Computer Science 532 (H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, eds.), Springer Verlag, 1991, pp. 475-489.

BIBLIOGRAPHY 197

[KK96]

[Kor93]

[Kor94]

[Kor95]

[Kor96]

[KR95]

[KR96]

[Kre77]
[Kre81]
[Kre83]

[Kre95]

[KWS6]
[LD94]

[LKW93]

H.-J. Kreowski and S. Kuske, On the interleaving semantics of transformation
units - a step into GRACEF, bth Int. Workshop on Graph Grammars and
their Application to Computer Science, Williamsburg’94, Lecture Notes in
Computer Science, 1996, to appear.

M. Korff, Single pushout transformations of generalized graph structures, Tech.
Report RP 220, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil, 1993.

M. Korff, Graph-interpreted graph transformations for concurrent object-oriented
systems, Extended abstract for the 5th International Workshop on Graph
Grammars and their Application to Computer Science, 1994.

M. Korft, True concurrency semantics for single pushout graph transformations
with applications to actor systems, Information Systems - Correctness and
Reusability (R. J. Wieringa and R. B. Feenstra, eds.), World Scientific, 1995,
pp. 33-50.

M. Korff, Generalized graph structure grammars with applications to concurrent
object-oriented systems, Ph.D. thesis, Technical University of Berlin, 1996.

M. Korfl and L. Ribeiro, Concurrent derivations as single pushout graph gram-
mar processes, Electronic Notes in Theoretical Computer Science, 2 (1995),
113-122, Proc. of the SEGRAGRA’95 Workshop on Graph Rewriting and

Computation.

M. Korff and L. Ribeiro, Formal relationship between graph grammars and Petri
nets, 5th Int. Workshop on Graph Grammars and their Application to Com-
puter Science, Williamsburg’94, Lecture Notes in Computer Science, 1996,
to appear.

H. J. Kreowski, Transformation of derivation sequences in GraGra, Lecture
Notes in Computer Science 56, Springer Verlag, 1977, pp. 275-286.

H.-J. Kreowski, A comparison between Petri-nets and graph grammars, Lecture
Notes in Computer Science 100, Springer Verlag, 1981, pp. 1-19.

H. J. Kreowski, Graph grammar derivation processes, Proc. International Work-
shop WG’83, Trauner Verlag, 1983, pp. 136-150.

H.-J. Kreowski, Graph grammars for software specification and programming:
an eulogy in praise of GRACF, Proc. Colloquium on Graph Transformation
and its Application in Computer Science, Tech. Report B-19, Universitat de
lesllles Balears, 1995.

H.-J. Kreowski and A. Wilharm, Net processes correspond to derivation processes
in graph grammars, Theoretical Computer Science 44 (1986), 275-305.

M. Lowe and J. Dingel, Parallelism in single-pushout graph rewriting, Lecture
Notes in Computer Science 776 (1994), 234-247.

M. Lowe, M. Korfl, and A. Wagner, An algebraic framework for the transforma-
tion of attributed graphs, Term Graph Rewriting: Theory and Practice (M.R.
Sleep, M.J. Plasmeijer, and M.C. van Eekelen, eds.), John Wiley & Sons Ltd,
1993, pp. 185-199.

198

BIBLIOGRAPHY

[Lw90]
[Lw93]

[McM92]

[McM95]

[Men94]
[Mes92]
[Mil89]

[MM90]

[MMS94]

[MMS96]
[MP92]

[MR95]
[Mue95]

[NPWS1]
[PER95]
[Pet62]

[Pet77]
[Pet80]

[PLI1]

M. Léwe, Fxtended algebraic graph transformations, Ph.D. thesis, Technical Uni-
versity of Berlin, 1990.

M. Lowe, Algebraic approach to single-pushout graph transformation, Theoretical
Computer Science 109 (1993), 181-224.

K. L. McMillan, Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits, Computer Aided Verification — CAV’92,
1992, Lecture Notes in Computer Science 663, pp. 164-177.

K. L. McMillan, Trace theoretic verification of asynchrounous circuits using
unfoldings, Computer Aided Verification — CAV’95, 1995, Lecture Notes in
Computer Science 939, pp. 180-195.

Paulo Menezes, Compositional reification of Petri nets, Tech. Report 25/94,
Politechnical University of Lisbon, 1994.

J. Meseguer, Conditional rewriting logic as a unified model of concurrency, The-
oretical Computer Science 96 (1992), 73-155.

R. Milner, Communication and concurrency, International Series in Computer
Science, Prentice Hall, London, 1989.

J. Meseguer and U. Montanari, Petri nets are monoids, Information and Com-
putation 88 (1990), no. 2, 105-155.

J. Meseguer, U. Montanari, and V. Sassone, On the model of computation
of place/transition Petri nets, Application and Theory of Petri Nets’94,
Springer, 1994, Lecture Notes in Computer Science 815, pp. 16-38.

J. Meseguer, U. Montanari, and V. Sassone, On the semantics of place /transition
Petri nets, Mathmatical Structures in Computer Science, to appear, 1996.

D.E. Monarchi and G.I. Puhr, A research typology for object-oriented analisys
and design, Communications of the ACM 35 (1992), no. 9, 35-47.

U. Montanari and F. Rossi, Contextual nets, Acta Informatica, vol. 32, 1995.

J. Mueller, Foundations of relational graph rewriting systems, Master’s thesis,
Technical University of Berlin, Dep. of Comp. Sci., 1995.

M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures and do-
mains: part 1, Theoretical Computer Sciencei 13 (1981), 85-108.

J. Padberg, H. Ehrig, and L. Ribeiro, Algebraic high-level net transformation
systems, Mathematical Structures in Computer Science 5 (1995), 217-256.

C.A. Petri, Kommunikation mit Automaten, Ph.D. thesis, Schriften des Insti-
tutes fiir Instrumentelle Mathematik, Bonn, 1962.

J. L. Peterson, Petri nets, Computing Surveys 9 (1977), no. 3, 223-252.

C. A. Petri, Introduction to general net theory, Net Theory and Applications,
Springer, 1980, Lecture Notes in Computer Science 84, pp. 1-9.

D. Probst and F. Hon Li, Partial-order model checking: a guide for the perplexed,
Computer Aided Verification — CAV’91, 1991, Lecture Notes in Computer
Science 575, pp. 322-331.

BIBLIOGRAPHY 199

[PP96]

[Pra86]

[Rei81]

[Rei85]
[Rib96]
[Sas94]
[Sch91]

[Sch94]

[Sch96]

[Tae96]

[TS95]

[Val94]

[Vog92]

[Wag93]

[WG96]

F. Parisi-Presicce, Transformation of graph grammars, 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, Williams-
burg’94, Lecture Notes in Computer Science, 1996, to appear.

V. Pratt, Modelling concurrency with partial orders, Int. Journal on Parallel
Programming 15 (1986), 33-71.

W. Reisig, A graph grammar representation of nonsequential processes, Graph-
theoretic Concepts in Computer Science. Bad Honnef 1980. (H. Noltemeier,
ed.), Lecture Notes in Computer Science, vol. 100, Springer Verlag, 1981,
pp- 318 — 325.

W. Reisig, Petri nets, EATCS Monographs on Theoretical Computer Science,
vol. 4, Springer-Verlag, 1985.

L. Ribeiro, A telephone system’s specification using graph grammars, Tech. Re-
port 96-23, Technical University of Berlin, 1996.

V. Sassone, On the semantics of Petri nets: processes, unfoldings and infinite
computations, Ph.D. thesis, Pisa University, 1994.

A. Schiirr, Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen, Deutscher Universitatsverlag GmbH, Wiesbaden, 1991.

G. Schied, On relating rewriting systems and graph grammars to event structures,
Graph Transformations in Computer Science (H.-J. Schneider and H. Ehrig,
eds.), Springer Verlag, 1994, Lecture Notes in Computer Science 776, pp. 326
340.

H.J. Schneider, Graph grammars as a tool to define the behaviour of processes:
from Petri nets to Linda, 5th Int. Workshop on Graph Grammars and their
Application to Computer Science, Williamsburg’94, Lecture Notes in Com-
puter Science, 1996, to appear.

G. Taentzer, Parallel and distributed graph transformation: Formal description
and application to communication-based systems, Ph.D. thesis, Technical Uni-
versity of Berlin, 1996.

G. Taentzer and A. Schiirr, DIFGO, another step towards a module concept
Jfor graph transformation systems, Electronic Notes in Theoretical Computer
Science 2 (1995), 85-94, Proc. of the SEGRAGRA’95 Workshop on Graph

rewriting and Computation.

A. Valmari, Compositional analysis with place-bordered subnets, Applications
and Theory of Petri Nets’94, 1994, Lecture Notes in Computer Science 815,
pp- H31-547.

W. Vogler, Modular construction and partial order semantics of Petri nels,
Springer Verlag, 1992, Lecture Notes in Computer Science 625.

A. Wagner, Vergleich von High-Level- Replacement-Systemen basierend auf dem
Double- bzw. Single-Pushout-Ansatz, Master’s thesis, Technical University of
Berlin, 1993.

A. Wagner and M. Gogolla, Defining operational behavior of object specifications
by attributed graph transformations, Fundamenta Informaticae, to appear,
1996.

200 BIBLIOGRAPHY

[Wing&7a) G. Winskel, Fvent structures, Proc. of the Advanced Course on Petri Nets,
Springer Verlag, 1987, Lecture Notes in Computer Science 255, pp. 325-392.

[Win8&7b] G. Winskel, Petri nets, algebras, morphisms, and compositionality, Information
and Computation 72 (1987), 197-238.

[Wing9] G. Winskel, An introduction to event structures, In: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, Springer
Verlag, 1989, pp. 364-397.

[WN94] G. Winskel and M. Nielsen, Models for concurrency, Tech. Report BRICS RS-
94-12, University of Aarhus, 1994.

Index

abstract concurrent derivation, 58

abstract concurrent derivation morphism,
58

abstract grammar, 79

abstract occurrence graph grammar, 146

abstract occurrence graph grammar mor-
phism, 146

action, 55, 97

amalgamated decomposition, 45

amalgamated rule, 41

automorphism, 28

category, 170

choice of pullbacks, 30

co-match, 50, 95

co-rule, 50, 95

commutes weakly, 25

concurrent derivation, 55
concurrent derivation morphism, 56
concurrent graph, 111

concurrent semantics, H8

conflict relation, 103

cooperative parallel composition, 80
coproduct, 171

core graph, 54, 97

core morphism, 54

core structure, 54

dependency relation, 100

dependency relation between actions, 100
dependency relation between types, 100
depth, 128

derivation step, 50, 95

deterministic , 121

directly (causally) dependent, 99
double-type graph, 88

doubly-typed graph, 88

201

doubly-typed graph grammar, 94

doubly-typed graph grammar morphism,
95

doubly-typed graph morphism, 89

dual or opposite category, 170

empty step, 51

factorization, 25
folding functor, 125
functor, 171

general rule, 37

graph, 25

graph grammar, 49

graph grammar morphism, 62
graph morphism, 25

inclusion, 63

inherited weak conflict relation, 103
initial graph, 49, 95

input graph, 50, 95

isomorphism, 170

length, 55
local occurrence relation, 104

match, 50, 95

maximal prefix derivation, 129
maximal prefix morphism, 129
minimal elements, 98

naming function, 49, 95
normalization, 68
normalized translation, 69

occ-cooperative parallel composition, 150
occurrence graph grammar, 107
occurrence graph grammar morphism, 109
occurrence relation, 104

output graph, 50, 51, 55, 95

parallel applicable rule, 132
parallel decomposition, 42
parallel rule, 40
post-condition, 55, 94
pre-condition, 55, 94, 98
prefix-equivalence, 146
product, 170

pullback, 171

202

INDEX

pure parallel composition, 71
pushout, 171

retyping functor, 31
rule, 37, 93

rule names, 49, 95
rule pattern, 94
rule-automorphism, 38
rule-identity, 38

safe, 49

safety condition, 38

sequential derivations, 51

sequential derivations with empty steps, 51
sequential semantics, 51

set of applicable rules, 132

span, 25

specialization morphism, 79

specialized grammar, 79
step-core, 53

subgrammar inclusion, 128
subgrammar of depth d, 128
subrule, 37, 94

translation of derivation sequences, 69
translation of derivation steps, 66
type, 49, 95

type-forgetful functor, 92

typed graph, 28

typed graph morphism, 28

unfolding semantics, 139

weak commutativity, 25
weak conflict, 102
weak conflict relation, 102

1968

1981

1984

1985

1986

1988

1989

1990

1991

1992

1994

1996

Lebenslauf

geboren in Porto Alegre (Brasilien).

Beendigung der Grundschule — FEscola de 12 Grau Santa Rosa de Lima (Porto
Alegre).

Beendigung der Oberschule — Fscola de 12 e 22 Graus Nossa Senhora do
Rosdrio (Porto Alegre).

Aufnahme an der Universitat Universidade Federal do Rio Grande do Sul
(UFRGS) in Fach Verfahrenstechnik und an der Universitdt Pontificia Uni-
versidade Catélica do Rio Grande do Sul (PUC/RS) in Fach Informatik.

Fortsetzung des Studiums an der Universitit UFRGS in Fach Informatik.

Englischzertifikat an der Sprachschule Centro de Cultura Anglo-Americano
(CCAA).

B.Sc.-Diplom in Informatik — Diplomarbeit: “The VDM Method and its ap-
plication to the formal specification of an admission system”.

Mitarbeiterin in Projekt AMPLO an der Universitit UFRGS.
Beginn des M.Sc.-Studiums an der Universitdt UFRGS.
Gastwissenschaftlerin bei IBM Brasil (Scientific Center — Rio de Janeiro).

M.Sc.-Diplom. Masterthesis: “Integration in PROSOFT of correct environ-
ments obtained from algebraic specifications and executed by rewriting sys-
tems”.

Lehrtétigkeit in Fachern Informatik und Mathematik (8 SWS 4 4 SWS).

Deutschzertifikat “Deutsch als Fremdsprache” am Goetheinstitut (Porto Ale-
gre).

Doktorandenstipendium zum Studium an der TU Berlin.
Deutschzertifikat “Mittelstufe I” an der Hartnackschule (Berlin).
Mitarbeiterin im GRAPHIT Projekt

Abschluff der Promotion an der TU Berlin mit der Dissertation “Parallel
composition and unfolding semantics of graph grammars”

