ON A THEOREM OF R. LANGEVIN ABOUT CURVATURE AND COMPLEX SINGULARITIES

Jaime B. Ripoll - Trabalho de Pesquisa -Série A2/MAR/89

ON A THEOREM OF R. LANGEVIN ABOUT CURVATURE AND COMPLEX SINGULARITIES

Jaime B. Ripoll

A classical result due to R. Langevin asserts that for a given polinomial $p:(\mathbb{C}^n,o)\longrightarrow (\mathbb{C},o)$ with an isolated singularity at the origin, the following formula holds:

$$\lim_{\epsilon \to 0} \lim_{t \to 0} \int K \omega_t = c_{n-1} (\mu^n + \mu^{n-1})$$

$$M_t \cap B_{\epsilon}$$
(*)

where B_{ϵ} is a ball centered at the origin with radius ϵ , $\omega_{\rm t}$ is the volume form of $M_{\rm t} \equiv {\rm p}^{-1}({\rm t})$, t ϵ C, t \sim o, induced by the usual hermitian inner product of ${\rm C}^n$, K is the Lipschitz-Killing curvature of $M_{\rm t}$, μ^n is the Milnor number of $M_{\rm o}$ at o, μ^{n-1} the Milnor number at o of $M_{\rm o}$ \cap H where H is a generic complex hyperplane through the origin of ${\rm C}^n$ and ${\rm c}_{n-1} = (1/2) {\rm vol}({\rm S}^{2n-1})$.

Prof. Langevin commented that the above formula should be true in any complex manifold with a hermitian metric. We obtain here the following result:

Theorem 1. Let N be a 3-dimensional (over C) complex manifold with an hermitian metric. Let $f: N \longrightarrow C$ be an analytic map with an isolated singularity at p_0 with $f(p_0) = o$. Then, the following formula holds:

$$\lim_{\epsilon \to 0} \lim_{t \to 0} \int K \, \omega_t = c_z (\mu^3 + \mu^2) \qquad (**)$$

$$M_t \cap B_{\epsilon}$$

where B_{ϵ} is a geodesic ball centered at p_0 with radius ϵ , ω_t is the volume form of $M_t \equiv f^{-1}(t)$ determined by the metric induced from N, K is the Lipschitz-Killing curvature of M_t , μ^3 the Milnor number of M_0 at p_0 and μ^2 the Milnor number of $M_0 \cap P$ where P is a complex generic hypersurface through p_0 of N.

To prove this result we introduce the concept of translation in a complex hermitian manifold N and we define the polar curve associated to an isolated singularity of a hypersurface of N. We also introduce the Gauss map of a complex hypersurface of N associated to a given translation, and then we apply similar techniques used for proving the above result in \mathbb{C}^n . Using this Gauss map we can define, as in \mathbb{C}^n , by taking the determinant of its derivative, another curvature which we call the translation curvature of the hypersurface. We prove then that formula (*) holds for the translation curvature (Corollary 2.2).

It follows from our results a generalization of a theorem of Linda Ness about the curvature of algebraic curves (see [N], Theorem 4.1 of this paper and Theorem of [L]).

I want to thank Marcos Sebastiani for his aid on the realization of this work.

1. Translations.

Let N be a complex n-dimensional manifold with an hermitian metric $\langle \; , \; \rangle_{_{C}}$ and let us consider the complex orthonormal frame bundle $O_{_{C}}(N)$ of N, that is:

 $O_{\text{C}}(N) = \{ (p,\beta) \mid p \in \mathbb{N}, \ \beta \text{ is an orthonormal basis over C of } T_p(N) \}$ and let $\pi: O_{\text{C}}(N) \longrightarrow \mathbb{N}$ be the projection $(p,\beta) \longrightarrow p$.

A complex translation in an open set U C N is obtained by taking a section of $O_c(N)$ over U, that is, an analityc map $T_c\colon U\longrightarrow O_c(N)$ such

that $\pi \circ T_{c} = \mathrm{Id}_{U}$. Then, given $p \in U$ and $X \in T_{p}(N)$, we can define the translation X^{\sim} of X on U by setting:

 $X^{\sim}(q) = \langle X, X_{+}(p) \rangle_{C} X_{+}(q) + \dots + \langle X, X_{p}(p) \rangle_{C} X_{p}(q) \qquad q \in U$ where $T_c(q)$ is the orthonormal basis $\{X_1(q),...,X_n(q)\}$ of $T_q(N)$. Similarly, we can define the translation H of any complex subspace $H \subset T_{D}(N)$.

Let us choose $p_n \in N$ and assume that a translation is defined in a neighbourhood U of p_{α} . Denote by \mathbb{CP}^{n-1} the complex projective space of complex lines of $T_{p_{\alpha}}(N)$ and let M be a complex hypersurface of Ncontained in U. Then, the Gauss map $\gamma_c:M\longrightarrow \mathbb{CP}^{n-1}$ of M is defined by: $\gamma_c(p)=H \iff H^*(p)=(T_n(M))^{\frac{1}{2}} \quad (a)$

$$\gamma_{\mathbf{C}}(\mathbf{p}) = \mathbf{H} \iff \mathbf{H}^{*}(\mathbf{p}) = (\mathbf{T}_{\mathbf{p}}(\mathbf{M}))^{\perp}$$
 (a)

where H^{\sim} is the translation of $H \subset T_{p_{\perp}}(M)$ on U.

Let $f: \mathbb{N} \longrightarrow \mathbb{C}$ be an analytic map with an isolated singularity at $\mathbf{p}_{_{\mathrm{Cl}}}$ N such that $f(p_0) = o$. Given $H \in \mathbb{CP}^{n-1}$, it determines a polar curve Γ_H by the condition:

$$p \in \Gamma_{H} \iff T_{p}(f^{-1}(t)) = (H^{\sim}(p))^{\perp} \quad p \in U$$

where t ϵ C is such that f(p) = t.

We have the following result:

Theorem 1.1 Let N be a n-dimensional complex manifold with a hermitian metric. Let $f: N \longrightarrow C$ be an analytic map with an isolated singularity at p_o with $f(p_o) = o$. Then, the following formula holds:

$$\lim_{\epsilon \to 0} \lim_{t \to 0} \int \gamma_{c} * \langle \lambda \rangle = c_{n-1} (\mu^{n} + \mu^{n-1}) \qquad (***)$$

$$M_{t} \cap B_{\epsilon}$$

where $\gamma_{\rm C}:M_{t_{\rm min}}\to{\rm CP}^{\rm n-1}$ is the Gauss map of $M_{\rm t}$ and λ the usual volume form of CP^{n-1} .

Proof.

We will prove that the limit above equals to $c_{n-1}I(\Gamma_H,M_o)_{P_O}=$ intersection index between Γ_H and M_o at P_o . Theorem i.1 follows then from a result of Teissier (see Theorem 2 of [L]).

As in the Lemma of [L], one has:

where

$$\tau(\mathsf{M}_{\mathsf{t}} \cap \mathsf{B}_{\epsilon}, \mathsf{H}) = \sum_{\mathsf{p} \in \mathsf{B}_{\epsilon}} \mathsf{I}(\mathsf{M}_{\mathsf{t}}, \Gamma_{\mathsf{H}})_{\mathsf{p}}$$

so that in order to compute the limite for t+o and ϵ +o as in [L] we have just to assure that the function t $\to \tau(M_t \cap B_\epsilon, H)$ is bounded.

Clearly, $\tau(M_t \cap B_\epsilon, H)$ is finite for $t \neq 0$ and, since t goes to 0, we have just to see that $\lim_{t \to 0} \tau(M_t \cap B_\epsilon, H)$ is finite. To do this, let us consider the Nash Transformation $N_f \subset B_\epsilon \times \mathbb{CP}^{n-1}$ of f restrict to B_ϵ . Let $\pi: N_f \longrightarrow B_\epsilon$ and $\gamma: N_f \longrightarrow \mathbb{CP}^{n-1}$ be the projections $(x, H) \longrightarrow x$ and $(x, H) \longrightarrow H^\perp$, respectively. Therefore, it is easy to see that

$$\tau(M_{\downarrow} \cap B_{\rightleftharpoons}, H) = \operatorname{card}(\pi^{-1}(M_{\downarrow}) \cap \gamma^{-1}(H^{\perp})) \qquad t \neq 0$$

so that

$$\lim\nolimits_{t\to o}\tau(\mathsf{M}_t\cap\mathsf{B}_\varepsilon,\mathsf{H})=\mathrm{card}(\pi^{-1}(\mathsf{M}_o)\cap\gamma^{-1}(\mathsf{H}^\perp))\,.$$

But.

$$\pi(\pi^{-1}(M_{_{\mathrm{O}}})\cap \gamma^{-1}(H^{\frac{1}{2}})) = \{p \in M_{_{\mathrm{O}}}\cap B_{_{\mathrm{C}}} \mid p \neq e \text{ and } T_{_{\mathrm{F}}}(M_{_{\mathrm{O}}}) = H\} \cup \{e\}$$

is analytic and compact con here a conice.

in follows that
$$\pi^{-1}(\text{Ni}_{\mathcal{O}}/\text{Ny}^{-1}(\mathbf{r}))$$
 is finite since
$$\pi^{-1}(M_{\mathcal{O}})\cap \gamma^{-1}(\mathbf{r}) \longrightarrow \pi(\pi^{-1}(M_{\mathcal{O}})\cap \gamma^{-1}(\mathbf{H}^{\frac{1}{2}}))$$

is bijective. \square

We will prove that the integrals in (**) and (***) coincide for n=3. For, we have to relate the differentiall form $\gamma_r *(\sigma)$ with geometric invariants of M.

2. The real Gauss map associated to a translation.

In this section, N will be a n-dimensional (over R) Riemannian manifold with a Riemannian metric (, > . Let U be an open set of N with a translation determined by a section of $O_r(N)$ over U, where $O_r(N)$ is the real orthonormal frame bundle of N.

Let M be a m-dimensional Riemannian manifold isometrically embedded in N. Let us assume that M C U. Let $p \in M$ and let $q \in T_p(N)$ be an unitary normal vector to $T_p(M)$.

We recall that the 2^{nd} fundamental form at p defined by η is given by:

 $\check{Y}(p)=Y$, and ∇ is the Riemannian connetion of N determined by $\langle \ , \ \rangle$. Let $K_p(\eta) = \det A_p(\eta)$. Therefore, if the normal vector bundle N(M) of Mis orientable,

$$K_{p} = \frac{1}{c_{k-1}} \int_{SN_{p}(M)} K_{p}(\eta) d\vec{\theta}(\eta)$$

is the Lipschitz-Killing curvature of the embedding M C N, where SN(M) the bundle of spheres correspondent to N(M), θ the volume form of SN (M) and c_{k-1} the volume of S^{k-1} , k=n-m . We introduce now the 2^{nd} fundamental form $\mathbb A$ associated to the

given translation by setting:

$$\mathbb{A}_p(\eta)(\mathsf{X},\mathsf{Y}) = \langle \nabla_{\mathsf{X}}\mathsf{Y}^{\sim},\eta \rangle \qquad \mathsf{X},\; \mathsf{Y} \in \mathsf{T}_p(\mathsf{M})$$

where Y is the translation of Y on U.

Set

$$K^{\sim}_{p}(\eta) \,=\, \det(A_{\stackrel{}{p}}(\eta) \,-\, \mathring{\mathbb{A}}_{\stackrel{}{p}}(\eta))$$

and

$$K_{p}^{\sim} = \int_{SN_{p}} K_{p}^{\sim}(\eta) \theta(\eta).$$

We will call K the translation curvature of M.

The map:

$$\gamma_r: SN(M) \longrightarrow S^{n-1}, \ \gamma_r((p,\eta)) = (\eta^*)(p_0)$$
 (b)

is the "(real) Gauss map" of M associated to the given translation.

The result that follows relates the Gauss map associated to a translation and the translation curvature. It generalizes a well known theorem in Euclidean spaces relating the usual Gauss map in \mathbb{R}^n and the Lipschitz-Killing curvature.

2.1 Theorem. Let M and N be orientable and m odd. Let σ be the volume form of S^{n-1} and ω the one of M. Then, $K^{\sim}_{p}\omega(p)$, $p\in M$, is the integral along the fiber of $SN(M)\longrightarrow M$ of $\gamma_{r}^{*}(\sigma)$ divided by c_{k-1} .

In [S] Sebastiani proves this result for the case that N is a Lie group with a left invariant metric and the translation is the usual left translation defined with the group operation (see the Theorem of §3 of [S] and its Corollary). Since its proof is the same as in our case, we omit the proof of Theorem 2.1.

Now, let us come back to the complex case. Let N be a complex n-dimensional (over C) manifold with an hermitian metric. Assume that a (complex) translation is given in an open set U of N, this translation being determined by a section $T_c: U \longrightarrow O_c(N)$.

If $\langle \; , \; \rangle_{_{\rm C}}$ denotes the hermitian metric of N, $\langle \; , \; \rangle_{_{\rm C}} \equiv {\rm re}(\langle \; , \; \rangle_{_{\rm C}})$

defines a Riemannian metric on N, and T_c induces a section T_r of $O_r(N)$ over U by setting $T_r(p) = \{X_1(p), iX_1(p), ..., X_n(p), iX_n(p)\}$, where $T_c(p) = \{X_1(p), ..., X_n(p)\}$, $p \in U$.

We can combine Theorems 1.1 and 2.1 to obtain the following corollary:

2.2 Corollary. With the same notations and hipothesis above, the following formula holds:

$$\lim_{\epsilon \to \infty} \lim_{t \to \infty} \int K_p^* \omega(p) = c_{n-1} (\mu^n + \mu^{n-1})$$

$$M_t \cap B_{\epsilon}$$

where K^* is the translation curvature of M_t .

Proof. Let $\gamma_r: SN(M_t) \longrightarrow S^{2n-1}$ and $\gamma_c: M_t \longrightarrow CP^{n-1}$ be the real Gauss map and the complex Gauss map of M_t associated to the given translation, defined by (b) and (a), respectively. It is not difficult to prove, therefore, that the following diagramme is commutative:

where π is the projection of the Hopf fiber. Hence, we obtain:

which proves the corollary. \square

3. Proof of Theorem 1.

heorem 1 follows easily from Corollary 2.2. In fact: since the

second member of the formula is distinct from zero, we have from Corollary 2.2 that $\lim_{p\to p_0} K^* = \infty$, where K^* is the translation curvature of M_t at $p \in M_t$. Furthermore, since

 $\lim_{p\to p_0}\inf\left\{\det^A_p(\eta)\mid ||\eta||=1\right\}=\inf\left\{\det^A_{p_0}(\eta)\mid ||\eta||=1\right\}<\infty$ it follows from the definition of K^ and that n = 3 that $\lim_{p\to p_0}(K^--K_p)=0, \text{ and this proves the Theorem.}\square$

4. Curvature of complex hypersurfaces.

In [L] Langevin reobtains, by using formula (*), a Theorem due to Linda Ness about the curvature of algebraic curves of \mathbb{CP}^2 converging to algebraic curve with an isolated singularity (see Theorem §III of [L]). Using formula of Corollary 2.2 above, we prove here the following generalization, which also gives a simpler proof of Theorem §III of [L]: 4.1 Theorem. Let N be a complex n-dimensional manifold with an hermitian metric. Let M be a complex hypersurface of N with an isolated singularity at p. Let M_t be a family of complex hypersurfaces of N converging to M when t goes to infinity. Then

$$\lim_{t\to\infty} \inf_{M_t} K_I = -\infty$$

where K_I denotes the intrinsic sectional curvatures of M_t .

Proof. Let $p_t \in M_t$ be such that $\lim_{t\to\infty}p_t=p$. Then, it follows from formula of Corollary 2.2 and the definition of K^ that

$$\lim_{t\to\infty} \lambda_{p_t} = \infty$$

where $\lambda_t = \max\{ \ \lambda \ | \ \lambda \ \text{is an eigenvalue of } A_{p_t}(\eta) \text{ for some } \eta \in T_{p_t}(M_t)^{\perp}, \ ||\eta|| = 1\}.$ If X_t is an eigenvector associated to λ_t , then $-\lambda_t$ is an eigenvalue with eigenvector iX_t .

Denote by $K(P_t)$ and $\bar{K}(P_t)$ the sectional curvatures of M_t and N_t respectively, at p_t , determined by the plane P_t generated by X_t and iX_t . Let $P \in T_p(N)$ be such that $\lim_{t\to\infty}P_t=P$. Then, from the Gauss Equation of an isometric immersion, one has:

hence

$$K(P_{t}) = \bar{K}(P_{t}) - \lambda_{t}^{2}$$

$$\lim_{t \to \infty} K(P_{t}) = \bar{K}(P) - \lim_{t \to \infty} \lambda_{t}^{2} = -\infty. \square$$

REFERENCES

- [L] Langevin, R., Courbure et singularités complexes, Comment. Math. Helvetici 54(1979) 6-16
- [S] Sebastiani, M., La deuxième forme fondamentale dans les groupes de Lie, pre-print

Jaime B. Ripoll Universidade Federal do R. G. do Sul Instituto de Matematica Av. Bento Goncalves 9500 91500 - Porto Alegre - RS BRAZIL

Série A: Trabalho de Pesquisa.

- 1. Marcos Sebastiani <u>Transformation des Singularités</u> MAR/89
- 2. Jaime B. Ripoll On a Theorem of R. Langevin About Curvature and Complex Singularities MAR/89