

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Distribuição e Localização de Autovalores de Árvores e de
	Grafos Unicíclicos
Autor	RODRIGO LORO SCHULLER
Orientador	VIRGINIA MARIA RODRIGUES

Distribuição e Localização de Autovalores de Árvores e de Grafos Unicíclicos

Autor: Rodrigo Loro Schuller

Orientadora: Dra. Virgínia Maria Rodrigues

Universidade Federal do Rio Grande do Sul

Em 2007, B. Mohar definiu uma transformação em árvores, chamada de transformação π , que ao ser aplicada sucessivamente transforma uma árvore em um caminho. Por outro lado, em 2011, D. Jacobs e V. Trevisan apresentaram o algoritmo $diagonalize(T,\alpha)$, que recebe uma árvore T e um valor real α e retorna a quantidade de autovalores da matriz de adjacências de T que são menores que α , iguais a α e maiores do que α . Este procedimento percorre diretamente os vértices e arestas de T, sem realizar operações na matriz — diferentemente dos métodos tradicionais.

Utilizando o procedimento $diagonalize(T,\alpha)$, adaptado para a matriz laplaciana, R. Braga, V. Rodrigues e V. Trevisan mostraram que a transformação π não aumenta a quantidade de autovalores laplacianos de T no intervalo [0,2). A partir daí, provaram que para toda árvore a quantidade de autovalores laplacianos no intervalo [0,2) é no mínimo $\left\lceil \frac{n}{2} \right\rceil$, ou seja, pelo menos a metade dos autovalores laplacianos são menores do que 2.

Neste trabalho, implementaremos o algoritmo $diagonalize(T,\alpha)$ e suas extensões para diferentes matrizes de representação de árvores e de grafos unicíclicos no programa Newgraph. Além disso, investigaremos computacionalmente se a transformação π aumenta (ou não) a quantidade de autovalores laplacianos de uma árvore T no intervalo $\left[0,\overline{d}\right)$, em que $\overline{d}=2-\frac{2}{n}$ é a média dos graus dos vértices de T. A motivação para esta pesquisa é a possibilidade de utilizar a transformação π para demonstrar a seguinte conjectura proposta por Trevisan et~al.: para uma árvore T com n>1 vértices, o número de autovalores Laplacianos menores do que o grau médio \overline{d} é no mínimo $\left\lceil \frac{n}{2} \right\rceil$. A demonstração desta conjectura facilitaria a obtenção de cotas para a energia laplaciana de um grafo.