
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALEX GLIESCH

A genetic algorithm for fair land allocation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Marcus Ritt

Porto Alegre
February 2018

CIP — CATALOGING-IN-PUBLICATION

Gliesch, Alex

A genetic algorithm for fair land allocation / Alex Gliesch. –
Porto Alegre: PPGC da UFRGS, 2018.

46 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Marcus Ritt.

1. Land allocation. 2. Genetic algorithm. 3. Combinatorial
optimization. 4. Districting. 5. Agrarian reform. I. Ritt, Marcus.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“We should not judge people by their peak of excellence, but by the distance

they have traveled from the point where they started.”

— HENRY WARD BEECHER

ABSTRACT

The goal of agrarian reform projects is the redistribution of farmland from large latifun-

dia to smaller, often family farmers. One of the main problems the Brazilian National

Institute of Colonization and Agrarian Reform (INCRA) has to solve is to subdivide a

large parcel of land into smaller lots that are balanced with respect to certain attributes.

This problem is difficult since it considers several constraints originating from legislation

as well as ethical considerations. Current solutions are computer-assisted, but manual,

time-consuming and error-prone, leading to rectangular lots of similar areas which are

unfair with respect to soil aptitude and access to hydric resources. In this thesis, we pro-

pose a genetic algorithm to produce fair land subdivisions automatically. We present a

greedy randomized constructive heuristic based on location-allocation to generate initial

solutions, as well as mutation and recombination operators that consider specifics of the

problem. Experiments on 5 real-world and 25 artificial instances confirm the effectiveness

of the different components of our method, and show that it leads to fairer solutions than

those currently applied in practice.

Keywords: Land allocation. Genetic algorithm. Combinatorial optimization. Districting.

Agrarian reform.

Um algoritmo genético para a alocação justa de terras.

RESUMO

O objetivo de projetos de reforma agrária é redistribuir terras de grandes latifúndios para

terrenos menores, com destino à agricultura familiar. Um dos principais problemas do

Instituto Nacional de Colonização e Reforma Agrária (INCRA) é subdividir uma parcela

grande de terra em lotes menores que são balanceados com relação a certos atributos.

Este problema é difícil por que precisa considerar diversas restrições legais e éticas. As

soluções atuais são auxiliadas por computador, mas manuais, demoradas e suscetíveis a

erros, tipicamente produzindo lotes retangulares de áreas similares mas que são injustos

com relação a critérios como aptidão do solo ou acesso a recursos hidrográficos. Nesta

dissertação, nós propomos um algoritmo genético para gerar subdivisões justas de forma

automática. Nós apresentamos um algoritmo construtivo guloso randomizado baseado

em locação-alocação para gerar soluções iniciais, assim como operadores de mutação e

recombinação que consideram especificidades do problema. Experimentos com 5 instân-

cias reais e 25 instâncias geradas artificialmente confirmam a efetividade dos diferentes

componentes do método proposto, e mostram que ele gera soluções mais balanceadas que

as atualmente usadas na prática.

Palavras-chave: Alocação de terras. Algoritmo genético. Otimização combinatória.

Distritamento. Reforma agrária.

LIST OF ABBREVIATIONS AND ACRONYMS

GA Genetic algorithm

BFS Breadth-first search

SA Simulated annealing

TS Tabu search

GRASP Greedy randomized adaptive search procedure

PR Path relinking

MIP Mixed integer programming

CPT Chinese postman tour

LIST OF FIGURES

Figure 1.1 Example of an instance of PROTERRA..11

Figure 2.1 The location process. ...24
Figure 2.2 The allocation process. ..26
Figure 2.3 The recombination operator...28
Figure 2.4 The mutation operator..30
Figure 2.5 Topologies of real-world instances. ...31
Figure 2.6 Topologies of artificial instances. ..32
Figure 2.7 Comparison between our results and the official allocation.39

LIST OF TABLES

Table 1.1 Overview of some relevant studies of districting problems.15

Table 2.1 Characteristics of the test instances...33
Table 2.2 Calibration of the optimal batch size...34
Table 2.3 Calibration of the genetic algorithm..35
Table 2.4 Scalability experiment. ..36
Table 2.5 Effectiveness experiment...37
Table 2.6 Comparison between our results and the official allocation............................38

CONTENTS

1 INTRODUCTION...10
1.1 Motivation..10
1.2 Background ...12
1.2.1 Land allocation...12
1.2.2 Districting problems...13
1.3 Problem definition...16
2 A GENETIC ALGORITHM FOR FAIR LAND ALLOCATION18
2.1 Overview ..18
2.2 Solution representation...19
2.2.1 Fitness function..20
2.2.2 Dynamic fitness updates ..20
2.2.2.1 Updating SS ...21
2.2.2.2 Updating A..21
2.2.2.3 Updating λ+ ..22
2.3 Constructive heuristic...22
2.3.1 First phase: location...22
2.3.2 Second phase: allocation ...24
2.4 Recombination...26
2.5 Mutation...29
2.6 Computational experiments...30
2.6.1 Test instances ...30
2.6.2 Methodology ..33
2.6.3 Experiment 1: batch sizes ..33
2.6.4 Parameter calibration ...35
2.6.5 Experiment 2: scalability ...35
2.6.6 Experiment 3: effectiveness of the genetic algorithm..36
2.6.7 Experiment 4: comparison to manual allocation ...37
3 CONCLUSION AND FUTURE WORK ..40
ACKNOWLEDGEMENTS...42
REFERENCES...43

10

1 INTRODUCTION

1.1 Motivation

The Territorial Organization in Agrarian Reform Projects and Environmental Plan-

ning Problem (PROTERRA, acronym for the name in Portuguese: Problema de Organi-

zação Territorial em Projetos de Reforma Agrária e Planejamento Ambiental) consists of

subdividing a large parcel of agrarian land with a single owner into several smaller lots

which are to be designated to family farmers, under a set of constraints. PROTERRA

is directly associated with the agrarian reform process, which is one of the main factors

in the sustainable development of countries. Successful implementations of agricultural

settlements have shown to have direct impacts on land use, food production, job creation

and eradication of hunger (CLEMENTS, 2012; MOURA et al., 2011; REIS, 2012). In

Brazil, the technical regulations for the design of agrarian settlements are controlled by

the Brazilian National Institute of Colonization and Agrarian Reform (INCRA). However,

the current land allocation process is mainly manual, time-consuming and often flawed,

usually leading to rectangular lots of similar areas but which fail to consider intrinsic at-

tributes such as soil aptitude or access to hydric resources, and have difficulties handling

regions with irregularly-shaped boundaries.

Problem instances are given in the form of ESRI shapefiles (ESRI; PAPER, 1998)

describing a rectangular area of farmland where a given number of lots must be allocated.

The topology of an instance is defined by land areas representing farmable soil and which

are allowed to be allocated to a lot, water areas representing hydric resources such as rivers

or lakes, and natural preservation areas representing regions of environmental importance

and which must not be part of the allocation, so as to avoid undue interventions that may

affect the feasibility of settlement. Lots are required to be contiguous regions of farmable

land: water and natural reserves act as obstacles and may not divide a lot. For simplicity,

other man-made entities such as existing architecture or road network are represented in

the instances as natural reserves, since they also serve the purpose of obstacles.

Besides its size and topology, an instance is characterized by its soil: the usable

land is divided into regions with different classes of aptitude with respect to their potential

to grow crops. According to Ferreira (2015), these aptitude values are obtained by an

analysis of physical, agronomic and social factors. The number of classes of aptitude is

fixed between 5 and 10 per instance. Regions with the same aptitude are contiguous and

11

Figure 1.1: Left: the topology of the real-world instance Veredas. White areas represent
outer boundaries or nature preservation areas, blue represents water areas, and the differ-
ent tints of brown represent the different soil aptitudes, darker tints being higher aptitudes.
Right: the current manual subdivision for this instance. Each color corresponds to a lot.

have smooth transitions between them. Typically areas nearest to water resources have an

easier access to irrigation, and thus have the highest soil aptitude. Figure 1.1 shows the

real-world instance Veredas, located in the Brazilian state of Minas Gerais, as well as its

current manual allocation used by INCRA. One can observe that the manual allocation is

somewhat unfair to a few lots, seemingly not considering soil aptitude at all, and does not

always respect river boundaries.

In addition to lot contiguity, a fair allocation must also consider geographical,

political and fairness constraints. Current requirements are that lots be accessible (i.e. no

enclaves) and balanced fairly with respect to area, average soil aptitude and access to

water. Other variant criteria, which are not considered in this thesis, include satisfying a

minimum lot area while maximizing the number of lots allocated, balancing soil capacity

and access to road networks, or generating lots that meet some geometric compactness

measure.

Our main motive in this thesis is to propose efficient, automatic methods for gener-

ating land subdivisions that abide to the specified requirements. To this end, we represent

land descriptions as discrete 2-dimensional grids, which allows us to model the problem as

a classical districting problem on a planar graph. Districting problems have been widely

studied in the literature and are usually NP-hard, and thus typically solved by heuristic

approaches. Section 1.2 provides the necessary background on these problems, as well as

relevant applications in land allocation. In Section 1.3 we present a mathematical defini-

12

tion for PROTERRA which is based on the current requirements by INCRA. In Chapter 2

we propose a genetic algorithm that finds suitable heuristic solutions to PROTERRA, and

present experimental evidence to confirm its effectiveness. We conclude in Chapter 3.

1.2 Background

1.2.1 Land allocation

Fair land allocation has been a topic of research in the recent years in both devel-

oped and developing countries. Typically, real-world implementations of land allocation

have specific sets of requirements, usually stemming from national legislation, and thus

problem representations and solution methods tend to be quite diverse. In the following,

we overview some recent studies that are relevant to our own.

Borgwardt, Brieden and Gritzmann (2014) propose a computational system based

on geometric clustering algorithms to solve a farmland consolidation problem in the state

of Bavaria, Germany. The study considers heterogeneous parcels whose shapes and sizes

are given by the instance. The current holdings of each farmer are usually disconnected

and dispersed over the region, which results in increased overheads in transportation and

management, and the goal is to reassign the parcels in a way that each farmer receives a

connected, compact set of parcels whose area and total soil aptitude are similar to their

current holdings.

Bui, Pham and Deville (2013) develop a constraint-based local search algorithm to

solve an agricultural land allocation problem in Vietnam. The main motivation is similar

to the one of Borgwardt, Brieden and Gritzmann (2014): current allocations are scattered

over the region, which increases overhead. The problem considers several fields of differ-

ent soil aptitudes, and each farmer must receive a land parcel of predefined area in each

field. Although they can have arbitrary shapes, the paper only considers rectangular fields

and parcels.

Demetriou, See and Stillwell (2013b) propose a genetic algorithm based on ge-

ometric modeling to solve a land partitioning problem Cyprus. A weighted objective

function considers four optimization criteria: balancing lots with respect to area and soil

aptitude, ensuring access to a road network and compactness. For the latter, a specialized

index proposed by Demetriou, See and Stillwell (2013a) is used. Although the problem

is reasonably similar to our own, the approach they propose relies on a purely geometric

13

representation of solutions, rather than a discrete one. The method generates initial so-

lutions by Voronoi diagrams, and the crossover and mutation operators act by adding or

removing centroids and recomputing these diagrams.

In Brazil, computational methods for land subdivision in agrarian reform projects

have previously been studied by Moreira et al. (2011) and Neto et al. (2011), where a tabu

search procedure and a genetic algorithm are proposed, respectively. These studies target

a simplified version of PROTERRA which only considers the balancing of soil aptitudes

and areas by a weighted objective function, and are a previous work to our own. As our

approach, both use a grid discretization of the map to treat the map as a planar graph.

Recently, part of the results on PROTERRA presented in this thesis have been published

at the Genetic and Evolutionary Computation Conference (GLIESCH; RITT; MOREIRA,

2017).

1.2.2 Districting problems

Because we use a discrete model and represent instances as weighted undirected

planar graphs, we can model PROTERRA as a classical districting problem. A districting

(or territory design) problem aims at grouping several small geographical areas, usually

called basic units, into larger areas, called districts (or territories). Typically units repre-

sent real-world entities, such as a city block, street, or, in our case, a parcel of land. Dis-

tricting problems appear in a wide range of applications, including the design of electoral

districts (BRIEDEN; GRITZMANN; KLEMM, 2017; KING; JACOBSON; SEWELL,

2017; RICCA; SCOZZARI; SIMEONE, 2013; RICCA; SIMEONE, 2008; BOZKAYA et

al., 2011; BAÇÃO; LOBO; PAINHO, 2005; HESS et al., 1965), sales territories (RÍOS-

MERCADO; FERNÁNDEZ, 2009; MORENO-REGIDOR; García López de Lacalle;

MANSO-CALLEJO, 2012; LEI et al., 2015; RÍOS-MERCADO; ESCALANTE, 2016;

SALAZAR-AGUILAR; RÍOS-MERCADO; CABRERA-RÍOS, 2011), police districts (CAMACHO-

COLLADOS; LIBERATORE; ANGULO, 2015), health care districts (STEINER et al.,

2015; BLAIS; LAPIERRE; LAPORTE, 2003), and, in our case, agrarian lots (GLIESCH;

RITT; MOREIRA, 2017).

Although the range of applications is diverse, most districting problems share three

core optimization criteria: districts are required to be equally balanced with respect to at-

tributes associated to basic units (e.g. total population, expected travel cost, soil aptitude),

be connected with respect to an underlying planar graph over the units, and be geometri-

14

cally compact. The former concept is typically hard to define, as shape compactness is a

subjective measure. Other domain-specific requirements include maximizing similarity to

a previous plan, conforming to administrative boundaries, ensuring district accessibility

(i.e., enclaves), and enforcing a minimum or maximum district cardinality.

Districting problems are usually NP-hard (KALCSICS; NICKEL; SCHRÖDER,

2005) and have been solved primarily by metaheuristic approaches, such as genetic algo-

rithms (GLIESCH; RITT; MOREIRA, 2017; FORMAN; YUE, 2003; BAÇÃO; LOBO;

PAINHO, 2005), GRASP (RÍOS-MERCADO; ESCALANTE, 2016; SALAZAR-AGUILAR;

RÍOS-MERCADO; GONZÁLEZ-VELARDE, 2013; GUO; WANG, 2011), tabu search (BUI;

PHAM; DEVILLE, 2013; MOREIRA et al., 2011; BUTSCH; KALCSICS; LAPORTE,

2014; BOZKAYA et al., 2011), and local search (RICCA; SIMEONE, 2008). A popular

optimization model is location-allocation (KALCSICS; NICKEL; SCHRÖDER, 2005),

which consists of greedily selecting initial seed nodes, one for each district (location), and

then growing (or allocating) these districts out of the remaining unassigned nodes. Other,

less common approaches are geometrically-inspired (KALCSICS; NICKEL; SCHRÖDER,

2009; RICCA; SCOZZARI; SIMEONE, 2008; BRIEDEN; GRITZMANN; KLEMM,

2017), or exact, through mixed-integer programming (SALAZAR-AGUILAR; RÍOS-

MERCADO; CABRERA-RÍOS, 2011; BENZARTI; SAHIN; DALLERY, 2013; GARCÍA-

AYALA et al., 2016).

Table 1.1 gives an overview of relevant studies on a number of different districting

problems, the constraints and objective functions they consider, and the solution methods

proposed. One can see that the columns representing compactness, balance and connec-

tivity are a constant through most domains. For further details on these (and more) appli-

cations and respective solution techniques, we refer the reader to the extensive overviews

done by Kalcsics, Nickel and Schröder (2005) and Kalcsics (2015).

15

Ta
bl

e
1.

1:
O

ve
rv

ie
w

of
so

m
e

re
le

va
nt

st
ud

ie
s

of
di

st
ri

ct
in

g
pr

ob
le

m
s.

C
ol

um
ns

C
om

p.
,

B
al

.,
Si

ze
,

C
on

f.,
C

on
n,

an
d

E
nc

.
de

no
te

w
he

th
er

th
e

co
rr

es
po

nd
in

g
st

ud
y

co
ns

id
er

s
co

m
pa

ct
ne

ss
,b

al
an

ce
,s

iz
e,

co
nf

or
m

ity
,c

on
ne

ct
iv

ity
an

d
ac

ce
ss

ib
ili

ty
co

ns
tr

ai
nt

s,
re

sp
ec

tiv
el

y.
G

A
,T

S,
SA

,P
R

an
d

O
B

A
co

rr
es

po
nd

to
ge

ne
tic

al
go

ri
th

m
,t

ab
u

se
ar

ch
,s

im
ul

at
ed

an
ne

al
in

g,
pa

th
re

lin
ki

ng
an

d
ol

d
ba

ch
el

or
ac

ce
pt

an
ce

,r
es

pe
ct

iv
el

y.

So
ur

ce
A

pp
lic

at
io

n
O

bj
.f

un
ct

io
n

C
m

p.
B

al
.S

iz
e

C
on

f.
C

on
n.

A
cc

.M
et

ho
d

K
al

cs
ic

s,
N

ic
ke

la
nd

Sc
hr

öd
er

(2
00

9)
ge

ne
ri

c
3

3
3

ge
om

et
ri

c
D

uq
ue

,A
ns

el
in

an
d

R
ey

(2
01

2)
ge

ne
ri

c
(k

,h
om

og
en

ei
ty

)
m

ay
be

3
3

3
T

S,
SA

L
i,

C
hu

rc
h

an
d

G
oo

dc
hi

ld
(2

01
4)

ge
ne

ri
c

co
m

pa
ct

ne
ss

3
3

3
3

3
T

S,
G

R
A

SP
Fo

rm
an

an
d

Y
ue

(2
00

3)
po

lit
ic

al
ba

l.+
cm

p.
,w

ei
gh

te
d

3
3

3
G

A
B

oz
ka

ya
et

al
.(

20
11

)
po

lit
ic

al
5-

w
ay

w
ei

gh
te

d
3

3
3

3
T

S
B

aç
ão

,L
ob

o
an

d
Pa

in
ho

(2
00

5)
po

lit
ic

al
ba

la
nc

e
+

co
m

p.
3

3
3

G
A

R
ic

ca
an

d
Si

m
eo

ne
(2

00
8)

po
lit

ic
al

ba
l.,

cm
p.

,c
on

f.
3

3
3

3
T

S,
SA

,O
B

A
B

ri
ed

en
,G

ri
tz

m
an

n
an

d
K

le
m

m
(2

01
7)

po
lit

ic
al

co
m

pa
ct

ne
ss

3
3

3
3

ge
om

et
ri

c
B

ut
sc

h,
K

al
cs

ic
s

an
d

L
ap

or
te

(2
01

4)
ro

ut
in

g
di

st
ri

ct
C

PT
3

3
3

T
S

A
ss

is
,F

ra
nc

a
an

d
U

sb
er

ti
(2

01
4)

ro
ut

in
g

ba
l.,

cm
p.

3
3

3
3

G
R

A
SP

R
ío

s-
M

er
ca

do
an

d
E

sc
al

an
te

(2
01

6)
co

m
m

er
ci

al
co

m
pa

ct
ne

ss
3

3
3

G
R

A
SP

+P
R

Sa
la

za
r-

A
gu

ila
r,

R
ío

s-
M

er
ca

do
an

d
G

on
zá

le
z-

V
el

ar
de

(2
01

3)
co

m
m

er
ci

al
ba

l.,
cm

p.
3

3
3

G
R

A
SP

Sa
la

za
r-

A
gu

ila
r,

R
ío

s-
M

er
ca

do
an

d
C

ab
re

ra
-R

ío
s

(2
01

1)
co

m
m

er
ci

al
co

m
pa

ct
ne

ss
3

3
3

M
IP

B
or

gw
ar

dt
,B

ri
ed

en
an

d
G

ri
tz

m
an

n
(2

01
4)

la
nd

al
lo

c.
3

ge
om

et
ri

c
G

lie
sc

h,
R

itt
an

d
M

or
ei

ra
(2

01
7)

la
nd

al
lo

c.
ba

la
nc

e
3

3
3

3
G

A

16

1.3 Problem definition

We represent input areas as regular rectangular two-dimensional grids, whose cells

are hereafter referred to as spatial units. The precision with which the shapefiles are dis-

cretized is determined by experts and may differ among instances, but usually corresponds

to 300m2 to 1000m2 per cell. Based on this discretization, in this section we provide a

mathematical description of the problem. We use the set notation [n] = {1, . . . , n}.

Let k be the number of lots to allocate, and U = R ∪̇P ∪̇L be the set of spatial

units located on a regular n×m matrix, where R comprises the units representing rivers

or water resources, P the units representing nature preservation areas, and L the units

representing usable land areas. For each u ∈ L we are given a land aptitude value qu.

For the instances originating from real-world scenarios we have used the aptitude class-

value mapping proposed by Ferreira (2015), and for artificial instances these values were

chosen uniformly from the range [30, 100].

We define a lot as a subset of land units C ⊆ L, and a solution S = (C1, . . . , Ck)

as a k-partition of the usable land units into lots. A solution S can also be seen as a

surjective mapping S : L → [k] that assigns a lot to each land unit, and so we use the

notation S(u) to represent the lot that unit u ∈ L is assigned to. If a unit u is not currently

allocated to any lot, S(u) is undefined and we say that u is unassigned. If a solution has no

unassigned units we say that it is complete (i.e.,
⋃

i∈[k]Ci = L), otherwise it is incomplete

or partial.

We use a standard 4-neighborhood on a grid (top, bottom, left, right) to define the

neighborhood N(u) of a unit u ∈ U . This notion is extended to lots in the straightforward

way N(C) = (∪u∈CN(u)) \C. With N we define the land unit graph G = (L,E) where

E = {{u, v} | u ∈ L, v ∈ N(u) ∩ L}. We say that a land unit u ∈ L is next to water if

N(u) ∩ R 6= ∅, and that u is on the border of lot i to lot j if u ∈ Ci and N(u) ∩ Cj 6= ∅.

Finally, we define Bij = {u | u is on the border of i to j}, and the total border of lot i as

Bi =
⋃

j∈[k]Bij .

A solution is said to be valid if it satisfies four constraints: connectivity, accessi-

bility, balance and equality. The connectivity constraint requires lots to be connected in

G. The accessibility constraint requires that there be no enclaves, i.e. lots are not allowed

to completely enclose one another. The balance constraint states that lots with direct ac-

cess to a water resource must not be larger in area than lots without direct access to water.

Here, the area of a lot i is defined simply as the number |Ci| of spatial units assigned to

17

it. Finally, the equality constraint requires that the ratio λ of the area of the largest lot and

the area of the smallest lot be smaller than a given threshold λ̄ = 3.

The goal of PROTERRA is to find a valid solution that is as fair as possible by

minimizing the standard deviation σ of lot aptitude values. The total aptitude value of a

lot i is defined by vi =
∑

u∈Ci
qu, and the standard deviation of lot qualities as

σ =

√
1/k

∑
i∈[k]

(vi − v̄)2,

where v̄ is the average vi. When comparing two solutions, we can omit the square root

and the division by k, so in our algorithms we use the sum of squares

SS =
∑
i∈[k]

(vi − v̄)2

as a surrogate objective function.

18

2 A GENETIC ALGORITHM FOR FAIR LAND ALLOCATION

2.1 Overview

We propose a genetic algorithm (GA) to find heuristic solutions to PROTERRA.

Our algorithm iteratively evolves a population of solutions by generating offspring solu-

tions from a set of individuals, which are selected from the current population based on

their fitness. The offspring solutions are obtained through recombination and mutation

operators inspired by the natural evolution process. Individuals in the initial population

are generated by a randomized greedy heuristic, and each next generation is composed

of some of the best individuals from the previous generation, some offspring solutions,

and some newly-generated random solutions. For a thorough, detailed introduction to

genetic algorithms we refer the reader to the excellent literature available (e.g. Gendreau

and Potvin (2010), Goldberg (1989), Holland (1975)).

Algorithm 1 A genetic algorithm for PROTERRA

1: P ← {greedyConstructiveHeuristic() | i ∈ [p]}
2: b← best solution in P
3: repeat
4: P ′ ← best e solutions in P
5: for i ∈ [o] do
6: (S1, S2)← selectParents(P)
7: S3 ← crossover(S1, S2)
8: S3 ← mutate(S3)
9: P ′ ← P ′ ∪ {S3}

10: P ← P ′ ∪ {greedyConstructiveHeuristic() | i ∈ [r]}
11: b← best solution in P
12: until stopping criterion satisfied
13: return b

Algorithm 1 outlines our main method in detail. The initial population P is cre-

ated by generating p solutions using a greedy constructive algorithm (line 1), which will

be presented further. The main loop of the algorithm (lines 3–12) iteratively updates the

current population. The new population P ′ consists of the best e solutions of the current

population (line 4), o solutions obtained by the recombination process (lines 5–9), and r

solutions generated using the same randomized greedy process used for the initial pop-

ulation. The elite rate e, the offspring rate o and the random rate r are parameters, and

e + o + r = p. By adding r randomized solutions at each iteration, we ensure that the

population stays varied and avoid that all individuals become related or very similar. The

19

parent solutions S1 and S2 of each new offspring solution S3 are uniquely selected by a

3-tournament in P (line 6). A 3-tournament selects 3 elements uniformly at random from

P and returns the best one. It is ensured that S1 6= S2, but for simplicity we allow for the

same pair of parents to be selected more than once. The crossover and mutation operators

(lines 7 and 8) are stochastic, and will be detailed in a following section. The algorithm

ends when a stopping criterion is reached, which may be a maximum time limit, a mini-

mal objective function threshold, or a maximum number of generations. At each iteration

we update the best overall solution b and return it at the end (lines 2, 11 and 13).

In the following sections, we present the components of the algorithm in detail.

2.2 Solution representation

We represent solutions in memory as integer vectors of size |L| which map a land

unit in [L] to a lot in [k] (or an appropriate flag if the unit is unassigned). This representa-

tion is straightforward given the definition of S as a surjective map of land units into lots.

On the other hand, it can be inefficient for tasks which operate solely on the lot borders

Bi, such as the construction of new solutions or local search procedures that swap units

between neighboring lots. This is because the majority of the units in a lot are not on its

border, but rather in the central part, and thus need not be considered.

A rough approximation based on the typical perimeter-area ratio of convex poly-

gons is that a neighborhood considering only the lot borders has size O(
√
|L|). This can

be a significant improvement over one that considers all O(|L|) land units. To this end,

we use a data structure that allows us to access, modify and iterate over lot borders in con-

stant time. For each lot i, we keep a doubly-linked circular list bi = (bi1, . . . , bi|Bi|, bi1)

of units on its border. Note that this list is not necessarily ordered by any criterion, and

adjacency in b does not imply adjacency in L. Additionally, we keep a mapping M that

maps a unit u ∈ L to the corresponding node in bS(u), or is undefined if u /∈ Bi. This

allows us to perform the following operations in constant time:

• test(i, u): to test if unit u is in Bi, we check if S(u) = i and M(u) is defined.

• insert(i, u): when unit u becomes a border in lot i, we add it to the end of list bi

and update M(u)← i.

• remove(i, u): when unit u ceases being a border of lot i, we look up u’s node in

20

bi via M(u) and erase it. Since bi is a doubly-linked list, erasing a node is done in

O(1).

• next(i, u): given a unit u ∈ Bi, we can find another unit in Bi by accessing the

next pointer in M(u). By applying next successively on this node until we return to

M(u), we can iterate over all units of Bi without repetition. Note again that units

iterated in sequence are not necessarily adjacent.

2.2.1 Fitness function

Our proposed algorithms satisfy the connectivity and accessibility constraints by

design, but not necessarily the balance and equality constraints. In order to handle incom-

plete or infeasible solutions, our fitness function considers not only the sum of squares

SS but also the severity of the violation of these constraints. The violation of the balance

constraint is measured by the total excess area A of all lots with access to water over the

area of the smallest lot without access to water, normalized by |L|, and the violation of the

equality constraint is measured by λ+ = max(λ− λ̄, 0) (recall that λ is the ratio between

the largest and smallest lot areas, and λ̄ is a fixed maximum threshold). We then consider

the fitness function ϕ = (A, λ+, SS) in lexicographic order, i.e. we minimize first the

violation of the balance constraint, then the violation of the equality constraint, followed

by the standard deviation of the lot aptitude. This order was chosen because the balance

constraint is considerably more difficult to satisfy, and thus should be prioritized. When

comparing two candidate solutions, we use lazy evaluation to avoid computing parts of ϕ

that do not affect the outcome of the comparison, i.e., if two solutions differ in A, we do

not need to compute their λ+ and SS components.

2.2.2 Dynamic fitness updates

One of the most frequent tasks performed by our algorithm is recomputing ϕ after

a change in the assignment of a single unit. If not performed efficiently, this task can

easily become the bottleneck of the algorithm. In this section, we expose in detail how

the components of ϕ can be updated efficiently after an unassigned unit u is assigned to

a lot i. We omit the case of an assigned unit becoming unassigned or two lots swapping

neighboring units, since it does not occur in our methods; we believe, however, that the

21

algorithms below can be easily adapted to accommodate such situations).

2.2.2.1 Updating SS

We can speed up the calculation of the objective function SS given a modification

in the value vj of a lot to v′j = vj + δ, where δ is the aptitude value qu of the unit gained,

by expanding the sum of squares as

SS =
∑
i∈[k]

(vi − v̄)2 =
∑
i∈[k]

v2i − kv̄2 = W − V 2/k,

where W =
∑

i∈[k] v
2
i and V =

∑
i∈[k] vi. Since we can update variables W and V in

constant time under modification of some value vj to v′j , we also find the new sum of

squares SS ′ = W ′ − V ′2/k in constant time. If the number of spatial units that change

is of order k or more, however, it is faster to first update all vi, and then compute the new

sum of squares SS ′.

2.2.2.2 Updating A

In order to update the violations of the balance constraint A we maintain an array

of lot indices sa sorted in ascending order of lot areas, a mapping id such that sa(id(i)) =

i, and the index of the smallest lot l without water access. (We assume at least one lot

does not have access to water; otherwise, A would always be zero and, since we only

consider incremental updates, it would not be necessary to update it.) Then, A is updated

as follows. When unit u is assigned to lot i, i’s area increases by 1, and we update

the ordered areas sa by swapping sa(id(i)) forward until |Csa(id(i)+1)| ≥ |Ci|, or until

id(i) = k. This process is similar to an iteration of the bubble sort algorithm. With each

swap, id is also updated accordingly. The worst case requires O(k) swaps and happens

when all lots have the same area. In a typical situation, however, the number of swaps is

low. Next, we then have three different cases to consider:

• If i 6= l and |Ci| ≥ |Cl| and (Bi ∩ R 6= ∅ or c is next to water), i’s violation is

increased, so we increment A by 1.

• If i = l and c is next to water, then i will not be the smallest lot without water

access, as it gains its access through c. We then search for a new l by iterating

forward on sa, starting from id(i), until we find the next j such that |Cj| ≤ |Cl|

22

and Bj ∩ R = ∅. If |Cl| increases, we then recompute A by iterating over sa. This

process could take at most k steps, but it is performed only when i = l and thus the

cost is amortized over all possible i.

• If i = l and c is not next to water, we subtract from A the number of lots with area

equal to |Ci|+ 1 that have access to water. These can be found by iterating over the

positions in sa adjacent to id(i). As before, there may be at most k such positions,

but the cost is amortized over all possible i. If, however, there is another lot j with

Bj ∩ R = ∅ and |Cj| = |Ci|, A remains unchanged and we update l. Once again,

this can be detected by a simple linear search on sa.

2.2.2.3 Updating λ+

The smallest and largest lots are already maintained the sa array of the previous

section, so it is trivial to maintain the area ratio λ+ = max(0, sa(k)/sa(1)− λ̄).

2.3 Constructive heuristic

The initial population of the GA, as well as the r new solutions introduced to

the population at each iteration, are generated using a randomized greedy constructive

heuristic. The heuristic follows the location-allocation approach of Kalcsics, Nickel and

Schröder (2005) and thus consists of two phases. In the location phase, we heuristically

select k random, dispersed land units to serve as initial seeds for each lot. Then, in the

allocation phase we expand the lots from their respective seeds by iteratively giving them

a greedily-selected unit on their border, until the solution is complete.

2.3.1 First phase: location

Because water bodies or natural preservation areas may divide the usable land

into several connected components, we perform a preprocessing step which identifies the

connected components of the land graph G. The location phase starts by selecting k seed

units at random from L, such that each connected component receives a number of seeds

proportional to its area. It is assumed that no connected component in G has size smaller

than |L|/k; otherwise, a preprocessing step moves the units in these components from

23

L to R. We do this in order to avoid early on that lots be placed in small regions that

constrain the lot’s maximum size and aptitude, thus never allowing it be balanced with

respect to the other lots.

Having selected the k random seeds, the algorithm then expands them into regions

by a shortest distance graph search on a directed version of G where the weight of an arc

(u, v) is qv. The search maintains a set of active units, which are initially the k seeds,

and a mapping of units to their “parent” lots. It repeatedly selects the active unit u with

shortest distance from the start, and assigns it to its parent lot. Neighbors of u that have

not been discovered yet or whose distances to the start can be improved by a path through

u are then set as active and assigned the same parent as u. The search ends when all units

have been assigned. Using a priority queue to order the active units allows us to select

the next one in O(log |L|) at each step, and because G is planar and thus has at most

O(|L|) edges, the search algorithm runs in O(|L| log |L|). In other terms, we effectively

compute the discrete weighted Voronoi regions of the selected seeds, with respect to land

aptitude. This algorithm by design generates connected regions and, given a reasonably

smooth distribution of soil aptitudes, which is the case for most instances, also convex

and without enclaves.

Finally, we recompute the k seeds as the geometric centroids of their respective

regions. If a centroid falls outside of L, we move it to the closest reachable land unit.

Similarly to the well-known k-means clustering algorithm (LLOYD, 1982), this approach

could be applied in an iterated fashion by re-expanding these new seeds into regions using

the same shortest-distance graph search, then reassigning them as the regions’ centroids,

then re-expanding them again and so on, until the seeds converge to the same location in

two successive iterations. We have found, however, that repeating this process more than

once was relatively time-consuming and did not yield a significant improvement.

The location process is illustrated in Figure 2.1. Algorithm 2 describes the location

phase in detail. First, the connected components cc of G are identified (line 2) and an

appropriate number of seeds per component is chosen (lines 5–6). Next, we initialize

the data structures used for the graph search with the k seeds s1, . . . , sk (lines 8–16).

Then, we iteratively select the nearest active node with respect to dist (line 18), with ties

broken in favor of the oldest active unit, assign it to its parent region (line 19), and set

its undiscovered neighbors (with dist = ∞) as being active with the same parent (lines

21–25). If the new distance of an active neighbor through the current unit is improved,

we update it. Finally, when there are no more active nodes, we compute and return the

24

Figure 2.1: The location process in instance Veredas. The arrows represent the sequence
of operations. Top left: the initial seeds chosen at random. Top center, top right, bottom
right: expansion of seeds into weighted Voronoi regions. Bottom left: final seeds recom-
puted as the centroids of each expanded region. It is easy to see that the final seeds are
more evenly dispersed than the original ones.

geometric centroids of the expanded regions (lines 27–28).

2.3.2 Second phase: allocation

Once defined the initial seed for each lot, we expand them into regions a second

time using a greedy constructive algorithm. The algorithm maintains a list of valid candi-

date assignments of a unit to a lot, and iteratively applies the best candidate with respect

to the objective function ϕ, until there are no more possible assignments. An assignment

is considered feasible if it satisfies the connectivity and accessibility constraints.

Differently from the location phase, in this phase we cannot use a priority queue

to order the active candidates, since the cost ϕ of each candidate is subject to change

after any assignment. Thus, at each step the algorithm must recompute the cost of all

candidates. Even using the fast dynamic fitness updates described in Section 2.2.2, this

is the main bottleneck of our method, since the number of candidates is usually very

large. On the other hand, given a reasonably fine-grained discretization of the map, the

objective function ϕ typically changes very little from one step to the next. For this

reason, to speed up the process we define a batch size b and, at each step, perform the best

25

Algorithm 2 Greedy constructive algorithm: location phase
1: procedure LOCATION

2: cc←connectedComponents(G)
3: j ← 0
4: for c ∈ cc do
5: f ← bk|c|/|L|c
6: (sj, . . . , sj+f)← randomChoice(c, f)
7: j ← j + f

8: for u ∈ [L] do
9: dist(u)←∞

10: active(u)← false
11: parent(u)← −1

12: for i ∈ [k] do
13: Ci ← ∅
14: dist(si)← 0
15: active(si)← true
16: parent(si)← i

17: repeat
18: u←active node with smallest dist(u)
19: Cparent(u) ← Cparent(u) ∪ {u}
20: active(u)←false
21: for v ∈ N(u) ∩ L do
22: if dist(v) > dist(u) + qv then
23: active(v)←true
24: dist(v)← dist(u) + qv
25: parent(v)← parent(u)

26: until there are no more active nodes
27: si ←geometric centroid of Ci ∀i ∈ [k]
28: return (s1, . . . , sk)

26

Figure 2.2: The allocation process in instance Veredas. Arrows represent sequence of op-
erations. Far left: the initial seeds computed by the location heuristic. Center left, center
right: partial solutions during the allocation process. Far right: the complete solution.

b candidate assignments. If we maintain a list candidates in memory, we can select the

best b in average time O(n) using a selection algorithm, for n candidates.

Figure 2.2 illustrates the allocation process. The allocation process is detailed

in Algorithm 3. We are given as input a partial solution S with non-empty lots. The

algorithm populates the unassigned land units and returns a complete solution that satisfies

connectivity and accessibility. (We use a partial solution as input rather than a set of seed

units because this procedure is reused in further components; when applied in sequence

to Algorithm 2, we can simply define Ci = {si}.) The algorithm starts by computing a

set of candidate assignments K by iterating over unassigned border units (line 3). Then,

it repeatedly selects the best b elements from K with a selection algorithm (line 5) and

performs the respective assignments (line 8), each time updating the candidate set K

(lines 9–10) with the unassigned neighbors of the units assigned. By adding to K only

border units, we ensure that the lots are connected. Before each assignment we test if

the respective unit is still unassigned, since the same unit may appear in more than one

candidate in B. Note that the order of the elements in B is defined by the selection

algorithm used. The algorithm stops when there are no more candidates, and returns the

current solution.

2.4 Recombination

Recombination operators typically operate on two “parent” solutions and aim to

create a “child” solution that, while different from the parents, maintains some of the

common structure between them, therefore introducing diversity to the population. It is

expected that high-quality parent solutions will produce high-quality children, and so the

parents are typically selected among the best in the population. Additionally, applying a

27

Algorithm 3 Greedy constructive algorithm: allocation phase
1: procedure ALLOCATION

2: input: a partial solution S = (C1, . . . , Ck)
3: K ←

⋃
i∈[k]{(u, i) | u is unassigned ∧u ∈ Bi}

4: repeat
5: B ← best b candidates in K with respect to ϕ
6: for (u, i) ∈ B do
7: if u is unassigned then
8: S(u)← i
9: K ← K ∪ {(v, i) | v is unassigned ∧ v ∈ N(u)}

10: K ← K \ {(u, j) | j ∈ [k]}
11: until K = ∅
12: return S

recombination operator is usually much faster than constructing a new solution from the

beginning, which allows us to explore more solutions in the same time.

Our recombination operator attempts to maintain contiguous regions that are as-

signed to a single lot in both parent solutions as also being assigned to a single lot in the

child solution. We first make the observation that lots in PROTERRA are anonymous,

i.e. there is no direct correspondence between lots in different solutions. For example, the

lot with index i in one solution is likely to have no spatial relation to the lot with index i

in another solution. In order to establish such a correspondence, we construct a complete

weighted bipartite graph where the nodes in each part correspond to lots in each of the

solutions, and the weight of an edge connecting two nodes is equal to the area of inter-

section of the corresponding lots. We then compute a maximum weight perfect matching

on this graph, and construct a child solution whose lots correspond to the intersections

of the parents’ matched lots. A special case occurs when a pair of matched lots do not

intersect: in this case, we introduce the new lot as a single unit chosen randomly over

the unassigned land units. Finally, the child solution is reconstructed to completion using

the greedy allocation procedure of Section 2.3.2. The whole recombination process is

illustrated in Figure 2.3.

Algorithm 4 presents the method in detail. First, a complete bipartite graph H is

created as explained above (line 3), and a maximum cost perfect matchingM is computed

for it (line 4). Then, we assign each child lot C3i to the intersection of lot i in the first

parent and its match in the second parent (lines 6–10). If this intersection is empty, we

add this lot to the set E (line 10), and in a later step assign to it a random unassigned seed

unit in L (lines 11 – 12). This is done in a posterior step to avoid that the selected seed

be overridden by some other lot. Finally, we reconstruct the child solution (C31, . . . , C3k)

28

Figure 2.3: The recombination operator applied to instance Fortaleza. The number of
lots was reduced from 40 to 12 to facilitate visibility. Arrows represent the sequence of
operations. Top left: the two parent solution. Bottom-left: the matching between the lots
in both parent solutions. Bottom right: the child solution with only the intersection of the
parents’ matched lots. Top left: the child solution after reassigning the free space using
the constructive algorithm.

29

using Algorithm 2 and return it.

Algorithm 4 Recombination
1: procedure RECOMBINATION

2: input: parent solutions (C11, . . . , C1k) and (C21, . . . , C2k)
3: H ← a complete bipartite graph where an edge linking lots C1i and C2j has

weight |C1i ∩ C2j|, for i, j ∈ [k].
4: M ← maxCostPerfectMatching(H)
5: E ← ∅
6: for i ∈ [k] do
7: if |C1i ∩M(C1i)| 6= ∅ then
8: C3i ← C1i ∩M(C1i)
9: else

10: E ← E ∪ {i}
11: for i ∈ E do
12: C3i ← {a random unassigned unit in L}
13: return Allocation((C31, . . . , C3k))

2.5 Mutation

A mutation operator aims to introduce variability to the population by making

a small, random perturbation to an existing solution. We implement mutation in our

algorithm by “erasing” (i.e., setting as unassigned) all units within a given distance of

the lot borders, and then reconstructing the partial solution using the greedy allocation

heuristic. Erasing the borders can be done by a fixed-distance breadth-first search (BFS)

seeded by all units in Bi, i ∈ [k]. We have chosen this distance to be a fixed 2 spatial

units. As in the recombination, if a lot ends up being erased completely, we reintroduce it

as randomly-chosen seed. Further, if the the erasing step disconnects a lot, we discard all

but the largest connected component of that lot. Because the greedy allocation heuristic

is deterministic, we ensure variability in successive mutations of the same solution by

introducing a parameter α to the constructive heuristic: instead of executing the best b

assignments at each step, we execute b assignments chosen uniformly at random among

the αb best. This selection can be done in time O(n) for n candidates using a selection

algorithm. The mutation process is illustrated in Figure 2.4.

30

Figure 2.4: The mutation operator applied to instance Fortaleza, with a reduced number
of lots. Arrows represent the sequence of operations. Left: the original solution. Center:
after removing units near the borders between lots. Right: greedily reconstructed solution.

2.6 Computational experiments

2.6.1 Test instances

We have conducted experiments on five real-world instances: “Veredas” (Minas

Gerais, Brazil), “Olhos D’Água” (Minas Gerais, Brazil), “Iucatã” (Acre, Brazil), “Belo

Vale” (Minas Gerais, Brazil) and “Fortaleza” (Acre, Brazil). These instances were first

used by (FERREIRA, 2015), to which we refer the reader for more details on them. Fig-

ure 2.5 shows the topologies of instances Olhos D’Água, Belo Vale and Fortaleza (in-

stance Veredas was already shown as an example in Figure 1.1).

For a more thorough experimentation, we have also generated an additional 25

artificial instances of sizes n× n, with n ∈ {200, 300, 400, 500, 600}, and number of lots

k ∈ {20, 40, 60, 80, 100}. For a given size n, we use the same artificial map topology

for the 5 levels of k. These levels have been chosen to match the typical range of the

real-world instances.

In order to generate the artificial instances we use Perlin noise (PERLIN, 1985),

a well-known noise function which maps a 2D coordinate to a value in the range [−1, 1].

Perlin noise is typically used in applications such as generating random height maps or

adding the appearance of realism to textures. It has four main parameters: frequency f ,

number of octaves o, granularity r and gain g. In preliminary experimentation we have

fixed these to f = 10−3, o = 16, r = 2 and g = 0.5. We create the instance’s soil by

generating an n × n noise matrix and quantizing it by a desired number of classes of

aptitude. The value of each class of aptitude is chosen randomly from [30, 100]. Perlin

noise ensures that transitions in aptitude between adjacent regions are smooth, and areas

31

Figure 2.5: Map topologies of the real-world instances Belo Vale (top left), Fortaleza (top
right), Iucatã (bottom left) and Olhos D’Água (bottom right).

32

Figure 2.6: The 5 artificial topologies generated, ordered by size from left to right, top to
bottom.

generated with the same level of aptitude are somewhat regular and with few connected

components.

Next, given a desired percentage of water units, we generate water bodies by a

second Perlin noise matrix with o = 10 and whose parameter f is binary searched in

[0, 1]. At each step we generate a new Perlin noise matrix, quantize it into two levels,

define river outlines with the cells on the border between the two levels, and expand these

outlines by a BFS with a fixed width chosen randomly in the integer range [2, 5]. If the

total number of water cells is within 1% of the desired percentage we accept the current

matrix and overlay it onto the one defining the instance’s soil; otherwise, we adjust f

accordingly and continue. After the desired percentage is met, we replace connected

components of land of area smaller than |L|/2k by water, in order to prevent island-like

structure that are unlikely to appear in a real-life scenario. Finally, we set the aptitude

of all cells within 5 units of a river to be the highest aptitude class. In each instance, the

desired number of water units was chosen randomly between 2% and 5%. For the artificial

instances we chose not to generate natural preservation areas, as they do not contribute

to the objective function and we have found them to have little impact difficulty. The 5

artificial topologies generated are shown in Figure 2.6.

Table 2.1 summarizes the characteristics of the test instances. The top five rows

correspond to the five real-world instances, and the bottom five rows to the five artificial

33

Table 2.1: Characteristics of the test instances.

Name w h k Apt. Land (%) River (%) Res. (%) #CC

Belo Vale 300 300 30 5 41.6 1.0 57.4 1
Fortaleza 449 250 40 2 20.7 1.2 78.1 1

Iucatã 449 250 40 5 26.1 2.5 71.4 12
Olhos D’Água 300 300 24 4 38.2 15.8 46.0 9

Veredas 300 300 26 6 42.0 1.5 56.5 10

200 200 5 94.4 5.6 0.0 7
300 300 6 90.9 9.1 0.0 4

Artificial 400 400 5 95.8 4.2 0.0 2
500 500 7 98.0 2.0 0.0 7
600 600 10 95.2 4.8 0.0 4

topologies. We report the map width (w) and height (h) in spatial units, the number of

lots k (relevant only for the five real-world instances), the number of different classes of

soil aptitude (Apt.), the percentage of the total area representing land, water and natural

preservation areas, and the number of connected components of land regions (#CC).

2.6.2 Methodology

We have implemented our algorithms in C++ and compiled them with GCC 5.3.1

and maximum optimization. The tests have been executed on a PC with an 8-core AMD

FX-8150 processor and 32GB of main memory. Each test was executed on a single core.

The code, instances, instance generator and full results of the experiments reported below

are available to the community at <http://www.inf.ufrgs.br/algopt/proterra/>.

In the following we report on four experiments. The first determines the best

batch size b of the constructive heuristic. Next, we calibrate the parameters of the GA.

The second experiment studies how the GA scales with different instance sizes, the third

evaluates its effectiveness in comparison to simpler methods, and the last compares its

results to known solutions of real-world instances.

2.6.3 Experiment 1: batch sizes

This experiment aims to choose the best batch size b which determines the number

of unit assignments performed at each step of the greedy constructive heuristic. We have

performed two tests on batch sizes b ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096}, using

http://www.inf.ufrgs.br/algopt/proterra/

34

Table 2.2: Results of the calibration of the optimal batch size.

Batch
Fixed time 50 replications

size A (m) λ σ Repl. A (m) λ σ t (s)

32 40.3 4.3 44.6 2,494 28.7 4.0 35.7 668
64 28.4 3.8 27.6 6,118 35.5 3.8 29.3 301

128 28.4 3.7 32.0 13,760 34.4 4.3 36.7 120
256 23.3 4.1 31.8 27,102 44.2 5.5 42.0 52
512 28.3 4.3 44.5 45,790 53.8 4.0 34.7 26

1,024 42.2 4.2 41.5 67,831 73.6 4.8 36.8 15
2,048 51.1 4.5 65.4 88,424 94.3 6.8 58.8 10
4,096 67.9 6.4 82.4 111,203 118.7 6.3 81.6 8

only the 25 artificial instances. The first test executes the constructive heuristic for a fixed

number of 50 replications, reporting the best one in the end, and aims to evaluate how

increasing batch sizes affect running time and solution quality. The second test executes

as many replications of the algorithm as possible within a fixed time limit of 10 minutes,

and reports the best one in the end.

The results are shown in Table 2.2. For each test, we report the violation of the

balance constraint A (×10−3), of the equality constraint λ, and the standard deviation

in soil aptitude σ, averaged over the 25 instances. For the test with a fixed time limit,

we report the average number of replications performed (“Repl.”), and for the test with a

fixed number of replications, the average running time (“t”) in seconds.

As expected, because larger batch sizes require fewer construction steps, with a

fixed time limit the number of replications increases as b increases, while with a fixed

number of replications larger b yield lower running times. In both tests, since most of

the replications did not achieve feasible solutions with respect to balance, the equality

constraint was typically not satisfied and the soil aptitude deviation fluctuates between

30% and 80%, so A is a good estimate of the quality of a solution.

With a fixed number of replications, the solution quality degrades as b increases,

as larger values of b yield coarser approximations of the “pure” constructive heuristic

(with b = 1), but remains still low at b = 4096 with A = 1.19% of the total area. With

a fixed time limit, the final fitness function ϕ has its best average value with b = 256,

and degrades as b grows too small or too large. Once again, this occurs because larger

b give worse approximations, whereas smaller values of b require more running time per

replication and thus produce fewer replications. For this reason, we chose to fix b = 256

for the remaining experiments.

35

Table 2.3: Parameters of the GA: initial ranges and optimal setting found by iterative
racing.

Description Initial range Best value

Population size p [10, 50] 15
Mutation α [2, 5] 3.72
Elite rate e [0, 1] 0.59
Offspring rate o [0, 1] 0.38
Random rate r [0, 1] 0.03

2.6.4 Parameter calibration

With a fixed b = 256, we have calibrated the parameters of the GA with the irace

package in GNU R (LÓPEZ-IBÁÑEZ et al., 2016), with a budget of 1000 runs and a

time limit of 5 limits per run, over all the instances in our data set. Table 2.3 displays the

parameters, their calibration ranges and the best settings found by iterative racing.

2.6.5 Experiment 2: scalability

In this experiment we analyze how our methods scale as instance sizes grow. We

have performed 5 replications of the algorithm on each of the 25 artificial instances, with

a running time of 30 minutes per replications. Table 2.4 shows the results. As before, we

report the violation of the balance constraint A (×10−6), of the equality constraint λ, and

the standard deviation in soil aptitude σ (×103), averaged over the 5 replications. We also

report the number of feasible solutions out of the 5 replications (“Feas.”), and the number

of evaluated solutions (“Evals.”).

The GA found feasible solutions on the majority of replications (112 out of 125),

being unable to achieve feasibility only for the instance of size 200 × 200 with 100 lots.

We believe this is because of the large number of lots in a very small area, which makes

it harder to satisfy the balance constraint. For the instance of size 300 × 300 and 20 lots

only one replication was feasible: the other 4 were able to satisfy the balance but not

the equality constraint. We can also see that the soil aptitude deviation σ decreases as k

increases. This is expected: as there are more lots to allocate, the average soil aptitude

per lot decreases. Finally, we see that the number of fitness evaluations declines as both

the number of lots and instance sizes grow, as expected. Empirically, the number of

evaluations is about 2.1×1012 n−2.7 k−0.8 (log-log regression, R2 = 0.9812) for instances

36

Table 2.4: Scalability experiment.

Size Lots Evals. A (µ) λ σ (K) Feas.

20 138,732 0.00 1.70 5.66 5
40 79,999 0.00 1.75 1.83 5

200x200 60 56,350 0.00 1.81 1.78 5
80 43,927 0.00 1.84 1.38 5

100 37,721 436.24 5.39 5.10 0

20 60,013 0.00 3.40 81.19 1
40 31,882 0.00 1.90 10.40 5

300x300 60 22,982 0.00 1.88 6.93 5
80 17,937 0.00 1.91 5.33 5

100 15,214 0.00 2.11 4.70 5

20 22,761 0.00 1.29 26.83 5
40 13,254 0.00 1.43 12.93 5

400x400 60 8,923 0.00 1.46 7.83 5
80 7,135 0.00 1.51 5.75 5

100 6,237 0.00 1.57 7.07 5

20 9,970 0.00 2.39 66.52 5
40 5,704 0.00 2.62 32.37 5

500x500 60 4,058 4.12 6.17 28.19 4
80 3,143 0.00 2.73 18.57 5

100 2,714 0.00 2.81 14.54 5

20 7,502 0.00 1.89 297.75 5
40 5,384 0.00 2.20 128.50 5

600x600 60 4,125 11.10 2.45 82.63 4
80 3,396 35.63 3.45 58.65 3

100 2,233 0.00 2.54 47.35 5

of size n × n with k lots, so the cost grows slightly more than the total number of cells,

and close to linear with the number lots. This is reasonable for current instance sizes, but

may be a bottleneck for very large or very fine-grained instances.

2.6.6 Experiment 3: effectiveness of the genetic algorithm

This experiment evaluates the effectiveness of the GA by comparing it to two

simpler approaches: one that generates lot seeds uniformly at random and then expands

them with a simple BFS, and the constructive heuristic of Section 2.3. Both approaches

repeatedly generate new solutions within the specified time limit and report the best one

at the end. For the second approach, we have also used b = 256. Note that the second

approach is equivalent to the GA with P = r = 1 and e = o = 0.

For this experiment we have used the 5 real-world instances and a time limit of 30

37

Table 2.5: Effectiveness experiment.

Instance Evals. (m) A (m) λ σ (% r.d.)

BFS Cons. GA BFS Cons. GA BFS Cons. GA BFS Cons. GA

Belo Vale 65.9 2.0 14.4 0.1 0.0 0.0 9.99 2.99 1.83 657.4 196.6 5.9
Fortaleza 83.2 2.4 16.2 38.7 25.1 0.0 59.79 4.86 1.19 1,025.7 479.4 4.7
Iucatã 62.9 3.6 34.5 0.0 64.8 0.0 10.26 18.59 2.83 582.9 463.0 63.0
Olhos D’Água 75.5 5.2 59.8 0.0 82.7 0.0 5.67 8.97 1.93 165.2 54.8 9.7
Veredas 146.1 2.6 23.4 1.9 49.0 0.0 22.62 3.87 1.70 424.8 95.7 12.1

minutes, and report averages over 5 replications. Table 2.5 shows the results. We report,

for each approach, the number of evaluated solutions (×104), the violation of the balance

constraintA (×10−3), the violation of the equality constraint λ, and the standard deviation

in soil aptitude σ as the relative deviation, in percent, from the best known value for that

instance.

We can see that the BFS is better at satisfying the balance constraint than the

greedy constructive heuristic in 3 of the 5 instances (Iucatã, Olhos D’Água and Veredas).

However, it performs significantly worse when it comes to the equality constraint, pro-

ducing solutions where the largest lot is up to 59.79 times larger than the smallest lot on

average, for the instance Fortaleza. Further, since it does not account for soil aptitude, the

BFS approach leads to significantly higher soil aptitude deviations. The GA found feasi-

ble solutions for all instances, with significantly lower deviations in soil aptitude among

lots. As expected, being algorithmically simple the BFS explored the most solutions,

while the constructive heuristic the fewest, since it constructs full solutions whereas the

GA mostly reconstructs partial solutions during mutation and recombination.

2.6.7 Experiment 4: comparison to manual allocation

Our final experiment compares the results of the GA to the existing manual alloca-

tions by the responsible government entity INCRA. We have excluded instance Fortaleza

from this comparison as we did not have access to the official allocation. Because the

manual allocations do not consider water obstacles, thus allowing lots to have land on

both sides of a river, for example, we do not penalize solutions that violate the connec-

tivity constraint. We have executed the GA with 30 minutes of running time and report

averages over 5 replications. Table 2.6 shows the results.

We can observe that, in all cases, the GA produces solutions that are better with

respect to all three components of the objective function. The manual allocations violate

38

Table 2.6: Comparison of our genetic algorithm to manual allocation made by INCRA.

Instance
A (m) λ σ

Manual GA Manual GA Manual GA

Belo Vale 19.7 0.0 2.77 1.83 5,378.5 1,888.6
Iucatã 735.9 0.0 22.38 2.83 18,444.9 2,806.5
Olhos D’Água 830.5 0.0 28.81 1.93 19,972.8 11,716.1
Veredas 0.0 0.0 5.78 1.70 3,964.4 1,161.5

the balance constraint in instances Belo Vale, Iucatã and Olhos D’Água and the equality

constraint in instances Iucatã, Olhos D’Água and Veredas, whereas the GA found feasible

solutions for all four instances. The standard deviation in soil aptitude among lots found

by the GA is a factor of 1.7 to 7 times lower. Figure 2.7 visually compares the best

solution among the 5 replications and the official allocation.

39

Figure 2.7: Comparison between the allocation produced by the GA (left) and the man-
ual allocation done by INCRA (right) for instances Belo Vale 2.7a, Iucatã 2.7b, Olhos
D’Água 2.7c and Veredas 2.7d.

(a) Belo Vale.

(b) Iucatã.

(c) Olhos D’Água.

(d) Veredas.

40

3 CONCLUSION AND FUTURE WORK

We have introduced the Territorial Organization in Agrarian Reform Projects and

Environmental Planning Problem (PROTERRA). It consists of subdividing a large parcel

of farmland into smaller lots that are balanced with respect to area, soil aptitude and

access to hydric resources. Inspired by previous works and its similarity to districting

models, we represent instances as regular 2D grids, which can be described by weighted

planar graphs. To solve PROTERRA we propose a greedy location-allocation approach to

generate new solutions and a genetic algorithm with problem-specific recombination and

mutation operators. Experimental results show that the GA scales reasonably well with

the size of the instance, and significantly outperforms simpler approaches, indicating that

the proposed operators are effective. In comparison to current manual allocations the

GA led to fairer allocations in all instances considered, suggesting that it could be an

acceptable option for practical application. Still, we believe there is significant potential

for further investigation.

Because we use a planar graph model, our solution structure is identical to most

districting problems, and thus the genetic operators we have proposed can probably be

applied effectively to other districting problems for which a good randomized constructive

heuristic exists. Further, although PROTERRA can be modeled as a districting problem,

we have not considered lot compactness directly. Currently there is no formal regulation

regarding the expected shape of the lots, but it is understood that shapes should ideally

be convex polygons with few edges. We believe that integrating a formal compactness

measure into the solver is an essential step in order to bring current solutions closer to

practical application.

Currently one of the main bottlenecks are large instance sizes: with an ideal cell

precision of around 100m2, instances would have in the order of 107 to 108 nodes, meaning

heuristic operators with a complexity beyond linear are too costly to perform repeatedly.

We believe we can exploit the fact that we work with planar graphs, and in particular

regular grid graphs, in order to implement more efficient methods for dynamic operations

such as connectivity and accessibility queries upon swapping spatial units between lots.

This opens the way to local search-based heuristics, such as GRASP or tabu search, which

could greatly improve the quality of current solutions.

Finally, it could be useful to explore purely geometric representations of the prob-

lem. There are several approaches which have been used successfully in the literature both

41

in districting and land allocation, such as the genetic algorithm of Demetriou, See and

Stillwell (2013b) which optimizes lots through Voronoi diagrams, the clustering-based

approaches of Brieden, Gritzmann and Klemm (2017) and Borgwardt, Brieden and Gritz-

mann (2014) which group spatial units based on geometric clustering, or the recursive

greedy bisection algorithm of Kalcsics, Nickel and Schröder (2009), which constructs

lots by recursively bisecting an area into two balanced partitions.

42

ACKNOWLEDGEMENTS

I would like to thank my advisor, my colleagues and my girlfriend Micheli for

their continuous support. The development of this thesis was funded by CNPq (grant

420348/2016-6), FAPEMIG (grant TEC-APQ-02694-16) and by Google Research Latin

America (grant 25111).

43

REFERENCES

ASSIS, L. S. D.; FRANCA, P. M.; USBERTI, F. L. A redistricting problem applied to
meter reading in power distribution networks. Computers and Operations Research,
Elsevier, v. 41, n. 1, p. 65–75, 2014. ISSN 03050548.

BAÇÃO, F.; LOBO, V.; PAINHO, M. Applying genetic algorithms to zone design. Soft
Computing, v. 9, n. 5, p. 341–348, 2005. ISSN 14327643.

BENZARTI, E.; SAHIN, E.; DALLERY, Y. Operations management applied to home
care services: Analysis of the districting problem. Decision Support Systems, Elsevier
B.V., v. 55, n. 2, p. 587–598, 2013. ISSN 01679236.

BLAIS, M.; LAPIERRE, S. D.; LAPORTE, G. Solving a home-care districting problem
in an urban setting. Journal of the Operational Research Society, v. 54, n. 11, p.
1141–1147, 2003. ISSN 0160-5682.

BORGWARDT, S.; BRIEDEN, A.; GRITZMANN, P. Geometric Clustering for the
Consolidation of Farmland and Woodland. Mathematical Intelligencer, v. 36, n. 2, p.
37–44, 2014. ISSN 03436993.

BOZKAYA, B. et al. Designing new electoral districts for the city of Edmonton.
Interfaces, v. 41, n. 6, p. 534–547, 2011. ISSN 00922102.

BRIEDEN, A.; GRITZMANN, P.; KLEMM, F. Constrained clustering via diagrams:
A unified theory and its application to electoral district design. European Journal of
Operational Research, v. 263, n. 1, p. 18–34, 2017. ISSN 03772217.

BUI, Q. T.; PHAM, Q. D.; DEVILLE, Y. Solving the Agricultural Land Allocation
Problem by Constraint-Based Local Search. In: Lecture Notes in Computer Science.
[S.l.: s.n.], 2013. v. 8124, p. 749–757. ISBN 9783642406263.

BUTSCH, A.; KALCSICS, J.; LAPORTE, G. Districting for Arc Routing. INFORMS
Journal on Computing, v. 26, n. October, p. 809–824, 2014. ISSN 1091-9856.

CAMACHO-COLLADOS, M.; LIBERATORE, F.; ANGULO, J. M. A multi-criteria
Police Districting Problem for the efficient and effective design of patrol sector.
European Journal of Operational Research, Elsevier Ltd., v. 246, n. 2, p. 674–684,
2015. ISSN 03772217.

CLEMENTS, E. A. Agrarian Reform, Food Sovereignty and the MST: Socio-
environmental Impacts of Agrofuels Production in the Pontal do Paranapanema Region
of São Paulo State, Brazil. Revista NERA, v. 15, n. 21, p. 8–32, 2012.

DEMETRIOU, D.; SEE, L.; STILLWELL, J. A parcel shape index for use in land
consolidation planning. Transactions in GIS, v. 17, n. 6, p. 861–882, 2013. ISSN
13611682.

DEMETRIOU, D.; SEE, L.; STILLWELL, J. A spatial genetic algorithm for automating
land partitioning. International Journal of Geographical Information Science, v. 27,
n. 12, p. 2391–2409, 2013. ISSN 13658816.

44

DUQUE, J. C.; ANSELIN, L.; REY, S. J. The Max-p-Regions Problem. Journal of
Regional Science, v. 52, n. 3, p. 397–419, aug 2012. ISSN 00224146.

ESRI, A.; PAPER, W. ESRI Shapefile Technical Description. Computational Statistics,
v. 16, n. July, p. 370–371, 1998. ISSN 01679473.

FERREIRA, F. M. Aptidão agrícola das terras como função de otimização para o
ordenamento territorial e planejamento ambiental: uma anãlise do SOTER-PA.
117 p. Dissertation (Master) — Programa de Pós-Graduação em Extensão Rural,
Universidade Federal de Viçosa, Brazil, 2015.

FORMAN, S. L.; YUE, Y. Congressional Districting Using a TSP-Based Genetic
Algorithm. In: Genetic and Evolutionary Computation - GECCO 2003. [S.l.: s.n.],
2003. p. 2072–2083. ISBN 3-540-40603-4.

GARCÍA-AYALA, G. et al. A novel model for arc territory design: Promoting Eulerian
districts. International Transactions in Operational Research, v. 23, n. 3, p. 433–458,
2016. ISSN 14753995.

GENDREAU, M.; POTVIN, J.-Y. (Ed.). Handbook of Metaheuristics. 2nd. ed. [S.l.]:
Springer, 2010.

GLIESCH, A.; RITT, M.; MOREIRA, M. C. O. A genetic algorithm for fair land
allocation. In: Genetic and Evolutionary Computation Conference - GECCO ’17.
New York, New York, USA: ACM Press, 2017. p. 793–800. ISBN 9781450349208.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. [S.l.]: Addison-Wesley, 1989. ISBN 978-0201157673.

GUO, D.; WANG, H. Automatic Region Building for Spatial Analysis. Transactions in
GIS, v. 15, n. SUPPL. 1, p. 29–45, 2011. ISSN 13611682.

HESS, S. W. et al. Nonpartisan Political Redistricting by Computer. Operations
Research, v. 13, n. 6, p. 998–1006, 1965. ISSN 0030364X, 15265463.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems. [S.l.]: University of
Michigan Press, 1975.

KALCSICS, J. Districting Problems. In: Location Science. Cham: Springer International
Publishing, 2015. p. 595–622. ISBN 978-3-319-13110-8.

KALCSICS, J.; NICKEL, S.; SCHRÖDER, M. Towards a unified territorial design
approach - applications, algorithms and GIS integration. Top, v. 13, n. 1, p. 1–56, 2005.
ISSN 1134-5764.

KALCSICS, J.; NICKEL, S.; SCHRÖDER, M. A generic geometric approach to territory
design and districting. Berichte des Fraunhofer ITWM Nr 153, v. 153, n. 153, p. 42,
2009.

KING, D. M.; JACOBSON, S. H.; SEWELL, E. C. The geo-graph in practice: creating
United States Congressional Districts from census blocks. Computational Optimization
and Applications, Springer US, p. 1–25, 2017. ISSN 15732894.

45

LEI, H. et al. Dynamic design of sales territories. Computers and Operations Research,
Elsevier, v. 56, p. 84–92, 2015. ISSN 03050548.

LI, W.; CHURCH, R. L.; GOODCHILD, M. F. The p-compact-regions problem.
Geographical Analysis, v. 46, n. 3, p. 250–273, 2014. ISSN 15384632.

LLOYD, S. Least squares quantization in PCM. IEEE Transactions on Information
Theory, v. 28, n. 2, p. 129–137, mar 1982. ISSN 0018-9448.

LÓPEZ-IBÁÑEZ, M. et al. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, v. 3, p. 43–58, 2016. ISSN 22147160.

MOREIRA, M. C. d. O. et al. O uso da busca tabu no ordenamento territorial em
assentamentos rurais. Desenvolvimento Rural, sustentabilidade e ordenamento
territorial, 2011.

MORENO-REGIDOR, P.; García López de Lacalle, J.; MANSO-CALLEJO, M.-Á.
Zone design of specific sizes using adaptive additively weighted Voronoi diagrams.
International Journal of Geographical Information Science, v. 26, n. 10, p.
1811–1829, 2012. ISSN 1365-8816.

MOURA, R. A. de et al. Reforma agrária e desenvolvimento: A reconstrução e uma
questão polêmica. ReBraM, v. 14, n. 2, p. 95–106, 2011.

NETO, J. A. F. et al. Aptidão agrícola e algoritmos genéticos na organização espacial
em projetos de reforma agrária. Revista Brasileira de Ciência do Solo, v. 35, n. 1, p.
255–261, 2011. ISSN 01000683.

PERLIN, K. An image synthesizer. In: SIGGRAPH Comput. Graph. [S.l.: s.n.], 1985.
p. 287–296.

REIS, R. R. O direito à terra como um direito humano: a luta pela reforma agrária e o
movimento de direitos humanos no brasil. Lua Nova: Revista de Cultura e Política,
SciELO Brasil, n. 86, p. 89–122, 2012.

RICCA, F.; SCOZZARI, A.; SIMEONE, B. Weighted Voronoi region algorithms
for political districting. Mathematical and Computer Modelling, v. 48, n. 9-10, p.
1468–1477, 2008. ISSN 08957177.

RICCA, F.; SCOZZARI, A.; SIMEONE, B. Political Districting: From classical models
to recent approaches. Annals of Operations Research, v. 204, n. 1, p. 271–299, 2013.
ISSN 02545330.

RICCA, F.; SIMEONE, B. Local search algorithms for political districting. European
Journal of Operational Research, v. 189, n. 3, p. 1409–1426, 2008. ISSN 03772217.

RÍOS-MERCADO, R. Z.; ESCALANTE, H. J. GRASP with path relinking for
commercial districting. Expert Systems with Applications, Elsevier Ltd, v. 44, n.
September 2015, p. 102–113, 2016. ISSN 09574174.

RÍOS-MERCADO, R. Z.; FERNÁNDEZ, E. A reactive GRASP for a commercial
territory design problem with multiple balancing requirements. Computers and
Operations Research, v. 36, n. 3, p. 755–776, 2009. ISSN 03050548.

46

SALAZAR-AGUILAR, M. A.; RÍOS-MERCADO, R. Z.; CABRERA-RÍOS, M. New
Models for Commercial Territory Design. Networks and Spatial Economics, v. 11, n. 3,
p. 487–507, 2011. ISSN 1566113X.

SALAZAR-AGUILAR, M. A.; RÍOS-MERCADO, R. Z.; GONZÁLEZ-VELARDE,
J. L. GRASP strategies for a bi-objective commercial territory design problem. Journal
of Heuristics, v. 19, n. 2, p. 179–200, 2013. ISSN 15729397.

STEINER, M. T. A. et al. Multi-objective optimization in partitioning the healthcare
system of Parana state in Brazil. Omega (United Kingdom), Elsevier, v. 52, p. 53–64,
2015. ISSN 03050483.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Land allocation
	1.2.2 Districting problems

	1.3 Problem definition

	2 A genetic algorithm for fair land allocation
	2.1 Overview
	2.2 Solution representation
	2.2.1 Fitness function
	2.2.2 Dynamic fitness updates
	2.2.2.1 Updating SS
	2.2.2.2 Updating A
	2.2.2.3 Updating +

	2.3 Constructive heuristic
	2.3.1 First phase: location
	2.3.2 Second phase: allocation

	2.4 Recombination
	2.5 Mutation
	2.6 Computational experiments
	2.6.1 Test instances
	2.6.2 Methodology
	2.6.3 Experiment 1: batch sizes
	2.6.4 Parameter calibration
	2.6.5 Experiment 2: scalability
	2.6.6 Experiment 3: effectiveness of the genetic algorithm
	2.6.7 Experiment 4: comparison to manual allocation

	3 Conclusion and future work
	Acknowledgements
	References

