
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

AUGUSTO BLAAS CORRÊA

Domain-Dependent Heuristics and
Tie-Breakers:

Topics in Automated Planning

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. André G. Pereira
Coadvisor: Prof. Dr. Marcus Ritt

Porto Alegre
January 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Wladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Ich sage euch: man muss noch Chaos in sich haben,

um einen tanzenden Stern gebären zu können”

— FRIEDRICH NIETZSCHE

ACKNOWLEDGMENTS

I thank you, my dear reader.

ABSTRACT

Automated planning is an important general problem solving technique in Artificial In-

telligence (AI). In planning, given a initial state of the world, a goal and a set of actions,

we want to find a sequence of these actions leading us to the goal. What makes planning

interesting is that we can model several different domains into planning tasks and solve

them using a single method (e.g. Sokoban, logistic problems, security verification, etc).

In this thesis, we will approach two different aspects of planning.

First, we study domain-dependent heuristics in the context of the airport ground traffic

problem and compare them to the state-of-the-art heuristics in literature. We present

heuristics that over perform any other known method. Also, we show that simple domain-

dependent heuristics can still be superior than the state-of-the-art domain-independent

ones. These proposed heuristics resulted in a conference paper published (CORRÊA;

PEREIRA; RITT, 2016) previously.

The second part of this work treats about tie-breakers for A∗ search algorithm. In a more

theoretical fashion, we study the current tie-breakers in literature (ASAI; FUKUNAGA,

2016; ASAI; FUKUNAGA, 2017) and show that all these techniques can mislead the

search. We propose a new method based on operator (transition) cost adaptation that is

proved to be the best possible tie-breaker in the perfect scenario. We also show that the

methods proposed can solve more instances – i.e., increase coverage – than the “canoni-

cal” methods in literature.

We believe that the analysis on domain-dependent heuristics and the tie-breaking strate-

gies proposed are valuable not only to the automated planning community. Anyone in-

terested in search, general AI topics, general problem solving or even just puzzles and

games can benefit from this work.

Keywords: Heuristic search. automated planning. airport control. A*. tie-breaker.

Heurísticas dependentes de domínio e regras de desempate: tópicos planejamento

automatizado

RESUMO

Planejamento automatizado é uma importante técnica genérica de solução de problemas

em Inteligência Artificial (IA). Em planejamento, dado um estado inicial do mundo, um

objetivo e um conjunto de ações, queremos encontrar a sequência destas ações que nos

leva para o objetivo. O que torna planejamento interessante é o fato de que podemos

modelar diversos domínios em tarefas de planejamento e resolvê-los usando um único

método (e.g. Sokoban, problemas de logística, verificação de segurança, etc.). Nesta tese,

abordamos dois aspectos diferentes de planejamento.

Primeiro, estudamos heurísticas dependentes de domínio no contexto do problema de trá-

fego de aeroportos em solo e comparamos estas com as principais heurísticas da literatura.

Nós apresentamos heurísticas que superam qualquer outro método conhecido. Mostramos

também que simples heurísticas dependentes de domínio ainda podem ser superiores as

principais heurísticas independentes de domínio. As heurísticas propostas resultaram em

um artigo publicado anteriormente em uma conferência (CORRÊA; PEREIRA; RITT,

2016).

A segunda parte deste trabalho trata sobre regras de desempate em planejamento. De uma

maneira mais teórica, estudamos os atuais métodos de desempate na literatura e mostra-

mos que tais técnicas apresentam problemas. Nós propomos um novo método baseado

na adaptação de custos que é provado ser o melhor possível. Também demonstramos

que tais métodos propostos podem solucionar mais instâncias que os métodos padrões na

literatura.

Acreditamos que os resultados apresentados sobre heurísticas independentes de domínio e

regras de desempate têm valor não só para a comunidade do planejamento automatizado.

Qualquer um interessado em busca, IA em geral, soluções de problemas em geral ou até

mesmo apenas em jogos pode se beneficiar deste trabalho.

Palavras-chave: Busca heurística, planejamento automatizado, controle de aeroportos,

A* , regras de desempate.

LIST OF FIGURES

Figure 4.1 Search spaces for which tie-breaking by h∗, ĥ∗, and h∗ε fails.40
Figure 4.2 Example of a state space where tie-breaking strategies [g+h∗, h∗c] using

cost adaptation fail. ...42
Figure 4.3 Example of a state space topology where tie-breaking strategy [g+h, g+

h∗ε] fails if h is inconsistent. ..47
Figure 4.4 Expanded states and expansions per second for tasks in IPC (top) and

Zero-cost (bottom) using f = g + hLM-cut with different tie-breakers (axis)............51

LIST OF TABLES

Table 2.1 Cases where A∗ is 0- or 1-optimal. ...19

Table 3.1 Characteristics of the 50 instances from the airport domain.26
Table 3.2 Results for domain-independent heuristics. ..31
Table 3.3 Comparison of the closest goal heuristic to the two best domain-independent

heuristics on the instances with fixed parking positions. ..32
Table 3.4 Values of the initial heuristic (h) and best f -value (f) for instances with

fixed parking positions. ...33
Table 3.5 Comparison of the closest goal and matching heuristics to the two best

domain-independent heuristics on the instances with free parking positions...........34
Table 3.6 Values of the initial heuristic (h) and best f -value (f) for instances with

free parking positions..35

Table 4.1 Comparison of the geometric mean of the number of expanded states
using different methods for heuristic function and tie-breaking strategy.48

Table 4.2 Comparison of the number of solved instances in IPC and zero-cost
benchmarks where the value f is g + hLM-cut..50

LIST OF SYMBOLS

V Set of finite-domain variables

O Set of operators

s0 Initial state (complete variable assignment) of a planning task

s∗ Partial variable assignment indicating the goal fact of a planning task

S∗ Set of states that contain the partial variable assignment s∗

cost Operator cost function cost : O → R0
+

Π Planning task defined by the tuple 〈V ,O, s0, s∗, cost〉

S State space induced by a planning task Π defined by the tuple 〈s0, S∗,O, cost〉;

set of reachable states in Π

h Heuristic function h : S → R0
+ ∪ {∞}

h∗ Perfect heuristic function h∗ : S → R0
+ ∪ {∞}

g Real cost function g : S → R0
+ ∪ {∞}

f State evaluation function f : S → R0
+ ∪ {∞}

f ∗ State evaluation function using the perfect heuristic f : S → R0
+ ∪ {∞}

d Distance function in number of operators from a state to its closest goal state in

an optimal plan f : S → N ∪ {∞}

C∗ Cost of an optimal plan

CONTENTS

1 INTRODUCTION...11
1.1 Thesis Outline and Relation to Previous Work ..12
2 BACKGROUND: PLANNING AND HEURISTIC SEARCH13
2.1 Planning Formalism..13
2.2 Heuristic Functions...14
2.2.1 Delete Relaxation...16
2.2.2 Critical Paths..18
2.2.3 Abstractions ...18
2.2.4 Landmarks..19
2.3 Heuristic Search ..19
3 THE AIRPORT GROUND TRAFFIC PROBLEM ..22
3.1 Preliminaries ...23
3.1.1 Airport Ground Traffic Control..23
3.1.2 Standard Set of Instancess ...25
3.1.3 Related Work ...27
3.2 A Domain-Dependent Heuristic for the Airport Domain....................................28
3.2.1 Pre-Processing..28
3.2.2 Closest Goal Heuristic ...29
3.2.3 Matching Heuristic...29
3.3 Experimental Results..30
3.3.1 Evaluation of domain-independent heuristics..30
3.3.2 The closest goal heuristic on instances with fixed goal positions..........................31
3.3.3 The closest goal and the matching heuristic on instances with free goal positions34
3.4 Conclusions and Future Work ...37
4 A PERFECT TIE-BREAKER FOR A∗ ..38
4.1 Tie-Breakers for A∗ ...39
4.2 Understanding Tie-Breaking Strategies..40
4.2.1 Analyzing h∗ as Tie-Breaking Strategy ...40
4.2.2 Analyzing ĥ∗ as Tie-Breaking Strategy ...41
4.2.3 Analyzing h∗c as Tie-Breaking Strategy ...41
4.2.4 Special Cases ...43
4.2.5 An Optimal Expansion Strategy based on h∗c ..45
4.2.6 Analyzing Approximations of h∗ ...45
4.3 Experiments...48
4.3.1 Comparing Theory and Practice ..49
4.3.2 Performance on the Complete Set of Instances ...51
4.4 Conclusion and Future Work...52
5 THESIS’ CONCLUSION...54
REFERENCES...55

11

1 INTRODUCTION

Automated planning is a general problem-solving technique in Artificial Intelli-

gence (AI) where, given an initial state of a problem, we try to find a sequence of oper-

ators leading us to a goal. For example, in an airport ground-traffic control problem we

may want to find a sequence of movements that planes must perform to reach their desired

position given a set of constraints in the airport. A vast number of domains can be seen

as planning tasks, such as logistics problems, transportation tasks (e.g. Sokoban), puzzles

(e.g. (n2 − 1)-puzzle) and scheduling problems.

The goal of domain-independent planning is to create an algorithm that performs

well in any given problem – i.e., methods that do not use any prior information related to

the task. In this work, we are interested in a specific formalism of domain-independent

planning, called classical planning. In this formalism, a single agent executes a sequence

of operators, with deterministic, discrete and fully observable effects, until it reaches the

goal. One could relax this formalism to obtain other variants of planning, such as partially

observable, probabilistic or multi-agent planning. Beyond that, classical planning can be

split into two categories: optimal and satisficing planning. While the former tries to find

the best solution for a planning task, the latter only tries to find a feasible solution.

Different planning domains can present different complexities, however, clas-

sical planning is PSPACE-complete (HELMERT, 2006b). Also, optimal and satisfic-

ing planning can present different complexities for a same domain. For instance, the

BLOCKSWORLD domain – where we have a table full of numbered blocks and they need

to be organized in a specific manner – is in NP-complete for optimal planning and in

P for satisficing planning, while the airport domain (mentioned in the first paragraph)

is PSPACE-complete for both. This natural hardness of planning forces us to look for

methods to reduce our computational effort (HELMERT, 2006b; HELMERT, 2001).

In the last two decades, one of the main techniques to solve planning problems is

based on heuristic search methods (BONET; GEFFNER, 2001). A heuristic, in the sense

of this work, is an informed function that tries to estimate the cost from a state of the task

to its goal. By performing an informed search (e.g. A∗ (HART; NILSSON; RAPHAEL,

1968), Greedy Best-first Search (DORAN; MICHIE, 1966)), we try to reduce the effort

needed to find a solution for a planning task by reducing the state explosion problem.

This work approaches two different issues in classical planning. First, given the

last advancements in planning using heuristic search, we want to solve the question:

12

are the state-of-the-art heuristics in planning better than simple, almost trivial, domain-

dependent heuristics? To do so, we will investigate one of the hardest domains in plan-

ning, the airport ground-traffic problem. Second, we address the problem of tie-breakers

in heuristic search, more specifically in A∗ algorithm and ask: can we find a perfect tie-

breaker for A∗?

In the following chapter, we provide the background needed for the rest of this

work and, then, we move further to answer the questions stated above. The two main

chapters of this thesis are not directly related; they present the results and contributions

from two different works, thus they were organized to be self-contained (i.e., each chapter

has its own “Related Work” and “Conclusion” subsections). Before doing so, we outline

the contributions of this thesis and its relation to previous published works.

1.1 Thesis Outline and Relation to Previous Work

This thesis has two clearly divided parts. The first part is dedicated to domain-

dependent heuristics in the airport ground-traffic problem. We show that heuristics based

on simple calculated distances from each airplane to its destination can be more informed

and present better coverage (i.e., Number of solved instances1) than the state-of-the-

art domain-independent heuristics present in the Fast-Downward planner (HELMERT,

2006a). This work was previously published as a paper in the BRACIS 2016 (Brazilian

Conference on Intelligent Systems) as “Improved Airport Ground Traffic Control with

Domain-Dependent Heuristics” (CORRÊA; PEREIRA; RITT, 2016). Chapter 3 contains

all the results and some fragments from Corrêa, Pereira and Ritt (2016).

The second part refers to the theoretical study of tie-breaking strategies for A∗. We

present a theoretical method that guarantees optimal expansion for the search under best

scenario assumptions. Our theoretical results are empirically tested and we obtain better

performance on coverage than the state-of-the-art in literature.

1Using coverage to express number of solved instances in an experiment is common in the classical
planning literature and, due to that, we will use them as synonymous in this work.

13

2 BACKGROUND: PLANNING AND HEURISTIC SEARCH

In this chapter, we introduce the main notations and definitions used in this work.

A more experienced reader could skip some sections and subsections, consulting the List

of Symbols in case of need. We start by defining the planning formalism (Section 2.1),

then moving to definitions about heuristics and common heuristics in planning literature

(Section 2.2). Finally, we discuss heuristic search and search algorithms (Section 2.3).

2.1 Planning Formalism

We consider the SAS+ formalism from Bäckström and Nebel (1995) to define

planning tasks. SAS+ tasks are based on a set of finite-domain variables V . Each variable

v ∈ V has a finite domain dom(v) of possible values that can be assigned to it. An

assignment 〈v, d〉 where v ∈ V and d ∈ dom(v) is a fact. If a variable v appears in a fact

〈v, d〉 we say that it contains v (or, v is contained in 〈v, d〉).

Definition 2.1 (Partial and Complete Assignments). Let V be a set of finite-domain vari-

ables, a partial variable assignment is a set of facts where each variable v ∈ V is con-

tained in at most one fact; a complete variable assignment is a set of facts where each

variable v ∈ V is contained in exactly one fact.

A complete variable assignment is also called a state. Notice that a partial variable

assignment can also be a state, but this is not always the case.

In a nutshell, a planning task (also called planning problem or planning instance)

can be seen as a set of variables, a initial state composed of facts over these variables, a

partial variable assignment indicating the goal and a set of operators (with specific cost

each) to modify a state.

Definition 2.2 (Planning Task). Let Π = 〈V ,O, s0, s∗, cost〉 be a planning task, where V

is a set of variables, O is a set of operators, s0 is the initial state, s∗ is the goal and cost

is a function applicable in each element of O.

The initial state s0 is a complete variable assignment and the goal s∗ is a partial

variable assignment. Any state that contains the partial variable assignment s∗ is called a

goal state.

Each operator o ∈ O is defined as a tuple o = 〈pre(o), eff(o)〉, where pre(o) and

eff(o) are partial variable assignments representing the operator’s precondition (i.e., a set

14

of facts that must be true in a state s to apply o) and effect (i.e., a set facts that will become

true if the operator o is applied to s), respectively. An operator o is only applicable to a

state s if s contains the partial assignment pre(o). The function cost: O → R+
0 ∪ {∞}

maps an operator o ∈ O to the cost of applying o to a state. Applying an operator o in

a state s will generate the successor state s[o]. The set of all possible successor states

of s is denoted as succ(s). Applying a sequence of operators o1, o2, . . . , on from state s

will generate state s[o1][o2] · · · [on]. A s-plan for Π is a finite sequence of operators such

as s[o1][o2] · · · [on] is a goal state. A state s is solvable if a s-plan exists. The task Π is

solvable if an s0-plan exists. In this thesis, we will call “s0-plan” just “plan”.

In this work, we call any s0-plan a path from s0 to any goal state. A path is

indicated as s0 → s1 → · · · → sn, where si → sj indicates that sj is a direct successor of

si and sn is a goal state.

Given a planning task Π = 〈V ,O, s0, s∗, cost〉, we say that it induces a state space

S = 〈s0, S∗,O, cost〉, a weighted and labeled transition system, represented as a graph,

where each node in this graph corresponds to a reachable state from s0 and each arc from

state s to s′ corresponds to the operator o generating s from s′ and it is weighted with

cost(o).

Definition 2.3 (State Space). Let S = 〈s0, S∗,O, cost〉 be a state space induced by Π =

〈V ,O, s0, s∗, cost〉, where s0 is the initial state, S∗ is a set of goal states (set of states that

contain the partial variable assignment s∗) and O is a set of operators. For a given state

s and for each operator o in the subset of applicable operators to s in O, we have the

transition s→ s′ with label o and cost cost(o) ∈ R+
0 , where s′ = s[o] .

Any sequence of labels from transitions in S from s0 to any state s ∈ S∗ corre-

spond to a valid plan in Π. The shortest sequence corresponds to the optimal plan in Π.

We denote the cost of the optimal plan as C∗.

2.2 Heuristic Functions

In this section, we formally introduce heuristic functions, or just called heuristics.

In the following section, we will introduce search methods and how they use heuristics as

defined here.

In the context of planning, heuristics can be seen as a function mapping states

from a state space S to a non-negative number. Usually, a heuristic computed for a state

15

s estimates the cost from s to a goal state s′ ∈ S∗.

Definition 2.4 (Heuristic Function). Let S = 〈s0, S∗,O, cost〉 be a state space induced

by Π = 〈V ,O, s0, s∗, cost〉, the heuristic function (or just heuristic) is a function h : S →

R+
0 ∪ {∞}.

A special heuristic function is the perfect heuristic, denoted as h∗. This function

maps each state s ∈ S to the cost of an optimal s-plan in Π (i.e., it estimates perfectly the

minimum cost for each state to reach a goal state in a given state space).

Definition 2.5 (Perfect Heuristic). Let S = 〈s0, S∗,O, cost〉 be a state space induced by

Π = 〈V ,O, s0, s∗, cost〉, the function h∗ : S → R+
0 ∪ {∞}, called the perfect heuristic,

maps each state s ∈ S to the cost of an optimal s-plan in Π or to∞ if no such plan exists.

It is also useful to introduce some properties of heuristics, such as admissibility

and consistency:

Definition 2.6 (Admissible Heuristic). Let h be a heuristic function over a state space

S = 〈s0, S∗,O, cost〉. The function h is said admissible if h(s) ≤ h∗(s) for every s ∈ S.

Definition 2.7 (Consistent Heuristic). Let h be a heuristic function over the state space

S = 〈s0, S∗,O, cost〉 induced by Π = 〈V ,O, s0, s∗, cost〉. The function h is said consis-

tent if and only if h(s) ≤ h(s′) + cost(o) for every s ∈ S and each s′ ∈ succ(s) where

s′ = s[o] for an applicable operator o ∈ O; and h(s∗) = 0 for each s∗ ∈ S∗.

For a state space S and a heuristic function h, we can define a state space topol-

ogy T . In words, a state space topology is a state space where each state is evaluated

accordingly to a heuristic function h.

Definition 2.8 (State Space Topology). Let h be a heuristic function over the state space

S = 〈s0, S∗,O, cost〉 induced by Π = 〈V ,O, s0, s∗, cost〉, a state space topology T =

〈S, h〉 is a state space where each state s ∈ S is evaluated and labeled accordingly to the

function h.

In planning literature, heuristics were usually divided in four types: delete re-

laxation, critical paths, landmarks and abstractions (HELMERT; DOMSHLAK, 2009).

These four types of heuristic will be explained in the following subsections. More re-

cently, flow (BRIEL et al., 2007; BONET, 2013) and potential heuristics (POMMEREN-

ING et al., 2015) were introduced as “new types”; however, they are not fundamental to

the results of this thesis, thus they won’t be detailed.

16

2.2.1 Delete Relaxation

Heuristics based on delete relaxation “accumulate” the effects of its operators in-

stead of changing the facts in a state. Using the notation from the literature, we denote

the delete relaxation heuristic as h+. We illustrate this concept with a small example.

Example 2.1. Suppose we have a planning task Π = 〈V ,O, s0, s∗, cost〉 where V =

{X, Y, Z}, with dom(X) = dom(Y) = dom(Z) = {0, 1}; the initial state s0 is

s0 := {X = 1, Y = 0, Z = 0}

The goal partial variable assignment is:

s∗ := {Y = 1, Z = 1}

Our operator set O has three operators o1, o2 and o3:

o1 := 〈{X = 1}, {Y = 1, Z = 1}〉

o2 := 〈{X = 1}, {X = 0, Y = 1}〉

o3 := 〈{X = 1}, {X = 0, Z = 1}〉

And our cost function maps the operators as follows:

cost(o1) = 1

cost(o2) = cost(o3) = 0

Computing the perfect heuristic for our initial state we would have h∗(s0) = 1,

because applying the o1 would lead us directly to a goal state. However, we would also

obtain h+ = 0, because the plan over delete relaxation would allow us to apply o2 ans o3

to reach a goal state – even though it is not even feasible in our real original task. In more

17

detail, the following would happen:

s0 := {X = 1, Y = 0, Z = 0}

s0[o2] := {X = 1, X = 0, Y = 1, Y = 0, Z = 0}

s0[o2][o3] := {X = 1, X = 0, Y = 1, Y = 0, Z = 1, Z = 0}

and s0[o2][o3] is a goal state.

Computing h+ is NP-complete (BYLANDER, 1994; BONET; GEFFNER, 2001),

however, we can compute approximations of h+ in polynomial time. Even though delete

relaxation heuristics don’t seem very promising in our example, approximations of h+

won the International Planning Competition (IPC) in previous years (BONET; GEFFNER,

2001; HOFFMANN; NEBEL, 2001). It is worth to mention that h+ is admissible (BONET;

GEFFNER, 2001).

The most simple approximation of h+ is hmax (BONET; GEFFNER, 2001). In

general lines, the function hmax computes the maximum cost to achieve individually each

fact in s∗ in the delete relaxation version of the task. The computation can be performed

in polynomial time and the heuristic value is admissible. However, as one may expect,

hmax is not very informative in practice. One can consider hmax as an optimistic view of

h+; another possibility is the pessimistic view, the hadd heuristic (BONET; GEFFNER,

2001). It also computes the individual cost for each fact in s∗ in the delete relaxation

planning task, but instead of taking the maximum cost, it sums them all. By definition,

hadd is not admissible and not bounded by h+. hadd will not be explained further because

it won’t appear in this work again.

Another important heuristic is hFF (HOFFMANN; NEBEL, 2001). In 2001, Hoff-

mann and Nebel (2001) introduced this idea and won the IPC using a planner based on it.

Since then, the hFF heuristic is one of the most relevant approximations of delete relax-

ation in the planning literature. This heuristic uses the observation that relaxed solvability

of a delete relaxation is in P (BYLANDER, 1994) to find a feasible plan quicker. Here,

we remark two results are important for this work: (i) hFF is non-admissible; and (ii) hFF

is at least as informed as hmax in any given S (HOFFMANN; NEBEL, 2001).

Given a planning task Π accordingly to Definition 2.2, we will denote as Π+ the

delete relaxation of Π.

18

2.2.2 Critical Paths

We call critical path heuristics the family of heuristics hm defined by Haslmum

and Geffner (2000). The heuristic hm computes the lower bound cost to achieve a set of

goal facts of cardinality m, where m ∈ N1 is a parameter. For a given state, it can be

computed in polynomial time for a fixed m, but exponential time in m. One important

point about critical path heuristics is that its basic form (m = 1) is equivalent to hmax.

2.2.3 Abstractions

For a given state space S , an abstract heuristic hα maps each state s ∈ S an

abstract state α(s). Thus, the heuristic value hα(s) is the estimated cost from s to the

closest abstract goal state in the transition system induced by α over S.

One of the main abstraction mappings in literature are pattern databases (CUL-

BERSON; SCHAEFFER, 1998; EDELKAMP, 2001). Roughly speaking, in pattern

databases abstractions (PDB) we relax the planning task Π to consider only a subset of

variables from Π and ignore the other ones – we simply “don’t care” about their values.

Hence, we compute the heuristic value for each abstract state only considering these vari-

ables – e.g. if an operator has a precondition not related to a variable in this subset, we

discard it.

A PDB heuristic stores the shortest distance to the closest abstract goal state for all

abstract states in a look-up table. For computing the heuristic value of a state, we query

the look-up table for the abstraction which corresponds to the original state to get a lower-

bound on the cost to the closest goal state. Thus, it can be used as an admissible heuristic.

In most of the cases, it is interesting to compute several different PDBs for a planning task

and get the maximum among them. Given some special conditions, we can even sum up

different PDB heuristics for a same state (In a nutshell, both abstractions must be disjoint

– i.e., the variables in each subset must be different and the operators used to estimate

each heuristic value must only depend on variables from one abstraction).

In this work, we will use mostly the iPDB heuristic (also written hiPDB (HASLUM

et al., 2007; SIEVERS; ORTLIEB; HELMERT, 2012). The details of iPDB are omitted

and further results will be shown in specific sections later. Other possible abstractions are

merge-and-shrink abstractions (HELMERT et al., 2007) and structural patterns (KATZ;

DOMSHLAK, 2008), the former will be used in some experiments but its details are not

19

crucial.

2.2.4 Landmarks

For a state s, we say that an operator o ∈ O is an action landmark if it is part of

any s-plan. Disjunctive action landmarks are sets of actions where at least one is part of

every s-plan. We also have fact landmarks for s: facts that must be true in any s-plan.

In this thesis, we refer as just landmarks the notion of disjunctive action landmarks for a

given state s.

Deciding if a set of operators L ⊆ O is a landmark in a planning task Π is PSPACE-

complete (PORTEOUS; SEBASTIA; HOFFMANN, 2014). Hence, most of the heuristics

in literature use relaxations of the planning task to compute L. In practice, we usually

use the delete relaxation Π+ to compute a set L+. Therefore, these heuristics are also

bounded by h+ (HELMERT; DOMSHLAK, 2009).

Several heuristics using landmarks were proposed (e.g. RICHTER; HELMERT;

WESTPHAL (2008) and KARPAS; DOMSHLAK (2009)). Helmert and Domshlak (2009)

define the landmark-cut admissible heuristic function hLM-cut, or simply LM-cut. The de-

tails of this heuristic are outside of the scope of this thesis.

Now, we present heuristic search techniques and how we can use the heuristics

presented previously to help us to find a solution to our planning tasks quicker.

2.3 Heuristic Search

Table 2.1: Cases where A∗ is 0- or 1-optimal.

Characteristics of h in Π A ∧ P A ∧ ¬P C ∧ P C ∧ ¬P

Characteristics of A∗ 1-optimal 0-optimal 1-optimal 0-optimal

In a summary, most of the deterministic search algorithms work as follows: given

a graph G = (V,A), we select our initial node n ∈ V and generate all possible successors

of n – we say that we expand n by applying all possibles transitions to it – and then

we place them in a list called OPEN. After the expansion, we place n in a list called

CLOSED. Next, we must select the next node from OPEN to expand and apply this

procedure successively until we find a goal node, the node that we are searching for (it

20

can be when we generate or when we select it from OPEN, depending on the specific

algorithm). The main difference between search algorithms is the way we select the next

node to expand. For instance, the two most basic search algorithms are breadth-first

search and depth-first search; while the former uses a first-in-first-out (FIFO) fashion, the

latter uses a last-in-first-out (LIFO) manner. These different selection methods can cause

a difference in performance and in the optimality of the search.

In the context of planning, each node of the search is equivalent to a state. Thus,

we say that we perform a state-space search over a state space S. Expanding a state s is

the same as applying all applicable operators in this state to generate succ(s). We decide

to use the term “state” instead of “node” through the rest of this work; however, we must

mention that they could be interchanged without loss of meaning.

Planning as heuristic search is mostly based on best-first search algorithms. This

class of algorithms uses the heuristic information to evaluate a function f for each state s

and then place it in the OPEN list. When selecting which state to expand, the algorithm

selects the state in OPEN which minimizes the function f . Thus, we try to perform

our state-space search leading forward to a goal state, minimizing the number of states

expanded and making the search faster.

A∗ is a best-first search algorithm that uses f(s) = g(s) + h(s) for all states s.

The function g(s) denotes the current cost until s from our initial state s0 and h(s) is the

heuristic function over s. The function f ∗(s) denotes the f -value when using the perfect

heuristic h∗ for its computation – i.e., f ∗ = g + h∗. Also, we denote as d(s) the function

that computes the number of operators needed from a state s until the closest goal state in

an optimal plan.

Two properties of A∗ make it “special”: (i) if the heuristic function h is admissible

– i.e., it never overestimates the real cost to reach a state –, A∗ will find a plan with

optimal cost C∗; (ii) A∗ is said optimal – i.e., expand the fewest number of nodes –

among best-first search algorithms that return optimal cost solutions, if the function h

used is admissible and consistent (DECHTER; PEARL, 1985).

When studying the properties of A∗, Dechter and Pearl (1985) define a state space

topology T = 〈S, h〉 to be non-pathological if there exists at least one cost-optimal, not

fully informed s-path – an s-path is not fully informed if h(s) < h∗(s) for all s /∈ S∗ on

it. In the same way, a pathological state space topology T is fully informed on at least

one state s /∈ S∗ on each cost-optimal s-path.

Definition 2.9 (Pathological State Space Topology). A state space topology T = 〈S, h〉

21

is pathological if, for each cost-optimal s-path, at least one state s′ /∈ S∗ on the s-path

has h(s′) = h∗(s′).

We analyze further the results from Dechter and Pearl (1985) to use it as a moti-

vation for part of this thesis. When compared to best-first search algorithms, A∗ is said

0-optimal if it expands a subset of the states expanded by any other best-first search in-

dependently of the tie-breaker, and it is said 1-optimal if there is a tie-breaking strategy

in which A∗ expands a subset of the states expanded by any other best-first search algo-

rithm. Table 2.1 show in which circumstances A∗ is 0- and 1-optimal from Dechter and

Pearl (1985). The analysis is made given a specific task Π and a heuristic h. “A” indicates

a task where h is admissible; “P” indicates a task where h is pathological and its negative,

“¬P”, when it is non-pathological; “C” indicates that h is consistent in Π. In this second

part of this thesis, we will study tie-breaking techniques and hence we will be interested

in the case where A∗ is 1-optimal.

Equipped with the definitions from this chapter, we move forward to analyze some

problems in classical planning. We suggest the reader to consult the list of symbols during

the following chapters, since the notation can be quite complicated to readers who are not

used to automated planning or heuristic search.

22

3 THE AIRPORT GROUND TRAFFIC PROBLEM

One of the planning problems that arises in airports is the ground traffic control

problem, which is to define the paths out-bound airplanes have to take from their parking

position to the runway for take-off, or the paths in-bound airplanes have to take after land-

ing until getting to a parking position. The main objective is to find a plan that achieves

this goal most economically, i.e., with the least movement of the airplanes, respecting

restrictions on the movement coming from concerns about security, for example the min-

imum distance between airplanes.

A realistic version of the airport traffic control problem was introduced in the IPC

in 2004 (HOFFMANN et al., 2006). In this version, the airport is modeled as a directed

graph, with designated parking and take-off positions. All airplanes have an orientation

and other airplanes must keep a minimum distance from the rear of an airplane with a

running engine.

There are several versions of the airport ground traffic control problem. In the

simplest version, all routes for in- or out-bound airplanes are fixed. This is often done to

simplify the decision making of the ground traffic controller. However, even this version

is NP-complete (HATZACK; NEBEL, 2001). If the routes are not prefixed, deciding

if a bounded plan or any feasible plan exists is PSPACE-complete, even when the goal

positions of the airplanes are known (HELMERT, 2006b). This is one of the reasons that

makes the airport domain one of the most difficult domains in the IPC. Four versions have

been introduced in IPC 2004 and they differ in the modeling of time. The simplest version

is non-temporal. There also exist temporal versions with and without time windows. In

practice the goal is to minimize the makespan of an instance, i.e., the total time or number

of operators until all airplanes reach their goal positions.

In this thesis, we are interested in solving the non-temporal, sequential version

of the problem optimally, i.e., we search for plans which minimize the total number of

operators. In the instances of IPC 2004, the goal positions of the airplanes (a runway for

out-bound airplanes, and a parking position for in-bound airplanes) are fixed. However,

we are also interested in a variant of the problem that permits free goal positions, such

that in-bound airplanes can choose any of the available parking positions and out-bound

airplanes can take off at several available runways. This variant is more realistic since, for

example, the parking position of an airplane may change after touchdown. Besides being

a more realistic variant, this change makes the problem also more difficult to solve, since

23

for ai in-bound airplanes, p parking positions, ao out-bound airplanes and r runways the

number of goal states increases from 1 to
(
p
ai

)
rao .

The techniques used by solvers for airport ground traffic problems usually are

domain-independent. These techniques do not take into consideration particularities of

the problem, and try to solve it only by general strategies on the planning task. The main

goal of this chapter is to compare how well simple domain-dependent heuristics perform

when compared to state-of-the-art domain-independent heuristics in both variants of the

problem mentioned above.

Another motivation to study the airport domain is to analyze techniques used in

other transport problems and see how well they perform using the automated planning

formalism. We are specially interested to test domain-dependent heuristics similar to the

ones used in Sokoban, (e.g. PEREIRA; RITT; BURIOL (2014)).

We close this introductory section mentioning that the following results and obser-

vations were already published in a past conference paper (CORRÊA; PEREIRA; RITT,

2016). Here, we extend our analysis to present more detailed observations and results.

3.1 Preliminaries

3.1.1 Airport Ground Traffic Control

Our definition of airport ground traffic control tasks is not in “pure” SAS+, because

this “pure” version can be messy and misleading for some readers. Instead, we use an

easier – but correct – formalism to explain this domain. Our explanation is based on

Helmert (2006b), the main differences are made to keep the notation consistent.

An airport task is defined by a set of segments ψ. Each segment ψ ∈ Ψ can be

either a taxiway, a parking position, or a runway for landing and take-off, and has domain

dom(ψ) = {taxi, park, runway}. Thus, an airport can be modeled by a directed graph

G = (V,A), with vertex set V = Ψ × D, where D = {north, south} represents the

possible directions of an airplane, and arc set A, which defines the possible successor

segments and directions for a given current segment and direction1.

A task of the ground traffic control problem is defined by a set of airplanes P , with

positions p : P → V and goal segments g : P → Ψ. The type of a goal segment g(a)

1Note that “north” and “south” are arbitrary names, introduced by Hoffmann et al. (2006), and have no
relation to any actual orientation of the segment.

24

for an airplane a ∈ P must be either park for in-bound airplanes or runway for out-bound

airplanes. An airplane can be either moving, parked or airborne, defined by its current

mode m(a) ∈ M = {parked,moving, airborne} (i.e., similar to dom(a)). A position of

an airplane a ∈ P is defined by its current segment and its direction. The direction defines

to which end of the segment the airplane is oriented, and restricts the possible successor

segments

Mode parked is only permitted if the current segment of the airplane has type

park. A parked airplane can start up its engines to enter mode moving. Only in this mode

an airplane can change its current segment and direction (p, d) to another segment and

direction (p′, d′) if ((p, d), (p′, d′)) ∈ A. If an airplane is in mode moving at a segment

of type park it can similarly shut down its engines to enter mode parked. Mode airborne

is only valid for segments of type runway. An airplane in mode moving at a runway can

take off to switch to mode airborne. There is no operator for landing. All operators in the

airport domain have unit cost.

A moving airplane at position v ∈ V will block a set of segments B(v) ⊆ V

due to the engine exhaust of the airplane. The blocked segments depend on the orien-

tation of the airplane and its size (larger airplanes may block more segments). For cur-

rent positions p and modes m, segments B(p,m) = ∪a∈P gB(p(a)) are blocked, where

P g(m) = {a ∈ P | m(a) 6= airborne} is the set of airplanes on the ground. Let

Ψg(p,m) = {ψ | (ψ, d) = p(a) for some a ∈ P g(m)} be the segments occupied by air-

planes on the ground. The current positions p are valid, if on each segment there is a most

one airplane of type moving or parked (i.e., |Ψg(p,m)| = |P g(m)|), and no airplane on

the ground is at a blocked segment (i.e., Ψg(p,m) ∩B(p,m) = ∅).

The standard airport domain with fixed goal positions can be modeled as a weighted

state space S = 〈s0, S∗,O, cost〉, as defined before. Our initial state s0 specifies in which

segments each airplace is located, which is the type of each airplane, which segments

are blocked, where are the parking and takeoff segments, etc. The set of operators O

contains operators to move airplanes (forward and backwards), turn planes on and off, as

well as operators to park and takeoff airplanes. All the operators have unit cost in both

versions of this domain. The only difference between the two presented versions is the

goal S∗: the original version with fixed parking positions has a specific fact for each plane

in the format 〈is-parked-?a-?s, b〉, where b is a boolean variable, and the variable

is-parked-?a-?s indicates if airplane ?a is parked at segment ?s (the format for

airborne planes is similar); the new version with free parking position has goal facts in

25

the format 〈is-parked-?a, b〉 simply indicating if airplane ?a is parked or not (the

airborne planes keep the goal from the original version)2.

3.1.2 Standard Set of Instancess

The standard set of instances of the airport domain represents real-world condi-

tions of an airport ground traffic control problem. There are four versions of the domain:

non-temporal, temporal, temporal-timewindows, and temporal-timewindows-compiled.

The last three versions include time constraints, as for example the time to move across

a segment and time windows where a segment will be blocked. We address the first ver-

sion which is the most widely researched in the literature. In this IPC version, each task

is written in Planning Domain Definition Language (PDDL). PDDL is similar to SAS+,

however not identical. The facts in SAS+ are called predicates and they can have mul-

tiple parameters. For example, the fact to check if a goal is parked in SAS+ explained

in the previous subsection was 〈is-parked-?a-?s, b〉, where is-parked-?a-?s

is a finite-domain variable indicating if airplane ?a is parked at segment ?s; in PDDL,

we could write it just as (is-parked ?a ?s), a predicate with two parameters – an

airplane and a segment – and this predicate must be true in any goal state.

In the standard set, for each instance there is a unique explicitly defined goal

state. The goal state is defined by a set of two predicates (is-parked ?a ?s) and

(airborne ?a ?s), where ?a is an airplane and ?s is a segment. Each predicate

defines the segment that the airplane must reach to achieve the goal condition. There are

two actions, park and takeoff, that make the predicates true. Thus, the transforma-

tion from fixed to free goal positions consists of removing from the is-parked and

airborne predicates the segment definition. The predicate (is-parked ?a ?s)

has been changed to (is-parked ?a) and a similar change has been applied to the

predicate airborne. We did not add any other action to the domains and just adapted

it to make it consistent. The resulting definition produces an implicit defined goal state,

where usually multiple states will satisfy the goal condition.

The standard set from IPC-4 has 50 instances. Table 3.1 shows their character-

istics. It reports, for each instance, its number (“#”), the airport type (“T.”), the total

number of segments (“#S”), the number of in-bound airplanes and parking positions

2We use the notation ?a instead of a here to use the same fashion in which PDDL (explained in the next
subsection) uses to define it.

26

Table 3.1: Characteristics of the 50 instances from the airport domain.

Park. Airb. Park. Airb.

T. #S #P #S #P #S # T. #S #P #S #P #S

1 1 17 1 1 0 2 26 4 302 3 30 3 2
2 1 17 0 1 1 2 27 4 302 1 30 5 2
3 1 17 1 1 1 2 28 4 302 2 30 5 2
4 2 40 1 2 0 2 29 4 302 3 30 5 2
5 2 40 0 2 1 2 30 4 302 1 30 7 2
6 2 40 1 2 1 2 31 4 302 2 30 7 2
7 2 40 1 2 1 2 32 4 302 3 30 7 2
8 2 40 1 2 2 2 33 4 302 2 30 8 2
9 2 40 2 2 2 2 34 4 302 3 30 8 2

10 3 44 1 4 0 2 35 4 302 4 30 8 2
11 3 44 0 4 1 2 36 5 457 1 30 1 4
12 3 44 1 4 1 2 37 5 457 0 30 3 4
13 3 44 1 4 1 2 38 5 457 1 30 2 4
14 3 44 1 4 2 2 39 5 457 0 30 4 4
15 3 44 1 4 2 2 40 5 457 1 30 3 4
16 3 44 1 4 3 2 41 5 457 2 30 2 4
17 3 44 2 4 3 2 42 5 457 1 30 4 4
18 3 44 2 4 4 2 43 5 457 2 30 3 4
19 3 44 3 4 3 2 44 5 457 3 30 2 4
20 3 44 3 4 4 2 45 5 457 4 30 2 4
21 4 302 1 30 1 2 46 5 457 2 30 4 4
22 4 302 2 30 1 2 47 5 457 4 30 4 4
23 4 302 3 30 1 2 48 5 457 2 30 7 4
24 4 302 1 30 3 2 49 5 457 4 30 6 4
25 4 302 2 30 3 2 50 5 457 4 30 11 4

(“Park./#P”,“Park./#S”), and the number of out-bound airplanes and take-off positions

(“Airb./#P”,“Airb./#S”). Airports of the same type have the same structure, and thus the

same number of segments. There are five types of airports with an increasing number

of segments. The two largest airport types are realistic encodings of the Munich airport.

The smallest airport has 17 segments, the largest one has 457. The maximum number of

planes is 15. In 31 of the 50 instances there are more airplanes which are out-bound than

in-bound, and that the number of goal segments for out-bound airplanes is usually small,

and never more than four. When considering the implicit defined goal state, the effect of

multiple goal states in the first three types of airports is limited. The situation changes in

the more realistic airports of type 4 and 5. In these cases we have still a small number of 1

to 4 of in-bound airplanes, but 30 possible parking positions, and thus up to
(
30
4

)
possible

goal states for the in-bound airplanes.

27

3.1.3 Related Work

General traffic control problems have been studied by Hatzack and Nebel (2001).

They proposed the only domain-dependent heuristic solution for the problem we are aware

of. They also have showed that the problem with fixed routes is equivalent to a job shop

scheduling problem which has to satisfy blocking conditions without swaps. Blocking

constraints in job shop scheduling are less common. When reducing traffic control prob-

lems to job shop problems, these constraints model the fact that a resource occupied by a

vehicle can be used by another vehicle only if the first moves on to an adjacent resource,

and if two vehicles which meet head-on at two adjacent resources, they cannot simply

change places, since this would lead to a collision. The reduction to job shop scheduling

also shows that the problem with fixed paths still remains NP-complete. Their algorithm

schedules the vehicles in order of non-increasing release time, and starts each operation

greedily at the first possible time after its release or the completion of its predecessor. The

airport ground control traffic problem has been also studied in the PhD thesis of Hatzack

(2002).

Trüg, Hoffmann and Nebel (2004) concluded that the best planners in that time

were not yet able to solve real-world airport instances. They also observe that the core of

the problem is to resolve the conflicts that arise when several airplanes have to access the

same segments and that the automated planners are not aware of this fact.

The problem considered in this work can be seen as a particular instance of multi-

agent pathfinding problems with additional restrictions (e.g. mutual blocking of airplanes

by their jet stream, see below). Thus it seems possible that existing algorithms, e.g. Push

and Rotate (WILDE; MORS; WITTEVEEN, 2014), may be adapted to solve it. There

are however, fewer approaches for solving such problems optimally (STANDLEY, 2010;

STANDLEY; KORF, 2011; SHARON et al., 2011; SHARON et al., 2012).

Our interest in the airport also stems from its similarities with other transportation

problems with a large number of goal states, such Sokoban. Apart from airport-specific

blocking rules, both problems share the main difficulties which come from the interaction

of movable objects, and, for the variant of the airport ground traffic control problem with

free goal positions, from the k! goal states. More generally, a larger class of block-moving

games shares these characteristics. In a previous work was identified the weakness of

applying pattern databases to problems with lots of goal states, and a decomposition of

the task to overcome it was proposed (PEREIRA; RITT; BURIOL, 2013; PEREIRA;

28

RITT; BURIOL, 2014; PEREIRA; RITT; BURIOL, 2015). Here, we are interested to see

if this weakness applies to the airport ground traffic control problem, and if it may be

overcome with similar techniques.

3.2 A Domain-Dependent Heuristic for the Airport Domain

A domain-independent heuristic does not have prior knowledge about the structure

of the problem. Consider, for example, a domain-independent pattern database heuristic.

In the airport domain such heuristic would have to compute for each airplane the distance

from every segment to every goal position by a reverse search. However, we know that

the distances for all airplanes are the same, independent of other characteristics such as

the airplane’s size. Thus, we can compute the distances only once and reuse them for all

airplanes. This is an example where we can use knowledge about the problem structure to

improve the efficiency of the heuristic. Our first proposed heuristic comes from reusing

these distances in a very simple way.

In the version of the airport domain with free goal positions an in-bound airplane

can park at any parking segment. This is similar to Sokoban, where a stone must be

pushed to one of many goal squares. However, in the goal state each at goal square

must be exactly one stone. The standard approach to compute the heuristic function in

Sokoban is to compute a minimum cost perfect matching between stones and goal squares,

covering all goal squares with stones. Inspired by this approach, we propose a matching

based heuristic for the Airport Domain.

3.2.1 Pre-Processing

We extract a directed graph for each task whose vertices represent the segments

of the airport. Two segments (u, v) are connected if there is an operator that moves an

airplane from a segment u to segment v. We then compute the shortest path between all

pairs of segments of this graph and store the distances in a look-up table. This is done

in a pre-processing phase, and all airplanes use the same distances during the search to

compute the heuristic values. These distances are the shortest path between every pair

of segments without taking into account path conflicts, blocked segments or any other

interactions between the airplanes.

29

3.2.2 Closest Goal Heuristic

Our first approach is the domain-dependent closest goal heuristic. The closest goal

heuristic is the sum of the distances required for all airplanes to reach their goal positions

using the pre-computed distances. For the version with fixed goal positions, we look

up the distance for each airplane to reach its specific goal position. In the version with

free goal positions, we have to find the closest goal position for each airplane. For both

versions, the cost for computing the heuristic is linear in the number of airplanes, since

we can pre-compute the distances in constant time and then calculate the closest goal

position for each airplane in each state. Additionally, each out-bound airplane must start

up its engine and finally take off. Thus we increase the heuristic by one or two for each

out-bound airplaine according to its current mode. Similarly, in-bound airplanes must

shut down their engine to park, so we increase the heuristic by one for each in-bound

airplane whose engine is still running.

In the version with fixed goal positions, with ai in-bound airplanes the closest goal

heuristic returns the cost to cover ai parking positions. This is not the case in the version

with free goal positions. In the latter version, all ai airplanes can be mapped to the same

parking position, which is not a valid solution. In this case, we could lose up to the sum

of the ai − 1 farthest parking positions in the heuristic value.

3.2.3 Matching Heuristic

Another natural heuristic to solve the airport domain problem is based on match-

ings. To compute the minimum distance for all airplanes to reach a different goal position,

we construct a bipartite graph. In this graph one part of the vertices represents the air-

planes and the other part of the vertices represents all possible goal positions. Between

each airplane and goal position, we add an edge with a weight corresponding to the length

of the shortest path the airplane can take to reach that goal position. Since the number

of goal positions exceeds the number of airplanes, we add a suitable number of dummy

airplanes to make the cardinality of the two parts equal. These airplanes have distances

of 0 to each goal position. Then a minimum weight perfect matching of airplanes and

goal positions is a lower bound on the number of moves needed to bring each airplane to

a different goal position.

We compute the minimum perfect matching using the Blossom V algorithm (KOL-

30

MOGOROV, 2009) and also using the pre-processed distance information extracted from

the instances. The matching can be seen as an extension of the closest goal approach. The

difference is that while the closest goal heuristic tries to minimize the individual distance

for each airplane to its goal position without taking into account multiple airplanes occu-

pying to the same goal position, the matching heuristic tries to minimize the sum of the

distances ensuring that two airplanes cannot be moved to a same goal position. As for the

closest goal heuristic, we can increase the heuristic value by the number of outstanding

engine shutdown operations.

The algorithm considers only airplanes that must be parked. Since the segments

of out-bound airplanes will become available for other airplanes after take-off, every out-

bound airplane could head for the same runway segment. We can notice that in the fixed

goal positions variant of the problem the minimum perfect matching is trivial, since each

vertex of the bipartite graph would have only one edge and would be equivalent to the

closest goal approach.

3.3 Experimental Results

In this section we report computational experiments comparing domain-independent

and domain-dependent heuristics on the airport domain with fixed and free goal posi-

tions. For the experiments we use the stable version 1.4 of the Fast Downward plan-

ner (HELMERT, 2006a). We have chosen Fast Downward for our implementation to be

able to compare better to the domain-dependent heuristics, and have implemented our

domain-dependent heuristics within the framework provided by the planner. All experi-

ments have been run on a PC with an AMD FX-8150 processor running at 3.6 GHz and

32 GB of main memory. All domain-independent heuristics have been run with their de-

fault parameters. We have imposed a time limit of 30 minutes and a memory limit of

4 GB for each run.

3.3.1 Evaluation of domain-independent heuristics

In our first experiment we evaluate standard domain-independent heuristics on the

airport domain. All heuristics have been run with their default parameters. Table 3.2

31

Table 3.2: Results for domain-independent heuristics.

Fixed paths Free paths

Heur. Cov. (50) Nodes Cov. (50) Nodes

blind 22 1925645.7 23 2356855.9
hmax 23 191425.6 23 417427.0
LM-cut 28 2508.2 26 19154.3
M&S 18 669808.3 18 910637.7
GAPDB 25 808624.5 27 1591448.8
iPDB 28 1594.0 28 68120.0

shows the results for blind heuristic3, the heuristics hmax (BONET; GEFFNER, 2001),

landmark-cut (HELMERT; DOMSHLAK, 2009) (hLM-cut or simply LM-cut), merge-and-

shrink (HELMERT; HASLUM; HOFFMANN, 2007) (M&S), and two heuristics based on

pattern databases: a pattern database which uses a genetic algorithm to create the patterns

(“GAPDB”) (EDELKAMP, 2007), and the iPDB (hiPDB or simply iPDB) (HASLUM et

al., 2007; SIEVERS; ORTLIEB; HELMERT, 2012). For each heuristic we report the cov-

erage (“Cov.”) – i.e., number of instances solved –, and the average number of explored

nodes (“Nodes”) over the optimally solved instances. Best results for each column are

painted.

The standard domain-independent heuristics are able to solve between 18 and 28

instances. Heuristics hLM-cut and hiPDB perform best for fixed as well as free goal positions.

We can see that all heuristics need more nodes (and consequently more time) to solve

the instances with free goal positions, as expected. However, this is not reflected in the

number of solved instances. While hLM-cut solves two instances less, hiPDB solves the

same number of instances, and blind search and the GAPDB heuristic solve even more.

This happens mostly in instances with a high number of out-bound airplanes, since the

relaxation of the take-off positions simplifies the problem.

3.3.2 The closest goal heuristic on instances with fixed goal positions

In our second experiment we have evaluated the closest goal heuristic on the in-

stances with fixed goal positions. We compared the results for the two best standard

heuristics hLM-cut and hiPDB, and the closest goal heuristic.

3The blind heuristic in the Fast-Downward planner is not equivalent to a blind search as used in litera-
ture. Usually, blind search means using a search algorithm without an heuristic – i.e., BFS, DFS, Dijkstra,
etc –, however the blind heuristic hblind returns the cost of the cheapest action if the current state is not a
goal and 0, otherwise.

32

Table 3.3: Comparison of the closest goal heuristic to the two best domain-independent
heuristics on the instances with fixed parking positions.

LM-cut iPDB Closest

Inst. (50) Nodes t Nodes t Nodes t

1† 9 0 9 0 9 0
2† 10 0 10 0 11 0
3† 20 0 24 0 34 0
4† 21 0 21 0 21 0
5† 22 0 22 0 23 0
6† 42 0 42 2 43 0
7† 65 0 82 2 112 0
8† 120 0 246 8 633 0
9† 767 1 2381 3 7456 0
10† 19 0 19 0 19 0
11† 22 0 22 0 23 0
12† 40 0 40 3 41 0
13† 50 0 61 2 81 0
14† 61 0 61 9 65 0
15† 155 0 474 13 1150 0
16† 402 1 2604 118 10571 0
17† 2484 14 34260 431 136373 3
18 15968 139 - > 1025683 40
19† 2984 13 2263 166 61795 2
20 27433 279 - > 359906 18
21† 102 0 102 18 103 0
22† 330 5 149 51 39479 1
23 351 14 169 721 1168583 51
24 164 7 163 1466 223 0
27 1508 222 - > 2079 0
30 - > - > 585630 119
36† 110 1 110 29 110 0
37 7954 242 148 309 36916 2
38† 9016 305 156 268 38855 2
39 - > 616 1223 6151593 641
40 - > 197 1482 1802028 188
41 - > 180 875 937907 90

Tot. 28 8443 28 14399 32 1165

Table 3.3 reports the number of nodes (“Nodes”) and the time (“t”) for hLM-cut,

hiPDB and the closest goal heuristic. We show only instances which were solved by at

least one approach; instances marked with † were also solved by blind search. The last

row of Table 3.3 shows the coverage and total search time for all instances. The closest

goal heuristic solves 32 instances, four more than hLM-cut and hiPDB. The solution time of

closest goal is always less (with the exception of instance 23) and often by an order of

magnitude. Comparing only instances which were solved by all three methods, the closest

33

Table 3.4: Values of the initial heuristic (h) and best f -value (f) for instances with fixed
parking positions.

LM-cut iPDB Closest

Inst. (50) h f h f h f

31 358 358 357 357 358 358
32 390 390 387 387 390 390
33 393 393 388 388 393 393
34 427 427 422 422 427 427
35 433 433 425 425 433 433
39 208 208 210 210 208 210
40 190 190 191 191 190 191
41 178 178 179 179 178 179
42 257 257 259 259 257 257
43 223 223 224 224 223 223
44 227 227 229 229 227 227
45 249 249 251 251 249 249
46 290 290 292 292 290 290
48 423 423 399 399 423 423
49 451 451 447 447 451 451
50 685 685 670 670 685 685

Avg. 301.9 301.9 299.8 299.8 301.9 302.1

goal heuristic needs only 61s while hLM-cut needs 603s and hiPDB 3619s. However, hLM-cut

and hiPDB expand significantly fewer nodes than the closest goal heuristic.

We report in Table 3.4 the initial heuristic value (“h”) and the best f -value (“f”) –

the lowest f -value on the open list when the time limit is reached or the task is solved – for

those instances presenting different initial h or best f -values and that could not be solved

by at least one method, . Best initial heuristic values or best f-values are highlighted.

Instances for iPDB that were not solved and present f -value equals to initial heuristic

value reached the time limit before the conclusion of the pattern database construction.

We can notice that hLM-cut and the closest goal heuristic are usually better informed than

hiPDB in the beginning of the search. However, the closest goal initial heuristic value

is weaker than hiPDB when the number of airplanes is relatively small compared to the

number of goal segments, but it does not necessarily impact the final f -value. Therefore,

the initial h-value for closest goal and hLM-cut get much better as the number of goal

variables increases (larger tasks). The only three instances where the final f -value for the

closest goal heuristic is greater than the one for hLM-cut are the hardest instances which the

closest goal heuristic can solve – i.e., tasks 39, 40 and 41 are the one which expand more

nodes. We suspect that since our method is quicker than hLM-cut, this speed up lead the

search to explore the f -plateaus faster. All the instances that were not solved reached the

34

time limit for the three methods.

3.3.3 The closest goal and the matching heuristic on instances with free goal positions

Table 3.5: Comparison of the closest goal and matching heuristics to the two best domain-
independent heuristics on the instances with free parking positions.

LM-cut iPDB Closest Matching

Inst. (50) Nodes t Nodes t Nodes t Nodes t

1† 9 0 9 0 9 0 9 0
2† 10 0 10 0 11 0 11 0
3† 20 0 24 0 34 0 34 0
4† 21 0 21 0 21 0 21 0
5† 22 0 22 0 23 0 23 0
6† 65 0 42 2 43 0 43 0
7† 65 0 43 2 45 0 45 0
8† 425 0 247 7 639 0 639 0
9† 793 2 2399 39 7559 0 6982 0
10† 19 0 19 0 19 0 19 0
11† 22 0 22 0 23 0 23 0
12† 40 0 40 2 41 0 41 0
13† 50 0 39 1 41 0 41 0
14† 61 0 40 2 65 0 65 0
15† 155 0 64 14 105 0 105 0
16† 402 1 94 123 307 0 307 0
17† 1766 11 321 436 4423 0 4337 0
18 8358 81 119075 1557 1102988 68 1101462 63
19† 419480 1194 763101 155 1722408 70 55108 3
20 - > - > - > 569285 41
21† 96 1 96 10 97 0 97 0
22† 54311 596 54368 56 67148 6 146 0
23 - > 966423 1513 1220965 170 150 0
24 158 7 157 585 217 0 217 0
25 - > - > - > 137419 49
26 - > - > - > 295878 211
27 1502 269 - > 2073 1 2073 1
36† 79 1 79 22 79 0 79 0
37† 5435 185 154 224 22602 4 22602 12
38† 4648 1323 118 261 21075 3 21075 9
39 - > - > 1644337 374 1644337 977
40 - > 197 752 982983 277 982983 581
41 - > 136 843 399723 99 399723 203

Tot. 26 15083 28 15616 30 6478 33 2158

In the third experiment we have evaluated the closest goal and the matching heuris-

tic on the instances with free goal positions. Table 3.5 reports the number of nodes

35

Table 3.6: Values of the initial heuristic (h) and best f -value (f) for instances with free
parking positions.

LM-cut iPDB Closest Matching

Inst. (50) h f h f h f h f

20 113 113 113 113 113 113 115 115
23 144 144 144 144 144 148 148 148
25 206 206 206 206 206 206 208 208
26 196 196 196 196 196 196 200 200
28 288 288 288 288 288 288 290 290
29 284 284 284 284 284 284 288 288
31 352 352 351 351 352 352 354 354
32 366 366 363 363 366 366 370 370
33 387 387 384 384 387 387 389 389
34 403 403 399 399 403 403 407 407
35 383 383 378 378 383 383 391 391
39 142 142 144 144 142 144 142 144
40 159 159 160 160 159 160 159 160
41 134 134 135 135 134 135 134 135
42 185 185 187 187 185 185 185 185
43 179 179 180 180 179 179 179 179
44 174 174 176 176 174 175 176 176
45 190 190 192 192 190 190 194 194
46 205 205 207 207 205 205 205 205
47 264 264 251 251 264 264 268 268
48 325 325 266 266 325 325 325 325
49 354 354 276 276 354 354 358 358
50 533 533 400 400 533 533 537 537

Avg 260.4 260.4 248.9 248.9 260.4 260.7 262.6 262.8

36

(“Nodes”) and the time (“t”) for hLM-cut, hiPDB, the closest goal and matching heuris-

tics on the tasks which were solved by at least one approach. Instances marked with †

were also solved by blind search. In Table 3.6 we show the initial heuristic value (“h”)

and the final f -value (“f”) for tasks which were not solved by at least one method. Best

initial heuristic values or best f -values are highlighted. Once again, instances for iPDB

that were not solved and present f -value equals to initial heuristic value reached the time

limit before the conclusion of the pattern database construction.

With free goal positions hLM-cut was able to solve 26, hiPDB 28, closest goal 30

and matching 33 instances. As expected, we observe a degradation in performance of

all methods, due to the larger number of goal states, and worse heuristic estimates. The

performance degradation is limited, since the tasks have a small number of airplanes.

There are only 25 tasks with more than two in-bound airplanes, and only 8 of them were

solved with fixed goal positions, and the performance degradation is limited to the latter.

This also explains why the matching heuristic is not substantially better than the closest

goal heuristic. The difference will be only visible, for a larger numbers of in-bound

airplanes. For example, in instance #39, which has no in-bound airplanes, both heuristics

need the same number of nodes. In contrast, in instance #23, which has 3 in-bound

airplanes, the matching heuristic is substantially better. However, it is remarkable that the

matching heuristic dominates closest goal on the initial states and in instancess where the

number of in-bound airplanes is strictly greater than the number of out-bound airplanes

the matching heuristic also leads to a significantly higher lower bound than closest goal.

The matching heuristic also expands fewer nodes than the closest goal heuristic when the

number of in-bound planes is equal or greater than the number of out-bound airplanes.

In 47 of the 50 instances the matching heuristic presents the best final f -value

over all methods. In 17 of the 25 instances presented in Table 3.6 the lower bound for

matching is better than the best f -value for hLM-cut and closest goal. The same occurs for

16 instances when compared to hiPDB. As the problem variant with fixed goal positions

the initial heuristic value of hiPDB is better than any other method when the number of

airplanes is small compared to the number of goal segments. When the number of goal

variables increases to 6 or more, iPDB becomes the weakest method. The closest goal

heuristic is much less informative than the matching heuristic, but it performs better than

hiPDB and hLM-cut when comparing lower bounds and number of instances solved.

37

3.4 Conclusions and Future Work

We have proposed two domain-dependent heuristics for the airport domain and

compared their performance to standard domain-independent heuristics in the Fast Down-

ward planner. We found that even simple domain-dependent heuristic such as closest goal

or matching can improve the results of state-of-the-art domain-independent heuristics. It

is also remarkable to notice that in instances where the number of in-bound airplanes is

larger than the number of out-bound airplanes the results of the closest goal and match-

ing heuristics are significantly better than those of hiPDB or hLM-cut. In these instances the

matching heuristic also presents better results than the closest goal heuristic as measured

by the number of expanded nodes and initial and final lower bounds.

In future work, one could propose new instances increasing the number of in-

bound planes this would present a more realistic version of the domain, since in real-world

airports the number of in and out-bound airplanes should be approximately the same. In

this more realistic version, given our current evidence, the heuristics hiPDB and hLM-cut

would likely have a greater performance degradation while the matching heuristic would

maintain the same performance.

38

4 A PERFECT TIE-BREAKER FOR A∗

A∗ is the most popular best-first heuristic search algorithm (HART; NILSSON;

RAPHAEL, 1968). It expands states s in order of increasing f -values. Function f(s) is

the sum of the cost g(s) of the current path from the initial state to state s, and the esti-

mated cost h(s) from s to a goal state. A heuristic h is admissible if it never overestimates

the cost of a path from any states to some closest goal state. In this case A∗ returns an

optimal solution path of minimum cost C∗, if there is one. A heuristic h∗ is perfect if it

returns the cost of an optimal path for all states. During the search, it is possible to have

several states with the same f -value. Then, A∗ uses a tie-breaking strategy τ to select one

of them to be expanded next. A∗ with a deterministic tie-breaking strategy τ defines a

unique expansion sequence of states.

A∗ must expand all states with f(s) < C∗. Given a state space S, a heuristic h

is called non-pathological if there exists some cost-optimal path where h(s) < h∗(s) for

all non-goal states s on it. Dechter and Pearl (1985) have shown that if a heuristic h is

non-pathological and admissible then the tie-breaker τ plays no role and the set of states

with f(s) < C∗ contains all states expanded by A∗. Thus, in this case A∗ is optimal in the

sense that it expands a subset of the states expanded by every admissible best-first search

algorithm. If heuristic h is admissible and pathological, then A∗ will expand additionally

some states s with f(s) = C∗. This set of states is known as the final plateau or final

f -layer. There is always a tie-breaking strategy τ that expands in addition to states with

f(s) < C∗ only states along a cost-optimal path with the least number of operators. For

such a tie-breaker A∗ is again optimal in the number of expanded states.

Until recently, most of the search and planning literature considered breaking ties

in favor of smaller h-values to be a good practice (ASAI; FUKUNAGA, 2016; ASAI;

FUKUNAGA, 2017). Dechter and Pearl (1985) describe A∗ as being agnostic with regard

to the tie-breaking strategy letting it “break ties arbitrarily, but in favor of a goal state”

and assume that few states s will satisfy f(s) = C∗. Helmert and Röger (2008) state that

the number of states in the final plateau that A∗ expands depends on “accidental features

of the search algorithm”. However, recent work on tie-breaking strategies has shown that

more instances can be solved and fewer states can be expanded by using tie-breaking

strategies that do not favor small h-values directly (HEUSNER; KELLER; HELMERT,

2017; FAN; MÜLLER; HOLTE, 2017; ASAI; FUKUNAGA, 2017).

A special case where the final plateau accounts for a large part of the expanded

39

states are zero-cost instances where some operators have cost zero (ASAI; FUKUNAGA,

2016). In many applications the goal is to minimize the use of some resource (e.g., fuel in

logistic problems), and operators that do not use this resource can be modeled as having

no cost. In these domains A∗ can follow very long zero-cost paths that can be avoided by

a tie-breaking strategy.

In this chapter, we analyze tie-breaking strategies for the perfect heuristic h∗. We

first study previously proposed tie-breaking strategies and we prove that A∗ with h∗ us-

ing these strategies is not optimal. We also propose a new one for which it is optimal.

We experimentally analyze the performance of A∗ with h∗ using several strategies on a

restricted set of standard instances and instances with zero-cost operators. We also show

that our strategies solve more instances than previous methods in the literature in a prac-

tical setting using A∗ with hLM-cut. Our results show how to build an optimal A∗ for a

perfect heuristic. Our analysis improves the understanding of how to develop effective

tie-breaking strategies.

4.1 Tie-Breakers for A∗

The A∗ algorithm receives a description of a state space topology T as input and

outputs an s-path, if there is one, or “unsolvable” otherwise. Given T = 〈S, h〉, A∗ with a

tie-breaking strategy τ expands a unique sequence of states 〈s0, s1, . . . , sn〉, called the ex-

pansion sequence. We assume that A∗ keeps a priority queue denoted as OPEN that sorts

the states lexicographically in increasing order of [f(s), τ]1. To expand a node means to

generate all its successors. Note that in this way goal states are only removed from OPEN,

but not expanded. If the expansion sequence of A∗ with a given tie-breaking strategy has

the minimum number of states among all such sequences we say that it presents optimal

expansion. A∗ is optimal if it has optimal expansion – i.e., it never expands a state that

can be skipped by another admissible best-first search algorithm.

1We can also call [f(s), τ] as tie-breaking strategy. However, since we are analyzing only A∗ algorithm,
the first evaluation function is always f(s), hence we ommit f(s) in some situations and mention τ as
tie-breaking strategy

40

Figure 4.1: Search spaces for which tie-breaking by h∗, ĥ∗, and h∗ε fails.
s0

A

C

F

B

D Ei

G

H

0 0

0

0

α 0

0

0

(a) Tie-breaking strategies [g+h∗, h∗] and [g+h∗, ĥ∗]
fail.

s0

A

C

B

Di

E

0

α

α

0

0

(b) Tie-breaking strategy [g + h∗, h∗ε] fails.

4.2 Understanding Tie-Breaking Strategies

In this section, we present a theoretical analysis of tie-breaking strategies for A∗.

Our analysis is based on the perfect heuristic h∗. In state spaces where we can compute h∗,

A∗ will only expand states whose f -value equals the cost-optimal value C∗. In this setting,

A∗ will have optimal expansion if it only expands states on one cost-optimal s-path with

the least number of operators.

4.2.1 Analyzing h∗ as Tie-Breaking Strategy

The heuristic search literature usually considers breaking ties by h to be a good

approach. Therefore one would expect that by having h∗, we could use its value as a

tie-breaker, leading to an A∗ with optimal expansion. In this setting, [g + h∗, h∗] denotes

that A∗ uses f = g + h∗ and h∗ as tie-breaker, any remaining ties are solved arbitrarily.

However, A∗ with tie-breaking strategy [g + h∗, h∗] may expand more states than

another tie-breaking strategy. Figure 4.1a shows an example with two paths to goal states

using only zero-cost operators. The state s0 is the initial state; doubly-circled states are

goals and ellipses represent arbitrarily long transition sequences with cost zero. In this

situation, [g + h∗, h∗] provides no information. To reach a goal from s0, A∗ may expand

three states using the left s-path (s0 → A→ C → F), or an arbitrarily large set of states

using the right s-path (s0 → B → · · · → G → H). Ei represents a large set of states

with f -value equal to 0.

41

4.2.2 Analyzing ĥ∗ as Tie-Breaking Strategy

Asai and Fukunaga (2017) have proposed to use distance-to-go heuristics to im-

prove the performance of tie-breaking strategies. Distance-to-go heuristics ignore the

costs of operators and just count the number of operators needed to reach a goal state. We

denote distance-to-go heuristics as ĥ.

Definition 4.1 (Distance-to-go heuristic). Let S = 〈s0, S∗,O, cost〉 be a state space and

h be a heuristic for S. A distance-to-go heuristic ĥ is a heuristic function for S, where for

all o ∈ O the heuristic maps it to a new operator ô ∈ Ô with cost(ô) = 1 and computes

the heuristic function by replacing O by Ô on S.

In other words, the distance-to-go heuristic ĥ uses the same algorithm as h but

replaces the cost of all operators by one. Thus ĥ∗ counts the exact number of operators

necessary to reach the closest goal state for each state. Strategy [g + h∗, ĥ∗] improves

coverage in zero-cost domains (ASAI; FUKUNAGA, 2017).

However, strategy [g + h∗, ĥ∗] can also fail to produce an optimal expansion, as

the example of Figure 4.1a shows. Let α > 0. After expanding s0, we have ĥ∗(A) = 2,

because A can reach the closest goal F applying two operators, and ĥ∗(B) = 1, because

B can reach its closest goal D applying only one operator. As a consequence, A∗ expands

state B first. However, the s-path s0 → B → D is not optimal because the operator that

enables B to reach goal state F has cost α. Thus A∗ expands four states (〈s0, B,A,C〉),

and the optimal strategy only three (〈s0, A, C〉).

4.2.3 Analyzing h∗c as Tie-Breaking Strategy

The perfect heuristic h∗ guides the search through an cost-optimal path but fails

to identify the cost-optimal path with the least number of operators; the distance-to-go

heuristic ĥ∗ guides the search to expand a path with fewest operators to the goal but fails

to estimate the total cost of the path. We can combine both estimates to improve the search

performance.

Definition 4.2 (Cost-adapted heuristic). Let S = 〈s0, S∗,O, cost〉 be a state space and h

be a heuristic for S. A cost adapted heuristic hc is a heuristic function for S, where for

all o ∈ O the heuristic maps it to a new operator oc ∈ Oc with cost(oc) = cost(o) + c and

computes the heuristic function by replacing O by Oc on S.

42

Figure 4.2: Example of a state space where tie-breaking strategies [g + h∗, h∗c] using cost
adaptation fail.

s0

A

B

C

Ei G B′

A′

Di E′

C′0

0

0

0

0

α

0

0

0

α

0

α

0

In other words, the cost adapted heuristic hc computes the same heuristic function

h on S, but it adds a constant c to each operator cost. We will also say that a tie-breaking

strategy based on hc is a method using cost adaptation.

Richter, Westphal and Helmert (2011) introduced the idea of summing one to ev-

ery operator cost in the LAMA solver. The intuition is that by doing so, A∗ can combine

the operator cost with the cost of applying an operator. LAMA was a satisfiability solver

and this cost adaptation could lead to a worse solution quality. However, using it as tie-

breaker cannot change the solution quality. In the special case used in the LAMA solver

with c = 1 we denote hc as h+1.

Now, we analyze the behavior of hc for different magnitudes of c. First, consider

c = ε where ε is a small constant such that ε � mino∈O{cost(o) | cost(o) > 0}. The

effect of making ε very small is that even for the longest path of length l, the product lε is

still smaller than the least nonzero operator cost. If we apply [g + h∗, h∗ε] to the example

of Figure 4.1a it produces the optimal expansion 〈s0, A, C〉.

However, [g + h∗, h∗ε] can also fail. Figure 4.1b shows an example where A∗ with

[g+h∗, h∗ε] expands three states and the optimal expansion only two. In this example, after

expanding s0, A∗ can expand A and B, where h∗ε(A) = ε + α while h∗ε(B) = 2ε+ |Di|ε.

Thus, B is chosen for expansion, and then the states in Di, leading to goal state E. A∗

expands the path s0 → B → · · · → E instead of the shortest s-path s0 → A→ C.

An approach to solve the example of Figure 4.1b is to use c = M, whereM �

maxo∈O(cost(o)). In Figure 4.1b breaking ties by h∗M produces the optimal expansion.

Now, h∗M(A) = α + M and h∗M(B) = 2M + |Di|M. SinceM � α, A∗ expands A

instead of B, followed by the expansion of C, leading the search to the optimal expansion

sequence 〈s0, A〉.

However, h∗M fails to achieve the optimal expansion in the example of Figure 4.1a,

where we have h∗M(A) = 2M and h∗M(B) = M + α. Since α � M, we have

h∗M(A) > h∗M(B) causing the search to expand B, leading to the same problem from

43

last subsection.

One may wonder if there is a value for c that works “universally” for any task.

Theorem 4.1 proves this is not the case.

Theorem 4.1. There is no c, such that for any S, the A∗ algorithm with [g + h∗, h∗c]

guarantees an optimal expansion.

Proof. In the example of Figure 4.1a, we obtain the optimal expansion iff c < α. In

the example of Figure 4.1b, when |Di| = 1, we obtain the optimal expansion iff c is

sufficiently large. If we join the examples by identifying goal states F , D, and H in

Figure 4.1a and the initial state s0 in Figure 4.1b by merging them into a single normal

state, we obtain the instance shown in Figure 4.2 that has to satisfy both conditions for an

optimal expansion. Hence, it is impossible to guarantee an optimal expansion using only

cost adaptation.

Despite this, cost adaptation will be useful to find an optimal expansion tie-breaking

strategy later on.

The cost adapted heuristic hc has two corner cases. For c = 0 we obtain h0 =

h. For c → ∞ tie-breaker h∗c leads to the same expansion sequence as ĥ, because a

sufficiently large cost c will dominate the operator costs, and the shortest path will be also

the cheapest.

4.2.4 Special Cases

We now explain two special cases that admit optimal tie-breaking strategies using

only the techniques presented above. These special cases have restrictions on the operator

costs, but are common in practice. First, we define a improving successor state:

Definition 4.3 (Improving Successor). A state s′ is an improving successor of state s, if

s′ is a successor with h∗(s′) < h∗(s).

In the case where domains have no zero-cost operators, we can state the following:

Lemma 4.1. Given h∗ for a state space S where cost(o) > 0 for all o ∈ O , A∗ with

tie-breaking strategy [g + h∗, h∗] will expand only states on one cost-optimal path.

Proof. We will show that A∗ with h∗ will expand a sequence of improving successors

along one cost-optimal path.

44

Consider the case where S is solvable. After expanding s0, A∗ will select for

expansion a state s = arg mins∈succ(s0) h
∗(s) with f(s) = C∗. Thus, the next expanded

state is an improving successor of s0.

Let s be any state expanded during the search. Note that s is solvable since there

will always exist a solvable state in OPEN and it would be preferable for expansion than

any other unsolvable state.

Since s is a solvable state with f(s) = C∗ and cost(o) > 0 for all o ∈ O. Then,

there exists at least one improving successor s′ = arg mins′∈succ(s) h
∗(s′) with f(s′) =

C∗. Such state s′ will have minimum h-value among all state in OPEN. Thus, the next

expanded state s′ a direct improving successor of s and by the induction hypothesis s a

direct improving successor of the previously expanded state. Thus, all expanded states

are part of one cost-optimal path.

It remains to be shown that A∗ terminates. Since cost(o) > 0 for all o ∈ O, at

every iteration of A∗ the minimum h∗-value in OPEN is decreased and eventually a goal

state with h∗(s∗) = 0 will be inserted in OPEN. At that point the goal state is removed

from open and the search terminates.

In the case S is unsolvable A∗ with h∗ will terminate the search before the begin-

ning of the search.

In state spaces where all operators have the same strictly positive cost, we can

guarantee optimal expansion by using tie-breaking strategy [g + h∗, h∗].

Corollary 4.1. Given h∗ for a state space S where cost(o) = α > 0 for all o ∈ O , A∗

with tie-breaking strategy [g + h∗, h∗] will have optimal expansion.

Proof. By Lemma 4.1, A∗ will expand only states along one optimal path. In the case

of state spaces with uniform costs cost(o) = α > 0, C∗ = h∗(s0) = nα, where n is

the number of operators in any cost-optimal path. Thus, any path expanded by A∗ has

minimum number of states.

In the case where all costs are 0, we know that all states will have h∗ = 0. The

strategy [g + h∗, h∗c] with c > 0, leads the search to an optimal expansion.

Corollary 4.2. Given h∗ for a state space S where cost(o) = 0 for all o ∈ O , A∗ with

tie-breaking strategy [g + h∗, h∗c] for any c > 0 will have optimal expansion.

Proof. Using hc, we will modify the cost function of S for all operators in O. Adding

a constant c > 0 to all costs will lead us to a new state space with uniform costs greater

than zero. Hence, our Corollary 4.1 applies.

45

4.2.5 An Optimal Expansion Strategy based on h∗c

In this subsection, we present the tie-breaking strategy g + h∗c and prove that A∗

with [g + h∗, g + h∗ε] guarantees optimal expansion in any instance, given h∗. Given the

definitions and results from the previous section, we can state the following:

Theorem 4.2. Given h∗ for a state space S where cost(o) > 0 for all o ∈ O , A∗ with

tie-breaking strategy [g+h∗, g+h∗ε] will expand only states on one cost-optimal path with

the least number of operators.

Proof. After s0 is expanded, A∗ will select for expansion one state s ∈ succ(s0) with

f ∗(s) = C∗ and s = arg min∀s∈succ(s0) g(s) + h∗ε(s) – i.e., one state along a cost-optimal

path (g+h∗) with the least number of operators (h∗ε(s)−h∗(s)). By Lemma 4.1 we know

that A∗ will expand only one such path and hence A∗ with [g + h∗, g + h∗ε] has optimal

expansion.

Theorem 4.2 only holds for state spaces where all operator costs are strictly posi-

tive, but it is straight-forward to generalize it to cases where zero-cost operators are also

allowed. Thus, the corollary below follows:

Corollary 4.3. Given h∗ for a state space S, A∗ with tie-breaking strategy [g+h∗, g+h∗ε]

will expand only states on one cost-optimal path with the least number of operators.

Proof. Only states s with f(s) = C∗ will be expanded. Since all s /∈ S∗, h∗ε(s) > 0 there

will always be a improving successor for s in the tie-breaking strategy. Thus, A∗ with

[g + h∗, g + h∗ε] has optimal expansion.

Tie breaking by g + h∗ε is similar to adding a small and constant noise to the

operator costs. This noise, however, is sufficient to discriminate between optimal paths

with a different number of expansions. When the noise of all operators on a path is

summed, A∗ can identify which of the candidate states will lead to an optimal expansion.

4.2.6 Analyzing Approximations of h∗

In this subsection, we discuss tie-breakers in the context of h as an admissible

approximation of h∗. In this setting, we show that [g + h∗, g + hε] does not guarantee an

optimal expansion but the strategy [g + h, g + h∗ε] does.

46

To show that an arbitrary approximation h can expand states that do not belong

to the cost-optimal path with the least number of operators, consider the example of

Figure 4.1a and assume that α is the cost of operator oα and α � 1. Let h′ be an ap-

proximation of h∗ that is incapable of capturing the necessity of applying operator oα –

i.e., it considers the cost of operator oα to be 0. Since our first evaluation still uses h∗,

we have f(A) = f(B) = C∗ = 0 for the successors A and B of s0. To break this tie,

we use g + hε. We have g + hε(A) = 2ε and g + hε(B) = ε due to the possible path

s0 → B → D where h cannot predict the need of oα. Hence, B is expanded instead of A,

failing to expand only the cost-optimal path with the least number of operators.

Dechter and Pearl (1985) proved that there is always a tie-breaking strategy τ for

any pathological state space topology T = 〈S, h〉 such that A∗ with [g + h, τ] presents

optimal expansion. Indeed, if h is admissible and consistent, we can state that [g+ h, g+

h∗ε] presents optimal expansion. The proof is similar to Theorem 4.2 and Corollary 4.3,

however, we need to consider the subset of states E ⊆ S representing the entry states

of the final f -layer with f(s) = C∗ for every s ∈ E – i.e., states not yet expanded with

f -value equals to C∗.

Theorem 4.3. Given an admissible and consistent heuristic function h and h∗ for a state

space S , A∗ with tie-breaking strategy [g + h, g + h∗ε] will present optimal expansion.

Proof. During the search, any tie-breaking strategy cannot avoid any expansion for states

s which f(s) < C∗. Hence, we have to guarantee to minimize the number of expansions

in the last f -layer by always selecting the best choice among the states in E.

Once we do not have any state s with f(s) < C∗ in OPEN, we select the states in

E accordingly to [g+h, g+h∗ε]. Since our heuristic function h is consistent, at this point,

we will never generate a successor state s with f(s) < C∗. Therefore, we can consider

that our search now is similar to a search using h∗.

Due to admissibility, there are only two cases in E: i) states where the function

f is underestimated; ii) states in which the f -value is perfect. Our tie-breaking strategy

will select the state s = arg mins∈E (g(s) + h∗(s) + d(s)ε) where d(s) is the number of

operators from state s to the closest goal state through an optimal path2. Hence, states in

the former case will never be expanded by our tie-breaking strategy because their value

for g + h∗ will always be greater than g + h∗ + dε for some other state in E.

In the latter case, all states in E will present g + h∗ constant; consequently, we

2Here, we are using the fact that g + h∗ε = g + h∗ + dε, where d is the number of operators necessary
to reach the goal.

47

Figure 4.3: Example of a state space topology where tie-breaking strategy [g + h, g + h∗ε]
fails if h is inconsistent.

s0
h = 2

A
h = 2

B
h = 2

C
h = 1

D
h = 0

E
h = 1

G

0

0

1

1

1

1

2

1

will select the state s = arg mins∈E, f∗(s)=f(s) d(s)ε. Since our tie-breaker now is only

dependent on function d, there will always be at least one improving successor in succ(s)

that will be placed in E. By definition, this improving successor s′ will have d(s′)ε <

d(s)ε. Thus, in the next selection this improving successor will be expanded accordingly

to our selection function arg mins∈E, f∗(s)=f(s) d(s)ε (if there is more than one improving

successor with same d, we break ties arbitrarily).

This behavior will follow successively until we find a goal state. At this point, our

search will finish and it expanded only the states where f < C∗ plus the optimal path with

the least number of operators in E.

Notice, however, that the plan found is not guaranteed to be the optimal plan with

the least number of operators. It is only guaranteed to be the optimal plan with least

number of operators in the last f -layer, because this is the only layer where we are able

to save expansions.

Figure 4.3 illustrates a state space topology where tie-breaking strategy [g+h, g+

h∗ε] fails if h is inconsistent. Heuristic values are showed for each state in the topology.

To achieve optimal expansion the algorithm should expand paths so → A → C → G or

so → B → E → G. However, whenever we expand state A, we must expand state D

as well. Due to the inconsistency of the heuristic function h, we have f(D) < f(A) and

arg mins∈OPEN f(s) = D, hence this successor must be expanded before than any other

successor of A. Since our tie-breaking strategy [g + h, g + h∗ε] cannot guarantee to favor

the expansion of B over the expansion of A, it does not guarantee optimal expansion if h

is inconsistent.

The result from Theorem 4.3 is useful from two perspectives: (i) if we have a

consistent but inadmissible heuristic h where h = h∗ in a significant number of states but

h > h∗ in only a few, we cannot use it as our main heuristic to guide A∗, however we

48

can use it to guide our tie-breaking strategy and let an admissible (but not so informed)

heuristic in our main evaluation function; (ii) in the case where h is really expensive

to compute, we could tweak our A∗ to only compute our tie-breakers in f -plateaus that

may have goal states (we would also need to try to predict if an f -plateau contain such a

state) and guide our search only by using a heuristic that is faster to compute in the other

plateaus.

4.3 Experiments

Table 4.1: Comparison of the geometric mean of the number of expanded states using
different methods for heuristic function and tie-breaking strategy.

h∗, h∗ h∗, hη hη , h∗ hη , hη hη , hFF

η = LM-cut IPC Z IPC Z IPC Z IPC Z IPC Z

[g + h1, h2] 12.05 124.49 13.34 244.44 69.92 549.94 79.24 805.68 80.79 690.19
[g + h1, ĥ2] 11.78 13.33 14.28 23.72 69.87 119.02 79.29 172.46 80.88 156.04
[g + h1, h2+1] 11.78 13.37 13.01 20.18 69.87 105.57 79.18 147.79 80.95 131.62
[g + h1, h2ε] 11.78 13.39 12.63 21.33 69.88 105.57 79.36 144.93 79.63 142.02
[g + h1, g + h2ε] 11.78 13.26 31.91 65.67 69.84 104.67 80.71 145.88 81.26 141.08

η = iPDB

[g + h1, h2] 13.41 249.71 102.61 635.42 119.62 1226.78 115.59 851.96
[g + h1, ĥ2] 13.53 19.63 102.61 172.10 119.49 217.62 115.59 206.25
[g + h1, h2+1] 13.04 18.83 102.61 122.10 119.51 180.30 115.59 160.20
[g + h1, h2ε] 13.03 19.97 102.61 122.28 119.60 199.37 113.84 164.38
[g + h1, g + h2ε] 32.12 68.26 102.40 121.11 120.35 227.35 132.45 204.17

η = M&S

[g + h1, h2] 13.51 178.94 80.67 282.56 85.30 319.80 87.24 357.37
[g + h1, ĥ2] 12.91 20.18 80.66 45.10 84.95 67.92 87.50 61.03
[g + h1, h2+1] 13.90 18.13 80.67 44.51 85.03 60.79 87.49 54.97
[g + h1, h2ε] 13.77 18.72 80.67 44.56 85.06 60.07 86.74 58.22
[g + h1, g + h2ε] 26.19 42.24 80.23 44.06 85.17 66.18 107.05 86.23

In our experiments, we tested the improvement of state expansions, search time

and coverage for the different methods studied here and previously mentioned in the litera-

ture. The experiments use revision 6251 of the Fast-Downward planning system (HELMERT,

2006a) with the modifications of Asai and Fukunaga (2017). We use the same bench-

marks as Asai and Fukunaga (2017). In total, we used 1104 instances from IPC and 620

from their zero-cost benchmarks. All experiments have been run on a PC with an AMD

FX-8150 processor running at 3.6 GHz and 32 GB of main memory. When using some

heuristic h as a tie-breaker any remaining ties are broken by FIFO order.

49

4.3.1 Comparing Theory and Practice

We first focus on the question if the theoretical advantage of cost adaptation strate-

gies translates into practice. For these experiments we use a time limit of 30 minutes

and a memory limit of 4 GB, and a subset of 183 IPC and 87 zero-cost instances, which

could be solved optimally by all methods given these limits and the internal limits of

Fast-Downward to build the perfect heuristic h∗. Thus, this reduced set of benchmarks

contains instances with smaller state spaces than usual.

Table 4.1 reports the geometric mean of the number of expanded states for differ-

ent combinations of the primary A∗ heuristic and tie-breaker. For each combination, the

Table shows the results for IPC and zero-cost instances separately. The pair at the header

of each column is denoted by h1, h2, where h1 was used as the heuristic for the evaluation

function and h2 as the heuristic for the tie-breaking strategy. Each one of the three parts

of the table presents results for a different heuristic hη where η is specified in each part.

The best results for each column in each part is painted.

We first analyze the theoretical predictions using h∗ as the heuristic function and

tie-breaker in the first two columns of Table 4.1. Based on our analysis breaking ties with

g+ h∗ε must expand the least number of states, and we can see that this is indeed the case.

We can also see that using the reduced benchmarks with a small state space, A∗ expands

very few states. In spite of this, breaking ties with g + h∗ε performs best, and strictly

dominates the other tie-breakers on zero-cost instances.

In the second combination we relax the tie-breaker to hη and we test for different

heuristics η. As it can be expected, the number of expanded states increases for all tie-

breakers. The theoretical results do not guarantee an optimal performance of g+h∗ε in this

case, and indeed we can see that it actually performs worse that other strategies. This can

possibly be explained by the fact the hLM-cut, hiPDB and hM&S are not fully informed. Thus,

when a successor state on an cost-optimal path is generated it tends to have a higher value

of g+h∗ε , and leads A∗ to first expand less informed states. This effect is less pronounced

for tie-breakers not using g.

In the remaining combinations, we switch roles and focus on not fully informed

searches using heuristic hη with different tie breakers. In all these cases, A∗ expands a

significantly higher number of states. When breaking ties with h∗ (fifth and sixth columns

in Table 4.1), all cost adaptation methods have a similar performance on the IPC instances,

and breaking ties by g + h∗ε is the best method.

50

We finally relax the tie-breaker to hη and hFF (HOFFMANN; NEBEL, 2001). We

have selected heuristic hFF as Asai and Fukunaga (2017). Note that heuristic hFF is not

admissible, but will not change the optimality of the search when used as a tie-breaker.

Both cases expand more states than the optimal tie-breaker (as expected), but the relative

performance of the tie-breakers is very similar, with little difference on the IPC. On the

zero-cost instances, breaking ties by ĥ is always worst, and methods using cost adaption

are always the best.

In summary, all cost adaptation strategies are similar on the IPC instances, but far

better than the default tie-breaker h on zero-cost. Our results show that even in small

state spaces and using the perfect heuristic h∗, tie-breakers are important, even when not

optimal. Still, the heuristic function is more important than the tie-breaker, as the compar-

ison between the second and the third combinations confirms. The last two combinations

show that tie-breakers also make a difference in practice, and there is enough room for

improvement.

Table 4.2: Comparison of the number of solved instances in IPC and zero-cost bench-
marks where the value f is g + hLM-cut.

Method IPC (1104) Zero-cost (620)

[f, hLM-cut] 525 237

[f, ĥLM-cut] 531 301
[f, hLM-cut

+1] 530 299
[f, hLM-cut

ε] 532 301
[f, g + ĥLM-cut] 417 288
[f, g + hLM-cut

+1] 531 299
[f, g + hLM-cut

ε] 524 300

[f, hFF] 548 251

[f, ĥFF] 557 338
[f, hFF

+1] 562 352
[f, hFF

ε] 559 351
[f, g + ĥFF] 457 323
[f, g + hFF

+1] 558 350
[f, g + hFF

ε] 553 346

[f, ĥFF, 〈d〉 , LIFO] 530 328

51

Figure 4.4: Expanded states and expansions per second for tasks in IPC (top) and Zero-
cost (bottom) using f = g + hLM-cut with different tie-breakers (axis).

101

103

105

107107

h
F
F

+
1

101

103

105

IP
C

101 103 105 107

101

103

105

107

107

107

hLM−cut

h
F
F

+
1

(a)

101 103 105 107107

ĥFF

(b)

101 103 105

101

103

105

hLM−cut

(c)

101 103 105

ĥFF

Z
e
ro

-c
o
st

(d)

4.3.2 Performance on the Complete Set of Instances

We now turn to the practical performance of tie-breakers using cost adaptation.

Our second experiment compares the coverage of different tie-breaking strategies using

f = g + hLM-cut to guide the search in the complete set of 1104 IPC and 620 zero-cost

instances. In this experiment we have imposed limits of 4 GB and 5 minutes for each run,

following Asai and Fukunaga (2017).

The results are shown in Table 4.2. We compare our main cost adaptation methods

against the standard methods in the literature and the current best deterministic tie-breaker

from Asai and Fukunaga (2017). (The best non-deterministic tie-breaker of Asai and

Fukunaga (2017) solves in average 2.3 instances more.) Highlighted in blue are the best

results for each column; in greyare the results for the best method of Asai and Fukunaga

(2017) for the IPC instances (upper entry) and zero-cost instances (lower entry). Looking

at the group of tie-breakers using hLM-cut we find that that all methods using cost adaption

perform better than the standard tie-breaker h. Also, methods using only cost adaptation

dominate methods adding g, but the theoretically best tie breaker g+hLM-cut
ε for h∗ is only

slightly worse.

The second group using hFF dominates the strategies using hLM-cut only. This con-

firms the observation of Asai and Fukunaga (2017) that breaking ties by hFF is better than

hLM-cut. However, we find that ĥFF also performs better on zero-cost instances than their

best strategy. This can probably be explained by the difference between processor speeds.

52

Again the tie-breaker g+hFF
ε which is theoretically best for h∗ is competitive. The overall

best method is hFF
+1. It solves five instances more on the IPC benchmark than ĥFF, the

best tie-breaker from the literature. The best known tie-breaker for zero-cost instances is

[f, ĥFF, 〈d〉 , LIFO]. Here hFF
+1 solves 24 instances more.

Figures 4.4a and 4.4b compare the number of expanded states of the best method

[f, hFF
+1] against the most used method in literature, [f, hLM-cut] and the best method from

the literature [g+h, ĥFF]. The plots on top show results for IPC instances, the ones on the

bottom for zero-cost.

We see that tie-breaking with hFF
+1 expands fewer states on most of the instances

compared to hLM-cut, in particular on the zero-cost instances. The number of expanded

states compared to ĥFF is similar in IPC. In zero-cost instances hFF
+1 outperforms ĥFF,

expanding fewer states in general.

Another important issue about tie-breaking strategies is the overhead to compute

a second evaluation function. To analyze this issue, Figures 4.4c and 4.4d compare the

expansions per second of the methods. We find that all methods expand about the same

number of states per second, with the exception of hLM-cut on zero-cost instances.

In general lines, the “pure” cost adaptation methods ([f, hc]) using the hFF heuris-

tic have the best performance. Tie-breaking by hFF
+1 presents the best coverage in both

benchmarks.

4.4 Conclusion and Future Work

In this chapter, we presented a tie-breaking strategy for A∗ with h∗ that guarantees

the minimum number of expanded states among all tie-breaking strategies. Our analysis

showed that even for the perfect heuristic h∗, where A∗ only expands states s with f(s) =

C∗, previously proposed tie-breakers fail in producing an optimal A∗. Our results, based

on the analysis of Dechter and Pearl (1985), showed how to build an optimal A∗ for h∗.

Our experiments confirm the results from Asai and Fukunaga (2017) that tie-

breakers have the potential to increase coverage and reduce the number of expanded

states. In a nutshell, our best method based on hc solves 152 instances more than h, the

most common tie-breaker in the literature, and 19 more than Asai and Fukunaga (2017)’s

best method, the state of the art in the literature. Our experiments showed that even in

small state spaces and with the perfect heuristic h∗, the performance of A∗ can be im-

proved by a better tie-breaking strategy. Our main contribution in this work is to provide

53

an analysis that enables a better understanding of the role of tie-breaking strategies in the

performance of A∗.

Three main ideas may be interesting to investigate further. The first is an analysis

similar to the one by Helmert and Röger (2008) which investigated for specific domains

the performance of A∗ with almost perfect heuristics, one could do the same with almost

perfect tie-breakers. Second, one may study the existence of effective domain-dependent

tie-breakers, not based on h∗.

54

5 THESIS’ CONCLUSION

In this thesis, we studied the difference in performance between simple domain-

dependent and state-of-the-art heuristics in one of the hardest domains in IPC. Also, we

proposed a novel method of tie-breakers and proved that this method is an optimal tie-

breaker.

In the former part, one of our intentions was to compare the coverage between

domain-independent and domain-dependent heuristics and see how is the performance

of domain-independent heuristics in literature nowadays compared to simple domain-

dependent methods. To do so, we decided to study especifically the airport ground traffic

problem, since it is has a practical aspect in the real world and it is considered one of

the hardest domains in IPC. We proposed and tested two simple heuristics based only on

the distances from each airplane to a goal segment (closest goal and matching heuristic).

We also modified the IPC original domain to allow free parking positions to each plane.

Hence, we could verify the performance of the studied heuristics in a domain that is harder

and closer to reality. Our experiments in the original and the new version of the domain

showed that our proposed heuristics can obtain better coverage and be much faster than

the state-of-the-art heuristics in classical planning literature.

Our latter study analyzed theoretically some tie-breaking strategies in the perfect

scenario – i.e., state spaces S in which we have h∗. We showed that breaking ties in favor

of just h or ĥ can present flaws and also proposed a first method based on cost adaptation

similar to the LAMA solver. Therefore, we proved that tie-breaking strategy g+h∗ε always

achieves optimal expansion. Furthermore, we tested all the tie-breaking strategies in IPC

and zero-cost domains and showed that, indeed, a change in tie-breakers can increase

coverage and state expansion significantly.

As a last point, we state that the results presented in this work are not only valuable

for the automated planning community, but also for anyone interested in search or general

problem solving.

55

REFERENCES

ASAI, M.; FUKUNAGA, A. Tie-breaking strategies for cost-optimal best first search.
Journal of Artificial Intelligence Research, v. 58, p. 67–121, 2017.

ASAI, M.; FUKUNAGA, A. S. Tiebreaking strategies for A∗ search: How to explore
the final frontier. In: AAAI Conference on Artificial Intelligence. [S.l.: s.n.], 2016. p.
673–679.

BÄCKSTRÖM, C.; NEBEL, B. Complexity results for SAS+ planning. Computational
Intelligence, Wiley Online Library, v. 11, n. 4, p. 625–655, 1995.

BONET, B. An admissible heuristic for SAS+ planning obtained from the state equation.
In: International Joint Conference on Artificial Intelligence. [S.l.: s.n.], 2013. p.
2268–2274.

BONET, B.; GEFFNER, H. Planning as heuristic search. Artificial Intelligence,
Elsevier, v. 129, n. 1-2, p. 5–33, 2001.

BORRAJO, D. et al. (Ed.). Symposium on Combinatorial Search. [S.l.]: AAAI Press,
2012. ISBN 978-1-57735-584-7.

BRIEL, M. V. D. et al. An LP-based heuristic for optimal planning. Principles and
Practice of Constraint Programming–CP 2007, Springer, p. 651–665, 2007.

BYLANDER, T. The computational complexity of propositional strips planning.
Artificial Intelligence, Elsevier, v. 69, n. 1-2, p. 165–204, 1994.

CORRÊA, A. B.; PEREIRA, A. G.; RITT, M. Improved airport ground traffic control
with domain-dependent heuristics. In: IEEE. Brazilian Conference on Intelligent
Systems. [S.l.], 2016. p. 73–78.

CULBERSON, J. C.; SCHAEFFER, J. Pattern databases. Computational Intelligence,
Wiley Online Library, v. 14, n. 3, p. 318–334, 1998.

DECHTER, R.; PEARL, J. Generalized best-first search strategies and the optimality of
a. Journal of the ACM, ACM, v. 32, n. 3, p. 505–536, 1985.

DORAN, J. E.; MICHIE, D. Experiments with the graph traverser program. In: THE
ROYAL SOCIETY. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences. [S.l.], 1966. v. 294, n. 1437, p. 235–259.

EDELKAMP, S. Planning with pattern databases. In: European Conference on
Planning. [S.l.: s.n.], 2001. p. 13–24.

EDELKAMP, S. Automated Creation of Pattern Database Search Heuristics. In:
Workshop on Model Checking and Artificial Intelligence. [S.l.: s.n.], 2007. p. 35–50.

FAN, G.; MÜLLER, M.; HOLTE, R. The two-edged nature of diverse action costs. In:
International Conference on Automated Planning and Scheduling. [S.l.: s.n.], 2017.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, IEEE, v. 4, n. 2, p. 100–107, 1968.

56

HASLMUM, P.; GEFFNER, H. Admissible heuristics for optimal planning. In:
International Conferene of AI Planning Systems. [S.l.: s.n.], 2000. p. 140–149.

HASLUM, P. et al. Domain-independent construction of pattern database heuristics for
cost-optimal planning. In: AAAI Conference on Artificial Intelligene. [S.l.: s.n.], 2007.
p. 1007–1012.

HATZACK, W. Entwicklung und Auswertung von Algorithmen zur autonomen
Verkehrskoordinierung und Konfliktauflösung an Flughäfen. Thesis (PhD) —
University of Freiburg, 2002.

HATZACK, W.; NEBEL, B. The operational traffic control problem: Computational
complexity and solutions. In: Rec. Adv. AI Planning, 6h Europ. Conf. Planning. [S.l.:
s.n.], 2001.

HELMERT, M. On the complexity of planning in transportation and manipulation
domains. Master’s thesis, Albert-Ludwigs-Universit at Freiburg, 2001.

HELMERT, M. The fast downward planning system. Journal of Artificial Intelligence
Research, v. 26, p. 191–246, 2006.

HELMERT, M. New complexity results for classical planning benchmarks. In:
International Conference on Automated Planning and Scheduling. [S.l.: s.n.], 2006.

HELMERT, M.; DOMSHLAK, C. Landmarks, critical paths and abstractions: What’s
the difference anyway? In: GEREVINI, A. et al. (Ed.). International Conference on
Automated Planning and Scheduling. [S.l.: s.n.], 2009. p. 162–169.

HELMERT, M.; HASLUM, P.; HOFFMANN, J. Flexible abstraction heuristics for
optimal sequential planning. In: International Conference on Automated Planning
and Scheduling. [S.l.: s.n.], 2007. p. 176–183.

HELMERT, M. et al. Flexible abstraction heuristics for optimal sequential planning. In:
International Conference on Automated Planning and Scheduling. [S.l.: s.n.], 2007.
p. 176–183.

HELMERT, M.; RÖGER, G. How good is almost perfect? In: AAAI Conference on
Artificial Intelligence. [S.l.: s.n.], 2008. v. 8, p. 944–949.

HEUSNER, M.; KELLER, T.; HELMERT, M. Understanding the search behaviour of
greedy best-first search. In: Symposium on Combinatorial Search. [S.l.: s.n.], 2017.

HOFFMANN, J. et al. Engineering benchmarks for planning: the domains used in
the deterministic part of IPC-4. Journal of Artificial Intelligence Research, v. 26, p.
453–541, 2006.

HOFFMANN, J.; NEBEL, B. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, v. 14, p. 253–302, 2001.

KARPAS, E.; DOMSHLAK, C. Cost-optimal planning with landmarks. In:
International Joint Conference on Artificial Intelligence. [S.l.: s.n.], 2009. p.
1728–1733.

57

KATZ, M.; DOMSHLAK, C. Structural patterns heuristics via fork decomposition. In:
International Conference on Automated Planning and Scheduling. [S.l.: s.n.], 2008.
p. 182–189.

KOLMOGOROV, V. Blossom V: a new implementation of a minimum cost perfect
matching algorithm. Mathematical Programming Computation, Springer, v. 1, n. 1, p.
43–67, 2009.

PEREIRA, A. G.; RITT, M.; BURIOL, L. S. Finding optimal solutions to Sokoban
using instance dependent pattern databases. In: HELMERT, M.; RÖGER, G.
(Ed.). Symposium on Combinatorial Search. [S.l.]: AAAI Press, 2013. ISBN
978-1-57735-632-5.

PEREIRA, A. G.; RITT, M.; BURIOL, L. S. Solving Sokoban optimally using pattern
databases for deadlock detection. In: Anais do XI Encontro Nacional de Inteligência
Artificial (ENIA). [S.l.: s.n.], 2014.

PEREIRA, A. G.; RITT, M.; BURIOL, L. S. Optimal Sokoban solving using pattern
databases with specific domain knowledge. Artificial Intelligence, v. 227, p. 52–70,
2015.

POMMERENING, F. et al. From non-negative to general operator cost partitioning. In:
AAAI. [S.l.: s.n.], 2015. p. 3335–3341.

PORTEOUS, J.; SEBASTIA, L.; HOFFMANN, J. On the extraction, ordering, and usage
of landmarks in planning. In: Sixth European Conference on Planning. [S.l.: s.n.],
2014.

RICHTER, S.; HELMERT, M.; WESTPHAL, M. Landmarks revisited. In: AAAI
Conference on Artificial Intelligence. [S.l.: s.n.], 2008. v. 8, p. 975–982.

RICHTER, S.; WESTPHAL, M.; HELMERT, M. LAMA 2008 and 2011. In:
International Planning Competition. [S.l.: s.n.], 2011. p. 117–124.

SHARON, G. et al. Meta-agent conflict-based search for optimal multi-agent path
finding. In: BORRAJO, D. et al. (Ed.). Symposium on Combinatorial Search. [S.l.]:
AAAI Press, 2012. p. 97–104. ISBN 978-1-57735-584-7.

SHARON, G. et al. The increasing cost tree search for optimal multi-agent pathfinding.
In: International Joint Conference on Artificial Intelligence. [S.l.: s.n.], 2011. p.
662–667.

SIEVERS, S.; ORTLIEB, M.; HELMERT, M. Efficient implementation of pattern
database heuristics for classical planning. In: BORRAJO, D. et al. (Ed.). Symposium on
Combinatorial Search. [S.l.]: AAAI Press, 2012. p. 105–111. ISBN 978-1-57735-584-7.

STANDLEY, T. Finding optimal solutions to cooperative pathfinding problems. In:
AAAI Conference on Artificial Intelligence. [S.l.: s.n.], 2010. p. 173–178.

STANDLEY, T.; KORF, R. Complete algorithm for coorperative pathfinding problems.
In: International Joint Conference on Artificial Intelligence. [S.l.: s.n.], 2011. p.
668–673.

58

TRüG, S.; HOFFMANN, J.; NEBEL, B. Applying automatic planning systems to
airport ground-traffic control – a feasibility study. In: Annual German Conference on
Artificial Intelligence (KI). [S.l.: s.n.], 2004. (LNCS, 3238), p. 183–197.

WILDE, B. de; MORS, A. W. ter; WITTEVEEN, C. Push and rotate: a complete
multi-agent pathfinding algorithm. Journal of Artificial Intelligence Research, v. 51, p.
443–492, 2014.

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Symbols
	Contents
	1 Introduction
	1.1 Thesis Outline and Relation to Previous Work

	2 Background: planning and heuristic search
	2.1 Planning Formalism
	2.2 Heuristic Functions
	2.2.1 Delete Relaxation
	2.2.2 Critical Paths
	2.2.3 Abstractions
	2.2.4 Landmarks

	2.3 Heuristic Search

	3 The Airport Ground Traffic Problem
	3.1 Preliminaries
	3.1.1 Airport Ground Traffic Control
	3.1.2 Standard Set of Instancess
	3.1.3 Related Work

	3.2 A Domain-Dependent Heuristic for the Airport Domain
	3.2.1 Pre-Processing
	3.2.2 Closest Goal Heuristic
	3.2.3 Matching Heuristic

	3.3 Experimental Results
	3.3.1 Evaluation of domain-independent heuristics
	3.3.2 The closest goal heuristic on instances with fixed goal positions
	3.3.3 The closest goal and the matching heuristic on instances with free goal positions

	3.4 Conclusions and Future Work

	4 A Perfect Tie-Breaker for A*
	4.1 Tie-Breakers for A*
	4.2 Understanding Tie-Breaking Strategies
	4.2.1 Analyzing h* as Tie-Breaking Strategy
	4.2.2 Analyzing * as Tie-Breaking Strategy
	4.2.3 Analyzing h*c as Tie-Breaking Strategy
	4.2.4 Special Cases
	4.2.5 An Optimal Expansion Strategy based on h*c
	4.2.6 Analyzing Approximations of h*

	4.3 Experiments
	4.3.1 Comparing Theory and Practice
	4.3.2 Performance on the Complete Set of Instances

	4.4 Conclusion and Future Work

	5 Thesis' Conclusion
	References

