

Estudo do Comportamento Eletroquímico de Ligas de Magnésio em Diferentes Eletrólitos que Simulam o Fluido Corpóreo.

Tobias Bertoldi Agostini* Célia de Fraga Malfatti**

INTRODUÇÃO

O estudo de biomateriais degradáveis é um dos tópicos de pesquisa mais interessantes nos dias atuais. Metais biodegradáveis devem degradar-se no ambiente fisiológico do corpo humano com a cinética de degradação correspondente ao período de cicatrização. Dentre as ligas de Mg estudadas, destacam-se as ligas ZK30 e ZK60 pelas suas propriedades mecânicas e sua resistência à corrosão. A dificuldade que se encontra em utilizar implantes à base de magnésio é a sua alta taxa de corrosão. Durante a corrosão do magnésio ocorre a reação catódica de formação do gás hidrogênio, o qual pode se acumular em regiões adjcentes ao implante, podendo intereferir na cicatrização dos tecidos. O presente trabalho tem por objetivo estudar o comportamento corrosivo de ligas de magnésio bioadsorvíveis (ZK30 e ZK60) em dois diferentes eletrólitos que simulam o fluido corpóreo: SBF Kokubo e Solução de Hanks. Para realizar este estudo foram utilizadas as técnicas de potencial de circuito aberto (OCP) e de polarização potenciodinâmica.

METODOLOGIA

Preparação da superfície

As amostras foram obtidas a partir de um tarugo cilíndrico produzido pela Delft University of Technology. Posteriormente foram cortadas, lixadas com lixas de carbeto de silício e polidas com pasta de diamante de 1um. Antes de cada ensaios as amostras foram limpas em acetona com agitação ultrassônica e posteriormente enxaguadas em água deionizada e secas com jato de ar frio.

Preparação das das soluções eletrolíticas

Os ensaios foram feitos em dois diferentes eletrólitos com pH 7,4 e temperatura de 36,5 \pm 1°C. As soluções utilizadas foram a solução Hanks e solução Kokubo.

Caracterização eletroquímica e morfológica.

Foram feitas análises de fluorescência de raios X para obtenção da composição química, de microscopia ótica e microscopia eletrônica de varredura com sonda EDS para a verificação da microestrutura e composição química. Para a perda de massa, mergulhou-se a amostra em um becker contendo cada eletrólito e após o tempo de ensaio de 72h as amostras foram retiradas, limpas em solução contendo ${\rm CrO_3}$ e ${\rm AgNO_3}$, lavadas com água deionizadas e secas com jato de ar frio. Para a análise por polarização potenciodinâmica, as amostras foram submetidas aos ensaios de polarização com intervalo de varredura de -100 à +800mV em relação ao OCP, com velocidade de varredura de ${\rm 1mV/s}$, mantendo a temperatura do eletrólito em ${\rm 36,5^{\circ}C}$, +- ${\rm 1^{\circ}C}$.

RESULTADOS E DISCUSSÃO

Análise da Composição Química por Fluorescência de Raios X

Tabela 1: Análise da composição química por fluorescência de Raio X.

Amostra	Zr	Zr Error	Pb	Pb Error	Zn	Zn Error	Cr	Cr Error	V	V Error	Ti	Ti Error	Mg	Mg Error
ZK30	0,36	0,01	0,002	0,001	3,59	0,07	0,009	0,003	0,04	0,01	0,02	0,01	95,97	bal.
ZK60	0,41	0,01	0,004	0,001	6,28	0,13	0,012	0,003	0,05	0,01	0,012	0,003	93,17	bal.

Análise por MEV/EDS

A Figura 1 apresenta a superfícies das amostras ZK30 (a) e ZK60 (b). É possível verificar intermetálicos no contorno de grão da amostra ZK60. Foi feita uma análise dos elementos presentes no intermetálico da amostra ZK60 (em destaque) que indicou a presença de zinco e magnésio nestes pontos, indicando a formação no contorno de grão de um intermetálico Zn-Mg.

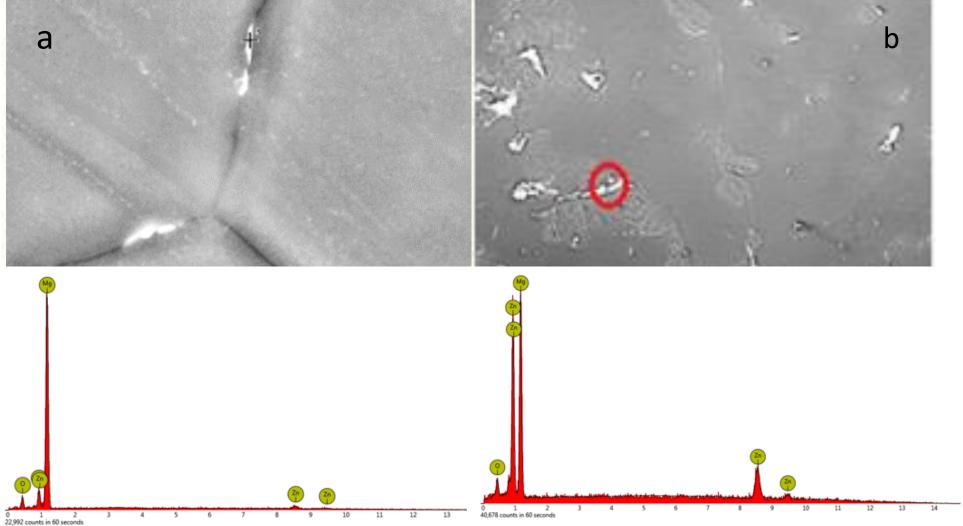


Figura 1: Imagem em MEV/EDS das amostras ZK 30 (a) e ZK 60 (b).

Análise de Perda de Massa por Imersão

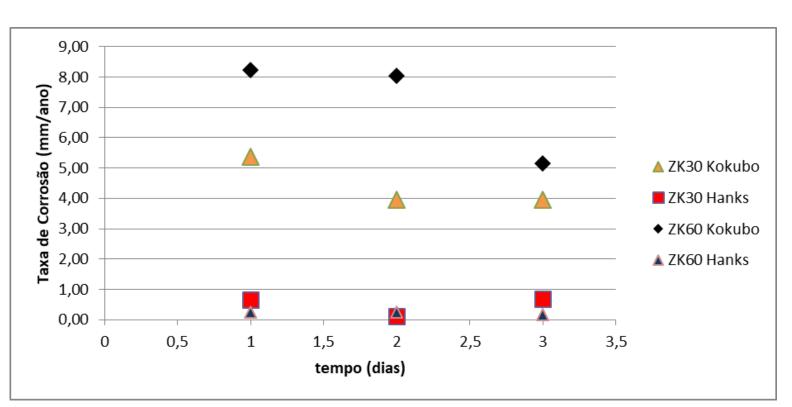
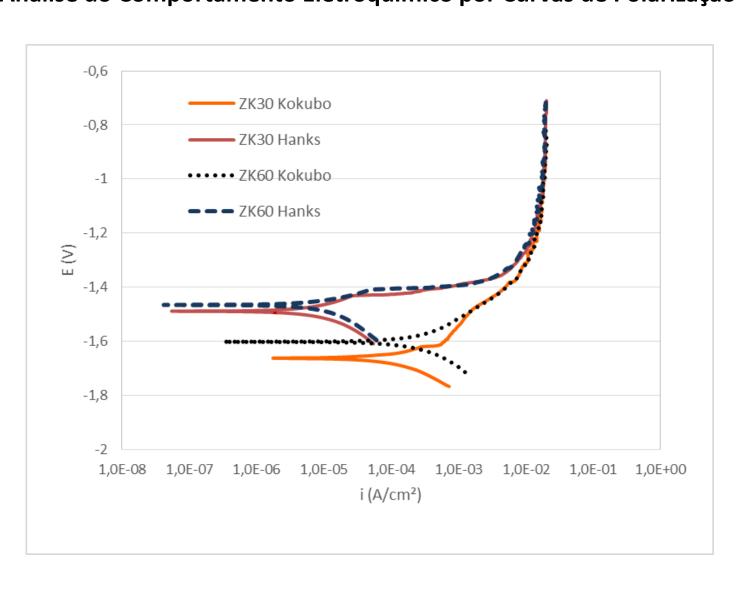



Figura 2: Análise da Perda de Massa em Solução Kokubo

Análise do Comportamento Eletroquímico por Curvas de Polarização

Figura 3: Curvas de Potencial em Solução Kokubo.

Tabela 2: Taxa de corrosão com os dados retirados das curvas de potenciometria da Figura 3.

Eletrólito	Ecorr (V)	icorr (A)	Corrosion rate (mm/year)	Desvio padrão da taxa de corrosão
ZK30 Kokubo	-1,68	21,6E-06	3,7	± 0,2
ZK30 Hank	-1,56	1,18E-06	0,19	±0,02
ZK60 Kokubo	-1,61	16,1E-06	4,00	± 0,1
ZK60 Hank	-1,38	3,18E-06	0,36	±0,13

CONCLUSÕES

A composição das ligas ZK30 e ZK60 estão de acordo com o esperado para estas ligas, bem como, por ser uma liga bruta de fusão possui intermetálicos Mg-Zn nos contornos de grão conforme verificado através de MEV/EDS. Para o ensaio de imersão e verificação da perda de massa, a amostra ZK60 apresentou uma maior perda de massa por área indicando uma menor resistência à corrosão desta liga nos eletrólitos analisados. No ensaio de polarização a amostra ZK30 apresentou um potencial um pouco mais negativo que a amostra ZK60, porém, apresentou taxa de corrosão um pouco menor que a ZK60. Isto indica uma melhor resistência à corrosão da amostra ZK30 em relação à ZK60, o que pode também ser verificado no ensaio de perda de massa por imersão.

