

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
LVCIICO	Juliu of Nos 2017. Sie Will Salao De Michçao
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Placa Controladora para Máquinas CNC de Código Aberto
Autor	ALISSON CLAUDINO DE JESUS
Orientador	RAFAEL VASQUES BRANDÃO

Universidade Federal do Rio Grande do Sul XXIX Salão de Iniciação Científica

Placa Controladora para Máquinas CNC de Código Aberto

Autor: Alisson Claudino de Jesus Orientador: Rafael Vasques Brandão

Instituição: Universidade Federal do Rio Grande do Sul

Máquinas de fabricação digital, tais como impressoras 3D e máquinas CNC (Comandos Numéricos Computadorizados), já são bem conhecidas na indústria, porém o acesso do público geral às mesmas ainda é um cenário emergente. Em 2004, com o surgimento do projeto RepRAP, de impressoras 3D de código aberto, tornou-se possível que pessoas sem necessariamente conhecimentos técnicos pudessem usufruir dos benefícios dessas máquinas, abrindo portas para a emancipação tecnológica nesse segmento.

Hoje em dia já existem diversos tutoriais na internet de como construir e operar máquinas como estas, mas em grande parte se tratam de máquinas caseiras, sem as devidas precauções com a parte elétrica e de pequeno porte.

Com a proposta de evitar problemas elétricos, como ruídos, poder trabalhar com motores de maior potência e máquinas de médio a grande porte, sem perder a compatibilidade com as de pequeno porte, neste trabalho de iniciação científica está sendo desenvolvida uma placa controladora para máquinas de CNC de código aberto.

Utilizando como base o firmware GRBL (https://github.com/gnea/grbl/) e um Arduino, essa placa está sendo desenvolvida de forma a permitir que o arduino consiga acionar todos os dispositivos aos quais se conecta sem que ocorram problemas, como ruídos nos botões de fins de curso, por exemplo. O GRBL recebe comandos em códigos G através da porta serial do arduino e pode controlar até 3 drivers de motores de passo, um motor de corte e uma bomba de fluido através de PWM. Também pode receber sinais de fins de curso, início, pausa e reset.

Para o desenvolvimento deste trabalho foram necessários diversos estudos sobre o funcionamento dos microcontroladores, motores de passo, DC e AC, bem como seus controladores (drivers e inversores de frequência), filtros, amplificadores, dispositivos de isolamento (relés e opto isoladores), comunicação serial, comandos numéricos (Códigos G), proteção de sistemas elétricos, regras de projeto de placas de circuito impresso, etc.

Já foram construídos 4 protótipos: com filtros passa baixas nos sinais de entrada prevenindo ruídos de bouncing; saída auxiliar de fins de curso para o driver do motor de passo (caso o mesmo possua as devidas entradas); amplificadores transistorizados para acionar uma bomba de fluido e um aspirador via relé (simples ou de estado sólido); saídas de controle opto isoladas e adaptadas para inversores de frequência de padrão industrial; conexões para LEDs de feedback do motor de corte, sistema de proteção contra curtos, surtos de tensão e conexão reversa e conectores KK molex para os sinais de entrada e saída da placa.

Os primeiros protótipos estão sendo construídos utilizando como base Arduino UNO e NANO, porém já está sendo projetada uma versão que utilizará puramente o microcontrolador ATMEGA328 e conversor USB-Serial, fazendo com que a placa deixe de ser um shield Arduino.

Todos os protótipos estão sendo testados em uma Router CNC desenvolvida por um ex-bolsista do Centro de Tecnologia Acadêmica. O motor de corte utilizado nos testes é de indução trifásico da marca WEG em conjunto com um inversor de frequência da marca SEW. Os motores de passo utilizados são do padrão NEMA 23 e os respectivos drivers da marca HobbyCNC.