
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VÍTOR BUJÉS UBATUBA DE ARAÚJO

Týr: a dependent type based code
transformation for spatial memory safety in

LLVM

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Álvaro Freitas Moreira
Coadvisor: Prof. Dr. Rodrigo Machado

Porto Alegre
January 2018

CIP — CATALOGING-IN-PUBLICATION

Araújo, Vítor Bujés Ubatuba De

Týr: a dependent type based code transformation for spatial
memory safety in LLVM / Vítor Bujés Ubatuba De Araújo. –
Porto Alegre: PPGC da UFRGS, 2018.

124 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Álvaro Freitas Moreira; Coadvisor: Rodrigo
Machado.

1. Dependent types. 2. Memory safety. 3. Program trans-
formation. 4. Systems programming. I. Moreira, Álvaro Freitas.
II. Machado, Rodrigo. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Safety-runes you must know

If safety you wish to have

And carve them within your types

Some in the variables

Some in the structures

And twice call the name of Týr.

— SIGRDRÍFUMÁL (paraphrased)

ACKNOWLEDGEMENTS

First of all, I must thank my advisors, Álvaro Moreira and Rodrigo Machado,

without whose guidance, support and patience this work would not have been possible.

I’d like to thank my father, Jorge, who, by giving me a computer with GNU/Linux

when I was 9, has put me in the path that led me where I am today. I’d also like to thank

my mother, Andréia, a person whose wisdom I’ve come to appreciate more and more as I

grew older, for her support during this time. Thanks also to all family members who have

supported me in one way or another during this time.

I’d also like to thank all friends who have provided support and joyful times during

this period. Special thanks go to Vítor Rey, who embarked with me in this journey, and

Carolina Nogueira, “for outstanding work in enabling theses, making heads work again,

spreading fun, hugs and good vibrations, maintaining world peace, and being generally

ˆawesomeˆ.”

I would like to thank Julie Fowlis, Clannad, Mari Boine, and other artists whose

music has helped me keep some peace of mind during the making of this work. I’d also

like to thank the people at Speculative Grammarian, and especially the Language Made

Difficult podcast, who have helped me keep some sanity during the rough paths in this

journey through academia.

This work has been partly funded by CAPES and CNPq scholarships. This work

has also been partly funded by my grandmother, Eronilda, to whom I am grateful.

Last, and definitely not least, I would like to thank my cousin Hélio, who has put

up with me (and vice-versa) since we were kids, and who has been my colleague during

both the Bachelor’s and the Master’s, for the lifelong friendship. Thank you very much.

ABSTRACT

The C programming language does not enforce spatial memory safety: it does not ensure

that memory accessed through a pointer to an object, such as an array, actually belongs

to that object. Rather, the programmer is responsible for keeping track of allocations and

bounds information and ensuring that only valid memory accesses are performed by the

program. On the one hand, this provides flexibility: the programmer has full control over

the layout of data in memory, and when checks are performed. On the other hand, this is

a frequent source of bugs and security vulnerabilities in C programs.

A number of techniques have been proposed to provide memory safety in C. Typically

such systems keep their own bounds information and instrument the program to ensure

that memory safety is not violated. This has a number of drawbacks, such as changing the

memory layout of data structures and thus breaking binary compatibility with external li-

braries and/or increased memory usage. A different approach is to use dependent types to

describe the bounds information already latent in C programs and thus allow the compiler

to use that information to enforce spatial memory safety. Although such systems have

been proposed before, they are tied specifically to the C programming language. Other

languages such as C++ suffer from similar memory safety problems, and thus could ben-

efit from a more language-agnostic approach.

This work proposes Týr, a program transformation based on dependent types for ensur-

ing spatial memory safety of C programs at the LLVM IR level. It allows programmers

to describe at the type level the relationships between pointers and bounds information

already present in C programs. In this way, Týr ensures spatial memory safety by check-

ing the consistent usage of this pre-existing metadata, through run-time checks inserted

in the program guided by the dependent type information. By targeting the lower LLVM

IR level, Týr aims to be usable as a foundation for spatial memory which could be eas-

ily extended in the future to other languages that can be compiled to LLVM IR, such as

C++ and Objective C. We show that Týr is effective at protecting against spatial memory

safety violations, with a reasonably low execution time overhead and nearly zero memory

consumption overhead, thus achieving performance competitive with other systems for

spatial memory safety, in a more language-agnostic way.

Keywords: Dependent types. memory safety. program transformation. systems pro-

gramming.

Týr: uma transformação de código baseada em tipos dependentes para segurança

espacial de memória em LLVM

RESUMO

A linguagem C não provê segurança espacial de memória: não garante que a memória

acessada através de um ponteiro para um objeto, tal como um vetor, de fato pertence ao

objeto em questão. Em vez disso, o programador é responsável por gerenciar informações

de alocações e limites, e garantir que apenas acessos válidos à memória são realizados

pelo programa. Por um lado, isso provê flexibilidade: o programador tem controle total

sobre o layout dos dados em memória, e sobre o momento em que verificações são reali-

zadas. Por outro lado, essa é uma fonte frequente de erros e vulnerabilidades de segurança

em programas C.

Diversas técnicas já foram propostas para prover segurança de memória em C. Tipica-

mente tais sistemas mantêm suas próprias informações de limites e instrumentam o pro-

grama para garantir que a segurança de memória não seja violada. Isso causa uma série

de inconvenientes, tais como mudanças no layout de memória de estruturas de dados,

quebrando assim a compatibilidade binária com bibliotecas externas, e/ou um aumento

no consumo de memória. Uma abordagem diferente consiste em usar tipos dependentes

para descrever a informação de limites já latente em programas C e assim permitir que o

compilador use essa informação para garantir a segurança espacial de memória. Embora

tais sistemas tenham sido propostos no passado, eles estão atrelados especificamente à

linguagem C. Outras linguagens, como C++, sofrem de problemas similares de segurança

de memória, e portanto poderiam se beneficiar de uma abordagem mais independente de

linguagem.

Este trabalho propõe Týr, uma transformação de código baseada em tipos dependentes

para garantir a segurança espacial de memória de programas C ao nível LLVM IR. O sis-

tema permite que o programador descreva no nível dos tipos as relações entre pointeiros

e informação de limites já presente em programas C. Dessa maneira, Týr provê segurança

espacial de memória verificando o uso consistente desses metadados pré-existentes, atra-

vés de verificações em tempo de execução inseridas no programa guiadas pela informação

de tipos dependentes. Ao trabalhar no nível mais baixo do LLVM IR, Týr tem por ob-

jetivo ser usável como uma fundação para segurança espacial de memória que possa ser

facilmente estendida no futuro para outras linguagens compiláveis para LLVM IR, tais

como C++ e Objective C. Demonstramos que Týr é eficaz na proteção contra violações

de segurança espacial de memória, com um overhead de tempo de execução relativamente

baixo e de consumo de memória próximo de zero, atingindo assim um desempenho com-

petitivo com outros sistemas para segurança espacial de memória de uma maneira mais

independente de linguagem.

Palavras-chave: segurança de memória, tipos dependentes, programação de sistemas,

transformação de código.

LIST OF ABBREVIATIONS AND ACRONYMS

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

GPU Graphics Processing Unit

IR Intermediate Representation

NUL Null character

POSIX Portable Operating System Interface

SSA Static Single Assignment

SSL Secure Sockets Layer

LIST OF FIGURES

Figure 1.1 Example C code and resulting instrumented program...................................30
Figure 1.2 Flow of the compilation process in Týr ...31
Figure 1.3 Example C program and dependent type annotation file...............................33
Figure 1.4 Execution of the example program with no run-time memory safety errors.33
Figure 1.5 Execution of the program with an error inside the function sum..................34
Figure 1.6 Execution of the program with an error in the call to sum............................34

Figure 2.1 A 2-dimensional array (left) and an array of pointers to two 1-dimensional
arrays (right). C accesses both kinds of structures using the same syntax.45

Figure 2.2 Sample C function and equivalent LLVM IR code..46
Figure 2.3 Subset of LLVM IR considered in this work. An overline indicates a

sequence of zero or more of the overlined element. ...47
Figure 2.4 Example of φ-node in SSA-form...54

Figure 3.1 Grammar of Týr types ...59
Figure 3.2 Default mapping d·e from LLVM IR types to Týr types62
Figure 3.3 Mapping b·c from Týr types to LLVM IR types..62
Figure 3.4 Global environment generation pass..65
Figure 3.5 Local instrumentation pass ..66
Figure 3.6 Grammar of boolean check conditions ..96

LIST OF TABLES

Table 4.1 Non-blank lines of code in source file and in type annotations file108
Table 4.2 Benchmark results ...109
Table 4.3 Benchmark results for modified versions of revcomp...................................111

CONTENTS

RESUMO ESTENDIDO ...13
1 INTRODUCTION...25
1.1 Background ...25
1.2 Proposal ...30
1.3 Scope and limitations..31
1.4 Usage ..32
1.5 Results ..34
1.6 Outline..35
2 BACKGROUND..36
2.1 Defining memory safety..36
2.2 Mechanisms for ensuring memory safety ...37
2.2.1 Temporal memory safety ...38
2.2.2 Spatial memory safety..39
2.3 Dependent types ..40
2.4 Memory in C: pointers and arrays..43
2.5 The LLVM Intermediate Representation language...45
2.5.1 Top-level structure ...48
2.5.2 Types ..48
2.5.3 Values...49
2.5.4 Instructions...50
2.5.5 Omissions from the full language ..53
2.5.6 Phi instructions ..54
2.6 Correspondence between C and LLVM IR ..55
2.6.1 Types ..55
2.6.2 Variables and functions ..56
2.7 Summary..56
3 THE TÝR CODE TRANSFORMATION...57
3.1 Design considerations ...57
3.2 Týr types ..58
3.2.1 Overview of Týr types ...59
3.2.2 Correspondence between LLVM IR and Týr types ...61
3.2.3 Type compatibility ...62
3.3 Instrumentation overview ..64
3.3.1 Global environment construction pass...65
3.3.2 Local pass...65
3.3.3 Instrumentation rules ...66
3.4 The Týr typing and instrumentation rules ...67
3.4.1 Typing values ...68
3.4.2 Common pointers...68
3.4.3 String pointers and arrays ..72
3.4.4 Local pointers...77
3.4.5 Invariance of pointer types...82
3.4.6 Structures ...83
3.4.7 Functions..86
3.4.8 Bitcast ..87
3.4.9 Other instructions...89
3.5 Global environment, revisited..90

3.6 Emitting instrumentation code ..91
3.6.1 Computing expressions..92
3.6.2 Checks..96
3.7 Soundness ..99
3.8 Efficiency considerations ..101
3.9 Summary..103
4 EXPERIMENTAL RESULTS ...104
4.1 Usage ..104
4.2 Benchmarks ...106
4.3 Results ..108
5 RELATED WORK ...113
5.1 Memory safety in C...113
5.2 Memory debugging tools ..116
5.3 Safe systems programming languages ..117
5.4 Summary..118
6 CONCLUSION ...119
REFERENCES...122

RESUMO ESTENDIDO

Introdução

A maioria das linguagens de alto nível provê segurança espacial de memória: es-

sas linguagens garantem que um programa nunca acessa regiões de memória fora dos li-

mites de objetos previamente alocados pelo programa. Isso normalmente é obtido através

de uma combinação de mecanismos, tais como um sistema de tipos forte, gerenciamento

automático de memória através de garbage collection, e verificação de limites de vetor.

Esses mecanismos possuem componentes estáticos (de tempo de compilação), tais como

sistemas de tipos que não permitem construções que poderiam levar a violações de segu-

rança de memória (por exemplo, converter um inteiro para ponteiro e então usar o ponteiro

resultante para acessar a memória), e componentes dinâmicos, tais como verificações em

tempo de execução para garantir que um objeto está sendo acessado dentro de seus limi-

tes. Verificações dinâmicas requerem que o programa mantenha metadados suficientes

em tempo de execução a fim de permitir verificar a validade de um acesso à memória.

Por exemplo, no ambiente de execução de linguagens como Java, vetores são tipicamente

armazenados em memória como um inteiro representando seu comprimento, seguido dos

elementos de fato do vetor; dessa maneira, quando se realiza o acesso a uma posição do

vetor, o ambiente de execução possui informação suficiente para comparar o índice da

posição desejada com o comprimento armazenado do vetor para garantir que o índice é

válido, e sinalizar um erro caso não o seja.

Em contraste, a linguagem de programação C não garante segurança de memória:

cabe ao programador gerenciar os limites das regiões alocadas e garantir que nenhum

acesso inválido à memória seja realizado em tempo de execução. Estruturas de dados não

incluem metadados implícitos em C: um vetor de 3 inteiros é constituído simplesmente

de três inteiros contíguos em memória, sem nenhum metadado extra indicando quantos

elementos estão presentes ou em que ponto o vetor acaba. Manter essa informação extra

é deixado a cargo do programador.

Programadores C empregam um número de construções idiomáticas para manter

essa informação. Uma construção idiomática comum é passar um ponteiro para um vetor

juntamente com seu comprimento para funções que manipulam vetores. Outra construção

comum é armazenar o ponteiro para um vetor juntamente com seu tamanho como campos

em uma única estrutura de dados. Ainda outra técnica é armazenar um valor nulo distinto

ao final do vetor para indicar seu final; isso é tipicamente usado para strings, onde o carac-

tere ASCII NUL (todos os bits zero) marca o final da string. Os programadores têm então

que incluir manualmente verificações para garantir que esses limites são respeitados.

Considere por exemplo a função main em programas C. Essa função é chamada

com dois argumentos, representando os argumentos de linha de comando passados para

o programa. O primeiro argumento da função, convencionalmente chamado argc, é um

inteiro representando o número de argumentos de linha de comando passados para o pro-

grama. O segundo argumento da função, argv, é um ponteiro para um vetor contendo

argc elementos, cada um dos quais é um ponteiro para uma string delimitada por nulo.

O limite do vetor acessível através do segundo argumento está representado pelo inteiro

passado como primeiro argumento, e os limites de cada string está representado pelo byte

nulo ao seu final. Porém, é encargo do programador usar essa informação corretamente

para garantir que os limites não serão violados; a linguagem não impedirá o programa de

acessar o vetor além do limite dado pelo argumento argc, ou além do terminador nulo

de uma string. Da mesma forma, também não impedirá uma função como a main de ser

chamada com um valor de argc que não condiz com o tamanho real do vetor apontado

por argv.

Como outro exemplo, considere a função POSIX writev, que realiza a escrita de

dados coletados de múltiplos buffers em um descritor de arquivo aberto. Essa função

recebe três argumentos. O primeiro argumento é o descritor de arquivo para o qual os

dados serão enviados. O segundo argumento é um ponteiro para um vetor de elementos do

tipo struct iovec, cada um dos quais é uma estrutura de dados contendo um ponteiro para

uma região de memória e um inteiro representando seu tamanho. O terceiro argumento

é um inteiro indicando quantos elementos struct iovec estão presentes no vetor apontado

pelo segundo argumento. Novamente, cabe ao programador garantir que os ponteiros

e comprimentos dentro de cada struct iovec são consistentes entre si, e que o número

de struct iovecs apontados pelo segundo argumento é consistente com o inteiro passado

como terceiro argumento; a linguagem não impedirá que comprimentos incorretos sejam

passados como argumentos.

Por um lado, essa falta de metadados e verificações em tempo de execução implí-

citos dá maior controle ao programador. A ausência de metadados implícitos associados

com vetores e outros dados permite um controle mais fino do layout em memória das

estruturas de dados. Isso é especialmente importante em programação de sistemas, isto

é, programação de componentes de baixo nível de sistemas, tais como kernels de sis-

temas operacionais e ambientes de execução de linguagens de programação, onde um

controle preciso do layout de estruturas de dados pode ser necessário. A ausência de ver-

ificações em tempo de execução implícitas também permite que o programador decida

onde e quando realizar verificações, o que pode trazer benefícios em termos de desem-

penho.

Por outro lado, isso é uma fonte frequente de bugs em programas C e C++, uma

vez que é muito fácil omitir ou realizar incorretamente tais verificações, ou gerenciar

incorretamente as informações de limite controladas manualmente. Nesses casos, o resul-

tado é um programa inseguro com relação a memória, com consequências variando desde

crashes até corrupção silenciosa de dados e vulnerabilidades de segurança. Um grande

número de vulnerabilidades de segurança encontradas em software no mundo real é cau-

sado por buffer overflows e overreads, isto é, a exploração da ausência ou incorretude de

verificação de limites de algum buffer do programa para ganhar acesso a uma região de

memória que não deveria ser acessível, obtendo assim informações que não deveriam ser

reveladas, ou alterando o comportamento subsequente do programa, potencialmente pos-

sibilitando a execução de código arbitrário da escolha do atacante. Um exemplo disso é o

bug Heartbleed (DURUMERIC et al., 2014), descoberto em 2014 na biblioteca OpenSSL,

amplamente empregada para a comunicação segura entre clientes e servidores na Inter-

net, na qual a ausência de uma verificação de limites permitia que atacantes obtivessem

o conteúdo de regiões arbitrárias da memória do servidor, potencialmente revelando in-

formações sensíveis tais como usuários, senhas, e as chaves privadas de certificados de

comunicação SSL.

Diversas técnicas já foram propostas para prover segurança de memória em C

(JIM et al., 2002; NECULA et al., 2005; NAGARAKATTE et al., 2009). Tipicamente,

tais sistemas mantêm seus próprios metadados representando as informações de limite

do programa, e instrumentam o programa com verificações em tempo de execução para

garantir que a segurança de memória não seja violada, simulando assim os mecanismos

empregados por linguagens de nível mais alto como Java. Isso tem um número de incon-

venientes:

• Se os metadados são mantidos juntamente com os dados aos quais se referem, eles

alteram a representação das estruturas de dados. Isso é indesejado em programação

de sistemas onde, como mencionado anteriormente, frequentemente é necessário

o controle do layout em memória dos dados. Isso também introduz problemas

de interoperabilidade com código externo, tais como bibliotecas e chamadas de

sistema operacional, que não esperam que esses metadados estejam presentes nas

estruturas de dados que lhes são passadas.

• Se os metadados são mantidos em uma estrutura de dados separada para evitar esses

problemas, há um aumento no custo em tempo de acesso aos metadados associados

a um dado buffer.

• Diferentemente de linguagens de programação de nível mais alto, C possui pon-

teiros, que podem apontar para um endereço de memória no meio de um objeto.

Enquanto em uma linguagem como Java o ambiente de execução pode obter efi-

cientemente os metadados associados com um vetor buscando-os em uma posição

fixa a partir do início do vetor, ponteiros em C não necessariamente apontam para

o início do vetor, e não é possível no caso geral encontrar o início de um vetor dado

um ponteiro para um ponto arbitrário do mesmo. Assim, em vez de os metadados

ficarem associados aos vetores, é necessário que cada ponteiro carregue consigo

informações de limites inferior e superior (chamada de representação fat pointer),

o que causa um overhead significativo em uso de memória.

Uma abordagem diferente baseia-se na observação de que, em um programa C sem

violações de segurança de memória, todos os metadados necessários já estão presentes, na

forma das construções idiomáticas que os programadores C usam para gerenciar a infor-

mação de limites. Porém, como essa informação é mantida de uma maneira ad hoc pelo

programador sem suporte da linguagem, o compilador não tem como verificar o uso cor-

reto dessa informação. Se o programador tivesse uma maneira de informar ao compilador

como essa informação está sendo usada, o compilador poderia verificar mecanicamente

que os acessos à memória estão dentro dos limites empregando os próprios metadados

providos pelo programador para realizar as verificações, e que os metadados providos são

consistentes com os dados aos quais estão associados. Isso pode ser realizado por meio

de tipos dependentes.

Tipos dependentes (ASPINALL; HOFMANN, 2004) são tipos indexados por ex-

pressões. Da mesma maneira que linguagens com polimorfismo paramétrico, também

conhecido como generics no mundo orientado a objetos, permite parametrizar um tipo

com outro tipo (e.g., Array<Int>, um vetor de inteiros), uma linguagem com tipos de-

pendentes permite parametrizar tipos com expressões (e.g., Array<Int, n>, um vetor de

n inteiros, onde n é uma variável do programa). Agora, se p é um ponteiro em C para um

vetor de inteiros cujo comprimento está armazenado em uma variável len, poderíamos dar

a p um tipo como Ptr<int, 0, len>, isto é, um ponteiro para uma região de inteiros cujo

limite inferior é 0 e cujo limite superior é len. Se o programador anota a variável p com

um tal tipo, o compilador possui informação suficiente para saber onde buscar os limites

da região associada com p. Quando o programa tentar acessar a memória através desse

ponteiro usando uma expressão como p[i], o compilador pode então inserir uma verifi-

cação de tempo de execução como assert(i≥0 && i<len) para garantir que o índice i é

válido antes de realizar o acesso. Isso provê uma solução para os problemas mencionados

anteriormente:

• Como o sistema usa os metadados já presentes no programa tais como providos pelo

programador, não há necessidade de modificar o layout dos dados para carregar con-

sigo informação adicional. Dessa maneira, mantêm-se o controle do programador

sobre o layout de memória e a compatibilidade com bibliotecas externas.

• Como não são introduzidos metadados adicionais além dos já presentes no pro-

grama, o impacto em consumo de memória é mínimo.

• Finalmente, como o compilador insere verificações em termos das mesmas vari-

áveis usadas pelo programa em vez de usar metadados mantidos separadamente,

técnicas padrão de otimização utilizadas por compiladores conseguem provar re-

dundantes e eliminar muitas das verificações inseridas.

O último ponto requer elaboração. Considere uma função C que computa a soma

dos elementos de um vetor de inteiros, usando a típica construção idiomática de passar o

comprimento do vetor juntamente com um ponteiro para o mesmo como argumentos se-

parados (Figura 1a). A função usa uma variável de índice i inicializada com 0, e ao fim de

cada iteração o índice é incrementado. Finalmente, a iteração para quando a condição i <

len se torna falsa. Essa é uma típica construção idiomática de iteração sobre os elementos

de um vetor em C.

Agora considere que demos a essa função um tipo dependente como:

sum: Fn int (array: Ptr(int, 0, len), len: int)

indicando que sum é uma função que recebe dois argumentos: array, um ponteiro para

inteiros cujos limites são 0 e len; e len, um inteiro. Dada essa informação, o compilador

pode instrumentar o código de tal maneira que, antes do ponto em que array[i] é aces-

sado, é inserido um teste de tempo de execução para verificar que i está dentro dos limites

do ponteiro. Isso resultará em um código como o da Figura 1b. Porém, como a verificação

inserida é escrita em termos de i e len, as mesmas variáveis usadas no fluxo de controle

do laço, otimizações padrão de compiladores são capazes de determinar que a verificação

Figura 1: Exemplo de código C e programa instrumentado resultante
(a) Programa original

int sum(int *array, int len) {
int result = 0;
for (int i=0; i<len; i++) {

result += array[i];
}
return result;

}

(b) Programa instrumentado

int sum(int *array, int len) {
int result = 0;
for (int i=0; i<len; i++) {

assert(i>=0 && i<len);
result += array[i];

}
return result;

}

Fonte: O autor

é na verdade redundante neste caso: sempre é o caso que i>=0 && i<len dentro do corpo

do laço, já que o laço itera para i de 0 a len (exclusive). Portanto, o compilador é capaz

de eliminar esse teste. Essa eliminação de verificações redundantes seria mais difícil de

realizar se os testes inseridos pelo compilador fossem escritos em termos de metadados

implícitos mantidos separadamente pela instrumentação, já que não seria evidente a partir

do fluxo de controle que o teste é sempre verdadeiro dentro do laço. Assim, testes que po-

dem ser provados verdadeiros em tempo de compilação podem ser removidos, reduzindo

o impacto em desempenho da instrumentação, e testes que não podem ser provados ver-

dadeiros em tempo de compilação são deixados como verificações a serem realizadas em

tempo de execução, garantindo assim que os acessos à memória são seguros. Por exem-

plo, suponha que, na Figura 1a, o programador tivesse equivocadamente escrito for (int

i=0; i<=len; i++), substituindo < por <=, e assim levando a um erro de off-by-one em

que a primeira posição após o último índice válido do vetor é acessada. Nesse caso, a

verificação inserida não teria sido removida pelas otimizações do compilador, e garantiria

que a execução seria interrompida antes que ocorresse o acesso inválido.

Deputy (CONDIT et al., 2007) introduz um tal sistema de tipos dependentes para

C, que permite aos programadores expressar tipos de ponteiros dependentes por meio de

anotações no código fonte C. Porém, Deputy foi implementado usando CIL (NECULA

et al., 2002), um framework para análise e transformação de programas específico para a

linguagem C. Outras linguagens, como C++, apresentam os mesmos problemas de segu-

rança de memória de C, e portanto seria vantajoso poder aplicar as mesmas técnicas de

uma maneira mais independente de linguagem.

Figura 2: Fluxo do processo de compilação em Týr

foo.ll+
instrumented

foo.c
Clang foo.llClang

Týr

foo.depAnnotation
extractor

C-level
annotations

LLVM
optimizations

foo.ll*
optimized

Code gen.binary

C-specific part

Fonte: O autor

Proposta

O presente trabalho propõe Týr, uma transformação de código baseada em tipos

dependentes para a linguagem de representação intermediária (IR) do LLVM. LLVM

(LATTNER; ADVE, 2004) é um framework independente de linguagem para análise,

transformação e compilação de código, projetado em torno de uma linguagem inter-

mediária bem definida. Clang (CLANG, 2015) é um compilador C/C++ que emite código

LLVM IR, e emprega a infraestrutura do LLVM para realizar otimizações e emitir código

de máquina. Por trabalhar em termos da linguagem LLVM IR, em um nível mais baixo,

Týr pode ser aplicado para garantir a segurança espacial de memória de diversas lingua-

gens que possam ser compiladas para LLVM IR, tais como C e C++. Týr introduz uma

linguagem de tipos rica para descrever informação de limites em programas LLVM IR, e

implementa uma transformação de código que instrumenta o programa com verificações

de tempo de execução para garantir a conformidade com os limites descritos.

A Figura 2 mostra o fluxo do processo de compilação de um programa no frame-

work Týr. Os componentes em cinza claro são parte do fluxo normal do processo de

compilação no Clang e LLVM: um programa C é dado como entrada para o compilador

Clang, o qual emite código de nível mais baixo correspondente em LLVM IR. Esse código

passa então pelo pipeline de otimizações do LLVM, gerando um programa LLVM IR

otimizado, o qual é finalmente passado para o passo de geração de código do LLVM, que

emite código de máquina para uma arquitetura específica.

Os componentes em cinza escuro são os adicionados pelo framework Týr. Pri-

meiramente, o código fonte C deve ser enriquecido com anotações de tipos dependentes

providas pelo programador, tais como aquela provida para a função sum no exemplo

acima. O programa C é então passado ao Clang como de costume para a geração de

código LLVM IR; adicionalmente, as anotações de tipos dependentes são extraídas do

programa C e mapeadas para anotações de tipo equivalentes expressas em termos do pro-

gram em nível LLVM IR. Em seguida, o programa LLVM IR gerado pelo Clang e as an-

otações extraídas são passadas para o passo Týr propriamente dito, que varre o programa

LLVM IR verificando que o programa está em confirmidade com as anotações providas.

O passo também instrumenta o programa com verificações necessárias para garantir que

as restrições expressas nas anotações sejam asseguradas em tempo de execução, gerando

assim um programa LLVM IR instrumentado. Esse programa é então passado ao pipeline

usual de otimizações, com a possível eliminação de código de verificação redundante, e

então passado para o passo de geração de código para produzir um binário instrumentado.

Vale a pena observar que o extrator de anotações, que mapeia os tipos dependentes

expressos em termos de C em tipos equivalentes expressos em termos de LLVM IR, é o

único componente da arquitetura de Týr que é específico à linguagem C. Em princípio,

Týr pode ser adaptado para qualquer outra linguagem que compile para LLVM IR, desde

que um mapeamento possa ser definido dos tipos da linguagem de alto nível para os tipos

do LLVM IR, substituindo-se o extrator de anotações por um adequado à linguagem que

se deseja suportar.

Escopo e limitações

O objetivo do presente trabalho é focar no componente no nível de LLVM IR da

arquitetura. Definimos um conjunto de anotações baseadas em tipos dependentes que po-

dem ser usadas para descrever relações entre ponteiros e seus metadados associados em

LLVM IR, um conjunto de regras que governam o uso de valores e a inserção de verifi-

cações de tempo de execução guiada por esses tipos, e um algoritmo para a transformação

de um programa LLVM IR de entrada mais anotações de tipo providas pelo programador

em um programa LLVM IR de saída instrumentado com verificações de tempo de exe-

cução. Implementamos um protótipo do sistema, e o aplicamos a um número de progra-

mas de benchmark para avaliar o impacto em desempenho da instrumentação e a eficácia

da mesma em detectar erros relacionados à segurança de memória.

O sistema proposto visa a segurança espacial de memória (isto é, verificar que os

objetos em memória são acessados dentro de limites válidos), não segurança temporal de

memória (verificar que os objetos em memória não sejam acessados depois de terem sido

desalocados). Esses conceitos são descritos em maior detalhe no Capítulo 2. No geral,

os mecanismos que visam a segurança espacial e temporal de memória são distintos e

ortogonais.

O extrator de anotações em nível de C foi deixado fora do escopo do trabalho

presente. Em nosso protótipo atual, é necessário prover anotações no nível do programa

LLVM IR, em vez do nível mais alto do programa fonte C (isto é, anotamos o programa

LLVM IR emitido pelo Clang, em vez do programa C em si). Esta é uma limitação do

protótipo atual que pode ser suprida em um trabalho futuro.

Outra limitação do presente sistema é que, em certas circunstâncias, o mesmo

assume que as anotações providas pelo programador estejam corretas. Isso se dá em

parte devido a limitações da implementação atual, e em parte porque Týr permite que

um programa instrumentado interaja com código externo não instrumentado, tal como

bibiliotecas do sistema. Se o programador prover anotações corretas para as funções e

dados externos, Týr é capaz de verificar o uso correto dessas funções e dados a partir da

parte instrumentada do código. Porém, como Týr não tem controle sobre o código não

instrumentado, Týr precisa assumir que o código externo de fato está em conformidade

com as anotações providas pelo programador.

Uso

O binário instrumentado contém código que garante que certas condições são sa-

tisfeitas quando ponteiros ou os limites associados aos mesmos são manipulados. Se

uma condição falha em ser satisfeita em tempo de execução, a execução é abortada e

uma mensagem de erro é apresentada. Se o programa é compilado com informação de

depuração ativada, as mensagens emitidas também conterão o nome do arquivo de código

fonte, o nome da função, a linha e a coluna do programa onde a condição foi violada.

Por exemplo, considere um arquivo de código fonte C example.c (Figura 3a), que

consiste da função sum apresentada anteiormente, mais uma função main que define

um vetor de 3 números, chama sum com o mesmo, e imprime o resultado. Considere

Figura 3: Programa C de exemplo e arquivo de anotações de tipos dependentes
(a) example.c

1. #include <stdio.h>
2.
3. int sum(int *array, int len) {
4. int result = 0;
5. for (int i=0; i<len; i++) {
6. result += array[i];
7. }
8. return result;
9. }

10.
11. int main() {
12. int a[] = { 10, 20, 30 };
13. int result = sum(a, 3);
14. printf("%d\n", result);
15. return 0;
16. }

(b) example.dep
sum: Fn i32 (array: Ptr(i32, 0, len), len: i32)

Fonte: O autor

Figura 4: Execução do programa de exemplo sem erros de segurança de memória em
tempo de execução

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. 60

Fonte: O autor

também um arquivo de anotação de tipos dependentes example.dep (Figura 3b), contendo

a anotação a nível de LLVM IR para a função sum.1

Se compilarmos este program com Týr e executarmos o binário resultante, obte-

remos a soma resultante impressa como esperado (Figura 4). Porém, considere que modi-

fiquemos o teste na linha 5 de i<len para i<=len, criando assim um programa que acessaria

uma posição de memória além do limite do vetor. Se recompilarmos e re-executarmos o

programa, Týr detectará a tentativa de acesso à posição de memória inválida e abortará a

execução com um erro (Figura 5). A mensagem de erro inclui diversas informações do

nível LLVM IR que não são diretamente relevantes para o programador, mas são úteis

para entender o funcionamento do protótipo, tais como a linha do código LLVM IR que

causou a violação (linhas 3 e 4 da saída) e uma descrição do teste realizado em termos do

funcionamento interno do protótipo Týr (linha 5). Porém, como compilamos o programa

com informação de depuração (opção -g do Clang), Týr também é capaz de informar

(linha 6) que o acesso problemático jaz na função sum(), linha 6, coluna 19, isto é, o

acesso array[i] fora dos limites.

Considere agora que, em vez de mudar o teste na linha 5 do código de exemplo

(Figura 3a), modifiquemos a chamada de função na linha 13 de sum(a, 3) para sum(a,

1Como observado na seção anterior, na implementação atual é necessário prover as anotações de tipos
dependentes em termos do nível LLVM IR em vez do nível C. Neste exemplo, o mapeamento entre os dois
níveis é direto, sendo a única diferença perceptível entre os níveis C e LLVM IR o uso de i32 em vez de int.

Figura 5: Execução do programa de exemplo com um erro dentro da função sum

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. ERROR: LLVM line 36:
4. %12 = load i32, i32* %11, !dbg !35
5. Check (sub %.tyr.deref80 %9) sgt 0# violated (%.tyr.fail94, type-deref/3)
6. example.c: sum() line 6, column 19

Fonte: O autor

Figura 6: Execução do programa de exemplo com um erro na chamada a sum

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. ERROR: LLVM line 68:
4. %4 = call i32 @sum(i32* %3, i32 4), !dbg !50
5. Check 3# sge 4# violated (%.tyr.fail214, fits/3)
6. example.c: main() line 13, column 18

Fonte: O autor

4), passando um tamanho incorreto junto com o vetor. Após recompilar e executar o

programa novamente, obtemos um erro diferente (Figura 6). Desta vez, o erro jaz na

instrução LLVM IR que chama sum (reportada na linha 3 da saída). O teste (linha 5)

indica um conflito entre o valor inteiro provido (4) e o limite superior do vetor (3), que se

esperava que fosse maior ou igual (sge) do que o inteiro provido. A localização no código

fonte da violação (linha 6) é na função main(), linha 13, coluna 18, isto é, a chamada

incorreta a sum. Týr aborta a execução antes que a função sum seja chamada, uma vez

que o valor provido para o segundo argumento não condiz com o ponteiro passado como

primeiro argumento.

Resultados

Realizamos uma série de benchmarks para medir o impacto em desempenho da

instrumentação inserida por Týr em termos de tempo de execução e consumo de memória

relativos ao programa não instrumentado. Em nossos benchmarks, observamos um over-

head médio de 25.6% em tempo de uso de CPU, com uma mediana de 12.1%. Com

exceção de um dos benchmarks, o overhead observado ficou sempre abaixo de 27%. No

benchmark que demonstrou um overhead maior, encontramos dois bugs de segurança de

memória, ambos os quais foram detectados pela instrumentação de Týr. Em todos os ca-

sos, o overhead em consumo de memória ficou perto de zero. Esses números são similares

aos reportados para Deputy (CONDIT et al., 2007), e no geral melhores que outras abor-

dagens baseadas em software que baseiam-se na manutenção de metadados separados.

As contribuições deste trabalho podem ser summarizadas em:

• O desenvolvimento de uma linguagem de tipos dependentes para LLVM IR capaz

de expressar dependências entre ponteiros e seus limites, incluindo tipos depen-

dentes para ponteiros, funções, vetores e estruturas. Ao visar à linguagem LLVM

IR, em um nível mais baixo, essa abordagem é mais geralmente aplicável a qual-

quer linguagem que possa ser compilada para LLVM IR, desde que os tipos na lin-

guagem fonte sejam mapeados para os tipos dependentes correspondentes no nível

LLVM IR.

• Uma transformação de código LLVM IR para LLVM IR que garante a segurança

espacial de memória através da inserção de verificações de tempo de execução di-

rigidas pela informação de tipos provida pelo programador.

• Um protótipo de implementação do sistema proposto, com avaliação experimental

demonstrando que o sistema pode ser usado para garantir a segurança espacial de

programas C com um overhead de desempenho geralmente razoável.

Organização

O restante deste trabalho está organizado como segue. O Capítulo 2 apresenta o

background conceitual e técnico do trabalho. O Capítulo 3 descreve os tipos dependentes

e a transformação de código Týr proposta neste trabalho. O Capítulo 4 apresenta resulta-

dos experimentais demonstrando a eficácia do sistema. O Capítulo 5 apresenta trabalhos

relacionados. O Capítulo 6 apresenta uma conclusão e direções para trabalhos futuros.

25

1 INTRODUCTION

1.1 Background

Most high-level programming languages enforce spatial memory safety: they en-

sure that a program never accesses regions of memory outside the limits of objects previ-

ously allocated by the program. This is usually achieved through a combination of mech-

anisms, such as a strong type system, automatic memory management though garbage

collection, and array bounds checking. These mechanisms have static (compile-time)

componentes, such as a type system which disallows constructions that might lead to

memory safety violations (for example, casting integers to pointers and then using the re-

sulting pointer to access memory), and dynamic (run-time) components, such as run-time

checks to ensure that an object is accessed within its bounds. Dynamic checks require

that the program keep enough metadata at run-time to allow checking the validity of a

memory access. For instance, in the runtime of languages like Java, arrays are typically

stored in memory as an integer representing its length followed by the actual elements of

the array; in this way, when an access to a position of the array is performed, the runtime

has enough information to compare the index of the desired position against the stored

length of the array to ensure that the index is valid, and signal an error in case it is not

valid.

By contrast, the C programming language does not enforce memory safety: it is

up to the programmer to keep track of the bounds of allocated regions and ensure that

no invalid memory access is performed at run-time. Data structures include no implicit

metadata in C: an array of 3 integers is just three contiguous integers in memory, with

no extra metadata indicating how many elements are present or where the array ends.

Keeping track of this extra information is left to the programmer.

C programmers employ a number of idioms to keep track of such information.

A common idiom is to pass a pointer to an array along with its length as arguments to

array-handling functions. Another common idiom is to store the pointer to an array and

its length as fields in a single data structure. Yet another idiom is to store a distinguished

null value at the end of an array to indicate its end; this is typically used for strings, where

the ASCII NUL (all bits zero) character marks the end of the string. Programmers then

have to manually include checks to ensure those bounds are respected.

Consider for example the main function in C programs. This function is called

26

with two arguments, representing the command-line arguments passed to the program.

The first function argument, conventionally called argc, is an integer representing the

number of command-line arguments passed in. The second function argument, argv, is a

pointer to an array of argc elements, each of which is a pointer to a null-terminated string.

The bounds of the array accessible through the second argument are represented by the

integer passed in as the first argument, and the bounds of each string is represented by the

null byte stored at its end. However, it is up to the programmer to use this information

correctly to ensure that bounds will not be violated; the language will not prevent a pro-

gram from accessing the array beyond the limit given by argc, or past the null-terminator

of a string. Neither will it prevent a function like main from being called with an argc

value which does not match the actual length of the array pointed to by argv.

As another example, consider the POSIX function writev, which writes data col-

lected from various buffers to an open file descriptor. This function takes three arguments.

The first one is the file descriptor the data will be sent to. The second argument is a pointer

to an array of struct iovec elements, each of which is a data structure containing a pointer

to a region of memory and an integer representing its length. The third argument is an

integer indicating how many struct iovec elements are present in the array pointed to

by the second argument. Again, it is up to the programmer to ensure that the pointers

and lengths within each struct iovec are consistent with each other, and that the number

of struct iovecs pointed to by the second argument matches the integer passed in as the

third argument; the language will not prevent incorrect lengths from being passed in as

arguments.

On the one hand, this lack of implicit metadata and implicit run-time checks gives

the programmer greater control. The lack of implicit metadata associated with arrays and

other data allows finer control of the memory layout of data structures. This is especially

important in systems programming, i.e., programming of low-level system components

such as operating system kernels and programming language runtimes, where precise

control over data structure layout may be required. The lack of implicit run-time checks

also allows the programmer to decide when and where to perform checks, which can lead

to performance benefits.

On the other hand, this is a frequent source of bugs in C and C++ programs, since it

is very easy to leave out or incorrectly perform such checks, or to mismanage the manually

tracked bounds information. The result is a memory-unsafe program, with consequences

varying from crashes to silent data corruption and security vulnerabilities. A large number

27

of security vulnerabilities found in real-world software is caused by buffer overflows and

overreads, i.e., by exploiting the absence or incorrectness of bounds checking of some

program buffer to gain access to a region of memory that should not be accessible, thus

either obtaining information that should not be revealed, or altering the subsequent be-

havior of the program, potentially enabling execution of arbitrary code of the attacker’s

choice. An example of this is the Heartbleed bug (DURUMERIC et al., 2014) discov-

ered in 2014 in the widely-deployed OpenSSL library for secure communication between

clients and servers on the Internet, in which the absence of a bounds check allowed an

attacker to obtain the contents of arbitrary regions of the server’s memory, potentially re-

vealing sensitive data such as user names, passwords, and the private keys of SSL security

certificates.

A number of techniques have been proposed to provide memory safety in C (JIM

et al., 2002; NECULA et al., 2005; NAGARAKATTE et al., 2009). Typically, such sys-

tems keep their own metadata tracking the program’s bounds information and instrument

the program with run-time checks to ensure that memory safety is not violated, thus sim-

ulating the mechanisms employed by higher-level languages such as Java. This has a

number of drawbacks:

• If this metadata is kept together with the data it refers to, it changes the represen-

tation of data structures. This is undesirable in systems programming where, as

mentioned before, control over memory layout is often necessary. This also intro-

duces interoperability problems with external code, such as libraries and operating

system calls, which do not expect such metadata to be present in data structures.

• If the metadata is kept in a separate data structure to avoid these problems, there is

an increased lookup cost to obtain the metadata associated with a given buffer.

• Unlike higher-level programming languages, C has pointers, which can point into

the middle of an object. Whereas in a language like Java the runtime can efficiently

retrieve the metadata associated with an array by looking at a fixed position from

the beginning of the array, C pointers do not necessarily point to the beginning of

the array, and it is not generally possible to find the beginning of the array given a

pointer to an arbitrary part of it. Therefore, rather than associating metadata with

arrays, every pointer must have associated lower and upper bounds information

associated with it (known as a fat pointer representation), which brings a large

memory overhead.

28

A different approach relies on the observation that, in a memory-safe C program,

all the metadata required is already present, in the form of the idioms that C programmers

use to keep track of bounds information. However, since this information is kept in an

ad-hoc way by the programmer without language support, the compiler cannot verify

the correctness of its usage. If the programmer had a way to inform the compiler how

this information is being used, then the compiler could mechanically verify that memory

accesses are within bounds by checking against the programmer-provided metadata, and

that the metadata provided is consistent with the data it is associated to. This can be

achieved with dependent types.

Dependent types (ASPINALL; HOFMANN, 2004) are types indexed by expres-

sions. In the same way that languages with parametric polymorphism, also known as

generics in the object-oriented world, allows parameterizing a type with another type

(e.g., Array<Int>, an array of integers), a language with dependent types allow param-

eterizing types with expressions (e.g., Array<Int, n>, an array of n integers, where n is

some program variable). Now, if p is a C pointer to an array of integers whose length is

stored in a variable len, we might give p a type like Ptr<int, 0, len>, meaning a pointer

to a region of integers whose lower bound is 0 and whose upper bound is len. If the pro-

grammer annotates the variable p with such a type, the compiler has enough information

to know where to look for the bounds of the region associated with p. When the program

tries to access memory through this pointer using an expression like p[i], the compiler can

then insert a run-time check like assert(i≥0 && i<len) to ensure that the index i is valid

before performing the access. This provides a solution to the problems mentioned before:

• Because the system uses the metadata already present in the program as supplied by

the programmer, there is no need to change the layout of data to carry extra infor-

mation. In this way, programmer’s control over memory layout and compatibility

with external libraries is retained.

• Because no extra metadata other than that already present in the program is intro-

duced, the impact in memory usage is minimal.

• Finally, because the checks inserted by the compiler are in terms of the same vari-

ables used by the program, rather than using separately maintained metadata, many

of the inserted checks can be proven redundant by the compiler and optimized away

by standard compiler optimization techniques.

The last point requires some clarification. Consider a C function to compute the

29

sum of the elements of an array of integers, using the typical idiom of passing the length

of the array along with a pointer to it as separate arguments (Figure 1.1a). The function

uses an index variable i initialized with 0, and at the end of each iteration the index is

incremented. Finally, the iteration stops when the condition i < len becomes false. This

is a typical idiom for iterating over the elements of an array in C.

Now consider that we give this function a dependent type like:

sum: Fn int (array: Ptr(int, 0, len), len: int)

meaning that sum is a function taking two arguments: array, a pointer to integers whose

bounds are 0 and len; and len, an integer. Given this information, the compiler can

instrument the code such that, prior to the point where array[i] is accessed, a run-time

check is inserted to verify that i is within the pointer’s bounds. This will result in code like

that in Figure 1.1b. However, because the inserted check is written in terms of i and len,

the same variables used in the loop control flow, standard compiler optimizations are able

to tell that the check is actually redundant in this case: it is always the case that i>=0 &&

i<len within the body of the loop, since the loop iterates for i from 0 to len (exclusive).

Therefore, the compiler can optimize this check away. This elimination of redundant

checks would be harder to perform if the checks inserted by the compiler were written

in terms of implicit metadata maintained separately by the instrumentation, as it would

not be evident from the control flow that the check is always true inside the loop. Thus,

checks that can be proven true at compile-time can be removed, reducing the performance

impact of the instrumentation, and checks that cannot be proven true at compile-time are

left in as checks to be performed at run-time, thus ensuring that memory accesses are

safe. For instance, suppose, in Figure 1.1a, that the programmer had mistakenly written

for (int i=0; i<=len; i++), substituting <= for <, thus leading to an off-by-one error where

a position one past the last valid index of the array is accessed. In this case, the inserted

check would not have been optimized away by the compiler, and would ensure execution

is interrupted before the invalid access occurs.

Deputy (CONDIT et al., 2007) introduces such a dependent type system for C,

which allows programmers to express such dependent pointer types by means of anno-

tations in the C source code. However, Deputy was implemented using CIL (NECULA

et al., 2002), a framework for program analysis and transformation specific to the C lan-

guage. Other languages, such as C++, present the same memory safety problems of C,

so it would be beneficial to be able to apply the same techniques in a more language-

independent way.

30

Figure 1.1: Example C code and resulting instrumented program
(a) Original program

int sum(int *array, int len) {
int result = 0;
for (int i=0; i<len; i++) {

result += array[i];
}
return result;

}

(b) Instrumented program

int sum(int *array, int len) {
int result = 0;
for (int i=0; i<len; i++) {

assert(i>=0 && i<len);
result += array[i];

}
return result;

}

Source: The author

1.2 Proposal

This works proposes Týr, a program transformation based on dependent types for

the LLVM Intermediate Representation language. LLVM (LATTNER; ADVE, 2004) is

a language-agnostic framework for code analysis, transformation and compilation, de-

signed around a well-defined intermediate language. Clang (CLANG, 2015) is a C/C++

compiler which emits LLVM IR code, and employs the LLVM infrastructure to perform

optimizations and emit machine code. By targeting the lower-level LLVM IR language,

Týr can be applied to ensure spatial memory safety of various languages that can be com-

piled to LLVM IR, such as C and C++. Týr introduces a rich type language for describing

bounds information in LLVM IR programs, and implements a code transformation that

instruments the program with run-time checks to ensure conformance with the described

bounds.

Figure 1.2 shows the flow of the compilation process of a program in the Týr

framework. The components in light gray are part of the normal compilation process in

Clang and LLVM: a C program is given as input to the Clang compiler, which emits the

corresponding lower-level LLVM IR code. This code is then fed to the pipeline of LLVM

optimizations, generating an optimized LLVM IR program, which is finally passed on to

the LLVM code generation step, which emit machine code for a given architecture.

The components in dark gray are those added by Týr. First, the C source code must

be augmented with dependent type annotations provided by the programmer, such as that

provided for the sum function above. The C program is fed to Clang as usual for LLVM

IR code generation; in addition, the dependent type annotations are extracted from the C

program and mapped into equivalent type annotations expressed in terms of the LLVM

IR level program. Then the LLVM IR program generated by Clang and the extracted

annotations are fed into Týr proper, which sweeps the LLVM IR program checking that

31

Figure 1.2: Flow of the compilation process in Týr

foo.ll+
instrumented

foo.c
Clang foo.llClang

Týr

foo.depAnnotation
extractor

C-level
annotations

LLVM
optimizations

foo.ll*
optimized

Code gen.binary

C-specific part

Source: The author

the program conforms to the provided annotations. It also instruments the program with

run-time checks needed to ensure that the constraints expressed in the annotations are

enforced at run-time, thus generating an instrumented LLVM IR program. This program

is then fed to the usual pipeline of optimizations, with possible elimination of redundant

checking code, and passed on to code generation to emit an instrumented binary.

It should be noted that the annotation extractor, which maps dependent types ex-

pressed in terms of C into equivalent types expressed in terms of LLVM IR, is the only

component in the architecture of Týr that is specific to the C programming language. In

principle, Týr can be adapted to any other language that compiles to LLVM IR, as long as

a mapping can be defined from the high level language types into LLVM IR level types,

by replacing the annotation extractor with one appropriate to the language one wishes to

support.

1.3 Scope and limitations

The goal of the present work is to focus on the LLVM IR level component of the

architecture. We define a set of dependent type based annotations which can be used to de-

scribe relationships between pointers and their associated metadata in LLVM IR, a set of

rules that govern the usage of values and the insertion of run-time checks guided by those

32

types, and an algorithm for transforming an input LLVM IR program plus programmer-

provided type annotations into an output LLVM IR program instrumented with run-time

checks. We implement a prototype of the system, and apply it to a number of benchmark

programs to evaluate the performance impact of the instrumentation and its effectiveness

in catching errors related to memory safety.

The proposed system is aimed at spatial memory safety (i.e., checking that ob-

jects in memory are accessed within valid bounds), rather than temporal memory safety

(checking that objects in memory are not accessed after they have been deallocated).

These concepts will be described in more detail in Chapter 2. In general, the mechanisms

for addressing spatial and temporal memory safety are distinct and orthogonal.

The C-level annotation extractor has been left outside the scope of the present

work. In our current prototype, we have to provide annotations at the level of the LLVM

IR program, rather than at the level of the higher level C source program (i.e., we annotate

the LLVM IR program emitted by Clang, rather than the C program itself). This is a

limitation of the current prototype which can be addressed by future work.

Another limitation of the present system is that it trusts the programmer to pro-

vide correct annotations in certain cases. This is partly due to limitations in the current

implementation, and partly because Týr allows an instrumented program to interact with

non-instrumented external code, such as system libraries. If the programmer provides

correct annotations for the external functions and data, Týr can enforce the correct usage

of those functions and data from the instrumented part of the code. However, since Týr

has no control over the non-instrumented code, Týr has to trust that the external code

actually conforms to the the annotations provided by the programmer.

1.4 Usage

The instrumented binary contains code that ensures that certain conditions hold

when pointers or their associated bounds are manipulated. If a condition fails to hold at

run-time, execution is aborted and an error message is presented. If the code is compiled

with debug information on, the emitted messages will also contain the source code file,

function name, line and column of the program where the condition was violated.

For example, consider a C source code file example.c (Figure 1.3a), which con-

sists of the sum function presented before, plus a main function which defines an array

of 3 numbers, calls sum with it, and prints the result. Consider also a Týr dependent type

33

Figure 1.3: Example C program and dependent type annotation file
(a) example.c

1. #include <stdio.h>
2.
3. int sum(int *array, int len) {
4. int result = 0;
5. for (int i=0; i<len; i++) {
6. result += array[i];
7. }
8. return result;
9. }

10.
11. int main() {
12. int a[] = { 10, 20, 30 };
13. int result = sum(a, 3);
14. printf("%d\n", result);
15. return 0;
16. }

(b) example.dep
sum: Fn i32 (array: Ptr(i32, 0, len), len: i32)

Source: The author

Figure 1.4: Execution of the example program with no run-time memory safety errors

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. 60

Source: The author

annotation file example.dep (Figure 1.3b), containing the LLVM IR level annotation for

the sum function.1

If we compile this program with Týr and run the resulting binary, we get the result-

ing sum printed out as expected (Figure 1.4). However, consider that we modify the test

in line 5 from i<len to i<=len, thus creating a program which would access a memory po-

sition one past the end of the array. If we recompile and run it, Týr will catch the attempt

to access the invalid memory position and abort execution with an error (Figure 1.5). The

error message includes a lot of LLVM IR level information which is not directly relevant

to the programmer, but is useful to understand the functioning of the prototype, such as

the line of LLVM IR code which caused the violation (lines 3 and 4 of the printout) and a

description of the performed check in terms of the internal functioning of the Týr proto-

type (line 5). However, because we compiled the program with debug information (Clang

option -g), Týr is also able to tell us (line 6) that the problematic access lies in function

sum(), line 6, column 19, i.e., the out-of-bounds array[i] access.

Consider now that rather than changing the check in line 5 of the example code

(Figure 1.3a), we instead change the function call in line 13 from sum(a, 3) to sum(a,

4), passing an incorrect size along with the array. After recompiling and running the

1As noted in the previous section, in the current implementation we have to provide the dependent type
annotations at the LLVM IR level rather than the C level. For this example, the mapping between the two
levels is straightforward, the only noticeable difference between C level and LLVM IR level types being the
use of i32 instead of int.

34

Figure 1.5: Execution of the program with an error inside the function sum

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. ERROR: LLVM line 36:
4. %12 = load i32, i32* %11, !dbg !35
5. Check (sub %.tyr.deref80 %9) sgt 0# violated (%.tyr.fail94, type-deref/3)
6. example.c: sum() line 6, column 19

Source: The author

Figure 1.6: Execution of the program with an error in the call to sum

1. $./tyrcc.sh -g example.c
2. $./example-tyr
3. ERROR: LLVM line 68:
4. %4 = call i32 @sum(i32* %3, i32 4), !dbg !50
5. Check 3# sge 4# violated (%.tyr.fail214, fits/3)
6. example.c: main() line 13, column 18

Source: The author

program again, we get a different error (Figure 1.6). This time, the error lies in the LLVM

IR instruction which calls sum (reported in line 3 of the printout). The check (line 5)

indicates a conflict between the provided integer value (4) and the upper bound of the

array (3), which was expected to be greater or equal (sge) than the provided integer. The

source code location of the violation (line 6) is in function main(), line 13, column 18,

i.e., the incorrect call to sum. Týr aborts execution before the function sum is called,

since the provided value for the second argument does not match the pointer given as the

first argument.

1.5 Results

We performed a set of benchmarks to measure the performance impact of the

instrumentation inserted by Týr in terms of execution time and memory consumption

relative to the non-instrumented programs. In our benchmarks, we observed an average

overhead of 25.6% in CPU time, with a median of 12.1%. For all but one of the bench-

marks, the observed overhead was below 27%. In the one benchmark which showed a

greater overhead, we actually encountered two memory safety bugs, both of which have

been caught by Týr’s instrumentation. In all cases, the memory consumption overhead

was near zero. These figures are similar to the ones reported for Deputy (CONDIT et al.,

2007), and generally better than other software-based approaches which rely on keeping

separate metadata.

35

The contributions of this work can be summarized as:

• The design of a dependent type language for LLVM IR for expressing dependen-

cies between pointers and their bounds, including dependent types for pointers,

functions, arrays and structures. By aiming at the lower LLVM IR level language,

this approach is more generally applicable to any language which can be compiled

to LLVM IR, as long as the types in the source language are mapped to the corre-

sponding dependent types at the LLVM IR level.

• A LLVM IR to LLVM IR code transformation which ensures spatial memory safety

by inserting run-time checks directed by the type information provided by the pro-

grammer.

• A prototype implementation of the proposed system, with experimental evaluation

demonstrating that the system can be used to ensure spatial memory safety of C

programs with generally reasonable performance overhead.

1.6 Outline

The rest of this work is organized as follows. Chapter 2 presents the conceptual

and technical background of this work. Chapter 3 describes the Týr dependent types and

code transformation. Chapter 4 presents experimental results demonstrating the efficacy

of the system. Chapter 5 presents related work. Chapter 6 presents a conclusion and

directions for future work.

36

2 BACKGROUND

This chapter presents the conceptual and technical background of the current work.

Sections 2.1 and 2.2 present the concept of memory safety and an overview of the mech-

anisms used to ensure it. Section 2.3 deals with dependent types. Section 2.4 presents an

overview of how pointers and arrays are used to manipulate memory in C. Section 2.5 de-

scribes the LLVM IR language and the subset of LLVM IR used in this work. Section 2.6

discusses the mapping between C and LLVM constructs. Section 2.7 presents a summary.

2.1 Defining memory safety

There is no single definition of memory safety among authors. Broadly speaking:

Broad definition. A program is said to be memory-safe if it only makes

access to regions of memory allocated to it. A language is said to be

memory-safe if its semantics guarantee that valid programs written in it

are memory-safe.

This is a very lax definition, however. For instance, by this definition, if two arrays,

of ten integers each, are allocated contiguously in memory, a program attempting to access

the eleventh position of the first array would still be considered memory safe, because,

although the access is out of the bounds of the first array, it still falls within a region of

memory allocated to the program (specifically, to the second array). Such a definition is

useful in the context of guaranteeing that multiple programs sharing the same memory

space do not step over each other’s memory (KUMAR; KOHLER; SRIVASTAVA, 2007),

but it does not help in preventing buffer overflows and other memory corruption within a

single program.

Usually, we are interested in a stricter definition of memory safety which accounts

for these situations. It is harder to make such a definition without talking about concepts

specific to a particular programming language, but one might generalize definitions such

as in Criswell, Geoffray e Adve (2009) as:

Stricter definition. A program is said to be memory safe if every access

to memory happens through a reference to a previously allocated object,

the object has not been deallocated, and the region of memory accessed

through such a reference has been allocated to that specific object.

37

Such a definition is still open to multiple interpretations. For instance, two con-

tiguous arrays belonging to a single data structure might be considered part of a single

object, and therefore out-of-bounds accesses to the first array which still fall within the

region allocated to the object as a whole might not be considered a violation of memory

safety. Some works aim for memory safety in this sense (BERGER; ZORN, 2006), but

others rule out such out-of-bounds accesses. In this work, we are interested in this even

stricter variant, where fields in a single data structure are treated as individual objects with

respect to memory safety.

Memory safety has a spatial and a temporal aspect. Spatial memory safety refers

to ensuring that no out-of-bounds access to memory is performed (with what is consid-

ered out of bounds varying with the definition of memory safety used), whereas temporal

memory safety refers to ensuring that no access is performed to memory (or to an object)

which has already been deallocated or has not been allocated yet.

2.2 Mechanisms for ensuring memory safety

The mechanisms for ensuring each form of memory safety are distinct. For in-

stance, guaranteeing spatial memory safety might involve storing bounds information for

arrays and adding run-time checks to ensure that indices are within bounds, while guar-

anteeing temporal memory safety might involve employing automatic memory managent

mechanisms, such as reference counting or garbage collection, which ensure that an ob-

ject in memory is only deallocated after no references to it remain.

Higher-level programming languages usually enforce both kinds of memory safety,

whereas proposed solutions for memory-safe low-level programming vary in what they

provide. Some, such as CCured (NECULA et al., 2005) and Cyclone (JIM et al., 2002),

attempt to provide both. Others, such as Deputy (CONDIT et al., 2007), provide only spa-

tial memory safety, and can be used together with a complementary solution for temporal

memory safety, such as a conservative garbage collector (BOEHM; WEISER, 1988). Like

Deputy, this work addresses specifically spatial memory safety.

The remainder of this section presents an overview of various mechanisms used

for ensuring temporal and spatial memory safety.

38

2.2.1 Temporal memory safety

Temporal memory safety violations arise from the use of references to objects that

are not present in memory, either because they have never been allocated, or because

they have already been deallocated. The first case surfaces in the form of uninitialized

pointers; this can be avoided by ensuring, when a pointer is created, that it is initialized

either with the address of a valid object in memory, or with a special null value, and that

attempts to dereference a null pointer will be detected and handled in some way by the

environment; languages like Java do precisely this. The case of access after deallocation

poses a greater difficulty. In C and C++, the region of memory allocated to an object

may be released (by explicit request from the programmer) even though references to it

remain in the program; such references are known as dangling pointers. Solutions to this

problem ensure no memory access through dangling references are performed, either by

taking over control of memory deallocation to ensure that memory is not released while

references remain to it, or by constraining the creation of new references to allocated

objects.

For instance, in languages such as Java and Haskell, there is no mechanism for

the programmer to manually release memory allocated by objects. Rather, the runtime

memory management system keeps track of memory allocations. Periodically, a garbage

collector looks for objects which are allocated in memory but are not accessible by the

program, because all references to it are gone, and reclaims the memory taken by those

objects. Because memory is only released after no references remain to them, no temporal

memory safety violations are possible. A drawback of this approach is that the program-

mer loses control over when memory is to be deallocated, which may be a problem in

memory-constrained systems and when the timing of such operations is important, such

as in real-time systems.

A different approach, taken for instance by ATS (CUI; DONNELLY; XI, 2005), is

using linear types to enforce a policy in the creation and usage of references to objects,

such that the compiler knows statically what is the last use of an object, and can emit code

to reclaim the memory used by it immediately after.

39

2.2.2 Spatial memory safety

Spatial memory safety violations arise from accessing a region of memory outside

the bounds of an allocated object (or, more strictly, accessing through a reference to an

object a region of memory not pertaining to it). The most common case of this is in the

indexing of arrays, but it can happen in other situations where a reference may point to

objects of variable size, such as unions of differently-sized objects, or in object-oriented

languages which allow downcasting an object to a subtype with more fields.

Dynamic checks. One way to solve this problem for arrays is to store the array

in memory as a header, containing its length and possibly other metadata, and a payload,

consisting of the elements themselves. When an access is performed to the array, run-time

checks are performed to ensure that the index of the requested position is a valid index

in the array by comparing it with the stored length; if this turns out to be false, a run-

time exception is signaled. Languages like Java, Python and Scheme work like this. If

implemented naively, this incurs an overhead on every array access. However, it is often

possible to prove statically that an access is within bounds, and avoid the run-time check

in those cases. For example, given a loop bounded by the length of the vector, like

for (i=0; i<vector.length; i++) {

vector[i] = i*i;

}

a compiler can easily verify that the variable i only assumes valid indices to vector, and

therefore a run-time check is not necessary.

Similarly, unions may be stored with a tag indicating which element of the union

is active, and checking it at run-time before accessing its contents. Downcasts can also be

similarly checked for validity.

Static enforcement. Another way to solve the problem is to ensure that code

that might violate memory safety does not get compiled or run, or designing language

constructs that make it impossible to express memory-unsafe operations. For instance,

tagged unions in ML and Haskell allow the definition of unions of differently-sized types,

but it is only possible to access the contents of such values by pattern-matching against the

tag of the value; there are no linguistic facilities in these languages to perform an access

using the wrong fields of the tag. More generally, strongly-typed languages guarantee

that the memory used by a value of one type cannot be reinterpreted as a value of another

type, as is possible for instance in C.

40

Some languages employ dependent types to ensure that only valid indices are used

to index an array. Purely static dependent type systems, such as in Idris (BRADY, 2011)

and ATS (CUI; DONNELLY; XI, 2005), effectively ensure that the programmer performs

a bounds check to verify that an index is valid before trying to access an array, and reject

programs when they cannot prove that this is the case. Systems which mix static and

dynamic checking, such as Deputy, accept programs when they cannot either prove or

disprove that an access is valid, but insert run-time checks in such cases to ensure that an

out-of-bounds access is not performed.

2.3 Dependent types

This section presents a theoretical account of dependent types. This information

is not strictly necessary for understanding the Týr type system, but is presented here for

completeness.

A dependent type system (ASPINALL; HOFMANN, 2004) is one in which types

can be indexed by expressions. For instance, one might define a type Array n of arrays of

n elements. By allowing types to be parameterized by expressions, rather than only other

types as in the case of parametric polymorphism, dependent types enable us to assign

richer and more precise types to programs, thus allowing more properties of programs

to be mechanically verified, either statically (at compile-time) or dynamically (at run-

time). At the same time, this gain in expressiveness may lead to undecidability problems

in the type system, if the kinds of expressions that are allowed to appear in types are

unconstrained.

An inspiration for dependent type systems comes from the Curry–Howard iso-

morphism (SØRENSEN; URZYCZYN, 2006), which relates propositions in constructive

logic to types, and logical proofs of proposition to terms pertaining to the corresponding

types. For instance, a type A → B of functions from A to B can be interpreted as the

corresponding to the logical implication A → B, and a function inhabiting that type can

be interpreted as a proof of that implication. The intuition behind this is that a function of

type A → B can be seen as a procedure that takes a proof of A and produces a proof of

B, and thus behaves as a proof that given A, one may obtain B.

In this view, a dependent type system is the type-theoretical equivalent of first-

order predicate logic: predicates over terms are mapped to types indexed by value terms.

The type-theoretical equivalent of universal quantification is the dependent product type,

41

a generalization of arrow types: whereas A → B denotes a function taking a value of

type A and returning a value of type B, the dependent product type Πx : A. B does the

same, but gives a name, x, to the input value of type A, thus allowing it to be referenced

within the output type B. This corresponds to the logical proposition ∀x ∈ A. B, where

x can appear in B. For instance, a function taking an integer n and producing an array of

size n might be given the type Πn : Int. Array n. The simple arrow type A → B is a

special case of Πx : A. B where x does not appear in B.

Likewise, the type-theoretical equivalent of existential quantification is the de-

pendent sum type, Σx : A. B, a generalization of pairs where the type of the second

component of the pair can be dependent on the value of the first component, i.e., x can

appear in B. The intuition behind this correspondence is that the fact that there exists a

value x of type A such that P (x) is true, or ∃x : A. P (x), can be represented by a pair

of one such x and a proof of P (x), i.e., a term inhabiting the type P (x). Analogously to

arrow types, plain cartesian pairs are a special case of Σx : A. B where x does not appear

in B.

Types and kinds. In the context of type systems with parametric types, it is

often useful to classify types into kinds, in the same way that terms are classified into

types (PIERCE, 2002, ch. 29). Kinds allow specifying which type expressions represent

complete types, and which are type constructors which have to be applied to other types

to make a complete type. Complete types such as Int orBool or Pair Int Bool are given

the kind ∗, whereas a type constructor such as Pair is given the kind ∗ ⇒ ∗ ⇒ ∗, meaning

it is a type expression which, when applied to two type expressions of kind ∗ (i.e., two

complete types), yields a type of kind ∗ (i.e., a complete type, such as Pair Int Bool).

In type systems with conventional parametric polymorphism, kind expressions

always only involve the kind ∗ and the kind constructor⇒. In a dependent type system,

types can also be parameterized by terms (which have a type), and therefore types such

as Int can also appear in the kind of a type expression. For instance, a type constructor

like Array might have a kind ∗ ⇒ Int ⇒ ∗, meaning it takes a type (∗) and an integer

expression (Int) to produce a complete type (∗).

Application examples. The prototypical example of application for dependent

types is the Vector type family of lists of a fixed length. For simplicity of exposition,

we shall consider vectors with elements of a fixed type Elem, rather than polymorphic

vectors. One might define the type family of vectors as follows, where :: stands for the

kinding relationship, much in the same way as : stands for the typing relationship:

42

V ector :: Nat⇒ ∗

Now we could define a function concat, which concatenates two vectors, as having

the type:

concat : Πm : Nat. Πn : Nat. V ector m→ V ector n→ V ector (m+ n)

indicating that concat is a function that takes vectors of sizes m and n, for any natural

numbers m and n, and returns a vector whose size of size m+ n. This allows expressing

constraints on the size of vectors at the type level. For instance, a function returning the

first element of a vector might be given the type:

first : Πn : Nat. V ector(n+ 1)→ Elem

which specifies at the type level that first can only be applied to vectors with at least one

element (since n + 1 is always greater than or equal to 1 for a natural n). That is, rather

than relying on a run-time exception mechanism to catch applications of first to empty

vectors, we forbid at the type level the application of first to such vectors. Dependent

types thus allow the specification of more complex program invariants at the type level

than is possible in simpler type systems.

Expressivity and decidability. Dependent type systems vary in their degree

of expressivity. Some dependently-typed programming languages allow any expression

to appear in types, which may lead to undecidability because an expression may fail to

terminate (AUGUSTSSON, 1998). Other languages allow a subset of expressions to be

used in types, thus avoiding undecidability at the expense of expressivity.

Most dependently-typed languages require type checking to happen entirely at

compile-time. This is usually accomplished by either restricting type expressions to make

them more amenable to static type checking, or by building some theorem proving mech-

anism into the language. By contrast, some systems allow type checking to be postponed

to run-time when they are unable to check some property at compile-time. In this way,

they provide greater flexibility, while trading off static guarantees.

In this work, we will employ dependent types to describe the relationships between

pointers and their bounds in LLVM IR programs. The remainder of this chapter will

43

discuss memory manipulation in C, the LLVM IR language, and the relationship between

C and LLVM IR. In Chapter 3, we will define a set of dependent types to describe bounds

in pointers, arrays, functions and data structures, and use this information to define a code

transformation to ensure spatial memory safety of LLVM IR programs.

2.4 Memory in C: pointers and arrays

Pointers are a typed abstraction of memory addresses, and are the main mechanism

for dealing with memory in C. We write ty∗ for the type of pointers to objects of type ty;

we say that ty is the base type of the pointer. A pointer may be null – meaning it has a

distinguished value (all bits zero in most modern architectures) which is considered not

to point to any valid object – or it can point to an object of its base type.

A pointed object can be part of an array, i.e., a sequence of contiguous objects of

the same type in memory. Pointers to adjacent elements of the array can be obtained by

performing pointer arithmetic: if a is a pointer to objects of type ty, and n is an integer,

then a+n is a pointer to the nth object of type ty after the one pointed to by a. The integer

n can also be negative, which results into a pointer to an object before a in memory.

Alternatively, one may subtract an integer from a pointer. In terms of the memory address

underlying the pointer, addition and subtraction happens in multiples of the size of the

base type. For instance, if a is a pointer to 32-bit (4 byte) integers, then a+1 points 4 bytes

after a.

If a pointer a points to an object of type ty, then it can be dereferenced (*a),

thus retrieving the object pointed to. Array indexing is just a convenient notation for

performing pointer arithmetic followed by dereference: a[i] is syntactic sugar for *(a+i).

One can also overwrite the object pointed to with a new value, with either the dereference

syntax *(a+i) = val, or with its equivalent array indexing syntactic sugar a[i] = val.

C enforces no constraints on pointer arithmetic: it is possible to add or subtract an

integer to a pointer such that the resulting pointer points to a region of memory outside the

bounds of the array the original pointer pointed to. Creating such an out-of-bounds pointer

is considered undefined behavior in C: “behavior, upon use of a nonportable or erroneous

program construct or of erroneous data, for which [the C language] International Standard

imposes no requirements” (ISO/IEC, 2011, §3.4.3). In principle, this means the compiler

is free to emit any code under such circumstances. In practice, what usually happens is

that a pointer is created to a region of memory that does not belong to the region the

44

base pointer was associated with. Dereferencing such an out-of-bounds pointer may yield

garbage data, data from other parts of the program, or it may crash the program. Storing

into the out-of-bounds pointer may corrupt other data in the program, or may also lead to

a crash.

As a special exception, constructing – but not dereferencing – a pointer to the

region of memory immediately after a valid object is defined behavior according to the

C language standard. This is because it is a common idiom to iterate over an array by

incrementing a pointer until it reaches the end of the array, i.e., until it points immediately

past the last element of the array.

Arrays are sequences of contiguous objects in memory. In C, arrays are not first-

class values: they cannot be passed as arguments or returned from functions directly.

Instead, pointers to arrays are passed or returned. Array indexing, as seen above, is a

form of pointer arithmetic; a reference to an array is equivalent to a pointer to its first

element. Nevertheless, arrays do constitute a data type distinct from pointers in C. Arrays

have a base type and a size, the number of elements it has. The compile-time sizeof

operator, which returns the size in bytes of an object or type, when applied to an array,

returns the size of the base type times the number of elements of the array. For instance,

given a declaration like:

int a[10];

sizeof(a) yields 40 (assuming 32-bit integers), even though a usually behaves like a

pointer. However, when arithmetic is performed with an expression with an array type, the

result has a pointer type: sizeof(a+0) yields the size of a pointer (4 in a 32-bit architecture,

8 in a 64-bit architecture), even though a and a+0 point to the same address.

These distinctions are important because at the LLVM IR level, there is a clear

separation between arrays and pointers. Both are first-class values, and the conversion

from an array to a pointer to its first element, which is implicit in C, is an explicit operation

in LLVM IR.

Multidimensional arrays are treated conceptually as arrays of arrays. For instance,

given a declaration like:

int m[5][10];

m will have the type int [5][10], an array of 5 elements where each element is itself an

array of 10 elements. sizeof(m) will be 5× 10× sizeof(int). m will be equivalent to the

address of the beginning of the array.

45

Figure 2.1: A 2-dimensional array (left) and an array of pointers to two 1-dimensional
arrays (right). C accesses both kinds of structures using the same syntax.

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

*

*

3 23 42 81

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

*

*

3 23 42 81

Source: The author

C uses the syntax m[i][j] to access the element in position j within the sub-array

i. Remember, however, that the array index syntax is syntactic sugar to pointer arithmetic

plus dereference. To make multidimensional indexing work, C makes it so that m[i] (or,

equivalently, *(m+i)) yields a pointer to the ith sub-array, so that m[i][j] gets the jth

element within that sub-array. Since m+i (without the dereference) would already be a

pointer to the ith sub-array, m+i and *(m+i) represent the same address. Their types,

however, differ: m+i is a pointer to arrays of 10 integers, whereas m[i] is an array of 10

integers itself.

In this way, C uses the same syntax to access the elements in a true multidimen-

sional array and to access elements through an array of pointers to other arrays. That is,

data structures like those in Figure 2.1 are accessed in the same way syntactically: C will

convert arrays to pointers in such a way as to make it possible to access each sub-array

of the 2-dimensional array as if they were individual arrays in a transparent way. This is

not the case in LLVM IR, where multidimensional array indexing is a completely distinct

operation from access through an array of pointers.

2.5 The LLVM Intermediate Representation language

LLVM is a widely used language-agnostic framework for program compilation,

analysis and transformation designed around a uniform Intermediate Representation (IR),

a typed assembly-like language for an abstract machine. Various backends exist for trans-

lating LLVM IR to machine code of different architectures. The use of a uniform, well-

defined language for code representation makes it relatively easy to extend LLVM with

new analysis and transformation passes.

Clang is the C/C++ compiler provided by the LLVM Project. It takes C/C++

source code and emits LLVM IR, which is then optimized and translated to machine code

by LLVM. Figure 2.2 shows an example code snippet in C and how it might be represented

46

Figure 2.2: Sample C function and equivalent LLVM IR code
int f(int *x, int i) {

int result;

if (i < 0)
result = i+i;

else
result = x[i];

return result;
}

define i32 @f(i32* %x, i32 %i) {
%result = alloca i32
%1 = icmp slt i32 %i, 0
br i1 %1, label %then, label %else

then:
%2 = add i32 %i, %i
store i32 %2, i32* %result
br label %end

else:
%3 = getelementptr i32, i32* %x, i32 %i
%4 = load i32, i32* %3
store i32 %4, i32* %result
br label %end

end:
%5 = load i32, i32* %result
ret i32 %5

}

Source: The author

in LLVM.

The LLVM IR language is in Static Single Assignment (SSA) form (ALPERN;

WEGMAN; ZADECK, 1988) with respect to its registers: each register is assigned ex-

actly once, and each definition dominates all of its uses, i.e., a register can only be used

in a given instruction if the control flow graph of the code ensures that the definition will

be reached before the use.

Memory access is done through typed pointers. Pointers are even more prominent

in LLVM IR than in C, as all memory other than registers is referenced through pointers.

This includes functions in function calls, global variables (which are accessed through

pointers to the location where the value of the global is stored), and local variables other

than registers (which are accessed through pointers to the stack). The Static Single As-

signment restriction applies only to registers, not to memory, i.e., there is no restriction

on the number of assignments to a given memory location.

The full LLVM IR language has a large number of instructions, optional flags and

other features not directly relevant to this work. For simplicity of exposition, we define

a relevant subset of the LLVM IR language, which covers the most important operations

related to memory safety. In Chapter 3, we will describe the Týr code transformation in

terms of this subset, although the actual implementation of the system operates on the

full LLVM IR language. Figure 2.3 shows a grammar of this subset. The next sections

describe it in more detail. A description of the full LLVM IR language can be found in

LLVM (2015a).

47

Figure 2.3: Subset of LLVM IR considered in this work. An overline indicates a sequence
of zero or more of the overlined element.

Module: mod ::= tydef prod
Type definition: tydef ::= id = type {ty}
Product: prod ::= gid = global const

| gid = constant const
| define ty gid (ty id){blk}
| declare ty gid (ty)

Basic block: blk ::= label: cmd term
Label: label ::= id

LLVM Types: ty ::= isz | ty* | [n× ty] | void
| {ty} | ty(ty) | id

Global ids: gid ::= @a |@b | ...
Local ids: id ::= %a |%b | ...
Constants: const ::= ty n | ty zeroinitializer | ty [const] | gid | void
Values: val ::= const | id

Binary ops.: bop ::= add | sub | mul | sdiv | udiv
Cast ops.: cast ::= bitcast | inttoptr | ptrtoint

| sext | zext | trunc
Compare ops.: cmp ::= eq | ne | ult | ule | ugt | uge

| slt | sle | sgt | sge

Instructions: inst ::= cmd | term
Commands: cmd ::= id = bop val1, val2

| id = icmp cmp val1, val2
| id = load val
| store val1, val2
| id = getelementptr val, validx
| id = getelementptr val, isz 0, valsubidx
| id = alloca ty, val
| id = cast val to ty
| id = call val (val)

Terminator: term ::= ret val
| br val, label1, label2
| unreachable

Source: The author

48

2.5.1 Top-level structure

The basic unit of compilation in LLVM is the module. A module contains type

definitions, which allow assigning names to structure types, and declarations of global

variables, constants and functions, collectively known as products.

A global variable or constant definition contains the name of the global, the type

of the contents, and an initializer. Note, however, that globals in LLVM IR are treated

as pointers to the memory location where the value of the global is stored. Therefore,

given a declaration of a global 32-bit integer variable like @a = global i32 42, @a will

have the type i32*, i.e., a pointer to the place where the integer 42 is stored. To access or

change the value of the global, one must use the load and store instructions for memory

manipulation.

A function definition includes its name, the names and types of its parameters, its

return type, and the function body, which is composed of one or more basic blocks. A ba-

sic block consists of a label and a sequence one or more instructions. The last instruction,

and only the last instruction, in a basic block, must be a terminator, an instruction which

finishes exection of the current block, such as a transfer of control to another basic block

(branch) or to the function caller (return). Non-terminator instructions are collectively

called commands.

A function declaration is like a function definition, but does not include parameter

names or a function body. They are used to declare the availability of functions declared

in other modules, or builtin LLVM functions known as intrinsics.

A type definition consists of a name on the left-hand side, and a structure type on

the right hand side. Only structure types can appear on the right-hand side.1 The named

type thus created is considered distinct from any other type, even one with an identical

definition.

2.5.2 Types

LLVM IR has integer types isz for arbitrary positive integer sizes sz. The most

frequently ocurring ones in LLVM IR code are: the 1-bit boolean type i1, which is used

1In the full LLVM IR language, any type can appear on the right hand side, but named non-structure
types are essentially equivalent to their anonymous equivalents, whereas named structure types are consid-
ered distinct types.

49

for instance for the result of comparison operators; and i32 and i64, which correspond to

the most common integer sizes in C code. Unlike C, LLVM IR does not have separate

types for signed and unsigned integers; rather, distinct instructions are used for signed

and unsigned operations. However, LLVM assumes two’s complement representation

for integers; therefore, operations that produce the same result under two’s complement

whether the values are viewed as signed or not, such as addition and subtraction, don’t

have separate signed and unsigned instructions. Also unlike C, LLVM IR never performs

implicit casts between integer types (or any other implicit casts, for that matter): every

cast must be performed by an explicit operation in the IR.

ty∗ is the type of pointers to values of type ty.

[n × ty] is the type of arrays of n elements of type ty; n must be a constant.

Unlike C, arrays are first-class values in LLVM IR, and they don’t behave like pointers.

The implicit conversion in C from an array to a pointer to its first element is an explicit

operation at the IR level, performed by the getelementptr instruction.

{ty1, . . . , tyn} is the type of a structure whose fields have types ty1, . . . , tyn. Note

that this type is anonymous; a type definition can be used to assign a name to such a

structure type.

ty(ty1, . . . , tyn) is the type of a function taking arguments of types ty1, . . . , tyn and

returning a type ty. Functions are not a first-class type in LLVM IR; where a function value

is needed, for instance in the call instruction, a pointer to the function is used instead.

void is used as the return type of functions which don’t return a meaningful value.

For simplicity of exposition, in our simplified LLVM IR grammar, we consider void as a

type containing a single value, also named void, similar to the unit or () type in languages

like Haskell, Rust, and Standard ML. Functions returning void are considered to return

this dummy value. This allows us to treat calls to void-returning functions in the same

way as calls to other functions; otherwise, we would need different production rules for

call instructions which assign their return value to an identifier vs. those that don’t return

a value, and likewise for ret instructions.

Finally, id represents a named type, i.e., one defined with a type definition.

2.5.3 Values

Values in LLVM IR are either constants or registers. Because a bare constant such

as 0 does not have a specific type (i.e., it could be an i32 or i64 or any other integer type),

50

all constants are preceded by an explicit type (e.g., i32 0).2

The constant zeroinitializer represents a value where all bits are zero. For in-

tegers, that is equivalent to 0, but zeroinitializer can be used as a zero value for any

first-class type, including aggregate types like arrays and structures, and is often used as

an initializer, as its name suggests. Like integers, zeroinitializer is always preceded by

an explicit type.

[n× ty] [const1, . . . , constn] represents an array of type [n× ty] whose elements

are const1, . . . , constn. Note that only constants can be used as initializers.

Global variables, constants and functions are written with a preceding @. Because

the name of a global is actually a pointer to the location where the value of the global is

stored, globals are considered (link-time) constants, because the pointer represented by a

global name never changes during the execution of the program.

Registers names are written with a preceding %. They represent function-local

definitions in SSA form.

As a convenience, false and true are used as aliases for i1 0 and i1 1, i.e., constants

of the boolean i1 type. In this work, we also consider null as an alias for zeroinitializer.

This assumes that the null pointer has all bits set to zero, which is the case in mod-

ern architectures. This assumption simplifies initializing arrays and structures containing

pointers, as we can initalize the entire aggregate value to zeroinitializer and assume that

all contained pointers will be null.

2.5.4 Instructions

Arithmetic instructions (add, sub, mul, sdiv, udiv) work as expected. sdiv and

udiv represent signed and unsigned division, respectively.

The icmp instruction performs a given comparison (e.g., ult for unsigned less

than) between two given integers, yielding a boolean.

The load instruction takes a pointer of some type ty∗ and yields the value of type

ty stored at the location referenced by the pointer. Likewise, store takes a value of some

type ty and a pointer of type ty∗ and stores the value in the location referenced by the

pointer.

2In the actual LLVM IR language, type annotations are placed differently depending on the specific
instruction, and register values also carry type annotations. In our simplified grammar, only constant values
carry annotations, and they are always placed immediately before the constant, regardless of the instruction.

51

getelementptr is the instruction responsible for computing addresses from a base

address, i.e., for performing pointer arithmetic and computing addresses of sub-elements

of aggregate values. In its most general form, as it appears in the full LLVM IR language,

this instruction has the form id = getelementptr p, idx0, idxi. getelementptr takes a base

pointer p and one or more indices. The first index idx0 is used as an offset from the base

pointer, and corresponds directly to the C notion of pointer arithmetic: idx0 times the size

of the base type of p is added to the address represented by p. The remaining indices

can only be used when the base type of p is a (potentially nested) aggregate type. Each

successive index descends one level into the aggregate value, computing the address of a

sub-element of it. For instance, consider a pointer p of type [5× [10×i32]]∗, i.e., a pointer

to a 5 × 10 array of integers (which in LLVM IR is represented as an array of arrays of

integers). In an instruction like:

%q = getelementptr [5× [10× i32]]∗ p, i32 0, i32 5, i32 7

the first index, i32 0, indicates an offset from p in multiples of the base type, [5×[10×i32]].

This index would be useful if we were dealing with a pointer to a region containing

multiple [5 × [10 × i32]] arrays. Since this is not the case, we use an offset of zero.

The second index, i32 5, moves the pointer to the sixth sub-array (since indices are zero-

based). The third index, i32 7, moves the pointer to the eighth integer within that sub-

array. The result is a pointer of type i32∗.

getelementptr is often used to perform the implicit C conversion from an array

to a pointer to its first element. For instance, whenever a string constant is used as an

argument to a function taking char *, the resulting LLVM IR code uses getelementptr.

For example, consider C code like:

puts("Hello");

In the corresponding LLVM IR code, the string will be declared as a global con-

stant:

@.str = constant [6 x i8] c"Hello\00"

where c"Hello\00" is syntactic sugar for a six-element array of i8 (8-bit integers) con-

taining the characters, and \00 is the null terminator at the end of the string, which is

implicit in C but explicit in LLVM IR. Then, when performing the function call, first the

code must obtain a pointer into the array, and then pass the pointer to the puts function:

52

%p = getelementptr [6 x i8]* @.str, i32 0, i32 0

call i32 @puts(i8* %p)

The first zero index is the “horizontal” offset from the @.str pointer – globals are

always pointers to their contents, so @.str is a pointer to an array of characters, and the

first zero index tells we want the first (and only) such array in the pointed region. The

second zero index descends into the array, selecting the first element within it.

To simplify the description of the code transformation in the next chapter, we

will consider that code is normalized in such a way that there are only two forms of the

getelementptr instruction: either a single index is used (for C-style pointer arithmetic),

or two indices are used and the first is always zero (for descending a single level into a

data structure). Any more complex getelementptr instruction can be broken down into

sequences of those two forms.

alloca takes a type and a quantity, allocates that many elements in the stack, and

returns a pointer to the allocated region. This is often used to allocate storage for local

variables. For instance, to allocate a local 64-bit integer variable, code might be emitted

like:

%x = alloca i64, i32 1

where i32 1 is how many integers we want to allocate. As is the case with globals, %x is

a pointer to the location where the integer is stored, not the integer itself. One must load

from the pointer to access the value of the integer.

The casting instructions are used to perform various kinds of type conversions.

sext, zext and trunc signal-extend, zero-extend and truncate integer values, respectively.

inttoptr and ptrtoint convert between integers and pointers. bitcast converts between

types with the same size. The source and destination types must either be both pointers

or both non-pointers.

call is the function call instruction. It takes a pointer to the function to be called

and a list of arguments, and yields the value returned by the function.

The three terminator instructions are ret, br and unreachable. ret returns from a

function, yielding a value to the function caller. br is the branching instruction. It takes a

boolean value and two labels, and transfers control to the block labeled by the first label

if the boolean is true, and to the second one if false. In our simplified grammar, there is

no special form of this instruction for unconditional branching; unconditional branches

can be written as br true, label, label. unreachable is a special terminator indicating that

control should never reach the end of the basic block. This is used for instance after a call

53

to a function that never returns, like exit, because LLVM IR always requires a terminator

at the end of each block.

2.5.5 Omissions from the full language

The language described here is meant to be a core for the description of the rules

of Týr, which are mostly concerned with memory safety. As such, a number of features

of the full LLVM IR language which were not directly relevant to this work have been

omitted.

Features omitted in the core grammar, but supported by the implementation:

• Floating point types, since they are never involved in pointer computation, as well

as other types not related to memory safety, such as packed structures.

• Control flow instructions other than br and ret.

• Constant expressions for integer and pointer arithmetic, comparison and casting,

since they are mostly equivalent to their corresponding instructions.

Features omitted from the core, but partially supported by the implementation:

• Variable-arity functions are partially supported by the implementation: the system

allows the definition and use of variable-arity functions, such as printf, but does

not perform type-checking for the non-fixed arguments.

Featured omitted from the core and currently not supported by the implementation:

• Structure values, as opposed to pointers to structures: in our experience, code emit-

ted by Clang always works with structures by means of pointers: global variables,

as seen above, are always pointers, and so are locals created with alloca. Func-

tion parameters may contain structure values, but those are copied to locals in the

stack as soon as the function starts. The fields of these structures in memory are

always accessed by first computing a pointer to the desired field, then accessing the

pointer. Because of this, the instructions dealing with structure values, as opposed

to pointers to structures, have been omitted.

• Instructions dealing with vectorized data, such as SIMD instructions, and their re-

lated types.

• Instructions related to threads and synchronization.

• Instructions and features related with casting across multiple address spaces, which

54

Figure 2.4: Example of φ-node in SSA-form
(a) Original program

if (x > 0)
y = 1;

else
y = 2;

f(y);

(b) SSA-form program

if (x > 0)
y1 = 1;

else
y2 = 2;

y = phi(y1, y2)
f(y);

Source: The author

are used in contexts of GPUs and other alternative architectures.

Although the features not supported are not particularly important for the present

work, they should be addressed by future work for the sake of completeness.

2.5.6 Phi instructions

In SSA languages, φ-nodes are used in situations where a register must acquire dif-

ferent values depending on where control is coming from. For instance, suppose we have

a C program like that in Figure 2.4a. This code assigns different values to y depending on

the branch taken by the if. This cannot be directly translated into an SSA-form language,

because SSA requires that a name is assigned exactly once in the code. To work around

this restriction, in SSA-form code, each branch of the if uses a different variable, and a

φ-node is used at the point where control flow from both branches merges (i.e., after the

if) to assign a value to y depending on which branch reaches the φ-node. Figure 2.4b

shows the resulting program in pseudo-code.

The phi instruction is the LLVM IR implementation of φ-nodes. The code emitted

by Clang, however, is mostly devoid of phi instructions; instead, all local variables are

created in the stack using the alloca instruction, and, as noted before, LLVM IR is not

in SSA-form with respect to memory. Later during compilation, at the LLVM level, a

pass called mem2reg converts those stack-allocated values into registers and adds phi

instructions accordingly. Since Týr is run on the code emitted by Clang before it is passed

on to the LLVM level for optimization and compilation, we do not have to deal with

phi instructions directly. Ocasionally, phi instructions are emitted by Clang in special

circumstances. To make sure that no phi instructions are present when code reaches Týr,

we run an LLVM pass, called reg2mem, which does the opposite of mem2reg, converting

all phi instructions into stack-allocated locals, before Týr is applied to the code. This is

55

done automatically as part of the Týr compilation routine.

2.6 Correspondence between C and LLVM IR

Although in principle there is no single way to translate a C program into LLVM

IR (just like there is no single way to translate C into assembly language), the LLVM IR

language was designed with C-like languages in mind, and the Clang compiler does per-

form a very straightforward translation of C code to LLVM IR. Therefore, it is generally

possible to define a correspondence between constructs in each language. This section

presents the most important aspects of this correspondence.

2.6.1 Types

The C integer types are mapped to integer types of the appropriate size in LLVM

IR. Whereas the sizes of C integer types may vary with the architecture and platform,

LLVM integer types always have a fixed size, therefore the mapping is architecture-

dependent. For instance, long int may be mapped to i32 or i64.

LLVM IR does not have a void pointer type. C’s void * is mapped to the type of

pointers to bytes, i8∗.

LLVM IR arrays are used for translating fixed-size arrays in C, such as global and

local arrays declared with a constant size. Array constants in C, such as string constants

and array initializers, are represented by global array constants in LLVM IR. For instance,

consider a C function which declares and initializes a local array like int a[] = {23, 42, 81}.

In LLVM, the initializer will become a global constant, and the code for the function will

allocate a local array in the stack and then copy the value of the constant into the newly

allocated array. This is because each instantiation of the function must manipulate a fresh

copy of the array, not the initializer which is shared by the whole program.

As mentioned before, arrays are first-class values entirely distinct from pointers in

LLVM IR, and the implicit conversion between arrays and pointers which happens in C

is performed explicitly at the LLVM IR level by means of the getelementptr instruction.

Definition of a structure named name in C is mapped to a definition of a type

%struct.name in LLVM IR.

56

2.6.2 Variables and functions

Global variables in C are directly mapped to LLVM IR globals. Local variables

are mapped to a stack allocation through the alloca instruction. For example, if the source

contains the declaration of a local variable like int x, the translated code will allocate an

integer on the stack and assign a pointer to the integer to a local register, usually with the

same name as the original variable: %x = alloca i32, i32 1, where i32 1 is the size of the

allocation.

C functions are straightforwardly mapped to LLVM IR functions. However, the

parameters of LLVM IR functions are considered registers, and therefore are immutable

due to the SSA restriction, unlike their C equivalents. Therefore, at the beginning of the

function, the translated code will allocate a local variable for each parameter and copy

the values of the parameters to these locals. For instance, if the C source has a function

void f(int x), the corresponding LLVM IR code will look like:

define void @f(i32 %x) {

%1 = alloca i32

store i32 %x, i32* %1

...

}

where a new integer is allocated in the stack, and the %x function parameter is copied to

the new location at the beginning of the function. This is done to preserve the mutability

of the x variable at the LLVM IR level.

2.7 Summary

In this chapter we have seen an overview of memory safety, dependent types, the

LLVM IR language and its relationship with C. We also have defined a subset of LLVM

IR which includes the core features of the language involved in pointer manipulation. In

the next chapter, we will define a set of dependent types for describing the relationships

between pointers and their bounds in LLVM IR, and a code transformation guided by

those types to ensure spatial memory safety of LLVM IR programs.

57

3 THE TÝR CODE TRANSFORMATION

We propose Týr, a code transformation for LLVM IR based on dependent types

for pointers, functions, arrays and structures that ensures the correct usage of these con-

structs with respect to spatial memory safety. This chapter describes the approach in

detail and is organized as follows. Section 3.1 presents some considerations taken into

account in the design of the algorithm. Section 3.2 presents the set of dependent types

and expressions used by Týr. Section 3.3 presents an overview of the instrumentation

algorithm, considering its global (module-level) and the local (function-level) aspects.

Section 3.4 presents the rules for assigning Týr types to LLVM IR values and instrument-

ing LLVM IR functions according to those types. Section 3.5 revisits the global aspect

of the instrumentation, giving a more complete explanation about the construction of the

global environment. Section 3.6 details how instrumentation actions are emitted as actual

LLVM IR instructions. Section 3.7 discusses the soundness of the algorithm with respect

to spatial memory safety. Section 3.8 presents some efficiency considerations. Section

3.9 provides a summary.

3.1 Design considerations

Týr is conceived as a type-based code transformation for the LLVM IR language.

Although in this work we focus on supporting those features of LLVM IR necessary for

ensuring spatial memory safety of C programs, we intend Týr to be more generally useful

as a foundation for spatial memory safety in other languages targeting LLVM IR with a

similar memory model, such as C++ and Objective C.

The design of the system has to balance a number of constraints. The type lan-

guage adopted for the annotations must be expressive enough to describe the common

idioms used in C programs to keep track of bounds information, while at the same time

avoiding the problem of undecidability. We addressed these problems in two ways. First,

to guarantee termination, the expressions which can appear in dependent types comprise

a restricted sub-language. This sub-language allows constants, arithmetic operations, and

references to local variables, function parameters and structure fields, which is gener-

ally sufficient to describe bounds in C programs, but excludes other operations such as

function calls, loops and side effects. Second, checks which depend on evaluation of ex-

pressions are postponed to run-time: rather than performing the check at compile-time,

58

the code is instrumented to perform the check and abort execution if the check fails. This

makes Týr more flexible, by allowing bound expressions to depend on information only

available at run-time.

Another aspect which influenced the design of Týr is efficiency. Because the run-

time checks inserted by the instrumentation have a cost in execution time, it is desirable

to avoid inserting unnecessary checks, and to try to make the checks that are inserted

optimizer-friendly, making them easier to be eliminated by further compilation passes. A

number of decisions have been made to make this possible, as will be seen in Section 3.8.

Týr acts as an LLVM pass, taking LLVM IR code as input (together with type

annotations) and producing instrumented LLVM IR code as output. Rather than changing

the LLVM IR language to augment it with a new type system, the Týr type-based code

transformation takes the dependent type information it needs as a separate input, leaving

the LLVM IR source unchanged. There is some precedent for that within the Clang/LLVM

framework itself: type-based alias analysis (TBAA) of C/C++ code is performed by an

LLVM IR pass which takes type information from Clang in the form of LLVM IR meta-

data: “In LLVM IR, memory does not have types, so LLVM’s own type system is not

suitable for doing TBAA. Instead, metadata is added to the IR to describe a type sys-

tem of a higher level language.” (LLVM, 2016) In the current Týr implementation, we

use a separate input file rather than embedded metadata, but the principle is similar: a

richer set of types described on the top of LLVM IR without modifying the LLVM IR

language. This makes it possible to reuse the entire Clang/LLVM infrastructure with no

modifications to accomodate the new types.

3.2 Týr types

This section will introduce the type language used by Týr. Section 3.2.1 will

present an overview of each Týr type. Section 3.2.2 will discuss the correspondence

between LLVM IR types and Týr types. Section 3.2.3 will introduce the concept of com-

patibility between Týr types.

59

Figure 3.1: Grammar of Týr types

Týr types:
TY ::= isz | void | id

| Ptr±(TY, δ1, δ2)
| SPtr±(TY, δ1, δ2)
| Local(TY)
| Array(n, TY)
| SArray(n, TY)

| Fn± TY (id : TY)

| Struct id (id : TY)
| Field(TY, val, id)

Non-nullness:
± ::= + | −

Dependent type expressions:
δ ::= val

| δ1 op δ2

| ∗val
| valTY .id
| sizeof(ty)

op ::= + | − | ∗ | /

Source: The author

3.2.1 Overview of Týr types

Figure 3.1 presents a grammar of Týr types. In this work, we use the convention of

writing ty to represent LLVM IR types and TY to represent Týr types. This section will

present an overview of all Týr types. In further sections, their properties will be discussed

in greater detail.

Týr has a variety of pointer types. Ptr±(TY, δ1, δ2) is the more general pointer

type. It has a base type TY , and lower and upper bounds δ1 and δ2. The lower and

upper bounds are integer expressions indicating the range of indices which are within the

bounds of the region referenced by the pointer. The lower bound is inclusive, while the

upper bound is exclusive, or, in other words, the lower bound is the first valid index into

the referenced region, and the upper bound is the first index after the valid region.

Ptr pointers also have a non-nullness tag, written as a sign superscript after the

Ptr constructor. A pointer is non-nullable (Ptr+) if it is known at compile-time not to be

null; it is nullable (Ptr−) if it is not known to be non-null (i.e., it may or may not be null).

This feature is used to avoid inserting unnecessary checks for nullness: a null check may

be necessary when constructing a Ptr+ pointer to ensure it is not null, but once a pointer

is tagged Ptr+, null checks are not necessary when accessing it.

Most operations are allowed on Ptr pointers, subject to bounds and nullness

checking, but they cannot appear in dependent type expressions, and their bound expres-

sions δ1 and δ2 cannot refer to local variables. The exact rules will be presented in Section

3.4.2.

SPtr±(TY, δ1, δ2) is the type of string pointers, a variant of Ptr used for regions

60

of memory delimited by a null terminator, like a C string delimited by the ASCII NUL

character. Their bounds are handled specially, allowing accesses past the declared upper

bound as long as the null terminator is not overstepped. String pointers will be discussed

in more detail in Section 3.4.3.

Local(TY) is a more restricted pointer type, used for local variables in the stack.

Local pointers can appear in dependent type expressions, and their base type TY can

contain references to other local variables, but there are some restrictions in their usage

which effectively ensure that they are never aliased, i.e., the region of memory accessible

through a Local pointer is not accessible through any other pointer. Local pointers will

be discussed in more detail in Section 3.4.4.

Field(TY, val, id) is used for pointers to structure fields. They keep track of

the structure value (val) and field (id) they came from, their base type TY can contain

references to other fields of the same structure, but they have usage restrictions resembling

those of Local pointers. They will be discussed in more detail in Section 3.4.6.

This variety of pointer types arises from the necessity to accomodate the usage

patterns in the LLVM IR language while ensuring safety, as will be seen in Section 3.4.

This can be contrasted to Deputy (CONDIT et al., 2007), which has a single pointer

type (with some modifiers), but disallows pointers to local variables and structure fields

involved in type dependencies. This kind of restriction is not an option in Týr, because in

LLVM IR code as emitted by Clang, access to local variables and structure fields is always

performed by means of pointers. Therefore, the same restrictions which are performed at

the syntactical level in systems like Deputy, are realized as type-level restrictions in Týr.

Array(n, TY) is the type of arrays of n elements of type TY . This type corre-

sponds to the LLVM [n × ty] type. SArray(n, TY) is the type of string arrays, arrays

whose last element is guaranteed to be a null terminator. Array elements are always ac-

cessed by first constructing pointers to the elements, so they will be discussed together

with Ptr and SPtr pointers in Section 3.4.2.

Fn± TYret (id1 : TY1, . . . , idn : TYn) is the type of pointers to functions taking

arguments named id1, . . . , idn of types TY1, . . . , TYn, respectively, and returning a value

of type TYret. The parameter types and the return type are allowed to depend on parameter

values, which is why the parameters are named in the type. For instance, a function

taking an integer len and a pointer p to a region of len integers might be given the type

Fn+ void (len : i32, p : Ptr−(i32, 0, len)). Like Ptr and SPtr pointers, Fn pointers

also come in two flavors: nullable (Fn−) and non-nullable (Fn+). Function pointers will

61

be discussed in Section 3.4.7.

Struct id (id1 : TY1, . . . , idn : TYn) is the type of a structure named idwith fields

id1, . . . , idn of types TY1, . . . , TYn, respectively. The name id may be absent (written ∅)

when the structure is anonymous. As with functions, the types of the fields may depend

on the values of other fields. For instance, a structure containing a pointer to a buffer

and its length might be given the type Struct buf_t (data : Ptr−(i8, 0, len), len : i32).

Structures will be discussed together with structure field pointers in Section 3.4.6.

Integer, void, and named types are exactly equivalent to their corresponding LLVM

IR types. The size of the integers used for bounds depends on the size of pointers in the

target architecture of the program being compiled, typically the size of the architecture

word (e.g., i32 for a 32-bit processor and i64 for a 64-bit one). We write iWORD to refer to

that integer type in the architecture of interest without specifying a concrete architecture.

3.2.2 Correspondence between LLVM IR and Týr types

Týr obtains dependent type information from type annotations provided by the

programmer. However, it would be impractical to require the programmer to annotate

every expression in the LLVM IR program: not only that would require a huge amount

of work by the programmer, but it also would require the programmer to give types to

temporary values generated by the compiler, which the programmer usually is not aware

of. To avoid this problem, Týr allows the type annotation for any identifier to be omitted,

in which case a default Týr type is inferred based on the LLVM IR type.

Because the Týr types are richer than the LLVM IR ones, for a given LLVM IR

type there are usually many possible corresponding Týr types. For instance, an LLVM IR

pointer type like i8∗ can correspond to a Týr Ptr−(i8, lo, hi) for infinitely many possible

expressions lo and hi. In these cases, Týr has to choose a sensible default. For pointers,

Týr uses the default bounds [0, 1), which mean the pointer points to exactly one object of

the given base type. Figure 3.2 shows the default mapping from LLVM IR to Týr types

in absence of further type information. We write dtye to denote this “lifting” from LLVM

IR type ty to a corresponding Týr type. Note that the Týr function and structure types

require naming the parameters and fields, so that they can be referenced in dependent

type expressions, whereas the corresponding LLVM IR level function and structure types

do not give names to parameters and fields. Therefore, we have to fill in dummy names

when mapping the LLVM IR types to Týr types. The concrete names used are immaterial

62

Figure 3.2: Default mapping d·e from LLVM IR types to Týr types

disze = isz
dide = id
dvoide = void
dtyret(tyi)∗e = Fn− dtyrete (idi : dtyie), for freshly-created idi
dty∗e = Ptr−(dtye, 0, 1)
d[n× ty]e = Array(n, dtye)
d{tyi}e = Struct ∅ (idi : dtyie), for freshly-created idi

Source: The author

Figure 3.3: Mapping b·c from Týr types to LLVM IR types

biszc = isz
bidc = id
bvoidc = void
bFn± TYret (idi : TYi)c = bTYretc(bTYic)∗
bPtr±(TY, lo, hi)c = bTY c∗
bSPtr±(TY, lo, hi)c = bTY c∗
bLocal(TY)c = bTY c∗
bField(s, val, f ld)c, where s = Struct _ (. . . , f ld : TYfld, . . .)

= bTYfldc∗
bArray(n, TY)c = [n× bTY c]
bSArray(n, TY)c = [n× bTY c]
bStruct ∅ (idi : TYi)c = {bTYic}
bStruct id (idi : TYi)c = id

Source: The author

(provided that they are unique), since the types of parameters and fields in these default

Týr types do not contain references to each other.

Conversely, when instrumenting the code, Týr must be able to translate the Týr-

level types back to LLVM IR ones in order to correctly emit instructions. Therefore, a

mapping from Týr to LLVM IR types is necessary. There is always a single LLVM IR type

corresponding to a Týr type; the mapping consists essentially of dropping all dependent

type information. Figure 3.3 shows this mapping. We write bTY c to denote this lowering

from Týr type TY to the corresponding LLVM IR type.

3.2.3 Type compatibility

An important concept in the system is that of type compatibility. Type compat-

ibility tells which Týr types can be used when a value of a given Týr type is expected,

63

and which conditions must be satisfied for that to be possible. This is akin to a subtyping

relationship, except that most cases of interest in Týr will require some type of run-time

check to be performed when a type conversion is performed. For example, a pointer with

bounds [lo, hi) can be passed as an argument to a function expecting a pointer with dif-

ferent bounds [lo′, hi′), as long as the bounds of the provided pointer entirely contain the

expected bounds, i.e., lo ≤ lo′ ∧ hi ≥ hi′.

There are two kinds of compatibility rules in the system. Value–type rules specify

when a value val (of some type TYval) can be used when a value of some type TY is

expected. This is used, for example, when checking if a value val can be passed as an

argument to a function expecting a parameter of type TY . Type–type rules specify when a

type TY1 can be used when another type TY2 is expected, without reference to a concrete

value of type TY1. This is used, for example, when checking if two function signatures

are compatible (say, when using a function pointer of one type when a function pointer of

another type is expected): since the functions are not being called, there are no concrete

values for the parameters, so the compatibility check must be based on the parameter

types alone.

This distinction is important because some type conversions are only possible

when a concrete value is available to perform a check against. For example, consider the

case where a Ptr− (nullable) pointer is being used where a Ptr+ (non-nullable) pointer

is expected. If we are not talking about a specific Ptr− value, we must consider whether

this conversion is valid for all possible Ptr− values. Since there is at least one Ptr− value

which cannot be converted to Ptr+ (namely, null), this conversion must be rejected.

On the other hand, if we are considering whether a specific value val of type

Ptr− can be used where a value of type Ptr+ is expected, we do not have to consider all

possible Ptr− values, only that specific value. Therefore, this conversion can be allowed,

as long as we check first that val 6= null.

We write compatΓ(val, TY) = γ to mean that under environment Γ (a mapping

from identifiers to their corresponding Týr types), value val is compatible with type TY ,

provided that the condition γ is satisfied. Likewise, we write compatΓ(TY1, TY2) = γ

to mean that under environment Γ, type TY1 is compatible with type TY2, provided that

condition γ is satisfied. Context should always make it clear whether we are talking about

the value–type or the type–type relationship.

We write > for the trivial condition, i.e., compatΓ(x, y) = > means that the

relationship holds with no further checks required. Analogously, we write ⊥ to mean a

64

condition that cannot be satisfied, i.e., compatΓ(x, y) = ⊥ means that the relationship

never holds.

The compatibility relationship will be defined by cases along Section 3.4. If the

type–type relationship is not explicitly defined for a given pair of types, it defaults to ⊥,

i.e., the types are not compatible. Analogously for the value–type relationship.

The conditions generated by the compatibility relationship will be emitted as run-

time checks by the instrumentation algorithm. The instrumentation actions will be de-

scribed in Section 3.4, and how conditions are emitted as concrete LLVM IR instructions

will be described in Section 3.6.

3.3 Instrumentation overview

The next sections will describe in detail the Týr instrumentation algorithm: how it

processes the input LLVM IR program, how it assigns types to each program value, and

how it instruments the program with checks based on those types. We will begin with an

outline of the algorithm and an explanation of some notational conventions used along

this chapter.

Týr takes as inputs an LLVM IR module mod, and programmer-provided type

annotations for identifiers appearing in the module. We represent these annotations as a

mapping A from identifiers to their provided Týr type annotations. If identifier id is given

type TY by the programmer, we say that A(id) = TY ; if no annotation is provided for

identifier id, we say that A(id) = ∅. For notational simplicity, we consider A to map

both global and local identifiers to their corresponding annotations, ignoring nesting; we

assume that identifiers are not reused within a module, i.e., the same identifier will not be

used in two different functions. Since function-local identifiers can be renamed with no

change in semantics, there is no loss of generality in assuming so; this is just a convention

to simplify notation.

The algorithm makes two passes through mod. The first pass visits each global

variable, function and type definition and builds a global environment Γglobal, a mapping

from each global identifier to a Týr type. The second pass visits the body of each function

definition, assigning a Týr type to each local identifier and instrumenting the code as it

goes through each instruction. Two passes are necessary because, unlike C, LLVM IR

allows a function to refer to global identifiers defined afterwards in the module, without

requiring a prototype definition.

65

Figure 3.4: Global environment generation pass
GlobalEnvPass(mod,A) :

Γglobal ← ∅
For each global identifier gid defined in mod:

If there is a programmer-provided annotation A(gid):
If A(gid) is compatible with gid’s definition in the module:

Γglobal ←+ gid : A(gid)
Else:

Fail
Else:

Γglobal ←+ gid : a default Týr type that is compatible with the definition

Source: The author

3.3.1 Global environment construction pass

Figure 3.4 describes in rough lines the global environment generation pass. It

initializes the global environment as empty, and adds a binding for each global definition.

We write Γ←+ id : TY as an abbreviation of Γ← Γ ∪ {id : TY }, i.e., adding a binding

to an existing environment.

We have not defined here what it means for an annotation to be compatible with its

definition, and how a default type is given for definitions without an annotation. Because

it will be easier to explain the choices of types used for globals after we have seen each

type in more detail in Section 3.4, we will postpone a more detailed account of their usage

at the global level to Section 3.5.

3.3.2 Local pass

The local pass (Figure 3.5) takes a function definition and yields a new instru-

mented function definition. It initializes the local environment by augmenting the global

environment with bindings for each function parameter. It also initializes the ∆ environ-

ment of automatically managed bounds for local pointers, which will be discussed in more

detail in Section 3.4.4, and a list blks∗ of instrumented blocks. Then it visits each block of

the function, using an applicable instrumentation rule (see Section 3.3.3 below) for each

instruction. Each applied rule will emit LLVM IR instructions to produce an instrumented

block, and also possibly affect the local environments Γ and ∆. Each instrumented block

is appended to blks∗, and at the end a new function definition is returned, replacing the

66

Figure 3.5: Local instrumentation pass
LocalPass(Γglobal,define tyret gid (tyi idi) {blks}) :

Destructure Γglobal(gid) as Fn± TYret (idi : TYi)

Γ← Γglobal ∪ {idi : TYi}
∆← ∅
blks∗ ← []

For each block blki in DepthF irstV isit(blks):
Destructure blki as label: insti
blk∗ ← [label:]
For each insti:

If there is an instrumentation rule which applies to insti:
Apply rule to insti, appending emitted code to blk∗

Else:
Fail

blks∗ ←+ blk∗

Return define tyret gid (tyi idi) {blks∗}

Source: The author

original blocks with the instrumented ones.

Because the local environment is built as the algorithm traverses the instructions

of the function, the order in which instructions are visited is important: the definition of

an identifier must be visited before uses of that identifier. Because the input code is in

SSA-form, definitions must dominate their uses, which means that every possible path of

control flow which reaches a use of an identifier will reach its definition first. This means

that any traversal order which is consistent with the possible control flow paths through

the function will reach definitions before their uses. Therefore, a depth-first visit of the

blocks, beginning with the first function block and following the destination of branch

instructions, marking visited blocks to avoid revisiting them, will ensure that identifiers

are available in the environment when we reach instructions which use them.

3.3.3 Instrumentation rules

In the following sections we will define rules for instrumenting the various kinds

of instructions. Each rule will have a form similar to the following example:

67

Instruction: id = load ptr, when typeΓ(ptr) = Ptr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : TY

The “Instruction” part specifies the form of the instructions matched by the rule (in

this case, a load instruction), optionally followed by “when” and some specific conditions

which must be satisfied for the rule to match (in this case, that the loaded pointer be of a

specific type, using the notation that will be presented in Section 3.4.1). The “Action” part

specifies what code is to be emitted when the rule is applied, and how the environment is

to be updated.

“Emit the instruction” means to emit the instruction being matched itself. Typ-

ically, some instrumentation code will be emitted before emitting the instruction being

processed, to ensure some conditions are met at run-time before execution reaches the

instruction. “Emit check γ” means to emit code which checks that condition γ is sat-

isfied at run-time, and aborts execution if it is not. Likewise, in some cases it will be

necessary to emit code computing some expression δ. In these cases, we write “Emit

val ← δ”, meaning that code to compute the value of δ is to be emitted, and whatever

value is computed will be refered to as val in the subsequent action lines. The procedures

for generating these run-time checks and computations as actual LLVM IR instructions

will be presented in Section 3.6.

3.4 The Týr typing and instrumentation rules

This section presents the rules used by the Týr instrumentation algorithm to pro-

cess each kind of value and instruction. Section 3.4.1 presents the rules for typing simple

LLVM IR values. Sections 3.4.2, 3.4.3 and 3.4.4 presents the rules for common pointers,

string pointers, and local pointers, the instrumentation of instructions manipulating them,

and the compatibility relationship between the pointer types. Section 3.4.5 explains the

rationale for the invariance of the compatibility relationship of pointers with respect to

the pointer’s base type. Section 3.4.6 explains the rules for handling structure types and

pointers to structure fields, and Section 3.4.7 deals with function pointers. Section 3.4.8

68

deals with the bitcast instruction which converts between pointer types. Section 3.4.9

deals with the other LLVM IR instructions not covered by the previous sections.

3.4.1 Typing values

Values in LLVM IR are either constants or identifiers. Constants are always have

an explicit type in the program code, and identifiers have the type assigned to them by the

current environment Γ. There are no complex expressions in LLVM IR. Therefore, rules

for giving types to individual values are simple. We write typeΓ(val) = TY to mean that,

under environment Γ, value val has the Týr type TY :

typeΓ(id) = Γ(id)

typeΓ(gid) = Γ(gid)

typeΓ(ty x) = dtye, where ty x is a constant

3.4.2 Common pointers

Ptr±(TY, lo, hi) is the type of pointers to a region of memory containing ele-

ments of type TY , indexable from lo (inclusive) to hi (exclusive). Ptr+ is the type of

non-nullable pointers, pointers that are guaranteed to be different from null. Ptr− is a

common pointer which may or may not be null. In this sense, Ptr+ pointers are a subset

of Ptr− pointers.

The main operations on pointers are loading a value from the location it points

to, storing a new value into that location, and pointer arithmetic, which computes a new

pointer from an existing one.

The load instruction takes a pointer and loads the first element (the one at index

0) of the region pointed to. From this we can conclude that the bounds of the referenced

region must contain at least the range [0, 1). Moreover, the pointer cannot be null. The

result of the load instruction is a value of the base type of the pointer.

69

Instruction: id = load ptr, when typeΓ(ptr) = Ptr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : TY

The store instruction takes a value and a pointer, and stores that value in the place

of the first element of the region pointed to by the pointer. Like load, the pointed region

must contain at least the [0, 1) bound and not be null. Moreover, the value being stored

must be compatible with the base type of the pointer.

Instruction: store val, ptr, when typeΓ(ptr) = Ptr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit check compatΓ(val, TY)

Emit the instruction

The getelementptr instruction performs pointer arithmetic. As mentioned in Sec-

tion 2.5.4, we consider two cases of pointer arithmetic. The first case is horizontal pointer

arithmetic, which takes a pointer ptr and an index idx and yields a pointer to the element

idx positions after the one currently pointed to by ptr. The result is a pointer of the same

base type as the original. The bounded region is also the same, but since the bounds are

expressed relative to the pointed location, they need to be updated after the pointer is

offset.

Instruction: id = getelementptr ptr, idx,

when typeΓ(ptr) = Ptr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit the instruction

Γ←+ id : Ptr+(TY, lo− idx, hi− idx)

Note that the resulting pointer does not have to be in-bounds: it is perfectly valid,

for example, to take a pointer with bounds [0, 10) and add an offset of 20 to it. The

70

resulting pointer will have bounds [0− 20, 10− 20), i.e., [−20,−10). This does not pose

a memory safety violation because such a pointer cannot be dereferenced: both load and

store check that the pointer being accessed has bounds [lo, hi) such that lo ≤ 0∧ hi ≥ 1,

which is false in this case, and therefore an attempt to load from or store to the pointer

will abort with a run-time error instead.

Although one might expect the system to rule out even constructing such an out-

of-bounds pointers, we have seen in Section 2.4 that the C language standard allows

constructing, but not dereferencing, a pointer to the element immediately after a region of

memory. Therefore, we have to allow this case of out-of-bounds pointer anyway, and we

have to check for this case before loading and storing from a pointer. Since we have to

check bounds when dereferencing the pointer anyway, checking them when constructing

the pointer would be redundant, and amount to an unnecessary instrumentation overhead.

We do require the source pointer to be non-null, though. As will be seen below, a

null pointer can be given any bounds; since the system disallows dereferencing them, this

does not pose a memory safety violation. This is convenient because a null pointer can be

used whenever a Ptr− pointer with any bounds is expected, which is consistent with the

idea of a nullable pointer. However, adding an offset to a null pointer could produce a non-

null pointer within the declared bounds, which could lead to a memory safety violation.

Therefore, pointer arithmetic is not allowed on null pointers. A side effect of this is that

the result of a pointer arithmetic operation can be given a non-null Ptr+ type, since we

have already checked for non-nullness when constructing the pointer. This significantly

reduces the number of nullness checks that appear in the instrumented program, and thus

the performance impact of the instrumentation, as will be seen in Section 3.8.

The second case of pointer arithmetic is downwards pointer arithmetic, which

takes a pointer to an aggregate data type, such as an array or structure, and yields a pointer

to a sub-element within the aggregate data type. Unlike the first case, we do require the

source pointer to be within bounds: since we are producing a pointer to a sub-element of

the first element of the pointed region, we require that first element to exist. When the

aggregate data type is an array, the result is a pointer to the base type of the array, whose

bounds are those of the array, offset by the sub-element index. Structures will be dealt

with in Section 3.4.6.

71

Instruction: id = getelementptr ptr, isz 0, idx,

when typeΓ(ptr) = Ptr−(Array(n, TY), lo, hi)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : Ptr+(TY, 0− idx, n− idx)

The rules for load, store and getelementptr for Ptr+ pointers are exactly the

same as those for Ptr− pointers, except that the check ptr 6= null is omitted, since the

pointer is guaranteed to be non-null.

Type compatibility rules. In general, for a pointer type Ptr±(TY, lo, hi) to be

able to be used where another pointer type Ptr±(TY, lo′, hi′), the bounds of the first type

must be wider than the second type, i.e., it must be the case that lo ≤ lo′ ∧ hi ≥ hi′. Put

another way, it is always safe to use a pointer to a given region of memory as if it pointed

to a subportion of that region.

There are a few more details concerning null pointers. First, a null pointer can be

given any bounds; since null pointers cannot be dereferenced, as seen above, no memory

safety violation arises from allowing arbitrary bounds for null pointers. This allows null

pointers with any given bounds to be used interchangeably wherever a null pointer is

expected. Second, a Ptr+ pointer must be guaranteed not to be null. When using a Ptr−

pointer where a Ptr+ one is expected, a check must be emitted to ensure that the pointer

is not null.

We can write these constraints down as the following three rules:

compatΓ(val, P tr−(TY, lo′, hi′)), when typeΓ(val) = Ptr−(TY, lo, hi)

= (val = null) ∨ (lo ≤ lo′ ∧ hi ≥ hi′)

compatΓ(val, P tr+(TY, lo′, hi′)), when typeΓ(val) = Ptr−(TY, lo, hi)

= (val 6= null) ∧ (lo ≤ lo′ ∧ hi ≥ hi′)

compatΓ(val, P tr±(TY, lo′, hi′)), when typeΓ(val) = Ptr+(TY, lo, hi)

= (lo ≤ lo′ ∧ hi ≥ hi′)

The first rule says that when converting a pointer value val from a Ptr− type to

another, either the pointer must be null, in which case any bounds are acceptable, or the

72

destination bounds must be narrower than the source ones. The second rule says that

when converting a Ptr− to a Ptr+ one, the pointer must not be null, and the bounds must

be compatible. Finally, the third one says that when converting a Ptr+ to either a Ptr−

or Ptr+ pointer, we already know that the pointer is not null, so we only have to check

the bounds.

The type–type relationship is a more conservative version of the above. Since we

do not have an actual value to check for non-nullness, type–type compatibility rules for

Ptr− pointers must work under the assumption that the pointer may or may not be null.

Converting from a Ptr− type to another is only allowed if the bounds match (because the

source pointer might be not null), and converting from a Ptr− to a Ptr+ type is ruled out

altogether (because the source pointer might be null).

compatΓ(Ptr+(TY, lo, hi), P tr±(TY, lo′, hi′))

= (lo ≤ lo′ ∧ hi ≥ hi′)

compatΓ(Ptr−(TY, lo, hi), P tr−(TY, lo′, hi′))

= (lo ≤ lo′ ∧ hi ≥ hi′)

3.4.3 String pointers and arrays

SPtr±(TY, lo, hi) is the type of string pointers, pointers to null-delimited regions

of memory like C strings. The region of memory accessible through a SPtr±(TY, lo, hi)

pointer is divided in two parts:

• A freely readable and modifiable part, delimited by the bounds [lo, hi);

• A null-terminated region, starting at position hi and extending until the first occur-

rence of an element whose bits are all zero (which might be right at the hi position).

The non-zero elements in this region can be read and modified; the null terminator

itself can be read but not overwritten.

In other words, an SPtr±(TY, lo, hi) pointer has access to the same region as the

corresponding Ptr±(TY, lo, hi) pointer, plus an arbitrarily long region after the declared

upper bound, until a null terminator is hit. Because the system forbids overwriting the null

terminator, such a pointer can be given to functions like strlen, which take a pointer to a

region with no explicit bounds, and iterate over the region until a null terminator is hit. If

73

the system were not able to enforce the invariant that there is a null terminator at the end

of the region, we would not be able to use functions like strlen without compromising

spatial memory safety.

It may seem strange at first for the pointer to have both explicit [lo, hi) bounds

and a null-delimited part. To understand the reasoning behind this, consider the use

case of a pointer s to a 100-byte buffer meant to store strings. If we gave s the type

Ptr+(i8, 0, 100), we would not be able to pass it to string-processing functions like strlen,

because we would have no guarantee that the region is null-terminated. On the other hand,

if we gave it a string pointer type with no unrestricted [lo, hi) part, using only the null ter-

minator to tell where the region ends, then whenever we wrote a zero byte to the buffer

we would lose access to the region beyond that byte. This would preclude initializing the

buffer with zeros, for example, or storing strings of different lengths during the buffer’s

lifetime, since whenever we wrote a null-terminated string to it we would lose access to

the region after the string. By having both an explicitly-bounded region which we can

read and write without constraints, and a part where null-termination is enforced, we can

give s the type SPtr+(i8, 0, 99), meaning that the first 99 bytes of the buffer can be used

in any way, but beyond that region, null termination is enforced, meaning that the null

terminator cannot be overwritten, thus ensuring we can pass s to functions like strlen.

String pointers enforce one more invariant: when performing pointer arithmetic

with an SPtr pointer, the resulting pointer must not step over the null terminator. Un-

like Ptr pointers, which can be safely incremented past their valid region because the

bounds can be checked when the pointer is dereferenced, finding the limits of the region

referenced by an SPtr pointer relies on the ability of looking ahead for the null termina-

tor, therefore we must ensure that the null terminator is always ahead (or at), not behind,

the current position. Since we already must take up the overhead of bounds checking

for the upper bound when performing pointer arithmetic, we also check that the pointer

is not decremented past its lower bound either. The flip side of these restrictions is that

when accessing the pointer, we don’t have to check bounds, since all SPtr pointers are

in-bounds by construction.

Instruction: id = load ptr, when typeΓ(ptr) = SPtr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit the instruction

Γ←+ id : TY

74

When storing to the pointer, we must ensure that either we are in the freely-

modifiable [lo, hi) region, or we are not overwriting the null terminator. That means

that either the value we are overwriting is not the null terminator, or the new value we are

writing is itself a null terminator. As with normal stores, we also have to check that the

type of the value being stored is compatible with the base type of the pointer.

Instruction: store val, ptr, when typeΓ(ptr) = SPtr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit check compatΓ(val, TY)

Emit check (lo ≤ 0 ∧ hi ≥ 1) ∨ (∗ptr 6= null) ∨ (val = null)

Emit the instruction

As with Ptr pointers (Section 3.4.2), horizontal pointer arithmetic of SPtr point-

ers must ensure that the pointer is within bounds. This means either that the resulting

pointer is within the [lo, hi) region, or it is at or beyond hi but not beyond the null termi-

nator. In other words, if the resulting pointer would point to index idx and idx is above hi,

then the region [hi, idx) must consist entirely of non-zero elements. Note that the element

at position idx itself may be the null terminator. We write nonZero(ptr, start, end) to

represent the condition that the elements in range [start, end) from the region pointed to

by ptr are non-zero.

Instruction: id = getelementptr ptr, idx,

when typeΓ(ptr) = SPtr−(TY, lo, hi)

Action:

Emit check ptr 6= null

Emit check (idx ≥ lo) ∧ (idx ≤ hi ∨ nonZero(ptr, hi, idx))

Emit the instruction

Γ←+ id : SPtr+(TY, lo− idx, hi− idx)

Downwards pointer arithmetic into an aggregate value is possible provided that

the pointer does not point to the null terminator itself. If we allowed pointing to sub-

parts of the null terminator, we would be able to corrupt the null terminator by writing to

the sub-parts. (Alternatively, we could make the resulting pointer an SPtr pointer with

an empty freely writable part; this would preserve the null terminator but the resulting

pointer would not be particularly useful.)

75

Instruction: id = getelementptr ptr, isz 0, idx,

when typeΓ(ptr) = SPtr−(Array(n, TY), lo, hi)

Action:

Emit check ptr 6= null

Emit check ∗ptr 6= null

Emit the instruction

Γ←+ id : Ptr+(TY, 0− idx, n− idx)

The rules for SPtr+ pointers are the same as those for SPtr− pointers, with the

ptr 6= null checks omitted.

Type compatibility rules. Like common pointers, string pointers can safely have

their bounds narrowed. Unlike common pointers, string pointers can also have their upper

bound widened, as long as the new bounds do not reach the null terminator.

compatΓ(val, SP tr±(TY, lo′, hi′)), where typeΓ(val) = SPtr+(TY, lo, hi)

= (lo ≤ lo′) ∧ (hi ≥ hi′ ∨ nonZero(val, hi, hi′))

Like Ptr pointers, any bound is valid for null SPtr pointers, and converting from

SPtr− to SPtr+ requires a nullness check.

compatΓ(val, SP tr−(TY, lo′, hi′)), where typeΓ(val) = SPtr−(TY, lo, hi)

= (val = null) ∨ ((lo ≤ lo′) ∧ (hi ≥ hi′ ∨ nonZero(val, hi, hi′)))

compatΓ(val, SP tr+(TY, lo′, hi′)), where typeΓ(val) = SPtr−(TY, lo, hi)

= (val 6= null) ∧ ((lo ≤ lo′) ∧ (hi ≥ hi′ ∨ nonZero(val, hi, hi′)))

It is possible to convert an SPtr pointer into a corresponding Ptr pointer; this

amounts to dropping access to the null-terminated region after the declared higher bound,

and so it is a form of bound narrowing. Converting a pointer of type SPtr±(TY, lo, hi) to

type Ptr±(TY, lo′, hi′) is effectively equivalent to first converting it to an SPtr pointer

with the new bounds, and then drop the null-terminated part (which requires no particular

check).

compatΓ(val, P tr±
′
(TY, lo′, hi′)), where typeΓ(val) = SPtr±(TY, lo, hi)

= compatΓ(val, SP tr±
′
(TY, lo′, hi′))

76

The opposite conversion, from a common pointer to a null-terminated one, is not

possible. Even if we checked that the referenced region did end with a null terminator at

the time of the conversion, there would be nothing to prevent other pointers to the same

region from overwriting the null terminator in the future, so this conversion cannot be

allowed.

Since checking for absence of null terminators when widening the upper bounds

of a string pointer requires an actual string pointer to read from, bound widening is only

allowed in the value–type compatibility relationship. Type–type conversions can only

narrow the declared bounds, and thus are similar to those for common pointers.

compatΓ(SPtr+(TY, lo, hi), SP tr±(TY, lo′, hi′))

= (lo ≤ lo′ ∧ hi ≥ hi′)

compatΓ(SPtr−(TY, lo, hi), SP tr−(TY, lo′, hi′))

= (lo ≤ lo′ ∧ hi ≥ hi′)

compatΓ(SPtr±(TY, lo, hi), P tr±
′
(TY, lo′, hi′))

= compatΓ(SPtr±(TY, lo, hi), SP tr±
′
(TY, lo′, hi′))

String arrays. SArray(n, TY) is the type of string arrays, arrays of size nwhose

last element is guaranteed to be a null terminator. The semantics is slightly different from

that of SPtr pointers: whereas the null terminator is at an unspecified position beyond

the declared bounds of an SPtr pointer, it is contained within the declared size of a string

array, exactly at the last position. The reason for this is that while the bounds of a pointer

are only relevant for the instrumentation, and not part of the underlying LLVM IR pointer

type, the size of an array is part of the underlying LLVM IR type, and affects the size in

bytes of the type. The size of an array type should always reflect the actual type of the

underlying array.

In terms of usage, the difference between a common array and a string array is

that when an element of a string array is indexed via getelementptr, the resulting pointer

is an SPtr pointer. The bounds of the pointer exclude the last element, since the null

terminator must be outside the explicit bounds of an SPtr pointer. We present below the

rule for Ptr− pointers to string arrays. The rules for Ptr+ and SPtr± pointers to string

arrays are analogous, adapting the nullness and bounds checks accordingly.

77

Instruction: id = getelementptr ptr, isz 0, idx,

when typeΓ(ptr) = Ptr−(SArray(n, TY), lo, hi)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : SPtr+(TY, 0− idx, n− 1− idx)

3.4.4 Local pointers

Local(TY) values are pointers to exactly one stack-allocated element of type TY .

Local pointers can only ever arise as the result of an alloca instruction, which allocates

space in the stack and returns a pointer to the allocated memory.

Bound expressions appearing within a Local type can depend on other Local vari-

ables. For example, if len is a Local(i32) value (i.e., a pointer to an integer allocated

on the stack), then we can have another value p with type Local(Ptr−(i8, 0, ∗len)), i.e.,

a pointer to a stack-allocated pointer whose lower bound is 0 and whose upper bound is

whatever value is stored in the place pointed to by len.1

Local pointers can be loaded from and stored to (i.e., the value the pointer points

to can be read and overwritten), but the pointer itself cannot be copied, passed around, or

used in pointer arithmetic. This ensures that the pointer is the only reference to the value it

points to, i.e., the pointer is never aliased. This means we can always track modifications

to that place, because modifications always happen through that single pointer.

This property of local pointers makes it possible use them as bounds of other

(local) pointers in a safe way. Suppose we were not able to track modifications to a

value like ∗len. Then we would not be able to safely make a pointer p with bounds

like Local(Ptr−(i8, 0, ∗len)), because ∗len could be changed after the pointer was con-

structed, potentially expanding p’s bounds beyond the valid region, which would allow

spatial memory safety violations. Because the usage restrictions of local pointers ensure

we can keep track of all modifications to the value of ∗len, the system can then instrument

such modifications in such a way that only modifications which do not break the safety of

p’s bounds are allowed.
1Remember that the equivalents of C local variables in LLVM IR are accessed through pointers to the

stack, so a local pointer variable in C will be accessed through a pointer to the pointer stored in the stack.

78

It should be noted that local variables are not required to have a Local type, only

variables involved in type dependencies are. Pointers to local variables not involved in

type dependencies can be given a more general pointer type, which don’t have the usage

restrictions of Local pointers, but cannot be dereferenced in type expressions.

The specific pointer type assigned to the result of an alloca instruction depends

on whether the programmer has provided an annotation for the pointer, the allocation

quantity, and the allocation base type. If an annotation is given, it must provide a Local,

Ptr or SPtr type consistent with the LLVM IR type and quantity used by the alloca

instruction; otherwise, the annotation is rejected.

A Local type annotation can only be given to allocations with a quantity of 1, and

the base type must be compatible with the initial (zero2) value of the object. This means,

for instance, that the base type of a Local pointer cannot be a Ptr+ type, since the stored

value is initially null.

Instruction: id = alloca ty, isz 1, when A(id) = Local(TY)

Action:

Emit check compatΓ(ty zeroinitializer, TY)

Emit the instruction

Emit zeroF ill(id, 0, 1)

Γ←+ id : Local(TY)

Here, zeroF ill(id, lo, hi) means to emit code to store zeros in the positions in

range [lo, hi) relative to the pointer id.

If a Ptr type annotation is provided by the programmer, then the bounds must be

compatible with the allocation quantity, and the base type must be similarly compatible

with the initial value of the region.

Instruction: id = alloca ty, qtd, when A(id) = Ptr±(TY, lo, hi)

Action:

Emit check lo ≥ 0 ∧ hi ≤ qtd

Emit check compatΓ(ty zeroinitializer, TY)

Emit the instruction

Emit zeroF ill(id, lo, hi)

Γ←+ id : Ptr±(TY, lo, hi)

2We assume here that the memory allocated by alloca is zero-initialized. This is enforced by emitting
code to zero-fill the region immediately after the alloca instruction.

79

If an SPtr type is provided, then the declared upper bound must be strictly less

the quantity of the allocation. This ensures that the last element of the allocated region

(which is initialized with zeros) will remain outside the declared bounds, and therefore

that a null terminator will be present past the declared upper bound, as required by the

rules of SPtr pointers (as seen in Section 3.4.3).

Instruction: id = alloca ty, qtd, when A(id) = SPtr±(TY, lo, hi)

Action:

Emit check lo ≥ 0 ∧ hi < qtd

Emit check compatΓ(ty zeroinitializer, TY)

Emit the instruction

Emit zeroF ill(id, lo, hi)

Γ←+ id : SPtr±(TY, lo, hi)

When no annotation is provided, in general the allocation is given a Ptr type with

appropriate bounds based on the allocation quantity, and the base type is inferred from

the LLVM IR one given in the instruction.

Instruction: id = alloca ty, qtd,

when A(id) = ∅ ∧ (qtd 6= 1 ∨ ty is not a pointer type)

Action:

Emit the instruction

Emit zeroF ill(id, 0, qtd)

Γ←+ id : Ptr+(dtye, 0, qtd)

The exception is allocations with a quantity of 1 and a ponter base type, i.e., those

corresponding to local pointer variables in C. To reduce the annotation burden on the

programmer, and to allow the bounds of a pointer to vary during execution (for example,

when incrementing the pointer in C), we implicitly allocate two integer local variables

to hold the bounds of the pointer, which will be automatically updated whenever the

pointer is modified. We initialize all variables with zeros, set the bounds of the created

pointer to be the newly created local integers, and add a mapping in the automatic bounds

environment ∆ to record that this pointer has automatically managed bounds.

80

Instruction: id = alloca ty∗, qtd, when A(id) = ∅ ∧ qtd = 1

Action:

Emit lo = alloca iWORD, iWORD 1, for fresh identifier lo

Emit hi = alloca iWORD, iWORD 1, for fresh identifier hi

Emit the instruction

Emit zeroF ill(id, 0, 1), zeroF ill(lo, 0, 1), zeroF ill(hi, 0, 1)

Γ←+ id : Local(Ptr−(dtye, ∗lo, ∗hi))

Γ←+ lo : Local(iWORD), hi : Local(iWORD)

∆←+ id : (lo, hi)

Loading from a Local pointer requires no checks: since the Local type is only

given to pointers returned by alloca with a quantity of 1, we know that the bounds of

the referenced region are [0, 1), and therefore safe to load. However, if the base type

contains pointer dereferences (e.g., Local(Ptr(i8, 0, ∗len))), these must be replaced with

the actual values of the pointers at the time of the load. The intuition behind this is

that after you load the content of a local variable x into a register id, id is fixed, i.e., a

snapshot of the value of x at that moment. Therefore, the bounds of id must also be a

snapshot of the values of the bounds at the time of the load, and it makes no sense for

further modifications to the values of the bounds of x to affect the snapshot stored in id.

To achieve this, each pointer dereferenced in the base type is loaded into a register, and

the dereference is replaced by the register in the resulting type.

Instruction: id = load ptr, when typeΓ(ptr) = Local(TY)

Action:

Emit idi ← ∗xi for each ∗xi appearing in TY and fresh idi

Emit the instruction

Γ←+ id : TY [∗xi 7→ idi]for each i

Storing into a Local pointer is trickier. First, we need to check that the type of

the value being stored is the same as the base type of the local variable. But since the

type of the variable may depend on the variable itself, the type may change upon the

assignment. Therefore, this compatibility check must happen against the new type, i.e.,

replacing all dereferences of the variable with the would-be new value. Second, because

the types of other Local pointers (as well as the type of the pointer itself) may depend

81

on the variable being modified, their types may change. We need to check that the new

value that they would acquire if the assignment happens is compatible with their current

type. For instance, if p is a Local(Ptr(i8, 0, ∗len)), changing the value stored at len will

change the bounds of p. If the new bounds are compatible with the old ones (for example,

if we are decrementing len, thus narrowing the bounds of p), then the assignment to len is

okay. If not (for example, if we are incrementing len, thus widening the bounds of p, thus

enabling access to a memory region which should not be accessible), then the assignment

to len must not be allowed.

Instruction: store val, ptr, when typeΓ(ptr) = Local(TY) ∧∆(ptr) = ∅

Action:

Emit check compatΓ(val, TY [∗ptr 7→ val])

For each (id : TYid) in Γ where ∗ptr appears in TYid

Emit check compatΓ(id, TYid[∗ptr 7→ val])

Emit the instruction

For Local pointers whose base type is a pointer with automatic bounds, we must

also update the bounds based on those of the new pointer being stored onto it.

Instruction: store val, ptr,

when typeΓ(ptr) = Local(Ptr−(TYptr, ∗lo, ∗hi)) ∧∆(ptr) = (lo, hi)

Action:

Let (TYval, loval, hival) = DestructurePointerType(typeΓ(val))

Emit check compatΓ(TYval, TYptr)

Emit store loval, lo, store hival, hi

For each (id : TYid) in Γ where ∗ptr appears in TYid

Emit check compatΓ(id, TYid[∗ptr 7→ val])

Emit the instruction

Where:

DestructurePointerType(Ptr±(TY, lo, hi)) = (TY, lo, hi)

DestructurePointerType(SPtr±(TY, lo, hi)) = (TY, lo, hi)

In principle, we would not want to allow pointer arithmetic on Local pointer:

Local pointers only ever point to a single object, so pointer arithmetic is not particularly

useful on them. Moreover, if we allowed pointer arithmetic with a zero offset, the result

would be a new pointer to the same element as the existing Local pointer, which would

82

violate the non-aliasing invariant of Local pointers. However, as we will see below, Local

pointers can be converted into general pointers with empty bounds, so it is possible to

perform pointer arithmetic on Local pointers, so long as the result is empty-bounded.

Instruction: id = getelementptr ptr, idx, when typeΓ(ptr) = Local(TY)

Action:

Emit the instruction

Γ←+ id : Ptr+(TY, 0, 0)

Type compatibility rules. In general, Local pointers are not compatible with

anything, not even with themselves: since they cannot be passed around or copied, it

does not make sense to speak of type compatibility for local pointers. There is one ex-

ception to this rule, to accomodate a common use case in LLVM IR: adding a call to a

“dummy” LLVM function passing a pointer to a local variable as a means of associating

metadata with it. For example, Clang inserts calls to the functions @llvm.lifetime.start

and @llvm.lifetime.end to associate liveness information with variables. These are es-

sentially dummy functions, present in the code only as a way to represent information

which further LLVM passes may use, and not present in the resulting binary. Because

these functions do not read or write to the pointer being passed, they do not pose a viola-

tion of memory safety. To account for this case, Týr allows converting Local pointers into

common Ptr pointers, as long as the resulting bounds are empty. This allows the address

of the local variable to be passed as an argument to those calls, but disallows using the

content of the variable, thus preserving safety.

compatΓ(Local(TY), P tr±(TY, lo, hi)) = (lo = hi)

3.4.5 Invariance of pointer types

Although Ptr pointers have a compatibility relationship based on the pointer

bounds (i.e., two pointers with different bounds can be compatible, subject to run-time

checks on the bounds), there is no such relationship based on the base type (i.e., two

pointers with different base types are never compatible). In the terminology of subtyping,

Ptr is invariant with respect to the base type. That is, if S and T are two different types,

then Ptr±(S, lo, hi) and Ptr±(T, lo, hi) are never compatible with (or subtypes of) each

83

other, even if S is compatible with T . The reason is that the region the pointer points to

is both readable and writable. Consider the following example. As we have seen before,

Ptr+(i8, 0, 10) is compatible with Ptr+(i8, 0, 5), because a value of the wider type can be

used wherever a value of the narrower one is expected (in other words, every pointer with

bounds [0, 10) also has the [0, 5) region). Now, consider a pointer to a region containing

a pointer of that type, Ptr+(Ptr+(i8, 0, 10), 0, 1). If we considered it a compatible with

Ptr+(Ptr+(i8, 0, 5), 0, 1), then it would allow code to store a Ptr+(i8, 0, 5) inside the re-

gion. Afterwards, the code which had the Ptr+(Ptr(i8, 0, 10), 0, 1) pointer to that region

would read the pointer in the region back as Ptr+(i8, 0, 10), thus giving it wider bounds

than it actually has, which would allow it to access invalid memory through it. Therefore,

the compatibility/subtyping relationship cannot be covariant with respect to the base type.

On the other hand, if we allowed the relationship to be contravariant, i.e., if

compatΓ(S, T) then compatΓ(Ptr+(T, lo, hi), P tr+(S, lo, hi)), then it would allow cast-

ing a pointer Ptr+(Ptr+(i8, 0, 10), 0, 1) to Ptr+(Ptr+(i8, 0, 20), 0, 1), which is clearly

bad because then the pointer contained in the region could have its bounds arbitrarily ex-

panded when read back. Therefore, the compatibility relationship must be invariant with

respect to the base type. The same applies to SPtr pointers.

3.4.6 Structures

The handling of structures presents some conceptual similarities with the han-

dling of local variables, in that structures define a scope within which the types of the

components are allowed to depend on the values of other components (or even the same

component) of the same structure.

Structure fields are always accessed through pointers obtained via the getele-

mentptr instruction. Given a pointer p to a structure of type Struct id (idi : TYi),

getelementptr p, 0, i yields a pointer to the ith field of the structure (counting from zero).

Unlike array indices, LLVM IR requires the structure field index i to be a constant. If the

field is not involved in type dependencies (i.e., if its type does not depend on any field and

the type of no other field depends on it), then the pointer can be given a common pointer

type with no usage restrictions other than those imposed by bounds.

84

Instruction: id = getelementptr ptr, isz 0, idx,

when typeΓ(ptr) = Ptr−(S, lo, hi)

∧ S = Struct idS (fld0 : TY0, ..., f ldn−1 : TYn−1)

∧ TYidx does not contain references to any fld0...n−1

∧ No TY0...n−1 contains references to fldidx

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : Ptr+(TYidx, 0, 1)

If the field is involved in type dependencies (i.e., its type depends on other fields

or the types of other fields depend on it), the resulting pointer is given a Field type. This

is analogous to a Local pointer, in that it has similar usage restrictions which allow the

system to track modifications to the fields of a structure. Rather than carrying the base

type of the referenced value, the field pointer type has the form Field(S, val, f ld), where

S is the type of the structure the field is part of, val is the structure pointer from which

the field pointer originated, and fld is the name of the field within that structure. With

all this information, we can both recover the base of the pointer (by consulting the type

of field fld in S), and fetch the values of the other fields in the structure to deal with

dependencies (by emitting getelementptr instructions for the other fields of val).

Instruction: id = getelementptr ptr, isz 0, idx,

when typeΓ(ptr) = Ptr−(S, lo, hi)

∧ S = Struct idS (fld0 : TY0, ..., f ldn−1 : TYn−1)

∧ (TYidx contains references to any fld0...n−1 ∨

Some TY0...n−1 contains references to fldidx)

Action:

Emit check ptr 6= null

Emit check lo ≤ 0 ∧ hi ≥ 1

Emit the instruction

Γ←+ id : Field(S, ptr, f ldidx)

Loading from a Field pointer does not require any checks, since a Field pointer

can only be derived from a valid structure. Much like loading from a Local pointer takes a

85

snapshot of the current value of the local variable, and thus any references to other locals

in the type of the loaded value must be replaced by their actual values at the point of the

load, so does loading from a Field pointer require taking a snapshot of the values of the

fields it depends on in the resulting type. In the “Emit” statements, we will write ptrS.f ld

to mean fetching the value of field fld from a structure of type S pointed to by ptr.

Instruction: id = load ptr,

when typeΓ(ptr) = Field(S, ptr, f ld)

∧ S = Struct idS (fld0 : TY0, . . . , f ldn−1 : TYn−1)

Action:

Emit check ptr 6= null

Emit idi ← ptrS.f ldi for each fldi appearing in TYfld and fresh idi

Emit the instruction

Γ←+ id : TYfld[fldi 7→ idi]for each i

Again like Local pointers, storing into a Field requires checking that the value

being stored is compatible with the field type, replacing any references to the field itself

with the would-be new value, and references to other field names fldi with ptrS.f ldi so

we can fetch their values. We must also check that other fields whose types depend on

the field being modified are compatible with the new value, again performing the same

substitutions on the types.

Instruction: store val, ptr,

when typeΓ(ptr) = Field(S, ptr, f ldidx)

∧ S = Struct idS (fld0 : TY0, . . . , f ldn−1 : TYn−1)

Action:

Emit check compatΓ(val, subst(TYidx))

For each fldi : TYi where fldidx appears in TYi and fldi 6= fldidx

Emit check compatΓ(ptrS.f ldi, subst(TYi))

Emit the instruction

Where:

subst(TY) = TY [fldidx 7→ val][fldi 7→ ptrS.f ldi]for each i

Type compatibility rules. Because field pointers have similar usage restrictions

as local pointers, type compatibility is also limited for them. We allow converting field

86

pointers to common pointers with empty bounds, for the same reasons as we do for local

pointers (see Section 3.4.4).

compatΓ(Field(S, ptr, f ld), P tr±(TY, lo, hi)),

where S = Struct idS (..., f ld : TY, ...)

= (lo = hi)

3.4.7 Functions

Fn± TYret (id1 : TY1, ..., idn : TYn) is the type of pointers to functions taking

arguments id1...n of types TY1...n and returning type TYret. Like Ptr and SPtr pointers,

Fn pointers may be nullable (Fn−) or non-nullable (Fn+). The types of parameters and

the return type can depend on the values of the parameters.

Functions are always handled through function pointers in LLVM IR; functions

themselves are not first-class values. Function pointers cannot be loaded from or stored

to, nor is it meaningful to perform pointer arithmetic on them, since the pointer base type

does not have a size. Therefore, load, store and getelementptr are not applicable to Fn

pointers.

The function pointed to by an Fn pointer can be invoked with the call instruction.

call is passed the function pointer and a list of arguments, one for each parameter of the

function. For the call to be allowed, the types of each of the arguments must be compat-

ible with the types declared for the corresponding parameters. Because the types of the

parameters may depend on the values of the parameters, references to parameters within

a parameter type must be replaced with the values being used in the call when checking

compatibility, in much the same way as references to a local variable are replaced with the

local’s new value when storing to a Local pointer, and references to fields in structures

are replaced with the actual structure values when storing to a Field pointer. The call

instruction yields a value of the function’s return type, also with parameters replaced with

argument values.

87

Instruction: id = call fn (val1, ..., valn),

when typeΓ(fn) = Fn− TYret (id1 : TY1, ..., idn : TYn)

Action:

Emit check fn 6= null

Emit check compatΓ(vali, TYi[idj 7→ valj]for each j) for each vali

Emit the instruction

Γ←+ id : TYret[idj 7→ valj]for each j

The ret instruction is used to return a value from the current function to its caller.

The type of the value being return must be compatible with the declared return type.

Here we do not have to replace parameter names in the return type, because when the ret

instruction is running, all parameters are in scope and have actual values.

Instruction: ret val,

within a function whose signature is Fn± TYret (...)

Action:

Emit check compatΓ(val, TYret)

Emit the instruction

3.4.8 Bitcast

The bitcast instruction is used to cast a value to a different type which has the

same size in bytes as the original type. For instance, it can be used to cast an i32 value

to float, because both are 32-bits wide, but not an i32 to double, because the sizes differ.

The result is a value which has the exact same bit pattern as the original, but reinterpreted

as the new type.

Because pointers typically have all the same size (the size of a machine address),

it is generally possible in LLVM IR to cast between any two pointer types. Therefore, it

is possible, for example, to cast an i32* to double*, even though i32 and double don’t

have the same size, because i32* and double* do have the same size.

LLVM IR requires that the source and destination types are both non-pointers or

both pointers; there are separate instructions for converting from integers to pointers and

vice-versa. Casting between non-pointer types requires no special treatment from the

perspective of memory safety, because memory is only accessed through pointer types.

88

Instruction: id = bitcast val to tynew,

when typeΓ(val) = TYold

∧ bTYoldc is not a pointer type

∧ sizeof(bTYoldc) = sizeof(tynew)

Action:

Emit the instruction

Γ←+ id : dtynewe

Casts between pointer types require more attention. First, because pointer bounds

are expressed in terms of indices, the actual bounds they represent are relative to the size

of the base type. For instance, if a pointer p has the type Ptr+(i32, 0, 10) and it points

to memory address 1000, then the upper bound of the accessible region is address 1040

(1000 + 4 × 10), because i32 is 4 bytes long. Therefore, if the pointer is cast to i64*,

for instance, the resulting pointer must have type Ptr+(i64, 0, 5), with bounds shrunk to

account for the wider base type (i.e., because the base type is now 8 bytes long, the upper

bound index must be 5 so that 1000 + 8× 5 is still at or below 1040). Computing the new

bounds is done by multiplying the number of elements by the size of the old base type to

obtain a number of bytes, and then dividing the number of bytes by the size of the new

base type, thus obtaining the number of elements in the new type.

Instruction: id = bitcast val to tynew∗,

when typeΓ(val) = Ptr±(TYold, lo, hi)

Action:

Let lo′ = (lo ∗ sizeof(btyoldc))/sizeof(tynew)

Let hi′ = (hi ∗ sizeof(btyoldc))/sizeof(tynew)

Emit the instruction

Γ←+ id : Ptr±(dtynewe, lo′, hi′)

An SPtr pointer cannot be cast to another SPtr type with a new base type in this

way, because the null terminator of the old type may not be recognized as a null terminator

when interpreted in the new type. For instance, if a sequence of 8-bit characters were to

be reinterpreted as a sequence of 32-bit integers, the single-byte null terminator would

not be recognized as a null value anymore, but rather would be interpreted as part of an

integer. This would make the system unable to find the null terminator of the region, thus

allowing a memory safety violation. However, we can allow SPtr pointers to be cast

89

using the same rule presented above if we let the resulting pointer have a Ptr rather than

SPtr type (effectively dropping access to the null-delimited region).

There is a second problem with casting between pointers: if the destination pointer

type has a base type that is itself a pointer type or somehow contains pointers, then the cast

may lead to non-pointer values being interpreted as pointers. For example, if a pointer to

a buffer of bytes (e.g., i8*) is reinterpreted as being a pointer to a structure containing

pointer fields (e.g., { i32, i8* }*), then the pointers within the structure will be filled with

the values of the bytes in the buffer, which may or may not constitute valid pointers. To

ensure safety, we would have to disallow such casts. However, many C programs rely

on the ability to do this. A common case is the use of the void* type (which is trans-

lated to i8* in LLVM IR) as a kind of “generic” pointer type, which is then cast to an

appopriate type when using the pointer. For instance, the POSIX pthread_create func-

tion, which spawns a new thread, takes (among other arguments) a pointer to a function

start_routine to be executed within the new thread, and an argument arg to pass to that

function. To allow values of different types to be used, start_routine is defined as taking

a void* argument, and arg has the type void*. In typical usage, the actual function passed

as start_routine will then cast its parameter to the actual type of the arg argument, and

then use it. Unlike the case with pointer bounds, where typically the bounds are passed

as extra arguments to the C function, in this case there is no information passed to the

start_routine function which would tell it the actual type of the argument: the function

simply assumes that an argument of the proper type was passed and casts it. This makes

it more difficult to ensure safety of such casts. In this work, we opted to allow such casts,

even though they are potentially unsafe, to allow this usage in C programs. There are

possible solutions to this problem, such as introducing a form of true parametric poly-

morphism to replace the usage of void*/i8* as a make-shift generic type. This should be

addressed by future work.

3.4.9 Other instructions

ptrtoint converts pointers to integers. This is a safe operation, because the result-

ing integer cannot be used to access memory. inttoptr does the opposite conversion, from

integers to pointers. This allows arbitrary integers to be turned into pointers, which would

lead to memory unsafety if the resulting pointers could be dereferenced. To avoid this

problem, we allow the pointer to be created, but give it empty bounds. This allows idioms

90

like casting an integer to a pointer for use as a sentinel value (e.g., using ((void *) -1) as

a distinguished pointer value which is known not to point to any valid object, similarly

to the way null is used), but disallows pointing to an arbitrary address and then reading

from or writing to it.

Instruction: id = ptrtoint val to isz, when typeΓ(val) is a pointer type

Action:

Emit the instruction

Γ←+ id : isz

Instruction: id = inttoptr val to ty∗, when typeΓ(val) = isz

Action:

Emit the instruction

Γ←+ id : Ptr−(dtye, 0, 0)

The other instructions do not yield or access pointers and have trivial rules. Arith-

metic instructions expect integer operands of the same type and yield an integer with the

same type as the operands. The comparison instruction expects two integers or two point-

ers and yields a boolean. Comparing pointers is safe, because the region referenced by the

pointers is not accessed. sext, zext and trunc convert integer operands into other integer

types.

Because the Týr rules for those instructions do not add anything new over the type

checks LLVM already does, we will omit them here. Likewise, the rules for the control

flow instructions br and unreachable do not have any memory-safety related restriction.

3.5 Global environment, revisited

We can now revisit the procedure for constructing the global environment (Figure

3.4). The types given to global variables, constants and functions depend on the type

annotations provided by the programmer. As with locals, an annotation, if provided, must

be consistent with the LLVM IR type and the initializer used with the element; unlike

locals, the initializer of a global variable or constant need not be zeroinitializer.

Because globals and constants are pointers to their storage, and the Local type

cannot be used for values outside functions, any annotation provided for a global must

91

be of the form Ptr±(TY, 0, 1), representing a pointer to the location where the global is

stored. The base type TY must be compatible with the global’s initializer.

Another difference between globals and locals is that, because globals occur at

the module top-level rather than within a function block, we cannot emit run-time com-

patibility checks for globals. This means that any compatibility check required to ensure

that the initializer is compatible with the given annotation base type must depend only on

information available at compile-time, so we can check it without emitting any run-time

check. This is not a problem in practice, since the given types cannot contain references

to Local variables anyway (since there are none at the global scope), and globals cannot

be used in bound expressions (since they do not have the aliasing guarantees of Local

values).

In other words, if an annotation A(gid) is given for a global variable or constant

gid initialized with value const, then it must be the case that A(gid) = Ptr±(TY, 0, 1),

and compatΓ(const, TY). Although any nullness tag can be specified for the annotation

pointer, there is no reason for specifying Ptr−, since the pointer to the global allocated

region is known to be non-null.

If an annotation is not given for a global variable or constant, a default type

Ptr+(typeΓ(const), 0, 1) is assigned, where const is the global’s initializer. As we have

seen, typeΓ uses the default lifting d·e from LLVM IR types to Týr types presented in

Figure 3.2 to give types to constants.

For functions, the annotation must have the form Fn± TYret (id1 : TY1, . . . , idn :

TYn). The quantity and names of the parameters must match, and the Týr types must

be consistent with the LLVM IR level types, i.e., if parameter idi has LLVM IR type

tyi, then the Týr type TYi given to it in the annotation must be such that bTYic =

tyi. The same applies to the return type. If an annotation is not given, a default type

Fn+ dtyrete (idi : dtyie) is assigned to the function, where tyret and tyi are the types

appearing in the LLVM IR function declaration.

3.6 Emitting instrumentation code

In Section 3.4, we have described which checks must be emitted and which com-

putations must be performed for each kind of instruction. In this section, we describe how

those checks and computations are turned into actual LLVM IR instructions.

There are four kinds of “Emit” actions appearing in the instrumentation rules:

92

• “Emit inst”, where inst is one or more LLVM IR instructions, means simply to

emit the given instructions in the resulting code. “Emit the instruction” is an abbre-

viation for “Emit inst” when inst is the instruction being currently instrumented

itself.

• “Emit zeroF ill(id, δlo, δhi)” means to emit instructions to zero out the region within

the range [δlo, δhi) relative to the pointer id. This can be done by computing the start

and length of the region, and calling the C memset function to fill it with zeros.3

This is equivalent to the sequence:

Emit start← id+ δlo

Emit len← (δhi − δlo) ∗ sizeof(ty), where ty is the base type of id

Emit ptr = bitcast start to i8*

Emit vvoid = call @memset (start, i32 0, len)

• “Emit v ← δ” means to emit code to compute the value of expression δ, and that

the LLVM IR value representing the result of the computation will be referred to as

v in the subsequent actions. The rules for emitting code for each kind of expression

will be discussed in Section 3.6.1.

• “Emit check γ” means to emit code to check that condition γ is true at run-time,

and abort execution if it is not. The rules for emitting code for each kind of check

will be discussed in Section 3.6.2.

3.6.1 Computing expressions

Dependent type expressions are evaluated for their value rather than for side ef-

fects. Simple expressions, such as identifiers and constants, do not require emitting any

instructions to compute them; they can be used directly as LLVM IR values. Com-

posite expressions, on the other hand, require instructions to be emitted to compute

their values. For example, an expression like 2 + 3 will result in an instruction like

v = add iWORD 2, iWORD 3 being emitted, where v is a fresh identifier. The instruction

itself is not the value of the expression; rather, the instruction is emitted, and the value

ends up assigned to register v. Therefore, computing expressions generates as a result

both a (potentially empty) sequence of instructions, and an LLVM IR constant or reg-

3In the actual implementation, the LLVM IR @llvm.memset.p0i8.iWORD intrinsic function is called
instead. memset is used here for the sake of simplicity since it has a simpler function signature.

93

ister which will contain the value of the expression after the sequence of instructions is

evaluated.

In this section, we will describe the rules for computing each kind of expression.

We will use a rule format using “Expression” and “Action” parts, similar to the one used

for instrumentation rules in Section 3.4.

The action “Yield val” will be used to mean that val is the resulting value of the

expression. As we have seen in Section 3.3.3, we write “Emit v ← δ” to mean that

expression δ is to be computed and the result will be referred to as v in subsequent action

lines. In effect, this will mean to apply one of the rules in this section to compute δ. The

rule will potentially emit some instructions, add some registers to the environment, and

finally “Yield” some value val. This value is what the v in “Emit v ← δ” will refer to

afterwards.

The rules presented here may create auxiliary registers to hold intermediate values.

Although for simplicity of exposition we do not always explicitly add every intermediate

register to the environment in the rules, we do always explicitly add registers appearing

in the “Yield” action of a rule. This means that after an “Emit v ← δ” action, it is always

possible to use typeΓ(v) to obtain the type of the computed expression.

The grammar of dependent type expressions δ has been presented in Figure 3.1

(Section 3.2.1). We shall now consider each kind of expression.

Simple expressions. For simple constants and identifiers (val), no code has to be

emitted; only the equivalent LLVM IR value must be returned.

Expression: val

Action:

Yield val

Likewise, sizeof(ty) is a constant expression whose value can be determined at

compile-time.

Expression: sizeof(ty)

Action:

Yield iWORD n, where n is the statically-known size of LLVM IR type ty

Binary operations. For binary operations δ1 op δ2, we must first compute each

side. Afterwards, different actions are taken depending on the type of each side.

94

Expression: δ1 op δ2

Action:

Emit v1 ← δ1

Emit v2 ← δ2

ComputeBinop(v1 op v2)

We define ComputeBinop by cases, depending on the types of the operands.

When both operands are integers, we must first ensure that they both have the same inte-

ger size; if they do not (for example, if one is i32 and the other is i64), we cast the smaller

operand to the size of the larger. Then we emit the instruction to perform the appropriate

arithmetic operation.

ComputeBinop(v1 op v2),

when typeΓ(v1) = isz1 ∧ typeΓ(v2) = isz2

Action:

Let szmax = max(sz1, sz2)

Emit v′1 ← sext v1 to szmax

Emit v′2 ← sext v2 to szmax

Emit v = op→inst[op] v′1, v′2
Γ←+ v : iszmax

Yield v

Where op→inst is the mapping:

op→inst = { + 7→ add,− 7→ sub, ∗ 7→ mul, / 7→ sdiv}

If the left side is a common (Ptr) pointer and the right side is an integer, we

use the getelementptr instruction to perform pointer arithmetic. It should be noted that

the bounds of the pointer are irrelevant here, since Ptr pointers appearing in dependent

type expressions cannot be dereferenced. Likewise, the resulting pointer is given empty

bounds [0, 0).

95

ComputeBinop(v1 + v2),

when typeΓ(v1) = Ptr±(TY, lo, hi) ∧ typeΓ(v2) = isz

Action:

Emit v = getelementptr v1, v2

Γ←+ v : Ptr+(TY, 0, 0)

Yield v

For subtracting two pointers, we must first convert them to integers, then subtract

the result, and finally divide it by the size of the base type. Again, the bounds of the

pointers do not matter, but both pointers must have the same base type.

ComputeBinop(v1 − v2),

when typeΓ(v1) = Ptr±(TY, lo, hi) ∧ typeΓ(v2) = Ptr±(TY, lo′, hi′)

Action:

Emit vsize ← sizeof(bTY c)

Emit v′1 = ptrtoint v1 to iWORD

Emit v′2 = ptrtoint v2 to iWORD

Emit v3 = sub v1, v2

Emit v = sdiv v3, vsize

Γ←+ v : iWORD

Yield v

Local pointer dereference. For Local pointer dereference ∗δ, we just load

from the pointer. There is no need to compute the pointer first, because Local pointer

expressions are always simple identifiers, never composite expressions.

Expression: ∗δ

when typeΓ(δ) = Local(TY)

Action:

Emit v = load δ

Γ←+ v : TY

Yield v

Structure field dereference. For loading the value of a structure field, we need

to first get a pointer into the desired field, then load from it.

96

Expression: valS.f ldk

when S = Struct idS (..., f ldk : TY, ...)

Action:

Emit vptr = getelementptr val, iWORD 0, iWORD k

Emit v = load vptr
Γ←+ v : TY

Yield v

3.6.2 Checks

Checks insert a control flow change in the program. An action “Emit check γ”

means to emit code to check whether a boolean condition γ is true, continue execution

normally if it is, and abort execution otherwise. The grammar of boolean conditions γ is

given in Figure 3.6.

Figure 3.6: Grammar of boolean check conditions

Condition: γ ::= > | ⊥

| δ1 cmp δ2

| nonZero(δptr, δlo, δhi)

| γ1 ∧ γ2

| γ1 ∨ γ2

Comparison: cmp ::= = | 6= | < | ≤ | > | ≥

Source: The author

At the point where a check is to be performed, a boolean condition is computed.

If true, execution continues normally to the code after the check. If false, execution is

diverted to a failure block, which prints some diagnostic message to the user and aborts

execution. In the actual implementation, a different failure block with an appropriate

diagnostic message is created for each check, but for the purposes of exposition we can

consider that each function has a single block named fail which calls the C standard

library function abort to finish program execution with an error.

To describe check code generation, we will use an auxiliary procedure Check

of three arguments: the boolean check to be performed, the label to jump to in case of

97

success, and the label to jump to in case of failure. Whenever an “Emit check γ” action

appears, we create a new success label, and emit code to evaluate the check γ, jump to

the created success label if the check is successful, and to the function’s fail label if the

check fails.

Definition: Emit check γ

Action:

Let `succ be a freshly generated label

Check(γ, `succ, fail)

Emit `succ:

We can now describe the Check procedure for each case in Figure 3.6. The >

check is trivial: we simply emit code to unconditionally jump to the success label.

Check(>, `succ, `fail):

Emit br true, `succ, `succ

Likewise, for ⊥ we emit code to unconditionally jump to the failure label.

Check(⊥, `succ, `fail):

Emit br true, `fail, `fail

For comparison checks, we emit instructions to compute each side of the com-

parison operator, and then the appropriate instruction to compare the results. Finally, we

branch to the success or failure label depending on the result of the comparison.

Check(δ1 cmp δ2, `succ, `fail):

Emit v1 ← δ1

Emit v2 ← δ2

Emit vbool = icmp cmp→op[cmp] v1, v2

Emit br vbool, `succ, `fail

Where cmp→inst is the mapping:

cmp→inst = { = 7→ eq, 6= 7→ ne, < 7→ slt,≤ 7→ sle, > 7→ sgt,≥ 7→ sge }

A nonZero(val, δlo, δhi) check verifies that, within the range of indices [δlo, δhi)

relative to a pointer val, there are no elements whose bytes are all zero (i.e., there are

98

no zeroinitializer elements in the given range). To perform this check, we emit code to

compute the start and length of the region, call an auxiliary function zerofind that sweeps

the region looking for zero elements4, and then branch to the success or failure label

depending on the result. The zerofind function must be provided by the implementation

at run-time.

Check(nonZero(val, δlo, δhi), `succ, `fail):

Emit start← ptr + δlo

Emit len← δhi − δlo
Emit elemsize← sizeof(btypeΓ(val)c)

Emit vbool = call @zerofind(start, len, elemsize)

Emit br vbool, `succ, `fail

For logical conjunction, we generate an auxiliary label `then. We emit code for the

left side of the conjunction, making it so that if it succeeds, it jumps to the `then label,

which will point to the code for the right side of the conjunction. If the right side succeds,

we jump to the success label; if either side fails, we jump to the failure label.

Check(γ1 ∧ γ2, `succ, `fail):

Let `then be a freshly generated label

Check(γ1, `then, `fail)

Emit `then:

Check(γ2, `succ, `fail)

Logical disjunction is analogous, but we jump to `succ if either side succeeds, and

the if the left side fails we jump to the right side.

Check(γ1 ∨ γ2, `succ, `fail):

Let `else be a freshly generated label

Check(γ1, `succ, `else)

Emit `else:

Check(γ2, `succ, `fail)

4This function can be thought of as similar to the C standard library memchr function, but working with
arbitrary-sized elements rather than just bytes.

99

3.7 Soundness

Soundness in the context of Týr refers to the ability of the system to prevent spatial

memory safety violations. There are two known sources of unsoundness in the system.

The first one is the pointer bitcast rule, which, as discussed in Section 3.4.8, allows some

forms of unsafe pointer casts to enable typical C usage of such pointers. As already

mentioned, addressing the problem of allowing such casts in a safe way is an interesting

question for future work.

The other source of unsoundness is external code not instrumented by Týr. As

mentioned in the introduction, one of the advantages of the Týr approach is to keep binary

compatibility, thus allowing external modules and libraries to be used unmodified with a

program compiled by Týr. Naturally, Týr cannot ensure that such external code will

respect the invariants represented by the Týr type system.

Týr relies on the programmer providing annotations which accurately describe

the functions, variables and data types provided by external code. For example, if the

programmer is going to use the C library function memcpy, which takes two pointers to

buffers and their length in bytes and copies the contents from one buffer to the another,

the programmer must supply an annotation like:

memcpy : Fn void (dest : Ptr(i8, 0, len), src : Ptr(i8, 0, len), len : i64)

Because Týr does not have access to the definition of the memcpy function in the standard

library, it cannot verify that the annotation is correct with respect to the bounds; rather, it

must trust the programmer to provide an accurate annotation for the function.

In the opposite direction, the functions, variables and data types defined in a Týr

module may be used by external code not compiled with Týr, which therefore is not

constrained to use these elements only in the ways allowed by the Týr type system. For

example, consider a function defined by the programmer with an annotation like that

provided for memcpy above. Even though code compiled by Týr will only be able to call

the function with pointers respecting the constraints imposed by that annotation, external

code which has access to the function will be able to call it with arbitrary pointers, thus

introducing unsafety.

Apart from these sources of unsoundness, we expect the system to be sound. More

specifically, we should be able to show that if a program P not interacting with unsafe

100

external code can be successfully type-checked in Týr (without using the pointer bitcast

rule), yielding an instrumented program P ′, then: (1) P ′ does not contain spatial memory

safety violations; and (2) given the same inputs, P ′ either produces the same output as P

or aborts with a run-time type violation.

Informally, we can argue (1) by showing that all pointers created by the program

will be consistent with the bounds of the referenced region and with the nullness of the

pointer, since all memory access is done through pointers. New regions are allocated in an

LLVM IR program in two ways: through the alloca instruction, and when creating global

variables and constants. The rules which give a type to the pointer returned by alloca

always require the pointer type to be consistent with the size of the allocation and with the

initial value of the region, so the consistency of those pointers with their associated region

is enforced. Likewise, the rules which give type for the pointers to global variables and

constants ensure the consistency of the pointer type with the initial value and the bounds of

the storage for the global. Then, we must show that only consistent pointers can be derived

from consistent pointers, i.e., that whenever a pointer type is used in a place expecting

another pointer type, the conversion will only be allowed if the resulting type is still

consistent with the referenced region. Finally, we must show that no operation can cause

a spatial memory safety violation when provided consistent pointers. This is enforced by

the rules for load and store. We can argue (2) by showing that the inserted instrumentation

does not alter any program values other than those created by the instrumentation itself,

that the instrumentation only inserts code rather than modifying the instructions or the

execution order of the instructions in the program, and that the inserted code does not

produce any externally visible effect other than aborting when a run-time type violation

occurs.

A formal proof of soundness is not provided in this work. Such a proof would

likely go along the lines of the one given for SoftBound in Zhao (2013), by (1) defin-

ing an extended semantics for LLVM IR with the properties enforced by the Týr system

built into the rules of the semantics; (2) proving that a program P does not commit spa-

tial memory safety violations when run in this extended LLVM+Týr semantics; (3) for-

mally defining the instrumentation pass performed by Týr as a mapping from LLVM IR

to LLVM IR programs; and (4) showing that if program P is mapped to program P ′ by

the instrumentation, then the execution of P ′ on the conventional LLVM IR semantics

simulates the execution of the original P in the LLVM+Týr semantics, and therefore, by

(2), the instrumented program does not commit spatial memory safety violations. The

101

formalization of such a proof is also a direction for future work.

Experimentally, we show that the type system is effective at preventing spatial

memory safety violations and does not change the behavior of programs apart from abort-

ing on run-time type violations by applying it to a set of benchmarks, as will be seen in

Chapter 4.

3.8 Efficiency considerations

If every check inserted by the instrumentation were performed at run-time, the

system would have a huge overhead. To make the system practical to use, checks that can

be proven true at compile-time should be removed, thus making the overhead of the sys-

tem more manageable. Whereas Deputy (CONDIT et al., 2007) included an optimization

pass specially crafted for optimizing the checks it inserted, we rely solely on the standard

optimization passes performed by LLVM during compilation. As we show in Chapter 4,

this is quite effective in most cases. However, for this to work, we had to take the ability of

LLVM to identify and optimize different kinds of expressions in account when designing

the type system.

Two features of the type system have been designed specifically with this in mind.

The original implementation of Týr followed Deputy in using addresses rather than in-

dices for pointer bounds, i.e., the bounds of a pointer were the addresses of the lower and

upper limits of the referenced region. Thus, a pointer p to a region of len integers would

be given the type Ptr(i32, p, p+ len). This had the advantage that pointer arithmetic did

not change the bounds of the pointer: p + 1 still had bounds [p, p + len), because the

bounds are relative to the original pointer, not to the pointer resulting from the pointer

arithmetic. However, it turned out that LLVM was not generally able to optimize checks

based on pointers. For example, consider the following code fragment using pointer p:

for (i=0; i<len; i++) {

do_something_with(p[i]);

}

As explained before, p[i] is syntactic sugar for *(p+i), i.e., pointer arithmetic fol-

lowed by a dereference. Because p had bounds [p, p + len), and p + i also had bounds

[p, p+ len), to check if the dereference was allowed (i.e., to see if p+ i points to at least

one element), the system would add a check that p+ i ≥ p∧ (p+ i)+1 ≤ p+ len. LLVM

was not generally able to remove such a pointer-based check, even though 0 ≤ i < len

102

within the body of the for loop. When applied to a test benchmark peforming 1000 iter-

ations of a 100×100 matrix multiplication, that version of the system had an execution

time overhead of 454% over the non-instrumented program.

After observing this, we changed the system to use integer indices rather than

pointers for bounds. Then, the type of pwas Ptr(i8, 0, len) rather than Ptr(i8, p, p+len).

Now bounds are always relative to the pointer they are associated to, so when the pointer

arithmetic p + i is performed, the bounds of the resulting pointer must be adjusted to

[0 − i, len − i), rather than [0, len). To check that the resulting pointer points to at least

one element (i.e., that its bounds encompass at least the range [0, 1)), the system will add

a check that (0− i) ≤ 0∧ 1 ≤ (len− i). LLVM is able to prove this integer-based check

to be true within the body of the loop5, and thus remove it from the program. This change

alone dropped the overhead in the test benchmark from 454% to 176%.

The second observation we made was that most of the rest of the overhead was

caused by nullness checks. The original system did not make a distinction between Ptr−

and Ptr+ pointers, so every pointer access required a check to determine if the pointer

was not null before use. LLVM was able to optimize simple cases of null checks, such

as those involving pointers to globals (which are known to be not null), but not those

involving non-constant pointers, such as those created by pointer arithmetic. In code like

the fragment above, a test to check that (p + i) 6= null would be inserted before the

pointer was dereferenced, and that check would not be eliminated by LLVM. This is due

to the fact that the result of the pointer arithmetic could in fact be null in case of overflow;

however, as discussed in Section 3.4.2, such an overflowed pointer would necessarily be

out-of-bounds, so the Týr system would not allow it to be dereferenced whether it were

null or not. Therefore, the check for nullness in this case is superfluous within the context

of Týr, but the LLVM optimization passes do not have enough information to know that.

To address this problem, we introduced the non-nullness tag to pointers. In gen-

eral, a pointer is assumed to be nullable (Ptr−) by default, so dereferences still require

the nullness check. However, if pointer arithmetic is performed on a Ptr− pointer, the

source pointer is checked for nullness, but the result of pointer arithmetic is marked

Ptr+. This means that in the code fragment above, when computing p + i, the sys-

tem will insert a check that p 6= null, but the resulting p+ i pointer is Ptr+, so no check

(p+i) 6= null needs to be inserted before the dereference. Moreover, because the inserted

5(0− i) ≤ 0 is true because it is equivalent to 0 ≤ i, which is true inside the loop. 1 ≤ (len− i) is true
because this is equivalent (in integer arithmetic) to 0 < (len − i) ⇐⇒ i < len, which is also true inside
the loop.

103

check p 6= null does not change across the iterations of the loop (i.e., it does not depend

on i), LLVM is able to move it out of the loop, thus drastically reducing the impact of the

check in execution time. After this change, the overhead in the test benchmark dropped

from 176% to the 9% reported in Chapter 4.

In this way, we were able to obtain reasonably low overhead without requring a

specially crafted analysis pass to look for redundant checks.

3.9 Summary

In this chapter, we have presented in detail the Týr type-based code instrumenta-

tion. We have seen the kinds of types used to keep track of bounds and nullness infor-

mation for pointers, and how the instrumentation rules handle each instruction to ensure

that the invariants represented by the Týr types are maintained. We have seen how the

conditions imposed by those rules are realized as actual LLVM IR instructions emitted

in the instrumented program. We have discussed the soundness of the system, sources of

unsoundness, and design decisions taken to reduce the performance impact of the instru-

mentation.

In the next chapter, we will present experimental results obtained with a prototype

implementation of the system presented here, analyzing its efficacy with a number of

example C programs.

104

4 EXPERIMENTAL RESULTS

This chapter presents experimental results obtained with a prototype implementa-

tion of the Týr code transformation. Section 4.1 discusses typical usage of the implemen-

tation to protect C programs against spatial memory safety violations. Section 4.2 presents

the benchmarks used in the experiments. Section 4.3 presents the results obtained.

The source code of the implementation discussed in this chapter has been made

available on GitHub1. A virtual machine with an environment prepared to run the bench-

marks presented here is also available2. This virtual machine is installed with the versions

of LLVM, Clang and other system dependencies used to perform the experiments, making

it easier to replicate the results.

4.1 Usage

Using the implementation consists of running the tyrcc script, passing as argu-

ments the C program to be compiled and, optionally, the file containing the dependent

type annotations. The script performs the tasks of running Clang on the input C program,

passing the LLVM IR output emitted by Clang to Týr for instrumentation, and feeding

the instrumented result back into the LLVM compilation pipeline for optimization and

machine code generation. If a dependent type annotations file is not provided, the script

looks for a file with the same name as the C program being compiled but with a .dep

extension. If no such file is found, no programmer-supplied dependent type information

is used, and the system assumes default Týr types based on the LLVM types in the input

program, as explained in the previous chapter.

In typical usage, the programmer may either provide dependent type annotations

up front, or may opt to first apply Týr to the program without supplying any dependent

type information. In the latter case, this will typically produce an instrumented binary

with overly conservative run-time checks which will impede normal execution. For in-

stance, in absence of annotations, Týr will normally assume that pointers have bounds

[0, 1), which will cause run-time checks to fail when the pointer is indexed with an index

other than 0. Based on the reported errors, the programmer will then supply appropriate

type annotations which will specify how bounds are expressed in the program, and run

1<https://github.com/vbuaraujo/tyr>
2<http://inf.ufrgs.br./~vbuaraujo/tyr>

https://github.com/vbuaraujo/tyr
http://inf.ufrgs.br./~vbuaraujo/tyr

105

Týr a second time to test the new set of annotations.

As an example, consider a C program which takes one or more command-line

arguments, the first of which is an integer. The program prints the argument indexed by

the integer:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv) {

int i = atoi(argv[1]);

puts(argv[i]);

return 0;

}

Note that this program is not memory-safe: if an improper index is passed in the

command line, the program will perform an out-of-bounds access to the argv array, which

may lead to a segmentation fault or reading an invalid region of memory.

If this program is compiled with tyrcc with no provided annotations, the generated

binary will fail:

1. $ tyrcc.sh -g argv.c

2. WARNING: No depfile specified and argv.dep does not exist

3. $./argv-tyr 2 foo bar

4. ERROR: LLVM line 20:

5. %6 = load i8*, i8** %5, !dbg !21

6. Check (sub %.tyr.deref39 1#) sgt 0# violated (%.tyr.fail53, type-deref/3)

7. argv.c: main() line 5, column 16

The print error message has four lines (lines 4–7 in the printout above):

• An indication of the location of the error in the input LLVM IR program;

• The line of LLVM IR code which caused violation of Týr’s rules;

• A description of the check which failed; and

• The C source file, function, line and column, obtained from debug information

emitted by Clang.3

Of these, the first three lines are of interest primarily for debugging the prototype

itself. The last one, however, if of interest to the programmer: it says that the point in the

source program which caused a violation is line 5, column 16, which refers to the argv[1]

access to get the first argument from the command line.4 This happens because Týr was
3Týr can only show this information if the program is compiled with debugging information (Clang flag

-g). Note that enabling debugging is orthogonal to the optimization level: “LLVM debug information does
not prevent optimizations from happening”. (LLVM, 2015b)

4The element 0 in the argv array is the name of the currently executing program. The first supplied
command line argument is element 1, i.e., the second element in the array.

106

not given enough information to know the bounds of the region pointed to by argv, which

it then conservatively assigned the bounds [0, 1).

We can then supply an appropriate annotation indicating that the upper bound for

the argv pointer is given by the argc argument, and that the elements pointed to by argv

are themselves string pointers (i.e., pointers to a sequence of characters (i8) delimited by

a null terminator):

main: Fn i32 (argc: i32, argv: Ptr(SPtr(i8, 0, 0), 0, argc))

After this annotation is supplied, the example file can be recompiled and will suc-

cessfully run when given correct arguments. Moreover, it will catch the invalid accesses

performed when incorrect arguments are given to the program. Notice that there are three

ways in which the program may finish:

• The provided index is valid: in this case, execution is successful.

$./argv-tyr 2 foo bar

foo

• The provided index is invalid: in this case, execution fails, and the error message

indicates line 6, column 8 (the argv[i] access) as the problem.

$./argv-tyr 5 foo bar

ERROR: LLVM line 27:

%12 = load i8*, i8** %11, !dbg !24

Check (sub %argc %9) sgt 0# violated (%.tyr.fail99, type-deref/3)

argv.c: main() line 6, column 8

• No index is provided: in this case, execution also fails, and the error message indi-

cates line 5, column 16 as the problem (the argv[1] access to get the index).

$./argv-tyr

ERROR: LLVM line 20:

%6 = load i8*, i8** %5, !dbg !21

Check (sub %argc 1#) sgt 0# violated (%.tyr.fail45, type-deref/3)

argv.c: main() line 5, column 16

4.2 Benchmarks

We performed a set of benchmarks to measure the performance impact of the in-

strumentation inserted by Týr in terms of execution time and memory consumption, as

well as the effort taken to provide the dependent type information required by Týr. Most

of the benchmarks used were taken from the Computer Language Benchmarks Game

107

(CLBG, 2016). Although these benchmarks were originally intended as a way to com-

pare the performance of different programming languages, they have also been used in

a number of works as a general benchmark suite, in contexts such as evaluating perfor-

mance of language implementation techniques (WILLIAMS; MCCANDLESS; GREGG,

2010; WRIGSTAD et al., 2010; BRUNTHALER, 2010) and parallelization (SHIRAKO

et al., 2009; GERAKIOS; PAPASPYROU; SAGONAS, 2010). Additionally, we included

a matrix multiplication benchmark written by ourselves. All benchmarks used, as well

as the scripts used to run them, are included with the Týr source code, in the exam-

ples/benchmarksgame directory.

Environment. The benchmarks were run on a quad-core Intel Core i5-2410M

CPU with 8GB of RAM, configured to run fixed at its nominal frequency of 2.30GHz,

with frequency scaling and Intel Turbo Boost disabled. The benchmarks were run on

Debian GNU/Linux (kernel 4.3.0), running in single user mode (init=/bin/bash) to avoid

interference from daemons running in background. The benchmarks were compiled with

Clang/LLVM 3.7.1.

Procedure. For each benchmark, one binary with and one without Týr instru-

mentation was compiled. In a first run, their output was saved to a file and compared to

ensure that the instrumentation did not change the output of the program. Afterwards,

each version was run 30 times, with output redirected to /dev/null to avoid variability

caused by I/O. The user CPU time (i.e., the time spent by the process actually scheduled

in CPU in user mode, as opposed to time where the process was not scheduled or was

running system calls) and peak memory consumption for each execution were collected

using the GNU time utility (not the shell time builtin, which does not capture memory

usage information). Then we computed the mean of the collected measures.

Annotation effort. Table 4.1 shows the number of non-blank lines of code in

each benchmark program and in the corresponding dependent type annotations file which

we wrote to be able to successfully compile and execute it with Týr. In most cases,

only the top-level elements (functions and global variables) had to be annotated; for local

variables, Týr’s automatic inference and automatic bounds have been sufficient. The main

exception was local pointers to strings, since the current implementation is not able to

infer pointer null-terminatedness automatically except for pointers directly derived from

null-terminated constants (such as C string constants).

The benchmark requiring the most programmer-supplied annotations is “regex-

dna”, with 32 lines. These include annotations for three external functions from the Perl-

108

Table 4.1: Non-blank lines of code in source file and in type annotations file
Benchmark Code Annotations Ratio
binarytrees 118 7 5.9%
fannkuchredux 86 1 1.2%
fasta 166 12 7.2%
fastaredux 112 8 7.1%
knucleotide 145 25 17.2%
mandelbrot 49 2 4.1%
matrix 26 0 0.0%
nbody 128 5 3.9%
pidigits 45 1 2.2%
regexdna 105 32 30.5%
revcomp 72 14 19.4%
spectralnorm 40 4 10.0%
Mean 9.06%
Median 6.53%
Std. deviation 9.01%

Source: The author

Compatible Regular Expressions library which receive a large number of pointer argu-

ments that require annotation. It also includes annotations for a number of local string

pointers, since the current implementation cannot infer SPtr pointers automatically.

The benchmark requiring the least annotations is “matrix”, which requires no an-

notations at all because all arrays used are global arrays with a statically declared size,

and Týr can infer correct types for those automatically.

4.3 Results

Table 4.2 shows the CPU time and memory consumption of each benchmark run-

ning without and with Týr instrumentation, and the overhead of the instrumentation rela-

tive to the non-instrumented program. The largest CPU time overhead was shown by the

“revcomp” benchmark, an outlier at 203.2%. For all other benchmarks, the overhead was

below 27%, in a number of cases being close to zero.

The lowest overhead was shown by the “binarytrees” benchmark, which actually

presented a speedup compared to the non-instrumented version. “binarytrees” works pri-

marily with pointers to single objects rather than arrays, and therefore virtually no over-

head was introduced in terms of bounds checking. Additionally, virtually all null checks

inserted by Týr in this program can easily be proven redundant by the optimizer, since the

program itself performs all the required null checks in the process of detecting the end of

109

Table 4.2: Benchmark results
CPU time (seconds) Peak memory usage (kilobytes)

Benchmark Plain Týr Overhead Plain Týr Overhead
binarytrees 193.930 182.858 −5.7% 219 998 220 016 0.0%
fannkuchredux 55.661 67.658 21.6% 1 314 1 321 0.6%
fasta 4.972 5.247 5.5% 1 622 1 631 0.5%
fastaredux 1.748 2.012 15.1% 1 203 1 228 2.0%
knucleotide 31.997 37.022 15.7% 129 480 129 488 0.0%
mandelbrot 29.256 33.493 14.5% 32 476 32 569 0.3%
matrix 0.909 0.998 9.7% 1 199 1 180 −1.6%
nbody 10.278 13.004 26.5% 1 653 1 672 1.1%
pidigits 1.601 1.603 0.1% 2 281 2 320 1.7%
regexdna 29.944 30.104 0.5% 131 617 131 627 0.0%
revcomp 0.628 1.904 203.2% 249 490 249 500 0.0%
spectralnorm 15.490 15.510 0.1% 1 785 1 764 −1.2%
Global overhead statistics:
Mean 25.6% 0.3%
Median 12.1% 0.1%
Std. deviation 56.8% 1.0%
Excluding “revcomp”:
Mean 9.4% 0.3%
Median 9.7% 0.3%
Std. deviation 10.2% 1.1%

Source: The author

110

a binary tree. We hypothesize that the slight speedup was observed because the inserted

checks, which abort execution when the checked conditions are false, allow the compiler

to assume they are true after control flow passes through the check, thus enabling more

optimizations, while at the same time very few bounds checks have been added by the

instrumentation since the code performs almost no array access.

Further analysis of the “revcomp” outlier revealed some interesting facts. The

first observation is that the non-instrumented “revcomp” program contains spatial mem-

ory safety violations when given incorrect inputs. The “revcomp” benchmark takes as

input a text file consisting of sequences of records containing an identification header fol-

lowed by a DNA sequence string. It performs a translation on those strings, and outputs

a text file structured in the same way, with the translated DNA sequences. There are two

memory safety violations in the benchmark code. First, it assumes that the header which

separates each record in the input file is terminated by a newline character; if the newline

is not present, the program reads beyond the buffer where it stores the input, leading to

a segmentation fault. Second, it uses characters read from input as indices into a global

128-element array; if the input contains characters outside the range [0, 128), the pro-

gram performs an out-of-bounds access to this array, reading garbage data. In the version

instrumented by Týr, both violations are caught.

The second observation is that the “revcomp” program uses start and end pointers

as bounds when manipulating the input buffer rather than numeric bounds, and uses in-

crementing and decrementing of pointers to walk over the input buffer, rather than a fixed

pointer plus an index. This is interesting because, as discussed in Section 3.8, the orig-

inal design of Týr used pointer addresses as bounds rather than numeric indices, but we

changed to numeric lower and upper bounds after we observed that LLVM is not generally

able to optimize checks based on pointer arithmetic, whereas it is very good at optimizing

index-based checks. In this case, however, we might have obtained better results by using

pointer-based checks. From the point of view of the type language, these two ways of ex-

pressing bounds are equivalent: a pointer p to a region whose end is delimited by another

pointer q can be expressed as having bounds [p, q) in terms of addresses, or [0, q − p) in

terms of indices. Likewise, relative to the q pointer, the region can be given the bounds

[p − q, 0). Týr does support this style of bounds using pointer subtraction for function

parameters; however, the LLVM IR code that Clang emits transfers function parameters

to local variables in the stack at the beginning of the function, where they get automatic

bounds, which are always stored as simple integers. Giving appropriate bounds to the p

111

Table 4.3: Benchmark results for modified versions of revcomp
CPU time (seconds) Peak memory usage (kilobytes)

Version Plain Týr Overhead Plain Týr Overhead
original 0.628 1.904 203.2% 249 490 249 500 0.0%
safe 0.628 1.769 181.6% 249 485 249 522 0.0%
safe+indices 0.640 1.200 87.5% 249 494 249 518 0.0%

Source: The author

and q pointers (from and to in the relevant code in “revcomp”) would require mutually

dependent types – p has bounds [0, q − p) and q has bounds [p − q, 0) –, which is not

supported for local variables in the current implementation of the system. This is more a

matter of implementation, rather than a theoretical limitation of the system.

As an experiment, we produced two alternative versions of the “revcomp” pro-

gram. In the first, we simply fixed the memory safety problems in the original program in

a straightforward way. In the second, we also replaced the pointer-based accesses to the

input buffer with index-based accesses. Table 4.3 shows the performance effects of these

modifications. We observe that fixing the safety problems in the original reduced the over-

head from 203.2% to 181.6%. Switching to using indices instead of pointers, the overhead

is further reduced to 87.5% relative to the same program without instrumentation (91.0%

relative to the original). This is still high when compared to the other benchmarks, but

already shows a significant improvement relative to the pointer-based version. We believe

the overhead is still high because the halting conditions in loops which walk over the

buffer are not directly related to the bounds of the buffer (essentially, the code increments

p and decrements q and stops when they meet), which makes optimization more difficult.

Clearly this is an area which should be addressed by further work.

Overall, the mean CPU time overhead in the benchmarks was 25.6%, with a me-

dian of 12.1%. Excluding “revcomp”, the mean drops to 9.4%, with a median of 9.7%.

This shows that in general, standard compiler optimizations are able to remove most of

the overhead of the instrumentation with run-time checks.

The memory usage overhead was negligible, being close to zero in most cases. The

largest relative overhead was 2.0% in the “fastaredux” benchmark, but this corresponds to

an absolute overhead of 24 kilobytes. The largest absolute overhead was 93 kilobytes in

the “mandelbrot” benchmark. Because Týr does not change the representation of data, all

overhead is due to an increase in code size due to the inserted checks, and additional usage

of stack space for storing the bounds of automatic variables, and possibly for storing the

temporary results of computing bound expressions at run-time. In two benchmarks, the

112

overhead was negative, but they represent an absolute reduction of 18 and 24 kilobytes,

respectively; we believe that this can be accounted to normal execution variability.

In the next chapter, we will discuss related work and how the results presented

here compare with other proposed systems addressing spatial memory safety.

113

5 RELATED WORK

This chapter presents a discussion of related work on memory safety of low-level

programs. Section 5.1 presents an overview of other works addressing memory safety

of C programs. Section 5.2 discusses tools for debugging memory safety problems in

C. Section 5.3 discusses examples of programming languages designed to support low-

level systems programming while provising some guarantees regarding memory safety.

Section 5.4 presents a summary.

5.1 Memory safety in C

Deputy. Deputy (CONDIT et al., 2007; CONDIT, 2007) is a dependent type

system for ensuring spatial memory safety in C, which is conceptually closest to Týr. Like

Týr, Deputy is concerned only with spatial memory safety; complementary techniques,

such as conservative garbage collection (BOEHM; WEISER, 1988), can be used with

either system to address temporal memory safety.

As mentioned in Chapter 1, Deputy is based on the CIL framework (NECULA

et al., 2002) for code analysis and transformation, which is tied to the C programming

language, whereas Týr operates on LLVM IR, thus being more generally applicable to

other languages which can be compiled to LLVM IR, such as C++ and Objective C.

Deputy supports dependent C-style unions, by allowing each clause of the union

to be parameterized by a boolean condition that tells which element of the union is active

at a given moment. This is currently not supported by Týr. Deputy also supports a form

of parametric polymorphism to address the problem of arbitary casts from and to void* in

C code, mentioned in Section 3.4.8. Deputy does not allow the unsafe type casts allowed

by Týr’s bitcast rule (Section 3.4.8) by default, but it does include constructs to allow the

programmer to force an unsafe type cast, overriding the type system rules, which were

required for them to be able to run certain benchmarks.

Condit (2007) reports execution time overheads from zero to 81% in a set of

benchmarks, with an outlier at 3880% for a benchmark where the null checks were diffi-

cult to optimize away. Their average execution time overhead (calculated by the present

author from the numbers in the table presented in Condit (2007, p. 90)) is 25%, excluding

the outlier, which about the same number observed for Týr.

Deputy has a mode where null checks are disabled, under the assumption that null

114

pointer dereferences will be caught by the hardware and operating system. This option is

not available to us with an unmodified LLVM, because LLVM treats null dereference as

undefined behavior, and therefore enables optimizations which are unsafe in the presence

of null pointer dereferences. Therefore, to ensure safety, we must guard null pointer

dereferences with checks in code instrumented by Týr. With null checks disabled, Condit

(2007) reports an overhead of 86% in the worst case, and a slowdown of less than 40%

in all remaining tests. Týr already shows a slowdown under 27% for all but one of the

benchmarks performed, so it is not clear whether the ability to disable null checks would

significantly improve performance in Týr, or if the nullness analysis built into the type

system in the form of the non-nullness tag in Ptr pointers is already sufficient to reduce

the impact of null checks. In any case, the ability to disable null checks in Týr would

require modifying LLVM to not optimize code under the assumption that null pointer

dereference is undefined, to ensure that such dereferences are caught by the hardware. No

figures are provided for the memory consumption overhead in Deputy.

SoftBound. SoftBound (NAGARAKATTE et al., 2009) is a compile-time trans-

formation for enforcing spatial memory safety in C. Like Týr, SoftBound on its own does

not address temporal memory safety, although it has been combined with CETS (NA-

GARAKATTE et al., 2010), a system for enforcing temporal memory safety from the

same authors, to produce the SoftBoundCETS (NAGARAKATTE, 2012) system. Like

Týr, SoftBound is implemented as an LLVM IR transformation.

SoftBound works with unmodified, unannotated C/C++ code. Unlike the ap-

proaches based on dependent types, it keeps its own metadata separately from the pro-

grammer visible data. For pointers in local variables, it uses extra local variables to store

lower and upper bounds information, which is checked when the pointer is loaded from

or stored to, and updated when the pointer itself is modified. In function calls, it passes

lower and upper bounds information along with pointer arguments by changing the func-

tion signature to take the bounds as extra arguments. For in-memory pointers, it keeps a

table data structure which is consulted when a pointer is loaded into a local register and

updated when a pointer is stored in memory.

Nagarakatte (2012) reports an average execution time overhead of 74% for en-

forcing only spatial memory safety. For combined spatial and temporal memory safety,

they report an average 108% overhead, which drops to 81% when applying a special op-

timization for type-safe programs which do not perform arbitrary pointer casts (the same

casts which trigger the unsafe behavior of the bitcast rule described in Section 3.4.8). No

115

figures are provided for the overhead of only spatial memory safety with the type-safe op-

timizations enabled. In contrast, Týr presented an average 26% overhead in the performed

benchmarks, with a median of 12%.

SoftBound has a “store-only” mode which only performs bounds checks when

storing data via a pointer, but not when loading. In this mode, the reported average

overhead is 41%, which is still higher than Týr. Moreover, whereas store-only checking

can prevent a number of security vulnerabilities, it is not capable of preventing buffer

overreads such as the one responsible for the Heartbleed vulnerability (DURUMERIC et

al., 2014).

With respect to memory consumption, an average overhead of 94% is reported for

SoftBound, whereas Týr presented an average of 0.3%. This is a result of SoftBound

keeping its own metadata in a separate data structure, whereas Týr reuses the metadata

already present in the program.

CCured. CCured (NECULA et al., 2005) is a type system and program transfor-

mation that ensures temporal and spatial memory safety for C programs. CCured classi-

fies C pointers into SAFE (those not involved in casts or pointer arithmetic, and require

only null checks), SEQ (those involved only in pointer arithmetic, and thus require bounds

checking), and WILD (those involved in arbitrary casts, and thus require extra metadata to

ensure the validity of the casts). It uses a whole-program analysis to infer the appopriate

kind to assign to each pointer.

By default, CCured uses a fat pointer representation, storing lower and upper

bounds together with pointers, thus changing the representation of data. To call external

code, CCured either requires the programmer to define wrapper functions which specify

the checks and conversions to be performed between CCured and external code, or it al-

lows an alternative representation in which metadata is stored in a separate data structure

which mirrors the shape of the program data; in the latter case, binary compatibility is

preserved, but performance is reduced.

Temporal memory safety is enforced in two ways. For heap allocations, the stan-

dard C memory allocation functions are replaced with the Boehm-Demers-Weiser conser-

vative garbage collector (BOEHM; WEISER, 1988), a technique which can also be used

with Týr or the other systems for spatial memory safety. For stack allocations, CCured

imposes a restrictive policy which forbids pointers to the stack from being stored into

the heap or global variables, and only allows stack pointers in a stack frame to point to

frames above it, thus ensuring that the target of the pointer will not be deallocated before

116

the pointer.

Necula et al. (2005) reports an execution time overhead between 3% and 87% in

a set of benchmarks, with an outlier at 891%. The mean of the reported overheads for

each of the benchmarks (calculated by the present author from the table in Necula et al.

(2005, p. 36)) is 79% (31% excluding the outlier), with an average memory consumption

overhead of 75% in average (there was no analogous outlier in memory consumption).

5.2 Memory debugging tools

Memcheck. Memcheck (SEWARD; NETHERCOTE, 2005) is a tool for detect-

ing a wide range of memory errors in programs as they run, built on the top of the Valgrind

(NETHERCOTE; SEWARD, 2007) dynamic binary instrumentation framework. Mem-

check is capable of detecting some kinds of spatial and temporal memory safety viola-

tions, such as accesses past heap blocks, stack overflows, and uses of uninitialized and

already-freed memory. However, unlike Týr, Memcheck is not able to tell the boundaries

between contiguous objects in memory: for example, an out-of-bounds array access will

not be detected if the out-of-bounds address happens to fall within another valid program

object. Memcheck also incurs a large overhead: programs typically run about 20 to 30

times slower. Therefore, it is more useful as a debugging tool rather than a general tool

for protecting programs against spatial memory safety violations.

AdressSanitizer. AdressSanitizer (SEREBRYANY et al., 2012) is an instru-

mentation for detecting some kinds of spatial and temporal memory safety violations in

C/C++. It works by marking certain regions of memory as poisoned, and instrumenting

loads and stores so that accesses to poisoned regions abort program execution. Spatial

memory safety violations are detected by reserving a red zone around allocated objects

and marking it as poisoned. Temporal memory safety violations are detected by marking

the whole freed region as poisoned and putting it in quarantine for a period.

AddressSanitizer does not detect all spatial or temporal memory safety violations.

For instance, out-of-bound accesses with offsets large enough to reach past the red zone

and into another valid program object are not detected. The reported average CPU time

overhead is 73%, with an increase of 3.37x (237% overhead) in memory consumption.

117

5.3 Safe systems programming languages

Cyclone. Cyclone (JIM et al., 2002) is a safe dialect of C which replaces C’s

unsafe constructs which safe variants. It imposes some restrictions on C features which

are sources of unsafety, for instance restricting pointer arithmetic, arbitrary casts, memory

freeing, and inserting null checks before dereferences. In their place, it adds a number of

new features which reintroduce much of the same functionality in a safe way, such as

fat pointers which allow pointer arithmetic with run-time bounds checking, never-null

pointers (equivalent to Týr’s Ptr+ pointers, with similar behavior when casting from and

to nullable pointers), parametric polymorphism, and region-based memory management.

It does not aim to be compatible with C (i.e., one cannot generally compile an unmodified

C program with Cyclone), but rather aims to facilitate porting C programs to Cyclone.

Reported execution time in a set of benchmarks varies between 0% and 185% relative to

the corresponding C programs.

Rust. Rust (RUST, 2016) is a systems programming language aiming to ensure

type, memory and thread safety. Spatial memory safety is generally addressed through

run-time bounds checking, and forbidding unsafe casts by default. Temporal memory

safety is addressed through a scheme of pointer ownership which constrains the copying

of pointers (and therefore accessibility of the same region of memory by multiple parts of

the program) in a way that makes it possible for the system to ascertain when a region can

be freed. The same mechanism also plays a role in thread safety, by constraining access

of the same data by multiple threads. Rust is an entirely new language, which does not

aim compatibility of ease of portability from C.

Rust includes an unsafe subset, which allows raw pointer manipulation in a way

that is otherwise precluded by the language. This is intended to allow writing bindings to

code written in C and other languages, and to allow safe abstractions to be implemented

in an efficient way which would be normally precluded due to the type system being too

conservative. Unsafe code must be explicitly marked with the unsafe keyword. The idea

is to isolate unsafe code, and that functionality implemented using unsafe be exposed

through safe interfaces to the rest of the program. Since Rust compiles to LLVM IR,

it might be interesting to investigate the applicability of Týr to enforce spatial memory

safety in those parts of Rust code which use unsafe features.

118

5.4 Summary

With an average CPU time overhead of 25% and near zero memory overhead, Týr

is competitive in terms of performance with other approaches for spatial memory safety.

The numbers are similar to those reported for Deputy, and generally better than other

approaches for memory safety in C. The tools also vary in what kinds of errors they pro-

tect against (spatial vs. temporal memory safety), what coverage they have in detecting

them (i.e., whether they have false negatives), and whether they are specific to C (such

as Deputy and CCured) or more language-agnostic (such as Týr and SoftBound). Some

tools are more appropriate for debugging, rather than for use in production code. Finally,

some works adress the problem of memory-safe systems programming by designing new

languages where programs are safe by construction, at the expense of backwards compat-

ibility with existing code.

119

6 CONCLUSION

This work presented Týr, a dependent type system and associated program trans-

formation for ensuring spatial memory safety of C programs at the LLVM IR level, by

allowing programmers to describe at the type level the relationships between pointers

and bounds information already present in C programs. In this way, Týr ensures spatial

memory safety by checking the consistent usage of this pre-existing metadata, through

a combination of static type checking and run-time checks inserted in the program. We

have shown that the resulting system is effective at protecting against spatial memory

safety violations, with a reasonably low execution time overhead and nearly zero memory

consumption overhead. We have also shown that by designing the type system with the

LLVM optimization passes in mind, we were able to emit run-time checks in a form that

is more easily optimizable by LLVM, thus achieving performance competitive with other

systems for spatial memory safety without requiring a specially crafted optimization pass.

There is a number of possible directions for future work. Some possibilities of

interest are listed below.

Integration with Clang. Currently, Týr stands as a completely independent piece

of software relative to the Clang/LLVM framework, taking type annotations as an input

separate from the program to be instrumented. It might be interesting to provide better

integration with the Clang/LLVM infrastructure. For instance, the Clang compiler could

be modified to allow dependent types to be written as annotations within the C/C++ code,

as in Deputy, rather than being provided in a separate file. Such annotations could then be

passed on to LLVM as metadata embedded in the LLVM IR program. The source-level

annotations would be written in terms of the C level types and mapped to the LLVM IR

level types used by Týr. Finally, Týr could be reimplemented as a pass internal to LLVM,

rather than being an external program. This integration might improve the usability of the

system by programmers.

Extension to languages other than C. In this work, we focused on C programs.

However, one of the main advantages of targeting LLVM IR is the possibility of extending

the system for other languages using the LLVM infrastructure, such as C++, Objective C,

and Rust. This might involve extending the type system to account for features of those

languages not present in C, as well as mapping the constructs of those languages to the

types provided by Týr.

Extending Týr to C++ would require the creation of a mapping from C++ level

120

dependent types to the LLVM IR levle dependent types used by the instrumentation. This

mapping would mirror the way Clang maps C++ level constructs, such as classes, methods

and templates, into LLVM IR. It might be necessary to create new Týr types to accomo-

date they way those constructs are represented at the LLVM IR level.

Formal soundness proof. As discussed in Section 3.7, we currently do not have

a formal proof of correctness of the system. Such a proof would entail defining a formal

semantics of LLVM IR augmented with the properties enforced by Týr, and demonstrating

that the program transformation performed by Týr is sufficient to enforce that semantics

in LLVM IR programs.

Support for the whole LLVM IR language. As discussed in Section 2.5.5, there

are some features of LLVM IR which are currently not fully supported by Týr, especially

those concerned with threads and synchronization, and vectorized data and instructions

(SIMD). It would be desirable to extend the implementation to cover all of the LLVM IR

language.

Experiments with larger benchmarks. The experimental validation in this

work has been performed with relatively small benchamrk programs. This has been done

in part because of the annotation effort involved in applying Týr to the programs to be

instrumented. With better integration of the dependent type annotations in Clang at the

source language level, as described above, it is expected that the the effort to annotate

programs would be smaller, therefore making it more feasible to apply Týr to larger pro-

grams. This would give a better idea of how the system behaves with a wider variety of

constructs and idioms used in real-world programs, both in terms of performance, and in

the ability of the type language to describe bounds information as it appears in a wider

range of C programs. In this process, we may find it necessary to extend the type language

with newer types to describe other situations not anticipated in the current work.

Treatment of arbitrary casts. C allows arbitrary type casts between pointers,

and C programs use such casts to implement forms of polymorphism. As explained in

Section 3.4.8, currently Týr allows such casts to allow these programs to be compiled,

at the expense of safety. Allowing such casts while ensuring safety is a hard prob-

lem. As seen in Chapter 5, other systems for ensuring spatial memory safety in C all

encounter problems when dealing with arbitrary casts and employ different solutions:

Deputy (CONDIT et al., 2007) introduces parametric polymorphism, and the ability for

the programmer to explicitly override the type system when a cast cannot be proven safe;

SoftBound (NAGARAKATTE et al., 2009) has a greater overhead in the presence of ar-

121

bitrary casts, since some optimizations are only enabled for programs not using arbitrary

casts; likewise, CCured classifies pointers involved in arbitrary casts as WILD, which

carry extra metadata and have a high associated overhead. Finding the best way of han-

dling this problem in Týr is a problem to be considered, the Deputy solution being the

easiest to adopt, given the conceptual similarity of Týr and Deputy.

Annotating the standard C library. Correct usage of external libraries from

instrumented programs requires the programmer to provide correct annotations for the

external functions and variables. It would be interesting to provide annotations for a

representative portion of the standard C library out of the box, since most C programs

will use functions and variables from it. Doing so not only improves the usability of the

system, by reducing the amount of annotations the programmer has to provide, but also

presents another opportunity to test the ability of the current type language to describe

bounds information in a wider variety of real-world situations.

122

REFERENCES

ALPERN, B.; WEGMAN, M. N.; ZADECK, F. K. Detecting equality of variables in
programs. In: ACM. Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. [S.l.], 1988. p. 1–11.

ASPINALL, D.; HOFMANN, M. Dependent types. In: PIERCE, B. C. (Ed.). Advanced
Topics in Types and Programming Languages. [S.l.]: MIT Press, 2004. ISBN
0262162288.

AUGUSTSSON, L. Cayenne—a language with dependent types. In: ACM. ACM
SIGPLAN Notices. [S.l.], 1998. v. 34, n. 1, p. 239–250.

BERGER, E. D.; ZORN, B. G. Diehard: probabilistic memory safety for unsafe
languages. In: ACM. ACM SIGPLAN Notices. [S.l.], 2006. v. 41, n. 6, p. 158–168.

BOEHM, H.-J.; WEISER, M. Garbage collection in an uncooperative environment.
Software: Practice & Experience, John Wiley & Sons, Inc., New York, NY,
USA, v. 18, n. 9, p. 807–820, set. 1988. ISSN 0038-0644. Disponível em:
<http://dx.doi.org/10.1002/spe.4380180902>.

BRADY, E. C. Idris: systems programming meets full dependent types. In: ACM.
Proceedings of the 5th ACM workshop on Programming Languages Meets Program
Verification. [S.l.], 2011. p. 43–54.

BRUNTHALER, S. Inline caching meets quickening. In: D’HONDT, T. (Ed.).
Proceedings of ECOOP 2010 – Object-Oriented Programming: 24th European
Conference, Maribor, Slovenia, June 21-25, 2010. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. p. 429–451. ISBN 978-3-642-14107-2. Disponível em:
<http://dx.doi.org/10.1007/978-3-642-14107-2_21>.

CLANG. Clang: a C language family frontend for LLVM. 2015. <http:
//clang.llvm.org>. Accessed in July 2015.

CLBG. The Computer Language Benchmarks Game. 2016. <https:
//benchmarksgame.alioth.debian.org/>. Accessed in February 2016.

CONDIT, J. et al. Dependent types for low-level programming. In: Programming
Languages and Systems. [S.l.]: Springer, 2007. p. 520–535.

CONDIT, J. P. Dependent types for safe systems software. Tese (Doutorado) —
University of California, Berkeley, 2007.

CRISWELL, J.; GEOFFRAY, N.; ADVE, V. S. Memory safety for low-level
software/hardware interactions. In: USENIX Security Symposium. [S.l.: s.n.], 2009. p.
83–100.

CUI, S.; DONNELLY, K.; XI, H. ATS: A language that combines programming with
theorem proving. In: Proceedings of the 5th International Workshop on Frontiers of
Combining Systems (FroCoS). [S.l.]: Springer, 2005. p. 310–320.

http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1007/978-3-642-14107-2_21
http://clang.llvm.org
http://clang.llvm.org
https://benchmarksgame.alioth.debian.org/
https://benchmarksgame.alioth.debian.org/

123

DURUMERIC, Z. et al. The matter of Heartbleed. In: Proceedings of the 2014
Conference on Internet Measurement Conference. New York, NY, USA:
ACM, 2014. (IMC ’14), p. 475–488. ISBN 978-1-4503-3213-2. Disponível em:
<http://doi.acm.org/10.1145/2663716.2663755>.

GERAKIOS, P.; PAPASPYROU, N.; SAGONAS, K. Race-free and memory-safe
multithreading: Design and implementation in cyclone. In: Proceedings of the 5th
ACM SIGPLAN Workshop on Types in Language Design and Implementation.
New York, NY, USA: ACM, 2010. (TLDI ’10), p. 15–26. ISBN 978-1-60558-891-9.
Disponível em: <http://doi.acm.org/10.1145/1708016.1708020>.

ISO/IEC. International Standard ISO/IEC 9899:2011 – Programming languages
– C (Committee Draft – April 12, 2011). [s.n.], 2011. Disponível em: <http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf>.

JIM, T. et al. Cyclone: A safe dialect of C. In: USENIX Annual Technical Conference,
General Track. [S.l.: s.n.], 2002. p. 275–288.

KUMAR, R.; KOHLER, E.; SRIVASTAVA, M. Harbor: software-based memory
protection for sensor nodes. In: ACM. Proceedings of the 6th international conference
on Information processing in sensor networks. [S.l.], 2007. p. 340–349.

LATTNER, C.; ADVE, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In: IEEE. Code Generation and Optimization, 2004. CGO
2004. International Symposium on. [S.l.], 2004. p. 75–86.

LLVM. LLVM Language Reference Manual. 2015. <http://llvm.org/releases/3.7.0/
docs/LangRef.html>. Accessed in January 2018.

LLVM. Source Level Debugging with LLVM. 2015. <http://releases.llvm.org/3.7.0/
docs/SourceLevelDebugging.html>. Accessed in January 2018.

LLVM. Type-Based Alias Analysis [source code comments]. 2016. <http:
//llvm.org/docs/doxygen/html/TypeBasedAliasAnalysis_8cpp_source.html>. Accessed
in May 2016.

NAGARAKATTE, S. et al. SoftBound: highly compatible and complete spatial memory
safety for c. In: ACM. ACM Sigplan Notices. [S.l.], 2009. v. 44, n. 6, p. 245–258.

NAGARAKATTE, S. et al. CETS: compiler enforced temporal safety for c. In: ACM.
ACM Sigplan Notices. [S.l.], 2010. v. 45, n. 8, p. 31–40.

NAGARAKATTE, S. G. Practical low-overhead enforcement of memory safety for C
programs. Tese (Doutorado) — University of Massachusetts Amherst, 2012.

NECULA, G. C. et al. CCured: type-safe retrofitting of legacy software. ACM
Transactions on Programming Languages and Systems (TOPLAS), ACM, v. 27, n. 3,
p. 477–526, 2005.

NECULA, G. C. et al. CIL: Intermediate language and tools for analysis and
transformation of C programs. In: SPRINGER. Compiler Construction. [S.l.], 2002. p.
213–228.

http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/1708016.1708020
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://llvm.org/releases/3.7.0/docs/LangRef.html
http://llvm.org/releases/3.7.0/docs/LangRef.html
http://releases.llvm.org/3.7.0/docs/SourceLevelDebugging.html
http://releases.llvm.org/3.7.0/docs/SourceLevelDebugging.html
http://llvm.org/docs/doxygen/html/TypeBasedAliasAnalysis_8cpp_source.html
http://llvm.org/docs/doxygen/html/TypeBasedAliasAnalysis_8cpp_source.html

124

NETHERCOTE, N.; SEWARD, J. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation. New York, NY, USA:
ACM, 2007. (PLDI ’07), p. 89–100. ISBN 978-1-59593-633-2. Disponível em:
<http://doi.acm.org/10.1145/1250734.1250746>.

PIERCE, B. C. Types and Programming Languages. [S.l.]: MIT Press, 2002.

RUST. The Rust Programming Language. 2016. <https://doc.rust-lang.org/book/>.
Accessed in June 2016.

SEREBRYANY, K. et al. AddressSanitizer: A fast address sanity checker. In: USENIX
Annual Technical Conference. [S.l.: s.n.], 2012. p. 309–318.

SEWARD, J.; NETHERCOTE, N. Using valgrind to detect undefined value errors with
bit-precision. In: USENIX Annual Technical Conference, General Track. [S.l.: s.n.],
2005. p. 17–30.

SHIRAKO, J. et al. Phaser accumulators: A new reduction construct for dynamic
parallelism. In: Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on. [S.l.: s.n.], 2009. p. 1–12. ISSN 1530-2075.

SØRENSEN, M. H.; URZYCZYN, P. Lectures on the Curry-Howard Isomorphism,
Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY,
USA: Elsevier Science Inc., 2006. ISBN 0444520775.

WILLIAMS, K.; MCCANDLESS, J.; GREGG, D. Dynamic interpretation for
dynamic scripting languages. In: Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization. New York, NY,
USA: ACM, 2010. (CGO ’10), p. 278–287. ISBN 978-1-60558-635-9. Disponível em:
<http://doi.acm.org/10.1145/1772954.1772993>.

WRIGSTAD, T. et al. Integrating typed and untyped code in a scripting language.
In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. New York, NY, USA: ACM,
2010. (POPL ’10), p. 377–388. ISBN 978-1-60558-479-9. Disponível em:
<http://doi.acm.org/10.1145/1706299.1706343>.

ZHAO, J. Formalizing an SSA-based compiler for verified advanced program
transformations. Tese (Doutorado) — Princeton University, 2013. Disponível em:
<http://www.cis.upenn.edu/~stevez/vellvm/Zhao13.pdf>.

http://doi.acm.org/10.1145/1250734.1250746
https://doc.rust-lang.org/book/
http://doi.acm.org/10.1145/1772954.1772993
http://doi.acm.org/10.1145/1706299.1706343
http://www.cis.upenn.edu/~stevez/vellvm/Zhao13.pdf

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	Resumo estendido
	1 Introduction
	1.1 Background
	1.2 Proposal
	1.3 Scope and limitations
	1.4 Usage
	1.5 Results
	1.6 Outline

	2 Background
	2.1 Defining memory safety
	2.2 Mechanisms for ensuring memory safety
	2.2.1 Temporal memory safety
	2.2.2 Spatial memory safety

	2.3 Dependent types
	2.4 Memory in C: pointers and arrays
	2.5 The LLVM Intermediate Representation language
	2.5.1 Top-level structure
	2.5.2 Types
	2.5.3 Values
	2.5.4 Instructions
	2.5.5 Omissions from the full language
	2.5.6 Phi instructions

	2.6 Correspondence between C and LLVM IR
	2.6.1 Types
	2.6.2 Variables and functions

	2.7 Summary

	3 The Týr code transformation
	3.1 Design considerations
	3.2 Týr types
	3.2.1 Overview of Týr types
	3.2.2 Correspondence between LLVM IR and Týr types
	3.2.3 Type compatibility

	3.3 Instrumentation overview
	3.3.1 Global environment construction pass
	3.3.2 Local pass
	3.3.3 Instrumentation rules

	3.4 The Týr typing and instrumentation rules
	3.4.1 Typing values
	3.4.2 Common pointers
	3.4.3 String pointers and arrays
	3.4.4 Local pointers
	3.4.5 Invariance of pointer types
	3.4.6 Structures
	3.4.7 Functions
	3.4.8 Bitcast
	3.4.9 Other instructions

	3.5 Global environment, revisited
	3.6 Emitting instrumentation code
	3.6.1 Computing expressions
	3.6.2 Checks

	3.7 Soundness
	3.8 Efficiency considerations
	3.9 Summary

	4 Experimental results
	4.1 Usage
	4.2 Benchmarks
	4.3 Results

	5 Related work
	5.1 Memory safety in C
	5.2 Memory debugging tools
	5.3 Safe systems programming languages
	5.4 Summary

	6 Conclusion
	References

