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Hypersurfaces with constant mean
curvature
in the complex hyperbolic space

Suzana Fornari Katia Frensel Jaime Ripoll

Abstract. A classsical theorem of A. D. Alexandrov characteriz-
ing round spheres is extended to the complex hyperbolic space
CH? of constant holomorphic sectional curvature. A detailed
description of the horospheres and equidistant hypersurfaces in
CH? determining in particular their stability, is also given.

1. Introduction.

A classical theorem due to A. D. Alexandrov ([A]) proves that the
geodesic spheres are the only compact embedded hypersurfaces with con- ‘
stant mean curvature in a simply connected space of constant curvature
(with the additional hypothesis of the hypersurface being contained in a
hemisphere in the spherical case). Since in a two point homogeneous space
the geodesic spheres are homogeneous hypersurfaces and therefore with con-
stant mean curvature, it is natural to ask if Alexandrov’s Theorem can be
extended to these spaces. We answer here this question affirmatively for
the complex hyperbolic space. For simplicity, we work in the 2-dimensional
(complex) case. We prove:

Theorem 3.3. Let M be ¢ compact, embedded hypersurface with constant

mean curvature of the complez hyperbolic space CH?. Then M is a geodessc



sphere.

The simplest examples of complete hypersurfaces with constant mean
curvature in CH” are the geodesic spheres, horospheres and equidistant
hypersurfaces. J. L. Barbosa, M. P. do Carmo and J. Eschenburg proved
that the geodesic spheres are stable (Theorem 1.4 of [BdoCE]). We determine
here the stability of the horospheres and equidistant hypersurfaces of CHZ.
We recall that a horosphere is defined as the limit of the geodesic spheres
which pass through a given point of the space and whose centers tend to
infinity along a geodesic of the space.

As it happens in the real hyperbolic space, we prove here that the horo-
spheres in CH? are all stable. We also give a detailed description of them.
We prove:

Theorem 4.3. The horospheres of the complez hyperbolic space CH® are
hypersurfaces with constant mean curvature equal to 4/3 and are all stable.
Furthermore, they are the orbits of the Hetsenberg group ( a 3-dimensional
non commutative nilpotent Lie group) which acts by isometries on CH?
whsthout fized points {therefore, the horospheres snherit a natural Lie group
structure). In particular, the horospheres are (estrinsically) homogeneous
submanifolds of CH?. Any two horospheres of CH? are congruent.

The equidistant hypersurfaces are defined in the following way: the hy-
perbolic plane H? can be isometrically embedded in an unique way (up to
congruences) as a totally geodesic submanifold of CH? (this follows from the
characterization of the totally geodesics submanifolds of a symmetric space).
Given ¢ > 0, an equidistant hypersurface P, is defined as the boundary of
the tubular neighborhood with radius sinh™ () of H2. In section 5 we give
a detailed description of such hypersurfaces. In particular, we prove:



Theorem 5.3. An equidistant hypersurface P, in CH? s a homogeneous
hypersurface with constant mean curvature (1 + 4¢2)/(3cy/T+ ¢%). It is sta-
ble sf ¢ > \/2/2 and unstable otherwise. Two equidistant hypersurfaces are
congruent 1ff they have the same mean curvature.

We remark that the function (1 + 4¢?)/(cy/1+ ¢) attains its minimum
absolute value at ¢ = \/2/2, that is, P, is the equidistant hypersurface
whose mean curvature is the smallest one.

In the next section, we obtain some basic facts about the Riemannian

Geometry of CH? necessary for proving the above theorems.

2. Preliminaries.
2.1 The “Hopf fibration” of CH?.
On C® = R® consider the indefinite scalar product:
< z,w >:= Re(—20Dg + 2,0, + 221)

where 2 = (20, 21, 22) and w = (wo, w1, w2) are points in the complex vector
space C3. The set

Q*={z€R’| <z,2>=-1}

is a 5-dimensional sub-manifold of C® and inherits a Lorentzian metric with
constant sectional curvature —1. The group S* = (¢'?) of complex numbers
with modulus 1 acts freely on Q° by complex multiplication so that Q°/S?
is a diflerentiable manifold. The orbits a(f8) = ez for z € Q° of S* are
timelike since

< o'(8),0'(0) >=< iez,167 >= -1,



The Complex Hyperbolic Space CH? can be defined as the quotient
Q°/S* endowed with the Riemannian metric that makes the projection

?T:Q5—+§l

a semi-Riemannian submersion.
2.2 The sectional curvatures the CH?.

Let X,Y be two orthonormal vector fields on CH? and X,Y be the
horizontal lifts of X and Y on QZ, respectively. Denote by K(X,Y) and
K(X,Y) the sectional curvatures of CH? and Q, respectively. The follow-

ing formula is a straightforward extension to semi-Riemannian submersions

of a result found in O’Neill [O1]. We have:
K(X,Y) = f((xh-,?) +3< AX}?,A;{? >

where A is a tensor that reverses the horizontal and vertical subspaces of

the projection w. Since the last subspace has real dimension 1 and, for a
fixed X, Ay is surjective, it follows that for any number a, 0 < a2 < 1, there

exists ¥ with < ¥,V >= 1 such that
< AgY,AzY >= —a’ > -1
Then K(X,Y)=-1+3< AgY,AzY > satisfies -4 < K(X,Y) < -1.
2.3 The S'-orbits in Q°.
Let a(f) = ¢*# be the S-orbit of a point z €Q°®. Then
a"(0) = —¢?z = —al(8),

that 1s,

vcp" (If == 0,

where ¥ denotes the covariant derivative in Q®. It follows that the S-orbits

are totally geodesic 1-dimensional submanifolds of Q°.
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2.4 The mean curvature of a hypersurface of CH? and of its lift
in Q°.

Let M be a hypersurface in CH? and denote by M its lift in Q°, that
is, 7(M) = M. Clearly, M is a $!-invariant hypersurface of Q°. Let p be a
point in M and let N be an unitary S*-invariant vector field normal to M
around p. Set N := m,(N). Then N is an unitary vector field normal to M
around 7(p). Let H and H be the mean curvature of M at p and of M at
n(p) determined by N and N, respectively. Then we have:

Lemma 2.4. H =
Proof.

Consider an orthonormal frame {e;}, + = 1,2,3 tangentto M ina
neighborhood of 7(p). By definition:

H= %IZ:I: < ?,,.e,-,N >
where V is the Riemannian connection in CH?. Let ¢; be the horizontal lift
of e; and €, the unitary tangent vector to the fiber of 7. It is obvious that
€0, ..., €3 15 an orthonormal frame tangent to M in a neighborhood of p. If V
denotes the semi-Riemannian connection of Q°, then 6,0 eo = 0 by 2.3, and
< Ve, N >=< V; &, N >, by O’Neill’s formulae for a submersion([01]).
Then
H=li<6a§{,ﬁ>= éﬁ‘
3 & ' 3
We recall that )
H= ch‘- < V&, N >,
where ¢; =< ¢€;,¢; >= £1. In our case, < €p,€ >= —1 and < €;,¢é >=
1, 2=21.2.8.

2.5 Stability of hypersurfaces with constant mean curvature.
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Let £ : M* — M"™*! be an immersion between Riemannian mani-
folds, z with constant mean curvature. Let D C M be a relatively compact
domain with smooth boundary dD. Set D := DU 8D. Denote by 75 the

set of all piecewise smooth functions [ : D — R that satisfy the conditions:

flao =0, L fdM =o.
The domain D is stable iff Jg(0)(f) > 0, for any f € 7p, where

IB(O)(f) = [ {lerad(£)P* = (Ricc(N) + [|BIF)*}dM.

Here grad is the gradient of D in the induced metric, ||B|| is the norm
of the second fundamental form of z and Ricc(N) is the Ricci curvature of
M in the direction of the normal N of z. Recall that, at a point p in M,
Ricc(N) = Yi= K(N, €;), where ey, ..., €a—1, N is an orthonormal basis of
T,(M) with N normal to M and K denotes the sectional curvature of M at
P

The immersion z is stable if any relatively compact domain D C M is
stable.

In our case, we will study stability of hypersurfaces of CH?. We remark
that there exists an obvious semi-Riemannian version of Proposition 4.3 of
[BdoCE], which reads: M is stable in CH? iff M = #~'(M) is “S!- stable
in Q°, that is, iff

[ (lad (1)~ (Ricc( ) + 1BIP) 7}t > 0

for all relatively compact and $*-invariant domains D C M and for all f in
7p with the following property: f(ep) = f(p), e € S* and p € M.

The vector field N considered above is an unitary normal vector field of
M in Q® and B : T,{M) — T,{M) is the linear symmetric transformation
associated to the second fundamental form « of M in Q®, that is, if {e;}i,



is an orthonormal basis of T,(M), ¢ =< €;,¢; >= +1, then < Ble;),e; >=
< a(eq,e5), N >. The norm ||B|| at p € M is defined by

Bl = ie.-<é(e.-),z§(e,-) Sy

4
= ) eej <afei, ), N >

i,J=1
We observe that || B|| is independent of the orthonormal basis {e;}. This

fact is a consequence of the following general result:

Lemma 2.5. Let V be an n-dimensional vector space with a non-degenerate
symmetric bilinear form < ;. > and let B: V — V be a linear transforma-
tion. Let f = {e;}l, be an orthonormal basss of V and set €; :=< e;,e; >.
Then the number Y iz, €; < B(ei), Ble:) > 15 independent of B.

Proof.

Consider another orthonormal basis {v;}%, with € =< v;,v; >. Let
us define real numbers b;; by the relations

i
€ = b;,-v,- 1= 1, weny M.
Therefore, vy = € J 4=y €ibirei. The identities € =< v, v >= x1 and
< vg,v; >=0, k# 7 can be written as:

n
2 E : 2
=]
and

E E,‘b;kb;_f =0 j. -‘,é K,

=1

Therefore,
EC.‘ < B(ﬂ.‘), B(e.-) > = EE,- (Z: b,’_fb,'k < B(vj), B(Uk) >)
1=1 =1 7,k=1
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=y (Zf,bub,k ) < B(v;), B(u) )

5hk= =1

n
(Zc, < B(vj), B(vy) >)
=1

B(v;) >

>

as desired.

3. The geodesic spheres of CH?.

In this section we first give a description of a geodesic sphere in CH?,
determining its lifting to Q®. This is necessary for proving Theorem 3.3 and
also useful for carrying out explicit computations.

Let p > 0. Let M, be the hypersurface of Q° of all points (20, 21, 22)
such that |2o]? = cosh?p and |z |2 + |2,|? = sinh?p. M, is isometric to the
product S} x S? endowed with the indefinite metric —ds? + ds? where S!
is the 1-dimensional Euclidean sphere with radius ¢ = coshp, S2 is the 3-
dimensional Euclidean sphere with radius s = sinhp and ds?, ds? are the
standard metrics on S} and S2.

Clearly, M, is S'-invariant, so that 7(M,) is a hypersurface of CH?; we

have:

Proposition 8.1. 7(M,) 1s a geodesic sphere around the point 7((1,0,0))
with radius p. Moreover, any geodesic sphere of CH? is of this type, mod-
ulus an ssometry of CH? which carries the center of the geodesic sphere to
7((1,0,0)).
Proof.

The subgroup U(1) x U(2) (see section 2.1) acts transitively on M,, and
therefore in (M,). Then, given two any points (p) and w(q) m =(M,),
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there exists ¢ € U(1) x U(2) such that ¢(r(p)) = 7(g). Since é(po) = €“po,
for some 8, where po = (1,0,0), we have ¢(n(po)) = 7(po) and hence:

d(n(p), 7(po)) = d(&(n(p)), (m(po))) = d(x(q), 7(po))
where d is the Riemannian distance in CH®. Therefore, T{'(Mp) is contained
in the geodesic sphere centered at 7(p) and with radius d(n(p), 7(po)). But
both 7(M,) and the geodesic sphere are compact, connected 3-manifolds
therefore they have to coincide.

Finally, observe that the curve «(t) = (cosht,sinht,0) is a geodesic
parametrized by arc length in Q® and orthonormal to the S'-orbits. There-
fore w(7y) is a geodesic in CH?, also parametrized by arc length. Since
7(71(0)) = n(p,) and 7{7(p)) € n(M,), it follows that p = d(n(p), n(ps)) is

the radius of #(M,), which concludes the proof of the Proposition 3.1 since
the last part is obvious. ¢

In the next paragraph we compute the mean curvature of the geodesic
spheres as a function of its radius. These computations will also be used in
section 5.

From the above characterization one can also see that the geodesic
spheres in CH? are homogeneous hypersurfaces and, therefore, with con-
stant mean curvature. To compute its mean curvature, it suffices to com-
pute it at a point, say 7(p), p = (coshp,sinhp,0) of 7(M,). From Lemma
2.4, we have only to compute the mean curvature H of M at D.

For 2z and w in C®, we consider real coordinates z = (21,...,%6), w =
(y1y+s ¥6) With 2o = 21 + 122,21 = 75 + 17,4 and so on. The indefinite scalar
product defined in 2.1 has the following expression in these coordinates:

6
< z,w >=—I1Y) — oYz + inyi-

i=1
Let us take the standard orthonormal basis {v;}¢_, of R® with
< 9,0 >=< 95,9 >= -1 and < v;,v; >= 1, 1 = 3,...,6. Then p =



cv; +svs, ¢ = coshp, s = sinhp and it is easy to see that {vp,v4,v5, v} is an
orthonormal basis of T,(M,) and that N = —sv, — cvs is a unitary normal
vector field of K{p.
As before, denote by V the Riemannian connection of Q5. Then we
have:
< Vv, N >=< alvi, vi), N> i=24,5,6

where o is the second fundamental form of the immersion M, — R®.
Therefore (compare with the formula for # in 2.4):

)z

Il
| =

-~ 6 -~
(= < afvg,92), N >+ < alvi,u), N >).
=4

Now, since M, — RS is a product immersion, we have a(vg,v,) = —1;
and a(v;, ;) = —Lvs, £ =4,5,6. Then:

H= %(— & —%vl, —su; —cvg > +3 < —%vs,—svl - cvg >)

that is

= 1 (sinhp  coshp
= (coshp . 3sinhp)

1
and the mean curvature H of a geodesic sphere of radius p is

H

_ cosh p i 1sinhp
smhp  3coshp’

As it happens in Riemannian spaces with constant sectional curvature,
the reflections on totally geodesic hypersurfaces of a semi-Riemannian space
of constant sectional curvature are local isometries of the space. In the next
result, necessary for proving Theorem 3.3, we characterize a class of these
isometries which are globally defined on Q°.

Lemma 3.2. Let T be a complete totally geodesic hypersurface of Q® con-
taining the geodesic circle |20|* = 1, 21 = 2, = 0. Then the reflection on T
13 a globally defined 1sometry of Q°. The group generated by the reflections
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obtained 1n this way together with the S* subgroup act transitively on the
hypersurfaces M.
Proof.

For the first part of the Lemma we have just to prove that the exponential
map of Q° gives a diffeomorphism between the normal bundle of T and Q°
itself, since the reflection r :Q*— Q° is locally given by r(ezp,(v)) =
expy(—v), where p € T and v € T,(T')*. This is equivalent to prove that
any geodesic of Q° orthogonal to T has infinite lenght.

We observe now, as it is not difficult to prove, that the totally geodesic
hypersurfaces of Q® are the intersections of hyperplanes of R® parallel at
least to one of the axis z; or z, with QP itself. From this, we can prove that
any totally geodesic hypersurface of Q° is a homogeneous submanifold of
Q? and that, if 7) and T, are two totally geodesic hypersurfaces containing
both axis z; and z; then they are congruent.

Therefore, we obtain a proof for the first part of the lemma once we
prove it for some particular totally geodesic hypersurface containing the
circle mentioned above, and for some particular geodesic orthogonal to this
hypersurface. But this is very easy. Choose for instance the totally geodesic
hypersurface T = {(z1,...,2¢) | 2 = 0} and as an orthogonal geodesic of
Q°® to T the geodesic 7 given by ~(t) = (cosht, 0, sinht, ...,0). Clearly, 7 has
infinite length, as required.

For the second part of the lemma, we observe that the reflections on
totally geodesic hypersurfaces of Q® are the restriction of the reflections to
hyperplanes of R®. Therefore, since the group generated by the reflections of
RS on hyperplanes containing the two axis z, and z, contain as a subgroup
the group U(2) (as defined in 2.1), combining this group with the S* action
we obtain the group U(1) x U(2) which acts transitively on M,, proving the
lemma. ¢
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Theorem 3.3 Let M be a compact, embedded hypersurface with constant
mean curvature of CH?. Then M 1s a geodesic sphere.
Proof.

According to what we have already seen, M = 7~!(M) is a compact,
embedded, S'-invariant hypersurface of Q° with constant mean curvature.

We claim that given any totally geodesic hypersurface T' of Q° which
contains the axis 7, and 72, there exists a totally geodesic hypersurface T’ of
Q? which is parallel to T' (that is, there exists a geodesic of Q° orthogonal to
both T and T") such that the reflection on T" leaves M invariant. Therefore,
since M is compact, all such totally geodesic hypersurfaces whose associated
reflections leave M invariant must have a common point. Up to congruence,
we may assume that this point lies on the circle €' : |z = 1, 2y = 2, =
0. It follows that M is invariant by the reflection on any totally geodesic
hypersurface of Q° containing the axis z; and z,. Since M is S'-invariant,
we conclude from the previous lemma that M coincides with some M,.

We prove our claim for a totally geodesic T as defined in the lemma
above, the proof for another one being similar. Consider the family of totally
geodesic hypersurfaces T; of Q® given by:

T: = {(z1,.-, 76) € Q® | 75 = t}.

Clearly, this family foliates Q° and since they are all “parallel” to T' = Ty,
the reflections on these totally geodesic hypersurfaces are globally defined
in Q®. Since M is compact, there exists ¢ large enough such that M N T; =
@. Therefore we can apply the same method introduced by Alexandrov to
conclude that M is invariant by some T, - Since this holds for any foliation
which contains a totally geodesic hypersurface containing the circle C, it
follows by compacity that all those hypersurfaces whose reflexion leaves M
invariant have a common point which has to belong to C, and this proves
the theorem. ¢

4. The horospheres of CH?.
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Let «y be a geodesic parametrized by arc length in CH?. Given ¢ € R,
denote by S, the geodesic sphere of CH? with center at y(¢) and with radius
t.

4.1 Definition. The hypersurface L of CH? given by the limit of the
geodesic spheres S; when ¢ goes to infiniy is called a horosphere of CH2.

In the next result we prove, in particular, that the horospheres are actu-
ally differentiable hypersurfaces of CH?; a useful characterization of them
in terms of their lift in Q° is also given. We observe that, up to congruences,
there exists only one horosphere. This follows by observing that since CH?
is a two point homogeneous space, given two points p;, p, of CH? and given
two geodesics 7;, 72 through these points, there exists an isometry taking
py into p, and 7, into ;.

Propsition 4.2. Up to a congruence, a horosphere L of CH? ts the projec-
tion, via 7, of the hypersurface L of Q° consisting of all posnts (20,2y,2) €
QP satisfying the equation:

IZ{) + le = 1.

Proof.

Let {S:} be a family of geodesic spheres converging to L as in the previous
definition. Up to a congruence, we may assume that S; is centered at m(7(t))
where (t) = (cosht,0,sinht,0,0,0). Therefore S, = 7~1(S;) where S is
given by:

Se: = {(cosh(~t)wo + sinh(—t)w,,sinh(~t)wo + cosh(—t)w;, ws) |

(wo,wy,ws) € Q°, fwo|* = cosh?t, [w; |* + |we|* = sinh®t}

To see this, observe that the set R; of points (wp, w;, w;) of Q° satisfying

the equation:
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lwol2 = COShZf, !‘wi |2 + |we |2 = sinh?t

is the lift of a geodesic sphere of CH” with radius ¢ centered at the point
7(7(0)). Observe also that Sy = ¢;(R;), where ¢ is the isometry
cosh(—t) sinh(-t) 0
¢¢ := | sinh(—t) cosh(-t) 0
0 0 1
Since ¢ carries the point 4(t) over 4(0), we have S, = 771(S,).
By setting:
2o = cosh(—#)wo + sinh(—t)w,
and
zy = sinh{—t)wy + cosh(—t)w,
we obtain:
wp = zocosh{—t) — z;sinh(—t).

Replacing this expression for w, in the equation |w,|? = cosh?t we get:
cosh?(t)|z|* + sinh®(¢){z: |* + sinh(¢)cosh(t)(z07: + 21Z0) = cosh®(¢).

Dividing by cosh®(t), taking the limit as t — oo and observing that
[ im;_.oog’%ﬁit =1 we obtain the desired equation. ¢

Theorem 4.3. The horospheres of the complez hyperbolic space CH? are
hypersurfaces with constant mean curvature equal to 4/3 and are all stable.
Furthermore, they are the orbsts of the Heisenberg group (a 3-dimensional
non commutative nilpotent Lie group) which acts by isometries on CH?
without fized points (therefore,the horospheres inherit a natural Lie group
structure). In particular, the horospheres are (eztrinsically) homogeneous

submanifolds of CH?. Any two horospheres are congruent.
Proof.

14



We have already observed above that two horospheres are congruent.
Let us prove that the mean curvature of a horosphere is 4/3. The computa-
tions that follow will also be important for determining the stability of the
horospheres. We remark that the mean curvature of a geodesic sphere of
radius ¢ in CH? is sinht/(3cosht) + cosht/sinh¢ which converges to 4/3 as ¢
goes to infinity.

According to lemmas 4.2 and 2.4, we have just to prove that the mean
curvature of the hypersurface L of Q° given by |zo + 21 = 115 1. We
introduce a function f: Q° — R by setting f(z0,21,22) = |20 + 21]%.

Since L = f-1(1), the mean curvature H of L is given by (see [02] p.

124):
; (grad(f))Q:
ARG ( grad(f)|qs )

Here, div(ys and gradqs are the divergence and the gradient in Q°.
f can be considered as a function defined in R®. In the real coordinates

T1, ..., Te, 1t 18 given by:
(@1 T6) = (21 + 23)? + (22 + 24)?
Therefore:
(grad(f))re = (—2(z1 + 23), =2(22 + 24), 2(71 + 23), 2(22 + 74),0,0)

since df (v) =< grad(f), v > implies (grad(f))gs = o=y €idf (ei)ei if {e}e,
is an orthonormal basis of R®.

At a point z in Q° consider the orthonormal basis {e1,...,e4,12} of
T:(Q?®). Then {ey, ..., 4,72, 2} is an orthonormal basis of R®, and we have:

(grad(f))Re = _:Zldf(e.-)ee — dfliz)iz — df(z)z

that is

(grad(f))Rs = (grad(f))Qs — df(2)2-

15



Therefore,

(grad(f))Qs = 2(~1 + fo1,~h + 2,1+ fzs,h + [y, f2s5, f26)

where, for simplicity, we denote {(z1,2s) = 21 + 23, h(z2,74) = 22+ 24, and
J(21, 22,25, 24) = (21 + 29)? + (22 + 24)* = 12(21,25) + h* (2, 24).

We have that < (grad(f))qs, (grad(f))qs >= 4/ and in the points of
M we have |(grad(f))qs|* = 4.

grad(ng, _ (@rad)g,

For a vector field X := i(grad{f))qr,i = 57

we recall that

, . )
divgs(X) = Z <V X,e;>-< VX iz>
i=1
4

= 2 < VeIX,C,' > - V,-ZX,iz >
=1
where V and V are the semi-Riemannian connection of Q? and R® respec-
tively. X can be extended, in a natural way, to a vector field on R, also
denoted by X, and

divge(X) = divgs(X)— < V X,z >

or
(a)  divQs(X) = divge(X)+ < d(X)(2),2 > .

On the other hand, considering grad(f)q. as a map from R® to RS, its
derivative d(grad(f)qs) is given by the matrix:

2!1:1 -1+ f 2h$1 21221 -1 2h$1 0 0

2[272 Ehxg -1+ f 2[32 thg -1 0 0

—9 14 2izs 2hzs 14 2zs+ f 2hzs 00
- 21z, 1+ 2hz, 2z, 14+ 2hzy+f 0 O
2:35 2h$5 2:2}5 2h555 f 0

2!35 Qh:ce 2:35 2h$5 0 f

16



so that
(6) < d(grad(f))Qs(z),z >=—4/ and < dX(z), 2> |y = —4/2 = -2.

Moreover,
(c) divpe(X) =

(—1+2(.‘I‘1+f'—1+2h$2+f+1+2!$3+f+1+2h$4+f+3f)

sl

(=2l +2 fx;)(—-%) + (=2h+ 2f2) -%)
l

+{2+2fz)(~75) + (2 +2 j’m,)(—%) =8,

From (a), (b) and (c) it follows that H = 1 as required.

We will prove now that Ricth(ﬁ )+ || B|f? = 0 for the hypersurface L
of Q°. From section 2.5, it will follows that the horospheres are stable.

Observe that in this case N is the restriction of the following vector field
of RS, also denoted by N:

N(z1,...,z6) = (21 = |, 22 — h,zs + |, 24 + b, fz5, f76).

The matrix of dN in the standard basis {ei}s=, of R® with < ¢;,¢; >=
< e3,69 >= —1 is given by:

dN =

cCoco-OO
co~oO0O

|
cocowro |

|

cowvo | o
oO~o0 0O
_-OoOoO0o O

Set B =dN. Then B = Bl|;. We have

1Bl = - < Bler), Bler) > — < Blea), Blez) > + i < B(e:), Bes) >=6.
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Since the norm of B independs on the given orthonormal basis, we can
choose an orthonormal basis of T, (L), for z € L and add to this basis the

vectors z and N to obtain an orthonormal basis of RS. Therefore, we obtain:
l|Blike = I1BI- < dN(2),dN(z) > + < dN(N),dN(N) >= ||B|]* - 1 +3

so that
||1§||2=6+1-3=4.

But RiccQ,(f\") = —4 thus RiccQ,(ﬁ}) +]|BJ|? = 0, as desired.

Let us describe now the (full) subgroup of isometries of CH? which leaves
invariant a horosphere of CH?. As before, we work just in Q?, by taking
the lift L of a horosphere of CH?. Up to a congruence, we may assume that
L is given by

() |2o+a|=1
We will determine the Killing fields X of Q° belonging to u(1,2) such that
X(z) € Ty(L), for any z € L. These Killing fields will constitute a Lie
subalgebra of the Lie algebra u(1,2) of the group U(1,2) whose associated
Lie group is the largest Lie subgroup of U(1,2) acting in L.
We recall that u(1,2) is given by:

@ u v
u(1,2) = @ if w |, oof,7€ER, u,v,w€eC}.
7 o 1y

Furthermore, if X € u(1,2), then X determines a Killing vector field of
Q° by setting X(z) = X.2! where . denotes the usual product of matrices.
Any Killing field of Q® which is S™-invariant is projected, via 7, in a Killing
field on CH? and all Killing fields of CH? are obtained this way.

Observe that a vector field X = (Xo, X;, X2) of Q° is a vector field of L
iff 1t satisfies

(Xo + X]](fg + 21) + (Zo + 31)(Xg + X}) =0
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for any (zo,21,2) € L; this equation is obtained simply by derivating the
equation (*) along a curve on L.
Therefore, if

ta ¥ v
X=}1 0 1f w
T W 1y

then X is a Killing field on L iff

(=) (et a)(|zf? +[af?) + 20228 +i{a - B)) + 2oz (2u + (B — o))
+ (2270 + 2271 )(w + v) + (202, + 2221 ) (@ + 7) = 0.

Taking the point 2o = 1, z; = 2, = 0, which is a point of L in (**), we
obtain 7 + u = 0, that is ¥ = 1z for some z € R.
Now, any point of the type (2o, 2,0) of L satisfies the equation zz, =

—(202, + 2]21/%). Replacing Z,z; given by this equality in (**), we obtain:
(22 + B — a){|z1]* + 20271) = 0.

Since we can take (29, 21,0) in L with |2;[2+207 # 0, we have 2z+f—a =
0. Then u = (1/2){(a — f). Finally, taking the points z = —3/2, z; = 1/2,
2z =1 and 7o = —3/2, 2, = 1/2, 2, = 1, which are points of L, in (++), we
obtain v+ w=0.
Summarizing all these facts, we obtain that the set R of vectors of u(1, 2)
whose associated Killing fields are vector fields of L is given by
1 z'“—gﬁ r 448
R= —ilg_ﬁ i —r—is |, a,f,773€ER
r—is r—1s 1y
By construction, R is a Lie subalgebra of 4(1,2) which, as it is immediate
to see, has dimension 5. The Lie subalgebra of the isotropy subgroup of the
Lie group R associated to R, corresponding to the point (1,0,0) of M, is
constituted by the vectors X in R such that X.(1,0,0) = 0. This subalgebra
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is generated, as it is easy to see, by the matrix of R havingo =f=r=3=0
and 7 = 1. Therefore, the orbit of the point (1,0,0) under R has dimension
4. Since both this orbit and L are complete and connected, [, with dimension
4, they must coincide.

Observe that the subspace § of R given by 7= 0 is a Lie subalgebra of
R and the associated Lie group, say G, acts transitively on L without fixed
points. This induces on L a natural structure of a Lie group.

As we have seen before, [ = f,/ 5! is a horosphere of CH?, and, by
the previous construction, R acts on L since it contains S! as a subgroup.
Clearly, this action is transitive. Since S* is in the center of R, and since the
action of S on L is trivial, R/S? is a Lie group which still acts transitively
on L. The Lie algebra of R/S? is naturally identified with the Lie subalge-
bra of R such that & + f+ v = 0. As an intersectioon of two Lie algebras,
the subspace G of R given by v = 0 and @ + § = 0 is a Lie subalgebra of
R and, via the above identification, is a Lie subalgebra of the Lie algebra of
R/S'. The associated Lie group G of G is a 3-dimensional Lie group acting
transitively on L and without fixed points, inducing therefore a structure of
Lie group on the horosphere L. We claim that G is the Heisenberg’s group.
In fact, straightforward computations show that § is non commutative and
that its derivative Lie subalgebra [G, §] coincides with the center of G, that
18, G is a nilpotent 3-dimensional non commutative Lie algebra, that is, it

is the Lie algebra of the Heisenberg group. ¢

5. Equidistant hypersurfaces.

As it is well known, the complex hyperbolic space CH? is a complex
manifold and the image of any complex line of the tangent space of CH?®
at any point under the exponential map is a totally geodesic submanifold.
We observe that two totally geodesic complex hypersurfaces Ty and T3 of

20



CH? coincide up to an isometry of CH®. In fact: since CH? is a homoge-
neous manifold, we can assume that they have a point of intersection, say
p. Moreover, it is known that the isotropy group of the isometry group of
CH? at any point is the group U(2) which acts transitively on the complex
lines through the origen of the tangent space at the point. Hence, up to an
isometry we may assume that T} and T, have the same tangent plane at p.
Since they are totally geodesic, they have to coincide.

By definition, an equidistant hypersurface of CH?® is the boundary of
a tubular neighborhood around a totally geodesic complex hypersurface of
CH?.

We want to describe now the lift to Q® of a equidistant hypersurface
of CH?. We need one lemma. We will say that a hypersurface P of a
Riemannian manifold N is an equidistant hypersurface of a submanifold M
of N if P is contained in the boundary of a tubular neighborhood of M in N.

Lemma 5.1. Let N be a complete Riemannsan mansfold and let G be o
Lie subgroup of the isometry group of N acting on N with cohomogenesty
one. Assume that the orbsts of G are properly embedded sn N. Then, any
principal orbit of G 18 an equidistant hypersurface of any orbst of G.
Proof.

Let P be a principal orbit of G and O any orbit of G. Choose p in P.
Since O is properly embedded, there exists ¢ € O such that s := d(p,0) =
d(p, q) > 0, where d denotes the Riemannian distance in N. Therefore, there
exists v € T,(0)*, ||v|| = s such that exp,v = p, where
exp, : Ty(N) — N is the usual exponential map of Riemannian geometry.
Hence, given g € G, since ¢ is an isometry, we have g(ezp,v) = ezp,(q).(v)
with g.(v) € Ty»)(0)*, |lg.(v)l| = s. This proves that P = G(p) is con-
tained in a tubular neighbourhood of radius s of O, proving the lemma.

We can prove now the following proposition.
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Proposition 5.2. Given ¢ > 0, let P. be the hypersurface of Q° defined
as the set of all points (z,21,22) n Q° such that |z[* = ¢? (therefore,
—|zl* + |z |? = —(1+¢?)). Then T := n(Ps) is a totally geodesic surface of
CH? isometric to the 2-dimensional hyperbolic space, and any P, := (B.)
1s the boundary of a tubular nesghbourhood of radius sinh™(c) of T.
Proof.

Straightforward computations show that T is a totally geodesic surface
in CH? isometric to the 2-dimensional hyperbolic space.

We observe that the hypersurfaces P,, ¢ > 0, are principal orbits and T
a singular orbit of the action on CH? (via ) of the subgroup U(1,1) x U(1)

of U(1,2) consisting of the matrices of the form

(22)

where B € U(1,1) and § € [0,27], so that we can apply the previous lemma
to conclude that the hypersurfaces P, are equidistant hypersurfaces around
T.

Finally, observe that the geodesic w o 7 : R — CH? where 7(t) =
(cosh(t), 0,0,0,sinh(t),0) is orthogonal to T' at ¢ = 0, is parametrized by arc
lenght, and satisfies 7(t) € Peinh?y concluding the proof of the proposi-
tion. ¢

Theorem 5.3. An equidistant hypersurface P, in CH® is a homogeneous
hypersurface with constant mean curvature (1 +4¢c?)/3c\/T+ c2. It 1s stable
if ¢ > \/2/2 and unstable otherwise. Two equidistant hypersurfaces are con-
gruent iff they have the same mean curvature.
Proof.

It follows from the above that the equidistant hypersurfaces are homo-
geneous hypersurfaces of CH?. Let us compute now their mean curvature.
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It is sufficient to compute the mean curvature of the lift P, at a particular
point p. We choose p = (/1 +¢%,0,0,0,¢,0). We have

p=+1+4c*v; + cvg

where {v;}%_, is the standard orthonormal basis of RS with < v,,v, >=
< vg,v3 >= —1 and < v;,9; >=1, 1 = 3,4,5,6. The set {vy,v3,04,v¢} is
an orthonormal basis of T,(P,), and it is not difficult to prove that N :=
—cvy — /T F c2vy is unitary and normal to 2, in Q°.

As in the case of the geodesic spheres (see §3), we have

H= ; (g(e. < afvi,v:), N >)+ < a(ve,ve), N >)

where & is the second fundamental form of P, in R®. From the definition of
Pc, it follows that

<v,%u>v 1=2,3,4

i 1
(o, ) = JAte2
and

&(Uﬁ, Uﬁ) = = Eﬂb

so that
~ 1, 1+4c*

Hy = ‘JW)
hence, the mean curvature of P, is
1 ( 1+ 4c? )
3 c/I+c2
as required.
We study now the stability of the P.. To do that, we first compute the
value of RiccV + IIB |[? of the hypersurface P, of Q.
We have that the Ricci curvature of Q°(with respect to any direction)
is constant with value —4 (see [02] p. 88). Since P, is a homogeneous
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submanifold of Q®, ||B]| is constant so that it is enough to compute its
value at the point p fixed above.

Using the computations above and the ones of section §2.5, we obtain

~ 2¢c* 1+c?
2 —_
1181l 1+¢? * c?
and e
" ~ wis 1%
Riceqs(N) + |[BI]® = 205 )

Thus, ¢* > L implies that Rict:c‘)':s(f\?)-§~I|fi||2 < 0 and from 2.5 it follows

that P, is stable in this case.
Let us assume ¢? < 1. To prove that P, is unstable it suffices to exhibit

a piecewise smooth function [ defined in a relatively compact domain D of

-~

P, satisfying the following conditions:
f 1s S'-invariant, that is, f(e'z) = f(z)

flop =0, ]D fdB, =0
and

7(0)(f) = [ llerad P - (Riceqe(N) + I BIF)JdF: <.

To compute this integral, we use the following local coordinates of £2,:
7 (e, B,7,t) — (e Acosh(t/A), e”® Asinh(t/A), e'7c)

where A = \/1+¢%, o, and 7 vary in the interval (0,27), and t € R. In

these coordinates, the volume element of f”c 1s
dP, = ¢(1 + ¢?)cosh(t/A)|sinh(t/A)|dt A da A dB A dy.
For a fixed real number a, set

D, = {r(a,8,7,t} | t € (=a,qa)}.

Cleary, D, is a relatively compact domain in 5.
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Now, for a fixed b € (0,a), consider the piecewise smooth real function

f defined in [—a, q] by:
=t=th f—a<t<L b

=4+t  f-b<t<h
=Hap ifhb<t<a

{ determines a piecewise smooth function f on D, by setting

f(T(aa ﬁs T t)) = f(t).

It follows that flop, = 0 since f(a) = f(—a) and that
[ fap, = [c2(1+c2) / - dadﬁdq«] f " f(t)cosh(t/A)[sinh(¢/A)|dt = 0
Dq . o, f,7=0 —a

the last integral being zero since f is an odd function.

Now, we will calculate J"(0)(f). In these coordinates, it is easy to prove

that
lgrad {2 = f'(1)".

For simplicity, set
2%
¢ = c2(1+c2)/ dadBdy

a,B8,7=0
8c*(1 + ¢?)n®

1 — 22

and
5 Y D2 — _+ — 4v
I:= RlCCQs(N) +|IB|I* = c2(1+ e?)’

We observe that I > 0 since by hypothesis ¢? < . Then:
o)) = [ (lwsd D - 172) afe

=G ( f_ " /()P cosh(t/A)[sinh(¢/A)|d¢ — T [_ ’ £(6)cosh(t/A) sinh(¢/A) d:)
Since f' and f? are even functions, we have

() ﬁ " (0 cosh(s/A)inh /A ds = 2 [ " cosh(t/ A)sinh{t/A)dt+
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2b? b ;
e / cosh(t/A)sinh(t/A)dt

and
a b
(@) I / f(£)2cosh(t/A)|sinh(t/A)|dt = 21 f tzcosh(%]siuh(%)dﬂ
- 0
2b?
(a = b)?
We will prove that it is possible to choose a and b such that (2) - (1) > 0,

that is, J*(0)(f) < 0.
We have

b
+ [ (« — t)?cosh(t/A)sinh (/¢ A)dt.

@-m=2 *(I6 = 1)cosh(t/A)sinh(¢/A)dt
+% [; b(I(a —t)® — 1)cosh(t/A)sinh(t/A)dt

=9 ﬁ *(I — 1)cosh(t/ A)sinh(t/A)d¢

22 [h . .
e ﬂ (I(a — ) — 1)cosh(t/A)sinh(t/A)dt

2h2 a ; _
+—(a —5) j‘;_:}r(f(ﬂ —t)? — 1)cosh(t/A)sinh(t/A)dt.

We observe that It? — 1 > 0if ¢t > 7‘1- so that it is possible to choose b
with b < a such that

b
[ (It2 - 1)cosh(t/A)sinh(t/A)dt > 0.
0
By another hand, a — 717 is a root of the polinomial p(t) := I(a—t)? -1,
and p(t) 20for 0 < ¢t < 7‘; Then, the second term of the last equality
above is positive for all b such that 0 < b < a - :}T Since —1 < p(t) < 0 for
a—-virstgawehave

a
a=—

f b_*(I(a — ) — 1)cosh(t/A)sinh(t/A)dt > f —cosh(t/A)sinh(t/A)dt
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.
2

(sinh*(a/A) — sinb*((1/A)(a ~ (1/vT))).
This last term is negative but tends to zero when a increases. This means
that fixing b with b < a such that

E(Iﬁ — 1)cosh(¢/A)sinh(t/A)dt > 0

it is possible to choose a satisfying b < a — VIT with

/ " —cosh(t/A)sinh(t/A)dt
2 ¢

small enough in such a way that (2) — (1) is positive. ¢
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