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Abstract

The existence of a fast dynamo effect is shown for the kinematic
equation of magneto-hydrodynamics with stochastic dependence in
the random flows.
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RESUMO

i ico em fluxos al at{ér'os.
A existéncia de um efeito de um dinamo rapido é demonstrado para a

equagao cinemitica de magneto-hidrodindmico com dependéncia estocds-
tica nos fluxos aleatdrios.
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PREFACIO

O presente trabalho é uma versdo extensamente revisada de um trabalho
apresentado no 220 Seminério Brasileiro de An4lise, e faz parte de uma série
de trabalhos sobre problemas correlatos com o problema do dinamo.

Agradeco a excelente digitacio da Sra Rosaura M. Pinheiro.



1. Formulation of the dynamo problem and basic results
1.1. Introduction and Preliminaries

The idea of a hydromagnetic dynamo was first put forward by Larmor
in 1919 in a report to the British Association for Advancent of Science in
an attempt to explain the existence of the Earth’s and the Sun ’s magnetic
fields. Roughly speaking it was proposed that motion of a conducting
fluid or gas could lead to the enhancement of an initially weak magnetic
in the absence of external electromagnetic forces. The linear version of
this problem in the absence of the Lorentz back reaction may simply be
considered to be that of the induction equation of magneto hydrodynamics
with a prescribed divergence free velocity field:

@ =y, AB-v.VB + 9—2 B, divB=0
ot Oz

B(z,0) = By(z) , where B is the magnetic field and v,, = £ v, R-, where
R, the magnetic Reynolds number and ¢ and v, are the characteristic
scale and amplitude of the velocity field. In order to get some idea of the
magnitudes involved, in the convective shells of the Sun, R, ~ 108 ; in
the liquid core of the Earth, v, ~ 6.10~° and in the Super Phoenix
power plants, v, ~ 1.2.1072. It is therefore clear that a relatively small
or small magnetic diffusivity is a feature of many physical and technological
problems. Of key importance is some energy or mean energy growth rate
g“~(2) of the solution B

2
where ||| ||| is simply the L?(R®) norm in case v is deterministic and
some averaged L?-norm is the case of stochastic v. The Russian physicists
Zeldovich and Ruzmaiken, were led to classify kinematic dynamos into fast
and slow dynamos according to whether g“~(2) tends or not to a strictly
positive limit as v,, — 0. The case of steady flow has attracted a great
deal of interest since the seminal work of Arnold et al in [7] where it was
suggested that dynamo growth should be related to the positive Lyapunov
exponent in chaotic flow, although it should be said that the seed of this
idea is present in the physics literature for much longer (see [10], [11], [49]).
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More recent work on these lines is described in the tecnical report from
the Laboratory for Plasma Research, Maryland, [23] (see also [21], [22],
[24], [25], [26] for the work of this group) and important mathematical
contributions have been made by Collet in [12].

The case of fluid flows with an extrinsic stochastic dependence has also
received considerable analysis principally envolving a multiple scale anal-
ysis of a slowly varying magnetic field (see the book by Moffatt [45] for a
discussion of the Steinbeck, Krauser, Radler tecniques as well as the papers
[42], [43], [44]). On the other some interesting results have been obtained by
various Russian mathematicians and physicists in the case of non stationary
fluid flows in the limit of small magnetic diffusivity using extensions of the
Oseledec theory of Lyapunov exponents to stochastic flows. This analysis is
easier than the case of stationary fluid flows giving rise to chaotic dynamics
as from our point of view it may be reformulated in terms of the theory of
degenerate diffusions and their support properties.

The present paper is concerned with problems related to the kinematic
dynamo equations. In n-dimensions, n > 3, the equation equivalent to
the kinematic equations for magneto- hydrodynamics may be taken in the
form:

dy¢ € : e, [Ov .

= Ay —ola, (). Ve + (a—) @Dy (11
divv=0,z € R, t>0, (1.1)b
Y=o = Yo(2), div yo=0, = € R (1.1)c

(L1)a &(f)(o) is assumed to be an ergodic diffusion, o € (Q,P), a
probability space, with an associated system of measure preseving trans-
formations 6, and state space M, where M isa compact connected
mo-dimensional manifold. The diffusion ¢ is assumed to be strongly ellip-
tic with invariant measure p and generated by the stochastic differential
equation.

A= dglt) = Xo(dt + Y X(€)o d Bi (Do), €0)=6 (L)

1=1
where the X;(£) are smooth vector fieldsin g and o d B; indicates the
Fisk-Stratonovich differential with respect to Bronnian motion (see [31]).
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We set H = 7 A, —v.V,.



The limiting case ¢ =0 leads to the related system of equations

oy _ 0 ov\
= UV a) y
dvv=0, z € R* >0 (1.3)b

Pl i = yo(x); divy,=0, z € R ; (1.3)c

(1.3)a

As before this implies that divy,=0,2 € R*,t>0.
Let ~(t)z be the random flow generated by the dynamical system

é%‘i: v(vy(t)z, €()(0)) (1.4)

7(0) ==
0 0)oY(8,0)z, the cocycle property (see [4]).
3) has the La,gra.ngla,n solution given by

so that (s + 1)(0)z fr(
It is well known that (

)z, 1) = (3 ) (L5)

J—lc-u-.

Setting © (z, {) ( ) we have
ar = (3) toa (16)
e [ =0 — ]

We set U = @) and W(t) = Ulv(t)e, €0),  (L7)

(B:z
and note that by (1.1)b trace W =0 or det 6(t) =1

This property of unimodularity is extremely important in the subse-
quent analysis.

The usual kind of asymptotic analysis as given by Aronson in [8] or by

probabilistic methods as in the book by Freidlin and Wentzell [28] tells us

that
v (12, t) = y°(v(t)=, t) + 0(c2t)?)



as € | 0 for t €[0,T] using the Lipschitz continuity of first order devia-
tives of v. However, we are interested in a rather more delicate question,
the description of F [y*(.,t)* dz for large time ¢, with hopefully,
estimates uniform for small & > 0. Consequently, our asymptotics are
different from those of (8], in that we first consider ¢ fixed and obtain the
asymptotic behaviour for large ¢ only then taking the limit & — 0.

A crucial question becomes how to describe the behaviour of O(t)yo(z)
for large ¢, that is to say the case of the perfect conductivity limit. Here, a
circle of ideas is involved related to the multiplicative ergodic theorem and
its ramifications, in this paper we are particularly concerned with results
about mean Lyapunov indices (see 1], [2], [5], [6]).

Now Has 'minski in his work on perturbations of linear systems by White
Noise popularised a well known tecnique for analysing the growth properties
of expressions such as (1.5). In fact, setting

dz

E = W(t)z,

2(0) = yo(2)
we see that 2(f) = y°(1.(¢), ).
Set 0 =z/|| 2|, 2#0, § € P*', where P is the usual n — I-
dimensional projective space obtained by identifying elements § and —@
on the n — 1-dimensional sphere, so that :

dg
7 =

where 0 denotes the transpose of 0,

W—0'We)s, 60)=60,, (L8)a

| o= l0] | exp [ @ Wo)(r)dr . (18)b

Accordingly, we may use (1.2), (1.4), (1.8)a to introduce into the problem
an auxiliary diffusion

n(t) = ((t), &(t), 8(¢)) on the state space
S=R"XMx P, s=(z,m,¥),



which although degenerate, under additional conditions discussed in section
1.2, may be assumed to be hypoelliptic in the sense of Hérmander (see [31]
and [34]). The work of Arnold and Kliemann in as given in [1], [2] does
not immediately or fully apply to the case under consideration due to the
non-compactness of 5.

In section 2, making a more immediate use of large deviation theory
following the work of Donsker and Varadhan (see [15], [16]) we give a refor-
mulation of certain results of Arnold and Kliemann, requiring additional
hypotheses given in section 1.2. Further in general we suppose that the
following hypotheses are satisfied.

Cla v and its first order derivatives are Lipschitz continuous with
Lipschitz constant M.

Clb  The initial data satisfy y,(z) # Oaeand y, € L2((1 +
|z|)?*)dz), for some k > 0.

With regard to these hypotheses Cla is used to guarantee the global
existence of 7({)z as well as in the proof of a technical result of Miyahara
(see [40], [41]). The hypotheses C1b are used in Lemma 3.4 and Theorem
3.5 dealing with the ¢ | 0 limit of y*. Under conditions Cla, Cl1b, con-
trol hypotheses C2, C2' and additional Lyapunov and spectral hypotheses
(essentially) C3*, C4', C5, we establish that

lim lim
e—=0t—c0

= log(E | v* (., 8) II7) 2 2¢(1) >0

in Theorem 3.5, where ¢(p) is the p-th mean Lyapunov index (see section
2 and [1]) associated with the limit problem ¢ = 0.

This in a slightly weakened sense establishes the existence of a “fast”
dynamo in the sense of [48].

In the case of linear stochastic velocity fields we use a different hypoth-
esis on the initial data:

Clc: The initial data yo(z) satisfy yo(z) # a.e and

o € LAR) 5 llwo(2) — wo@)ll < (K(Jz))) + K(ly)l|z -yl

where

[ Nl K(lel)? da < oo



Then certain results of Aronson [8] together with the original large deviation
results given in [3], under the conditions

, g(2) &
70 <t e,

where .
0< Oy < ‘__n"g_
2(n+1)’
establish the existence of a fast dynamo independently in Theorem 3.2.
Here g(p) refer to the mean Lyapunov exponent of order p associated to
- W* and ? is the largest Lyapunov exponent associated to 61,
1.2 The existence of invariant measures
In the present section we need to recall some results related to the con-
trol theoretic characterization of the support properties of diffusion given by
Stroock and Varadhan and extended by various authors including Kunita
[36].

Weset Z = ( ‘E{’ ) and write Az, m,0) = (W(z, m) — 6'W (z, m)8)0,

finally setting Y = f) We continue to write X; for g(‘g‘g,
( ’11 y

t =1y Lot By=1 .., X;) and B=LA(Z,X,,...,X;) be
the Lie algebras generated by the elements indicated and I be the ideal
generated by (X,,...,X;) in B. The process ¢(t) = (7(t), £(f)) hasan

infinitesimal generator L, = G +v.V,, where G = 3 Z Xt + X,.
i=1
The system (1.2), (1.4) may be written as

de=2dt + Y X, (5) 0 dB,
=1

Similar definitions hold for the stocastic process 5(t) with infinitesimal
generator L = L, + h.V,.

In the following we use results formulated in terms of notions of stochas-
tic control theory, first introduced by Stroock and Varadhan and extended
in a number of important papers. We refer the reader to the book by
Tkeda and Watanabe [31] for the basic theory and for extensions to degen-
erate diffusions to the papers by Kunita [36], Ichihara and Kunita [30] and
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Kliemann [33]. We use the language and notation of these papers without
further comment.
Following Kunita in [36] we assume that:

C2 dim I(z,m) =my+nforall (z,m) € R* x M
and that B, is locally finitely generated,
[Bo, I] C Byforall (z,m) € R* x M.

We observe that these conditions may be weakened (see Theorem 5.8
36]).

Then by Theorem 5.3 of {36] we have that ¢(f) gives rise to the above
control system which is strongly completely controllable. This condition
has the important consequence (see [36] the remark following Proposition
5.2) that dim B'=my+n+1 here dim By(m) =m, and B'=
LA[Z + %, Xi,...,X; | and, hence, that ?% + L, is hypoelliptic and
the transition function pi(z,m,.) has a smooth density with respect to
the natural Lebesque measure on R* x M. We summarise a number of
technical results in the following sequence of remarks.

Remark 1

Note that the formal adjoints L} and L} — % are hypoelliptic under

the proceding condition (see [22], the remark following equation 4.4).

Remark 2

Let B(E" x M) and C(R* x M) be the Banach spaces of bounded
measurable functions over B* x M and the continuous bounded functions
over R" x M respectively. Let P, be the semi-group generated by ¢(t)
on B(5) . Then P, is astrongly Feller continuous semi-group, which is
to say that it maps B(R" x M) into C(R® x M) foreach ¢ >0 (see
[16]).

Remark 3

If there exists an invariant measure v for the process ¢ condition C2
guarantees that it is unique with support R* x M (see [5], [36] ).

Now obviously strong recurrence conditions have to be imposed in order
to obtain an invariant measure and, indeed, we suppose following the work
of Miyahara ( [29], [30] ) that there exists a Lyapunov V satisfying:
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C3a . V(z,m) has continuous second order derivatives and satisfies
the estimates

e 2] P + o 2 Vi(z,m) > ¢ |z|* + ay with
€1y Do, @& > 0

C3b Lo Viz,m) < —c; V(zg,m) + B,c, § > 0, forall
z,m € R x M

C3c  There exists V(z,m) with continuous second order derivatives
such that
{zm) : Vie,m) > £}
is a compact set for each £ > —oo and a sequence ux(z,m) € D(L)
satisfying:
(1) w(z,m) > 1 all k andall (z,m) € R* x M
(2) for each compact set B C R* x M

sup  sup ug(z,m) < oo
(z,m) € B &k

(3) for each (z,m)

m Lot V(z,m)

k—co Uy

(4) for some A < oo

bxts s

C3a  is assumed in this unnecessarily strong form in order to simplify
the definition of the opeator Ly introduced in C4._

Also note that we assume that the functions V,V do not depend on 4
in order to simplify the subsequent arguments. Including such dependence
would lead only to some inessential modification of constants.

We remark that C3 implies that the process ¢(t) is exponentially
po —th ultimately bounded with constant c2 (see Theorem 8.1 [31]), in
that



Eam [z ()] 7 < K 47 2] #0 (1.9)

We also have the following technical lemma.

Note that as a consequence of (1.9) strictly n—1 dimensional velocity
fields are excluded. Indeed, suppose that v, (z, £&(t)(o)) = O . Then we
conclude that (yoz), = z, . It follows from (1.9) that

[ 2, P° < Euw [¢(8)]? < K +Ce ot [g]pe

and letting ¢ — co we have |z,[** < K forall z, ,a contradiction.

This is a desirable property as generally dynamo action is impossible
with plane two dimensional motion, see the book by Moffatt | 45 | (section
6.8) and also | 48 |.

Lemma 1 (Miyahara)

Under hypothesis C3 there exists an invariant measure v such
that

/ Viz,m) v (dz,dm) < oo .
"X M

By Remark 3 the measure v is the unique ergodic measure with
marginal p. Now consider the process 7(f) with the transition proba-
bility p(¢, 89,ds) and associated semi-group 7;. In the next Lemma we
consider the process ¢(t) with initial measure v . Note that R* x M
is a separable complete metric space (in fact, we have already used this
property in (19).

Then we have the following result due to Crauel [13].

Lemma 1,2 (Crauel).

The stochastic process 4(f) has an invariant measure p with
marginal distribution v on R" x M.

We are able to impose a hypothesis analogous to C2, C3 namely:

C2', C3' The hypotheses equivalent to C2, C3 involving the vector fields
Y inplace of X and L in place of L, hold.

As previously by Lemma 1.2 and Remark 3 it follows that p is unique
and that there exists a smooth density ¢(s) such that p(ds) = ¢(s)m(ds),
¢ > 0 on §.L generates a strongly Feller continuous semi-group 7,
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under C2'. The hypotheses C2', C2 obviously impose regularity hypotheses
on the vector fields v add;tlonal to those imposed in Cla although they
are assumed to hold without bounds.

In the following, we set Q{z,m, ) = 6 W(x,m)d. Now it follows from
(1.8)b that

im logt|z| = lim ¢ /‘ 0' Wodz
—_00 —+00 1]

= |, Qem,0) 4 (dz, dm, d0)

= £, Guo¢ (1.10)

applying the ergodic theorem for stationary stochastic processes. It is
shown that £ coincides with the top Lyapunov index as determined by the
multiplicative ergodic theorem (see [2]).

In order for us to show that the dynamo effect exists we have to es-
tablish that ¢ > 0 and this leads us to consider the properties of the
mean Lyapunov indices g(p) and to considerations of the theory of large
deviations taken up in the next section.

2. Large deviation theory and mean Lyapunov indices

For general references to large deviation theory the reader is referred to
the basic papers by Donsker and Varadhan [15], [16] and the books by Ellis
[19], Freidlin and Wentzell (28] and Stroock [51].

Let M be the space of probability measures on S. For each ¢ > 0,
n € {0 (the space of continuous functions on (0,00) taking valuesin S )
and Borelset A C S let

Li (n,A) = %j: Xa (7 (7))d7 .

For each ¢ > 0 and each 5 ,L (n,.) € M. Foreach s € S and
t > 0 let Q. ( bethe measureon M induced by L, from P, :

Qs 0= P Ly

or

Qﬂ;f(B} (q & q Li(ﬂ:} = B} 1B C ﬁ
Define I(f) ,j € M by
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~ : Lu ”

I{if) = - inf fg (;;) (s) i (ds).
u € D(L)

Now there are certain technical difficulties in applying large deviation

theory in the non-compact case due to the nonuniformity in s of the limit

s
411.%10 ? Zog Es {exp_t < _Q)Li(q:') >}
=—_nf_[- <Q,i> + I(i)]

pEM

with respect to s , where < ,> indicates the (C,C*) duality. Indeed,
a number of technical conditions have to be satisfied in order to eliminate
this difficulty, including the hypotheses HI to H5 listed in [16] (section
8). In the following we summarise the arguments involved in establishing
that indeed these conditions are satisfied under the hypotheses introduced
in section 1. First let us observe that since the process n(t) gives rise
to associated control problems which are strongly completely controllable
(see section 1) we have p(t,s,ds’) = pi(s,s')m(ds’) by Theorem 3 of
[30] (where m(ds') indicates local Lebesgue measure) yielding H1 of [16].
Further, identifying the G of [16] with G = S, we have on setting
U7 (s, A) = [ e™ plt,s,A)dt , 7 > 0,that U'(s,4A) << p(4) <<
m(A) by Theorem 5.2 of [5]. Since U7 (s,A) = 0,0 > 0, if and
only if U'(s, A) = O we see that hypothessis H4 of [6] is satisfied while
U (s, A) = [;° e (TiX,4) (s) is continuous by the strong Feller property,
so that H5 is satisfied. Let C(S) = {f € C(S): f(s) — o} outside of
compacts exhausting S). By Lemma 5.11 of [16], every diffusion is normal
and stochastically continuous so that by Lemma 2.11 of [18] the semi-group
T, is continuous on C(S). Accordingly we have in the notation of [16]
that C(S) C B,(S) and by Lemma 2.10 of [16], p(t,s,ds’) is uniformly
stochastically continuous on compacts. This last property is easily seen to
imply that C(S) C By (S) (see [16] for notation) this establishes H2
. The hypothesis H3 is simply a consequence of the fact that C(S) =
C(S,C) = C(S,C,B) (see [18] and the remark in Donsker and Varadhan
[15] just after the statement of Theorem 4 in their introduction for both the
substance of the observation as well as for the notation utilised). Finally
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hypothesis C3' ¢ is exactly the unlabelled condition introduced by Donsker
and Varadhan in [16] (section 7 before lemma 7.1, which, for convenience
we call H6.

Let us set 2(0) =6(n)d , 0 =

Definition. _
We define the mean Lyapunov index gy (p) , p € R , with respect
to a measure f on S by

Gue () = [Jim ¢ log Eye (Eppmo |2(0)7)

Lemma 2.1
Under the hypotheses C1, C2, C2', C3', g,. (p) = ¢ (p) where

ER

_ - - Lu -
g () = sup {P <Qf >+,,£I%ff;, fs (u) (s) (dSJ}

HEM

Proof.

Under the hypotheses indicated we have shown that the hypotheses H1
to H6 required in the theory of Donsker and Varadhan are satisfied.

As previously remarked

E |z (0)FF = E; (exp —t (-p Q (L (n,.))) .

Under conditions H1 to H6 given above it has been proved by Stroock,
for example, in [51] Theorem 8.12 8.6 that the uniform upper bound holds:

I@.ﬁ log sup. Qee (M) < —_inf_ T ().

HEM

As consequence we have the estinate for all ¢’ > 0
Que (M) < exp (—_inf_ I(fi)t (1+¢)
HEM
uniformly for ¢ > T(e') and hence,

E |off < expt sup (p <Qi> —I(H)(1+¢") for t > T(e') (2.1)
uEM

following arguments of Varadhan given is Theorem 2.6 of [54]
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Then clearly we have

Eup B |2 < expt sup (p < Q> —I(fi) (1+€') for t > T(e').

uneEM

Hence, it follows that

Iim ¢~ log E,. E, |2|* < ¢(p) .

f—co

Another result of Donsker and Varadhan given in [16] (Theorem 8.1) yields

that
fim 7 log Qi (M) > — inf  I()
BE M
uniformly for s in compact subsets of S.
This yields that

lim t7! log E, |2 > — _in
{—oc e

I (=p <QE> +I (i) = g(p)

"

by Theorem 2.6 of [4] uniformly for s in compact subsets of S.
Choosing R sufficiently large we may ensure that

p(C) > %p‘ (S) where C = B(0,r) x M x Pl

is a compact subset of S.
Thus it follows that

BeBilalt > | > [ B |2l (ds)
1
2 5 i (5) exp tg(p) (1+e')

uniformly for ¢ > T(e').
It follows that

lim t‘_‘ log E,. E, |2]” > ¢(p)

giving the result.

Remark 4.
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(a) Note that setting 6(z) = y,(z) / ||yo(z) # O then
E ,f B 10 wlel” el

E J %) 19o(@)l| * Eem l12(60)]|

= | H&llw@)ll” dz pldm) Bupma, 12001

R pu

= exp ¢(p) {1+0(1)},

by an argument identical to the preceding provided that

J k(z) |lyo(2)]| ¥ dz < oo .

(b) Similarly,
07 !9 yﬁ(l’” P = E.u Ex‘u” eyﬂ(x)” F
= j 1(ds) [3o(@)| * Erme, (2) ||2(60)]| *

exp g(p) t{1+o(1)}

Il

provided that

fmds) llyo(2)]| * = f¢ m(ds) [|yo(z)]| *

[ V) ptopmias) {2l

< o

if |jgo(z)|| # < comst ([|z]| e +1)

In particular, if yo(z) = constant # 0, this is always the case.

We assume the following technical hypotheses, motivated by a result
given in the paper by Kotani [35] (Theorem 1 and Remark 2). It should
be noted that Kotani uses a compacity condition related to well known
ergodicity results (see [17] Lemma 8.8.2 and Theorem 8.8.8).

Let D), denote the punctured open disc {¢ € C :0 < [¢] < a}.
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C4 (a) The operator Ly = V-' LV has an isolated eigenvalue
0 with corresponding eigenfunction (0) = V' in C(S) and
D, C p(Ly), for some o > O.

(b) Further we assume that Ly generates a C,-semi-group on
C(S).

Let usset Ly(p) =V~ (L+pQ)V ,for p € R

Lemma 2.2

Under the additional hypothesis C4 there exists an eigenvalue
£(p) and an eigenfunctciron P(p) in C(S) with £(p),¥(p) holomor-

phic in p for |p| < 37

Proof M
We set
R(¢) = R(s, Lv (p)) = (Lv (p) —¢) ™
and
Ry (¢) = (Ly —¢)
and .
PWﬁEwMMﬁW

where

P={s: [l =3}

Let us now define 9(p) = P(p) ¢(0) so that by an.elementary calcu-
lation Ly (p) ¢ (p) = €(p) ¥ (p). Since ||Qu|| < sup|@] |jul] < M |[u]]

and by the second Neumann resolvent formula we have
R ()= Ro () {1+pRo (5)} ™
(see [32] Chapter 7) it follows that
1R () =B ()l < (1B ()11 +pQRo (5) 7 — 1|
<z Tt (3)

2\ 5 M ) 2 |p| M
(E) v-__l;:_%ll——w provided Iﬂ <1
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It follows t_hat

6 ()= Ol < (P () - P () ¥ O
< My [((R 1) =R () 0) s
EL:“ 2 ol M 1 . a
IRy, | V=1, provided |p| < T

In fact, by the theory of holomorphic perturbations of type A ( [32]; 375)
#(p) and €(p) are analytic for p in this range and

tp)=p <Q,¢> —p* <QTQ™'; V ¢> +0 (p)

when T' is the reduced resolvent of Ly and higher order approximations
are available.
Corollary

g (p) =€ (p) ts analytic for |p| < ﬁ (1 _;_% 1V oIV 6]22) " = &'

Proof
First we note that by Remark 4(b) if we choose y, = 1

9(p) = lim_ t1 log E, |2|°

Since L,(p) generates a Cy-semigroup in C(S) by the theory of holo-
morphi perturbation of type A we have

g(p) = tl_i_.moo E,log <PV Vé> @t s

by C4, for |p| < —
Also by the previous estimates

| < (P(P)=POY VT Ve > < l(elp) —u(0) || |Vl
< (3)2 lpl M [V ol |V &1
- \8 1-2pl M ’
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It follows that

(2)" 1ol M IV ol [V 8]

| < PPV, Vo> | > 1- 1-Z [ M

in case

1>(%¥4*@fﬂﬂWﬂhWﬂw)m

or in case
a

2 oy !
Pl < 337 (14 5 IV llelVol )

The results follows immediately. Note that in this calculation we really
need to use the initial law p.

We want to establish a result analogous to that given in Theorem 2 of
[1]. Unfortunately due to the use of a Lyapunov type hypothesis there is
an asymmetry in our results. There is however a very nice trick used in [4]
(section 5) which serves the same purpose for unimodular matrices.

Lemma 2.3

Under hypotheses C1, C2, C2/, C3' g(—n) =0.

Proof

First, let us note that the map of S* into S* given by k —
has Jacobian ||z(k)||=. It follows that as det ©(f) =1, we have

a&=1do=jn4mn*@,

EQII

identically in z,m € R* x M considering 2(k) as a functional of the
stochastic process ¢(t) starting at z,m.
Taking the average with respect to FE, we have

%:/&MWHdo=/&WmW%

identifying k with —k and letting dé denote the Haar measure on
P=L

17



Now define the measure fi = v(dz,dm)dé on S and as in Remark
4(a) and the Proof of Lemma 2.1, note that one has the lower bound

v

1.
Wn 2 5 1 (S) exp t g(—n) {1 ¢}
uniformly for ¢ > T(e).
The result follows immediately.
Remark 5
It is easily checked that g(p) is convex in p , that lgp)] < M

and 9(p) is increasing in p (see [1], [2] and Remark 4b). By Lemma

2.2 and its corollary we see that g(p) is analytic in the neighbourhood of
the origin, so that ¢'(0) = ¢ and since g(0) =0 we have glp) > &p ,

p € R'. Forsmall p , we have g¢(p) = Y 9. p". Let s, be the first

index such that g,, # 0. Then g¢(p) = g,,: pl’ﬁ {1+0(p)} . The fact that
g(—n) = g(0) and convexity yield that &, =1 and gso =¢ > 0 so that
g(p) = €p{1+O(p)}. The alternative is that g, =0 forall s , hence,
we have the dichotomy that either g(p) ~ €p,¢ > 0 . for small p ,or
g9(p) = 0 in a neighbourhood of the origin and hence for Ip| < &'. The
second case is ruled out by the Lemma which follows. In fact, the Lemma
shows that in the first case there is an initial interval on which g(p) is
strictly convex since g(p) # €p in a neighbourhood of the origin.

Obviously, we have p_l.illlm Q{’Tp) = 7- < o and
9(p) _
plLIQD T = T+

Let I(r) denote the Legendre-Fenchel transform of ¢(p) :

I{r)= sup (rp—g(p)) ,r € R
» € R
If 7. < 3 and g(p) is strictly convex it is known that I(r) is

differentiable on (y_ ,7;) (see [19] Theorem VI 5.6) while it is readily

— 2
seen that I(¢) =0,I'(¢) =0. It follows that I(r) = g,—,%-)- +0(£ - r)?)

18



by Taylor’s theorem. The strict convexity of g(p) in case ¢ > 0, would
follow immediately from the analyticity of g¢(p) , however, we only have
available the much weaker corollary to lemma 2.2.

It is convenient to assume the following strengthened from of the hy-
potheses C3 which simplifies the calculation in the following lemma, name-
ly:

C3 Suppose that there exists a Lyapunov function V(z,m) with
continuous second order derivatives on R* x M satisfying

(@) cslz|? +a > V(z,m) > ¢ lz|™ +a,6,p0,00 > 0
and
(0) LV £ —V+p8 ,2,m € R* x M
where
¢, f >0 and ¢ > f/

(c) C3cis unchanged.

Lemma 2.4

Under hypotheses Cla, C2, C2', C3", C4 we have glp) £ &p for
p in a neighbourhood of the origin.

Proof
Indeed, suppose that

V(L+pQ) VY () = ¢ (p)

in a neighbourhood of the origin.
Then it follows that

<OV TLVY(p) > =pll < 4, ¥ (p) >—< 6,Q9 (p) >)
0(p) .

Noting that
X; VX

VIELVY=V T (D) + Ly + Y

we see that

<oV IV) i) >+ <0, B VEE o)

19



By Lemma 2.3 #(p) =V =1 +0(p) in C(S) and ¢ > 0. Hence,

(X:V)?
VS

<AV IV > =Y < 6,50 s=0(),

using hypoellipticity [34].

By hypothesis C3' V -1 LV < —¢, +§ so that 0 < -;- (—c2 + f—)
1

for small p , which is a contradiction.

Corollary 1
- < 7%+ -
Proof

This is an immediate consequence of the dichotomy observed in Remark

Corollary 2

Under conditions Cla, C2, C2', C3", C4 we have ¢ > 0.
Proof

This is immediate from Remark 5.

Remark 6

As in the paper by Le Page [39] (Theorem 2), Lemma 2.1 and the
Corollary to Lemma 2.2 and Lemma 2.4 and Corollaries imply that a large
deviation principle holds in the form

T ¢ = logP{[ ¢~ log %_ g > oo} =clos) < 0,

for o, sufficiently small, uniformly for (z,8,) belonging to compact
subsets. In fact, to be more precise, using the notation of [19] if we set

“z(ti Z{})l

a=t 1 oo and W, =log &l
0

}

Lemma 2.1 has shown that
Jim c(p) = Jim ¢ 7' log Eexp p Wy) ,

uniformly for (z,6,) in compact subsets.
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I(r) satisfies the properties of an entropy function (according to def-
inition I1.3.1 pf [19]). The compactness of the level sets of I(r) follows
from Corollary 1 to Lemma 2.4 above. The other properties have already
been remarked. It follows that we may apply the upper bound of Theorem
11.6.1 of [19], namely:

?Eﬁfogf’{% tog EE2 ¢ (¢ _ g, ¢ 4 %]c}
00 2

< inf I(r)
r€(l—- o0, t+ 00 )
uniformly for (z,6,) in compact subsets.
Taking o, sufficiently small we may suppose that g(p) is holomorphic

in p for i
'
ipl < 2 8(k+1) !a — .
|9‘ic+1|
Then

I(4+71) > S0P {pr—g(p)}, 0 < |r] < 20,
p _d

= _ Jk+1 k41
= sup {pr Frn P {1+0()}}

e} < a
|geqa|a*tt . |Ge41]a*H?
1oE411% < 1ZkPMT

2 4k 1)1 %0 S Ty

(S(k-I- 1] ! oo

which is satisfied choosing a =
| 9141

small. It follows that
- inf I{r) < -

r € ({—0a0, (4op)¢

1/k
) and o, sufficiently

I(£+ 1)

inf
ﬂuglﬂszan

8(k+1) 1\'/* .-
< —2( ) 0, k = c(oo) .

- [9:.-+1|

3. Magnetic induction type equations with small parameter
3.1 Probabilistic representation of solutions
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Associated with the equation (1.8) is the following backward Cauchy
problem

% + %2- AY*® —o(z, £(t) (0)) . V.Y + U(z, ) (@)Y =0,
Y¥(2,T) =wo2) ,0 <t < T (3.1)

where &(t) (0) = (T ~t) (o) , for 0 <t <
Clearly, for ¢ intherange 0 < t < T | the solutions of the two
problems are related by Y'* (z,t) = y¢(z, T — ).
Now associated with the equatlons (3.1) is the stochastic differential
equation (see [9], [50]):

o (1) =1 e-lj‘a.,(u)v(( @), &) (0)) B (u,)
+[ @) 8w @)du, (3

where B(u,w) is n-dimensional Brownian motion and the first integral in
(3.2) is interpreted in terms of the Ito stochastic calculus (see, for example
271, [29)).

Formally, as remarked in [50], (3.2) has a solution which is given in
terms of a stochastic product integral and from (3.2) the inverse to a,(t)
may be constructed as the solution ! to

eit)=I+e [ o(Bue), &) () dB (4) () o ()

— [ U(B(u,w) ,&(w) (0)) at(u) du.  (3.3)

(see [14] Chapter 3 Theorem 4,2).
The sum rule ([14]) suggests that the solution of (3.3) is given by

t T

14

ai(t) = exp (! et ﬁ.dB) O (8,¢)(-U) (3.4)

writing U (u) for U(B(u,w), &(u) (¢)) and 9 (u 61’01‘ v(B(u,w) , &(u) (a))
and where 6(s,t) (=0) denotes the solution of = ~-0(t)e ,0(s) =1
6(t) "

—

we write ©(0,t) =
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t
Finally; using the diagonality of exp ( [ =& ﬁ.dB), we conclude from
(3.4) that

t

as(t) = exp (—-! e ! 1’3.dB) O(s, t)(-0) (3.5)

Using the Cameron-Martin-Girsanov formula (see 27) and [29]) in (3.5)
we conclude that

a,(t) = exp(—¢~? [ 9.dB + %8"2 /t 92 duB(s,t) (-0)  (3.6)

g

The basic representation formula proved in [50] by Stroock (a version
of the Feymann-Kac’s formula for a parabolic system) states that

Y z,8) =E;s (0(7) ,7) , 0 < s <7 <T,

Where E., is taken with respect to the measure generated by the process
eB=X.
Choosing s =0 and 7=7T in the above formula we obtain

Y2, T)  =E. (@ Ty (X(T))
= E, {exp(~¢ [ ! 0dB+ 5 ¢~ | " $2du))
x O(T)(=U) yo(X(T))) (3.7)

an expression holding for all T < 0.
Once again using the formula of Cameron-Martin-Girsanov and a simple
formula for product integrals we see that

y “(2,0) = B (B()(U(X(), €())wo (2(0)) , (3:8)
where now in (3.8) the expectation is taken with respect to the process
X(t) (w) =z +eB(t —u) +[‘ o(X(8), £(8))d8 .

The derivation of (3.8) is easily rigorised using Ito ’s stochastic calculus. we
recall that X converges to the classical path #,(t) which is the solution
of 7

1 = ~
dt = v(’)‘xit) 3 (3°9)
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R(T)=z ,
(see 28] and [20]). Hence, it follows that

ﬁ:(t)zq(r’_TigT««t 0')3.",0 S ¢ S T o

Note that a related derivation on (3.8) is given in [20] for the stochastic
vorticity equation while an alternative informal proof for the induction
equation of magneto-hydrodynamics is given in [47]

From (3.9) it follows from results of Aronson given in [8] that

y(,t) ~ (0006 (.,1) %())(z)

as
e |0, (310

where 0; is the classical propagator defined on continuous functions (ma-
trices) over R* by (0,f) (z) = f(7(~¢)(6; o)(z) . Moreover, we note that
in the dynamo problem we are fundamentally interested in the behaviour
for large times providing the link with large deviation theory (for an in-
tuitive physical discussion of these questions, see [49] (17.6) and also the
papers by Cocke [10], [11]).

3.2 Linear stochastic velocity fields

Before proceeding to the analysis of the problem posed in (3, 8) it may
be useful to look at an example treated in [46], [48] as a kind of test case, the
linear stochastic velocity field, where we may take over without further ado
the large deviation theory analysis as formulated by Arnold and Kliemann
and other collaborators in a series of papers [1], [2], [3], [4], [5]-

We deal with the equations (1.1) where v is a linear velocity field v =
C(&(t))xz . We assume that £(f) is a stationary ergodic diffusion process
on a smooth compact connected Riemannian manifold M of dimension
my , solving r

d& = X@(g)dt -+ E ){}‘ ('5) OdBJ‘
ji=1

as before. ,
Since div v = 0 we have trace C(£(t)) = 0 and also _5% _

C; (€(1)). Additionally, we assume that the Lie algebra conditions of [2]
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are satisfied and that the system corresponding to (1.2), (1.5), (1.8)a with
W = C(¢) is exactly controllable with invariant probability v (that is
to say with support M x R*=!) . In this section we work under the
hypothesis that the inital data satisfy Clc:

Yo € L, lgoly) —wolelll < (K(ll=I)) + K(llyIl) |2 - vl

where [q. ||z]|*** K(||z][)? dz < oo .
Let then X(t) be the stochastic process generated by

dX = C(E(M)Xdt + edW .  (3.11)

Then following our discussion in section 3.1 we know that the solution
of (11) is given by

y < (z,t) = By (0(t)y(X(0)) .

In (8] Aronson establishes estimates on the heat kernel associated with
the operator

E S mle e o S a0 & Wl

5 U; aij(z, T + ; a;(z, )6_:8‘ Ffy e Heo
by constructing parametrices linearised around the paths of the associated
dynamical system in the limit ¢ — 0 . In the notation we use in the
paper the approximating operator H,, to H, has the form

€? dv

7 B = (v(1(0)y, €1) + 52 (10, €(1) - (= = v(t)y). V,
for general v . However, in the case of linear stochastic velocity fields the
operator H, is already linearised and may be rewritten

62
He = 24, = (C{&)O(y, 1) - CE(H)(=z - O(y, ).V,

It follows that the construction of the parametrix G given in section 4 of

8] via the method of Fourier transforms yields in fact the heat kernel T
of 1, . Using the notation of section 1 we set

Git) = [ O H(U™) Oly,)(U™) du
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and
Fy(t) =O(y, 8)7") Cy(t) 6y, 1)

In the case of linear stochastic velocity fields we have, in fact,

8(y,1) = ©(C(¢) -

Note that by trace C((u)) =0 we have det O(t) =
Then from the construction of Aronson gives in section 4 of [8] the

parametrix G(= I') associated with — H, isgiven by G(z,t,y,0) =

at
—n

9-n o (?5_)_“!2 (det Oy(t))l,'? exp i 7(i)y.§:£t]($ —1(t)y) (3.12)

In this special case we may state part of Theorem 1 [§] in a form more
useful for our stochastic calculations.

Lemma 3.1 (Aronson)

For linear stochastic velocity fields the Green’s function T' is
given by I'(z,t;y,0) =

e (EQ)_W (det C(t))7/%) exp —(1) 'z —y).CO) 7 (v(t) 2 —y)

2 2e2

Proof
From the equality (3.12) making the specializations indicated above and

noting that
=70y =0()(v(t) 'z - y)

we have

(2 =)y, F(t) 2 - y(t)y) = (v(O) "z —y,C() (v() 'z —y)) .

giving the result

For ¢ € Q , the unit spherein R , we set 2(f) = ©({)~! ¢ and let
g(p) denote the mean p-th Lyapunov index associated with 2 . If the
Lyapunov exponents of z(f) areordered ¢, < £, <...< £ = note
that by the fact that trace W =0 we have ¥ ¢, = 0 so that £, < 0
since £ > 0 . Let the Lyapunov indices of 2 be b < . <t =17
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then note that & = —f k41 ,k = 1,...1 (see the paper by Ledrappier
[38] Proposition 4.1) and, hence, £=7, = -4, > 0.

Further, it is known that a uniform large deviation result holds for 2(f),
in the sense that

._1 Pl _,\ 5 Jg
652% P{|ttlog|l2(0)] =€] > 00} < exp (__"Zﬁ”(o)t)

(see [3] Proposition 3.1 and Corollary 3.4).

We introduce the new norm ||| |||*=E || || 2 , where || ||, denotes
the L?-normon R" , together with the measure fi on R* x M given
by (dz, dm) = p(dm) || yo(s) || * da.

By hypothesis Clc, fi is a finite measure.

We have from (3.8) that

¥ (1)) =6()ye(z) + Ey (4, ¢ (B(E)(10(X(0) —yo(z))  (3.13)
=L (z) + I, (z) .

First observe that

IIal2 = [ Eaotarm || 2 (60) 112 1] 96(2) || * p(dm)dz ,

where ‘
bo(z) = o(2) || yolz)|| ~*
when

Yolz) # 0

= i o E 8o.m || 3(90) ” f
~ exp g(2)t |y |l3 (3.14)

using Theorem 1 of (1) and an observation analogous to that of Remark 4.
On the other hand, we have from Lemma 3.1

| 15(z) | < R/ I(z, t;y,0)

X1 © || llyo(y) — volz) || dy
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< 2% g% J exp( )nen (1) 5+¢C(0)tx) —po(r(8)2) [ldx

Further, we see that

ot x| =[ l18() = x || * du
€
€

Mo I i xll
e Tt x e

by an elementary calculation using the Lipschitz bound on the first order
derivatives of v and (1.8)b.

We seek to use the “swirling” and stretching properties as expressed by
the presence of ©(f) - and ©(t) in the above integral in order to show
that fact ||| I ;||| ? is negligible.

Consider the gets

L.={o:exp(l-a)t < [|20) ]| < exp(Etoo)t : =2/ 2]}

and set

2
2

I =%, nZL
Let us examine the regionin R* x ¥, . where
1 .
el o xil < lg 1170 "=
Then clearly one must have

& 1 -
e ™Meexp(E-oo)t|lx|l < 5 exp(@tat|z]

or
Ixll < 22200,y

2c¢exp M
Also, in this region we have || L(z)|]? < 0(|| © || 2 G,) where
=2 1 1 r 2
G= [ eFg@ K (3l 2 ) d
exp (200t) 2|
b= 2¢exp M
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and, hence the estimate ||| L(.) ||| 2 < O(E((|| © |I*G>)

=0( * exp (9(2) 2n(e 2("“)%)):),

where G, is given by

2
e J %ﬂﬂ exp 2(0+,)t 2™ K(%llv(t)"xll) dz

In the alternative case, where we have

1 ;
ellC@ x|l >3 I~ = |l
one must have
exp (2 0, E)
Ixll 2 F2emr izl
from which it follows that

| (=) || < 0(|| O || exp (—lleggei;)téglz) )

and, hence, that

It () lIP < O(exp(g(2) — 2n a0)t)
The remaining case is where ¢ € 17, with uniform probability

< —o5 t
<)

Weset A =1(t)iz+ C(t)¥x
Hence, we see that

I < 0 (xss. 1011 [, ¢ Fll 40 (A1 411 sor(t™ 2} dx)

so that

N OF < o[, dadx e Ellso (A +lsn(r()™2)Phxas || O1F)
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S0 forne 98 X €F B(P(S:)F E([0]17)}

CE [ 90(A)NF)* ++(E || wo(v(t)™* )| )* )
using Holder ’s inequality, with %%— ‘-;- + % =1,

< of [ dzdy ¢ F || yo(z) ||°

P ()t (el )*)

where we have used the unimodularity of z — 7(t)z , and with bounds
independent of r,

<o L fed e T nyo(a-)n*)
akRn

o g (2p)
XeXp | —g—"27t | exp [Tt |
p( 243" (o) ) ( p
by the uniform large deviation estimate, where 11] + % + % =1,

g(29) p-1 o2
=0 - ,
(GXP( P 20 ﬁ‘”@)
letting r — oo.
The final result which we obtain is therefore

NEO M= o (e-~ exp 9(2) - 20 ?—3‘%}%)):)

+0 (exp(g(2) — 2n0,)t )
+0 (exp (9(2") O Lol )t) ast — &,

P 20 3" (0)
It follows that if we choose 0 < ¢, < 2—(;1_'-"_3—1) and p > 1 such
2p) p-1 o2 e R :
that I () _ = < g(2) , then it is an immediate consequence
/] 2P an (0] g( ) nseq
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of this last. estimate that

Jim 7 log ([ v*() lII* = 9(2) -
By analyticity, we see that
9(2p) — 9(2) ~ 2(p—1)g'(2)
and by convexity

' g(2)

It follows that for p close to 1
p—1 a§
9(2p) — —5— 770 < pg(2) + (p— 1)9(2)

i o+ 20— 1000 - SR < o)+ - 1002

2
orif ¢g'(2) < 9(22) ¥ 7 ?:’0) .
Hence, we have %tablisghet(i the following theorem.

Theorem 3.2

Suppose that the inital data satisfy condition Clc and that
the linear stochastic velocity field satisfies the Lie algebra and
control conditions of [1] together with the semi-group condition

x ——_— g(2) , a3
of [2] (Theorem 3.1 ii )A and the condition g¢'(2) < 5+ 70)
nl
where 0 <0, < m then we have

lim lim ¢ log ||| * [IP = 9(2) > O

This establishes the existence of a fast dynamo in the sense of [48] . The
typical line stretching and swirling phenomena discussed in the physics
literature is clearly exhibited here (see the papers by Cocke [10], [11] and
also the book by Parker [49] ).

3.3 Fast dynamo behaviour for nonlinear velocity fields

We first deal with the case of the weak diffusion limit.
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Lemma 3.3
Suppose that the hypotheses Cla, b, C2, C2, C3', C4 hold .

Then
Jdim 1 log (| (. ,8) [IF =g(2) >0.

Proof
By (1.4) and the unimodularity of the diffeomorphism z — 7(t)z we
have

G0 I =l (). ) I
=l )y () IIF* -

Then as in the calculations leading to (3.14) we observe that
E R/ dz || ©(t)yo(2) |"dz = [ Eouta) 1 2(t, 00) II* Il 90(2) |*dzp(dm)
n Rn % M

and applying the method of Lemma 2.1 (see Remark 4) we conclude that

| 8(t)yo () Il = exp g(2)¢ {1+0(1)} a8t — o0,
giving the result.
The question of the existence of fast dynamos in the sense of [48] is

related to the stablity of this result in the presence of a small diffusivity
term.

Let Ew denote the expectation with respect to Wiener measure on
paths in R* beginning at the origin at time 0.

Associated to the original evolution equation (1.1)a and the stochastic
process £(t) is the stochastic differential system

dX*() =edB+v(X*(u), £(u))dt ,X*(0) =z, (3.15)a
df(t) =X, 0dB;+X,dt, £(0)=m, (3.15)b
do(t) =h(X", & 0)dt, 6(0)=4,, (3.18)c .
carring over the notation introduces in Section 1.

We set ¢ = (X*,£) and * = (X% & 0) . H we need to indicate a
different starting point we use the notation ¢£,,, ,n, . We denote by ©¢
the matrix solution of the differential equation

do*

= Ul*()) & = We(w) &, 6°(0) =1,
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and by 6%, the solution of

difu) =Ulgzme(w) , €%(w) =1.

Similar definitions hold for 6, ,4; and Q.
Associated with the system of stochastic differential equations (3.15)a,
b, c is the infinitesimal generator

=3 A+oYt 3 DX+ Xo k. Y,

acting on C(S) and generating a strongly continuous Feller semi-group as
before. We set Lf =V-' L¢ V.

03:

C3a holds and C3" b, c are strengthened hereto C3*b ¢V (z,m) <
—c; V(z,m)+f, ¢, > 0 forall (z,m,0) € S andall €,0 < ¢ < ¢,
, for some small ¢,.

C3 ¢ There exists a twice continuously differentiable functiuon
V,V > 1, and asequence v € D(L,) such that C3c continues to hold
with respect to L,

There now holds an analogous version of Lemma 1 and we guarantee
the existence of an invariant measure (unique)

p=¢"m(ds),e > 0,8 € S,['¢°=0
and
! V(z,m) p(ds) < oo

We define g,.(p) analogously to the definition given before Lemma 2.1
substuting 2() by z°(6) where

#(0)=6°40.

Then we have the following analogue to Lemma 2.1 , namely:

Lemma 2.1
Under the hypotheses C1, C2, C2', C3* the conclusions of Lemma 2.1

continue to hold with g(p) replaced by ¢*(p)) and L by L¢ in the
statement of the Lemma
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Remark 4'

Analogous remarks to Remark 4 continue to hold.

We strengthen C4 to the following

C4'  C4 holds with the spectral gap a supposed to satisfy

2
am (L a1V lllV ¢l 0 )

2m

Additionally we need the following hypothesis. We set Ay =V -1 AV.
C5.  Suppose that D(Ay) N D(Ly) is acorefor Ly and that

@
r={c:lsll=5} cA,
the region of strong convergence for L, in the sense of Kato [32] chapter

§2.1, while
| B(s , L) Av R(s,Lv) || £ C,

uniformly in 0 < € < ¢, ,¢ € T.

With regard to this last hypothesis, let us recall that the hypoellipticity
implies locally the loss of half a power of a derivative (see [34]) so that
hypothesis C5 may be regarded as a globalised version of this result. A more
precise analytic version of this result would be rather difficult, however see
the papers by Takanobu [51], [53] for probabilistic results involving the use
of the Malliavin calculus together with the references cited there.

Using C5, by the resolvent identity we have

R, %) ~ Rle,Iv) = = R(¢, L) Av R(s, Lv)

and hence

1
> 2.

2
IR, L§) - R L) || < 5C, ¢ €T.
Arguing as in Lemma 2.2 we see that

ll¢* — o1l < 0(") as e | O

and, further,
g°(p) = g(p) +0(e%) ,
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for 9 i
ol < (15 IV""lle IVl

taking ¢ sufficiently small.
Let X** be the stochastic process associated with the infinitesimal
generator

B =5 A+ o(z,E0)(0)) Vs,

beginning at z at time ¢ . Let 6;(c) be the usual transformation operators
on paths associated with the process (see the book by Dynkin [16] section
3.5). Then from results, given by Kunita in [37] (Chapter II, section 4,
Theorem 4.4 and section 6 Theorem 6.1) and setting X(t) = X=°(t) there
exists a stochastic diffeomorphism z — X(f)~! z and we may regard
X*0) = X(t)'z = X(—t,0:(0))z, a result which we use in the proof of
Theorem 3.5.

In this section we work under the hypothesis C1b on the initial data:

Yo # 0 aeand gy, € L? ((1+|z])*dz)

We first need to establish an additional technical lemma which is a
variant of the result given in Lemma 2.1

Lemma 3.4
Under conditions Cla,b , C2,C2,C3" if R, < oo and

[ lw() |Pdz # 0

B(0, Ro)
then

limm t7! log E ] dz |E, » ©° yo(2) |* > 2¢°(1) .
B(0; Rq)

Proof
We set bo(z) = 90(2) / [l 90(2) Il , %0(2) # 0.

We first note that
¢
0= 60+j; h(q)tdu
= fGo+i (t"‘ fu k (%) du)
= o+t < h, L (ﬂ‘) 2

35



If follows that we have to deal with the asymptotics of the integral
E f Az |Esmaota) (exp(= <@, Le (n°) > )6+t < h L (n%)) |* .
B(0; Ro)

Now by an argument similar to Lemma 4.2 of [54] the supremum in

sup (<@, >-I (ji)
BEM

is attained at some p* € M , so that by Theorem 4.1 of [54], since
< h, § > is continuous in # , it follows that the above integral is
asymptotic to

E [ delet< b g >tF | wofe) | exp 20°(1)t {14 o(1) }
B(0; Ro)
as i — o0,
> const exp 2¢° (1)t {1+ o(1) }
as t — oo. It follows that
lim ¢ log EB( [RO) 0z | By (6° (2))F > 24(1) .
o,

Theorem 3.5
Suppose that conditions Cla, b, C2, C2, C3*, C#, C5 hold.
Then

200) {t+o (1) } < lim ¢ log [l| (. ,8) I
< D i og [I| w*(-,8) [IP < g(2) {1+0.(1)},

— OO

uniformly in ¢ , 0 < € < ¢ ,for ¢ sufficiently small.
Proof
First let us note that from (3.8).

HeColr < B [ do B (207 |
1 6@X=() ,£()) IIP Il a(X=*(0)) I* }
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z,t

where the Radon-Nikodym derivative d exists by the Cameron-Martin-

Girsanov formula where the explicit formula involved depends functionally
on X(u)o X(t)™'z and we have used Schwarz’s inequality,

< BBy [ ds S 100X (),€0) IF Il (X0)) IP

using Fubini’s theorem.
Now making the unimodular transformation z — X(t)z , we see that

BBy [, do G 11 00X (o, €0 IF 1l o) [P
E [Q . B LI O(X(E) ()2, €0) 1P} 1] wol2) 1P
E [, Bon (116 1P Il 5e) I}
exp ¢°(2)t {1+0(1) }ast — o
as in Lemma 2.1
< exp ¢(2)¢ {1+0c(1)} {1+0(1)} ast — o0

uniformly in €,0 < ¢ < ¢, .

Hence, we conclude that

Jm 7 Tog I (. ,8) (IP < 9(2) {1+0:(1)} .

The lower bound is rather more complicated.
First let us observe that

WG, 0llF 2 B dz || E.. (B(8)(X (), €())w(X(0)) [I*
B(0, R)
so that by Jensen’s inequality
2 | B(O, R) |7 || E dz E.. (8()(X() , €))% (X(0)) [P

B(0, R)

IA

IA

IAIA

> |BO, BIPIEE [ a7 60(x() ,é0ux=0) IP

B(d, R)
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> 3 (BO R 11 B By [ & 00000, 60 (X~0) IF}
~1BO R)P IEE, [ ds S 0)0¢=4() , €(m(x=(0) IF

B(0; R)*

2
using the inequality | a — (—b) [* > %—b?,

> 18O R 1B By [ de G 00(X4() , E0(X=0) I

- BO. Ry OR™) | E By [ ds G 000X+ ,€0)

X(1+[X=(0)])* 5o (X**(0)) I

Now by the unimodularity of the stochastic diffeomorphism z — X (t)z,
it follows that

.0 lF > 31 Bo R || E [ 42 Bum (6 1a(2) I
=1 BO B AR™) E [ do B (11160 (1 + el ()

Thenfor By < oo with [ |yo(2) |2 dz > O we have
B(0, Ro)

oG OUF > 31BO, B[ UE [ do B (O go(o)) |P
(B(0,Ro)

— | B0, Ro)|™* O(R*) E j (L+ ) | ol2) [P (B (] 6°(8) [)))?

Now by Lemma 3.4 and Lemma 2.1’ and Remark 4' , for § > 0 , there
exists T'(6) such that

e O 1IF > 31BO, B) I exp (2g°(0)t (1- )
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_ | B, B) [ () exp (20" (1)t (1+5)
for t > T(6) . given that

.f (1 + |2)* || wol2) PP dz < o

Let us choose & oslil 5
R =exp (——g%l—t) ;

from which it follows that
bn 1
97 I > conet exp (20t (1- (37 +3) )

for ¢ > T(8), uniformlyin 0 < € < & .
However, 6 > 0 is arbitrary which establishes that

im0 log [ #°(, 6 1IF > 26°(1)

and the result follows immediately.

It should be noted that the lower bound here is crude and a further
large deviation analysis on time steps large with ¢ but small with respect
to t has to be performed enabling are to use the analysis of [8] in order to
improve this estimate as in Section 3.2. (in a compact setting this actually
carried out by Collet in [12]). However, the lack of uniformity of lim
bounds on noncompact sets is a complicating factor. The above theorem
does show that a “fast” dynamo type effect exists although we do not have
precise asymptotics.

Finally, let us remark that if we consider a model where there is an
inbuilt compacteness it is possible to establish results under less restrictive
conditions on the velocity fields. This is the case, for example, in laminar
dynamo theory, where ¥ =0,V A B =0 outside of a bounded region
Q (see [45] 6.1,6.11).
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