

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Sistemas de Funções Iteradas com uma família qualquer de
	ramos
Autor	MARCUS VINÍCIUS DA SILVA
Orientador	JAIRO KRÁS MENGUE

Sistemas de Funções Iteradas com uma família qualquer de ramos

Autor: Marcus Vinícius da Silva Orientador: Jairo Krás Mengue

Instituição: Universidade Federal do Rio Grande do Sul

Este trabalho consiste do estudo de alguns tópicos de IFS (Sistemas de Funções Iteradas, na sigla em inglês) tendo por base um trabalho recente por Mengue e Oliveira, como: probabilidades holonômicas, entropia de uma probabilidade holonômica e pressão de uma função contínua.

Sejam X e Z espaços métricos compactos. Para cada $x \in X$ é associado um mapa contrativo $\tau_x : Z \to Z$. Uma probabilidade π é dita holonômica com respeito à família de mapas $\{\tau_x : x \in X\}$ se satisfizer

$$\int g(\tau_x(z))d\pi(x,z) = \int g(z)d\pi(x,z), \text{ para toda função } g:Z\to Z \text{ contínua}.$$

O conjunto das probabilidades holonômicas é denotado por $\Pi(\tau)$.

Para uma probabilidade α sobre X e uma função c(x,z) de Lipschitz é definido o operador $L_{c,\alpha}:C(Z)\to C(Z)$ por

$$L_{c,\alpha}(\psi)(z) = \int e^{c(x,z)} \psi(\tau_x(z)) d\alpha(x).$$

Por exemplo, se $X=\{1,2,3,4\}$ e $\alpha=(p_1,p_2,p_3,p_4)$ então o operador $L_{c,\alpha}$ é dado por

$$L_{c,\alpha}(h)(z) = \sum_{i=1}^{4} e^{c(x_i,z) + \log(p_i)} h(\tau_{x_i}(z)).$$

O operador $L_{c,\alpha}$ é usado para definir a entropia de uma probabilidade holonômica π relativa a α , por

$$H_{\alpha}(\pi) = -\sup \left\{ \int c(x,z)d\pi : c \in \text{Lipschitz e } L_{c,\alpha}(1) = 1 \right\}.$$

Da mesma forma, a pressão de uma função contínua c, relativamente a α , é definida por

$$P_{\alpha}(c) = \sup_{\pi \in \Pi(\tau)} \left[\int c d\pi + H_{\alpha}(\pi) \right].$$