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RESUMO

Radares de Abertura Sintética Polarimétricos (PolSAR) são capazes de prover

imagens de alta resolução da Terra, independentemente da luz-do-dia e sob praticamente

quaisquer condições climáticas. Tais imagens são úteis em diversas aplicações, incluindo

as que têm por fim reconhecer categorias de objetos em uma superfície, por exemplo para

monitorar a utilização do solo ou fornecer suporte a operações de resgate após catástrofes

naturais. Estas imagens possuem propriedades geométricas e radiométricas que dificul-

tam sua interpretação, o que é exacerbado pelo constante crescimento da quantidade de

tais imagens disponíveis em alta resolução.

A maioria dos métodos de reconhecimento de objetos operam sobre imagens re-

presentadas por matrizes de números reais. O fato de dados PolSAR serem de natureza

complexa leva ao questionamento se métodos especificamente desenvolvidos para traba-

lhar com números complexos seriam capazes de explorar melhor as propriedades destes

dados. Uma das possibilidades é o uso do Complex-Valued Multilayer Perceptron (CV-

MLP). Trabalhos prévios mostraram resultados promissores ao aplicar uma implemen-

tação básica deste algoritmo à tarefa em questão. O presente trabalho mostra que um

CV-MLP usando técnicas como Inicialização de Xavier, Adagrad e unidades lineares reti-

ficadas é capaz de aprimorar tais resultados. A precisão obtida é no entanto equivalente a

de um Multilayer Perceptron de natureza real análogo, com a condição de que uma trans-

formação apropriada do domínio complexo para o real seja empregada sobre os dados

fornecidos ao algoritmo.

Palavras-chave: Reconhecimento de Objetos. Classificação de imagens. Machine Lear-

ning. Multilayer Perceptron. Radar de abertura sintética polarimétrico.
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1 INTRODUÇÃO

Radares de abertura sintética polarimétricos (Polarimetric Synthetic Aperture Ra-

dar – PolSAR) são largamente usados para aplicações de sensoreamento remoto, uma vez

que fornecem imagens de alta resolução independentemente da luz do dia e sob pratica-

mente qualquer condição climática. Tais imagens são uma fonte valiosa de informações

para diversas aplicações. Particularmente o reconhecimento de objetos em imagens Pol-

SAR demonstrou-se útil no monitoramento de desmatamento e na coordenação de equipes

de resgate em situações de desastre (HÄNSCH, 2014). A natureza e quantidade de dados

disponíveis impõem no entanto diversas dificuldades à sua interpretação, gerando uma

demanda por métodos automáticos eficientes e confiáveis para reconhecimento de objetos

em imagens PolSAR. Hänsch e Hellwich (2009) investigaram o uso de Perceptrons Mul-

ticamada de natureza complexa (Complex-Valued Multi-Layer Perceptrons – CV-MLP)

para a categorização destas imagens, atendo-se a uma implementação elementar do algo-

ritmo. O propósito do presente trabalho é explorar as possibilidades de CV-MLPs para

esta tarefa, adaptando e implementando diversos aperfeiçoamentos comumente emprega-

dos a Multi-Layer Perceptrons (MLP) de natureza real (Real-Valued Multilayer Percep-

tron –RV-MLP) ao CV-MLP.

2 CONCEITOS BÁSICOS

Imagens PolSAR

Imagens de sistemas PolSAR são geradas a partir de reflexões de ondas eletromag-

néticas de diferentes polarizações transmitidas sobre a área observada. O sinais refletidos

são somados coerentemente e processados de modo a permitir a distinção dos diferen-

tes objetos. Isso é possível devido à diferente resposta de certos objetos a determinadas

polarizações (HÄNSCH; HELLWICH, 2010).

A análise de imagens PolSAR, seja ela manual ou automática, é dificultada por di-

versos fatores. Além de diferentes propriedades geométricas quando comparadas a ima-

gens ópticas, elas sofrem de efeitos tais como sombras (pontos negros originados pela

oclusão de ondas), layover (junção das reflexões de diferentes objetos em um único pixel)

e speckle, uma granularidade originada pela interferência de diversas ondas coerentes.
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Reconhecimento de Objetos em imagens PolSAR

O propósito do Reconhecimento de Objetos é encontrar objetos em uma cena com

base em um modelo do mesmo (JAIN; KASTURI; SCHUNCK, 1995). Aqui cabe distin-

guir Reconhecimento de Objetos Genérico, também conhecido por categorização, onde

busca-se classificar regiões da imagem de acordo com certas categorias, do Reconheci-

mento de Objetos Específico, que atém-se a reconhecer um objeto específico. Aplicações

de sensoreamento remoto com base em imagens PolSAR geralmente têm por objetivo a

categorização de imagens, o que se deve a diversos fatores, tais como a falta de imagens

de alta resolução até anos recentes e a ausência de extratores de características (ing. fea-

tures) adequados (HÄNSCH; HELLWICH, 2010, p. 127). Por este motivo, este trabalho

delimita a tarefa de Reconhecimento de Objetos à atribuição de categorias aos elementos

da imagem em questão.

Hänsch (2014, p. 7) estende a interpretação de Reconhecimento de Objetos Ge-

nérico ao assumir que um sistema neste contexto deve ser capaz de categorizar a imagem

sem utilizar conhecimento prévio de um conjunto de dados específico em seu desenvolvi-

mento.

Perceptron Multicamada

Perceptrons Multicamada são um tipo de Rede Neural Pré-Alimentada (Feed-

Forward Neural Network). Um MLP consiste de diversas unidades denominadas neurô-

nios dispostas em camadas e sem retroalimentação (feedback loop).

3 IMAGENS DE RADAR DE ABERTURA SINTÉTICA POLARIMÉTRICO

Imageamento por Radar

Imagens de Radar são geradas a partir de faixas capturadas por um satélite em mo-

vimento ou aeronave. Estas são obtidas através da transmissão de pulsos eletromagnéticos

de frequência modulada, os quais são refletidos por objetos na região observada. A dis-

tinção dos objetos emprega diferentes técnicas de acordo com a orientação de resolução
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almejada. Na direção de alcance (range direction) objetos são separados de acordo com a

diferença temporal entre as reflexões obtidas independentemente da tecnologia de Radar

em questão. A resolução ao longo do trajeto da aeronave (a chamada direção de azimute)

por sua vez difere consideravelmente entre os sistemas existentes. Radares de Abertura

Sintética fazem isso considerando o efeito Doppler ocasionado pela diferente disposição

de objetos na superfície, o que requer o armazenamento da fase dos sinais recebidos. Uma

explanação detalhada da técnica empregada encontra-se em Zyl (2011).

PolSAR

Radares de Abertura Sintética Polarimétricos aperfeiçoam a técnica SAR empre-

gando ondas eletromagnéticas polarizadas. Polarização consiste na restrição da direção

ao longo da qual o componente elétrico da onda oscila. Devido ao fato de certo objetos re-

fletirem sinais diferentemente de acordo com a polarização empregada, imagens PolSAR

permitem "uma inferência mais completa da superfície natural ou outros parâmetros ob-

jetivos" (ZEBKER; ZYL, 1991, p. 1583, tradução nossa). As diferentes combinações

de polarização horizontal e vertical dos sinais transmitidos e recebidos são armazenados

em uma matriz 2×2 de dispersão (scattering matrix) de elementos complexos, a qual

representa um "pixel" da imagem.

4 PERCEPTRON MULTICAMADA DE NATUREZA COMPLEXA

Um MLP consiste de diversas unidades de processamento (neurônios) dispostas

em camadas, sendo que as saídas de neurônios de uma camada são conectadas às en-

tradas da camada seguinte (sem retroalimentação). Em cada neurônio, uma função de

transferência (também denominada função de ativação) não linear é aplicada sobre uma

combinação linear de suas respectivas entradas acrescida de um termo de bias (para lidar

com vetores de entrada nulos). Como um todo um MLP pode portanto ser compreendido

como uma função não linear de múltiplas variáveis sobre o vetor de entrada (BISHOP,

1995, p. 117). Um MLP de natureza complexa difere de um MLP real por possuir entra-

das, parâmetros (pesos individuais por entrada usados no cálculo da combinação linear) e

saídas complexos. Além disso as funções de transferência têm domínio e imagem com-



8

plexos.

Mecanismo

O processo de aprendizagem de um MLP dá-se em duas etapas principais, as quais

são repetidas sucessivamente sobre os dados de entrada. Primeiramente a entrada (ou um

conjunto delas no caso do processamento em batch, ver adiante) é fornecida à primeira

camada de neurônios do MLP e propagada até a última camada, aplicando-se a função

de transferência sobre uma combinação linear das saídas da camada anterior (incluindo o

termo bias).

A saída da última camada corresponde à saída do MLP em si. Esta é comparada

com valores objetivo (targets) utilizados no treinamento por meio de uma função de erro, a

qual deve ser minimizada pelo algoritmo. Isso é feito na segunda etapa denominada back-

propagation, onde os parâmetros de todas as camadas são ajustados de modo a minimizar

o erro obtido, seguindo o método do gradiente:

wl
ji(t+ 1) = wl

ji(t) + µ∆wl
ji(t) (4.1)

∆wl
ji(t) = −∇E{wji}(D) (4.2)

onde wji são os pesos conectando os neurônios j e i, µ é a constante de taxa de apren-

dizagem e 4.2 é o gradiente da função de erro respectivamente aos atuais parâmetros da

rede e o conjunto dos dados de entrada.

Funções de Ativação

MLPs impõem uma série de requisitos às funções de ativação. Usualmente estas

devem ser não lineares, analíticas (de modo a permitir o emprego do método do gradiente)

e idealmente limitadas de modo a prevenir o crescimento das entradas e consequentemente

problemas de representação numérica. Exemplos típicos no domínio real são as funções

sigmoidais, tais como a tangente hiperbólica e a função logística.

Tais restrições no entanto não podem ser aplicadas a um CV-MLP, uma vez que

pelo Teorema de Liouville somente funções constantes satisfazem-nas no domínio com-
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plexo. Georgiou e Koutsougeras (1992) propõem um relaxamento das restrições, particu-

larmente exigindo somente que as derivadas parciais (respectivamente à componente real

ou imaginária da variável) existam e sejam limitadas. Exemplos de funções de ativação

complexas que satisfazem tais condições são a split-tanh e split-logistic, que aplicam a

respectiva função real (tanh ou logística) separadamente à componente real e imaginária

da combinação linear de entrada. Este trabalho investiga além das funções supracitadas

a função retificada (rectifier) e sua variante complexa split-rectifier, além da função tanh

no domínio complexo.

Aperfeiçoamentos

Uma série de técnicas podem ser empregadas para otimizar o processo de apren-

dizado de um MLP.

Weight Decay

Um técnica de regularização que consiste em adicionar um termo à função de erro

de modo a penalizar altos valores nos pesos. Isso leva o algoritmo a priorizar as menores

soluções para o problema de otimização em questão.

Aprendizado em Batch e Algoritmo do Gradiente Estocástico

O algoritmo MLP original ajusta os pesos da rede após processar todos os dados

de entrada, acumulando os respectivos erros. Esta estratégia também é conhecido por

aprendizado em Batch. Uma alternativa, denominada Algoritmo do Gradiente Estocás-

tico, consiste em atualizar os pesos após o processamento individual de cada um dos dados

de entrada, o que confere um comportamento mais "ruidoso" ao processo de aprendizado

e permite à rede evitar mínimos locais do espaço de soluções (LECUN et al., 2012, p.

13). Finalmente pode-se considerar mini-batches (um subconjunto dos dados de entrada)

para a atualização dos pesos, combinando propriedades dos métodos supracitados.

Inicialização dos parâmetros

A escolha de valores iniciais adequados para os pesos do algoritmo garante uma

convergência mais rápida e evita possíveis problemas numéricos. Uma técnica comu-



10

mente empregada consiste na inicialização de Xavier, a qual atribui valores aleatórios a

cada parâmetro de modo a garantir que a variância dos pesos de uma camada satisfaça a

seguinte relação:

V ar(wl) =
2

Nl +Nl+1

(4.3)

onde wl é o vetor de pesos da camada l, e Nl o número de unidades da camada l. Com

pequenas alterações derivamos a distribuição de valores necessária para garantir a mesma

propriedade em um CV-MLP.

Ajuste da taxa de aprendizado

A taxa de aprendizado da equação 4.1 é um importante hiperparâmetro do algo-

ritmo. Uma vez que a escolha de uma taxa adequada tem grande influência nos resultados

e depende de particularidades do conjunto de dados, convém empregar alguma estratégia

de ajuste deste parâmetro de modo a otimizar o aprendizado. O presente trabalho inves-

tiga dois algoritmos presentes na literatura, o Adagrad (Adaptive Gradient Algorithm) e o

Adam (Adaptive Moment Estimation), que ajustam os pesos individualmente, concedendo

taxas maiores a características (features) menos frequentes.

5 AVALIAÇÃO E RESULTADOS

Com o propósito de comparar a performance de um MLP complexo à de um real,

implementamos o algoritmo completo capaz de lidar com ambas variantes. A implemen-

tação suporta as técnicas mencionadas anteriormente, tais como Weight Decay, Adagrad,

Adam, inicialização de Xavier e múltiplas funções de ativação.

Os dados utilizados consistem em diversas imagens extraídas de uma imagem

PolSAR fornecida pelo Centro Aeroespacial Alemão. Esta foi classificada manualmente

por um grupo de especialistas, os quais atribuíram a cada pixel uma dentre cinco classes

(floresta, plantação, arbustal, estrada e construção). Todos experimentos utilizam cross-

folding, o que gera uma maior variedade entre amostras de uma mesma classe e permite

o preparo de uma quantidade satisfatória de dados para treinamento e teste do algoritmo.

Os experimentos foram escolhidos de modo a verificar a influência dos aperfeiçoamentos

selecionados para o presente trabalho.



11

Como esperado, o método do gradiente estocástico e a técnica mini-batch leva-

ram a uma convergência consideravelmente rápida da rede comparados ao método batch,

com uma ligeira vantagem para o primeiro método. Dado o relativo baixo custo com-

putacional e a rápida convergência do mini-batch, optamos por utilizá-lo para os demais

experimentos, viabilizando uma maior quantidade e variedade de testes.

O uso de uma taxa fixa de aprendizagem leva a grandes contrastes entre as di-

versas funções de ativação, e constatamos uma vantagem considerável do CV-MLP com-

parado ao RV-MLP quando a função de ativação "correspondente" (por ex. rectifier e

split-rectifier) foi empregada. Além disso a função de ativação tanh levou neste caso a

melhores resultados se comparada à função retificada. Já a função de ativação tanh com-

plexa resultou em uma divergência da rede em alguns experimentos, o que deve-se dentre

outros fatores a singularidades da função no domínio complexo.

O uso do Adagrad ou Adam reduz consideravelmente as diferenças entre o CV-

MLP e o RV-MLP, levando à uma ligeira vantagem do último dependendo da transfor-

mação aplicada aos dados de entrada para o domínio real. Além disso constatamos uma

ligeira vantagem da função retificada quando comparada às funções sigmoidais.

6 CONCLUSÃO

Este trabalho investigou os méritos do uso de um CV-MLP para a classificação

de imagens PolSAR. Selecionamos e adaptamos ao domínio complexo diversos aperfei-

çoamentos da literatura, além de diferentes funções de ativação, incluindo as funções

retificadas de trabalhos recentes.

Mostramos experimentalmente que o uso de técnicas de ajuste da taxa de apren-

dizagem (no caso Adagrad ou Adam) influenciam mais a performance da rede do que a

escolha entre um CV-MLP e RV-MLP ou da função de ativação. Além disso, tais técnicas

ressaltam os benefícios do uso de uma função retificada, sobretudo quando redes com um

maior número de neurônios são usadas.

Trabalhos futuros podem investigar outras funções complexas analíticas mas ir-

restritas, as quais, acompanhadas de técnicas de normalização adequadas, podem levar

a outras constatações. O emprego de Adagrad ou Adam é aconselhável, uma vez que

como constatamos o uso de uma taxa fixa de aprendizagem influencia negativamente o

comportamento da rede.
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Abstract

Polarimetric Synthetic Aperture Radars (PolSAR) are able to deliver high-resolution im-

ages of the Earth, independently of daylight and almost under any weather condition.

Such images are useful in several applications, including those interested in recognizing

object categories over a region, for instance for controlling land cover or supporting rescue

efforts after natural catastrophes. These images have some geometrical and radiometric

properties that make their interpretation a non-trivial task though, what gets exacerbated

by the increasing amount of images and improvements of their resolution. Thus automatic

methods are essential for efficiently accomplishing such tasks.

Most general object recognition methods are concerned with real-valued optical

images. The fact that PolSAR measurements are inherently complex-valued raises the

question if methods specially designed to work with complex numbers could better

exploit their properties. One of the possibilities is to use a Complex-valued Multilayer

Perceptron (CV-MLP). Early works showed promising results by applying a basic

implementation of a CV-MLP to the aforementioned task. This work shows that a

CV-MLP using techniques such as Xavier Initialization, Adagrad and ReLUs is able to

obtain much better results. The achieved accuracy is equivalent to that of an analogous

real-valued MLP though, provided a proper mapping of the complex-valued PolSAR data

to the real domain is used.



Zusammenfassung

Polarimetrische Radars mit synthetischer Apertur (eng. PolSAR) sind in der Lage hoch

auflösende Bilder der Erde unabhängig von Tageslicht und unter fast allen Wetterbedin-

gungen zu liefern. Solche Bilder sind bei vielen Anwendungen nützlich, unter anderem

bei solchen die an der Erkennung von Objektkategorien auf Gebieten interessiert sind, um

beispielsweise Landbedeckung zu kontrollieren und Rettungsaktionen nach natürlichen

Katastrophen zu unterstützen. Diese Bilder besitzen geometrische und radiometrische

Eigenschaften die ihre Interpretierung zu einer nicht-trivialen Aufgabe machen, was durch

die immer größer werdende Datenmenge und die Verbesserung derer Auflösung ver-

schlimmert wird. Daher sind automatische Methoden unabdingbar um solche Aufgaben

effizient zu erfüllen.

Die meisten allgemeinen Objekterkennungsmethoden beziehen sich auf reell

wertige optische Bilder. Die Tatsache, dass PolSAR Messungen inhärent komplexwertig

sind, wirft die Frage auf, ob Methoden die für den Umgang mit komplexen Zahlen ent-

worfen sind die Eigenschaften dieser Daten besser ausnutzen können. Eine Möglichkeit

ist ein Komplexwertiges Mehrlagiges Perceptron (eng. CV-MLP) zu benutzen. Frühere

Arbeiten konnten vielversprechende Ergebnisse bei der Anwendung einer einfachen Im-

plementation von einem CV-MLP für die Klassifizierung von PolSAR Bildern feststellen.

Diese Arbeit zeigt, dass ein CV-MLP das Techniken wie Xavier Initialisierung, Adagrad

und ReLUs verwendet in der Lage ist, deutlich bessere Ergebnisse zu erzielen. Die

erreichte Genauigkeit ist allerdings äquivalent zu der von einem analogen reellwertigen

MLP, vorausgesetzt, dass eine geeignete Abbildung der komplexwertigen PolSAR-Daten

auf den reellen Bereich benutzt wird.
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1 INTRODUCTION

Polarimetric Synthetic Aperture Radars (short PolSAR) are nowadays widely used

for remote sensing applications, since they provide high resolution images independent of

daylight and almost under any weather condition (HÄNSCH; HELLWICH, 2010). These

images are a valuable source of information for several applications. The ability to rec-

ognize objects on a radar image for instance might be used for tasks such as deforestation

monitoring and disaster management (HÄNSCH, 2014). The nature and amount of data

available imposes several difficulties on its manual interpretation, creating a demand for

efficient and reliable automatic methods for object recognition in PolSAR images. Hän-

sch and Hellwich (2009) investigated the use of Complex-Valued Multi-Layer Perceptrons

(short CV-MLP) for categorization of this images. The purpose of the current work is to

further explore the capabilities of a CV-MLP for this task by adapting and implementing

several improvements used in real-valued MLPs (short RV-MLP) to the complex-valued

counterpart.

1.1 Concepts

1.1.1 PolSAR images

PolSAR systems generate images based on reflections of electromagnetic waves

transmitted in different polarisations over an observed area. The back-scattered signals

are coherently summed and further processed in order to distinguish scattering objects.

The use of different polarisation delivers extra information that can be useful for object

recognition, since "targets show different behaviours regarding polarisations" (HÄNSCH;

HELLWICH, 2010).

The complexity of PolSAR data impose a lot of problems regarding its analysis

though. Besides different geometrical properties of PolSAR images if compared to opti-

cal ones, they are affected by several other issues like shadows, layover and speckle effect

(MAGHSOUDI, 2011), which are described in Chapter 2. This makes categorization of

object in such images – be it manually done by an expert or automatically – specially

difficult. Several works try to improve this task by either developing new decomposi-

tion and preprocessing techniques or tackling the problem with different approximation

algorithms.
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1.1.2 Object Recognition

Object Recognition deals with finding objects on a scene based on an object model

(JAIN; KASTURI; SCHUNCK, 1995). The author further defines the object recognition

task as follows:

Formally, given an image containing one or more objects of interest (and

background) and a set of labels corresponding to a set of models known to the

system, the system should assign correct labels to regions, or a set of regions,

in the image. (JAIN; KASTURI; SCHUNCK, 1995, p. 459)

This goal resembles what Pinz (2005, p. 258) terms generic Object Recognition

(short generic OR, also known as categorization), which contrasts to what he defines as

specific Object Recognition (short specific OR), a task concerned with the recognition of

specific, individiual objects.

The generic OR concept can be further extended to the understanding that the

system is designed without any previous object category knowledge (HÄNSCH, 2014,

p. 7). While expert systems designed for specific categorization scenarios might achieve

better results, since particularities of a specific dataset might be explored during the design

phase, they usually lack the flexibility required by time-critical use cases. On the other

side an artificial neural network such the MLP doesn’t depend on a particular dataset

during its design, and can be trained on arbitrary data.

Object Recognition is usually done in different layers of processing. In a bottom-

up approach, for instance, low-level layers extract features (radiometric vectors, geometri-

cal properties etc.) from their input data and deliver semantically meaningful information

to subsequent layers (HÄNSCH; HELLWICH, 2010, p. 110). This is opposed to top-

down methods, which use prior knowledge about object models in order to find them in a

specific image. Powerful systems can be build that combine both approaches (HÄNSCH;

HELLWICH, 2010).

1.1.2.1 Object Recognition in PolSAR data

Regarding Object Recognition in PolSAR images, applications usually are con-

cerned with generic OR (HÄNSCH; HELLWICH, 2010, p. 125). This is related to "the

difficult image characteristics, the lack of appropriate feature extractors, the high in-class

variety, and just recently available high-resolution PolSAR data ..." (HÄNSCH; HELL-
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WICH, 2010, p. 127). Regarding the difficulties inherent to the nature of these images,

even shape and object parts might differ within samples of the same category consider-

ably. In this case, applications usually have to rely to a larger degree on this radiomet-

ric information, as opposed to geometrical properties (HÄNSCH; HELLWICH, 2010, p.

110). The current work thus shares this understanding, and considers object recognition

as the task of attributing categories to objects on an image.

1.1.3 Multilayer Perceptron

Multilayer Perceptrons (short MLP) are a kind of feed-forward neural network.

They consist of several units called neurons arranged layerwise without feed-back loops.

Due to their internal mechanisms explained in Chapter 3, MLPs are capable of approxi-

mating arbitrary non-linear functions, what makes them specially useful in tasks with the

requirement of handling generic problems, such as generic object recognition.

1.2 Motivation

There are several automatic methods for tackling the task of object recognition.

Several of them belong to the class of supervised learning methods. These consist in

feeding the algorithm with a set of training inputs and the corresponding targets, which

are used to learn the internal parameters of the framework in order to approximate the

underlying mapping of inputs to targets. This is then used to classify new data. Since

PolSAR data is commonly stored in complex-valued scattering matrices, the use of real-

valued supervised learning methods require some kind of processing in order to map

complex-values to real-values. An alternative approach would be to use a learning method

designed to work directly with the complex-valued inputs. Previous works investigated

the use of such methods for different kinds of input data, and Hänsch (2010) showed

promising results using complex-valued MLPs for classification of PolSAR images.

The CV-MLP investigated by Hänsch (2010) was "an extension of the most basic

form of RV-MLP", as pointed by the author. He thus suggests further exploring several

techniques that improve this basic algorithm, specially those related to approximation,

normalization and regularisation.
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1.3 Objective and Assumptions

The goal of this work is to research several improvements to RV-MLPs suggested

by previous works, adapt them for using in a CV-MLP and investigate their merits for the

concrete task of general object recognition in PolSAR images. The improvements inves-

tigated include different activation functions, basic regularization techniques and adaptive

learning strategies such as Adagrad and Adam.

Since object recognition here is restricted to generic OR, it is assumed that the

CV-MLP should be able to categorize its inputs, and not identify an specific instance of

an object. In order to achieve its goal, this works assumes that the CV-MLP has enough

labeled training data.

This work wants to investigate following questions: how does a CV-MLP support-

ing the aforementioned techniques perform when used for bottom-up object recognition

of PolSAR images? Does it achieve similar results or even outperform a RV-MLP? How

does each technique mentioned influence its approximation abilities?

1.4 Methodology

In order to investigate the merits of a complex-valued MLP for this task, this work

compares its performance to that of a real-valued MLP by implementing a complete MLP

system supporting both approaches. This ensures that they operate under similar condi-

tions and can be tested over the same prepared and normalized dataset. Our MLP system

supports methods such as Xavier initialization, Adagrad, Adam and different activation

functions, which are explained in Chapter 3.

We then use a labeled image provided by the German Aerospace Center (german

abbreviation DLR) to build a proper dataset for training and testing purposes. In order

to better explore the dataset and extract results that resemble real usage conditions, the

experiments use cross-validation, i.e. we divide the dataset in several folds, train using a

subset of it and test on the remaining ones, repeating the process with other partitionings.

Several experiments were done using a variety of hyper-parameters in order to better

understand the concrete influence of each method on the performance of a CV-MLP for

this concrete task.
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1.5 Related Work

A first rigorous analysis of the mathematical properties of feed-forward neural

network was presented in 1961 by Minsky and Papert (1969), which included a critical

view of its benefits and limitations. Only in 1988 though, with introduction of the Back-

Propagation algorithm by Rumelhart et al. (1988), a way to learn parameters throughout

a multi-layered network was shown. In contrast with a single layered perceptron, this is

able to learn non-linear mappings between inputs and outputs, expanding its capabilities

(BISHOP, 1995, p. 117).

Early works on complex-valued neural networks specially regarding MLPs, such

as Kim and Guest (1990), derived a complex back-propagation algorithm assuming that

the complex activation functions used were differentiable. As Georgiou and Koutsougeras

(1992) later showed this couldn’t be assumed for the activation functions used. By using

the Liouville’s theorem – which states that "if f(z) is entire1 and bounded on the complex

plane, then f(z) is a constant function"(GEORGIOU; KOUTSOUGERAS, 1992, p. 332)

– he proposed a set of requirements for suitable activation functions. With the founda-

tions of complex-valued neural networks set, several works investigated their benefits for

different applications, including speech enhancement (DRUDE; RAJ; HAEB-UMBACH,

2016) and Magnetic Resonance Images (MRI) (VIRTUE; YU; LUSTIG, 2017).

Regarding Object Recognition in (Pol)SAR images, Hänsch (2014) proposed a

two stage approach that uses a Random Forest classifier for dealing with low-level fea-

tures, and another Random Forest classifier that computes high-level features taking the

outputs from the first stage as inputs. Other works address the problem using a combina-

tion of Support Vector Machines and Markov Random Fields ((BOVOLO; BRUZZONE,

2005) and (MASJEDI; ZOEJ; MAGHSOUDI, 2016)). The concrete use of artificial neu-

ral networks for supervised SAR classification was explored among others by Antropov et

al. (2014), who applied a probabilistic neural network in order to map land cover and clas-

sify soil type in boreal forests, and Serpico, Bruzzone and Roli (1996), who compared the

performance of an MLP, a probabilistic neural network and a proposed structured neural

network for classification of multi sensor (optical and SAR) images, and obtained better

accuracy results with the first approach. Hänsch (2010) investigated the use of a complex-

valued MLP for classification of PolSAR data, and showed that a simple implementation

1A function f(z) is said to be entire if it is analytic at all points z ∈ C(GEORGIOU; KOUT-
SOUGERAS, 1992)



7

of a CV-MLP could achieve similar results to a RV-MLP, despite extra difficulties regard-

ing activation function choice and its differentiability.

1.6 Outline

This text is structured as follows: Chapter 2 explains the basic characteristics

of PolSAR images, their benefits and particularities. Chapter 3 addresses structure and

mechanisms of CV-MLPs, highlighting possible differences to RV-MLPs. Further it de-

scribes the techniques explored, including changes needed for a CV-MLP when needed.

Chapter 4 first describes the experimental setup, including dataset preparation, input nor-

malization and parameter selection. Then the results are presented and discussed. Chapter

5 summarizes the contributions of this work, followed by suggestions for further investi-

gation paths.
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2 POLARIMETRIC SYNTHETIC-APERTURE RADAR IMAGES

Radar systems are able to detect objects by illuminating them with electromag-

netic waves and measuring the received echo. Since the signal is actively transmitted,

radars can detect objects independently of daylight and under almost any weather condi-

tion (HÄNSCH; HELLWICH, 2009). For these reasons they are widely used in remote

sensing applications.

2.1 Radar imaging

As thoroughly explained by (ZYL, 2011, p. 14), radar images are generated from

several stripes (called swaths or tracks) acquired by a moving satellite or airplane at one

side of the flight path. This is done by transmitting pulses of frequency-modulated elec-

tromagnetic at a Pulse Repetition Frequency (short PRF) and capturing their reflections.

The received signal is then processed in order to distinguish reflections from different

scatterers.

Distinguishing objects in radar images requires different approaches depending on

which direction this is done. Along the range direction (perpendicular to the flight track)

objects are separated according to the time difference between the received back-scattered

signals. The range resolution depends thus on the duration of the transmitted pulses or

the signal bandwidth. The achievable along-track resolution (called azimuth) depends on

the radar method used. In real aperture radars, this is determined by the antenna size. Due

to physical limitations, this leads to poor resolutions, what makes this kind of technique

unsuitable for remote sensing applications (ZYL, 2011, 14).

Based on a technique firstly proposed by Carl Wiley in 1951, Synthetic Aperture

Radars distinguish objects along the azimuth direction by considering their Doppler fre-

quencies, which differ if they are at different positions relatively to the station’s velocity

vector (ZYL, 2011, p. 14). The Doppler history can be obtained by coherently summing

the back-scattered signal and processing it. A detailed explanation can be found in (ZYL,

2011). This method allows the use of smaller antennas and achieves a much higher along-

track resolution, which is independent of the distance to the scattering object (ZYL, 2011,

p. 16). For these reasons, SAR images are extensively used nowadays (HÄNSCH, 2010).
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2.2 Polarimetric Synthetic Aperture Radar

Polarimetric Synthetic Aperture Radars (short PolSAR) improve the SAR tech-

nique by taking into account the polarisation of the electromagnetic waves used. Polari-

sation restricts the direction in which the electrical field component of the wave oscillates.

From the three types of polarisation (circular, elliptical and linear), the linear polarisation

is the most commonly used in PolSAR (HÄNSCH; HELLWICH, 2010, p. 112). Po-

larimetry allows "a more complete inference of natural surface or other target parameters

than is possible with a single channel radar system" (ZEBKER; ZYL, 1991, p. 1583).

This is possible since "most targets show different behaviours regarding different polari-

sations", and also because "scatterers change the polarisation of the incident wave due to

material or geometrical properties (HÄNSCH; HELLWICH, 2010, p. 112).

The different combinations of horizontal and vertical polarisations from the trans-

mitted and received signals are stored in a 2x2 complex scattering matrix S defined as:

S =


Shh Shv

Svh Svv




where Str is the acquired complex value correspondent to the polarisation t of the trans-

mitted wave and the polarisation r of the received wave.

Assuming reciprocity of natural targets, this matrix can be reduced to a three-

element complex vector k (LEE; GRUNES; GRANDI, 1999, p. 2363):

k = (Shh,
√
2Shv, Svv)

T (2.1)

where the factor
√
2 "is to ensure consistency in the (span) total power computation"

(LEE; GRUNES; GRANDI, 1999, p. 2363).

An alternative way to store information is the covariance matrix C (LEE;

GRUNES; GRANDI, 1999, p. 2363)

C = (k · k∗)T =




|Shh|2
√
2ShhS

∗
hv ShhS

∗
vv√

2ShvS
∗
hh 2|Shv|2

√
2ShvS

∗
vv

SvvS
∗
hh

√
2SvvS

∗
hv |Svv|2




which provides a compact representation of collective properties of a group of resolution

elements (ZEBKER; ZYL, 1991) and simplifies some filtering techniques discussed next.
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2.3 SAR-related Effects

Applications analysing SAR and PolSAR images usually have to deal with some

typical effects conditioned by the nature of SAR image acquisition. For instance due to the

side-looking capturing process and depending on the angle of incidence and geometrical

properties of objects and terrain, waves can be occluded at some spots, resulting in black

areas called shadows (HÄNSCH; HELLWICH, 2010, p. 117).

A second problem called layover also relates to geometrical characteristics of the

scene. Since "SAR measures the distance between sensor and ground by usage of an elec-

tromagnetic wave with a certain extension of the wave front in range direction" (HÄN-

SCH; HELLWICH, 2010, p. 118), there may be several points within exactly the same

distance from the sensor that get merged into a single resolution point. This is for exam-

ple the case of tall buildings, which are projected onto a same pixel as objects and ground

directly in front of them (with respect to the radar position). These effects have an im-

portant influence on the particular task of object recognition in (Pol)SAR images, and are

some of the reasons that these tend to rely more on radiometric than geometric properties.

2.3.1 Speckle effect and filtering

Raw PolSAR signals typically have a noise-like effect called speckle. It is the re-

sult of "coherent interference of waves reflected from many elementary scatterers" (LEE;

GRUNES; GRANDI, 1999), and can be visually observed as a granular texture over the

image. As stressed by (HÄNSCH; HELLWICH, 2010, p.117), this is described as a

noise-like effect because although its spatial distribution resembles a random process, it

is actually a completely deterministic process.

There are several techniques to reduce the speckle effect. A common approach is

the so called multi-look processing, which consists in averaging several one-look covari-

ance matrices over a group of N image points (LEE; GRUNES; GRANDI, 1999):

Z =
1

N

N∑

i=1

C(i) (2.2)

One possible disadvantage of this method is the loss of resolution due to averaging

over a region.

Other processing techniques for speckle reduction are the use of a boxcar filter – a
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"convolution filter that replaces the center pixel by the mean value of pixels in a square fil-

tering window" (LEE; GRUNES; GRANDI, 1999) – and the Enhanced Lee Filter, which

uses an estimation of the local variance statistics (LEE; GRUNES; GRANDI, 1999) for

filtering images. Both techniques significantly simplify classification tasks, as verified by

(HÄNSCH, 2010).

Figure 2.1 illustrates the speckle effect and the resulting images after applying

multi-look processing and boxcar filter.

Figure 2.1: Left: original PolSAR image; center: boxcar filtered image; right: multi-look
processed image (scaled). Samples extracted from Oberpfaffenhofen dataset (DLR)
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3 COMPLEX-VALUED MULTI-LAYER PERCEPTRON

This chapter describes the structures and mechanisms of a Multi-Layer Perceptron

(short MLP). To avoid redundancy and complexity, the notation will focus on the complex

case, with possible differences to the real-case being discussed when relevant.

The chapter begins with a description of the overall characteristics of an MLP, in-

cluding a derivation of the back-propagation algorithm, both based on the ones provided

by Hänsch (2010). After a discussion about activation functions, including an explana-

tion about the investigated complex-valued ones, several established improvements to the

basic MLP model are shown.

3.1 Structure

As a kind of feed-forward neural network, Multi-Layer Perceptrons provide "a

framework for representing non-linear functional mappings between a set of input vari-

ables and a set of output variables" (BISHOP, 1995, p. 117). They consist of a layered

arrangement of processing units, with connections between the outputs of the units from

one layer and the subsequent ones. In each processing unit a single-valued non-linear

activation function (also known as transfer function) is applied over a weighted linear

combination of its inputs. Due to this composition of several non-linear functions of a

single variable, and the fact that there are no feed-back loops in the described network, an

MLP as a whole can be seen as a multi-variable non-linear function over its input vector

(BISHOP, 1995, p. 117).

In an MLP with L layers, the first one (l = 1) is called input layer, the last one

(l = L) output layer. The others are referred to as hidden layers.

A complex-valued MLP differs from its real counterpart by having complex-

valued inputs, weights and outputs. Also activation functions are mappings between com-

plex values. The error function usually maps complex values to real ones, simplifying the

minimization task.
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3.2 Mechanisms

Given a training set

D =
{
(z, t)(α)

}
α=1,...,P

(3.1)

where P is the number of training samples, z ∈ C
N0 are input vectors, t ∈ C

NL the cor-

responding targets and Nl the number of neurons at layer l, the goal of an MLP is to find

a set of weights {w}optimal with which the network output approximates the given targets.

Using individual error functions err(·) for each network output yL and the corresponding

target, the weights of an MLP are adjusted so that the global error function

E{w}(D) =
1

P

P∑

α=1

err
(
yL(z

(α)), t(α)
)

(3.2)

gets minimized.

This is achieved in a two-way process. First the response of the network given a

sample input is computed (feed-forward), then the resulting error is back-propagated and

the networks weights are updated accordingly.

3.2.1 Feed-Forward

This step consists in feeding the inputs into the first layer of the network, and

propagating them and the neurons’ responses layer-wise towards the output layer. For

each neuron i at layer l, the corresponding output yli is computed as follows:

yli =




zi, l = 1,

f l(hl
i) l > 1

(3.3)

hi =

Nl−1∑

j=1

yl−1
j · wl

ji l > 1 (3.4)

where hi is the net input fed into neuron i, f(h) : C → C is the corresponding activation

function, zi ∈ C the ith element from the input vector and wl
ji ∈ C the weight connecting

this neuron to the jth neuron from the preceding layer.

Note that MLPs also add a bias term to Equation 3.3, which allows neurons to deal
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with all-zero inputs. A common trick is to add to each layer a fixed input, for instance

1 + i or 1 when real, and the corresponding weight, what effectively adds a bias term

while conserving the simplicity of the feed-forward equations shown.

3.2.2 Back-Propagation

The actual learning process happens during the back-propagation of the resulting

error. The underlying mechanism was firstly described by Rumelhart et al. (1988). Using

the delta rule, the algorithm updates each weight following a gradient descent strategy,

so that the error gets minimized. More specifically a weight wji is updated at iteration t

according to following equations:

wl
ji(t+ 1) = wl

ji(t) + µ∆wl
ji(t) (3.5)

∆wl
ji(t) = −∇E{wji}(D) (3.6)

where µ ∈ R is the learning rate.

Individual weight updates are proportional to −∇E{w}(D). In the real case, this

corresponds to −dE{w}(D)

dwl
ji

. Since E{w}(D) in the complex case is real-valued (with a

complex argument), the following rule for gradient descent computation can be applied

(PETERSEN; PEDERSEN et al., 2008, p. 19):

∇E{w}(D) = 2
dE{w}(D)

dw∗

=
2

P

P∑

α=1

∂err(yL(z(α), t(α)))

∂wl ∗

ji

(3.7)

Because E{w}(D) is actually a composition of functions, this derivative is obtained

with the chain rule of analysis, which, for analytic functions, also applies to complex-

valued functions. For non-analytic functions (usually the case in CV-MLPs, see Section

3.2.2), the chain rule reads (PETERSEN; PEDERSEN et al., 2008):
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∂g(u)

∂x
=

∂g

∂u

∂u

∂x
+

∂g

∂u∗
∂u∗

∂x

=
∂g

∂u

∂u

∂x
+

(
∂g∗

∂u

)∗
∂u∗

∂x
(3.8)

where x ∈ C, u = f(x).

Thus the derivative of the error function becomes:

∂err

∂wl ∗

ji

=
∂err

∂hl
i

· ∂hl
i

∂wl ∗

ji

+
∂err

∂hl ∗

i

· ∂h
l ∗

i

∂wl ∗

ji

(3.9)

By deriving Eq. 3.4 we obtain:

∂hl
i

∂wl ∗

ji

= 0 (3.10)

∂hl ∗

i

∂wl ∗

ji

=

(
∂hl

i

∂wl
ji

)∗

= yl−1∗

j (3.11)

where in the last step Eq. A.5 was used.

For simplicity, ∂err

∂hl∗
i

is usually denoted delta term of neuron i:

δl
∗

i =
∂err

∂hl∗

i

=
∂err

∂yli
· ∂yli
∂hl∗

i

+
∂err

∂yli
· ∂yli
∂hl∗

i

(3.12)

∂yli
∂hl

i

and ∂yl
∗

i

∂hl
i

are computed in the same manner regardless of layer (see Section

3.3). ∂err

∂yli
and ∂err

∂yl
∗
i

are determined differently though, depending if the current layer l

is an output layer or not. In the first case, the derivative of the error function can be

computed directly (see Section 3.4). At hidden layers they depend on delta terms from

subsequent layers, so they have to be computed layer-wise towards the input layer (hence

back-propagation):

∂err

∂yli
=

Nl+1∑

r=1

(
∂err

∂hl+1
r

· ∂h
l+1
r

∂yli
+

∂err

∂hl+1∗
r

· ∂h
l+1∗

r

∂yli

)
(3.13)

∂err

∂yl
∗

i

=

Nl+1∑

r=1

(
∂err

∂hl+1
r

· ∂h
l+1
r

∂yl
∗

i

+
∂err

∂hl+1∗
r

· ∂h
l+1∗

r

∂yl
∗

i

)
(3.14)
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The derivative of the net inputs is given by:

∂hl+1
r

∂yli
= wl+1

ir (3.15)

∂hl+1∗

r

∂yli
= 0 (3.16)

∂hl+1
r

∂yl
∗

i

= 0 (3.17)

∂hl+1∗

r

∂yl
∗

i

=

(
∂hl+1

r

∂yli

)∗
= wl+1∗

ir (3.18)

In summary, the delta term in the complex case is determined as follows:

δli =





∂err

∂yli
· ∂yli
∂hl

i

+ ∂err

∂yl
∗
i

· ∂yl
∗

i

∂,
l = L

Nl+1∑

r=1

(
δl+1
r wl+1

ir

∂yli
∂hl

i

+ δl+1∗

r wl+1∗

ir

∂yl
∗

i

∂hl
i

)
, l < L

(3.19)

(3.20)

3.3 Activation functions

The choice of activation functions has an important impact on the capabilities

of an MLP. A first consideration concerns their non-linearity. If the hidden layers use

linear activation functions to determine their outputs, the network loses its advantage over

single-layered feed-forwards networks (BISHOP, 1995, p. 121). Further the activation

function should be analytic (since the back-propagation algorithm needs its derivative, see

Section 3.2.2) and ideally bounded so that the inputs to subsequent layers remain small

(what can prevent numerical problems).

Real-valued activation functions

Typical activation functions in a real MLP are so called sigmoids. They are ev-

erywhere differentiable and saturate when their net input h tends to ±∞. Two common

real-valued sigmoids are the logistic and the hyperbolic tangent functions, defined respec-

tively as
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f(h) = 1/(1 + e−h) (3.21)

f(h) = tanh(h) =
eh − e−h

eh + e−h
(3.22)

Figure 3.1: Left: logistic, right: tanh

Recent works show that activation functions that are neither analytic nor bounded

may also be used, provided inputs are properly normalized and the network uses some

mechanism to limit the neurons’ outputs. Such a function is the rectifier function

rectifier(x) = max(0, x) (neurons using it are so called Rectified Linear Units, short

ReLU). As can be seen in Figure 3.2, this function has a non-differentiable spot at x = 0,

and for x > 0 it grows linearly. Since an input should rarely be exactly zero, and by

applying some kind of regularization technique to control the neuron’s output, this kind

of functions can successfully be used as activation functions in hidden layers. The lack of

saturation for positive inputs and the resulting sparse network – since, for zero centred in-

puts, approximately half of the neurons won’t fire – may lead to good learning properties

of the network, as shown by Glorot, Bordes and Bengio (2011).

Another advantage of the rectifier function is its simple computation at the feed-

forward and back-propagation stages (since its derivative is 1 for positive inputs, 0 oth-

erwise). The zero derivative can lead to a problem though. Namely if a unit initially

doesn’t activate, its weights won’t be adjusted (since the corresponding derivative is 0).

Maas, Hannun and Ng (2013) suggested a simple change allowing a small gradient for
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Figure 3.2: Rectifier function
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non-active units. The leaky ReLU is thus defined as:

f(h) =




h, h > 0

0.01h, h ≤ 0
(3.23)

The derivatives for the listed real-valued functions are following:

d tanh(h)

dh
= 1− tanh2(h) (3.24)

d logistic(h)

dh
=

1

1 + e−h

(
1− 1

1 + e−h

)
(3.25)

d rectifier(h)

dh
=




1, h > 0,

0, h ≤ 0
(3.26)

d leaky-rectifier(h)

dh
=




1, h > 0,

0.01, h ≤ 0
(3.27)

Complex-valued activation functions

According to the Liouville theorem, an entire complex function 1 must be con-

stant (GEORGIOU; KOUTSOUGERAS, 1992). Thus a proper activation function in the

1A function is said to be entire if it is at the same time holomorphic (complex differentiable) and
bounded.
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complex domain must fulfil other set of requirements. Georgiou and Koutsougeras (1992)

propose that an activation function f(z) = u(ℜz,ℑz) + iv(ℜz,ℑz), where ℜz and ℑz
are the real and imaginary parts of z respectively, shall satisfy following conditions:

1. f(z) is non-linear in ℜz and ℑz.

2. f(z) is bounded.

3. f(z) has bounded partial derivatives: ∂u
∂ℜz

, ∂u
∂ℑz

, ∂v
∂ℜz

, ∂v
∂ℑz

.

4. f(z) is not entire (due to the Liouville theorem).

5. ∂u
∂ℜz

∂v
∂ℑz

6= ∂v
∂ℜz

∂u
∂ℑz

One set of functions satisfying those conditions are those that apply real-valued

activation functions separately to the real and imaginary parts. For instance:

• split-logistic: f(z) = 1
1+e−ℜh + i 1

1+e−ℑh

• split-tanh: f(z) = tanh(ℜz) + i tanh(ℑz)

• split-rectifier: f(z) = max(0,ℜz) + i max(0,ℑz)

• split-leaky-rectifier: f(z) = max(0.01ℜz,ℜz) + i max(0.01ℑz,ℑz)

Split-tanh is a widely used function in CV-MLPs. Split-rectifier and split-logistic

are mentioned in Popa (2017, p. 820).

Figure 3.3: Split-logistic. Left: real part; right: imaginary part

Figure 3.4: Split-tanh. Left: real part; right: imaginary part

The other approach is to use analytic but unbounded functions. Kim and Adali

(2002) investigate several elementary transcendental functions for this matter and show
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Figure 3.5: Split-rectifier. Left: real part; right: imaginary part

Figure 3.6: Complex tanh. Left: real part; right: imaginary part

good results by using the complex tanh function:

f(h) = tanh(h) =
eh − e−h

eh + e−h
, h ∈ C (3.28)

As can be seen in Figures 3.6 and 3.7, this function has singularities at every

1
2+n

π, n ∈ N. By carefully adapting the inputs (say by applying a sigmoid function like

the tanh before feeding them to the MLP) these points could be avoided.

Using the rules from Wirtinger Calculus (see Appendix A.1), the derivatives of the

listed activation functions are following:

• split-tanh:

∂f(h)

∂h
=

1

2

(
2− tanh2(ℜh)− tanh2(ℑh)

)
(3.29)

∂f(h)

∂h∗ =
1

2

(
1− tanh2(ℜh) + tanh2(ℑh)

)
(3.30)

• split-logistic:

∂f(h)

∂h
=

1

2
(ℜf(z)(1−ℜf(z)) + ℑf(z)(1−ℑf(z))) (3.31)

∂f(h)

∂h∗ =
1

2
(ℜf(z)(1−ℜf(z)) + ℑf(z)(1−ℑf(z))) (3.32)
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Figure 3.7: Complex tanh. Left: magnitude; right: phase

• split-rectifier:

∂f(h)

∂h
=





1, ℜh > 0 and ℑh > 0,

1/2, ℜh > 0 and ℑh ≤ 0,

1/2, ℜh ≤ 0 and ℑh > 0,

0, ℜh ≤ 0 and ℑh ≤ 0,

(3.33)

∂f(h)

∂h∗ =





0, ℜh > 0 and ℑh > 0,

1/2, ℜh > 0 and ℑh ≤ 0,

−1/2, ℜh ≤ 0 and ℑh > 0,

0, ℜh ≤ 0 and ℑh ≤ 0,

(3.34)

• split-leaky-rectifier:

∂f(h)

∂h
=





1, ℜh > 0 and ℑh > 0,

1.01/2, ℜh > 0 and ℑh ≤ 0,

1.01/2, ℜh ≤ 0 and ℑh > 0,

0.02, ℜh ≤ 0 and ℑh ≤ 0,

(3.35)

∂f(h)

∂h∗ =





0, ℜh > 0 and ℑh > 0,

0.99/2, ℜh > 0 and ℑh ≤ 0,

−0.99/2, ℜh ≤ 0 and ℑh > 0,

0, ℜh ≤ 0 and ℑh ≤ 0,

(3.36)
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• tanh (complex):

∂f(h)

∂h
= 1− tanh2(h) (3.37)

∂f(h)

∂h∗ = 0 (3.38)

(3.39)

3.4 Error function

The global error consists of a summation of several individual error functions ap-

plied to the output neurons of an MLP after feed-forwarding training inputs. Thus these

should all have the same sign, otherwise they could cancel each other out. In the real case,

a typical choice is the squared error function:

errR
(
yL(z

(α), t(α))
)
=

1

2

NL∑

k=1

(yk − tk)
2 (3.40)

In the complex case a real-valued function (but with complex arguments) is needed

in order to have a comparable objective function to minimize. Hänsch (2010) investigates

four different functions and comes to the conclusion that for more complex topologies

they all lead to a similar performance. Thus this work only considers following complex

quadratic error function:

err
(
yL(z

(α), t(α))
)
=

NL∑

k=1

(yk − tk)(yk − tk)
∗ (3.41)

According to Eq. 3.19 this requires the derivatives ∂err

∂yli
and ∂err

∂yl
∗
i

. In the case of the

complex quadratic error function, those are following:
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∂err

∂yli
=

∂
∑NL

k=1(yk − tk)(yk − tk)
∗

∂yli
(1)
=

∂(yli − ti)(y
l
i − ti)

∗

∂yli
(2)
= (yli − ti)

∗∂(yi − ti)

∂yli
= (yli − ti)

∗ (3.42)

∂err

∂yl
∗

i

=
∂
∑NL

k=1(yk − tk)(yk − tk)
∗

∂yl
∗

i

(1)
=

∂(yli − ti)(y
l
i − ti)

∗

∂yl
∗

i

(2)
= (yli − ti)

∂(yi − ti)
∗

∂yl
∗

i

= (yli − ti) (3.43)

where (1) uses the fact that the derivative of (ylk − tk)(y
l
k − tk)

∗ with respect to yli or yli is

0 unless i = k, and (2) uses Eq. A.4.

3.4.1 Weight decay

One way to improve generalization is to add a regularization term to the error

function so that large weights get penalized. For instance:

E ′
{wl}(D) = E{wl}(D) +

1

2
λ
∑

k

w2
k (3.44)

where λ is the regularization factor 2. By taking the negative gradient of this function we

obtain the weight decay update rule:

∆wl
ji(t) = −∇E{w}(D)− λwl

ji(t− 1) (3.45)

This technique allows the network to choose the smallest set of weights that solve

the optimization problem. This is desirable since it forces net inputs to get closer to zero,

away from the saturation point of some activation functions (MARSLAND, 2015, p. 84).

Another benefit is that it prevents the network from fitting the noise from the training data

(KROGH; HERTZ, 1992, p. 954).

2For simplicity we slightly abuse notation by indexing all elements of the matrix with a single variable
k.
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3.5 Input normalization

Several transformation strategies of input data can lead to faster convergence of the

network. Two common ones are to center data so that features across the training samples

have zero mean, and scaling it so that the variance of features are all approximately the

same. As explained by LeCun et al. (2012, p. 16), centered data improves learning since

it allows weights to be adjusted in different directions in a turn. By scaling inputs to force

a specific variance we also ensure that all weights can be changed at a similar rate.

3.6 Batch Learning and Stochastic Gradient Descent

The delta rule as described considers the global error function of all training sam-

ples in order to decide how to adjust the weights, what is known as batch learning. An

alternative approach called stochastic gradiend learning (short SGD, also known as on-

line learning) updates weights after each single training sample. Thus in the complex

case Eq. 3.7 becomes:

∆wl
ji(t) = −2

∂err(yL(z(α), t(α)))

∂wl ∗

ji

(3.46)

As explained at LeCun et al. (2012, p. 13), stochastic learning leads to a noisy

estimate of the gradient. Since the investigated non-linear functions usually have multiple

local minima, this property helps the network to "jump" between different local minima,

whereas batch learning estimates the gradient towards the local minimum determined by

the (randomly) initialized weights.

A possible trade-off is to consider groups of training samples at each update, which

are called mini-batches. Following this strategy, Eq. 3.6 becomes:

∆wl
ji(t) =

2

N

N∑

α=1

∂err(yL(z(α), t(α)))

∂wl ∗

ji

(3.47)

where N is the batch size, which is smaller than the total number of available training

samples P .

An important difference between these approaches is that SGD and mini-batches

require shuffling the training inputs at each epoch, so that each sample can influence the

network differently depending in which order it was seen. Offline learning doesn’t have
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this requirement, since here weights get updated according to the sum of all gradients.

3.7 Weight initialization

For similar reasons that inputs are normalized so that features have zero mean

and unit variance, weights can be initialized in such a way that, combined with proper

activation functions, each layer receives inputs with these same overall characteristics.

A simple strategy for achieving this is the Xavier initialization proposed by Glorot and

Bengio (2010). It consists of initializing the weights in a way that following holds:

V ar(wl) =
2

Nl +Nl+1

(3.48)

Weights are chosen according to a uniform distribution. Given an interval [a, b],

the standard deviation from a uniform distribution is given by b−a√
12

. Thus

b− a√
12

=

√
2

Nl +Nl+1

(3.49)

⇒ b− a =

√
24

Nl +Nl+1

(3.50)

By choosing −a = b, so that the distribution is centred around zero, we obtain:

2b =

√
24

Nl +Nl+1

(3.51)

⇒ b =

√
6√

Nl +Nl+1

(3.52)

Thus we initialize each individual weight at layer l with a random value from

following uniform distribution:

U

[
−

√
6√

Nl +Nl+1

,−
√
6√

Nl +Nl+1

]
(3.53)

By using the property V ar(Z) = V ar(ℜZ) + V ar(ℑZ) (see proof at Eq. A.6)

and by choosing V ar(ℜZ) = V ar(ℑZ), the Xavier initialization can be easily adapted

to the complex case:
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V ar(Z) = 2V ar(ℜZ) = 2

Nl +Nl+1

(3.54)

⇒ V ar(ℜZ) = 1

Nl +Nl+1

(3.55)

Following the same logic as in the real case, we want to choose b so that

2b =

√
12

Nl +Nl+1

(3.56)

⇒ b =

√
3√

Nl +Nl+1

(3.57)

So the real and imaginary part of each weight are chosen according to the uniform

distribution:

U

[
−

√
3√

Nl +Nl+1

,−
√
3√

Nl +Nl+1

]
(3.58)

3.8 Learning strategies

The chosen learning rate not only directly influences speed of convergence (as can

be seen in Eq. 3.6) but also determines if the network will converge at all (see LeCun et al.

(2012) for a detailed discussion about learning rate and convergence). Besides choosing

different learning rates according to the layer size, several learning strategies may be used

in order to improve convergence. Some of them are briefly described next.

3.8.1 Momentum

The delta rule can be changed as follows:

∆wl
ji(t) = α∆wl

ji(t− 1)−∇E{w}(D) (3.59)

α∆wl
ji(t − 1) is called momentum term, and α the momentum constant (usually set to a

value close to 0.9). This helps stabilizing training by accelerating it when the learning
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surface has a low curvature and slowing it down otherwise.

3.8.2 Adagrad

The Adaptive Gradient Algorithm (short Adagrad) (DUCHI; HAZAN; SINGER,

2011) scales the global learning rate on a per weight basis:

∆wl
ji(t) = − ∇E{wji}(Dt)√∑t

i ∇E{wji}(Di)
(3.60)

As can be seen at Eq. 3.60, the scaling factor is inversely proportional to the

accumulated l2 norm of all gradients computed until now, practically giving "frequently

occurring features very low learning rates and infrequent features high learning rates"

(DUCHI; HAZAN; SINGER, 2011, p. 2122).

3.8.3 Adam

As in the case of Adagrad, Adaptive Moment Estimation (short Adam) (KINGMA;

BA, 2014) also scales a global learning rate on a per-parameter base, in this case by using

moving averages of the mean and uncentered variance of the gradient. As experimentally

shown by the authors, it converges faster than Adagrad and Stochastic Gradient Descent.

The update rule is changed as follows:

wl
ji(t+ 1) = wl

ji(t) + µ
Êt+1[g]√

V̂ art+1[g] + ǫ

(3.61)

Et+1[g] = β1 · Et[g] + (1− β1) · gt+1 (3.62)

V art+1[g] = β2 · V art[g] + (1− β2) · g2t+1 (3.63)

Êt+1[g] =
Et+1[g]

1− βt+1
1

(3.64)

V̂art+1[g] =
Vart+1[g]

1− βt+1
2

(3.65)

where gt is the gradient ∇E{w}(D) measured at instant t, ǫ is a stabilization factor and

β1 and β2 are the decay rates (typically 0.9 and 0.999 respectively). Equations 3.64 and

3.65 correct the initialization bias, since without them the moment estimates have a bias
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towards zero (see Kingma and Ba (2014)).
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4 EVALUATION

4.1 Experiment Description

The purpose of these experiments is to investigate the performance of the CV-MLP

described in Chapter 3 in the task of general object recognition from PolSAR images.

We are specially interested in its approximation capabilities compared to a RV-MLP, and

whether the selected improvements influence not only the overall performance, but also

the relative learning behaviour to a RV-MLP. This requires an implementation of a MLP

that allows switching between both variants without major changes to the underlying

structure and mechanisms. Therefore a complete MLP supporting different activation

functions, adaptive learning rate algorithms, different learning strategies (Batch, Mini-

Batch and SGD) as well as Xavier initialization was implemented from scratch, since as

far as we know no such an implementation is freely available.

4.1.1 Data

A dataset provided by DLR is used for training and evaluation. It consists of

a PolSAR image of the city Oberpfaffenhofen taken by the E-SAR sensor (Figure 4.1

right) and five target images showing the classes of each pixel. These are illustrated

on the left side of Figure 4.11 using following color scheme: roads in blue, fields in

yellow, forests in dark green, shrubland in light green and city in red. Ideally multiple

images for training and others for validation/testing should be used, but differences in

acquisition conditions and processing techniques make the generation of such a dataset a

difficult task. Nevertheless an image of the city Alling (also provided by DLR) is used for

comparison purposes at the end of this chapter.

The manual classification of images also requires some care. These images were

independently classified by several experts, and only pixels where all experts agreed

where considered for training and evaluation. Assigning them a separate class would

mislead the model, since they might belong to one of the known classes while not be-

ing labeled as such due to disagreements between the experts. Non-labeled pixels are

represented in Figure 4.11 in black.
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Figure 4.1: Oberpfaffenhofen dataset (provided by DLR). Left: optical image; right: Pol-
SAR image

4.1.1.1 Data format and pre-processing

Before extracting feature vectors as inputs, the whole image was first converted to

its covariance matrix (see Eq. 2.2) representation and underwent a multi-look processing

step using a window of 4 pixels along range (horizontal) direction and 2 pixels along the

azimuth (vertical) direction, both steps done with the RAT software (REIGBER; HELL-

WICH, 2004). As explained in Section 2.3.1 this merges several pixels in a 4x2 window,

which thus requires a decision regarding which target to attribute to resulting pixels. We

decided to pick the most frequent class inside the window, since it is representative for

more elements contained in the respective area.

4.1.1.2 Features

Since the covariance matrix obtained in Section 4.1.1.1 is hermitian (i.e. it’s equal

to its own conjugate transpose), the 3x3 matrix has redundant information. In order to

reduce dimensionality of the input vectors, the values below the diagonal elements are

ignored, since they are the conjugate versions of the numbers above it. Each pixel is thus
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described as a vector c containing 6 complex numbers (HÄNSCH, 2010):

c = (c11, c12, c13, c22, c23, c33)
T (4.1)

where cij is the element at row i and column j from the covariance matrix C (see Eq.

2.2).

In order to feed this information into the RV-MLP, these features have to be

mapped to some real-valued feature vector. There are several strategies for this. We

tested two common approaches, namely constructing a vector cabs with the magnitudes

of the elements from c, as done in Hänsch (2010), and by using real-valued vectors con-

taining the real and imaginary parts concatenated csplit. Our experiments show that the

second approach delivered better results (see Figure 4.2 for an example), suggesting that

information lost in cabs, most obviously the phase of the signal, is indeed relevant for

object recognition tasks. Since the goal is to evaluate both MLPs under similar condi-

tions, this work opted to use csplit in most of its comparisons, thus giving the RV-MLP

the full complex information as separate real values. Table 4.2 summarizes the test errors

obtained using each of these feature vectors.

Figure 4.2: Train error of a RV-MLP using a 50 neurons hidden-layer with Adagrad with
varying transfer functions and input vectors.
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To provide the network with more contextual information, 3x3 patches of these

vectors are used as input images. Each pixel is thus described by its own value and its

surrounding neighbours.
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4.1.1.3 Sample choice

In order to train under more realistic conditions, the whole image was first divided

in 5 stripes in order to apply a 5-fold cross-validation, as suggested by Hänsch (2014, p.

149). As noted by the author, these would be ideally horizontal stripes, assuring that each

stripe has objects in far and near range (the satellite moved along the y-direction). Due

to the class distribution though, this would make stripes with too few samples of some

classes for some folds. From each stripe, 3x3 patches were extracted as described above.

From these patches, a set of approximately 2400 patches from each class was randomly

selected per stripe. Hence the whole data set consists of 5 sets of ca. 12000 patches each.

This approach helps avoiding that the network gets biased towards dominant classes due

to the distribution present in this specific dataset. This also has the benefit of limiting the

variety of data, since a whole stripe can be selected for testing purposes while no sample

contained in it is seen during training. This resembles real usage conditions, since we

can’t suppose that a MLP has access to samples from all kinds of a class. For instance,

some forests may differ considerably from others, while belonging to the same class, but

it is improbable that the algorithm will have samples from all kinds of forest for training.

Nevertheless the model should be able to generalize and correctly handle the diversity of

data.

4.1.1.4 Normalization

Before starting training, the whole training set is normalized to obtain zero mean

and unit variance. This is done by subtracting from each feature its mean across all train-

ing samples and dividing by the corresponding standard deviation. Each feature mean and

standard variance obtained is stored in order to normalise testing inputs later. This ensures

that features present in both datasets are mapped to the same value after normalisation,

while also avoiding that information contained in the test dataset is seen during training.

4.1.1.5 Targets

Our targets for the Oberpfaffenhofen dataset are one-hot encoded. They are repre-

sented thus as a five-element vector of real values or complex values, depending on which

MLP variant is used. The vector contains at the index corresponding to the target class the

value of 1+ i (1 in the real case), towards which the sigmoids studied saturate. The choice

of the value for the non-class indices depends on the activation function used in the output



33

layer. If it is a (split-)logistic function, then they are set to 0. If it is a (split-)tanh function,

they are set to −1− i (or −1 if real), exploiting the saturation of the (split-)tanh function

in the opposite direction. As discussed in Section 4.1.4.1, these experiments don’t use

other transfer functions in the output layer.

4.1.2 Evaluation Methodology

For evaluation of the model cross validation is used. More precisely, we reserve

one of the stripes for testing and use the selected patches from the remaining stripes for

training. After training, the whole test image is classified. This is done five times, each

turn using a different test image. Unless stated otherwise, the performance measurements

are obtained by repeating each experiment several times and averaging the results. This

allows us to better understand the network behaviour regardless of the specific combina-

tion of randomly initialized parameters and train order of the images.

4.1.2.1 Metric

Since testing is done over a complete image stripe, we need a performance metric

that not only deals with multi-class problems but also with extremely unbalanced data. As

explained by Hänsch (2014, p. 143), the typically used overall accuracy measure consist-

ing of the number of correctly classified pixels divided by the total of pixels could lead to

overly optimistic performance results, for example by simply ignoring labels from rarely

appearing categories. A more adequate metric is the balanced accuracy (BRODERSEN

et al., 2010) defined as:

BA(T ) =

|T |∑

i

K∑

k

vk(T, i)

Ck ·K
(4.2)

where T is the test image, |T | its number of pixels, K the number of classes, Ck(T )

the number of samples of class k in the test image and vk(T, i) is the indicator function

defined as:

vk(T, i) :=




1, sample i in image T belongs to class k

0, otherwise
(4.3)

This metric attributes to each correctly classified sample a weight inversely pro-
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portional to the class frequency and reflects thus the generalization ability of the model.

We also shall derive a balanced error (BE) metric directly from the balanced accu-

racy: When in these experiment training or test error is mentioned, the balanced error is

meant.

BE(T) = 1− BA(T ) (4.4)

4.1.3 Plot characteristics

Plots in this chapter show the interpolated training error measured at the start of

each epoch. The reason for showing the training error instead of the test error is that these

plots are meant to illustrate the learning process and the ability of the specific algorithm

to approximate the underlying function. Because the prepared training set is balanced, the

BE measurement delivers the same result as the unbalanced error 1 −
∑|T |

i

∑K

k

vk(T,i)
K

,

which is therefore used as error measure in the plots.

Since we are also interested in the generalization ability of our model, the results

discussed later in this chapter use the balanced test error.

4.1.4 MLP Setup

As stated our purpose it to investigate different combinations of activation func-

tions (complex or not) and some selected improvements. Due to time constrains we also

had to restrict the hyper-parameter choice, so that longer evaluation experiments were

possible. This requires several trial and error in order to find suitable hyper-parameters

for this classification problem. Next the decisions made are described.

4.1.4.1 Transfer functions

Different experiments were done using several activation functions in hidden units.

It should be noted though that not all function listed in Section 3.3 are adequate for output

neurons. For instance the unbounded output of a ReLU unit leads to large error values

which the MLP can’t handle properly. The complex-tanh function has the same problem.

As Figures 3.6 and 3.7 show, the function is not only unbounded, but has periodical

singularities, what makes choosing proper target values difficult.
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For these reasons bounded functions are used at output layers, for example the

sigmoid functions and their split complex variants. Table 4.1.4.1 summarizes the combi-

nations of hidden and output activation functions investigated:

Hidden layer Output layer
tanh (real) tanh (real)
rectifier logistic (1)

complex-tanh split-tanh
split-tanh split-tanh
split-rectifier split-logistic (1)

In (1) the (split-)logistic is used instead of (split-)tanh because preceding layers

only output non-negative values. The same approach is used by Popa (2017, p. 820).

The leaky-rectifier and split-leaky-rectifier functions didn’t perform significantly

different than the rectifier functions. A possible reason is the fact that the topologies used

were rather small, in which case the problem of dying ReLUs is rather unlikely. Therefore

in these experiments only the simpler, "non-leaky" rectifier functions were considered.

4.1.4.2 Learning strategy and corresponding hyper-parameters

Each learning strategy requires a different set of hyper-parameters. In our experi-

ments, for instance, the learning rate for the Adam strategy had to differ by two orders of

magnitude from the learning rate chosen for Adagrad. Inappropriate learning rates would

lead to a divergent learning behaviour.

After some experimenting, we settled on following hyper-parameter selection:

• Fixed learning rate: µ = 0.001

• Fixed learning rate with momentum and weight decay: µ = 0.001, α = 0.9, λ =

1−8

• Adagrad: µ = 0.01

• Adam: µ = 0.0001, β1 = 0.9, β = 0.999

where recall that µ is the learning rate, α the momentum constant, λ the weight decay

factor, β1 and β2 are the decay rates.

4.1.4.3 Topology

Our experiments use MLPs with three different topologies: a single hidden layer

with 50 neurons, a single hidden layer with 10 neurons and two hidden layers with 10
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neurons each. Although at first sight small sized, these topologies seemed to provide

enough variability of number of neurons and layers for our concrete experimental setup,

which uses feature vectors extracted from relatively small image patches as described

above.

4.1.4.4 Training time and convergence

All of our tests are restricted to 200 epochs, during which no over-fitting effect

was noticed (the performance over the test dataset was monitored to see whether this

occurred). Although some setups clearly converge during this time, others show that

longer training periods would possibly lead to better results. The performance increase

towards epoch 200 is relatively small though. As stated above, each experiment was

repeated several times and averaged, unless stated otherwise.

4.2 Results and Discussion

4.2.1 Momentum and weight decay

The use of momentum didn’t bring significant changes to the experiments using

adaptive learning rate. For a fixed learning rate of 0.001, adding a momentum term lead to

worse results, what can be seen in Figure 4.3. Possible reasons for this behaviour are that

the chosen learning rate is large enough to overcome local minima, and that the usually

adopted moment constant of 0.9 was too large for this problem.

We also couldn’t see any major influence of weight decay in our experiments.

For these reasons, further experiments don’t use these techniques to avoid irrele-

vant computations.

4.2.2 Stochastic Gradient Descent and Batch strategy

Figure 4.4 shows the train error curve of three runs using online learning, mini-

batch of size 64 and offline learning. All of them use split-rectifier in 50-sized hidden

layer, split-logistic in the output layer and a fixed learning rate.

Offline learning provided a extremely slow decreasing error. A possible reason

for this behaviour is that gradients with different signs cancel each other out, decreasing
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Figure 4.3: Train error using fixed learning rate with momentum and weight decay (single
run)
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the adjustments steps needed to achieve a faster convergence. The curve also illustrates

the problem of a fixed learning rate. The small increment of the error around epoch 38

is possibly caused by a too big learning rate for that stage of learning, causing the short

period of divergence.

Stochastic Gradient Descent was able to learn considerably faster than the other

approaches, but showed a rather noisy error curve. We found that mini-batches provided

the best trade-off between learning speed and training time. Our examples use therefore

mini-batches with 64 input samples each.

Figure 4.4: Comparison of SGD, Mini-Batch and Batch Learning. All plots use split-
rectifier and fixed learning rate µ = 0.001. Mini-batches have 64 samples each.
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4.2.3 Learning Strategy

As seen in section 3.8, Adam and Adagrad both improve learning by using separate

learning rates for each parameter and adapting them according to some strategy.

This could be verified in our experiments. By comparing Figures 4.5 to 4.7 it be-

comes evident that the use of adaptive learning leads to a faster convergence and a more

stable learning behaviour. Table 4.1 also shows how both Adagrad and Adam clearly out-

perform a network with fixed learning rate. This is expected, since they adopt individual

learning rates for the parameters and change them based on the relative frequency of the

features.

The evolution of the error curve shows that Adam and Adagrad converge at similar

rates, and after 200 epochs both achieved similar performances. We could verify a small

advantage of Adagrad in our runs (see Table 4.1).

Figure 4.5: Two hidden layers with 10 and 10 neurons each. Fixed learning rate
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4.2.4 Transfer Functions

As Figures 4.5 and 4.8 illustrate, with fixed learning rate the tanh family of func-

tions clearly outperform MLPs using rectifier functions (with the exception of the combi-

nation of two hidden layers and complex-tanh discussed below). A possible cause for this

behaviour could be an inadequate learning rate choice.

Networks using adaptive learning showed a similar learning progression regardless

of transfer function used, with ReLUs leading to a faster convergence and clearly better
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Figure 4.6: Two hidden layers with 10 and 10 neurons. Adagrad
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Figure 4.7: Two hidden layers with 10 and 10 neurons. Adam
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Figure 4.8: One hidden layer with 50 neurons. Fixed learning rate
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Figure 4.9: One hidden layer with 50 neurons. Adagrad
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Figure 4.10: One hidden layer with 50 neurons. Adam
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results when combined with Adagrad and a bigger hidden layer (see the corresponding

test errors in Table 4.1).

The use of complex-tanh in hidden layers – combined with split-tanh for the output

layer – lead to rather unstable results. When combined with adaptive learning and a single

hidden layer, it could achieve similar results to those obtained by the split-tanh. But in

the experiments with fixed learning rate or two hidden layers its performance was much

worse. This behaviour is possibly explained by the singularities and overall behaviour of

the complex-tanh function shown in Section 3.3, which could require extra measures in

the hidden layers in order to properly use this function. Nevertheless the positive influence

of adaptive learning suggests that further exploring of complex analytic functions should

adopt such strategies.
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Table 4.1: Balanced test error after 200 epochs obtained by CV-MLP. Best scores are
underlined.

One hidden layer (10)

split-rectifier split-tanh tanh (C)
Fixed 41.5%±1.6% 37.8%±2.2% 41.2%±2.5%
Adagrad 33.2%±1.0% 33.1%±1.1% 36.1%±2.4%
Adam 32.0%±0.6% 32.3%±1.6% 33.5%±1.3%

Two hidden layers (10-10)

split-rectifier split-tanh tanh (C)
Fixed 40.3%±0.9% 36.8%±2.3% 56.1%±2.3%
Adagrad 30.7%±1.5% 31.1%±0.8% 40.7%±2.4%
Adam 34.8%±2.2% 32.2%±1.6% 38.7%±2.1%

One hidden layer (50)

split-rectifier split-tanh tanh (C)
Fixed 40.2%±1.0% 34.7%±2.8% 40.6%±2.1%
Adagrad 27.5%±0.5% 31.1%±0.7% 31.8%±1.3%
Adam 30.1%±1.3% 32.7%±1.4% 31.6%±1.0%

Table 4.2: Balanced test error after 200 epochs obtained by RV-MLP. Best scores are
underlined.

One hidden layer (10)

rectifier (cabs) tanh (cabs) rectifier (csplit) tanh (csplit)
Fixed 46.7%±3.6% 43.7%±1.5% 47.58%±2.1% 39.8%±1.4%
Adagrad 34.1%±2.2% 34.8%±1.8% 31.6%±1.7% 30.5%±0.7%
Adam 34.2%±2.6% 36.4%±2.8% 30.7%±1.6% 32.3%±1.5%

Two hidden layers (10-10)

rectifier (cabs) tanh (cabs) rectifier (csplit) tanh (csplit)
Fixed 45.8%±1.8% 40.3%±3.4% 47.6%±2.9% 35.8%±2.0%
Adagrad 33.6%±2.5% 33.1%±2.2% 29.6%±1.3% 30.6%±2.0%
Adam 35.2%±2.3% 32.3%±1.3% 31.8%±1.8% 29.3%±0.8%

One hidden layer (50)

rectifier (cabs) tanh (cabs) rectifier (csplit) tanh (csplit)
Fixed 43.2%±2.6% 38.4%±2.4% 41.4%±1.9% 34.4%±1.6%
Adagrad 30.1%±1.5% 35.5%±1.8% 26.5%±0.6% 30.3%±0.6%
Adam 35.2%±3.2% 38.4%±2.4% 30.3%±2.5% 31.0%±1.3%

4.2.5 Comparison between Complex-valued MLP and Real-valued MLP

Our implementation allows a direct comparison of a RV-MLP and a CV-MLP us-

ing the same dataset preparation and under similar conditions. The results vary depending

on topology, learning rate approach, transfer function and feature vector used.

We notice that the CV-MLP performed overall better than a RV-MLP when fixed
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learning rate is used, at least when the topology contains rather smaller hidden layers (say

10 neurons). This happens independently of feature vector used, a result already shown

by previous works (HÄNSCH, 2010).

As soon as adaptive learning is used though, we noticed that a RV-MLP using csplit

could achieve similar or slightly better results than a CV-MLP. The same RV-MLP using

cabs still obtained worse results than a CV-MLP.

Table 4.3 contains confusion matrices of the CV-MLP and RV-MLP obtained from

a single run with (split-)rectifier, Adagrad and a 50-sized hidden layer. As above, both

networks were trained during 200 epochs over the Oberpfaffenhofen dataset using cross-

validation. Each confusion matrix consists of a merge of confusion matrices regarding

each image stripe used for testing. Each row i and column j represents the rate of samples

from class i attributed to class j. The main diagonal contains thus the rate of correctly

classified samples from each class. In this single run example, the CV-MLP achieved a

BA of 72.8%, while the RV-MLP 73.4%.

Table 4.3: Confusion matrix regarding classification of the Oberpfaffenhofen data set.
Results obtained after 200 epochs using (split)-rectifier and Adagrad. One hidden layers
with 50 neurons were used.

CV-MLP

City Field Forest Shrubland Road

City 0.53 0.06 0.17 0.19 0.05
Field 0.00 0.68 0.00 0.07 0.24
Forest 0.09 0.00 0.83 0.08 0.00
Shrubland 0.03 0.04 0.05 0.87 0.00
Road 0.04 0.17 0.00 0.05 0.74

RV-MLP

City Field Forest Shrubland Road

City 0.58 0.06 0.16 0.17 0.03
Field 0.01 0.78 0.00 0.10 0.11
Forest 0.09 0.00 0.84 0.07 0.00
Shrubland 0.03 0.03 0.05 0.88 0.00
Road 0.05 0.30 0.00 0.05 0.59

The confusion matrix from Table 4.3 illustrates the difficulty of the network to

learn some specific classes, for instance the samples containing the city. A possible cause

could be a higher in-class variety regarding scattering patterns. This fact may be a con-

sequence of the sample distribution in this concrete example. For instance, most samples

of class City are concentrated on the predominantly residential area at the right-side of

the image (which is almost entirely contained in a single test image) while samples from
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other areas are dominated by industrial buildings.

Figure 4.11 shows the classification results obtained by the CV-MLP, with the

manually labeled image on the left side for visual comparison. The right-side image

represents correctly classified pixels in green, and wrongly classified in red. Black pixels

are non-classified pixels.

For further references, Table 4.4 illustrates the performance of both MLP’s for

categorization of the dataset of the city Allign, also provided by the DLR. The CV-MLP

achieved a BA of 61.3%, while the RV-MLP 63.4%.

Table 4.4: Confusion matrix regarding classification of the Allign data set. Results ob-
tained under same conditions as with the Oberpfaffenhofen dataset.

CV-MLP

City Field Forest Road

City 0.42 0.02 0.39 0.18
Field 0.02 0.85 0.00 0.13
Forest 0.20 0.00 0.74 0.05
Road 0.13 0.36 0.06 0.44

RV-MLP

City Field Forest Road

City 0.40 0.02 0.41 0.17
Field 0.01 0.86 0.01 0.11
Forest 0.16 0.00 0.80 0.04
Shrubland 0.16 0.33 0.04 0.47
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Figure 4.11: Classification result from Oberpfaffenhofen dataset (DLR) using a CV-MLP
with a single 50-sized hidden layer, Adagrad and split-rectifier after 200 epochs training.
Left: manually labeled image; center: classification obtained by CV-MLP; right: classifi-
cation comparison.
Color scheme for left and center images: road (blue), field (yellow), forest (dark green),
shrubland (light green), city (red).
Color scheme for right image: correctly classified (green), misclassified (red).
In all schemes black pixels are non-classified.
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5 CONCLUSION

This work investigated the merits of using a CV-MLP supporting different transfer

functions, modern initialization strategies and adaptive learning rates for the task of object

recognition in PolSAR images. It focused on adapting a selection of techniques usually

applied to RV-MLPs to a CV-MLP and evaluating their influence on its performance for

this task.

Early works (HÄNSCH, 2010) showed that a basic implementation of a CV-MLP

could achieve similar results to those of a RV-MLP, what raised the question about how

a more sophisticated CV-MLP would perform. Thus our first contribution was to select

some well known techniques used in current RV-MLP implementations, implement them

in a CV-MLP when needed and evaluate their benefits for general object recognition in

PolSAR images. Most techniques could be directly applied to a CV-MLP, as the adaptive

learning strategies. An exception is Xavier Initialization, that had to be slightly changed

in order to achieve its goals.

This work also investigated the unbounded split-rectifier function seen in Popa

(2017), which showed a faster convergence and better overall approximation capabilities

when the topology had a bigger hidden layer. This result suggests that the split-rectifier

could be a promising transfer function for bigger networks, where real-valued rectifier

functions are commonly used.

We also have shown how adaptive learning rate algorithms as Adagrad and Adam

allow a CV-MLP to much better categorize PolSAR images. These techniques also lever-

aged performance differences due to other factors considered, such as the transfer function

choice or even whether a RV-MLP or a CV-MLP is used for this task.

Regarding the question of the relative performance of a CV-MLP and a RV-MLP,

our results confirm that simpler implementations of both algorithms lead to a slightly

advantage for a CV-MLP. The use of adaptive learning though makes them perform sim-

ilarly, at least when using non-analytic functions that apply a real-valued function sepa-

rately to the real and imaginary parts of its net input.

This work also investigated the complex-tanh function in combination with a split-

tanh function in the output layer. Its results varied considerably, performing relatively

well when using adaptive learning rate and a single hidden layer, and achieving much

worse results otherwise. Future works could further investigate analytic, but unbounded

complex functions, specially in combination with normalization techniques to avoid the
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pitfalls of these functions. Another path would involve exploring a polar representation of

the complex data, as suggested in Hirose (2006). The use of Adagrad or Adam is advisable

in these cases, since they avoid that fixed hyper-parameters of the model negatively impact

the MLP’s approximation abilities.
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APPENDIX A — COMPLEX PROPERTIES

A.1 Wirtinger Derivatives

As known from complex analysis, a complex function f(z) is differentiable in an

open domain region if it satisfies the Cauchy-Riemann equation (AMIN et al., 2012):

∂f(z)

∂ℑz = i
∂f(z)

∂ℜz (A.1)

Non-analytic complex functions can’t be derived with the usual rules of analy-

sis. One can though compute their partial derivatives according to the rules of Wirtinger

Calculus:

df(z)

dz
=

1

2

(
∂f(z)

∂ℜz − i
∂f(z)

∂ℑz

)
(A.2)

df(z)

dz∗
=

1

2

(
∂f(z)

∂ℜz + i
∂f(z)

∂ℑz

)
(A.3)

For holomorphic functions, the Wirtinger derivatives have the nice property that

they satisfy the Cauchy-Riemann equations, since ∂f(z)
∂z∗

= 0.

Another important result it that "z∗ can be regarded as a constant when differen-

tiating with respect to z, as well as z can be regarded constant when differentiating with

respect to z∗ (HUNGER, 2007, p. 10):

∂z∗

∂z
=

∂z

∂z∗
= 0 (A.4)

Also useful for deriving complex functions are following relations (HUNGER,

2007, p. 10):

∂f ∗(z)

∂z
=

(
∂f(z)

∂z∗

)∗
and

∂f ∗(z)

∂z∗
=

(
∂f(z)

∂z

)∗
(A.5)
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A.2 Complex Random Variable

V ar[Z] = E(|(Z − E(Z))2|)

= E[(Z − E(Z))(Z − E(Z))∗]

= E[ZZ∗ − ZE(Z)∗ − E(Z)Z∗ + E(Z)E(Z)∗]

(1)
= E(ZZ∗)− E(Z)E(Z)∗ − E(Z)E(Z)∗ + E(Z)E(Z)∗

= E(ZZ∗)− E(Z)E(Z)∗

= E[(ℜZ)2 + (ℑZ)2]− [ℜE(Z)]2 − [ℑE(Z)]2
(2)
= E[(ℜZ)2] + E[(ℑZ)2]− E[(ℜZ)]2 − E[(ℑZ)]2
(1)
= E[(ℜZ)2]− E[(ℜZ)]2 + E[(ℑZ)2]− E[(ℑZ)]2

= V ar[ℜZ] + V ar[ℑZ] (A.6)

where (1) uses the linearity of the expectation and (2) the additivity of the real and imag-

inary operators.
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A.3 Mathematical notation

z∗ complex conjugate

ℜz real part of complex number z

ℑz imaginary part of complex number z

R Real domain

C Complex domain

k simplified scattering vector

S Scattering matrix

C Covariance matrix

c vector containing the unique (modulo complex conjugate) elements of C

cabs Real-valued feature vector containing the magnitudes of the vector c

csplit Real-valued feature vector containing the real and imaginary parts of the vector c

D Training set
∂f(h)
∂h

partial derivative of f with respect to h

E(Z) expected value of random variable Z

V ar(Z) variance of random variable Z
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