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ABSTRACT

We present a solution method for deception-based games, which are zero-sum games

without perfect information, and apply it to the popular party game The Resistance. The

methods presented include adaptations of the techniques from (KOLLER; MEGIDDO;

von Stengel, 1994), together with novel improvements such as symmetry reductions.

These methods allow us to solve the game with up to 8 players, which would require

the analysis of 8.5∗1011 game tree nodes, if without symmetry reductions, and even more

without knowledge trees.

Keywords: Linear programming. CPLEX. Nash equilibrium. zero-sum games. imper-

fect information games.



Encontrando Estratégias Ótimas para Jogos de Estratagemas em Grupo

RESUMO

Apresentamos um método de solução para jogos de estratagemas — jogos de soma zero

sem informação perfeita — e o aplicamos ao popular jogo The Resistance. Os métodos

apresentados incluem adaptações das técnicas de (KOLLER; MEGIDDO; von Stengel,

1994), além de novas melhorias como, por exemplo, reduções de simetrias. Esses métodos

permitem soluções para até 8 jogadores, o que necessitaria a análise de 8.5 ∗ 1011 nodos

da árvore do jogo caso não utilizássemos reduções de simetria, e um número maior ainda

caso não utilizássemos árvores de conhecimento.

Palavras-chave: programação linear, CPLEX, equilíbrio de Nash, jogos de soma zero,

jogos de informação imperfeita.
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1 INTRODUCTION

The life of any person is riddled with decision-making opportunities, which can

have great impact to all involved. Decision-making is also of great importance to any busi-

ness, requiring plenty of employees, most often called managers, who are tasked solely

with performing it. Many have profited from the rapid technology advances in the latest

years by using these new technologies to help improving their decisions. These advances

have also brought a rise in Artificial Intelligience, which brings with it many unanswered

questions about decision-making, such as on how to evaluate it mathematically.

In order to provide those decision improvements, and to solve those questions, we

can turn to Game Theory. Games can be viewed as mathematical models for decision-

making interactions. They range from very simple, such as the children’s game "Rock-

Paper-Scissors", to real-life examples, such as auctions, and to complex games, such as

Go, Chess and Poker.

Artificial Intelligence has advanced to the point of being much better than any

human player on games as Chess and Go, and has recently beaten some top Poker play-

ers as well. However, it still has many questions left unanswered, such as on how to

adapt solutions like AlphaGo, which masters a wide variety of games, such as Chess and

Go, to games where deception is involved, like Poker, where the best AIs are based on

specifically restricted models of the game.

This work is an analysis and implementation of the state-of-the-art of methods

for solving games played by two agents, where there is no cooperation possible, and

where deception is involved. These restrictions, other than the possibility of deception, are

particularly useful for the definition of an “optimal strategy”, as common shortcomings

of the classic notion of Nash Equilibrium don’t manifest in these games.

We apply known combinatorial optimization techniques together with novel im-

provements in order to solve the game The Resistance, a popular party game based on

deception and asymmetry of information.
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2 DEFINITIONS FROM GAME THEORY

In this chapter we will present our definitions of games and strategies, which are

the same as in Game Theory literature, such as in (KOLLER; MEGIDDO, 1992).

Games and their Players

Game theory studies mathematical models of games. In these models we have

agents, called players, who may perform actions, from a modeled set, that affect the state

of the game. After a series of rounds of actions, the game may end, and results in a set of

payoffs for the players, where the payoff for each player is modeled as a numerical value.

Note that this makes the payoff a one-dimensional value, which means that situations that

would incur in multiple kinds of value, such as a cost in labor and a benefit in money,

require considerations on how to measure the final payoff in a single measurement unit.

As an example of games that can be studied in this manner, we have the popular

game of chess. For chess, we have 2 players who alternate turns, and on their turn they

choose an action to perform from the set of valid piece movements. The payoff for each

player can then be modeled as 1 in case of a win, 0 in case of a tie, and -1 in case of a

loss.

One important aspect of chess is that the sum of all its payoffs is always 0: if

one player wins, we have payoffs of 1 and -1, and, in case of a tie, both payoffs are 0.

This property, together with the fact that there are only 2 players, shows that the game

is competitive, that is, does not involve cooperation, since, in order to obtain a higher

payoff, one player must only aim to lower the other’s payoff by the same amount. Games

with this property are called zero-sum games.

Another important aspect of chess is that, at any point, both players have knowl-

edge of the game’s entire state. Games with this property are called perfect information

games. That is not the case in other games, such as poker, where one player does not

know which cards the other is holding. When players may have private information about

the state of the game, the game is called an imperfect information game.
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Strategies

When modeling a game, it is assumed that players act according to a strategy.

Being more mathematically precise, a strategy defines, given a player’s knowledge about

the game state, which actions the player may take, and with what probability the player

will take each of those actions. For example, in the game of Rock-Paper-Scissors, a

strategy may be to “always play Rock”, or “play each choice with probability 33%”.

Strategies with only one possible action per state are called pure strategies, while ones

where the players use random chance to choose their actions are called mixed strategies.

Nash Equilibria

In order to provide optimal strategies for a game, we can study a very important

concept from game theory, the Nash Equilibrium (NASH, 1951).

Definition 1. Let Pi(S1, S2, . . .) be the payoff for player i if players use strategies from

the set S1, S2, . . ., that is, player j uses strategy Sj . This set of strategies is a Nash

Equilibrium if ∀i, ∀S ′i, Pi(S1, S2, . . . , Si−1, S
′
i, Si+1, . . .) ≤ Pi(S1, S2, . . .)

This means that a Nash Equilibrium is a set of strategies, one for each player, such

that no player can improve his own payoff by changing just his own strategy. This is

an indicator of optimality, in a way, since it means that each player is playing their best,

assuming the other players’ strategies are known. This can also be seen as a saddle point

in the payoff function for the first player, since the payoff cannot increase when moving

along the possible strategies for the first player, and it cannot decrease along the second

player’s strategies. Nash demonstrated that, for any game with a finite amount of pure

strategies, there is at least one Nash Equilibrium, though it may be composed of mixed

strategies.

One basic example is the game of Rock-Paper-Scissors. In this game, both players

choose simultaneously between three actions, called Rock, Paper, and Scissors. If both

players choose the same action, the game is a tie. Otherwise, if one player chose Rock

and the second chose Paper, the player that chose Paper wins; similarly, a player choosing

Scissors wins against a player choosing Paper; and Rock wins against Scissors. We then

model payoffs, again, as being 0 for ties, 1 for a winning player, and -1 for a losing player.

There is no optimal pure strategy for this game, since, for any of the three that
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exist, there is another that beats it, and, since the game is symmetric, the optimal payoff

should be 0, not -1. This means that any Nash equilibrium must consist in a pair of

mixed strategies. In fact, we have only one: where both players play each action with 1
3

probability each. You can note that this strategy means that, no matter what the opponent

does, there is 1
3

chance of a tie, 1
3

chance of a win and 1
3

chance of a loss, for an average

payoff of 0.

Note that optimal strategies are not always this obvious. For instance, if the game

was adapted so that a win of paper against rock had payoffs of 1
2

and −1
2

rather than 1

and -1, the Nash Equilibrium would shift to playing paper with 40% chance, rock with

40% chance, and scissors with 20%. Note that this strategy is a Nash Equilibrium since

paper wins with 40% chance, ties with 40%, and loses with 20%, for an average payoff

of 40% ∗ 1
2
+ 40% ∗ 0 + 20% ∗ −1 = 0, while rock has an average payoff of 40% ∗ −1

2
+

40% ∗ 0 + 20% ∗ 1 = 0, and scissors 40% ∗ 1 + 40% ∗ −1 + 20% ∗ 0 = 0.

Mixed strategies also have a payoff of 0, due to the linearity of expectation: if and

opponent plays rock, paper and scissors with probabilities r, p and s, his expected payoff

is r ∗ P (Rock, S) + p ∗ P (Paper, S) + s ∗ P (Scissors, S) = r ∗ 0 + p ∗ 0 + s ∗ 0 = 0.

In fact, this analysis applies to any game, meaning that we can find the best response to a

strategy by searching only among pure strategies. This will be formalized in Theorem 2.

Representations of Games

The usual representations for single-round games, such as Rock-Paper-Scissors,

are with a payoff matrix, where rows represent the pure strategies for one player, and

columns represent the ones for the other player, as exemplified in Table 2.1 and Table 2.2.

Table 2.1: Normal form for Rock-Paper-Scissors
Player 2 \Player 1 Rock Paper Scissors

Rock 0 1 -1
Paper -1 0 1

Scissors 1 -1 0

Table 2.2: Normal form for modified Rock-Paper-Scissors
Player 2 \Player 1 Rock Paper Scissors

Rock 0 0.5 -1
Paper -0.5 0 1

Scissors 1 -1 0
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Figure 2.1: Extensive form for Rock-Paper-Scissors

Figure 2.2: Example of extensive form more compact than its normal form

This representation is commonly known as the normal form (NEUMANN; MOR-

GENSTERN, 2007). For multi-round games, such as chess or poker and variations, a

much more compact representation is the extensive form, as exemplified in Figure 2.1.

The extensive form can be modeled as a tree with labeled edges, with edge labels

corresponding to actions, and where each node is also labeled with the player that should

choose at that moment. Furthermore, nodes are grouped into partitions that represent the

player’s knowledge: two nodes are in the same group if the player cannot distinguish

between the two situations they represent. In particular, all nodes in the same group have

the same player label and the same action labels on their children edges. There can also

be an additional kind of label in nodes, representing random events. For example, in a

card game, the dealing of a card can be modeled as a node where each child represents

one of the possible cards dealt. The edges that are children of a random event node can

be labeled directly with the probability of that edge actually being traversed.
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Extensive form games may be converted to normal form, with each pure strategy

being a set of choices that say, given each possible game state, which action the player

should pick. Note that this may be exponential on the size of the tree, as exemplified on

Figure 2.2: for that game, the second player has 8 pure strategies, even though the tree

only has 6 leaves. A pure strategy there consists in choosing which of 2 actions to take

for each of 3 possible states. This simple example can be trivially extended to contain 2n

pure strategies with only 2n leaves.
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3 TECHNIQUES FOR FINDING GAME SOLUTIONS

In this chapter we present what are optimal strategies for two-player zero-sum

games, through the use of theorems commonly known in Game Theory, and we present

state-of-the-art techniques to find these strategies.

Solutions to Games

In this work we limit our study to two-player zero-sum games, since in these games

there is an unambiguous definition of “optimal strategy”:

Definition 2. P (S1, S2) is the payoff for the first player if he plays with strategy S1 and

the second player plays with strategy S2. In this case, the payoff for the second player

will be −P (S1, S2), since we are considering only zero-sum games.

Theorem 1. All Nash Equilibria result in the same payoff.

Proof. If we have two equilibria (S1, S2) with payoff p and (S1′, S2′) with payoff p′,

from the definition of Nash Equilibrium we know that

P (S1, S2′) ≥ P (S1, S2) = p

and that

−P (S1, S2′) ≥ −P (S1′, S2′) = −p′

thus p ≤ p′. Similarly,

P (S1′, S2) ≤ P (S1, S2) = p

−P (S1′, S2) ≤ −P (S1′, S2′) = −p′

p ≥ p′

Thus p = p′

With this we may call any strategy that belongs to a Nash Equilibrium as “opti-

mal”, since it gives the player an optimal payoff if the opponent has an optimal strategy

too, and this payoff may only increase if the opponent uses another strategy. It is possible

for the player to obtain a better payoff, but only if it is known that the opponent is not us-

ing an optimal strategy. In this work, we assume that is not the case, since, while there are
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biases in human play, even for simple games such as Rock-Paper-Scissors, as explored by

(WANG; XU; ZHOU, 2014), they can be somewhat corrected by aware players, and fully

corrected by the use of external tools, such as randomness generators like dice or mobile

apps, and can be assumed to not exist in non-human players, like artificial intelligences.

Useful properties of optimal strategies include that they work against unpredictable

opponents, and that they work against opponents that can predict your strategy.

Theorem 2. A strategy is optimal if it achieves at least the optimal payoff against each

pure strategy.

Proof. Since the payoff function against a fixed strategy is a linear function on the prob-

abilities of each pure strategy, the payoff for a mixed strategy is the weighted average of

the payoffs of the pure strategies it uses. Thus, it cannot surpass the payoff of the best

pure strategy it uses.

Thus we may, when validating the optimality of a solution, only check its outcome

against pure strategies, without having to consider mixed ones.

Definition 3. Given a strategy S1, we call Best Response any strategy S2 = argmaxP2(S1, S2) =

argminP1(S1, S2).

In particular, from the previous theorem we know that there is always a pure best

response to any strategy. Also, from the definition, all strategies in a Nash Equilibrium

are best responses to each other.

Theorem 3. The Nash Equilibria define a continuous, convex surface in the strategy

space.

Proof. If we have two optimal strategies, S1 and S1′, by playing the first with some

probability p and the second with probability 1−p we arrive at another Nash Equilibrium,

since the payoff against each pure strategy is at least the optimal payoff.

We do not consider multi-player and non-zero-sum games, since any definition of

optimality for them is very ambiguous and controversial. For instance, one such game is

the famous Prisoner’s Dilemma, a class of non-zero-sum games, with the payoff matrix of

one instance represented in Table 3.1. In it, each player may choose to benefit all players

at a small cost to himself, or may choose instead to hurt the other players with a small

gain to himself. The Nash Equilibrium for this game is for all players to defect, however

everyone would have a better payoff if instead everyone cooperated, which shows a flaw
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in the concept of Nash Equilibrium. In this case, the choice is between selfishness and

altruism, which is not a mathematical choice, but rather a philosophical one, so we keep

these games out of the scope of this work.

Table 3.1: Payoff matrix for an instance of the Prisoner’s Dilemma
Cooperate Defect

Cooperate 1,1 2,-1
Defect -1,2 0,0

Solving Perfect Information Games

There are many methods to find optimal strategies, each better suited to different

kinds of games.

For games with perfect information, that is, games in extensive form, and where

every knowledge partition contains a single node, there is always at least one optimal and

pure strategy, which can be found through backward induction (FUDENBERG; TIROLE,

1991).

Definition 4. The Subgame Payoff for a game state is the payoff function for the game

that starts at that state.

For a perfect information game, the optimal subgame payoff for a state is the

expected payoff if both players play optimally starting from that state. This value can be

found recursively, with backward induction:

• On a leaf, this value is the payoff of the game, which is fixed;

• For any node that corresponds to a first player choice, the value is the maximum

value among its children;

• For a second player choice, the value is the minimum among its children states;

• And for a random choice, the value is the expected value of its children, meaning

the weighted average, with weights equal to the probability that the corresponding

edge will be taken.

With this, we can see that the optimal strategy for perfect information games is to always

follow the action that maximizes the subgame payoff, or that minimizes it if you are the

second player, since by this recursive definition above this set of strategies is a Nash

Equilibrium.
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Figure 3.1: Part of the game tree for Tic-Tac-Toe, with subgame payoffs noted

In Figure 3.1 we have a small portion of the result of applying this algorithm to the

popular game of Tic-Tac-Toe. The game consists in two players, one placing X’s on the

board, and the other placing O’s, alternately, and without the ability to overwrite previous

placements. The winner is who manages to place three of their symbol in a straight line

first, including a diagonal.

On games where the outcome is either a win, a tie or a loss, and with no random-

ness involved, such as chess, go, or tic-tac-toe, this subgame payoff is always 1, 0 or -1,

representing respectively that, from that state, the first player can force a win, that optimal

play will lead to a tie, and that the second player can force a win.

Approximation Techniques for Larger Games

That method can find the optimal strategy on any perfect-information game, as

long as the game tree is not too large. For instance, checkers (SCHAEFFER et al., 2007).

However, many games such as Chess or Go have trees that are too large to be computed.

In those cases, it is not possible to explicitly compute a complete, perfect strategy. How-

ever, there have been increasing advances in obtaining approximate strategies for these

games. More specifically, usually a heuristic is used to approximate the subgame payoff,

and then this approximation is improved through techniques such as Alpha-Beta Prun-

ing (KNUTH; MOORE, 1975) and Monte Carlo Tree Search (TESAURO; GALPERIN,

1997). These techniques perform the propagation of these approximate subgame payoffs,

but only in part of the game tree, such as only for the immediate children of the current
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node, since the whole tree would be too big to be explored normally.

While chess has very optimized engines such as StockFish (ROMSTAD et al.,

2017), for the game of Go, Google has developed AlphaGo (SILVER et al., 2016), a

neural-network based AI trained via reinforcement learning, with the goal of being more

general purpose, that is, being able to solve perfect information games in general. Al-

phaGo has recently been adjusted into AlphaZero (SILVER et al., 2017), which can play

other games, such as Chess, and has quickly surpassed by far previous champion Chess-

specific engines.

Issues to Adapt to Imperfect Information Games

On most games without perfect information, there is no pure optimal strategy,

and the notion of subgame payoff changes drastically, not being able to be approximated

properly. For instance, in Rock-Paper-Scissors, the optimal subgame payoff after the

first player plays is always -1, since the second player can counter the move. However,

the optimal payoff for the game is 0. This apparent contradiction is due to the fact that

separate subtrees affect each other’s optimal strategies.

Approximation Techniques for Imperfect Information Games

Even though that may be the case, there is an approach based on machine learning

that computes approximate solutions to games without perfect information: the Counter-

factual Regret Minimization (CRM) method (ZINKEVICH et al., 2008). It computes a

function that, given the current game state and player knowledge, returns the probability

of choosing each action. The core of the algorithm is how it improves a strategy with rein-

forcement learning (SUTTON; BARTO, 1998). After having it play against an opponent,

who is also being trained with this strategy, a regret value is calculated for each action

that was not taken. To calculate the value, the game is replayed with the only difference

being that the action is taken instead of not taken. The regret is, then, the difference of

the payoffs of these two games, or 0 if taking the action lowered the payoff. The strategy

then is shifted towards picking actions with higher regret value, with a shift proportional

to the regret value.

Fixpoints for this strategy shifting algorithm are Nash Equilibria, since they cor-
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respond to strategies where all regrets are 0, meaning no action could be taken that would

improve the player’s payoff. However, since regrets are computed when playing one pure

strategy at a time, not all possible paths of a mixed strategy, in most games these fix-

points don’t exist, since they would mean we have an optimal pure strategy. Rather, the

algorithm usually converges to a strategy where the shifts cancel out, on average. This

can give an intuition that CRM is not very efficient, since the computed function never

properly converges. Indeed, only recently has this method been optimized enough to be

competitive against human players in a limited variant of poker (BOWLING et al., 2015).

The main reason why these approximative methods don’t work as well for imper-

fect information games is the fact that the exact solution methods for imperfect informa-

tion games are very different from the methods for solving perfect information games.

While the latter use essentially a dynamic programming method, the former have to take

into account that most subgames may interfere with each other’s solutions, and use linear

programming models instead.

Solving Imperfect Information Games with Linear Programming

The basic method for finding an exact solution is taking the game model in normal

form, and then translating Theorem 2 into linear programming. Essentially, the formula-

tion tries to maximize the final payoff, and restricts this payoff to be the minimum payoff

against any pure strategy.

Let Psi be the set of pure strategies for player i. Then the formulation becomes

max z

subject to:

∀p2 ∈ Ps2,
∑

p1∈Ps1

S[p1]P (p1, p2) ≥ z

∑
p1

S[p1] = 1

S[p1] ∈ R+, ∀p1 ∈ Ps1

This formulations finds z, the optimal payoff, and S, the strategy for the first player.

While this provides a very good solution for normal form games, it is not as ef-

ficient for extensive form games, since, as already observed, the normal form formu-



21

lation usually has size exponential on the size of the game tree. However, (KOLLER;

MEGIDDO, 1996) demonstrates the existence of some solution with linear support, and

in fact there are methods for finding more compact solutions.

The Lemke-Howson Algorithm

The basic algorithm for studying two player games that may not be zero-sum is

the Lemke-Howson algorithm, which can be adapted to extensive form zero-sum games,

as demonstrated in (KOLLER; MEGIDDO; von Stengel, 1996). It works similarly to

the Simplex algorithm, pivoting pure strategies that are best reponses to the opponent’s

current strategy into the current solution, while pivoting out strategies that are not best

reponses anymore.

The model used in that work involves modeling a mixed strategy not by assigning

probabilities not to pure strategies, but rather by assigning probabilities p to the leaves of

the game tree. Then, the probability p of an internal node is defined by the probabilities

of its children, as will be described later in this section. The strategy represented by these

probabilities means that, when reaching some node n, each possible action corresponds

to a child node c, and the probability that the strategy picks this action is p(c)/p(n).

In order to apply this formulation, the game tree is converted into two trees, one

for each player, corresponding to their knowledge. Then the strategy of the first player

affects only the probabilities in his tree, the strategy for the second player affects only the

second tree probabilities, and the probabilities of random events only affect the payoffs

on the leaves.

Definition 5. The knowledge tree for a player is a tree where each node belongs to either

the set of action nodes, A, the set of information nodes, I , or the set of leaf nodes, L. This

tree is defined by having a bijection between its nodes and the original game’s knowledge

states for the player. This means that A represents the states where the player may take an

action, with a bijection between children and possible actions. I represents states where

it is not the player’s turn, with a bijection between children and possible information that

the player may receive at that state. And L is the set of states when the game is over. We

represent the children of a node n as the set C(n).

Each node in this tree corresponds, thus, to a knowledge partition in the original

game tree. This formulation uses the fact that players have knowledge of their actions and
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of the history of their perception. The study of games where players don’t have perfect

recall, meaning that they may end up at the same knowledge state from more than one

knowledge path, that is, meaning that the knowledge does not follow a tree, is out of the

scope of this work, specially since it is proven NP-complete by (KOLLER; MEGIDDO,

1992).

The policy for having random event probabilities only affect leaves, as mentioned

earlier, simplifies the modeling, since then there is no need to consider how these events

interact between the two knowledge trees. It makes it so that the probability of a node is

the sum of the probabilities of its children, if the node is in A, or the probability is equal

to each of its children’s probabilities, if the node is in I . Without the policy for random

events, these values could be calculated in much more complex ways, due to concerns

with conditional probabilities. By only affecting the leaves, we can model the final payoff

for each pair of leaves, one leaf from each tree, and make it not just the original payoff for

the corresponding end state, but that payoff multiplied by the product of the probabilities

that random events led to that state. Note that this payoff is thus not being affected by

either player’s strategies, and is 0 if those leaves cannot be reached simultaneously, as that

would mean some random event probability would be 0. We can summarize these rules

in the following formulation:

max
S1

min
S2

∑
l1∈L1,l2∈L2

S1[l1]P (l1, l2)S2[l2]

subject to:

∀a1 ∈ A1, S1[a1] =
∑

c1∈C(a1)

S1[c1]

∀i1 ∈ I1,∀c1 ∈ C(i1), S1[i1] = S1[c1]

S1[Root1] = 1

∀a2 ∈ A2, S2[a2] =
∑

c2∈C(a2)

S2[c2]

∀i2 ∈ I2, ∀c2 ∈ C(i2), S2[i2] = S2[c2]

S2[Root2] = 1

S1[p1] ∈ R+,∀p1 ∈ A1 ∪ I1 ∪ L1

S2[p2] ∈ R+,∀p2 ∈ A2 ∪ I2 ∪ L2
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As an example, consider the following poker simplification: both players privately

receive a random card, saying 0 or 1 each, then the first player decides to bet 1 extra point

or not, and if he does, the second player decides to call the bet or forfeit. If there is no

forfeit, the bets go to the player with the higher card, and are split in case of a tie. The

game trees from the point of view of the players are represented in Figure 3.2, and so the

LCP formulation becomes:

max
S1

min
S2

− 0.5S1[0P ] + 0.5S1[1P ] + 0.25(S1[0BF ] + S1[1BF ])(S2[0F ] + S2[1F ]

− 0.5S1[0BC]S2[1C] + 0.5S1[1BC]S2[0C]

subject to:

S1[root1] =S1[0]

S1[root1] =S1[1]

S1[0] =S1[0P ] + S1[0B]

S1[0B] =S1[0BC]

S1[0B] =S1[0BF ]

S1[1] =S1[1P ] + S1[1B]

S1[1B] =S1[1BC]

S1[1B] =S1[1BF ]

S1[root1] =1

S2[root2] =S2[0]

S2[root2] =S2[1]

S2[0] =S2[0C] + S2[0F ]

S2[1] =S2[1C] + S2[1F ]

S2[root2] =1

S1[p1] ∈ R+,∀p1 ∈ A1 ∪ I1 ∪ L1

S2[p2] ∈ R+,∀p2 ∈ A2 ∪ I2 ∪ L2

In this formulation, we labeled every node with the initials of the edge labels in

the path from the root to the node. While the optimal strategy is quite trivial, being to

always bet or call if you have a good card and to never bet nor call if you have a bad card,
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Figure 3.2: The tree for the poker-like game described, split into the points of view for
both players

(a) The tree for the first player

(b) The tree for the second player
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the analysis required to demonstrate that fact is not so straightforward, but is automatic

when using the LCP formulation above.

Adapting to a Linear Programming Model

Lemke-Howson, as the simplex method, is not suitable for very degenerate sys-

tems, and is also quite complex to be optimized when dealing with larger games. (KOLLER;

MEGIDDO; von Stengel, 1994) has solved these issues by adapting the linear comple-

mentarity model into a linear programming model, thus enabling optimizations achieved

in linear programming that are not yet available for linear complementarity, since the

latter is not nearly as studied as the former.

The adaptation found involves the use of the dual program for the restrictions of

the second player. By fixing the first player’s strategy, we have that the second player’s

strategy should satisfy a normal minimization linear program. By taking the dual of that

program, it becomes a maximization program, which stays linear even after making the

first player’s strategy into variables again. That is, this modified system contains variables

for the first player’s strategy and for the dual of the second player’s, and is a purely

maximization linear program, meaning it can be solved with simplex or other methods

for normal linear programs. We provide the full derivation and a more straightforward

formulation of this method in Section 5.2.



26

4 A GROUP DECEPTION GAME

In this work, we solved the party game The Resistance, since it is a somewhat

popular game, is based on knowledge economics, and is not too complex.

Rules

The original game is played with 5 to 10 players, and consists of 5 consecutive

rounds. At the start of the game, one third of the players become spies, and become aware

of who the spies are, while the other players, the resistance, lack that knowledge. Then,

in each round, some amount of players are chosen by the group, through a democratic

process. Then these chosen players go in a “mission”, and can privately decide to help or

sabotage the mission. If enough sabotages happens, the spies gain one point, otherwise

the resistance gains one point. The first team to reach 3 points wins.

Table 4.1: Mission sizes for The Resistance
Players 5 6 7 8
Round 1 2 2 2 3
Round 2 3 3 3 4
Round 3 2 4 3 4
Round 4 3 3 4* 5*
Round 5 3 4 4 5

* means the missions requires two sabotages to give a point to spies

For example, a game among 5 players may play out as follows:

• Players 2 and 4 become spies

• Round 1: Players 1 and 2 are voted to go on a mission

• No sabotages happen, the resistance gains one point

• Round 2: Players 1, 2 and 3 are voted to go on a mission

• This time, player 2 decides to sabotage the mission, giving one point to the spies.

The resistance is aware of the point, but not of who did the sabotage

• Round 3: Players 1 and 2 are voted into the mission

• Player 2 sabotages the mission again, now the spies have 2 points

• Round 4: Players 1, 3 and 4 are voted into the mission

• Player 4 sabotages the mission, winning the game for the spies
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We can see that the strategy for the spies is to sabotage missions as long as that

doesn’t give the resistance too much information, and the resistance’s strategy is to agree

on missions that avoid players who are probably spies. Note that mission assignments are

dominated by the resistance, since they form the majority of players.

Modeling a Multi-Player Game as a Two Player Game

Even though this game has more than two players, we can model it as a two-

player zero-sum game, thus allowing us to apply the methods discussed in Chapter 3 to

find optimal strategies to it.

We consider that we have one player who represents the resistance and the other

represent the spies. Then, the mission voting can be controlled by the resistance player,

while the spies player decides on whether to sabotage each mission or not, but cannot

decide to sabotage a mission where not enough spies were assigned.

This is a simplification of the game, as it assumes that all players are coordinated

in their strategy, and that the spies can also make synchronized decisions without alerting

the resistance. To be more precise, we can simplify the game in this manner by having all

players agree on a strategy before the game starts. In a real scenario, this is often achieved

after a series of games, where strategies can converge after enough discussions among the

group of players.

Then the resistance can make their decisions based on agreed protocols, such as

die-rolling, coin-tossing, or cryptographic exchanges. This makes the voting aspect of

the game irrelevant, since all resistance players would vote on the decision they agreed

upon, and any spies that vote on another option would have no effect on the final result,

but would improve the knowledge of the resistance. As for the spies’ strategy, they can

just sabotage missions the two-player optimal strategy says them to.

There is an important problem, however, when more than one spy is chosen to

a mission. In that case, optimal 2-player strategy would dictate that, if they wanted to

sabotage the mission, exactly the amount necessary would do it, and if not, no spy would

sabotage the mission. So they face two issues: when not all chosen spies would need to

sabotage the mission, they have to know who would do it. This can easily be prearranged,

before the game starts. The second issue is when more than one spy would need to sab-

otage the mission, but their strategy dictates that they should do it but not with 100%

probability, meaning they would need to take a synchronized decision. This can still be
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solved, albeit with more complex pre-game preparations, such as deciding on commu-

nication protocols that would not be detected by the other players. We can also solve

the model ignoring this problem, then adapt the strategy found accordingly, though this

adaptation falls out of the scope of this work.

Size of the Game’s Trees

In Figure 4.1 we can see how the game scales with the amount of players. We can

note, particularly, that the size of the game grows exponentially as rounds pass, with the

exception that many game stories finish after the 4th round. We can also see that the game

size increases super-exponentially with the amount of players. Indeed, we could not gen-

erate any results for instances with more than 8 players, as even the reductions presented

in Section 5.3 were not enough to make those instances fit in our server’s memory.
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Figure 4.1: Knowledge tree sizes for Resistance

(a) Sizes for 8 players

(b) Total sizes
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5 STRATEGIES AND THEIR APPLICATION TO SOLVING THE RESISTANCE

In this chapter we present a reformulation of the techniques presented in (KOLLER;

MEGIDDO; von Stengel, 1994), showing that they are the same as the linear program-

ming model presented in (BOSANSKY et al., 2014). We then proceed to show the novel

technique of symmetry reduction, which was used to great effect on solving the game The

Resistance.

Adapting Games to Two Players

Our strategy for solving games is to first model them as a two-player zero-sum

game. With a multi-player game, such as Resistance, we can, as discussed, group to-

gether players who aim to cooperate, and who are competing against the other team. We

have observed that, in general, this is possible, albeit with varying degrees of faithfulness

between the model and the actual game, depending on the game. For instance, we could

model a political scenario, if we wanted to have an idea of a strategy, by limiting it to

two competing parties, at the cost of not taking into consideration bipartisan agreements,

betrayals, ethics, among many other factors.

Adapting Koller’s Dual Method

We then adapt the method from (KOLLER; MEGIDDO; von Stengel, 1994), in

order to have a more straightforward formulation, thus enabling a more effective imple-

mentation and future improvements. We do so by figuring out what kind of constraints

may arise from performing the dual.

The first step from the cited work is to isolate the second player’s variables. Thus

we have the partial formulation:
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min
∑
l2∈L2

(
∑
l1∈L1

S1[l1]P (l1, l2))S2[l2]

subject to:

∀a2 ∈ A2, S2[a2] =
∑

c2∈C(a2)

S2[c2]

∀i2 ∈ I2,∀c2 ∈ C(i2), S2[i2] = S2[c2]

S2[Root2] = 1

S2[p2] ∈ R+,∀p2 ∈ A2 ∪ I2 ∪ L2

First we note that the variables in the primal model correspond to nodes, and

constraints may be of two kinds: representing an edge where the parent is an information

node, and representing a choice node and its children. While every choice node only

appears in two constraints, its parent’s and its own, information nodes appear in one

constraint for every neighbor edge.

When taking the dual, these roles reverse. Each primal constraint from a choice

node, since it contained many primal variables, becomes a dual variable that appears in

many dual constraints. Meanwhile, an information node primal variable, since it appeared

in many primal constraints, becomes a dual constraint that contains many dual variables.

We can observe that in the dual:

maxM [Root2]

subject to:

∀l2 ∈ L2,M [l2] ≤
∑
l1∈L1

S1[l1]P (l1, l2)

∀a2 ∈ A2,∀c2 ∈ C(a2),M [a2] ≤M [c2]

∀i2 ∈ I2,M [i2] ≤
∑

c2∈C(i2)

M [c2]

M [p2] ∈ R,∀p2 ∈ A2 ∪ I2 ∪ L2

When analyzing these new constraints and variables, we can see that an informa-

tion node dual constraint is a sum, meaning the dual value for the corresponding node

is the sum of its children. Also, the dual constraints where a choice node dual variable
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appears form a minimum constraint, meaning a choice node dual value is the minimum

value of its children.

As for the root and leaves, in the primal the root appeared in the single constraint

involving a constant (root = 1), and the leaves are the ones that appeared in the final value

definition. In the dual, these two roles are also reversed: the root value becomes also the

final value of the system, and the leaves have values assigned to them.

The complete interpretation of this dual is that, while in the primal we were inter-

ested in the optimal probability a strategy should choose for each node, S[node], in the

dual we only calculate the best payoff possible when we reach each node, M [node]. If a

node represents a choice, the player may choose the child node that has the best payoff,

thus the value of a choice node is the minimum of its children. And if a node represents

waiting for information, the child node that is followed is taken at random, thus the value

of the parent node is a weighted average of the values of its children. However, we already

weigh the nodes accordingly, since random probabilities and the other player’s strategy

already affect the leaves’ values, thus this weighted average is translated into simply a

sum.

We can return the first player’s restrictions to the system now, since we know that

the dual we just modeled finds the same final values as its primal (WOLFE, 1961):

maxM [Root2]

subject to:

∀a1 ∈ A1, S1[a1] =
∑

c1∈C(a1)

S1[c1]

∀i1 ∈ I1,∀c1 ∈ C(i1), S1[i1] = S1[c1]

S1[Root1] = 1

∀l2 ∈ L2,M [l2] ≤
∑
l1∈L1

S1[l1]P (l1, l2)

∀a2 ∈ A2,∀c2 ∈ C(a2),M [a2] ≤M [c2]

∀i2 ∈ I2,M [i2] ≤
∑

c2∈C(i2)

M [c2]

S1[p1] ∈ R+,∀p1 ∈ A1 ∪ I1 ∪ L1

M [p2] ∈ R,∀p2 ∈ A2 ∪ I2 ∪ L2
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So the final system optimizes “probability” variables for one player, S, and “pay-

off” variables for the second, M . The constraints for the first player are:

• His root must have probability 1;

• Each choice node is constrained to have its probability be the sum of its children’s;

• And each information node is constrained to have probability equal to each child

Then we have the second player’s constraints on his leaves: they must have payoff equal

to the expected payoff if the second player reached that leaf, but again the random event

probability policy of affecting only leaves, as described in Section 3.5, also affects this

payoff. After that, these leaf payoffs are propagated towards the root of the second

player’s tree, through the other second player constraints:

• An information node has payoff equal to the sum of its children;

• A choice node has payoff equal to the minimum of its children;

• The value being maximized by the system is the payoff value for the root of the

second player’s tree.

In the linear system, these constraints are translated as M [n2] ≤ f(C(n2) for f repre-

senting sum or minimum, respectively, which is not the equality M [n2] = f(C(n2) one

could expect. These two formulations, however, are equivalent, since, when maximizing

the final payoff, these variables end up with the maximum value they can get, meaning

they will be equal to the limit imposed on them.

While this formulation and similar can be found in other works, such as (BOSAN-

SKY et al., 2014), it is important to link it to the dual method from (KOLLER; MEGIDDO;

von Stengel, 1994), since this brings new points of view to this formulation, and may help

with improving it and its usages. For example, in this work we are interested in obtain-

ing the optimal strategies for both players, but this simplified formulation only obtains

the strategy S of the first player, giving only the much less useful payoff values M for

the second. This would mean that both this system and its dual would need to be solved

separately in order to obtain the strategies for both players, S1 and S2. However, by

understanding the duality in the formulation, we may take the dual constraints for the sec-

ond player, which use variables M , and calculate their associated primal variables, thus

obtaining the strategy S2 for the second player, without the need for a complete reformu-

lation and re-solving of the system. This improves the efficiency of the solution by more

than double, since solving one formulation of the system may be much faster than solving

its dual, if the game is quite asymmetric, as is the case for Resistance.
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Symmetry Reduction

One important decision when solving a game is on how to treat symmetry. Al-

phaGo, for example, takes all symmetries of its training sets and uses them as part of the

training set too, growing it by a factor of 8. In this work, however, our bottleneck is not

that there is too little data being produced, but that there is too big of a game tree being

generated. With that in mind, we take the opposite stance to AlphaGo, pruning symmetry,

in order to reduce the size of our game tree. We do so with two techniques: by generating

the knowledge trees directly, without generating the complete game tree; and by merging

equivalent nodes and subtrees.

The strategy of generating knowledge trees directly is quite straightforward: in-

stead of generating the complete game tree, and only then using that tree to generate the

two knowledge trees, it is possible to skip that first step, at the cost of a more complex

implementation. The main benefit, and also the main challenge, of generating knowledge

trees directly, is that events not controlled by the player only manifest into the creation of

new nodes when they give new information to the player.

This means that, for example, in a card game where both players start with the

private knowledge of their N cards, the full game tree starts with one node for each com-

bination of 2N cards, while knowledge trees only consider the combinations of N cards

dealt to the player that owns the tree. Since the amount of combinations grows exponen-

tially, cutting the amount of cards by half represents a great improvement in the amount

of nodes generated. This technique is not immediately useful for the game of Resistance,

since it only reduces the size of knowledge trees of players who don’t have too much in-

formation. This means that it reduces the size of the resistance player’s tree, but the spies

still end up with a knowledge tree of size very similar to the full game’s tree, since they

have complete knowledge of the game’s state.

We can, however, reduce the spies player’s tree by noticing that he has many equiv-

alent subtrees in his knowledge tree, and so does the resistance player. We define two sub-

trees as equivalent if they have an ismorphism, with possible relabeling of actions. Note

that this isomorphism also requires the payoffs for leaf pairs to also match up. For Resis-

tance, these isomorphisms are relabelings of the players. For example, if the resistance

player sends players 1 and 2 into the first mission, that brings the same results as if he had

sent players 1 and 3, if we swapped the names of players 2 and 3. We can then assume

that there is an optimal strategy where every equivalent action is taken with the same
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probability, similarly to Rock-Paper-Scissors, as doing so only increases unpredictability

of the player.

In order to implement this reduction, we have to be careful with conditional prob-

abilities. For example, the resistance’s first play is to send two random players on a

mission. With 5 players, this means that the probability that no spies were sent into this

mission is 30%, that both spies were sent is 10%, and that exactly one spy was sent is

60%. These calculations are far from trivial, so we solve this problem instead by, in any

symmetry-reduced game state, keeping track of all possible spy combinations, along with

the resistance player’s knowledge. This knowledge consists in knowing which players

went in exactly the same missions together and which went in different ones, meaning

that players are partitioned into groups of non-differentiable players.

With these pieces of data, we can more easily calculate the conditional probabili-

ties. In the example, the resistance’s choice translates into breaking the group of 5 players

into two groups, the two players that went in the first mission and the three players that

did not go in that mission. Then we can filter the possible spy combinations according

to those partitions: of the 10 pairs, 1 consists in both spies belonging to the first player

partition, 6 have one spy in the first partition and the other on the second partition, and 3

have both spies in the second partition.

We do not have, however, a framework for discovery of equivalence properties in

general games, requiring this optimization to be applied manually for other games. This

is because finding them automatically would require deeper understanding of sub-game

analysis, which, as described in (MORAVČÍK et al., 2017), is far from straightforward.

It does rest, however, as a topic of interest for future work on the field.



36

Figure 5.1: Comparison of knowledge tree sizes with symmetry reduction on Resistance
with 8 players

Figure 5.2: Comparison of total knowledge tree sizes with symmetry reduction on Resis-
tance
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6 RESULTS

In order to solve the linear programming models derived form the game’s descrip-

tion, we used the GLPK solver, and the CPLEX solver. For GLPK, we generated the

model in its MathProg language, while for CPLEX we used its C++ API. GLPK was not

able to handle very large instances of the game, being very slow to solve the models, so

its numbers were not interesting, thus we only present the results with CPLEX.

The tests were run in a server equipped with the 8-core FX-8150 AMD processor,

which runs at 3.6GHz. It has 32GB of memory, Ubuntu 16.04 (xenial), on Linux 4.4.0.

CPLEX was much more efficient than GLPK, by using multiple threads, and using

a barrier method. The barrier method is specially useful because the models generated by

our techniques are quite degenerate. Indeed, only one independent variable is not 0, in the

constraint S[Root] = 1.

With these results we can see the advantage of obtaining the strategy of the second

player via dual variables. Indeed, the time taken to solve the model with roles reversed

was up to 9 times faster, due to the asymmetry between the two players, in information

and strategy, that is inherent to this game.

Table 6.1: Nash Equlibrium payoff for Resistance
Players 5 6 7 8
Payoff -0.4 -0.333 -0.486 -0.679

Table 6.2: Resources used to solve Resistance, with first player controlling the resistance
Players 5 6 7 8

CPU 220% 217% 249% 200%
Time 2.820s 13.620s 7m 21.200s 9h 47m 32s

Memory 311MB 1,057MB 7,491MB 31,720MB
Iterations 31,114 118,370 1,019,223 7,216,077

Table 6.3: Resources used to solve the dual of Resistance, that is, with first player con-
trolling the spies

Players 5 6 7 8
CPU 229% 226% 365% 462%
Time 1.910s 10.080s 2m 58.650s 1h 7m 54s

Memory 214MB 691MB 5,352MB 31,748MB
Iterations 3,156 8,156 265,379 1,864,616

We can note that, in these results, the spies have an advantage. In games with

human players, however, this difference is usually mitigated by the fact that it is quite hard
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Figure 6.1: CPLEX iterations to solve Resistance, in both normal and dual form

for a human spy player to never act in a suspicious manner, as noted by (DEMYANOV et

al., 2015), and also probably by the lack of knowledge of optimal strategies and by the lack

of synchronization among spies, as discussed in Chapter 4, however these considerations

fall out of the scope of this work.
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7 CONCLUSION

We have solved the game The Resistance for up to 8 players, which is an imperfect

information game with 8.5 ∗ 1011 knowledge nodes. This was achieved through a com-

bination of known techniques, specially the ones described in (KOLLER; MEGIDDO;

von Stengel, 1994), with novel methods, particularly the symmetry reduction method we

introduce.

Optimal solutions for games have quite a few uses, including the modification of

protocols in order to improve their expected results, as studied in (LIU; MARSCHNER,

2017), and the development of artificial intelligences to play or aid the play of the situa-

tions from which the solved models were extracted from.

In our work, we found a partial solution for the problem of cross-interfering game

subtrees in imperfect games, albeit requiring very restrictive assumptions, which is the

symmetry reduction. Indeed, we found that if multiple choices lead to equal sub-game

trees, other than permutations and relabeling, there is always some optimal solution where

they receive the same probability. This result, if adapted into a generic solution, may

prove important for the adaptation of algorithms usch as AlphaGo to imperfect infor-

mation games, as this is a major issue faced in the transition from perfect to imperfect

information.

We have also attempted to implement a method similar to the one described in

(BOSANSKY et al., 2014): by restricting the game model temporarily, it is possible to

obtain an optimal strategy for a simplified version of the game. Then this simplification

can be expanded iteratively until the strategy found corresponds to a good approximation

of an optimal strategy. Our implementation was inconsistent, meaning we did not obtain

results from this approach, but it still seems very promising, as it heavily reduces the

game tree sizes being worked with. We have modified the cited approach by improving

the algorithm for the tree expansion. In particular, we used the strategy from (KOLLER;

MEGIDDO, 1992), which efficiently discovers best responses, that could then be used as

new expansion branches.
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