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ABSTRACT

This thesis introduces a set of graph-based algorithms for efficiently mapping VLSI
circuits using simple cells. The proposed algorithms are concerned to, first, effec-
tively minimize the number of logic elements implementing the synthesized circuit.
Then, we focus a significant effort on minimizing the number of inverters in between
these logic elements. Finally, this logic representation is mapped into a circuit com-
prised of only two-input NANDs and NORS, along with the inverters. Two-input
XORs and XNORs can also be optionally considered. As we also consider sequen-
tial circuits in this work, flip-flops are taken into account as well. Additionally, with
high-effort optimization on the number of logic elements, the generated circuits may
contain some cells with unfeasible fanout for current technology nodes. In order to
fix these occurrences, we propose an area-oriented, level-aware algorithm for fanout
limitation. The proposed algorithms were applied over a set of benchmark circuits
and the obtained results have shown the usefulness of the method. We show that ef-
ficient implementations in terms of inverter count, transistor count, area, power and
delay can be generated from circuits with a reduced number of both simple cells and
inverters, combined with XOR/XNOR-based optimizations. The proposed buffer-
ing algorithm can handle all unfeasible fanout occurrences, while (i) optimizing the
number of added inverters; and (ii) assigning cells to the inverter tree based on their
level criticality. When comparing with academic and commercial approaches, we
are able to simultaneously reduce the average number of inverters, transistors, area,
power dissipation and delay up to 48%, 5%, 5%, 5%, and 53%, respectively. As the
adoption of a limited set of simple standard cells have been showing benefits for a
variety of modern VLSI circuits constraints, such as layout regularity, routability
constraints, and/or ultra low power constraints, the proposed methods can be of
special interest for these applications. Additionally, some More-than-Moore appli-
cations, such as printed electronics designs, can also take benefit from the proposed

approach.

Keywords: Graph-based algorithms. logic synthesis. technology mapping. stan-
dard cell library. simple cells.



Algoritmos Baseados em Grafos para Mapear Eficientemente Circuitos

VLSI com Portas Simples

RESUMO

Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapea-
mento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se
baseiam em minimizar de maneira eficiente o niimero de elementos 16gicos usados na
implementagao do circuito. Posteriormente, uma quantidade significativa de esforco
¢ aplicada na minimizagao do nimero de inversores entre esses elementos l6gicos.
Por fim, essa representacao logica é mapeada para circuitos compostos somente por
células NAND e NOR de duas entradas, juntamente com inversores. Células XOR
e XNOR de duas entradas também podem ser consideradas. Como noés também
consideramos circuitos sequenciais, flips-flops também sao levados em consideragao.
Com o grande esfor¢co de minimizacao de elementos légicos, o circuito gerado pode
conter algumas células com um fanout impraticavel para os nodos tecnolégicos atu-
ais. Para corrigir essas ocorréncias, nés propomos um algoritmo de limitacao de
fanout que considera tanto a area sendo utilizada pelas células quanto a sua pro-
fundidade logica. Os algoritmos propostos foram aplicados sobre um conjunto de
circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos.
Noés mostramos que implementacgoes eficientes em termos de nimero de inversores,
nimero de transistores, area, poténcia e atraso podem ser obtidas a partir de circui-
tos um numero reduzido tanto de células simples quanto de inversores, combinados
com optimizacoes baseadas em XORs e XNORs. O algoritmo de buffering proposto
pode resolver todas as ocorréncias de viola¢ao de fanout (i) enquanto otimiza o nu-
mero de inversores inseridos no processo; e (ii) atribui as células aos seus inversores
considerando suas profundidades logicas. Quando comparado a abordagens tanto
da academia quanto comerciais, o trabalho proposto é capaz de reduzir simultane-
amente o nimero médio de inversores, transistores, area, poténcia e atraso em até
48%, 4%, 8%, 14%, and 16%, respectivamente. Como a adocao de um conjunto limi-
tado de células simples tem mostrado beneficios para uma variedade de restrigoes de
circuitos modernos, como regularidade de leiaute, restrigoes de roteabilidade, e/ou
restri¢oes de consumo de poténcia ultra baixos, os métodos propostos podem ser de

especial interesse para essas aplicacoes. Adicionalmente, algumas aplicagoes More-



than-Moore, tais como circuitos baseados em eletronica impressa, também podem

ser beneficiadas pela abordagem proposta.

Palavras-chave: Algoritmos baseados em grafos, sintese légica, mapeamento tec-

nolégico, biblioteca de células, células simples.
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1 INTRODUCTION

The semiconductor industry has notably reached a distinctive position among
other industries over the last decades (ITRS, 2015b). Much of this is due to both the
speed in which improvements are achieved in its products and the industry’s ability
to exponentially decrease the minimum feature sizes used to fabricate integrated
circuits. Among a number of trends related to these facts, the most frequently cited
trend is the integration level, which is usually expressed as Moore’s Law (MOORE,
1965).

In parallel, the electronic design automation (EDA) industry also needed to
follow the evolution pace of semiconductors. This is mainly due to two reasons.
First, as the semiconductors industry evolve, the designs complexity increase and
this is also the driving force for innovations in EDA tools and design methodologies.
Additionally, much of the advances in microelectronics would not be possible without
innovation at the EDA side. This creates a virtuous cycle for both the industries.

However, the miniaturization and all the related trends have impact on the
complexity while designing very-large scale integration (VLSI) circuits, so that de-
signing integrated circuits is becoming an increasingly hard task (ITRS, 2015b;
KAHNG et al., 2011). A large portion of this complexity is due to manufacturabil-
ity issues and a continuously increasing size of the design rules manual (DRM), with
more complex and conservative rules at each new technology node. This, together
with a number of other factors, such as the quest for more energy efficient circuits,
makes that some VLSI applications arise with constraints so their circuits either
need or would benefit from a synthesis targeting only a limited set of simple cells.
Thus, the study of efficient methods and algorithms to map VLSI circuits only with
simple cells can be of special interest for these applications.

This chapter is organized as follows. Some important VLSI applications
constrained to simple cells are introduced, in order to better understand where the
proposed contributions lie on. After, we detail the main motivations and present
the objectives of this thesis. This chapter ends by summarizing the organization of

this text.
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1.1 VLSI Applications Constrained to Simple Cells

In this section, we summarize some of the VLSI applications which may either
be constrained to simple cells or could benefit from a synthesis with a small set of
simple cells. The algorithms and methods presented in this thesis can be of special

interest for designs under the constraints presented in the following subsections.

1.1.1 Design for Manufacturability and Layout Regularity

In advanced technology nodes, the transistor performance has been varying
from its nominal behavior according to the device’s proximity to certain adjacent
features. Printed patterns can significantly and non-systematically differ from drawn
patterns due to neighboring effects. This phenomenon was labeled as local layout
effects (LLEs).

From 16nm technology node and below, LLEs have been hardly influencing
the design of the basic building blocks of digital circuitry: the cells from standard
cell libraries. In order to look for LLEs, the traditional, intracell rule checking is
not sufficient anymore and intercell compatibility has been demanding for checks of
layout interactions across cell boundaries. So, design for manufacturability (DFM)
metrics have been adopted and either silicon or virtual characterization are used to
identify regular layout patterns causing LLEs.

One way to mitigate these problems relies on the usage of a limited set of
simple cells. Studies have been showing that these layout regularity and manufac-
turability constraints can be mitigated (with minimal impact on circuit performance)
if a limited set of cells with regular, non-LLE critical patterns are adopted during
the synthesis process (PAGLIARINI; MARTINS; PILEGGI, 2017; XU et al., 2016;
CHAVA et al., 2015). Thus, a standard cell library comprised of a limited set of
simple cells would both decrease the characterization effort and generate more reg-
ular, DFM-friendly layouts. Standard cell libraries with high intracell and intercell
DFM quality will translate into chips with equally high DFM quality.
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1.1.2 Design Routability and Cell Pin Access

As the technology advances, the downscaling pace has been different for some
critical technology features. A good example is the slower scaling of metal spacing
rules, which is also related to DFM. In this case, although the minimum feature size
of metal layers has been scaled by the given technology node factor, some DFM-
based constraints do not allow the metal spacing rules to scale by the same factor.
This may further result in metal layers with less routing resources when compared
to a previous technology.

Along with this, it is also worth to mention the regular goal of designing area-
minimal standard cell layout. These aspects together are creating design routability
issues and cell pin access challenges. To illustrate these cases, consider the context
in Figure 1.1. cell,y depicts the pin access in an older technology node, where each
pin is accessible through four points. Then, cell,.,, illustrates the pin access in a
newer technology node, which was downscaled from the previous one. Notice that
the metal spacing rules did not scale by the same factor as the technology and each

pin of cell,, has only two access points now (HSU et al., 2014).

Figure 1.1: Abstract layouts for cells in two different technology nodes.

Cellold
- - - - track;,
cell,,,,
- - - - track,
in in )

Y T o R L N --- track,
- - - - track;
- --- track, TN NN - rack;
- - - - track; -F--INNN RSN - -|- - - track;
_ - - - trackg N i --- track,

Thus, standard cell pin access has become one of the most challenging issues
for the back-end physical design in sub-14nm technology nodes (XU et al., 2016;
PAN et al., 2015; YE et al., 2015; QIU; MAREK-SADOWSKA, 2013). These issues
are notably highlighted (1) with unidirectional layout restrictions (XU; PAN, 2017);
and (2) when a high number of complex cells (with a high number of pins) are
concentrated in a given region of the circuit, creating high-pin-density regions.

One way to approach these issues relies on designing larger cells, what would
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make the cell pins intersect more routing tracks and increase the pins accessibility.
In contrast, this approach may not align with the goal of designing area-minimal
standard cell layout and tends to deliver larger circuits even on regions that are
not suffering from pin accessibility issues. Thus, in order to address this problem
without the penalty of increasing the area of the entire design, the circuit regions
suffering with routability issues due to cell pin access problems can be resynthesized
with simple cells (with a reduced number of I/O pins). Notice that a cell with 5 pins
(as an AOI22) requires that 5 nets compete for routing resources in a limited layout
area, which tends to increase routing congestion issues. Although a simple-cell-
based implementation would derive an 8-pin solution, these 8 nets would compete

for routing resources in a larger layout area, decreasing routing congestion issues.

1.1.3 Sub/Near-Threshold Voltage Designs

Currently, one of the important barriers for the continuous CMOS downscal-
ing is related to energy and power dissipation. Energy considerations are vital over
a wide spectrum of applications, from high-performance platforms and the high en-
ergy consumption on data centers, to sensor-based platforms, which are critically
dependent on both ultra-low power (< pW in standby) and reduced form-factor
(mm?) (DRESLINSKI et al., 2010; MARKOVIC et al., 2010).

Voltage scaling has become one of the most effective methods to reduce power
consumption due to two main reasons: (1) dynamic power is the most influencing
component of power consumption in modern VLSI designs; and (2) the dynamic
power can be reduced quadratically by reducing the supply voltage (DRESLINSKI et
al., 2010; MARKOVIC et al., 2010). Emerging strategies rely on making the circuit
devices to operate near (or even under) their threshold voltages. Although sub/near-
threshold voltage designs are still suffering for major performance drawbacks, these
strategies have been applied on some niche markets, such as sensor and biomedical
applications that require ultralow energy (PAUL et al., 2017; PAUL et al., 2016;
LIU et al., 2012b; HULZINK et al., 2011).

Still, a number of measures need to be taken into account so that sub/near-
threshold voltage designs achieve the desired energy efficiency. As the number of
either parallel or stacked transistors increases, the leakage current variability in-

creases dramatically (STANGHERLIN, 2013; LIU et al., 2012a; KAUL et al., 2012;
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ALIOTO, 2012; LUTKEMEIER et al., 2013; LOTZE; MANOLI, 2012; KWONG
et al., 2009; FUKETA et al., 2011; PU et al., 2010; KWONG; CHANDRAKASAN,
2006; WANG; CALHOUN; CHANDRAKASAN, 2006). Due to this reason, designs
based on sub/near threshold voltage are commonly synthesized with small libraries

comprised of simple cells, with at most 2 stacked transistors, either in series or in

parallel, in their pull-up PMOS and pull-down NMOS networks.

1.1.4 Simple Cells to Address Long Wires

In previous technology nodes, the main source of circuit delay was the logic
cells and, at that time, the wire delay was almost negligible. As the technology has
been advancing, the interconnect delay was becoming more and more perceptive at
critical paths. In recent technology nodes, the wire delay is already dominating the
overall circuit performance. This is specially true when observing the delay of long
wires (WANG; CHANG; CHENG, 2009).

A very established approach to address this problem relies on splitting long
wires into shorter interconnects by inserting buffers/repeaters. Extensive literature
exists on optimal buffering for wires (ALPERT; DEVGAN; QUAY, 1999; ISMAIL;
FRIEDMAN, 1998; NALAMALPU; BURLESON, 2000). However, this solution
is becoming impractical. The number of repeaters required for this matter is ex-
ponentially increasing with each technology step and, nowadays, 10~15% of the
cells in large microprocessor chips are buffers that break down long interconnects
(SYLVESTER; KEUTZER, 1999; SAXENA et al., 2004; SEO et al., 2008). More-
over, these repeaters are commonly inserted once the circuit is already placed. Thus,
even in the cases that the cells were optimally placed, a considerably high room
should be found to insert the repeaters and possibly the entire design should placed
again (WANG; CHANG; CHENG, 2009).

Another way to address this problem is to use simple cells to obtain shorter
wires. As pointed out by Plaza, Markov and Bertacco (2008), conglomerating small
cells into a large cell may produce non-monotonic interconnects, as depicted in
Figure 1.2, and this may affect the circuit delay and routability. Conversely, a clever
usage of simple cells is able to deliver circuits which are faster than the repeater-
based solution, as illustrated in Figure 1.3. Thus, designs suffering with long wire

issues can also take benefit from an algorithm to map VLSI circuits with a limited
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Figure 1.2: The usage of simple cells (a) compared with the usage of more complex
cells (b), which can derive longer wires.

a—| a— longer wires
b—}L b= 7
P Bl ln.

(a) (b)
Source: Adapted from (SEO et al., 2008).

Figure 1.3: Three schemes for comparison of a single path: (a) logic block driving
an optimally repeated wire; (b) the same logic block placed along the wire; and (c)
the logic block decomposed into even simpler cells and also placed along the wire.
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Source: Adapted from (SEO et al., 2008).

set of simple standard cells.

1.1.5 More-than-More and Printed Electronics Applications

The trend on the semiconductor industry towards device miniaturization and
its associated benefits in performance has been labeled as More Moore (ITRS,
2015a). Recently, a new trend labeled as More-than-Moore brings a novel per-
spective for functional diversification of semiconductor-based devices in order to
complement the integrated systems capabilities. In this case, heterogeneous func-
tionalities can provide additional value in different ways without necessarily scaling
according to Moore’s Law (FAN et al., 2016; CAO; XUE, 2014; KIM et al., 2013;
MARINOV, 2015; SMITH et al., 2015).

In this context, printed electronics has been emerging as a comprehensive
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More-than-Moore technology by exploring the possibility of hybrid fabrication pro-
cesses, such as conventional clean-room approaches together with the benefits of
digital printing techniques (ZHU; YAO; ZHANG, 2000; HAMBSCH et al., 2010;
MOONEN; YAKIMETS; HUSKENS, 2012). Even so, there are several limitations
and challenges related to either material or technological processes for developing
high performance organic devices and circuits. Also, low charge carrier mobility of
existing organic materials (polymers and small molecules), especially for n-type or-
ganic semiconductors, is also a limitation for implementing organic transistors and
complex circuits (SIRRINGHAUS et al., 2000).

The aforementioned limitations constraint application-specific printed elec-
tronics circuits (ASPECSs) to be designed only with small libraries comprised of sim-
ple cells. These applications are commonly synthesized using inverters and NANDs
with a different number of inputs (LLAMAS et al., 2014a; MASHAYEKHI et al.,
2014; LLAMAS et al., 2014b; LLAMAS et al., 2015). This is mainly due to the
adopted pseudo PMOS logic style (WU; ZHANG; QIU, 2006) and parasitic capaci-
tances.

It is also worth to mention that transistor count minimization is of special
interest for ASPECs due to two main reasons. First, many of the printing tech-
nologies are limited to the feature sizes of some microns (or even tens of microns).
Thus, with fairly large transistors, any optimization on the transistor count would
further save significant space on the substrate. Also, printed electronics devices are
still suffering from high process variability and low or mid-yield. So, increasing the
number of transistors increases the probability of hard faults and can lead to even

lower yield at transistor level.

1.2 Motivation

Current technology mappers for VLSI circuits are mainly concerned to ad-
dress the vast majority of applications that can account for complex cells. For these
applications, the minimization of inverters in between complex cells plays a com-
pletely different role when compared to the case of simple cells. For applications
based on complex cells, concerns on the number of inverters are significantly less
relevant, since they represent a smaller portion of the entire circuit.

In contrast, the optimization of polarity assignments in between simple cells



20

is a lot more important. As these inverters represent a larger portion of the circuits,
more inverters would be worse for a number of different cost functions, such as
transistor count, area and power consumption. Also, a clever usage of inverters in

this case can also bring benefits in terms of performance.

1.3 Objective

The objective of this thesis is to introduce a set of algorithms for efficiently
mapping VLSI circuits based on simple cells. These algorithms are concerned to,
first, effectively minimize the number of logic elements implementing the synthesized
circuit. Then, we focus a significant effort on minimizing the number of inverters
in between these logic elements. Finally, this logic representation is mapped into a
circuit comprised of only two-inputs NANDs and NORS, along with the inverters.
Two-input XORs and XNORs can be also optionally considered. As we also consider
sequential circuits in this work, flip-flops are taken into account as well. Additionally,
with high-effort optimization on the number of logic elements, the generated circuits
may contain some cells with unfeasible fanout in current technology nodes. In
order to fix these occurrences, we propose an area-oriented, level-aware algorithm
for fanout limitation. The proposed algorithms can bring benefits for most of the

VLSI applications constrained to simple cells referred in this work.

1.4 Thesis Organization

The next chapters are organized as follows:

Chapter 2: BACKGROUND AND PRELIMINARIES — reviews all basic and es-
tablished knowledge that is needed to understand the concepts presented in
this work, such as the data structures mainly related with logic synthesis and
the polarity assignment problem. Then, we present some preliminary con-
cepts and discussion, such as the adopted concept of simple and complex cells,

a discussion on the ideal composition of standard cell libraries, among others.

Chapter 3: PREVIOUS WORKS — reviews some previous and recent works that

are connected to the work presented in this thesis.

Chapter 4: FFFICIENTLY MAPPING VLSI CIRCUITS WITH SIMPLE CELLS
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— starts by providing an overview of the proposed approach, presenting exam-
ples and a general point of view in such a way to provide a better understanding
of the proposed synthesis flow. Then, it presents a detailed explanation of each
step and substep of the proposed approach, as well as presents pseudocodes of
the proposed algorithms.

Chapter 5: DETAILS THAT MATTER — four secondary contributions are pre-
sented, two of them related with synthesis speedup and other two related with
improvements to the quality-of-results (QoR).

Chapter 6: FXPERIMENTAL RESULTS — presents and discusses the obtained
results when running the proposed technique in a set of benchmark circuits,
analyzing the influence of each proposed contribution to the final result.

Chapter 7: CONCLUSION AND FUTURE WORKS — provides the main con-

clusions, summarizes the contributions of this work and presents the intended

future works.
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2 BACKGROUND AND PRELIMINARIES

This chapter summarizes the necessary technical background related to this
work. Several topics, including data structures for logic synthesis and the polarity
assignment problem are reviewed. In the sequence, we present the adopted definition
of simple and complex cells. We also bring up a discussion about the ideal composi-
tion of standard cell libraries. The adopted definitions of positive and negative cells

are also presented.

2.1 Logic Synthesis Data Structures

In the current VLSI design flow, the logic representing the circuit may be
computationally described in a number of different data structures. Each one of
them has its particular strengths and weaknesses, being more or less suitable to
specific manipulations. In the following subsections, we describe the most relevant

data structures related to logic synthesis algorithms.

2.1.1 Binary Decision Diagrams

A binary decision diagram (BDD) is a graph-based logic representation in
which a set of binary-valued decisions culminate in either a TRUE (1) or a FALSE
(0) state. Although BDDs have been a subject of study since the 50’s (LEE, 1959;
AKERS, 1978), this data structure just began attracting the research community’s
attention when Bryant (1986) brought out the advantages of BDDs as canonical
representations (HACHTEL; SOMENZI, 1996; MICHELI, 2003).

Formally, a BDD is a rooted, directed acyclic graph (DAG, i.e., a directed
graph with no directed cycles) with two terminal nodes, called 1-terminal and 0-
terminal. These terminal nodes denote the TRUE and FALSE decisions, respec-
tively. BDDs are comprised of nodes from three subsets: function nodes set @,

internal nodes set V', and terminal nodes set {0, 1}:

e a function node ¢ € & denotes the function being represented. It has one

outgoing edge and have no incoming edges;

e cach internal node v € V has alabel [(v) € Sp, where Sp denotes the support of
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a function F', i.e., each label represents a variable on which F' actually depends.
The internal nodes have two outgoing edges: the 0-edge, which denotes the
FALSFE decision with respect to the source node; and the 7-edge, which denotes
the TRUE decision with respect the to source node (HACHTEL; SOMENZI,
1996; MICHELI, 2003; GEREZ, 1999);

e a terminal node denotes the overall Boolean state for the function.

Figure 2.1 depicts a BDD representing the function F' = abe + ab.

Figure 2.1: BDD representing the function F' = abe + a@b.

O function node

— l-edge
O internal node

---> 0-edge
|:| terminal node

Source: Author.

A serious issue with BDDs is the ordering. To achieve canonicity, the BDD
must be both reduced and the variables in its support must be ordered (BRYANT,
1986; HACHTEL; SOMENZI, 1996; MICHELI, 2003; GEREZ, 1999). Unfortu-
nately, the size of the BDD critically depends on the specific ordering chosen. In
some cases, this dependence is so drastic that it is impractical to build the BDD at
all. It is also known that BDD’s size may grow exponentially with relation to the
number of variables, independent of the order. Considering |Sr| as the number of
variables in the support of the function F', the maximum number of nodes |V| of
a BDD is given by Equation (2.1). Thus, the use of BDDs becomes impractical in

some cases and limited by the number of variables.

9lSF|

V pr—
Vi |Sk|

(2.1)
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2.1.2 Boolean Networks

A Boolean network is a graph model to logically represent multi-level circuit
structures (BRAYTON et al., 1987). Boolean networks are DAGs comprised of three
types of nodes: primary input nodes, which have no incoming edges; primary output
nodes, which have no outgoing edges; and intermediate nodes, which represent the
internal structure of a circuit. Each of these intermediate nodes is associated with
a Boolean function, called local function, that the node implements (HASSOUN;
SASAO, 2012).

There is a number of different ways to represent local functions in interme-
diate nodes, each of which has its own merits and demerits. In MIS, Brayton et al.
(1987) use a sum-of-product (SOP) expression for logic manipulation and a factored
form for area estimation by literal counting. In the Bold system (BARTLETT et
al., 1987), SOPs are used for both logic manipulation and area estimation. Still,
these models have a heterogeneous form of representing intermediate nodes. Re-
cently, local functions have been modeled as simple, homogeneous operators, what
makes it easier to manipulate. Examples of homogeneous Boolean network repre-
sentations are and-inverter graphs, xor-and-inverter graphs and majority-inverter

graphs, which are presented in details in the following subsections.

2.1.3 And-Inverter Graphs

And-inverter graphs (AIGs) are data structures used in a number of state-
of-the-art logic synthesis tools, like ABC (Berkeley Logic Synthesis and Verification
Group, 2017). Although circuit transformations based on and-inverter representa-
tions date back to the 60’s, including the works of Hellerman (HELLERMAN;, 1963)
and Darringer (DARRINGER et al., 1981), this sort of representation reclaimed
the community’s attention as a data structure for technology-independent circuit
representation (i.e., before technology mapping).

Formally, AIGs are Boolean networks in which the intermediate nodes are
modeled as two-input AND (AND2) nodes. Thus, AIGs are DAGs with specific
types of nodes: 2-input AND (AND2) nodes, primary input (PI) nodes, and primary
output (PO) nodes. Primary input nodes have no incoming edges. AND2 nodes

have two incoming edges. Any node of an AIG can be labeled as an output node
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(MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

The edges of an AIG have a specific property: they are either in their positive
or complemented form. A Boolean signal arriving at the target node through a
positive edge has the same polarity as the source node. The complemented form of
an AIG edge indicates the Boolean inversion operation of its signal (MISHCHENKO;
CHATTERJEE; BRAYTON, 2006). Figure 2.2 shows a possible AIG of the logic
function cout = (x @y - cin) + (z - y).
Figure 2.2: A combinational circuit (a), its representation with AND2 gates and
inverters (b), and the derived AIG representation (c).

Cout Cout

A (A\
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Source: Author.

The main advantages of AIGs as data structures for logic synthesis are as
follows: (1) it is homogeneous, what makes it easier for logic manipulation; (i) AIGs
can be easily stored in memory, what makes it scalable even for circuits with tens of
millions of nodes; and (4i¢) structurally, the AIG node count has a fair correlation
with the circuit area, and the logic depth in AIGs can be correlated with the circuit
delay. Based on that, state-of-the-art logic synthesis tools, like ABC (Berkeley Logic
Synthesis and Verification Group, 2017), are able to minimize the circuit area, by
minimizing the AIG node counting, and the circuit performance, by optimizing
the logic depth in critical paths (BRAYTON; MCMULLEN, 1982; CORTADELLA,
2003; MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

Although most of these methods are able to handle slightly more complex
circuit representations, for the sake of simplicity and without limiting the generality,

they are presented by taking AIGs as inputs. Still, some optimizations can be
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potentially improved if specific types of logic nodes could be added into the AIG
representation, or even by replacing the AND2 node for a different logic node. These

are the cases for xor-and-inverter graphs and majority-inverter graphs.

2.1.4 Xor-And-Inverter Graphs

An zor-and-inverter graph (XAIG) can be roughly defined as an AIG ex-
tended to explicitly represent two-input XOR (XOR2) nodes. So, XAIGs are Boolean
networks in which the intermediate nodes can be modeled either as AND2 nodes or
as XOR2 nodes. Apart from that, XAIGs are just like AIGs, with PI and PO nodes
and also with inverters in the edges. Figure 2.3 illustrates an AIG and an XAIG for
a full adder.

Figure 2.3: A full adder represented both as an AIG (a) and as an XAIG (b). Green
nodes represent XOR2 nodes.

Source: Author.

The motivations for XAIGs rely on the idea that standard structures (and the
algorithms based on them) are mainly AND/OR based and they do not efficiently
cope with XOR logic (SCHMIDT; FISER, 2009). This is the case for the work
presented herein. We show that it is possible to explore the parity property of XOR
functions in order to treat XOR/XNOR cells as polarity don’t cares in terms of
transistor count. The proposed XOR-based optimizations can further optimize area

and power, as we demonstrate in our experimental results.
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2.1.5 Majority-Inverter Graphs

A majority-of-three (MAJ3) function evaluates to TRUE only when at least
two of its inputs are TRUE. A(n) majority-inverter graph (MIG) is a Boolean net-
work in which the intermediate nodes are modeled as three-input majority nodes,
i.e., the nodes implement the MAJ3 function. Asin AIGs and XAIGs, the inversions
are represented in the edges.

MIGs were firstly introduced as data structures for logic synthesis by Amar,
Gaillardon and Micheli (2014). A number of works have also been proposed based
on MIGs (AMARU et al., 2016; SOEKEN et al., 2017; AMARU et al., 2015). The
authors claim that, by using the proposed Boolean algebra based only on majority
and inverter operations, one can natively optimize MIGs. This would extend the
capabilities of modern synthesis tools, especially with respect to datapath circuits,
as majority functions are the ground for arithmetic operations. Still, the majority
gate is a complex cell and, as MIGs are based on majority operations, a detailed
study of MIGs goes beyond the scope of this thesis and we refer the reader to the
work by Amaru (2017).

2.2 Polarity Assignment Problem

In this section, the polarity assignment problem is defined. Then, the phase-
constraint graph and the polarity graph are presented as auxiliary data structures

to solve the polarity assignment problem.

2.2.1 Problem Definition

Polarity assignment often refers to the problem of, given a combinational
network, (1) assigning the polarity (or phase) of its inputs and outputs in order to
yield the signals and their complements; (2) do not modify the network functionality;
and (3) minimizing an objective function of interest (MICHELI, 2000).

Jain and Bryant (1993) model a variation of the polarity assignment prob-
lem to minimize the inverter counting in multi-level logic networks. Their approach

is based on modeling the cells from the library as phase-constraint graphs and on
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representing the complete circuit as a polarity graph. We propose to apply a varia-
tion of the inverter minimization procedure proposed by Jain and Bryant as a way
to efficiently map VLSI circuits using simple cells. In the following, we review the

phase-constraint and polarity graphs proposed by Jain and Bryant.

2.2.2 Phase-Constraint Graph

A phase-constraint graph defines phase constraints between the inputs and
outputs of cells from the library based on a given base function (e.g. NAND).
For simplicity, we will refer to these inputs and outputs as pins. Each node in a
phase-constraint graph corresponds to a pin of the base function. The graph will,
then, capture how the other cells from the library can be obtained by changing the
phase assignments on its pins when compared to the base function. Thus, if a given
cell can be obtained by keeping the same phase assignment of the base function
in a given pin, then this pin is said to have a positive phase assignment. On the
other way around, if a given cell needs to permute the phase assignment of a given
pin to implement the base function, then this pin is said to have a negative phase
assignment (JAIN; BRYANT, 1993).

Figure 2.4 shows a NAND /NOR phase-constraint graph. In this example, the
NAND cell is the base function and so, by definition, its pattern has a positive phase
assignment in all pins (JAIN; BRYANT, 1993). The NOR operation can be obtained
by permuting all phase assignments from NAND cell (A+ B = A-B = A- B).

This way, the NOR pattern has a negative phase assignment in all pins. In this
case, NAND and NOR cells define the phase-constraint set. The resulting phase-
constraint graph has three nodes, corresponding to the number of pins in its base
function. The edges specify that all three pins should always have the same phase

assignment (either all positive or all negative).

2.2.3 Polarity Graph

The polarity graph states how each gate in a given logic network differs from
the phase-constraint graph of the corresponding base function. For this, let n; be

the iy, net on the logic network, and let g, be its k;;, gate. For every input net n; of a
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Figure 2.4: NAND/NOR phase-constraint graph (c), derived from its allowed phase
assignment permutations (a) and respective patterns (b).
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Source: Author.

gate g, v(gr, n;) denotes whether the net is in its positive form (y1(gx, ni,) = +) or
in its complemented form (y2(gx, ni,) = —). All output nets n, are in their positive
form with respect to their gate g, i.e., v3(gk, 7o) = + (JAIN; BRYANT, 1993).

Each vertex v; in the polarity graph corresponds to a net in the logic network.
Each edge e;;, between vertex v; and vertex v;, implies that there is a constraint
of phase assignment in the phase-constraint graph. All edges have a label A(e;;) €
{+,—}. A positive edge (A(ey,;) = +) specifies that the nodes v; and v; are required
to have the same phase assignment. A negative edge (A(ez,) = —) specifies that the
vertices v; and v; should have opposite phases (JAIN; BRYANT, 1993).

The edge labels in the polarity graph are obtained by applying the times
operator, represented by the symbol e. The times operator must be applied between
the polarity of the nets in the logic network, i.e., over the elements of the set {4, —}.
Let (g, n;) and y(gx, nj) be the polarity of nets n; and n; for the gate k. The label
of edge e;;, denoted by A(e;;), is defined by applying the times operator, such that:

+, if v(gx, n;) and y(gx, n;) have the same label
Aeiz) = V(9. ni) @ ¥(gk,m5) =
—, if v(gk, n;) and v(gx, n;) have different labels

(2.2)

This way, according to Equation 2.2, A(e;;) could be:
(teot)=(—e—)=+ (2.3)
(+oe—)=(—0+)=— (2.4)

Figure 2.5 shows a logic network and its corresponding polarity graph for

the NAND/NOR phase-constraint. In Figure 2.5(b), the positive edge (solid line)
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between nodes n; and ns, introduced due to gate g, indicates that the vertices
should have the same phase in order to avoid adding explicit inverters. In the same
way, the negative edge (dotted line) between nodes n; and ny, also introduced due

to gate g, indicates that the vertices should have opposite phases.

Figure 2.5: Logic network (a) and the corresponding polarity graph (b).

Source: Author.

2.3 Simple and Complex Cells

Standard cell libraries are commercially available, optimized to achieve high
quality results in terms of speed, area and/or power consumption. Such sets of
cells usually contain hundreds of elements, ranging from simple to high complexity
cells. The set of cells in a standard cell library commonly impacts the quality re-
sult of established technology mapping approaches (KEUTZER, 1987; DETJENS et
al., 1987, MISHCHENKO; CHATTERJEE; BRAYTON, 2005; BRAYTON et al.,
2005; CHATTERJEE et al., 2006). In this work, we are considering simple cells
as straightforward implementations from elementary 2-input Boolean functions, as
AND, OR, NAND, NOR, XOR and XNOR functions. Figure 2.6 shows an example
of simple cell implementations on static complementary CMOS (SCCMOS) logic
style. In the same way, we consider complex cells as non-elementary Boolean func-
tions implemented with transistor-level networks using series-parallel (REIS et al.,
1995; GAVRILOV et al., 1997) or pass-transistor logic (PTL) topologies (YANBIN;
SAPATNEKAR; BAMJI, 2001; SHELAR; SAPATNEKAR, 2005). Figure 2.7 shows

an example of complex cell implementations on SCCMOS logic style.
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Figure 2.6: Simple cell implementations on SCCMOS logic style: NOR2 (a) and
NAND2 (b) implementations.
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Figure 2.7: Complex cell implementations on SCCMOS logic style: AOI321 (a) and
OAI321 (b) implementations.

T
i G IO 0
L g

Ss=(a*b¥c)+(d*e)+f f—|

— T L

o L
S

(a) (b)

Ji=(atbro)¥(d+e)f

2.4 The Ideal Composition of Standard Cell Libraries

The composition of standard cell libraries may vary according to the designer
requirements and application constraints. Improvements to the library side are
commonly thought by adding new drive strengths (DOOD; LEE; ALBERS, 2006),
new available functions (GAVRILOV et al., 1997) and even particular transistor
arrangements (MARQUES et al., 2007a; SCHNEIDER et al., 2005; KAGARIS;
HANIOTAKIS, 2007). In this section, the ideal composition of standard cell libraries

is discussed in terms of their composition w.r.t. simple and complex cells.
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2.4.1 Large Libraries with Complex Cells

Considering the ideal composition of a cell library, some authors (REIS et al.,
1995; GAVRILOV et al., 1997; CORREIA; REIS, 2004; MARQUES et al., 2007b;
YANBIN; SAPATNEKAR; BAMJI, 2001; SHELAR; SAPATNEKAR, 2005) advo-
cate the use of larger libraries using more complex cells (e.g. AOI and OAI cells).
In the particular case of library-free approaches (REIS et al., 1995; MARQUES et
al., 2007a), the use of complex cells is explored more extensively. Studies about
library-free approaches have tried to demonstrate the advantages of using complex
cells when compared to simple cells (REIS et al., 1995; GAVRILOV et al., 1997;
YANBIN; SAPATNEKAR; BAMJI, 2001; SHELAR; SAPATNEKAR, 2005). The
main advantage reported by those works is the reduction in the number of devices
(transistors) needed to implement digital integrated circuits (ICs). Published results
using complex cells claim reductions of the order of 40% in terms of transistor count

when compared to simple cell implementations.

2.4.2 Small Libraries with Simple Cells

There are other authors (MASGONTY et al., 2001; SEO et al., 2008; RICCI;
MUNARI; CIAMPOLINI, 2007) arguing in favor of using small libraries composed
of simple cells (e.g. AND, OR, NAND and NOR). In (MASGONTY et al., 2001), the
library was previously reduced by the designer, claiming that the logic synthesizers
work better with a reduced number of gates. Seo et al (SEO et al., 2008) propose to
use only 1- or 2-input cells, claiming that the use of larger standard cells increases
the number of long wires and may undermine circuit delay optimization at 65nm
and below. Also, Ricci et al (RICCI; MUNARI; CTAMPOLINI, 2007) propose to
reduce the library iteratively and statistically. They claim that the circuit perfor-
mance, with respect to full-size library synthesis, do not appreciably degrades and,
in several cases, actually improves, whereas the synthesis time decreases and the li-

brary maintenance and characterization tasks can be significantly reduced (RICCI;

MUNARI; CTAMPOLINI, 2007).
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2.5 Positive and Negative Cells

In the context of this work, positive cells implement positive unate functions,
such as AND2 and OR2. Conversely, we say that negative cells implement negative
unate functions, like NAND2 and NOR2. Due to the nature of static complementary
CMOS logic style, negative cells require less transistors to be implemented. For
instance, NAND2 and NOR2 cells will be composed of a single stage and have four
transistors each. Meanwhile, AND2 and OR2 cells will have six transistors as they
need an implicit internal inverter.

Due to this reason, NAND2 and NOR2 cells will be used as base cells in this
work. This allows us to minimize the total number of transistors by eliminating im-
plicit inverters inside AND2 and OR2 cells while minimizing the number of explicit

inverters in between NAND2 and NOR2 base cells.

2.6 Circuit Optimization with XAIGs

AlIGs have been used as underlying data structures for logic synthesis over
the last years. Nonetheless, there are some optimizations that would take benefit
of extended versions of AIGs. In this section, we highlight some motivations to use
XAIGs instead of AIGs for specific optimizations.

The number of nodes in AIGs can be directly correlated with the number
of cells in implementations using 2-input ANDs, ORs, NANDs and NORs. These
cells are variants of the primitive AND2, obtained by applying De Morgan’s law.
Notice that De Morgan’s law modifies the polarity of the input and output signals.
Due to this reason, AIGs with a minimized number of nodes can be used almost
straightforwardly to generate minimum transistor count circuits based on using 2-
input ANDs, ORs, NANDs and NORs. It is important to remark that NAND2
and NORZ2 cells can be implemented with four transistors in Static Complementary
CMOS (SCCMOS) logic style, while AND2 and OR2 cells require six transistors.
Therefore, it is possible to choose the polarity of internal nodes, such that NAND2
and NORZ2 cells are preferred. This way, when using this set of cells, the transistor
count is reduced by choosing cells with a low number of transistors, whereas a few
inverters are added.

The first motivation to use XAlIGs instead of AIGs is that, although one
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can implement 2-input ANDs, ORs, NANDs and NORs directly from an AIG node,
this relation does not hold when considering XOR2 and XNOR2 functions. This is
because 2-input XOR and XNOR functions need at least 3 AIG nodes to be repre-
sented. These three nodes will derive implementations with at least 14 transistors
when considering directly corresponding implementation with 2-input ANDs, ORs,
NANDs and NORs (see Figure 2.8). Once an XAIG considers XOR2 nodes, it can
be directly correlated with straightforward implementations in SCCMOS logic style
of 2-input XOR and XNOR functions with 10 transistors only (see Figure 2.9).

The second motivation to use XAIGs instead of AIGs is concerned to XORs/
XNORs and inversions on their inputs and outputs (I/Os). For any n-input XOR
function, any odd number of I/O inversions results in an XNOR function, whereas
any even number of I/O inversions does not change the function output. Similarly,
for any n-input XNOR function, any odd number of I/O inversions results in an
XOR function, whereas any even number of I/O inversions does not change function
output.

Once both XOR and XNOR cells can be implemented with 10 transistors, we
consider XOR2 nodes as polarity don’t cares in terms of transistor count. Figure 2.10
illustrates all the 8 possible polarity assignments for an XOR2 cell. Notice that each
possibility corresponds to either the XOR2 function itself or the XNOR2 function
and both can be implemented with 10 transistors. Similarly, Figure 2.11 illustrates
all the 8 possible polarity assignments for an XNOR2 cell. Notice also that each
possibility corresponds to either the XNOR2 function itself or the XNOR2 function
and both can be implemented with 10 transistors as well. This characteristic can
be used to further optimize the inverter count in a circuit, as we discuss in Section
4.5.

XOR and XNOR functions can also be explored as polarity don’t care nodes
even if the library used for mapping does not have XOR/XNOR cells. Since each
of the functions can be implemented with 14 transistors with NAND2, NOR2 and
inverters, any applied optimization for the former case will also hold to the later

one.
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Figure 2.8: XOR2 implementation with 14 transistors: cell-based representation
(a) and its transistor network (b). XNOR2 implementation with 14 transistors:
cell-based representation (c) and its transistor network (
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2.7 Inverter Count vs Transistor Count Minimization

S

One of the works that bases this thesis rely on an algorithm to minimize the
inverter count in a circuit. Even so, in this thesis, we go beyond inverter count
minimization and one of the adopted metrics is the transistor count. In this section,
we explicitly differ transistor count from inverter count minimization.

Inverter count minimization does not suffice to minimize transistor count.
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Figure 2.9: XOR2 implementation with 10 transistors: cell-based representation
(a) and its transistor network (b). XNOR2 implementation with 10 transistors:
cell-based representation (c) and its transistor network (d).
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Figure 2.10: The 8 possible polarity assignments for an XOR2 cell. The networks in
green correspond to an XOR2 function and each one of them can be implemented
with 10 transistors only (see Figure 2.9(b)). The networks in yellow correspond to an
XNOR2 function and each one of them can also be implemented with 10 transistors
only (see Figure 2.9(d)).

A first important difference is that, in order to reduce the number of transistors,

negative cells should be used to avoid implicit inverters required by positive cells.
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Figure 2.11: The 8 possible polarity assignments for an XNOR2 cell. The net-
works in green correspond to an XNORZ2 function and each one of them can be
implemented with 10 transistors only (see Figure 2.9(d)). The networks in yellow
correspond to an XOR2 function and each one of them can also be implemented
with 10 transistors only (see Figure 2.9(b)).
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One can perform high-effort inverter count minimization techniques, but if only
positive cells are used, the implicit inverter in the positive cells can undermine
transistor count even with very good results of (explicit) inverter count minimization.
For this reason, our approach uses NAND2 and NOR2 as base cells. This is a
simple but very meaningful change on the way from inverter count minimization to
transistor count minimization.

Another important difference is the minimization on the number of logic
cells. Minimizing the number of inverters does not necessarily lead to a minimized
transistor count if the number of logic cells is not minimized along in the process.
For this reason, our approach rely on minimizing the number of logic cells before
minimizing the number of inverters, so that, at the end the process, both the cost

functions are minimized.
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3 PREVIOUS WORKS

This chapter reviews previous works that are connected to this thesis. First,
approaches for AIG node count minimization are reviewed. Then, a historic per-
spective on technology mapping procedures is presented, briefly describing library-
free- and standard-cell-based approaches. Finally, we review with more details two
algorithms for both inverter and transistor count minimization based on polarity

assignment.

3.1 AIG Node Count Minimization

In addition to homogeneity and simplicity, AIGs are good circuit represen-
tations in structural terms. Optimizations on logic depth in critical paths tend to
optimize the circuit performance. Also, minimizing the AIG node counting tends to
minimize the circuit area. In this section, the main approaches for AIG node count
minimization are reviewed.

In 1982, Brayton and McMullen proposed an algorithm for decomposition and
factorization in Boolean expressions (BRAYTON; MCMULLEN, 1982), which was
implemented in SIS (SENTOVICH et al., 1992). The same algorithm has also been
proposed as an AIG rewriting method for node count minimization. This method,
called refactor, chooses large subgraphs for each AIG node, extracts the Boolean
function of this subgraph and performs Brayton and McMullen’s factorization. The
result of factorization is converted back to an AIG and replaces the original subgraph
if the number of nodes is reduced (Berkeley Logic Synthesis and Verification Group,
2017).

Cortadella (2003) proposed an algebraic balancing approach in DAG struc-
tures claiming reductions on logic depth and timing optimizations. This algorithm
was adapted to AIGs and it is also implemented in ABC tool, called balance (Berke-
ley Logic Synthesis and Verification Group, 2017). The approach is based on finding
the minimum-depth tree for a Boolean function with the usage of bi-decomposition
techniques by building the tree from root to leaves. The depth reduction is achieved
by means of rewriting rules that apply the associative, commutative and distributive
laws of the Boolean algebra. This method is frequently used in between AIG node

count minimization approaches to recover logic depth.
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Mishchenko, Chatterjee and Brayton (2006) proposed a DAG-aware AIG
rewriting approach called rewrite. This three-steps method uses a hash table of pre-
computed AIGs for all NPN-equivalent classes of functions with up to four inputs.
In the first step, given the AIG to be optimized, the method traverses the graph
in topological order (from inputs to outputs) and, for each node, it exhaustively
extracts all possible subgraphs with up to four inputs. Each of these subgraphs
is compared to the pre-computed AIGs in the hash table. The one that leads to
the greatest improvement replaces the original subgraph. The second and third
steps consist on balancing and refactoring the AIG using the methods balance and
refactor, respectively.

It is worth to mention that most of the methods based on AIGs is highly
dependent on the circuit given as inputs. Thus, the quality of results can be even
more improved if the applied methods are repeatedly iterated and interleaved with
each other. As an example, Mishchenko, Chatterjee and Brayton (2006) suggest a
script called resyn2 that iterates 10 times over the AIG by interleaving the refactor,
balance and rewrite methods, as follows: b, rw, rf, b, rw, rwz, b, rfz, rwz, b. In the
abbreviated forms, b stands for balancing; rw/rf stand for AIG rewriting and refac-
toring; and rwz/rfz are also rewriting and refactoring, but allowing replacements
with zero improvement. The authors claim that this approach leads to a reduction
of area in the order of 10% and improvements in delay of 5%, whereas the runtime
is reduced by a factor ranging between 7 and ~1000, when comparing with previous

approaches.

3.2 Library-Free Technology Mapping

The first library-free technology mapping approach was proposed by Berke-
laar and Jess (1988). Expressions of sums-of-products and product-of-sums with
a prefixed notation are represented as graphs, which are traversed in reverse topo-
logical order (from outputs to inputs) and partitioned into logic cells. As the cuts
are made top-down, the logic depth of what is below is unknown. So, this greedy
algorithm cannot guarantee a solution with minimum logic depth or with minimum
number of cells.

In 1992, two important works were presented. Liem and Lefebvre (1992)

proposed a constructive matching, in which both the number of inputs and the
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logic depth of a cell are considered. However, the method is hardly dependent on
the initial structure and it is memory expensive, what makes it not scalable for
mapping large circuits. The work of Abouzeid et al. (1992) claimed to increase the
number of logic cells used by partitioning the initial DAG into n-ary trees. This
representation decreases the dependence on the initial graph, allowing change of
structure in a given set of nodes. Although the cuts are generated from inputs to
outputs, they are made in a greedy way, disregarding logic depth minimization.

Reis, Robert and Reis (1998) presents some topological parameters for library
free technology mapping (REIS; ROBERT; REIS, 1998). Reis et al. (1995) and
Reis (1999) propose to use dynamic reordering on the initial circuit representation.
Also, each logic cone is represented in a different way: a special type of BDD, called
terminal-suppressed BDD (TSBDD). An interesting property of this structure is the
direct association of BDD arcs and transistors, although it faces the same problems
of representation by trees.

Later on, Yanbin, Sapatnekar and Bamji (2001) propose the odd-level transis-
tor replacement method, which works directly on an electrical diagram at transistor
level, represented as a graph. The goal of the algorithm is to select which gates can
be collapsed in order to achieve better performance, but the method also suffers for
depending strongly on the initial circuit decomposition.

In 2004, an algorithm proposed by Correia and Reis (2004) dynamically con-
siders several decompositions of sub-trees (at a low computational cost), leading to
a minimum covering using dynamic programming. However, as it is based on trees,
the method cannot provide a broader view of the circuit. The VIRMA algorithm
was presented by Marques et al. (2007a), which performs the library-free mapping
over a DAG aiming the reduction of the circuit delay (SCHNEIDER et al., 2005).

3.3 Cell-Based Technology Mapping

The first approaches for automatic synthesis of digital circuits were based
on applying a set of rules on the circuit representation (DARRINGER et al., 1981;
GREGORY et al., 1986). These methods perform local optimizations, trying to
reduce the costs of a region of the circuit, which not necessarily lead towards global
minimals.

The first algorithmic solutions for technology mapping were proposed only
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in 1987 (KEUTZER, 1987; DETJENS et al., 1987). Keutzer presented DAGON as
a compiler-based approach. He proposes that the pattern matching between cells
of a library and subgraphs of a circuit representation is similar to the problem of
searching patterns between intermediate representations of a computer program and
a given set of machine instructions. However, the search space to be explored by
mapping becomes limited by the structural matching and the initial representation
of the circuit, which directly affects the quality of the mapped circuit. Additionally,
DAGON approach requires all isomorphic matches to be stored in each node of
the tree until the end of covering step. Thus, this work precludes the use of large
libraries, when the number of patterns found is usually higher.

Detjens et al. (1987) propose to use trees as the subject graph and to insert
pairs of inverters in these trees. Although this algorithm increases the solution
space, it relies on performing several decompositions for each element of the library,
what also turns it unfeasible for large libraries. In 1989, Rudell extends Detjens
approach, in which he proposes two main different improvements: (1) to use pattern
graphs with leaf-DAG nodes, what makes it possible to match non-tree gates (such
as multiplexers and XORs); and (2) to replace every wire in the subject graph by a
pair of inverters in series in order to enlarge the set of matches. Rudell’s algorithm
became known as “the inverter-pair heuristic”.

The idea of Boolean matching was introduced only in 1993 by using BDDs
(MAILHOT; MICHELI, 1993). In this approach, finding matches does not depend
on the structure of the sub-trees anymore. However, this algorithm was compu-
tationally expensive. In 1995, Lehman proposes to integrate decomposition and
pattern matching by dynamically reorganizing the subject graph. Thus, the search
space increases, since each node is associated with functionally equivalent subgraphs.
Even so, this approach becomes unpractical for large circuits because the graph
grows very fast. Kukimoto, Brayton and Sawkar (1998) and Stok, Iyer and Sulli-
van (1999) propose two approaches for DAG covering that guarantees optimality in
terms of delay. The main drawback of these works is that their delay model ignores
the load of the cell, taking into account only its propagation delay.

Recently, Chatterjee et al. (2006) propose an algorithm based on Kukimoto’s
approach, with two main differences. Instead of structural matching, a Boolean
matching extended from Lehman’s approach is applied. Also, Chatterjee proposes to

encode multiple DAGs (without breaking them in trees) into choice nodes, deriving
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the idea of “AIG with choices”. This postpones detailed comparisons, what makes
his algorithm faster than previous approaches. In this sense, the AIG with choices
also prevents memory overload. He also applies a technique similar to Rudells’s
inverter-pair approach to consider matches in both polarities.

Martins et al. (2010) present a work for Boolean factoring oriented to multi-
objective goals (MARTINS et al., 2010). Correia and Reis (2001) propose a method
to classify n-input Boolean function (CORREIA; REIS, 2001). Togni et al. (2002)
present a method to automatically build standard cell libraries (TOGNI et al., 2002).
Poli et al. (2003) unified the theory to create cell-based transistor networks out of
BDDs (POLI et al., 2003). Silva, Reis and Ribas (2009) present a study on the
CMOS logic gate performance variability related to transistor network arrangements
(SILVA; REIS; RIBAS, 2009). Junior et al. (2006) introduce fast disjoint transistor
networks from BDDs (JUNIOR et al., 2006). Rosa et al. (2009) present a new
method for switch-based optimizations (ROSA et al., 2009). Junior et al. (2007)
bring a comparative study of logic gates with minimum transistor stacks (JUNIOR
et al., 2007). Junior et al. (2008) introduces methods to automatically generate and
evaluate transistor networks based on different logic styles (JUNIOR et al., 2008).
Martins et al. present the functional composition as a new paradigm for performing
logic synthesis (MARTINS; RIBAS; REIS, 2012; MARTINS et al., 2012). Reis
and Anderson (2011) present a method to automatically generate a cell library
emphasized on the cell sizes and variants (REIS; ANDERSON, 2011). Martins et
al. (2011) present a method to efficiently compute the minimum decision chains of
Boolean functions (MARTINS et al., 2011). Butzen et al. (2012) present a method
to design CMOS logic gates with enhanced robustness against aging degradation
(BUTZEN et al., 2012). Possani et al. present a methodology to find and build
non-series-parallel transistor arrangements (POSSANI et al., 2012; POSSANI et al.,
2013). Possani et al. (2016) present a graph-based algorithm for transistor network
generation addressing supergate design (POSSANT et al., 2016).

3.4 Inverter Count Minimization by Polarity Assignment

Jain and Bryant (1993) propose a method to perform inverter minimization
in multi-level combinational circuits. The method is formulated as a polarity as-

signment problem performed on a polarity graph. An input combinational circuit
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(e.g. Figure 3.1(a)) is used to generate the corresponding polarity graph (e.g. Figure
3.1(b)) by defining a set of allowed base functions (such as a library). In the example
presented in Figure 3.1, the base functions are NAND2 and NOR2, due to the rea-
sons described in Section 2.5. The polarity graph is created such that it represents
how each gate in the initial combinational circuit differs from the corresponding base

functions in terms of phase assignments.

Figure 3.1: A combinational circuit (a) and the corresponding polarity graph (b).
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Consider the circuit shown in Figure 3.1(a). This circuit is composed of three
logic cells: two AND2 and one NORZ2 cells. This way, the circuit has two implicit
inverters (due to the two AND2 cells). Figure 3.1(b) shows the derived polarity graph
when considering NAND2 and NOR2 as base functions. The polarity graph has one
node for each net in the initial combinational circuit. There are two types of edges in
the polarity graph: (1) nodes connected through positive edges are required to have
the same phase assignment (polarity); (2) nodes connected through negative edges
should have opposite phases. In Figure 3.1(b), the positive edge (solid line) between
nodes n; and n,, introduced due to gate g;, indicates that the inputs of gate g, are
in the same phase assignment as the NAND2 base function. However, the nodes n,
and ny are both connected with negative edges (dotted lines) to node n5, indicating
that the output of AND2 gate ¢, is in a different input-output phase assignment
compared to the NAND2 base function. Thus, the polarity graph indicates that the
polarity of g;’s output (net n;) should be different from its inputs (nets n; and ns).
The gate g3 induces a similar situation in the polarity graph for nodes nj, ng and
ny. The gate g, is a NOR2, which is also a base function, so the relative polarities
of inputs and outputs have to be kept the same. This way, nodes ns, ns and ng
are connected with solid edges, to indicate that the relative polarities need to be

conserved.
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Once the polarity graph has been derived from a given circuit, the problem
of minimizing the number of inverters can be reduced to a problem which is a
variation of the graph coloring problem (JAIN; BRYANT, 1993). In graph theory,
the most common graph coloring problem would be that of coloring the vertices of
a graph such that no two adjacent vertices have the same color, which is a decision
problem. In order to model it to miminize the inverter count, a different graph
coloring procedure should be applied Jain and Bryant (1993).

To the context of this work, the graphs should be colored to satisfy three
restrictions: (1) only two colors can be used to color the graph; (2) all nodes con-
nected through a positive edge must have the same color; and (3) all nodes connected
through a negative edge must have a different color. In this sense, a polarity graph
cannot be fully colored while there are cycles comprised by an odd number of neg-
ative edges (referred as odd cycles hereafter). In order to finish the coloring, it is
necessary to break odd cycles by removing a node during the graph coloring pro-
cedure. Since each removed node will derive an inverter in the optimized circuit,
minimizing the number of inverters is equivalent to find a minimum transversal of
all odd cycles. This problem is NP-hard, since it is a special case of the minimum
odd cycle transversal problem (LEWIS; YANNAKAKIS, 1980).

The polarity graph from Figure 3.1(b) can be colored with no conflicts in two
distinct ways, as shown in Figure 3.2(a) and Figure 3.3(a). Allowed colors belong
to the set {4+, —}. The color + indicates that the node will be implemented with
the same polarity as the net in the original circuit, while the color — indicates that
the signal will be complemented with respect to the original circuit. This behavior
can be observed in the colored polarity graphs and the derived circuits shown in

Figure 3.2 and Figure 3.3.

Figure 3.2: A first possible coloring (a) for the polarity graph from Figure 3.1(b)
and the corresponding circuit (b).
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Algorithm 3.1: QuickColor heuristic (JAIN; BRYANT, 1993).

1 quickColor (polGraph)

2 repeat

3 try to color polGraph;

4 if (there are still odd cycles)then

5 oddCycle = any arbitrary odd cycle in polGraph;

6 nodetoBe Removed = maximum double-edge degree node in
oddC'ycle;

7 remove nodel oBeRemoved from polGraph;

8 until (there are no odd cycles);

return colored polGraph;

Figure 3.3: A second possible coloring (a) for the polarity graph from Figure 3.1(b)
and the corresponding circuit (b).
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Jain and Bryant (JAIN; BRYANT, 1993) propose two heuristics to search for
the minimum transversal of all odd cycles: the QuickColor and GoodColor heuris-
tics. Both of them are applied in the work proposed herein. The QuickColor heuris-
tic picks an arbitrary odd cycle from the graph and then selects the node in this
cycle with the maximum double-edge degree, i.e., the node with the highest number
of two edges (one positive and one negative) between the same neighbor. If two
vertices have the same double-edge degree, then QuickColor shall select the one
with the maximum edge degree. After removing the selected vertex and incident
edges, try recoloring the remaining graph. Algorithm 3.1 presents a pseudocode of
QuickColor approach.

Different from QuickColor, which takes an arbitrary odd cycle, the GoodColor
heuristic tries to pick a “good” odd cycle. GoodColor picks the smallest cycle in
the graph as the next candidate. Another remarkable feature is that the GoodColor
tries to recover itself from an early “potentially bad” choice. According to Jain and

Bryant, each eliminated odd cycle in the graph is said to be covered by the node
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Algorithm 3.2: GoodColor heuristic (JAIN; BRYANT, 1993).

1 goodColor (polGraph)

2 repeat

3 try to color polGraph;

4 if (there are still odd cycles)then

5 oddCycle = smallest odd cycle in polGraph;

6 nodetoBe Removed = maximum double-edge degree node in

oddC'ycle;

// search for covered vertices
foreach (cycleNode € oddCycle)do
if (N(cycleNode) > 0)then

coveringRoot = the root node covering the cycle;
10 if (N(coveringRoot)==1)then
11 undo removing of coveringRoot from polGraph;
12 nodetoBe Removed = cycleN ode;
13 break;

// covering the cycle

14 foreach (cycleNode € oddCycle)do

15 L N(cycleNode)++;

16 | remove nodeT'oBeRemoved from polGraph;
17 until (there are no odd cycles);

18 return colored polGraph;

chosen to be removed. This way, it is possible to know when the next odd cycle
shares vertices with a previously removed cycle. In order to explain this approach,
let cycle,, be the next odd cycle; cycle,, a previously removed cycle, which is covered
by vertex v, and shares vertices with cycle,; and X(v,), be the number of removed
cycles containing the vertex v,. If X(v,) = 1, the GoodColor heuristic “undo” the
removing of vertex v, and removes one of the shared vertices covering both cycles,

cycle, and cycle,. Algorithm 3.2 presents a pseudocode of GoodColor approach.

3.5 Transistor Count Minimization by Polarity Assignment

The work presented in this thesis extends the work by Matos (2014). This
previous work improves Jain and Bryant’s inverter count minimization approach to
address the transistor count minimization problem. Its synthesis flow is depicted in
Figure 3.4.

The synthesis process starts by optimizing the AIG node count, then mini-
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Figure 3.4: The adopted synthesis flow for obtaining reduced transistor count cir-

cuits mapped using simple cells proposed by Matos (2014).
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Source: Author.

mizes the number of inverters with polarity graphs, and finally generates the final
circuit. Some major differences from Matos’ work to Jain and Bryant’s approach
are: (1) the usage of a positive polarity induction (PPI) node to force colors in the
polarity graph; (2) a precomputation step to remove nodes with unfeasible fanout;
and (3) a trade-off optimization flow to look for a better quality-of-results (QoR).

In order to avoid unnecessary inverters at the primary input and outputs,
these nodes must have their polarity controlled in advance. For this reason, Positive
Polarity Inducing (PPI) node can be used in the polarity graph. All nodes which
are connected with the PPI node through a positive edge (solid line) must have
a positive color. In the same way, all nodes that are connected to the PPI node
through a negative edge (dashed line) must have a negative color. In this sense, the
colors from the PPI node should be propagated before starting the graph coloring
procedure. Figure 3.5 highlights the usage of PPI nodes. Notice that the obtained
circuit (Figure 3.5(d)) has only one inverter, whereas the best possible solutions
from Jain and Bryant’s approach have at least two inverters (Figures 3.5(e) and
3.5(f)).

Some nodes may need to be available in both polarities. This can be due
to different reasons. For instance, a given primary input signal can be available in
both polarities because the input has an external inverter (MACHADO et al., 2012).
Similarly, high fanout nodes will require inverter tree insertion to limit fanout, so
the signal will be available in both polarities anyway, after inverters are inserted. In
this case, high fanout nodes can be considered as being available in both polarities
and it may be pointless to color these nodes with a single color to minimize inverter
count. This way, high fanout nodes can be removed from the polarity graph.

Finally, Matos (2014) adopted a conservative technique for using the ap-

proaches of forcing colors and removing polarity don’t care nodes. There are no
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Figure 3.5: Graph coloring process for inverter minimization using the PPI node:
the initial AIG (a); the derived polarity graph (b); the colored polarity graph (c)
and the resulting circuit (d). The best circuit implementation by applying Jain and
Bryant’s approach are (e) and (f).

guarantees that neither forcing colors using PPI nodes nor removing polarity don’t
care nodes will lead to better results. Actually, forcing wrong colors using PPI nodes
or removing wrong nodes could lead to worse results than if these approaches were
not applied. Additionally, it is not possible to predict which is the best order for
coloring the polarity graph.

The author proposes a technique based on brute force. All possible param-
eters are computed independently. After that, a trade-off analysis verifies the best
solution. The proposed parameters are five, as following: (1) choose between Quick-
Color and GoodColor; (2) use a BFS or a DFS when coloring the graph; (3) force (or
not) colors on inputs; (4) force (or not) colors on outputs; and (5) remove (or not)
unfeasible fanout nodes. Thus, to verify these five binary parameters, 32 iterations
(2%) are necessary. The final solution is the best among all the 32 generated circuits.

Still, the work by Matos (2014) suffers from a few bottlenecks:

e it is not able to directly synthesize sequential circuits;

e even if combinational clouds are extracted from sequential circuits, the work

does not perform any kind of optimization based on sequential elements;
e the methodology is limited w.r.t. AIG node count minimization;

e the author do not perform XOR/XNOR optimizations and the QoR is hardly
affected when circuits are mainly implemented with XORs and XNORs;

e it only scratches the surface of polarity don’t care optimizations, with unfea-
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sible fanout nodes; and
e its fanout limitation algorithm is not level-aware.
In the work presented in this thesis, all the aforementioned shortcomings

are addressed. Details on the proposed methodology are presented in the following

chapters.
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4 EFFICIENTLY MAPPING VLSI CIRCUITS WITH SIMPLE CELLS

In this chapter, we present the proposed approach to efficiently map VLSI
circuits with simple cells. For this, we first introduce the proposed synthesis flow
by presenting a methodology overview. Then, each step in the flow is presented in

details on the following sections.

4.1 Methodology Overview

This section overviews the proposed synthesis flow to efficiently map VLSI
circuits with simple cells. We depict the general point of view, locating each of the
steps and substeps in the proposed flow. Also, we describe the inputs and outputs of
the substeps and we present some examples for a better understanding of the work
presented herein.

The proposed methodology is depicted in Figure 4.1, and it is divided into
three main steps. Step 1 starts by generating an optimized AIG in terms of number
of nodes (Substep 1.1). By minimizing the AIG node count, we are also minimizing
the number of logic cells in the final circuit. Then, the optimized AIG is used to
generate an optimized XAIG (Substep 1.2). We propose to rewrite the AIG by
replacing XOR/XNOR patterns with XOR nodes.

Figure 4.1: Proposed flow for obtaining efficient circuits mapped using simple cells.
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Step 2 aims to provide a circuit with a reduced number of simple cells and
a minimized number of inverters in between them, which is directly correlated with
minimizing transistor count. To minimize the inverter count, our approach applies
a polarity assignment algorithm enhanced from Jain and Bryant’s method. The
optimized XAIG obtained from Step 1 is used to generate a polarity graph, which
is then colored (Substep 2.1). The optimized circuit is obtained from the colored
polarity graph (Substep 2.2).

Figure 4.2 presents an example of applying Step 1 and Step 2. The initial
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circuit is represented as an AIG in Figure 4.2(a). The optimized XAIG is presented
in Figure 4.2(b) (green nodes are XOR nodes). Figure 4.2(c) shows the colored
polarity graph, which is used to generate the intermediate circuit presented in Figure

4.2(d).

Figure 4.2: Graph coloring process for transistor count minimization on a given
AIG (a). The derived XAIG (b) and the colored version of its polarity graph after
removing node n7 (c) generates the resulting cell representation (d).

After generating a minimal simple-cell-count implementation, the obtained
circuit might have cells with fanout larger than desired. The third step relies on
looking for fanout violations and fixing all of them. For that, we propose an area-
oriented, level-aware buffering algorithm, extended from (MATOS et al., 2014). This
algorithm takes into account the maximum fanout of the source cell, the maximum
fanout of inverters, the number of positive consumer cells (i.e., the output cells driven
directly from the source cell), and the number of negative consumer cells (i.e., the
output cells driven from the source cell through an inverter). Using a mathematical
formulation, to be described further, the method calculates the minimal number of
inverters to drive both the positive and negative cells, respecting the given maximum
fanout limits. Figure 4.3 shows an example of applying the algorithm in a cell whose
maximum fanout limit was not respected. In the shown example, consider both the

maximum fanout of the cell and the maximum fanout of inverters as 4.

4.2 Improvements in AIG Node Count Minimization

The QoR of AIGs out of state-of-the-art algorithms for node count minimiza-
tion is highly dependent on the AIGs used as input. Usually, the results can be even
more improved if the applied methods are repeatedly iterated and/or interleaved
with each other. Thus, for Step 1.1 of the presented flow, we propose five different
AIG node count minimization techniques to explore the optimization efforts up to

saturation, i.e, when no more gain is obtained after 10 executions in sequence.
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Figure 4.3: Example of fanout violation (a) and fanout limiting using an inverter

tree (b).
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First, we propose to incrementally iterate ABC’s resyn2 script up to satu-
ration. resyn2 is not entirely focused on AIG node count minimization, since it
starts by balancing the structure to reduce delay upfront as much as possible and,
then, minimizes node count under delay constraints. Still, exploring this script up
to saturation can deliver very good results in terms of node count.

Another proposed technique is to incrementally iterate ABC’s dc2 script up
to saturation. dc2 is a version of resyn2, but now entirely focused on node count
minimization. For this, it starts by balancing the structure, but without delay
optimization, and, then, minimizes node count without delay constraints.

From these two initial approaches, we derived three others: (7) one is called
seql, in which we run resyn2 up to saturation, then we run dc2 up to saturation;
(7i) another one called seq2, which is similar to seq, but in the opposite order (first
dc2, then resyn2); and (i) a third one called miz, in which each iteration is an
execution of resyn2; dc2; dc2 and we run it up to saturation.

For the best outcome, we adopt a conservative, high-effort approach for the
AIG node count minimization in Step 1.1. Thus, we propose to run all the five dif-
ferent minimization techniques and proceed with the minimum-node-count solution.

Although it is a fundamental step on the proposed synthesis flow, this node
count minimization can be thought as a preprocessing on the AIGs before starting
the execution of the proposed algorithms. Also, notice that we are not proposing
a new algorithm for AIG node count minimization, but a new strategy to obtain
a better outcome out of the already existing state-of-the-art algorithms for this
purpose. Based on these two main reasons, we are not presenting in this thesis a

time complexity analysis of this step on the proposed flow.
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4.3 XAIG Generation

Once an optimized AIG is obtained, optimized XAIGs can be generated. In
this section, we present in details the Step 1.2 of the proposed synthesis flow, i.e.,
the proposed procedure for XAIG generation.

A key role to create XAIGs out of AIGs is to identify the XOR/XNOR
logic over the AIG nodes. Essentially, there are two main methodologies for this
purpose: (1) Boolean-based identification, which would derive a Boolean represen-
tation for portions of the graph and seek for XOR/XNOR functions; or (2) pattern-
based identification, which relies on traversing the graph looking for predetermined
XOR/XNOR patterns. In this work, we follow a pattern-based approach. The
predetermined XOR/XNOR patterns adopted herein are illustrated in Figure 4.4.

Figure 4.4: The XOR/XNOR patterns adopted in this work for the XAIG genera-
tion.
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Algorithm 4.1 presents a pseudocode of the XAIG generation procedure. In

order to look for such patterns, we propose to traverse the AIG in reverse topo-



o4

logical order (from outputs to inputs). Then, we greedily replace every matched
pattern that is a fanout-free cone, i.e., in which no internal node communicates with
the remaining graph. Taking each of the patterns in Figure 4.4 as examples, only
nodes ny, * and y can have edges outgoing to other nodes not represented in these
subgraphs. If this is not the case, the matched pattern is not replaced by the XOR

node.

Algorithm 4.1: Generating an XAIG from an AIG.

/* FFC stands for fanout-free cone x/
1 zatg generateXAIG(aig)

2 foreach (andNode € aig in topo order)do

3 res = table look-up XOR/XNOR pattern;
4

5

if (res is an XOR pattern && res is an FFC)then
L replace res with xor Node;

6 else if (res is an XNOR pattern && res is an FFC)then
7 L replace res with znorNode;
8 | return aig as an xaig;

Given an AIG, let n be its number of AND nodes and m be its number
of edges. In Algorithm 4.1, the loop between lines 2 and 7 will always execute n
times and each execution can run in constant time. Thus, Algorithm 4.1 has a time
complexity of ©(n), which means that it is asymptotically bounded both above and
below by a function g(n).

4.4 Deriving Polarity Graphs from XAIGs

Step 2.1 starts by deriving a polarity graph from the optimized XAIG. For
this, we propose a procedure enhanced from Jain and Bryant (1993). We derive
polarity graphs using NAND?2 as base function, applying NAND2/NOR2 phase con-
straints, and adopting an extra type of edge. Along with positive and negative edges,
as proposed by Jain and Bryant (1993), we create neutral edges in between inputs
and outputs of XOR2 nodes. Figure 4.5 illustrates the proposed procedure.

Figure 4.5(a) depicts an XAIG obtained after Step 1.2. The derived polarity
graph for NAND2/NOR2 phase constraints is presented in Figure 4.5(b). Each set
of outgoing edges from XAIG nodes (i.e., each net of the circuit) derives a node

in the polarity graph. The XAIG node ¢gI (Figure 4.5(a)) determines the polarity
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Figure 4.5: An optimized XAIG (a) and the derived polarity graph (b).

n9 .

Source: Author.

constraints between the nodes n1, n2 and n6 in the polarity graph (Figure 4.5(b)).
As g1 implements an AND2 operation (none of its inputs is inverted), applying
NAND2/NOR2 phase constraints imply that (7) both of its inputs need to stay
in the same polarity and (i7) its output needs to stay in a different polarity of its
inputs. For this reason, (¢7) nodes n! and n2 in the polarity graph (Figure 4.5(b)) are
connected through a positive edge (solid line) and (i) node n6 is connected through
negative edges (dashed lines) with nodes n1 and n2. Notice that the polarity nodes
n6, n7 and n8 are connected between each other through a neutral edge (dotted
line). This is because n6, n7 and n8 are the inputs and output of an XOR2 node
(g8). Applying the illustrated process to all nodes in the XAIG depicted in Figure
4.5(a) derives polarity graph shown in Figure 4.5(b).

Algorithm 4.2 presents a pseudocode for the proposed procedure to derive
polarity graphs from XAIGs. The algorithm has only one input: the optimized
XAIG. After creating the polarity nodes from the XAIG nets (lines from 2 to 4), the
neutral edges are created for those polarity nodes related with XOR nodes 5. Then,
the remaining edges between the polarity nodes are created (line 6. The derived
polarity graph is the method’s return. Algorithms 4.3 and 4.4 present pseudocodes
detailing the connections related to XOR nodes and AND nodes, respectively.

Given an XAIG, let n be its number of both AND nodes and XOR nodes,

and m be its number of edges. In Algorithm 4.2, the lines from 2 and 4 have a time
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Algorithm 4.2: Deriving a polarity graph from an XAIG.

1 polGraph derivePolGraphFromXaig(zaig)

2 “create a polarity node for each XAIG net”;

3 “map each polarity node with the related XAIG nodes”;
4 “add each polarity node to the polarity graph”;

5 connectXors(zaig, polarityGraph);

6 connectAnds(zaig, polarityGraph);

Algorithm 4.3: Connecting the polarity nodes related with XOR nodes.

1 votd ConnectXorNodes(raig, polarityGraph)

2 foreach (zorNode € zaig)do

3 inputl = xaig.getPolNode(xor Node.get Inputl );

4 input2 = xaig.getPolNode(xor Node.get Input2);

5 output = xaig.getPolNode(xor Node);

6 polGraph.createNeutralEdge Between (inputl,input?2 );
7 polGraph.createNeutral Edge Between (input1,output ),
8 polGraph.createNeutral Edge Between (input2,output ),

complexity of ©(n). Lines 5 and 6 also have a time complexity of ©(n) each (see

Algorithms 4.3 and 4.4). Thus, Algorithm 4.2 also has a time complexity of O(n).

4.5 Improvements in the Graph Coloring Procedure

In this work, we adopt a graph coloring procedure improved from the work
by Matos (2014), which, in turn, is based on Jain and Bryant (1993). Still, the
problem of coloring the polarity graph is heuristically solved in a very similar way.
For this reason, no pseudocode is presented in this section concerning the coloring
heuristics and we refer the reader to Section 3.4 for more details. In this section, we
focus on describing the major improvements proposed herein regarding the coloring
step.

The graph coloring procedure for inverter count minimization proposed by
Jain and Bryant (1993) can be taken into a different perspective. A polarity node
nl colored with a positive color means that, for that particular implementation,
its corresponding net in the final circuit will keep its initial phase assignment. In
contrast, another polarity node n2 colored with a negative color means that, for
that particular implementation, its corresponding net in the final circuit will change

into the opposite polarity as the one in the initial circuit. Thus, in general terms,
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Algorithm 4.4: Connecting the polarity nodes related with AND nodes.

1
2
3
4
5
6

10

11
12
13

14
15

16
17

18
19

20
21
22

23
24

25
26

27
28

votd ConnectAndNodes(xaig, polarityGraph)

else
L polGraph.createNegative Edge Between (input] input2);

if (andNode.get NOutputs() == 1 €6
andN ode.output N odel s PrimaryOutput())then
output Node = andN ode. getOutputNode();
if (andNode.inputlPolarity()! = output N ode.polarity())then

else
if (andNode.input1Polarity())then

foreach (andNode € zaig)do
inputl = zaig.getPolNode(andN ode.getInputl);
input2 = zaig.getPolNode(andN ode.getInput2);
output = xaig.getPolNode(andN ode);
if (andNode.inputlPolarity() ==
andN ode.input2Polarity())then
L polGraph.createPositiveEdge Between (input1,input2);

polGraph.create Positive Edge Between (input1,output N ode);

else

polGraph.createNegative Edge Between (input1,output N ode);

if (andNode.input2Polarity()! = output Node.polarity())then

polGraph.create PositiveEdge Between (input2,output N ode);

else

polGraph.createNegative Edge Between (input2,output N ode);

polGraph.createPositive Edge Between (input1,output N ode);

else

polGraph.createNegative Edge Between (inputl,output Node);

if (andNode.input2Polarity())then

polGraph.createPositive Edge Between (input2 ,output N ode);

else

polGraph.createNegative Edge Between (input2,output N ode);
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the graph coloring procedure proposed by Jain and Bryant (1993) plays with De
Morgan’s law seeking to minimize explicit inverters inside the circuit as the inversions
are pulled /pushed into its PIs/POs.

We observed the described behavior and propose to use it in our benefit
in order to minimize even further the inverter count by exploring polarity don’t
care nodes. A first case relies on the XOR nodes. As we described in Section 2.6,
both XOR2 and XNOR2 functions can be implemented with the same number of
transistors independently on the number of inversions in their inputs and outputs.
For this reason, we say that XOR2/XNOR2 functions are polarity don’t care in
terms of transistor count.

In order to explore XOR nodes as polarity don’t care nodes, we propose to
treat them as pseudo primary inputs and pseudo primary outputs of the circuit. The
inputs of an XOR node are treated as pseudo primary outputs for their downstream
network. Similarly, the output of an XOR node is treated as a pseudo primary
input for its upstream network. By doing this, we are able to set the graph coloring
procedure to force the explicit inversions into the XOR inputs and outputs so that
we can get rid with them when deriving the final circuit.

Figure 4.6 illustrates the proposed technique. By applying the described
approach, the polarity graph depicted in Figure 4.5(b) can be colored as shown in
Figure 4.6(a). A direct translation from this colored version would generate a circuit
as the one in Figure 4.6(b), with 3 explicit inversions. However, all the 3 inverters
can be removed and the XOR2 cell can be replaced by an XNOR2 cell so that
the circuitt functionality remains the same and the inverter count is improved even
further. The proposed approach to derive optimized circuits out of colored polarity
graphs is described in Section 4.6.

We also explore two-output flip-flops as polarity don’t care nodes in terms of
transistor count. With this, we bring two contributions at once. This is because both
the previous works, Jain and Bryant (1993) and Matos (2014), could not directly
handle sequential circuits. We not only handle flip-flops, but we also minimize the
inverter count even further if two-output flip-flops are available in the library.

Two-output flip-flops are commonly available in standard cell libraries. This
kind of flip-flop is able to provide both the registered value, at the ) output, and its
complement, at the @Q output. We say that two-output flip-flops are polarity don’t

care in terms of transistor count because, by cleverly swapping outputs from @) to
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Figure 4.6: A colored polarity graph (a) and a valid circuit implementation (b).
Notice that all the explicit inverters in (b) can be removed by exploring the XOR2
cell as a polarity don’t care node.
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Source: Author.

Q@ (and vice-versa), no inverters are needed at a final implementation. Figure 4.7
illustrates four cases implemented with inverters (Figures 4.7(a) and 4.7(c)) that can
be replaced by implementations with no inverters at all (Figures 4.7(b) and 4.7(d)).

This way, we propose to also treat two-output flip-flops as polarity don’t care
nodes and bring the inverters to their inputs and outputs. To do so, we adopt an
approach similar to the one applied for XOR nodes: (1) flip-flop inputs should be
treated as pseudo outputs for their downstream network; and (2) flip-flop outputs
need to be treated as pseudo primary input for their upstream network. By doing
this, similarly to the case of XOR nodes, we are able to set the graph coloring
procedure to force the explicit inversions into the flip-flops inputs and outputs so
that we can get rid with them when deriving the final circuit.

That all said, the time complexity of the algorithms run at Step 2.1 is as
follows. Given an XAIG, let n be its number of both AND nodes and XOR nodes,
npo be its number of PO nodes, and m be its number of edges. The core of the
graph coloring procedure will keep looping until there are no odd cycles (please,
see Algorithms 3.1 and 3.2). Each iteration tries to color the polarity graph, what
can be done either through a BFS or through a DFS, each with time complexity of
O(n +m). As, in the worse case, there will be n attempts of coloring the polarity
graph, Step 2.1 has a time complexity of O(n? + nm). Notice that the number of
edges m of an AIG is 2n+npo. Thus, Step 2.1 still has a quadratic time complexity.
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Figure 4.7: Two-output flip-flops as polarity don’t cares in terms of transistor count:
two cases with inverters (a) that can be replaced by an implementation with no
inverters (b); other two cases with inverters (c¢) that can be replaced by an imple-
mentation with no inverters (d).
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Source: Author.

4.6 Deriving Optimized Circuits from Colored Polarity Graphs

Once the polarity graph is colored, the optimized circuit can be derived in
Step 2.2. This section describes the proposed method to deriving optimized circuits
from colored polarity graphs, which is enhanced from Matos (2014). Figure 4.8
presents a complete example of the mapping process. The optimized circuit in
Figure 4.8(d) was generated from the colored polarity graph in Figure 4.8(c).

The proposed process is based on: (%) the times operator (e); (ii) the initial
polarity of nets (y); and (7i7) the final color of each net n; (color(n;)). Given
an XAIG node g¢; and its corresponding polarity nodes n;, n; and n;, the pattern
{v(gi,n;) @ color(n;),v(gi, ni) ® color(ny), v(gi, i) ® color(n;) } must lead to a known
pattern in the phase constraint set. In this work, the known patters are {+, +,+}
for a NAND2 cell and {—, —, —} for a NOR2 cell. The XOR2/XNOR2 cells are
handled in a different way.

As an example, consider the XAIG node g1 and its corresponding polarity
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Figure 4.8: A complete example of the proposed mapping process: an optimized
XAIG (a), the derived polarity graph (b), the colored polarity graph (c) and the
final circuit (d).

Source: Author.

nodes n1, n2 and n6. Applying the times operator in this case derives the NAND2
pattern {+, 4+, +}, as follows:

color(nl) ey(nl,gl) =+ e+ =
+et

+
color(n2) e y(n2,g1) = -+ (4.1)
+

color(nb) e y(nb6, gl) =

For this reason, cell g1 in Figure 4.8(d) is mapped into a NAND2 cell.
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Similarly, consider the XAIG node ¢/ and its corresponding polarity nodes
nd, n8 and n9. Applying the times operator in this case derives the NOR2 pattern

{—,—, -}, as follows:

color(nb) @ y(nb,g4) = + @ — = —
color(n8) @ y(n8,g4) = — e+ = — (4.2)

color(n9) e y(n9,g4) = + e — = —

For this reason, cell g/ in Figure 4.8(d) is mapped into a NOR2 cell.

Notice that, as described in Section 4.5, the polarity nodes n6 and n7 are
inputs of an XOR node in the XAIG. Thus, they are treated as pseudo primary
outputs and their negative color (Figure 4.8(c)) derive two explicit inverters. The
same occurs with the polarity node n8, which is the output of an XOR node in the
XAIG and, thus, is treated as a pseudo primary input. In this case, according with
the discussion in Section 2.6, all three inverters (an odd number) can be removed
and the XOR node will derive an XNOR2 cell instead. Figure 4.9 illustrates this

optimization process.

Figure 4.9: An example of XOR/XNOR optimization when deriving the final circuit.

Source: Author.

Algorithm 4.5 presents a pseudocode for Step 2.2. The method has only one
input: the colored polarity graph. The proposed algorithm starts by creating the
input and pseudo input pins (lines 2 to 5) and the output and pseudo output pins
(lines 6 to 8). After creating one inverter for each removed node, the NANDs and
NORs are mapped (line 10. Then, the XOR/XNOR cells are derived (lines 11 23.
Notice that: (¢) if the library does not have XORs/XNORs, these nodes can be
mapped with NANDs/NORs and inverters and also take benefit of the applied opti-
mizations; and (i7) the inverters are created on input and output nodes, depending
on the final color and the derived cell. These inverters are created in line 4 and lines

24 to 25, respectively. The method’s return is the circuit after mapped.
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Algorithm 4.5: Derive an optimized circuit from a colored polarity
graph.

circuit deriveCircuitFromColoredGraph (polGraph)

“create an input pin for each input node”,

3 “create a pseudo input pin for each output of both XOR and FF

nodes”;

4 “create an inverter for each non-removed, negative-colored input

node”;

“mark input and pseudo input nodes as mapped”;

“create an output pin for each output node”;

“create a pseudo output pin for each input of both XOR and FF

nodes”;

8 “Insert these output pins into the circuit”,

// polarity nodes w.r.t. output and pseudo output pins
will be mapped further.

9 “create an inverter for each removed node”;

10 mapNandsNors(polGraph);

11 foreach (zorNode € polGraph)do

N =

12 count = 0;

13 if (zor Node.inputllslnverted())then

14 | count++;

15 if (zor Node.input2lsInverted())then

16 L count++;

17 if (xorNode.outputlsInverted())then

18 L count—++;

19 if (count “is pair”)then

20 L “map xorNode with XOR cell”;

21 else

22 L “map xor Node with XNOR cell”;

23 | “remove the inverters at xor Node inputs and outpus”;

24 foreach (nonlInvertedOutput € polGraph.getOutputNodes())do

25 “consider inverting this output performing the same tests in
Algorithm 4.6, lines from lines 11 to 177;

26 return circuit;
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The core of the procedure to derive NANDs and NORs is illustrated in the

pseudocode in Algorithm 4.6. The algorithm derives NAND and NOR cells accord-

ing to the obtained patterns.

Algorithm 4.6: Proposed procedure to map NANDs and NORs.

1
2
3
4
5
6

®

10
11

12

13

14
15

16
17

18

19

20
21
22

votid mapNandsNors (polGraph)

mapped = false;

while (!mapped)do

mapped = true;

foreach (polNode € polGraph.getUnmappedNodes())do

“skip pol Node if it is related with XOR nodes” if

(polNode.nonelnputsWereRemoved())then
“map this node according to its inputs’ coloring pattern”;
“NAND patterns derive NAND cells and NOR patterns
derive NOR cells”;

else
if (“removed input is already mapped”)then
if (polNode.getNonRemovedInputPattern == “NAND
pattern”)then
if ((removedInput.isNandCell() &&
correspondingAigNodelsNotInverted) ||
(removedInput.isNorCell() &&
correspondingAigNodelsInverted))then
L nandCell.connect TolnvertedInput();

else
L nandCell.connectToDirectedInput();

circuit.addNandCell(nandCell);
| polNode.markNodeAsMapped,);

else if (polNode.getNonRemovedInputPattern ==
“NOR pattern”)then
L “do as in lines from 11 to 17, considering the
opposite polarities.

else
mapped = false;
break;
/* the removed inputs shall be mapped first
*/

Thus, given an XAIG, let n be its number of AND nodes, x be its number

of XOR nodes, and m be its number of edges. In Algorithm 4.5, the lines from 2
to 8 visit each PI and PO once. Then, line 10 can map NANDs and NORs cells
by visiting each AND node n; once. Also, lines from 11 to 23 can map XORs and
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XNORs cells by visiting each XOR node x; once. Finally, lines from 24 to 25 visit

each PO node once more. So, Algorithm 4.5 has a linear time complexity.

4.7 Area-Oriented Level-Aware Fanout Limitation

Algorithms to reduce node count in AIGs, like the ones in Section 4.2, tend
to increase the logic sharing. The greater is the logic sharing, the smaller tends to
be the AIG, especially when it results from an algorithm for minimizing the node
count. However, a potential drawback of this is that they also tend to increase the
fanout of AIG nodes. A logic cell with excessive fanout has negative impact in the
circuit performance for most of the current fabrication technologies. In this section,
we describe the proposed algorithm to limit fanout, which is both area-oriented and
level-aware.

The proposed synthesis flow may generate circuits in which some cells have
fanout greater than desired. Thus, given maximum allowed fanouts, the algorithm
proposed in this section fixes all fanout violations by inserting inverter trees. This
approach takes into account the maximum fanout of the source logic cells and the
maximum fanout of inverters. Both the maximum fanout values are determined by
the user through algorithm parameters. The root of each inverter tree is the source
logic cell with a fanout violation. We say this algorithm is area-oriented because
it fixes all fanout violations by inserting inverter trees with a minimized number of
inverters.

The proposed algorithm has two substeps. In Step 3.1, it finds the minimum
tree height which respects both the number of positive consumer cells (PCC') and
the number of negative consumer cells (NCC'). Step 3.2 creates the inverter tree
itself. In order to find the minimum tree height, the proposed algorithm uses an
exhaustive search approach. It starts with the smallest heights (0 for PCC and 1
for NCC') and verifies if the fanout limit of the cell can be respected by these levels.
Otherwise, the method increases the heights by one until it finds the levels which
do not lead to fanout violations.

Let M FC be the maximum fanout of source cells, M FI be the maximum
fanout of inverters, ip be the index for positive consumers (i.e., the maximum tree
level for PCC'), and in be the index for negative consumers (i.e., the maximum tree

level for NC'C'). The resulting values for ip and in are obtained from the procedure
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illustrated in Algorithm 4.7.

Algorithm 4.7: Proposed procedure to compute the minimum height for
an inverter tree.
1 {ip,in} computeMinHeight (M FC, MFI, PCC, NCC)

2 done = false;
3 for (i = 0; !done; i++)do
4 if (i “is pair”)then
5 p =1
6 m=1+1;
7 if (MFCP+Y) > PCC &&
MFI®H) — pCC)x MFI > NCC)then
8 L done = true
9 else
10 m =1
11 ip =1+ 1;
12 if (MFI+) > NCC &&
MFI™Y) — NCC)x« MFI > PCC)then
13 L done = true
14 return {ip,in};

In Step 3.2, we apply a local search procedure to heuristically generate the
inverter tree (respecting the solution of Step 3.1) while trying to minimize the num-
ber of inverters of this tree. In each step of the search, the proposed procedure:
removes from the current tree a given subtree of height 1 (and the corresponding
inverter); minimizes the number of inverters in the remaining tree; and, finally, tries
to reallocate the removed subtree without introducing new inverters. The first sub-
tree for which this procedure succeeds is accepted, and the local search is repeated
for all subtrees until no further improving subtree can be found. This is typically
achieve after two iterations.

The algorithm we introduce herein extends the buffering algorithm proposed
by Matos et al. (2014) to make it level-aware. To do that, we simply sort both the
positive and negative consumer cells according to their logic depth. Consumer cells
with higher logic depth are assigned as close as possible to root of the tree. This
simple (yet effective) change yields final circuits with a better performance.

Figure 4.10 depicts the algorithm of Step 3.2 being applied. In this figure,
the gray boxes denote the source cell, the blue boxes are the positive consumer cells

(PCC'), and the red boxes are the negative consumer cells (NCC'). The numbers
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inside these boxes denote the cells’ logic depth. For this example, consider both
the maximum fanout of inverters (M FI) and the maximum fanout of source cells
(MFC) as 4. This way, Figure 4.10(a) illustrates two fanout violations, since both
the source cell and the inverter have fanout 7. Applying Step 3.1, the minimum tree
height is 2, the index of positive cells (ip) is 2 and the index of negative cells (in) is
1. Figure 4.10(b) shows the subcircuit after allocating all PCC' and NCC' in their
respective indexes and propagating the required number of inverters. Figure 4.10(c)
depicts the subcircuit after removing two PCC (P5 and P6) for further reallocation.
In Figure 4.10(d), The needless inverter on level 2 is removed. Figure 4.10(e) shows
the subcircuit after propagating the needed number of inverters. Figure 4.10(f)
presents the subcircuit after P5 and P6 are reallocated to level 0. Notice that,
after propagating the required inverters, the number of inverters reduces from 5 to
3. Notice also that, as cells P5 and P6 are the ones with higher logic depth among
the positive consumer cells, they were chosen to be assigned closer to root of the
three.

In this sense, given an XAIG, let n be its number of both AND nodes and
XOR nodes, and m be its number of edges. The time complexity of the algorithms
executed in Steps 3.1 and 3.2 are as follows. The worst case would be that in which
all XAIG nodes have a fanout violation. In this case, Step 3.1 would need to find an
inverter tree height for each n; node and run at most logn checks in each of them.
This indicates that this step has a time complexity of O(nlogn). Step 3.2 would
need to visit each node once more and typically finishes with less than 2 iterations.

Thus, this step would have a linear time in the average-case complexity.
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Figure 4.10: Example of fanout violation (a), substeps to limit fanout (b, ¢, d and
e) and fanout limited circuit using an inverter tree (f).
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5 DETAILS THAT MATTER

As the devil is in the details, the work proposed in this thesis can be im-
proved slightly more by paying due attention to some specifics. We refer to them
as secondary contributions. Thus, in this chapter, four secondary contributions are
presented, each of which representing a relevant detail of this work. Two of the con-
tributions are related with synthesis speedup: (1) an statistical analysis was made
on the possible synthesis parameters and three effort levels are proposed to trade-off
QoR and runtime; and (2) we propose to use coarse-grain parallel approaches to
speedup both the AIG minimization step and mapping procedure. The other two
contributions are related with improvements on QoR: (1) we propose to merge locally
equivalent flip-flops to reduce transistor count; and (2) we explore two-output flip-
flops even further to reduce inverter count. These four contributions are described

in details in the following sections.

5.1 Improving the QoR with Trade-off Optimizations

Matos (2014) propose an exhaustive trade-off optimization technique based

on 5 binary parameters (abbreviation):

1. (I) forcing colors on Input nodes (yes or no);

2. (0) forcing colors on Output nodes (yes or no);

3. (U) removing Unfeasible fanout nodes in advance (yes or no);

4. (H) which color Heuristics to apply (QuickColor or GoodColor); and

5. (T) in which order to Traverse the graph when coloring it (BFS or DFS).

In order to obtain the best circuit implementation out of these 5 binary parameters,
32 circuits (2°) need to be derived.

In this thesis, we perform a statistical analysis on the parameters and propose
to allow the designer to choose among three different effort levels: (1) a high-effort
synthesis, that would go for all the 32 iterations regarding the 5 possible parameters;
(2) a medium-effort synthesis, which would explore only 2 of the 5 parameters and
takes the best result out of 4 circuits; and (3) a low-effort synthesis, that goes for
only one synthesis based on the best statistical results. With these three possible

effort levels, the designer can decide which trade-off better fits with his expectations
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on QoR versus runtime.

In order to perform the statistical analysis, we propose to derive all the 32
possibilities for each circuit in the ISCAS’85 benchmark suite (BRYAN, 1985). Then,
for each circuit, we take into account all the sets of parameters that are equal to
its best solution. The results are summarized in Table 5.1, in which the columns
are labeled with the previously introduced abbreviation. Notice that the set of

parameters 101GD was able to achieve the best solution in 40% of the circuits.

Table 5.1: Data for a statistical analysis on the possible synthesis parameters.
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Based on these results, we decided to adopt the effort levels as follows:

High-effort: run all the 32 possibilities;
Medium-effort: run only 4 possibilities by exploring parameters I and O;

Low-effort: run only 1 possibility with parameters 101GD.

5.2 Improving Runtime with Parallel Synthesis

As introduced in the previous section, one way to speed up the synthesis pro-
cess is to trade off runtime and QoR with effort levels. In this section, we introduce
a second way to speed up the synthesis, which is based on parallel synthesis.

According to Hwang (2007), the granularity of a task in parallel computing
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is a measure of the amount of computation performed by that task. In this sense,
in the context of this thesis, the synthesis process could be split into either: (1) a
large number of small tasks (fine-grained), as if we parallelize the graph coloring
procedure; or (2) a small number of large tasks (coarse-grained), as we propose to
split the 1 serial execution of 32 tasks for the high-effort synthesis into 32 parallel
executions with the same purpose. In terms of processing levels, again in the context
of this thesis, the synthesis could be (among others): at instruction level, where
the parallelism is coded with instructions in a given programming language; or at
procedure level, in which procedures of the synthesis flow can be ran in parallel
seeking for speedup. Thus, as the high-effort synthesis level is based on 32 different
executions of the same task, each of which running with a different set of parameters,
this methodology perfectly fits with coarse-grained, procedure-level parallelism.

In order to do that, we propose to adopt a thread pool approach. With this,
the user can define the desired number of threads to be created and, then, the thread
pool keeps this number of threads running while managing the tasks to be executed.
Algorithm 5.1 presents a pseudocode for the proposed parallel flow. The algorithm
starts by creating the thread pool and dispatching the threads (lines 1 to 5). Then,
each thread keeps running until all tasks are finished. For this, a task manager needs
to control the queued/finished tasks, which is represented by the get Work call. Also,
the threads must register the derived circuits when each task is finished, so that the
best circuit can be returned at the end of the process. This is represented by the

updateBestCircuit call.

Algorithm 5.1: Thread pool approach to map circuits in parallel.

1 circust parallelMapping(optXaig, MFI, MFC, numCores)
2 PolarityWorker* workersnumCores];

3 foreach (worker € workers)do

4 L worker.run(optXaig, MFI, MFC);

return PolarityWorker::get BestCircuit();

]

void run(optXaig, MFI, MFC)

for (flag = getTask(); flag < 32; flag = getTask())do
circuit = runSynthesisFlow(optXaig, MFI, MFC, task);

L updateBestCircuit(circuit );

© 0w N O
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5.3 Merging Logically Equivalent Flip-Flops

In a sequential circuit, some flip-flops (FFs) can be logically equivalent. In
this section, we show how to improve the QoR a bit further by merging logically
equivalent FFs.

We say that two FFs are logically equivalent if they are fed by the same driver.
Once equivalent FFs are identified, we propose to remove them from the circuit
and connect their loads on a new, merged FF. Figure 5.1 illustrates four logically
equivalent FFs before and after merging. This simple (yet effective) optimization
is able to improve QoR a bit further both in terms of area and transistor count.

Performance can be recovered with buffering if necessary.

Figure 5.1: Example of logically equivalent flip-flops: before merging (a) and after
merging (b).
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5.4 Exploring Two-Output Flip-Flops

In Section 4.5, we show how to explore two-output FFs as polarity don’t care
nodes. Still, the QoR can be additionally improved by cleverly exploring the usage
of both FF outputs when the signal is needed in both polarities.
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Most of the logic synthesis tools, including commercial ones, treat combina-
tional and sequential elements in different moments of the synthesis flow. In general
terms, combinational clouds are extracted from sequential circuits and, then, the
combinational synthesis is performed. Later on, when the logic is already defined,
the sequential synthesis is ran. This methodology can lead to strange outcomes, as
the one illustrated in Figure 5.2(a). In this case, while optimizing the downstream
cloud, pin D of the FF was treated as pseudo primary output and, to preserve the
circuit functionality, an inverter was needed to deliver the signal in the correct po-
larity. We already showed in Section 4.5 that this inverter can be removed. Still,
while optimizing the upstream cloud, the synthesis process required both polarities
from the illustrated FF and, as it is treated as pseudo primary input in this case,
an inverter was used for the purpose. We already showed that this inverter can be

removed as well.

Figure 5.2: Two-output flip-flops: ignoring ) while inverting @) to have both polar-
ities (a) and correctly exploring Q and @ to have both polarities (b).
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In this thesis, we propose to handle these cases differently. Although we
also treat inputs and outputs of FFs as pseudo POs and pseudo Pls during the
graph coloring process, we propose to treat them as real FFs when deriving the final
circuit from colored polarity graphs. Thus, if two-output flip-flops are available in
the library (as they commonly are), we are able to identify the cases in which both

polarities are needed and explore both @ and @, as illustrated in Figure 5.2(b).
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6 EXPERIMENTAL RESULTS

In order to validate the proposed simple-cell-based mapping, experiments
were carried out using different sets of benchmark circuits. The proposed algorithms
are implemented in Simple Flow tool (LogiCS Research Lab, 2017) using C++11
programming language and compiled with gcc 4.9.2. In the following sections, we
present some analysis of the proposed contributions, then a comparison with the

state-of-the-art approaches.

6.1 Analysis of the AIG Node Count Minimization Approach

In this section, we present an analysis of the proposed strategies to mini-
mize AIG node count. For this, we propose to use a single execution of ABC’s
resyn2 as reference, then compare it with both ABC’s dc2 (also a single execution)
and the strategies proposed in Section 4.2, which run up to saturation. The devel-
oped approaches are implemented in Simple Flow tool as the following commands:
opt_resyn2, opt_dc2, opt_seql, opt_seq2, and opt_mixl. This experiment was car-
ried out on a personal computer with Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz,
8GB RAM, over the OpenCores benchmark circuits (PISTORIUS et al., 2007).

The obtained results are presented in Table 6.1. ABC’s resyn?2 is taken as ref-
erence and we present its number of nodes. For the other commands, we present the
ratio over the reference. Notice that, although ABC’s dc2 is an area-oriented version
of resyn2, their results are very similar (dc2 is 1% better, on average). However, the
improvements of running them up to saturation are meaningful: opt resyn2 and
opt_dc2 are up to 9% better (4% on average) than their single execution. Finally,
even though opt_seql and opt_seq2 could not overcome their saturation points and
provide better results, opt mixl was able to improve the QoR a bit further and

provide results up to 10% better, 5% on average.

6.2 Analysis of the Runtime Speedup with Parallelization

In this section, we analyze one of the speedup approaches proposed in this

thesis, which is based on the parallelization of the high-effort synthesis. For this
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Table 6.1: Obtained results when analyzing the proposed AIG node count mini-
mization approaches.

ABC Simple Flow
circuit resyn2 dc2 || opt_resyn2 opt_dc2 opt_seql opt_seq? opt_ mixl
oc_aquarius 19653 (0.95) (1.00) (0.94) (0.94) (0.94) (0.94)
oc_ cfft_ 1024x12 8718 (0.99) (0.98) (0.98) (0.96) (0.97) (0.96)
oc__cordic_ p2r 8012 (1.00) (0.99) (0.98) (0.98) (0.98) (0.98)
oc_ cordic_1r2p 10502 (1.00) (0.96) (0.93) (0.92) (0.92) (0.90)
oc_des_ perf 20970 (1.00) (0.99) (0.97) (0.97) (0.97) (0.97)
oc__ethernet 8392 (0.99) (0.99) (0.98) (0.98) (0.96) (0.97)
oc_fpu 15835 (1.00) (0.96) (0.95) (0.94) (0.94) (0.93)
oc_mem__ctrl 13456  (0.93) (1.00) (0.91) (0.92) (0.91) (0.92)
oc_video_ dct 32000 (1.01) (0.99) (0.99) (0.97) (0.98) (0.97)
oc_video_ jpeg 41892 (1.00) (1.00) (0.99) (1.00) (0.99) (1.00)
geomean (0.99) (0.99) (0.96) (0.96) (0.96) (0.95)

analysis, we propose to run the synthesis of the 32 tasks on this effort level varying
the number of threads from 1 (single-threaded version) to 32 (one thread for each
task). This experiment was carried out on a server with 2 Intel(R) Xeon(TM) L5520
CPUs @ 2.27GHz (8 physical cores, 16 logic cores with hyperthreading(R)), 32GB
RAM.

In order to perform this analysis, we propose to take circuit oc_video jpeg
as a representative of the Opencores benchmark suite. The obtained results are
illustrated in Figure 6.1. Notice that, although there are 32 tasks to be run, the
speedup saturates from 7 threads on. This happens because each of these 32 tasks
has a different runtime and ones are significantly faster than others. Thus, accord-
ing to Amdahl’s law, the speedup curve based on parallel computing will always be
constrained to the workload of the sequential fractions (AMDAHL, 1967). In the
presented case, there is a task that takes around 7 minutes to finish. Thus, when
getting to this point, the speedup cannot be improved anymore though parallel ex-
ecution. This trend was also observed in all circuits from the Opencores benchmark

suite, where the speedup saturates around 7 threads on.

6.3 Analysis of the Effort Levels

In this section, we provide an analysis of the trade-off QoR versus speedup
concerning the proposed effort levels. For this, we run one execution of each ef-
fort level for each circuit on the OpenCores benchmark circuits (PISTORIUS et

al., 2007). This experiment was performed on the same personal computer of the
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Figure 6.1: Obtained results when analyzing speedup for the parallel synthesis of
circuit oc_video jpeg at the high-effort level.
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previous sections. For simplicity, the QoR is analyzed in terms of transistor count.

Table 6.2 summarizes the obtained results. We take the high-effort synthesis
as reference and present its obtained number of transistors and runtime in seconds.
For the medium- and low-effort levels, we present the ratio over the reference for
QoR and the opposite ratio for speedup.

Table 6.2: Obtained results when analyzing QoR versus speedup for the proposed
effort levels.

high-effort medium-effort low-effort
circuit #xtors  runtime QoR  speedup QoR  speedup
oc_aquarius 123332 287 || (1.00) 15x || (1.00) 57x
oc_cfft_1024x12 || 64490 22 || (1.01) 6x || (1.01) 28x
oc_cordic_p2r 53816 21 || (1.00) 7x || (1.00) 22x
oc__cordic_ r2p 71626 22 (1.00) 6x (1.00) 19x
oc_des_perf 140194 209 (1.00) 9x (1.00) 34x
oc_ethernet 70556 39 || (1.00) 12x || (1.00) 46x
oc_fpu 83972 138 || (1.00) 10x || (1.00) 39x
oc_mem_ ctrl 107864 85 (1.00) 11x (1.00) 39x
oc_video_ dct 230426 646 (1.01) 8x (1.01) 29x
oc_video_jpeg 285566 1884 || (1.00) 10x || (1.01) 41x
geomean (1.00) 9x || (1.00) 34x

Notice that both medium- and low-effort levels are much faster than the high-

effort synthesis. The medium-effort case is up to 15x faster (9x on average), whereas
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the low-effort synthesis is up to 57x faster (34x on average), both at negligible QoR
cost.

This shows that the proposed approach is very robust in terms of the analyzed
parameters. As the work by Matos (2014) could vary in more than 6% by simply
changing 1 of the 5 parameters, the work presented herein could keep the QoR

almost unchanged even when changing all possible parameters.

6.4 Comparison with the State-of-the-Art

In order to compare the proposed approach with the state-of-the-art tech-
niques, two sets of experiments were performed, which are presented in details in
the next subsections. We compare the obtained results against both a commercial
tool and with ABC tool (Berkeley Logic Synthesis and Verification Group, 2017),
the state-of-the-art mapper from the academia. In the first experiments, we aim
to evaluate the quality of the obtained results in terms of transistor count. In the
second set of experiments, we show the results in terms of area, power and delay.
For both of the experiments, the set of OpenCores circuits is initially submitted to
the high-effort node count minimization script described in Section 5.1. Then, these
optimized circuits are used as common input to both the proposed approach and

the reference tools.

6.4.1 Synthesis for Transistor Count Minimization

For this set of experiments, we ran the proposed methods considering all
possible scenarios of library composition and buffering addressed in this thesis. Re-
garding library composition, the simplest syntheses have only NAND2 (%), NOR2
(+), inverters and flip-flops; whereas we also consider syntheses including XOR2 ()
and XNOR2 (®). The mapping process was run under the low-effort level.

In order to compare with the reference tools, we propose to trick both ABC
and the adopted commercial tool for them to optimize the overall transistor count
while considering the same set of cells we are using in each synthesis. To do such
a trick, we set the tools to run high-effort area-oriented synthesis and provided

them with a developed library in which the cells” area and delay estimations are the
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cells’ transistor count. In ABC tool, we ran “map -a”, “amap” and “&nf -R 1000”
commands, and, then, took the best results out of these three methods.

Concerning the methodology to limit fanout, ABC results were achieved by
re-buffering its unlimited fanout versions through its “unbuffer /buffer” commands.
For the commercial tool, we used the constraint “set maz_fanout”.

Table 6.3 presents the obtained results for the more complete case, with
XORs and XNORs, with the fanout limited to 4. In this table, the first set of
columns presents the obtained results from the proposed approach (Simple Flow).
The second and third sets present a ratioed comparison of Simple Flow over ABC
and the adopted commercial tool, respectively. When comparing against ABC,
Simple Flow has up to 50% less inverters (17% on average) and up to 4% less
transistors (2% on average). When comparing against the commercial tool, Simple
Flow has up to 55% less inverters (38% on average) and up to 11% less transistors
(5% on average).

Two specific results from Table 6.3 may claim the reader’s attention. When
comparing against ABC tool, the Simple Flow circuits oc__aquarius and oc_mem,__ctrl
have 22% and 39% more inverters than ABC’s outputs, respectively. Still, both
Simple Flow and ABC achieved similar results in terms of transistor count. This is
mainly because these numbers are for the limited fanout case. As Simple Flow is
managing to handle the fanout violations only with inverter trees, ABC is handling
these cases both with buffering and with logic replication. Thus, notice that Simple
Flow circuits also has less NANDs and NORs, which ABC replicated to limit fanout

In some cases.
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In Table 6.4, we show the ratioed comparisons considering all the addressed
cases of library composition and buffering for fanout limitation. Notice that the
trend presented in Table 6.3 holds to all the synthesis versions. Simple Flow circuits
have around 49% less inverters and 4% less transistors than the reference tools for
the unlimited fanout cases. Additionally, we have around 16% (39%) less inverters
and 2% (5%) less transistors for the limited fanout cases when compared with ABC

(commercial tool).

Table 6.4: Comparisons in terms of transistor count for all the addressed cases.

NANDs/NORs and INVs NANDs/NORs, XORs/XNORs and INVs
Simple Flow / Simple Flow /
Simple Flow / ABC Commercial Simple Flow / ABC Commercial
Tool Tool

unlimited  limited | unlimited limited unlimited  limited | unlimited limited
nand/nor 0.99 0.98 0.95 0.95 1.00 0.99 1.00 0.98
Xor/xnor N/A N/A N/A N/A 0.93 0.91 0.78 0.79
ff 1.00 1.00 1.03 1.03 0.97 1.00 1.03 1.00
invs 0.52 0.85 0.55 0.60 0.49 0.83 0.50 0.62
xtors 0.96 0.98 0.96 0.95 0.97 0.98 0.97 0.95

Now, we propose to analyze the circuits in Table 6.3 in terms of area, power
and delay metrics. To do such an analysis, we used the obtained netlists as input
into a commercial tool to report their area, power and delay estimations. All those
estimations are considering the Nangate 15nm Open Cell Library (MARTINS et al.,
2015).

Table 6.5 presents the obtained estimations out of the circuits previously
introduced in Table 6.3. When comparing against ABC tool, Simple Flow circuits
need up to 9% (2%) less area, consume up to 35% (13%) less power, and perform
up to 94% (51%) faster (on average). When comparing against the commercial tool,
Simple Flow circuits need up to 12% (5%) less area, consume up to 35% (5%) less
power, and perform up to 97% (53%) faster (on average).
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Some specific results from Table 6.3 may also claim the reader’s attention.

When comparing against the commercial tool, the Simple Flow circuits oc__cordic__p2r

and oc_video_jpeg consume 16% and 27% more power than commercial tool’s out-
puts, respectively. This is mainly because the Simple Flow circuits operate in much
higher frequency than the commercial tool circuits, what makes them consume more
dynamic power. Simple Flow circuit oc_wvideo jpeg is also more than 94% faster
than both the reference tools, mainly because neither of them effectively handled
the fanout violations on the critical path.

In Table 6.5, we show the ratioed comparisons considering all the addressed
cases of library composition and buffering for fanout limitation presented in Table
6.5. Simple Flow circuits need around 5 ~ 10% less area than the reference tools for
all considered cases. Also, we consume about 15% less power than ABC and about
5% less power than the commercial tool. Regarding delay, our circuits are more
than 50% (15%) faster than ABC’s circuits for the limited fanout case (unlimited
fanout case) and around 50% (20%) faster than the circuits from the commercial

tool.

Table 6.6: Comparisons in terms of area, power and delay for all the addressed cases.

NANDs/NORs and INVs NANDs/NORs, XORs/XNORs and INVs
Simple Flow / Simple Flow /
Simple Flow / ABC Commercial Simple Flow / ABC Commercial
Tool Tool

unlimited  limited | unlimited  limited unlimited  limited | unlimited limited
area 0.91 0.97 0.88 0.95 0.92 0.98 0.90 0.95
power 0.86 0.85 0.96 0.95 0.87 0.87 0.95 0.95
delay 0.84 0.49 0.84 0.46 0.84 0.49 0.81 0.47

6.4.2 Timing-Constrained, Area/Power-Optimized Synthesis

One can say that it might not be fair to trick standard synthesis tools for them
to optimize a given cost function different from the ones these tools were designed
to optimize. Thus, it would be interesting to compare the proposed approach with a
state-of-the-art synthesis tool when it is optimizing the cost functions it was designed
to optimize. For that, we propose to synthesize the circuits in a commercial tool
under the most common synthesis scenario for VLSI designs: a timing-constrained,
area/power-optimized synthesis.

For this experiment, the critical-path delays from Simple Flow circuits in Ta-
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ble 6.5 were taken as target delays for the timing-constrained, area/power-optimized
syntheses in the commercial tool. In this case, Nangate 15nm Open Cell Library
(MARTINS et al., 2015) was used for the synthesis.

Table 6.7 presents the obtained results. Notice that Simple Flow numbers are
exactly the same as the ones presented in Tables 6.3 and 6.5. In contrast, now under
the timing-constrained, area/power-optimized synthesis scenario, the commercial
tool needed more area and consumed more power in order to meet the target delay.
Thus, Simple Flow circuits have up to 16% less transistors (10% on average), need
up to 18% less area (12% on average), and consume up to 12% less power (7% on
average) when compared to a commercial tool in this scenario.

Table 6.7: Comparison with a commercial tool under a timing-constrained,
area/power-optimized synthesis.

target Simple Flow Simple Flow / Commercial Tool

L delay areq power #xtors area power
cireutt (ps) #ators (um?) (mW) (ratio) (ratio) (ratio)
oC_aquarius 853 || 128990 6477 16.72 (0.90) (0.89) (0.97)
oc_cfft 303 || 64008 3059 18.12 (0.92) (0.90) (0.96)
oc__cordic_r2p 278 54492 2669 11.85 (0.88) (0.87) (0.89)
oc__cordic_ p2r 332 71930 3477 11.85 (0.85) (0.82) (0.87)
oc_des_ perf 83 148504 7372 79.44 (0.84) (0.82) (0.97)
oc_ethernet 217 || 70874 3436 26.41 (0.91) (0.90) (0.96)
oc_fpu 11523 || 86418 4306 1.97 (0.90) (0.87) (0.88)
oc_mem__ctrl 175 109884 5388 22.44 (0.95) (0.95) (0.98)
oc_video dct 259 || 232460 11209 19.17 (0.92) (0.91) (0.95)
oc_video_ jpeg 234 || 289846 14138 14.3 (0.93) (0.92) (0.93)
geomean (0.90) (0.88) (0.93)
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7 CONCLUSION AND FUTURE WORKS

This thesis introduced a set of algorithms for efficiently mapping VLSI circuits
based on simple cells. We showed that efficient VLSI circuit implementations based
on simple cells can be realized from a minimal implementation on the number of
logic elements combined with a minimized number of inverters in between the logic
cells.

A first contribution presented in this thesis is a high-effort AIG node count
minimization approach. We demonstrated that, as the methods based on AIGs are
highly dependent on the circuit given as inputs, the quality of results can be even
more improved if the applied methods are repeatedly iterated and interleaved with
each other up to saturation. Experimental results showed that, by applying the
proposed techniques, one can obtain AIGs with up 10% less nodes (5% on average)
when compared to state-of-the-art AIG node count minimization approaches.

From fairly optimized AIGs, we are able to generate optimized XAIGs, and
this comprises a second contribution of this thesis. By doing this, we can consider
XOR nodes while generating polarity graphs and minimizing the inverter count
under a phase assignment optimization model. The proposed approach explores
the parity property of XORs and XNORs and, as both of the functions can be
implemented with the number of transistors, we claim that they are polarity don’t
care nodes in terms of transistor count. Then, we propose to use a graph coloring
procedure to bring the inverters to the XORs/XNORs inputs and outputs such that
we can get rid with them during the mapping process. Similar to the XOR case, we
showed that two-output flip-flops can also be thought as polarity don’t care nodes
and be used to further optimize the inverter count.

In the proposed flow, high-effort algorithms for AIG node count minimization
tend to generate cells with unfeasible fanout in the final circuit. In order to address
this issue, we propose an area-oriented, level-aware buffering algorithm based on
inverter trees. The proposed algorithm is area-oriented in the sense that we limit
the cells’” fanout inserting an inverter tree while minimizing the number of inverters
in the tree. It is also level-aware because we consider the logic depth of the consumer
cells when assigning them to the tree. This simple (yet effective) change can further
optimize the circuit performance.

Four secondary contributions were also presented in this thesis, two of them
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related to algorithm speedup and other two related with QoR improvements. The
work presented herein extends the work by Matos (2014), which can be time con-
suming while generating 32 circuits per synthesis based on 5 binary parameters.

In order to speed up the synthesis process, we first propose a coarse-grained,
procedure-level parallel approach. So, instead of running 1 serial execution of 32
tasks, we propose to parallelize the execution of these 32 tasks. The obtained results
showed that the synthesis process can be sped up around 2.5x with this approach.
A second speedup process we proposed is based on different effort levels to trade
off QoR and runtime. For this, we performed a statistical analysis on the 5 binary
parameters and proposed 3 effort levels. The obtained results showed that the
effort-level approach can be up to 57x faster (34x on average) at negligible QoR cost
(less than 1%). This also shows the robustness of the proposed approach, since the
work by Matos (2014), which bases this work, can vary in more than 6% by simply
changing 1 of the 5 parameters.

The two secondary contributions for QoR improvement are based on exploring
sequential cells. We first propose to merge logically equivalent flip-flops in order to
improve area, as the performance be further recovered with buffering. We also
propose to use both the outputs of flip-flops when the output signal is required in
both polarities.

The proposed approach was validated by mapping benchmark circuits using
two-input NANDs and NORs, inverters and flip-flops. Two-input XORs and XNORs
were also considered. The obtained results were evaluated in terms of different cost
functions, such as inverter count, transistor count, power, area and performance.
When comparing the obtained results against state-of-the-art algorithms for tech-
nology mapping, the proposed approach shows its usefulness. When comparing with
academic and commercial approaches, we are able to simultaneously reduce the av-
erage number of inverters, transistors, area, power dissipation and delay up to 48%,
5%, 5%, 5%, and 53%, respectively.

There is still much work to be carried on. A coarse-grained, program-level
parallel approach can be used to speed up the proposed AIG node count minimiza-
tion approach. Instead of running 1 serial execution of 5 minimization approaches,
all of them can be ran in parallel and speed up this optimization step. Also, a
standard cell with different drive strengths could also be used in the case of timing-

constrained synthesis, so that a gate sizing step would handle the necessary trade-off.



86

Finally, for advanced technology, the wire delay is becoming more important than
cell delay (especially for long wires) and the circuit performance can significantly
change after place and route. Thus, we aim to apply such a simple-cell-based ap-
proach under a physically-aware logic synthesis environment. Experiments on this
way were presented already (MATOS; REIS, 2015; MATOS et al., 2015b) and we
also proposed an innovative flow to bring technology information (specially related
with place and route) to the early steps of logic synthesis (REIS; MATOS, 2017).
Nonetheless, even if the presented research opened the way for several future
works, the current results have shown the computational and practical viability of
the methods presented herein. The proposed algorithms have been proved useful for
efficiently mapping VLSI circuits based on simple cells. The proposed algorithms
can bring benefits for most of the VLSI applications constrained to simple cells

referred in this work.
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