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1- Introduction

In this paper variables will be either categorical or metrical.
Categorical variables are measured in a nominal or ordinal scale while
metrical variables assume values in an interval or ratio scale.

Whether categorical or metrical a wvariable will be either
manifest (directly observable) or latent (not directly observable, and

generally called a factor in factor analysis).

Bartholomew (1987) has classified latent wvariable models according

to the type of latent and manifest variables:

MANIFEST

LATENT metrical categorical

factor analysis for

metrical factor analysis categorical data

latent trait analysis

categorical profile analysis latent class analysis

Bartholomew discusses these models from a new point of view,
starting from a general model (5) that allows these techniques and some
ones to emerge as special cases. We are concerned with metrical latent
variables and categorical manifest variables.

Two different approaches are considered for the construction of the
models in factor analysis for categorical data and latent trait
analysis. In the first case, the Underlying Variable (UV) approach,
where the categorical manifest variables are supposedly produced by
underlying continuous variables, and in the second case, the Response
Function (RF) approach with its origin in the theory of educational

testing and developed further in Bartholomew (1980,1981). It starts



with a response function giving the probability of a positive response
for an individual with variable value y.

In this paper we shall use the Response Function approach to latent
trait analysis for binary response data, for which follows a review of

the literature.

2- Definition of the Model

2.1- Notation and Assumptions

We shall consider the case when the manifest variables are binary
and the latent variables are metrical. This situation happens, for
example, in a survey where individuals are asked to answer questions by
yes or mno, agree or disagree, or in educational testing where the
students may answer an item in a test right or wrong. Usually the two
possible outcomes are coded as 1 (positive), otherwise O(negative).

Thus if the test has p items and is answered by n individuals then
the data matrix will be an(n x p) array of zeros and ones. We shall
refer to any row of the data matrix as a response or score pattern,
which is the set of responses of a given individual. Therefore there
are 2P different possible response patterns, which number increases
quickly with p so that some patterns will probably not appear in the
sample. For practical purposes in the samples we shall list only those

response patterns which occur at least once.

Notation
Let X=(X,,X,,...,Xy) be a vector of p manifest variables, where X;
is equal to 1 or 0 for all i, and Y%(Y1,Y2,...,Yp)‘ a vector of latent

variables. Then the joint distribution of the X's is given by

f(x) = J h(y) g(x1y) dy (1)
s
where
Ry the range space of y,
h(.) is the prior density of y,

g(.1y) is the conditional density of x given y.

sl



Our main interest is what we can know about the latent wvector Y

after X has been observed. This comes from the conditional density

h(yix) = h(y) gx1y) / f(x),

which depends on our knowledge about h, g and f.

Obviously f(x) is the only density function about which inferences
can be directly made, and therefore all the information we can get
about g and h comes from knowledge of f. It follows that they are not
uniquely determined (Bartholomew,1980). As we cannot obtain a complete
specification of h(yix), we need to make some restrictions on the class

of functions to be considered.

The assumption of conditional independence

p
g(x1y) = _ gi(xi1y) (2)

i=1

is usually considered necessary for effective theoretical work with
response functions. For it means that the association between X's
(observed variables) is wholly explained by their dependence on the
Y's (observed variables). Consequently, if Y is held fixed there will
be no correlation between X's. This assumption cannot be tested
empirically, since it is part at the definition of Y. We will come back
to this point later on.

Conditional independence for g means that the set of latent
variables is complete, i.e, Y is sufficient to explain the dependence

between the X's.

As the X's are binary,
. 1-xs: )
gi(xi1Y) = [ms(N ] [Lemy T i=1,....p (3)

where 73 (¥)=P[X;=11y] is called response function by
Bartholomew (1980). In educational testing, where most of the models
have been developed for a one-dimensional latent variable representing
an ability of some kind, 7i(y) 1is called item characteristic curve

(ICC) or item response function (IRF).



Another assumption is that the response function is monotonic
nondecreasing in the latent variable. This means that increasing any y,
the probability of a positive response also increases or does not

change.

Consequently from (2) and (3), the joint density function of the

x's (1) can be written as

f(x) = J h(y)
R

no{ [ T [1em 17 ] ey, (4)
-1
i d

1

2.2- Response Function

Many suggestions about the shape of response functions and prior
distribution of the latent variables have been made over the years.

These have given rise to different models.

We shall present some of these models, starting from a general

model (5) and deriving them as special cases.

The choice of a suitable response function was discussed by
Bartholomew (1980), where he gave a set of properties that a family of
response functions is desirable to possess. For instance, he says that
the response function should be monotonic nondecreasing in the latent
space, a property also implied by the normal ogive and logistic models,
as we will see later. This implies, for example, that the probability
of a correct response increases with ability (educational testing).
Bartholomew also proposed a class of linear models with response

functions satisfying:

G (7i(¥)) = a1 o +

2 oi 3 B W(yy), i=1l,....,p (3)
J

1

[\ ta]

where

7i(y) is the response function,

Yj (j=1,2,...,q9) are independently and wuniformly distributed
on (0,1) and functions G and H are distribution functions of random

variables symmetrically distributed about zero.
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In practice he limits the choice of G°' and H"' to the commonly
used functions, the logit (10git(v)=1og[v/(l-v)]} and the probit
[probit(v)=¢"(v), where & is the standard normal distribution].

Considering these functions, the following models can be derived:

Logit when both G~' and H™' are logit functions
Probit when both G™' and H™' are probit functions and

Logit/Probit when G~' is a logit and H™'! is a probit function.

The logistic and normal distributions are very similar in shape,
and the choice between them is without practical importance so that
from one model we can obtain the approximately corresponding estimates

of the parameters for the other since

logit(v) & =//3 & 1(v)

By transformation of H '(y) = z, Bartholomew (1987, Chapter 5) has
proved that logit/probit model can be written in terms of normally
distributed wvariables, as

q9

logit[w;(2)] = @i 0+ 2 i3 %&] .
j=1

I

1,...,p (6)

Several response functions presented in the literature are special
cases of the general model (5), as for example, the logistic and normal
ogive models, which is shown below. For simplicity most of the results

presented in this paper is done for one single latent variable.

2.2,.1- Normal Ogive or Probit model

Lawley (1943) introduced a response function called the normal

ogive model (Lord and Novick, 1968, p365) specified by

i (y) = ®(aj (y - bi)) i=1,...,p
where
¢ is the cumulative distribution function of the standard normal
distribution,

y, for g=1, is the latent ability parameter normally distributed

with mean p and variance 02, which characterizes the individuals and
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aj and bj are parameters characterizing the item, called
discriminating power and difficulty of item i.
Furthermore, it is assumed that a; >0, which means that i (y) is a

nondecreasing function of y.

The equivalence between the normal ogive model and the probit

model, i.e,

T ly) = Py o + Qi 4 2),

may be seen by taking

bi = -ai’o/ai,1 and a4 Or.']-_’1.

As the location and scale of the parameter estimates depend on the
mean and variance of the distribution of the latent wvariable (or
ability parameter), the equivalence between the parameter estimates is

done by scaling. Bock and Aitkin (1981), for example, suggest that

p p Bhas
2 bi =3 = 0
i=1 i=1 ai,i
and
P P
m aj = n {,‘r.'i,.1 =1
i=1 i=1

This model is the basis for numerous developments in psychometric
theory, see for example, Lord (1952), Lord and Novick (1968), Bock and
Lieberman (1970), Samejima (1974). Bock and Aitkin (1981) give also an

extension for more than one latent variable for binary response.

2.2.2- Logistic or Logit/Probit Model

Two-parameter logistic model

Birnbaum (Lord and Novick (1968, Chapter 17) gave the two-parameter
logistic model determined by assuming that the response function has
the form of a logistic cumulative distribution function
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exp[ -daj(y - bi)]

Ti(y) =
1+ exp[-dai(y = bi)]

where

Yy, 1s a latent ability parameter normally distributed with
mean g and variance o2,

aj and bj have the same meaning as in the normal ogive model,

d is a number that serves, at our convenience, as a unit scaling
factor, with a value 1.7 corresponding to the maximum agreement between

normal and logistic distributions.

The equivalence between the two-parameter logistic and the

logit/probit model, i.e,

exp(ai,o + i, z)

7i(y) =
L+ exp(aj o +0y 4 2)

may be seen by taking

d = -1, bi = Q4 o 0 and aj = oy
As for the normal ogive model, aj = @ , and the possible different
mean and variance for the normal distribution of Y is corrected by
scaling.
Lord and Novick (1968b, Chapter 17) estimate the parameters a; and
b; assuming that Y is N(0,1).

Rasch model

A random effect form of the model due to Rasch (1960), is a

simplified form of the two-parameter logistic model with

exp(y - bj)

i (y) =
1 + exp(y - bi)

Here all the item discriminating powers are equal to 1, i.e, aj=1

i=1,...,p. Thus =j(y) depends only on the distance between the latent

value y and the item difficulty b; and as the value of b; increases

o |



fewer individuals will be 1likely to answer correctly or positively

item 1.

Therefore the Rasch model is equivalent to the logit/probit model
when @ ,=1 and bi='ai,0 for all manifest variables or items i. The
equivalence between the parameter estimates is obtained by scaling if a

standard normal distribution is not assumed for Y.

The main advantage of this simplification is the existence of a
sufficient statistic for Y, the total number of positive responses of

an individual (or the total raw score of the data matrix).

There are many papers on the Rasch model and its extensions, among
them Andersen (1970,1972,1973b), Gustafsson (1980a,1980b),
Fischer (1981), Molenaar (1983), Thissen (1982) and many others to

which we will give references later on.

Three-parameter logistic model

If in addition it is assumed that if an individual does not know
the answer he will guess, and with probability c; will guess
positively then according to Lord and Novick (1968b, Chapter 17), the

response function for the three-parameter logistic model is given by

(1-c3) exp[daj (y-bi)]

Ti(y) = cj +
' * 1 + exp[daj(y-b;)]
ity-b4

Then the two-parameter logistic model is a particular case of this
model, when c;=0 for all i.
The three-parameter logistic model cannot be written in the general

form (5), since that does not have guessing parameters.

This model has been applied by, for example, Lord (1968a,1983a),
Hullin, Lissak and Drasgow (1982), Lord and Wingersky (1985), Thissen
and Wainer (1982).

Since the normal ogive is equivalent to the probit model and the
two-parameter logistic is equivalent to the logit/probit model, we
shall use both names to refer to the same model, although we shall

=10z



generally use the notation following the general model(5) and consider

Y as a latent wvariable.

2.2.3- Properties of the Response Function

Let us consider a logit/probit model, though the same approach is
valid also for the logit and probit models.

The two most important properties which response functions produce are:
(1) The choice of which the two possible outcomes is to be regarded as
positive is totally arbitrary. If the positive answer has probability

73i(2) then the negative has probability 1-xj(z), and they are given by

q
exp (o o + 3 ®i j Zj )

w3 (2) ] i.e.,

q
Ti(Z) = { 1 + exp (e 5 = o | )}

and

l-Ti(Z)

I
2
[
C
8]
[
L
—

{ 1 + exp [ai,a +

j=1

This means that increasing any latent value z, 1increases the
probability of a positive response and decreases, as expected, the
probability of a negative response by the same amount. Thus, when g=1,
it is possible to obtain all @j ;'s positive or zero by suitable choice

of which outcome is to be considered as positive.

(2) The direction in which most latent variables are measured is
arbitrary. Changing the direction of measurement involves replacing zj
by -2 in equation (6). This is equivalent to changing the sign of the

corresponding Qi 5 without changing the model .
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2.3- Interpretation of the Parameters

The parameters of the logit/probit model may be interpreted in
several ways.

The coefficient a3 , is the value of logit w;j(z) at z=0 and thus =
is the probability of a positive response from a median individual. In
the context of educational testing, Qj o or mj would be called the item

difficulty.
The coefficients o j may be interpreted in three related ways.

First, as a measure of the extent to which Zj discriminates between
individuals. For two individuals a given distance apart on the
Zj-scale, the bigger the absolute wvalue of @55 the greater the
difference in their probabilities of given a positive response to
item i and thus easier to discriminate between them in relation to item
i. Therefore Qi j is a parameter that indicates the wvalue of an item in
the sense of the amount of information that the item provides about Zj.
In educational testing, this is the interpretation usually adopted, and
S is called item discriminating power. Figure 1 illustrates the

effect of differing values of «aj , and @j , on the shape of the

response function.

M2
L'y

40

0.6 -

0.b - 4

0.4 | A

! — |
~
~
Y

Lz /

0.0 ~+—— 1

Figure 1 - The response function =(z).
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A second interpretation of the @j j 1s by analogy with linear

factor analysis or principal components, where the ai,j‘s are

equivalent to the loadings. They are the weights of the x;'s in the

determination of the component scores X;'s, i.e, Xj =

3 O{i'j X4

1

I 1o

i

Finally the Qj § are related to correspondence analysis, where they
are equivalent to the category scores. This is done by attributing the
value of Qj j to a positive response on manifest wvariable j and zero to
a negative response. Then for each latent wvariable Zj the data matrix
constituted by 1 and 0 is replaced by o 5 and 0. The individual score

is thus the sum of the category scores for that latent wvariable Zj-

3- Maximum Likelihood Estimation

3.1- Estimation Procedures: joint, conditional and

marginal likelihood functions

In the literature we have found that the parameter of latent
variable models for binary data are estimated essentially through 3
different procedures: joint maximum likelihood (ML), conditional ML and

marginal ML.

As we have already pointed out when describing different shapes of
response functions for the general latent model(5), Y is usually
defined in the literature as a person parameter rather than a latent
variable, as used in the context of this paper. However we shall refer
to Y as a person or ability parameter, if necessary, when reporting

research using that approach,

T e



Joint Maximum Likelihood

A joint maximum likelihood estimation was proposed by
Birnbaum (1968) for the two- and three-parameter logistic model, and
for the Rasch model by Wright and Panchapakesan (1969), among others.
In this approach, person abilities and item parameters (discrimination
and difficulty) are estimated simultaneously so that the procedure is
not conditioned on the ability parameters.

The joint ML estimation of the person and item parameters is not
generally possible because the number of parameters increases with the
sample size and thus standard limit theorems do not apply. Several
researchers, including Wood, Wingerkly and Lord (1976) have avoided
this problem by assuming that respondents who have the same score
pattern, or same number of positive responses or who have been assigned
provisionally to homogeneous ability groups, have the same ability. On
this assumption, the number of parameters 1is finite and standard
asymptotic theorems apply.

The assumption that abilities are fixed in size, when in fact they
are mnot identifiable and have a distribution in the population of
persons, is difficult to justify statistically. A better approach to
estimation in the presence of a random nuisance parameter (person
ability) is that of integrating over the parameter distribution and
estimating the item parameters by maximum likelihood in the marginal
distribution, which is done when using marginal ML procedure.

Baker (1988) reviews the ML estimation procedures for the one-,

two- and three-logistic models.

Conditional Maximum Likelihood (CML)

Rasch (1960) showed that under his probabilistic model the 'item
totals' (number of positive responses given by every person) and the
'row scores' (number of positive responses given to every item) are
sufficient statistics for the person and difficulty parameters. Using
Rasch results as a starting point, Andersen (1970, 1972, 1973a)
developed a conditional ML procedure to estimate the difficulty
parameters that did not involve the latent individual parameters. The
difficulty parameter estimates are obtained from the 1likelihood

function conditioned upon the item total scores.
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Wright and Douglas (1977) have shown that the conditional ML
estimation is inaccurate when a test has more than 10 or 15 items due
to round-off-error. They proposed a simplified alternative procedure
for conditional estimation, which is limited to 20 or 30 items due to
the same precision problem, especially in the presence of extreme
difficulty parameter estimates.

In order to compare the joint ML and conditional ML for tests with
more than 20 items, Wright and Douglas carried out a simulation study
based on 15 replications of 500 individuals each for tests of size 20
and 40. They assumed that the ability was normally distributed with
mean O, 1 and 2, and the difficulty parameters were generated from a
normal distribution with mean =zero. The comparison between both
procedures was done in terms of MAX DIFF (maximum difference between a
generated difficulty parameter and the mean over the 15 replications of
its estimates), RMS (root mean square of these differences over items)
and the MEAN ABS (mean of the absolute value of these differences over
items). They found out that in terms of RMS and MEAN ABS both
estimation procedures, conditional ML and joint ML, give approximately
the same results, while the MAX DIFF's tend to increase for both
algorithms, but strongly for conditional, when the mean of the sample
shifts away from zero (equal 1 or 2). This later result was found to be
due to the increasing discrepancy between item and sample
characteristics, which made estimation difficult for the conditional ML

because of accumulated round-off-error.

Marginal Maximum Likelihood (MML)

Thissen (1982) developed marginal ML procedures for the Rasch model
making use of the fact that all response patterns which have the same
number of positive responses have proportional likelihoods for the
single latent wvariable. Unlike the conditional solution (CML), this
estimation procedure is not conditional on the sufficient statistic for
the person parameter and requires specification of the prior
distribution for the person parameters.

The formulation of the model explicitly includes the item
discriminating power common to all items and it is assumed that the

latent ability is distributed as N(0,1).
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Two algorithms have been described by Thissen (1982) for MML
estimation:
(a) A gradient solution, following Bock and Lieberman (1970), where
the parameters are estimated by maximum likelihood and
(b) An alternative solution, following the algorithm described by Bock
and Aitkin (1981), uses Gauss-Hermite quadrature peints for the N(0,1)

prior distribution for latent ability (person parameters).

They also show that the MML procedure is similar to a combination
of CML of the item parameters with estimation of the mean and variance
of the population distribution as described by Andersen and
Madsen (1977). The mean of the item difficulty parameters is
essentially equivalent to Andersen and Madsen's population mean and the
estimated discrimination parameter is the same as the standard
deviation of the population distribution (normal) for conventionally
standardized CML estimates. For this procedure the population
distribution is not required to be normal, but must have finite mean

and variance.

Tsutakawa (1984) derived a MML procedure employing the
two-parameter logistic model. His method differs from Bock and Aitkin's
method in the manner in which the prior distribution of the latent
variable is handled, but it is equivalent for the special case of a
discrete empirical prior. He analysed a 50-item arthritis knowledge
test administered to 162 individuals, using both the joint and the
marginal ML procedures. After appropriate scaling to take metric
differences 1into account, the <values of the discrimination and
difficulty parameters yielded by the two methods were very similar.

Tsutakawa also used simulated data to evaluate the parameter
recovery capability of the two procedures. This investigation involved
two hundred simulated respondents having a unit normal distribution and
a 50-item test with representative values of the item parameters. The
estimated item parameters were plotted against tha underlying parameter
values. The plots showed a close agreement between the two methods as
well as a general 45° line relating the estimates and the parameters.
The scatter of the item discriminating power about the line was much

greater than of the item difficulty.
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It follows a description of the ML procedure used in this paper to
estimate the parameters of the general model(5).
3.2- Marginal Maximum Likelihood Estimation

For any model of the family (5) the joint probability function of

Xq,..0,%p 1s

P . e
f(x) = J 1 [m ] [1-mm] T hyndy (7)
Ry i

If x5 is the observed response vector for the sth sample

member then the loglikelihood is

log f(xg) (8)
1

r'
I
(o R=]

5

Bock and Lieberman (1970) maximised this function with the normal
ogive model for the response function and for one latent wvariable
distributed as N(0,1), i.e, using the probit model. The likelihood
equations were solved iteratively by a Newton-Raphson method and
Gauss-Hermite quadrature was employed to perform the necessary
integrations. Due to the heavy numerical integration the method was
considered to be limited to one latent wvariable and not more than 10

manifest variables.

Bock and Aitkin (1981) by a simple transformation of the Bock and
Lieberman (1970) likelihood equations, found a computational solution
so that the method could be applied for more than one latent wvariable
and a large number of manifest variables. This reformulation is related
to the E-M algorithm for maximum likelihood estimation as discussed by

Dempster, Laird and Rubin (1977).

We shall give the main results of this method as described by

Bartholomew (1987, Chapter 6).
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3.2.1- An E-M Algorithm

We shall consider the logit/probit model for one latent wvariable
expressed by Z as defined in (6), i.e,

logit(wi(z)) = aj o+ Qj , z

Each iteration of this E-M algorithm involves two steps called the
expectation step (E) and the maximization step (M) and the method

starts with arbitrary values for the parameters.

E-step: Using the current values for (woj,} and {&j,}, predict

zg for s=1,2,...,n, through

oo

P & 1-x%;
E(ZgIxg) = J Zey -n [wi(zs)] 1 [l-wi(zs)] Yhgg) Wiy P ER)

-0 1=

The value of E(Zg1%Xg) has to be found by numerical integration.

M-step: Treating the expected values BE(Zoixs), 8=1,2,...,;0, &8
if they were true values zg, estimate the parameters

{ejo) and (og,} by maximum likelihood, as follows:

Let the conditional loglikelihood defined by

n P
L= 5 Y l Ko [logri(zs)] + (1-x4g) [1og(1-wi(zs)] ]
s=1 i=1
nop
= > 3 { i 1ogit[wi(zs)] + log(l-7;(zg) ], (9)
s=] i=1

where logit =j(zg)= & g * O ¢ Zge

Then the partial derivatives with respect to the parameters (o .}
L

and {ai 11 are
]

oL =
= Z [ Xig - 7i(zg) ]
s=1

(10)
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n
= z zg [ %35 - 7i(2g) ] for i=1,2,...,p.

Thus estimating equations are obtained setting (10) equal to =zero
and for each wvariable i there is a pair of non-linear equations which
can be solved for aj , and aj ,. Methods of solving these equations are
reviewed by McFadden (1982).

Having completed the M-step, the E-step is done again, and the
cycle is repeated until the estimates become stable, according to some

criterion.

Bock and Aitkin (1981) reported that the convergence of the E-M
algorithm is only geometric and slows up as the solution point is
approached. They suggested wusing the acceleration technique of
Ramsey (1975) to speed convergence.

The convergence properties of the E-M algorithm has been studied
analytically by Wu (1983). He showed that if the likelihood function is
unimodal and certain differentiability conditions are satisfied, any

E-M sequence converges to the unique ML estimates of the parameters.

More than one latent variable

If there is more than one latent variable, the term o 4 Zg
q
in (9) is replaced by 3 @i § %j,s; 4 equations replace the
j=1
second member of (10)— one for each {ai,j} — and 73(zg) becomes 7;(z).
In this case, the determination of &i,u and @oj 3 F6F JZiewayds

involves the solution of g+l simultaneous non-linear equations for
each i.

In order to get unique solutions, when g>1, we must impose some
constraints. One possibility is to fix the wvalues of enough e's to
ensure a unique solution. For example, it is sufficient to fix 01,120

for some i, when g=2.
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3.2.2- A Variation of the E-M Algorithm

A wvariation of the E-M algorithm was proposed by Bock and
Aitkin (1981) also for the probit model. Bartholomew (1987, Chapter 6)
discusses the same variation from a rather different perspective
setting G™' in (5) as the logit function. It follows the main results
for one latent variable.

Even though the latent wvariable Z is distributed as N(0,1), it is
proposed as an approximation that Z assumes values z,,z,,...,2Z, with
probabilities hi{z..) B2, ) ves 2 lif2)) chosen S0 that the joint

probability function

£(xg) = [7 ... [T g(xg12) h(z) dz s=1,2,...,n

can be approximated with high accuracy by Gauss-Hermite quadrature,
i.e

k

fixg) = Y g(xglze) h(zy) for s=1,2,...,n (113
t=1

where 2z 1is a tabled quadrature point (node) and h(zy) 1is  the

corresponding weight (see Straud and Sechrest,1966),

The quadrature weights, h(zy), are approximately the

k
normalized, i.e., Z h(z¢)=1, values of the probability density of
t=1

a N(O0,1) random variable at the points 2z, which are choosen to best
approximate the marginal probability function f(xg). This approximation

becomes more accurate as the number of quadrature points increases.
From the maximization of

I
L= 5 1log £(xg)
s=1

we obtain, for v=0,1

k
Jd L Z d 7;(z¢) [ Ri t - N¢ mi(z¢) ] 12
d o v | d o v Ti(Zt) [ l-wi(zt)]



where

n

Rit = D Xig h(z¢lxg) (13)
s=1
T

Ne = 5 h(zeixg) (14)

and h(zg1xg) iss?%e posterior probability of Zy given xg .

Before defining an E-M algorithm in this approach, it is wuseful
look at the meaning of Ny and Rit. As the quantity h(zy1x) is the
probability that an individual with response vector x is located at
zy, N is the expected number of individuals at zi. By analogy, Rjt is
the expected number of positive responses to item i among those
individuals at z¢.

Consequently if we know the allocation of each individual on the
Z-scale then Ny is the number of individuals at z¢ and Rjt is the

observed frequency of positive response at zg.

The estimation of the parameters is performed by choosing any
starting values for {aj ,) and {aj ,) followed by repeated applications

of (12), (13) and (14) over the set of items, using an E-M algorithm

defined as

E-step: Calculate the values of Rj+ and N¢ using equations
(13) and (14).

M-step: Obtain improved estimates of the {aj o) and {5 ,}

solving equation (12), using the values of Rj and N

from the E-step.

The E-M cycles are continued until convergence is obtained. In this
case the number of wvalues that the latent wvariable assumes is fixed and

the set of values constitues the distribution of Z.
If we use the logit/probit model for =;(z) then

-1
wi(z) = [ 1+ exp(-0y o - @f 4 2) ]

and
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= zv 73 (2) [ l-7;(z) ] (15)

for v=0,1.

Substituting (12) and (15) the equations become

k
5 2 [ xis - 7i(ze) ] h(zeixg) = 0 (16)

for v=0,1 and i=1,2,...,p, which may be compared with (10).

Even though we have presented these methods for a response
function, in which G°' in equation (5) was the logit function and the
prior distribution of the single latent variable was approximated using
Gauss-Hermite quadrature points, it may be applied for any response

function and any discrete prior distribution.

If some other prior distribution of the latent variable is assumed,
other points may be chosen and a normalized density point t substituted
for h(z¢) in (11). For example, if a rectangular prior is assumed then
k points may be set at equal intervals over an appropriate range and

the quadrature weight set {h(zy)) equal to 1/k.

Bock and Aitkin (1981) have considered besides a prior standard
normal distribution, a rectangular and an empirical distribution for
the single latent variable and taken k=10 (see their paper for more
details). Working through the data of Section 6 and 7 for the Law
School Aptitude Test (LSAT) presented in Bock and Lieberman (1270),
they have obtained practically the same estimates of the parameters
from these three different prior distributions. They also suggested
that adequate solutions could be obtained with even smaller k, for
example, k=3,5 or 7 and this would make it feasible to generalize the
method to several latent variables. On the other hand, investigations
made by Shea (1984) show that at least k=20 may be necessary to obtain

reasonable accuracy and this puts much greater demands on computing

resources.
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The general model (5) as defined by Bartholomew (1980) involves an
arbitrary assumption about the form of the prior distribution of the
latent variable. Although the form of the analysis does not depend on
this assumption, as shown by Bartholomew (1984), it does affect the
estimation of the parameters. Therefore it is important to know whether
the wvalues of the estimates are sensitive to the choice of the prior
distribution.

Bartholomew (1988) answered this question mainly through numerical
evidence that the choice of the prior has negligible effect on the
expected first- and second-marginal proportions. He concludes that the
estimates are not sensitive to the choice of the prior based upon some
results reported in Bartholomew (1980,1987) that the ML estimates which
depend on margins of all order are usually very close to those

depending only on the first-and-second order margins.

4- Behaviour of the Likelihood Function

Since the parameters of the latent ~wvariable models wunder
investigation are wusually investigated by the method of maximum
likelihood (ML), it is importante to check if the behaviour of the
likelihood function is suitable for the method. This means to check
whether the likelihood has a smooth unimodal shape, or whether it has

multiple relative maxima.

Albanese (1990, Chapter 2) investigates the behaviour of the
likelihood by profiling and an approximate method. Particular attention
is given to the shape of the likelihood around the maximum point in
order to see whether the information matrix will a good guide to the

variability of the estimates. The main results are:

(1)- The investigation of the behaviour of the likelihood function
using an approximate method provides results equivalent to the profile
method. Both suggest that large &1’1 ( » 3/og, ¢ is the standard
deviation of the latent distribution) probably indicates bad behaviour
of the likelihood, which will be shown by the presence of a long ridge.
In this case the second derivative matrix or the information matrix are

not good guides to the variability of these estimates.
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(2)- 1f &i , is not large, the likelihood funtion behaves well and thus

the first order asymptotic theory is appropriate.

(3)- A badly behaved 1likelihood function suggests either that a
reparametrization is necessary, or that the model is a poor fit for the

data, or that the inference is particulary difficult.

(4)- Among the several reparametrizations we tried only the one given
by

- " i
aj o= @i o/ (1 + a5 ,

y 2
provided a better behaviour of the likelihood, independent of the size

of the parameter estimates.

This reparametrization corresponds to the probit of the expected

value of the response function of a probit model, that is,

& o= @ (E(oj  +aj ,2)) =

1

- @ "( B( P(X4=liz) ) = & ' ( P(X3=1) )

5- Sampling Variation of the Maximum Likelihood Estimators

There has been little discussion about the magnitudes of the
standard deviations of estimated parameters for commonly used latent
variable models. This may be due to the fact that no simple closed
formulae exist for the standard deviations as a function of the sample
size and the parameters. The wusual way to estimate the standard
deviations for maximum likelihood estimates of the parameters is to
compute the asymptotic variance-covariance matrix, using the elements
of the inverse of the information matrix evaluated at the solution

point. Thus if we have a set of parameters & then

=1

-82 L
[D@]=E[———] | 4 L1
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daj Oy s=1 £ daj Ooj £ daj Joy a=o¢
and £ =f(xg). On taking the expectation, the first term wvanishes

leaving

1 of

i i ( )

[D@] '= nE [

In our case X is a response pattern taking 2P different values

and the expectation in (18) is thus

18

1 of (xg) of (xg)

(19)

s

1 fz(xs) Oy aaj

If p is small it is feasible to evaluate this sum for all i and j
and then to invert the resulting matrix. However if p is large some
probabilities will become very small so that the computation of 1/f(xg)
will cause overflow on most of computers. In this case an approximation
may be used, replacing the expectation of the information matrix by its
observed value. This requires the computation of (17) and the inversion
of the resulting matrix. Since the first term has expectation zero a

further approximation may be obtained from

n l af(xs) af(xs)
D¥ (D = S (20)

s=1 fz(xs) dorg aaj

The number of distinct terms in the sum of (20) will usually be
less than n since more than one individual may have the same response

pattern.

Louis (1982) developed a technique for computing the observed
information matrix when the E-M algorithm is used to find the maximum
likelihood estimates in incomplete data problems. It requires
computation of the complete-data gradient and second derivative matrix
which can be implemented quite simply in the E-M iterations. This

procedure can be applied to obtain the asymptotiec variance-covariance
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matrix in Jlatent ~variable models, since they involve observable
(manifest) wvariables and not directly observable (latent) wvariables
which corresponds to a case of incomplete data, as defined by Dempster,

Laird and Rubin (1977).

Thissen and Wainer (1982) investigated the asymptotic standard
errors of the item parameters for the one-, two-,and three- parameter
models under the assumption that the latent value of the respondents
were known and normally distributed with zero mean and unit wvariance.
Tables of the minimum asymptotic standard errors were reported for
combinations of parameter values under the three models.

An interesting set of results was given by the two-parameter and
the three-parameter model with c¢=0 (guessing parameter). Even though
the numerical wvalues of the difficulty and the discrimination
parameters would be the same, the information matrices are not. The
three-parameter matrix still has a row and column corresponding to the
guessing parameter. When one item was easy and had low discriminating
power, the standard errors under the two-parameter model were roughly
0.09 of those reported for the three-parameter model. Clearly, the two
and the three-parameter model with c¢c=0 are not the same with respect to
the standard errors of the item parameter estimates. The asymptotic
standard errors for the item difficulty under the Rasch model were
consistently smaller than those obtained for the other two models. In
particular, the increase in standard error with departure of item
difficulty from zero was much less pronounced.

Based upon the results, Thissen and Wainer (1982) suggested that
when working with logistic response models we should try to fit the
simplest model first, and only if it is found to be inadequate move to

the more complex ones.

Lord and Wingersky (1983) have developed a method for computing the
asymptotic variance-covariance matrix for the three-parameter logistic
model, considering the unidimensional latent variable as a person
parameter. The derivation assumes that both item and person parameters
are unknown. They demonstrate that the size of the error variances are
affected strongly by the restrictions introduced in order to fix the
latent scale. One disadvantage of this method is that the information

matrix to be inverted is very large.
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On the other hand, Gruijter (1985) has shown that the method can be
simplified for the Rasch model when we are only interested in the item
parameters. This is done under a suitable restriction on the difficulty
parameters, as for example, assuming that the

p-1

mean b is equal to zero,i.e, bp = - .E b;, or setting bp

: : 1~1 :
Although the variance-covariance matrix for the item parameters can be

=0,

obtained without difficulty, it depends on the restrictions. He points
out that the first restriction seems to be preferable to the others due

to its simplicity and relative accuracy of the mean.

6- Adequacy of the Asymptotic Variance-Covariance Matrix

When interpreting the asymptotic variance-covariance matrix of the
parameter estimates it is assumed that the model is appropriate for the
data. Since this assumption may be false in practice, or the sample
size is not large enough for the number of parameters which have been
estimated or even the standard asymptotic theory does not apply, the
standard deviation and covariances obtained asymptotically will
probably represent lower limits for the actual ones, and they must be
analysed carefully,

Another way to look at the variance-covariance matrix that may give
some idea about how the asymptotic theory is working, is through

jackknife and bootstrap techniques.

9.1- Jackknife

Jackknifing is a statistical technique first proposed by
Quenouille (1956), which is used for reducing bias in the estimation of
parameters and for estimating the wvariance-covariance matrix of the
estimates. Miller (1974) gives an review of the subject,

In the basic jackknife the observations are randomly divided into g
groups of size h each. We shall consider the number of groups equal to

the sample size n and thus each group of size one.

Let Xi,Xz,...,Xp be a sample of independent and identically
distributed(iid) random variables and & be an estimator of the
parameter vector o based on the sample size n.
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Let @.; be the corresponding estimator based on the sample of size

n-1, where the ith group (observation) has been deleted.

Then jackknife pseudovalues are defined by

— ~ ~

i =no - (n-1) ey

for i=1,2,...,n.

The jackknife estimates o and its estimated wvariance-
covariance matrix are obtained from the n pseudovalues by treating them
as  independently  identically distributed observations from a
multivariate mnormal distribution (Tukey,1958). These estimates are

given by

]
b
[

PP P (21)
n
n-1
a = gaoa - ooy
n
and
- ” - >k
~ Z(ui-a)(ai_a)
Yy () = (22)
n(n-1)

Since it often happens that o« and « are asymptotically
equivalent, z (o) 1is sometimes used to estimate the wvariance-
covariance matrix of c«.

The jackknife estimate of bias is the difference between the
parameter estimate ¢ and « multiplied by the correction factor
nytarly, L.e,,

n N 5
bias = (a- o) (23)
n-1

-28-



The jackknife technique has been applied in many areas, including
factor analysis. Pennell (1972) demonstrated how the method can be used
to find confidence intervals for the factor loadings, while
Clarkson (1979) discussed the results of simulation studies using

jackknife techniques and proposed modifications.

Clarkson's studies do not include the jackknife samples which
provide Heywood cases. He argue that in these cases the jackknife
estimates of the factor loadings are not representative of the 'usual'

jackknife results because they are too large in absolute value.

Jorgensen (1987) gave a modification of the jackknife method for
estimating the dispersion of the parameter estimates that are obtained
as limits of iterative processes. He also gave examples to show how the
method can be applied to the E-M algorithm and to iteratively

reweighted least-squares.

Albanese (1990, Chapter 3) applies the jackknife technique to
investigate the adequacy of the variance-covariance matrix Ffor the
logit/probit model for binary response data. The main results will be

given in the end of this section.

9.2- Bootstrap

The bootstrap is a general resampling procedure introduced by
Efron (1979) to estimate the distribution of statistics based on
independent observations. It can be carried out non-parametrically and
parametrically, depending on the distribution from which the bootstrap

samples are drawn.

We shall first present the non-parametric or empirical bootstrap

method.,

Suppose X1,X2,...,Xp are independent and identically
distributed(iid) random variables from a population with unknown
distribution function F, and suppose the goal is to make inferences

about the parameter vector a of the population.
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Let a(x1,x2,...,xp) be an estimator of « based on the sample size n

and let F be the empirical distribution, that is, the distribution
function that assign mass 1/n to each X5

The bootstrap approximates the sampling distribution of o under F
by the sampling distribution of « under F. This procedure is carried
out using Monte Carlo method as follow:

(1) Construct F

(2) Draw a bootstrap sample, Xf,Xf,

e A S

.,X*p iid with ecdf % and calculate
p )

(3) Independently do B times the step 2 (for some large B), obtaining

-~

&, , b=1,2,...,B.

The distribution function of & is approximated by

Fp(y) = #(ck < y) / B.

The bootstrap estimate of o based on the B replications is the mean

-

of the ¢}, estimates, i.e

(24)

and the bootstrap variance-covariance matrix estimate of & based on the

B replications is the variance-covariance matrix of the d% estimates,
l.e,

>“,B=<B-1>"2<3B‘-5"_")(d’é~af‘f (25)

-~

As the number of replications B - df will

3

approach the
bootstrap estimate of o and Yg the corresponding bootstrap estimate of

the variance-covariance matrix T.

The bootstrap estimate of bias is the difference between the

-~

parameter estimate o and the bootstrap estimate d%, that is,

bias = & - o (26)
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The basic result of the bootstrap theory is that the empirical
distributions of the parameter estimates obtained by this method are
asymptotically the same as the sampling distribution of those
parameters in sampling from the population from which the original

sample was drawn.

There is nothing which says that the bootstrap must be carried out
non-parametrically. If we have reason to believe that the true
distribution F is Normal, for example, then we can estimate F by its
parametric ML estimate F. The bootstrap samples at step (1) of the
algorithm could them be drawn from %hormal instead of %‘(empirical

distribution) and steps (2) and (3) carried out as before.

Efron (1979) also suggests that Taylor series expansion method can
be used to obtain the approximate mean and variance of the bootstrap
distribution of &%, and he shows that it turns out to be the same as
Jaeckel's infinitesimal jackknife (Miller,1974), which differ only in

detail from the standard jackknife described before.

Efron and Tibshirani (1986) discuss the number of replications B
necessary to give reasonable results when we are estimating the
standard deviation of one parameter. They set out the following

approximation
CV(Gp) = { GV(B) 2+ [ (E(3) + 2)/4B ] }*

~

where CV(o) is the limiting coefficient of variation of ¢ as B = @, §
is the kurtosis of the bootstrap distribution of & given the observed
data x=(X,,X,,...,Xy), and E(%) its expected value average over x. For
typical situations, CV(¢) lies between 0.10 and 0.30.

From this approximation and assuming that E(B)=O, they point out
that for wvalues of CV(0))0.10, there is little improvement when B is
bigger than 100. They afirm that B as small as 25 gives reasonable
results. We suggest that the number of bootstrap samples be determined

by the point where stability of the estimates is obtained.

Efron (1984) discusses different kinds of confidence intervals
using the bootstrap and he shows that it is necessary to have at least

1000 samples to compute the BC (bias corrected percentile interval) as
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defined in the same paper, and BC, intervals while for the simplest
method, percentile interval, 250 replications can give useful results.
The percentile interval is obtained by taking
a e ( %“(a‘), %“(l-a‘) ) as an approximate 1-2¢' central interval for
o.
Confidence intervals are a fundamentally more ambitious measure of
statistical accuracy than standard errors, so it is not surprising that

they require more computational effort.

Chatterjee (1984) gives an application of the non-parametric
bootstrap method to the problem of estimating the variability of the
estimates of factor loadings. The number of bootstrap samples was
settled empirically; it appeared that 300 gave reasonable stability.
Combining the bootstrap with graphical techniques he examines the
variability of the estimator of the factor loadings. He points out that
bootstrap may very well reveal when the asymptotic results are poor

approximations.

Gronroos (1985) applies bootstrap methods to confirmatory factor
analysis of a LISREL submodel (Joreskog and Sorbom, 1984) to estimate
factor loadings and their standard deviations.

His simulation studies involve artificial data with sample size
100, 150 and 300 and initially 300 replications. However the number of
bootstrap samples become smaller, since he deletes from the analysis
all those which provide the occurrence of Heywood cases.

Comparing asymptotic theory with bootstrap and Normal bootstrap
results, he points out that the difference between the two bootstrap
methods is very small, but it is larger, even though not essential

significant, when compared with the asymptotic results.

Beran and Srivastava (1985) wuse bootstrap test and confidence
regions for functions of the population covariance matrix, for example,
eigenvalues and eigenvectors, which have the desired asymptotic levels
if model restrictions, such as multiple eigenvalues, are taken into

account in designing the bootstrap algorithm.

Efron and Tibshirani (1986) give a review of bootstrap methods for
estimating standard errors and confidence intervals. The bootstrap is

also extended to other measures of statistical accuracy such as bias
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and prediction error, and to complicated data structures such as time

series, censored data, and regression models.

Bootstrap confidence intervals have been discussed with new
improvements by Efron (1987) and Hall(1988), and their applications to
problems in a wide range of situations is given by Diciccio and

Tibshirani (1987).

Albanese and Knott (1990) applies empirical and parametric
bootstrap methods to find symetric percentil-t confidence intervals for
@j ; in a logit-probit model, and to test the reliability of the
ranking of the respondents on the latent scale.

Albanese (1990, Chapter 3) investigates the adequacy of the
asymptotic variance-covariance matrix in latent trait analysis for
binary response (logit/probit model) through the jackknife and
bootstrap (empirical and parametric) techniques. The investigation is
carried out using e sets of real data, which represents a good range of
different patterns of parameter estimates and sample sizes. Albanese
also studies how close is the bootstrap distribution of the parameter

estimates to a normal distribution. The main results are:

(1)- The more closely the bootstrap distribution of the parameter
estimates is fitted by a normal distribution, the better is the

agreement between the bootstrap and the asymptotic standard deviation.

(2)- If &i,1 is not large, the asymptotic variance matrix can probably
be trusted, since the bootstrap estimates and standard deviations are
very close to the ML estimates and to the asymptotic standard
deviations. Furthermore, this similarity increases as the sample size

becomes larger.

(3)- Large values for &1,1 are associated with skewed distributions or
a mixture of two distributions, one normal and another with @i , equal
to infinity. Probably the asymptotic standard deviations of the

parameter estimates are smaller than the true ones.
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(4)- If the sample size is small and one of the items has very large
&; , while the remaining ones are small, all with relative large
standard deviations then it is likely that most of the estimates can

not be trusted.

(5)- In summary, although the bootstrap distribution must underestimate
the wvariation in the true sampling distribution, there is strong
evidence that it gives a better guide than the usual first order normal
approximation. Bootstrapping methods seem to be very useful for
investigating the adequacy of the normal approximation in doubtful
cases. When the discrimination parameters are small the asymptotic

theory works well, but when they get large it is inadequate.

(6)- Jackknife parameter estimates and their standard deviations tend
to be very similar to the original ML ones, independent of the pattern
of the &1,1'5 and the sample size. Therefore, jackknife is not as good
as bootstrap in warning about possible inadequacy of the asymptotic
standard deviations. This undesirable result for the jackknife method
may be due to the small number of different jackknife pseudovalues (16
in the case examined), and a larger number of items would provide more

satisfactory results.

7- Breakdown of the Estimation Procedure

There are some configurations of data, analogous to those called
Heywood cases in factor analysis (underlying variable model), in which
the 'true' ML estimate is infinite and the iterative system proceeds in
that direction indefinitely. In this situation, after some number of
cycles most of the discrimination parameter estimates and the
likelihood remain roughly constant while one or a few parameters
increase indefinitely. The difference in goodness-of-fit with such a
high discrimination parameter estimate (3.0 or bigger) is negligible.
In practice in these cases the value of the estimate is a function of

the stopping rule of the iterative procedure.
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A Heywood case, on the other hand, is the occurence of a negative
or zero estimate of the error variance ¥ for one or more variables. In
the underlying model representation, N e *kij / (wi)% , where kij is
the factor loading, so that a diverging discrimination parameter @i j
in the response function model is equivalent to a ¥; (error variance)

approaching zero.

In summary, according to Anderson and Gerbing (1984),
Boomsma (1985) and Fachel (1986), the occurrence of Heywood cases
increases as
(1)- the sample size decreases;

(2)- the number of indicators per factor and consequently the number of
variables decreases, although Fachel has observed small variation

between 5 and 100 variables;

(3)- the population values of the error variance are close to zero;
(4)- the factor loading are not uniform, for example, when only one
factor loading increases up to 0.90 while the others remain equal to
0.5.

Van Driel (1978) identifies 3 causes for Heywood cases:
- sampling fluctuations combined with true values of the error variance
close to zero;
- there does not exist any factor analysis model that fits the data;
- indefiniteness of the model (i.e.,too many true factor loadings are

Zero).

Bartholomew (1987) affirms, from his experience with binary
estimation procedures, that the circumstances under which a slope
parameter become larger and larger in the response function model are
when
- the sample size is small, a few hundred or less,

- the number of variables is small and
- the discrimination parameters are very unequal,
which are equivalent to those leading to (1), (2) and (4) given above

for the Heywood cases in factor analysis,
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Albanese (1990, Chapter 5) investigates the stability of the
discrimination parameter estimate &1,1' for both fixed and decreasing

sample size, when the number of items is reduced. The main results are:

(1)- When considering the effect of deleting items, the magnitude of

the sample size must be judged in relation to the number of items.

(2)- The occurence of a large &j; , seems to depend more on which items
»

are included in the test then on the sample size and test length. For

the data we have analysed, large &1’1 values were not associated to the

type of question asked.

(3)- The probability of the occurence of a large 31,1 does not increase
as the number of items decreases for sample size of order 500, as it is

often said to happen for Heywood cases in factor analysis.

(4)- As the number of items decreases, the largest &1,1 tends to

increase and become very large, when the test length is small.

(5)- Parameter estimates Qi (20.50) and standard deviations are
approximately linearly related so that larger estimates have larger

standard deviations.

Albanese (1990, Chapter 6) investigates the conditions which give

rise to large discrimination parameter estimates. This study leads to

(1)- A method for the generation of a (p+l)th item with any fixed
Opt,,, and ap+1,0. In particular, we can generate an item with large
&i,, with patterns similar to those in real data sets. For this
configuration of data, a threshold response may be the ML estimated
response function, and it seems more reasonable to accept them as
legitimate, and not to seek to remove them by adding or dropping items,

as it has often been suggested.

These findings are also reported in Knott and Albanese (1990).

(2)- Strong evidence that the size of the discrimination parameter
estimates &1’1 may be related to the predictability of item i from the

remaining ones. This can be summarise as following:

The more predictable is one item from all the remaining ones, the

larger is its discrimination parameter estimate o -
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An item with a large &; , may not give any additional information
about the latent variable in a test with 10 or more items, but for
smaller length, for example 5, it may contain more information than the

remaining items.

8- Goodness-of-fit

If the sample size (n) is large compared with 2P (number of
possible response patterns) a chi-square or log-1likelihood
goodness-of-fit test can be carried out on the observed and expected
frequencies of the response patterns. Often, there are many small
expected frequencies so that pooling becomes necessary. Since the
number of degrees of freedom in the unpooled case is 2P-p(q+1l)-1, then
situations may occur where there will be no degrees of freedom to judge

the goodness of fit.

When a formal test cannot be carried out and P is not too large,
the goodness of fit of the model may be judged by comparing the
observed and expected frequencies of the response patterns. An
additional check maybe done by comparing the observed and the fitted

values of the one-and-two way marginal frequencies,

There are other checks which can be made on the data before or
after fitting a model. For example, Bartholomew (1980) showed that if a
one-latent variable model applies then it must be possible to label the
categories so that, in the population, all the cross-product ratios
exceed one. A systematic approach to the question of whether the data
are consistent with an unidimensional model has been developed by
Holland (1981) and extended by Rosenbaum (1984) .

According to Rosenbaum, theorem 1, if a latent variable model is
unidimensional for P[X=x] with nondecreasing response function then X
is conditional associated, i.e, for all nondecreasing functions g(.)
and f(.), all functions h(.) and all partitions and rearrangements of X

into two nonoverlapping groups of items, (S,T),
Cov(g(S),£(S) Ih(T)) s 0

where Cov(.,.1.) denotes conditional population covariance.
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In particular, if we take S=(Xi,Xj), and T equal to the remaining

P-2 items with h(T) = % X} then a unidimensional
k=1, j

latent variable model for P[X =x] with nondecreasing response function

implies that

Cov((X; ,Xj)l Z X =t) 30
ki, j

for all pairs of manifest wvariables and all wvalues of t in the
population,

Equivalently, such a model implies that there is a population-
cross-product ratio of at least equal 1 in every 2x2 subtable of the
(p-1) layer of the 2x2x(p-1) population contingency table recording

Xi X XJ‘ X X Xk_

k#i, j

Tatsuoka (1984) describes the use of caution indices to identify

individuals with unusual response patterns relative to a given model.

Due to the special properties of the Rasch model several
goodness-of-fit test have been developed, of these, the conditional
likelihood ratio test, introduced by Andersen (1973b), is perhaps the
best known. The test is based on a comparison between item
difficulties estimated from different subsamples formed according to
the number of positive responses on the test and overall estimates
obtained from the whole sample. If the Rasch model Fits the data well
then consistent difficulty estimates should be obtained for any
subdivision of the sample into two or more groups. It was shown that,
when the sample is large, the test statistic has approximately a y2
distributed random variable with (p-1)(g-1) degrees of freedom, where P

is the number of items and g 1s the number of subsamples considered,
The problem of fit of the Rasch model has been further discussed by

Gustafsson (1980b), Van den Wollenberg (1982), Molenaar (1983), and
Kelderman (1984), among others,
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Gustafsson (1980b) presented a test for the hypopaper that two
disjoint groups of items measure the same construct. This provides a
test of unidimensionality when items are grouped a priori. Van den
Wollenberg (1982) also developed test statistics for lack of equality

of discrimination parameters and unidimensionality.

These type of tests are global measures of how all the items in a
test fit the Rasch model. To assess goodness-of-fit to a given item
response  function, Gustafsson (1980b) suggested using graphical
procedures. On the other hand, Molenaar (1983) has provided procedures
for a more detailed analysis under the Rasch model, which also involves
information about the goodness-of-fit for a given 1item response

function,.

McKinley and Mills (1985) conducted an extensive investigation of
goodness-of-fit indices for a given item response fuction. They
compared four such indices, those developed by Bock (1972), Yen (1981),
Wright and Mead (1978), and the Likelihood Ratio (LR) statistic. The
first three of these employ the standard chi-square goodness-of-fit
formula and vary only with respect to the number of groups and the
definition of the latent level used to compute the expected pProportion
of positive responses.

Nine tests with length 75 and sample sizes of 500, 1000 and 2000
individuals were used to generate the simulated data under each of the
oneé-, two-,and three-parameter models. In addition, the normally
distributed samples had means of -1, 0 and 1 on the latent scale. When
the data generated by the two and three parameter models were analysed
under a one-parameter model, the results indicated a consistent lack of
fit. As was the case with Yen's (1981) study, analising three-parameter

data using the two parameter model worked quite well.

McKinley and Mill (1985) concluded that the IR index appeared to
yield the fewest erroneous rejections of the hypopaper of fit, while
the Bock index yielded fewer eérroneous conclusions of fit, However, the
differences were slight. They also applied the four procedures to an
additional 9 tests having an underlying multidimensional latent
Structure. In all cases, the analysis yielded a high proportion of
misfits. Thus, the underlying assumption of unidimensionality appears

to be critical to obtaining good fit between the ICC and the observed

data.
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9- Measurement of the Latent Variable

After the model has been fitted, our main interest is in the
measurement of the latent variable. Considering Y either as a parameter
or a variable has given rise to different procedures when looking for
more information about Y.

In fixed effects versions of the model each individual's position
on the latent scale is represented by a parameter; in the random
effects versions, individuals are supposed to be sampled at random from
some population so that they latent position is the wvalue of a random

variable.

In educational testing, where Y is usually treated as a parameter,
some work has been done in estimating the parameters of the latent
distribution function: see for example, Lord (1983b), Andersen and

Madsen (1977), Samanthanan and Blumenthal (1978) and Mislevy (1984).

On the other hand, Bartholomew (1984), treating Y as a latent
variable has deal with the situation by scaling the latent variable,
i.e, locating the individuals in the Y-space on the basis of their
observed values of X.

Since in this paper we are treating Y as a latent variable, we look
at the scaling, instead of the estimation of the parameters of the

latent distribution.

According to Bartholomew (1984) the scaling of the latent variable
Y should be done via the posterior density of y given the response
pattern x. Thus, for example, he suggests the mean E(YI1x) (or E(Zi1x)),
which may not be particularly appropriate when the posterior density

h(zi1x) is highly skewed.

Bartholomew also shows that E(@(y)ic,(x)) is a nondecreasing

P
function of the component score ¢ (x) = ¥ o 1Xi for every
i ?

i=1
nondecreasing function of ®(y). In particular, E(Y1c,(x)) or E(Z1c,(x))

is an increasing function of ¢,;(x). This means that the component score
induces a stochastic ordering of the posterior distributions. Thus, for
example, the rank of individuals given by the component score c,(x) is
the same as given by the posterior means E(Yix) and E(ZIxX). Therefore
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if we are only interested in the ranking of the individuals on the
latent scale, we can use any one of these three measures, from which

the component score is the easiest to be obtained.

If the o ,'s are very similar then the ranking determined by

P P
X= Yo ,%{ and 2. Xi are likely to be the same whichever
=L i=1

latent models (logit/probit, logit or probit) we are using. When this
situation happens the convergence of the algorithm for estimation of
the parameters (section 3.2) is obtained quicker than when at least one

of the estimates differs from the other,

Furthermore, Bartholomew (1984) pointed out that for the logit
model E(Y|x) is an approximately linear function of the component score
c,(x) =Y @j, 1Xi, which can be justified by a Taylor expansion if all
@j .'s are small. At the same time, when all @j ;'s are equal to 1 and

7i's are equal to 0.5 then the exact value of E(Y|x) is

(l+e,(®))I(2+4A), where A= Zai’T. He also found out from
empirical work that the relationship between E(YIx) and c,(x) is
approximately linear well outside the range of the validity of this
later result. Albanese (1990, Chapter 7) shows that this is often false
when at least one of the &i’T is large (say » 3/0, where ¢ is the
standard deviation of the latent distribution). This may be due to the
fact that the component scores are strongly dependent on the values of
&1’1 while E(YIx) or E(ZIx) depend on 7j, Which is nearly the same for

all @; ,»3/0, independent of Qi o

Furthermore, Albanese(1990, Chapter 7) studying the relationship

between component scores and posterior means found out that

(1)- Significant differences between component scores do not always
reflect different positions on the latent scale, according to the
E(YIx) or E(ZIx). They are shown through flat sections or jumps in the
curve obtained when plotting the component scores against the means
E(Y1x) (or E(ZIx)).

The occurrence of flat sections seems to depend on the number of
items with large ai,1 and test length. At the same time, we expect that
the effect of 2 large &1,1 in a test with 40 items is smaller than in a
test with 20 items. Usually, they do not present a specific pattern for

the items with large &; ,.
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(2)- The greater the test length, the greater the possible number of
different score patterns and configuration of &i,i‘s can occur and the
less likely the linearity between the posterior mean and the component

score seems to be.

Very often, in practice, we are not only interested in the ranking
of the individuals, which is obtained either from the component scores
or from the posterior means E(ZIxX) or E(YIx). Thus, for example, in
Educational Testing, we may be interested in comparing the lower with
the higher abitity group of individuals. The criterion for the
distribution (allocation) of the respondents in groups is usually based
on an arbitrary percentage, for example 20%.

If we know the distribution of the individuals along the latent
scale, then we can use this information to partition the sample in
groups. One way to do this is to use the information given by the

posterior density h(zIx) or even the mean E(Z|x) (or E(YIx)).

If we intend to use the mean E(Z1x) (or E(YIx)) as the measure of
comparison between the position of the individuals on the latent scale
then we must have information about the shape of h(zix), at least in

terms of skweness and spread.

Let us consider two individuals with different score patterns X,
and x, and the posterior densities h(z1x,) and h(zlxz), which are not
skew and have nearly the same dispersion. If h(zix,) and h(zix,) have
roughly the same mean then x, and X, lead to the same beliefs about the
value of Z.

In these situations the mean E(Z1x) (or E(YIX) is a reliable

measure to compare individuals according to their position on the

latent scale.

For the logit/logit model, Bartholomew (1984) shows that when i
and oy , are fixed, the posterior density h(yIx) depends on x only
through the component score c¢,(x). And therefore, under this conditions
¢;(x) is a Bayesian sufficient statistic of Y. This property is not
shared, for example, by the probit model wused by Bock and
Liberman (1970). However Albanese(1990) shows that this is only true if

@ , 1is infinity.
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Investigation of the shape of the posterior density function

carried out by Albanese showed that:

(1)- As the number of items increases, the posterior distributions look
more normal and less skew, though with different variances. This is
even true if there are several @j ,'s estimated as large, and the
relation between the posterior means and the component scores is far
from linear. This result indicates that the joint analysis of the
posterior maen E(Z|x) and its standard deviation can provide a reliable

measurement of the latent variable.

(2)- We do not need to determine all the h(zIx)'s to have a clear idea
about the distribution of h(zix) along the latent scale Z. Instead, we
can select a representative sample of h(zix), selecting the score
pattern x so that the whole set of values assumed by E(YIxX) (or E(ZIx))

1s covered.

(3)- If we desire to make groups of individuals according to their
distribution on the latent scale, we can combine the information
obtained from the shape of h(zix)'s for all x with the observed
frequency distribution of these posterior distributions ( see Albanese,
1990)).

Knott and Albanese (1990) show that for the logit model the
assumption of normality for the shape of one of the posterior
distributions of the factor values implies the normality of all of
them, and that normal posterior distributions imply that the posterior
means are linear in the component scores. The identical ordering of
individuals by means of the posterior distribution and by the component

Scores emerges as a simple consequence of the same approach.

10-  Analysis of a real set of data using a logit/probit model

Law School Admission Test, Section VI

The Law School Admission Test (LSAT, section VI) consists of a
number of dichotomous items, which can be answered correctly (1) or
incorrectly (0). The purpose of the LSAT is to produce a score for each
respondent, which estimates his ability to solve the problems presented

as items in the test.
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Table 1 - Frequency distribution and scores obtained
by fitting the logit-probit model to the Law School

Admission Test Section VI data.

Response Frequency Total Posterior
pattern observed expected score mean
00000 3 2.3 0 -1.90
00001 6 5.9 1 -1.48
00010 2 2.6 1 -1.46
01000 1 1.8 1 -1.43
10000 10 9.5 1 =1..37
00100 1 0.7 1 -1.32
00011 11 8.9 2 -1.03
01001 8 6.4 2 -1.01
10001 29 34.6 2 -0.94
10010 14 15.6 2 -0.92
00101 1 2.6 2 -0.90
11000 16 11.3 2 -0.90
00110 3 2 2 -0.88
10100 3 4.7 2 -0.79
01011 16 13.6 3 -0.55
10011 81 76.6 3 -0.48
11001 56 56.1 3 -0.46
00111 4 6.0 3 -0.44
11010 21 2547 3 -0.44
01101 3 4.4 3 -0.42
01110 2 0 3 -0.40
10101 28 25.0 3 <0..35
10110 15 Lk 3 -0.33
11100 11 8.4 3 -0.30
11011 173 173.3 4 0.01
01111 15 159 4 0.05
10111 80 83.5 4 0.12
11101 61 62.5 4 0.15
11110 28 29.1 4 0.17
11111 298 296.7 5 0.65
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Table 1 shows the frequency distribution and the results obtained
by fitting a one-factor logit/probit model, using the TWOMISS program
(Albanese and Knott, 1991) with 48 quadrature peints and relative
change of the likelihood equal to 0.00001.

The fit of the logit-probit model provided a goodness of fit
measure x? equal to 15.30 on 13 degrees of freedom, which indicates a
very satisfactory fit. We may conclude that the items are measuring a
single latent wvariable. The scaling given by the posterior mean is
consistent with that of the total number of correct responses because
the discrimination parameter estimates &1,1 are very similar, as we can
see in Table 2. In this case is reasonable to expect that the Rasch
model, special case of the logit/probit model where all aj ,'s are
equal, would also fit the data. We fitted the Rasch model using the
RASCHMIS program (Albanese and Knott, 1991), which results confirmed

our expectations and the parameter estimates are displayed in Table 2

Table 2- Parameter estimates and standard deviations obtained from

fitting a logit/probit and the Rasch model to the LSAT VI data.

Logit-Probit Rasch
item Qi (sD) @i , (SD) aj o (SD)
1 0.82 (0.25) 2.77 (0.20) 2.73 (0.13)
2 0.72 (0.19) 0.9% (0.09) 0.99 (0.08)
3 0.89 (0.23) 0.25 (0.08) 0.24 (0.07)
4 0.69 (0.19) 1.28 (0.10) 1.31 (0.08)
5 0.66 (0.20) 2.05 (0.13) 2.10 (0.10)

&, = 0.76 SD=0.07

As both logit-probit and Rasch fit the data well, the individuals
may be scored using either the posterior means or the total number of
correct responses. We could also have used the component scores, since
no discrimination parameter is very large compared with the remaining
ones. Figure 2 shows clearly that the posterior mean E(Z1x) is a linear

function of the component score c,(x) =% Qf 4Xj.
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Figure 2- Relation between E(Z|x) and 2 @i ;X when fitting a

logit-probit model to the LSAT VI.

From Figure 2 we can see that the rYesponse patterns are distributed
into 6 groups along the line -1.92 + 0.67 c,(x). Table 2 shows that
they correspond to the 6 different values assumed by Y xj. As the
number of positive responses increases by one unit, both posterior
means, E(ZIx) and E(YIX), and the component score c,(x) jump to higher

values,

Figure 3 shows a representative collection of posterior
distributions of the latent variable in a Normal scale. The posterior
distributions are approximately normal with similar dispersions. The
response pattern 00000 is furthest off the line in Figure 2 and has the

most different variance in Figure 3.
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Figure 3- Posterior densities h(zix) when fitting a logit-probit model
to the LSAT VI, for the response patterns '00000" '01000", ‘00101,
‘01101', '10111' and '11111'.

It is convenient to point out that if there are one or more @j 418
estimated as very large, the relation between the posterior means and
the component scores is far from linear, but in general the posterior
distributions are still very close to normal. This implies that in
these cases the posterior means are more reliable measures of the
position of the individuals on the latent scale than the component

scores or the total number of correct responses.
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