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Hypersurfaces with constant mean 
curvature 

in the complex hyperbolic space 

Suzana Fornari Katia Frensel Jaime Ripoll 

Abstract. A classsical theorem of A. D. Alexandrov cha.racteriz­

ing round spheres is extended to the complex hyperbolic space 

CH2 of constant holomorphic sectional curvature. A detailed 

description of the horospheres and equidistant hypersurfaces in 

CH2 determining in particular their stability, is also given. 

1. Introduction. 

A classical theorem due to A. D. Alexandrov ([A]) proves that the 

geodesic spheres are the only compact embedded hypersurfaces with con· 

stant mean curvature in a simply connected space of constant curvature 

( with the additional hypothesis o f the hypersurface being contained in a 

hemisphere in the spherical case). Since in a two point homogeneous space 

the geodesic spheres are homogeneous hypersurfaces and therefore with con­

stant mean curvature, it is natural to ask if Alexandrov's Theorem can be 

extended to these spaces. We answer here this question affirmatively for 

the complex hyperbolic space. For simplicity, we work in the 2-dimensional 

(complex) case. We prove: 

Theorem 3.3. Let M be a compact, embedded hypersurface with constant 

mean curvature o/ the complez hyperbolic space CH2
• Then M is a geodesic 
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sphere. 

The simplest examples of complete hypersurfaces with constant mean 

curvature in CH:t are the geodesic spheres, horospheres and equidistant 

hypersurfaces. J. L. Barbosa, M. P. do Carmo and J. Eschenburg proved 

that the geodesic spheres are stable (Theorem 1.4 of [BdoCE]). We determine 

here the stability of the horospheres and equidistant hypersurfaces of CH2
• 

We recall that a horosphere is defined as the limit of the geodesic spheres 

which pass through a given point of the space and whose centers tend to 

infinity along a geodesic of the space. 

As it happ~ns in the real hyperbolic space, we prove here that the horo­

spheres in CH2 are ali stable. We also give a detailed description of them. 

We prove: 

Theorem 4.3. The horospheres o f the complez hyperbolic space CJI2 are 

hypersurfaces with constant mean curvature equal to 4/3 and are all stable. 

Furthermore, they are the orbits o f the H eisenberg group { a 3-dimen.sional 

non commutative nilpotent Li e group) which acts by isometries on CH2 

whithout fixed points {therefore, the horospheres inherit a natural Lie group 

stru.ctu.re}. In particular, the horospheres are {eztrinsically) homogeneous 

submamfolds of ClJZ. Any two horospheres of ClJZ are congruent. 

The equidistant hypersurfaces are defined in the following way: the hy­

perbolic plane H 2 can be isometrically embedded in an unique way (up to 

congruences) as a totally geodesic submanifold o f CH2 
( this follows from the 

characterization o f the totally geodesics submanifolds o f a symmetric space). 

Given c > O, an equidistant hypersurface Pc is defined as the boundary of 

the tubular neighborhood with radius sinh -l (c) o f H 2 . In section 5 we give 

a detailed description of such hypersurfaces. In particular, we prove: 
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Theorem 5.3. An equ.idistant hypersu.rface Pc in CH2 is a homogeneous 

hypersurface with constant mean c1t.rt1ature (1 + 4c2 )/(3cJl + c2). It is sta­

ble sf c 2:: J2/2 and unstable other·wise. Two equidistant hypersurfaces are 

congruent iff they have the same mean curvature. 

We remark that the function (1 + 4c2 )/(cy'I+C) attains its minimum 

absolute value at c = JZ/2, that is, P ft/2 is the equidistant hypersurface 

whose mean curvature is the smallest one. 

In the next section, we obtain some basic facts about the Riemannian 

Geometry of CH2 necessary for proving the above theorems. 

2. Preliminaries. 

2.1 The "Hopf flbration" of CH2
• 

On C 3 = R6 consider the indefinite scalar product: 

where z = (z0 , zb z2) and w = ( w0 , w1, w2) are points in the complex vector 

space C 3• The set 

Q5 := {zER6 ! < z,z>= -1} 

is a 5-dimensional sub-manifold of C 3 and inherits a Lorentzian metric with 

constant sectional curvature -1. The group S 1 = ( ei8 ) o f complex numbers 

with modulus 1 acts freely on Q5 by complex multiplication so that Q5 f 81 

is a differentiable manifold. The orbits a( 8) = ei8 z for z E Q5 of 8 1 are 

timelike since 
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The Complex Hyperbolic Space CH2 can be defined as the quotient 

Q5 / S 1 endowed with the Riemannian metric that makes the projection 

'" . Q5 ---+ qs 
". S' 

a. semi-Riemannian submersion. 

2.2 The sectional curvatures the CH2• 

Let X, Y be two orthonormal vector fields on CH2 and X, Y be the 

horizontal lifts of X and Y on Q5 , respectively. Denote by K(X, Y) and 

K(X, Y) the sectiona.l curvatures of CH2 and Q5 , respectively. The follow­

ing formula is .a straightforward extension to semi-Riemannian submersions 

of a result found in O'Neill [01]. We have: 

K(X, Y) = K(X, Y) + 3 < Ã.xY,A.xY > 

where Ã is a tensor that reverses the horizontal and vertical subspaces of 

the projection 1r. Since the last subspace has real dimension 1 and, for a 

fixed X, Ãx is surjective, it follows that for any number a, O~ a2 ~ 1, there 

exists Y with < Y, Y >= 1 such that 

< Ã.xY,Ã.xY >= - a2 ~ -L 

Then K(X,Y) = -1 +3 < Ã_xY,Ã.xY > satisfies -4 ~ K(X,Y) ~ -1. 

2.3 The S1-orbits in Q5 • 

Let ~( 8) = ei8 z be the S 1-orbit of a point z EQ5 • Then 

cl'(O) = -ei6 z = - a( O), 

that is, 

V t:t'a' =O, 

where V denotes the covariant deriva.tive in Q5 . It follows that the S 1-orbits 

are tota.lly geodesic l-dimensional submanifolds of Q5
• 
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2.4 The mean curvature of a hypersurface of CH2 and of its lift 

in Q5 • 

Let M be a hypersurface in CH2 and denote by M its lift in Q5 , that 

is, 1r(M) = M . Clearly, M is a S1-invariant hypersurface of Q5 . Let p be a 

point in M and let N be an unitary S1-invariant vector field normal to M 
around p. Set N := 1r. ( N). Then N is an unitary vector field normal to M 

around 1r(p). Let Íl and H be the mean curvature of M at p and of M at 

1r(p) determined by N and N, respectively. Then we have: 

Lemma 2.4. H= til 
Proof. 

Consider an orthonormal frame { ei}, i = 1, 2, 3 tangent to M in a 

neighborhood of 1r(p). By definition: 

1 3 
H= 3L < "Ve,·ei,N > 

i=l 

where "V is the Riemannian connection in CH2
• Let é, be the horizontallift 

of ei and e0 the unitary tangent vector to the fiber of 1r. It is obvious that 

ê0 , ••• , é3 is an orthonormal frame tangent toM in a neighborhood of p. If V 
denotes the semi-Riemannian connection o f Q5, then V eo e0 = O by 2.3, and 

< "Ye;ei, N >=< Ve;êi, N >, by O'NeilPs formulae for a submersion([01]). 

Then 

We recall that 
- 1 4 

- N -

H= '4 L t:i < "Ye,ei, N >, 
i:l 

where ti =< éi, êi >= ±1. In our case, < êo, êo >= -1 and < êi, éi >= 
1, i= 1,2, 3. 

2.5 Stability of hypersurfaces with constant mean curvature. 
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Let x : llf" ---4 IJn+l be an immersion between Riemannian mani­

folds, x with constant mean curvature. Let D C M be a relatively compact 

domain with smooth boundary BD. Set D := D u BD. Denote by 10 the 

set of ali piecewise smooth functions f : D ---4 R that satisfy the conditions: 

fiao= O, lo fdM =O. 

The domain D is stable iff JJ)(O)(f) ~ O, for any f E lo, where 

J[)(O)(f) = k {lgrad(f)l2 - (Ricc(N) + IIBW)fl}dM. 

Here gradis the gradient of D in the induced metric, IIBII is the norm 

of the second fundamental form of x and Ricc( N) is the Ricci curvature of 

M in the direction of the normal N of x. Recall that, at a point p in M, 
Ricc(N) = L,~;11 K(N,ei), where e1, ... ,en-1,N is an orthonormal basis of 

Tp(M) with N normal toM and K denotes the sectional curvature of M at 

p. 

The immersion x is stable if any relatively compact domain D C M is 
stable. 

In our case, we will study stability of hypersurfaces of CH2
• We remark 

that there exists an obvious semi-Riemannian version of Proposition 4.3 of 

[BdoCE], which reads: M is stable in CH2 iff M = 1T- 1 ( M) is "81- stable" 

in Q6
, that is, iff 

lo {lgrad(JW- (Ricc(N) + IIBW)fl}dM ~o 

for ali relatively compact and S1-invariant domains D c M and for all f in 

lo with the following property: f(ei11p) = f(p), ei11 E S 1 and p EM. 

The vector field N considered above is an unitary normal vector field of 

M in Q6 and B: T11(M) ---4 Tp(M) is the linear symmetric transformation 

associated to the second fundamental form a of M in Q6 , that is, i f {e,} 1=1 
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is an orthonormal basis of T.,(M), (.i=< ei, ei >= ±1, then < É(ei), e;>= 

<a( e,, e,-), N >. The norm IIBII at p EM is defined by 

~ 

IIBII; = L (j < B(ei), s(ei) >p 
j;;;;} 

4 

== L (. i(. i< a(ei, e,-), N >2 

i ,j:I 

We observe that IIBII is independent of the orthonormal basis { ei} . This 

fact is a consequence of the following general result: 

Lemma 2.5. Let V be an n-dimensional vector space with a non-degenerate 

symmetric bilif1ear form < ., . > and let B : V --t V be a linear transforma­

tion. Let fJ = { ei}~=1 be an orthonormal basis o f V and set (j :=< ei, e, >. 
Then the number Ef=1 (j < B(ei), B(ei) > is independent of fJ. 
Proof. 

Consider another orthonormal basis {v; }j:1 with f.; :=< v;, v; >. Let 

us define real numbers bii by the rela.tions 

n 
ei = L bi;1J; i = 1, ... , n. 

i=I 

Therefore, vk = (.k Ef=1 (,b,kei . The identities (k =< vk, vk >= ±1 and 

< vk, v1 >= O, k =/=i can be written as: 
n 

fk =I: (jbtk 
i=l 

and 
n 

I: (jbjl;bj,. = o i =1= k. 
i=l 

Therefore, 

t. ,, < B( e;) , B( e;) > - t. <; (,t, b;;b,. < B( v;) , B( "•) >) 
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as desired. 

- ;t, (t.t;b;;b,.) < B(v;),B(v,) >) 
t. (t. t;b1;) < B(v;) , B(v;) >) 

n 

:::: L li< B(vj), B(vj) > 
j=I 

S. The geodesic spheres of CH2
• 

In this section we first give a description of a geodesic sphere in CH2
, 

determining its )ifting to Q5 • This is necessary for proving Theorern 3.3 and 

a)so useful for carrying out explicit computations. 

Let p > O. Let MP be the hypersurface of Q5 of ali points (zo, Z1, zz) 
such that lzol2 :::: cosh2p and lzd2 + lzzl2 :::: sinh2 p. Mp is isometric to the 

product s: X s; endowed with the indefinite metrÍC -dsi + ds~ where s; 
is the l-dimensional Euclidean sphere with radius c = coshp, s; is the 3-

dimensional Euclidean sphere with radius s :::: sinhp and dsi, ds~ are the 

standard metrics on s: and s;. 
Clearly, Mp is S 1-invariant, so that 1r(Mp) is a hypersurface of CH2 ; we 

have: 

Proposition S.l. 1r(Mp) is a geodesic sphere aro-und the point 7r((l,O,O)) 
with radius p. Moreover, any geodesic sphere of CH2 is of this type, mod­

ulus an t'sometry o/ CH2 wht'ch carries the center of the geodesic sphere to 

7r((l,O,O}}. 
Proof. 

The subgroup U(l) x U(2) (see section 2.1) acts transitively on Mp, and 

therefore in 1r(Mp). Then, given two any points 1r(p) and 1r(q) in 1r(Mp), 
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there exists <P E U(1) x U(2) such that 4>(1r(p)) = 1r(q). Since </J(p0 ) = e'8 p0 , 

for some 8, where p0 = (1,0,0), we have 4>(1r(p0 )) = 1r(p0 ) and hence: 

d(1r(p), 1T(Po)) = d(</l(7i(p)),4>(1r(Po))) = d(r:(q), 1T(Po)) 

where d is the Riemannian distance in CH2
• Therefore, 1r(Mp) is contained 

in the geodesic sphere centered at 1r(p0 ) and with radius d(1r(p), 1r(p0 )). But 

both 1r(Mp) and the geodesic sphere are compact, connected 3-manifolds 

therefore they have to coincide. 

Finally, observe that the curve 1(t) = (cosht,sinht,O) is a geodesic 

parametrized by are length in Q5 and orthonormal to the S1-orbits. There­

fore 1r( 1) is a geodesic in CH2
, also parametrized by are length. Since 

1r(/(O)) = rr(po) and rr(1(p)) E rr{Mp), it follows that p = d(1r(p), rr(p0 )) is 

the radius of rr(Mp), which concludes the proof of the Proposition 3.1 since 

the last part is obvious. <I 

In the next paragraph we compute the mean curvature of the geodesic 

spheres as a function of its radius. These computations will also be used in 

section 5. 

From the above characterization one can also see that the geodesic 

spheres in CJIZ are homogeneous hypersurfaces and, therefore, with con­

stant mean curvature. To compute its mean curvature, it suffices to com­

pute it at a point, say 1r(p), p = (coshp,sinhp, O) of 1r(Mp). From Lemma 
- -2.4, we have only to compute the mean curvature H of M at p. 

For z and w in C3, we consider real coordinates z = (XI, ... , X6), w = 

(y11 ···d/6) with zo = XI + ixz, zi = X3 + ix,. and so on. The indefinite scalar 

product defined in 2.1 has the following expression in these coordinates: 
6 

< z,w >= -XIYl- X2Y2 + LXiYi· 
i=I 

Let us take the standard orthonormal basis {v,} ~=1 o f R 6 with 

< vb v1 >=< v2, v2 >:::;: -1 and < v,, v, >:::;: 1, i :::;: 3, ... , 6. Then p = 
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C1Jt + sv3, c = coshp, s = sinhp and it is easy to see that { v2 , V .f, v5 , v6 } is an 

orthonormal basis of Tp(.!Ílp) and that N = -sv1 - cv3 is a unitary normal 

vector field of Mp. 
As before, denote by '\1 the Riemannian connection of Q5 . Then we 

have: 

<V v, Vi, N >=<a( vi, Vi), N > i= 2,4, 5,6 

where a is the second fundamental form of the immersion Mp ---t R 6 . 

Therefore (compare with the formula for ÊI in 2.4): 

- 1 - 6 -
H= 4(- < a(vz,vz), N >+L< a(vi,vi), N >). 

i=i 

Now, since MP ---t R6 is a product immersion, we have a(v2 , v2 ) = - ~v1 
and a( Vi, vi) = - ~v3 , i = 4, 5, 6. Then: 

that is 
ii = ! (sinhp + 3c?shp) 

4 coshp sinhp 

and the mean curvature H of a geodesic sphere of radius p is 

H= coshp +! sinhp 
sinh p 3 cosh p · 

As it happens in Riemannian spaces with constant sectional curvature, 

the reflections on totally geodesic hypersurfaces of a semi-Riemannian space 

of constant sectional curvature are local isometries of the space. In the next 

result, necessary for proving Theorem 3.3, we characterize a class of these 

isometries w hich are globally defined on Q5 • 

Lemma 3.2. Let T be a complete totally geodesic hypersurface o f Q5 con­

taining the geodesic circle lzol2 = 1, z1 = z2 =O. Then the reftection on T 

is a globally defined isometry o f Q5 • The group generated by the reftections 
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obtained in this way together with the S1 subgroup act tranútively on the 
hypersurfaces Mp. 
Pro o f. 

For the first part of the Lemrna we have just to prove that the exponential 

map of Q5 gives a diffeomorphism between the normal buncUe of T and Q5 

itself, since the refiection r :Q5 - Q5 is locally given by r(expp(v)) = 
expp( - v), where p E T and v E Tp(T)-L. This is equivalent to prove that 

any geodesic of Q5 orthogonal to T has infinite lenght. 

We observe now, as it is not difficult to prove, that the totally geodesic 

hypersurfaces of Q6 are the intersections of hyperplanes of R 6 parallel at 

least to one of. the axis x1 or x2 with Q6 itself. From this, we can prove that 

any totally geodesic hypersurface of Q5 is a homogeneous submanifold of 

Q5 and that, if T1 and T2 are two totally geodesic hypersurfaces containing 

both axis x1 and xz then they are congruent. 

Therefore, we obtain a proof for the first part of the lemma once we 

prove it for some particular totally geodesic hypersurface containing the 

circle mentioned above, and for some particular geodesic orthogonal to this 

hypersurface. But this is very easy. Choose for instance the totally geodesic 

hypersurface T = { ( x1, ... , x6) I Xs = O} and as an orthogonal geodesic o f 

Q5 to T the geodesic "f given by "f(t) = (cosht, O,sinht, ... ,O). Clearly, 1 has 

infinite length, as required. 

For the second part of the lemma, we observe that the refiections on 

totally geodesic hypersurfaces of Q5 are the restriction of the refiections to 

hyperplanes of R 6
• Therefore, since the group generated by the refiections of 

R 6 on hyperplanes containing the two axis x1 and x2 contain as a subgroup 

the group U ( 2) (as defined in 2.1), combining this group with the 8 1 action 

we obtain the group U(l) x U(2) which acts transitively on MPl proving the 

lemma. ~ 
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Theorem 3.3 Let M be a compact, embedded hypersurface with constant 

mean curvature o f CH2
. Then M is a geodesic sphere. 

Proof. 

According to what we have already seen, M = 1T-1 (M) is a compact, 

embedded, S1-invariant hypersurface of Q5 with constant mean curvature. 

We claim that given any totally geodesic hypersurface T of Q5 which 

contains the axis x1 and x2 , there exists a totally geodesic hypersurface T' of 

Q5 which is parallel to T (that is, there exists a geodesic of Q5 orthogonal to 

both T and T') such that the reflection on T' leaves M invariant. Therefore, 

since M is compact, ali such totally geodesic hypersurfaces whose associated 

reflections leave M invariant must have a common point. Up to congruence, 

we may assume that this point lies on the circle C : lzol2 = 1, z1 = z2 = 

O. It follows that M is invariant by the refiection on any totally geodesic 

hypersurface of Q5 containing the axis x1 and x2. Since M is S1·invariant, 
- -

we conclude from the previous lemma that M coincides with some Mp. 
We prove our claim for a totally geodesic T as defined in the lemma 

above, the proof for another one being similar. Consider the family of totally 

geodesic hypersurfaces Tt of Q5 given by: 

Tt := {(x1, ... ,x6) E Q5 l Xs = t}. 

Clearly, this family foliates Q5 and since they are ali "parallel" to T = T0 , 

the reflections on these totally geodesic hypersurfaces are globally defined 

in Q5 • Since M is compact, there exists t large enough such that M n Tt = 
0. Therefore we can apply the same method introduced by Alexandrov to 

conclude that M is invariant by some Tt0 • Since this holds for any foliation 

which contains a totally geodesic hypersurface containing the circle C, it 

follows by compacity that ali those hypersurfaces whose refl.exion leaves M 
invariant have a common point which has to belong to C, and this proves 

the theorem. ~ 

4. The horospheres of CH2
• 
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Let 1 be a geodesic parametrized by are length in CH2
• Given t E R, 

denote by S1 the geodesic sphere of CH2 with center at 1(t) and with radius 

t. 

4.1 Definition. The hypersurface L of CH2 given by the Jimit of the 

geodesic spheres S1 when t goes to infiniy is called a horosphere of CH2 • 

In the next result we prove, in particular, that the horospheres are actu­

ally differentiable hypersurfaces of CH2
; a useful characterization of them 

in terms of their lift in Q5 is also given. We observe that, up to congruences, 

there exists only one horosphere. This follows by observing that since CH2 

is a two point homogeneous space, given two points p1 , p2 of CH 2 and given 

two geodesics / 1 , 12 through these points, there exists an isometry taking 

Pt into pz and /t into lz· 

Propsition 4.2. Up to a congruence, a horosphere L o f C~ is the projec­

tion, via 1f, o f the hypersurface L o f QfJ comisting o f all points ( z0 , ZIJ z2 ) E 

Q6 satisjying the equation: 

jz0 + zd = l. 

Proof. 

Let { St} be a family o f geodesic spheres converging to L as in the previous 

definition. Up to a congruence, we may assume that St is centered at 1r( 1( t)) 
where 1(t) = (cosht, O, sinht, O, O, 0). Therefore .§1 = 1f-1 (St) where S1 is 

given by: 

St: = {(cosh(-t)wo + sinh(-t)wt,sinh(-t)wo +cosh(- t)wt,Wz) I 
(wo,wl, wz) E Q5

, lwol2 = cosh2 t, lwd2 + lwzl2 = sinh2 t} 

To see this, observe that the set Rt of points (w0, w1, w2) of Q6 satisfying 

the equation: 
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is the lift of a geodesic sphere of CH2 with radius t centered at the point 

7T(/(O)). Observe also that St = 1/Jt(Rt), where 1/Jt is the isometry 

( 

cosh( -t) sinh( -t) O ) 
1/Jt := sinh( -t) cosh( - t) O . 

o o 1 

Since ifJ1 carries the point 1(t) over 1(0), we have St = 7T-1 (S1). 

By setting: 

zo = cosh( -t)wo + sinh( -t)w1 

and 

z1 = sinh( -t)w0 + cosh( -t)w1 

we obtain: 

Wo = zocosh( -t) - z1sinh( -t). 

Replacing this expression for w0 in the equation lwo 12 = cosh2 t we get: 

Dividing by cosh2 (t), taking the limit as t --+ oo and observing that 

limt-oo~~~ = 1 we obtain the desired equation. ~ 

Theorem 4.3. The horospheres of the complex hyperbolic space CH2 are 

hypersurfaces with con.stant mean curvature equal to 4/3 and are all stable. 

Furthermore, they are the o r bits o f the H eisenberg group {a 3-dimen.sional 

non commutat,·ve nilpotent Li e group} which acts by ,·sometries on CH2 

WJ.thout fixed points (therefore,the horospheres ,·nherit a natural Lie group 

structure}. In particular, the horospheres are {extn'nsically) homogeneous 

submanifolds o f CH2
• Any two horospheres are congruent. 

Proof. 
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We have already observed above that two horospheres are congruent. 

Let us prove that the mean curvature of a horosphere is 4/3. The computa­

t ions that follow will also be important for determining the stability of the 

horospheres. We remark that the mean curvature of a geodesic sphere of 

radius t in CH2 is sinht/(3cosh t) + cosht/sinht which converges to 4/3 as t 

goes to infinity. 

According to lemmas 4.2 and 2.4, we have just to prove that the mean 

curvature o{ the hypersurface L o{ Q6 given by jz0 + zd = 1 is 1. We 

introduce a function f : Q5 - R by setting f( zo, Zt, zz) = lzo + zd2
• 

Since L= f-1 (1}, the mean curvature H of L is given by (see (02] p. 

124}: 

Here, divQ& and gradQ& are the divergence and the gradient in Q5 • 

f can be considered as a function defined in R6 • In the real coordinates 

x1, ... , x6, it is given by: 

Therefore: 

(grad(f))R6 = ( -2(xl + xs), -2(xz + x.), 2(xl + xs), 2(xz + X4), O, O) 

since df(v) =< grad(f),v > implies (grad(f))Re = í:t=I fidf(el)ei if {e•}~=I 
is an orthonormal basis of R 6 • 

At a point z in Q5 consider the orthonormal basis { e1 , • •• , e4 , iz} of 

Tz(Q5). Then {e1> ... ,e4 ,iz,z} is an orthonormal basis of R 6 , and we have: 

4 

(grad(f))R6 =L df(ei)ei- df(iz)iz - df(z)z 
i=l 

that is 

(grad(f))R6 = (grad(f))Qs- df(z)z . 
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Therefore, 

(grad(f))Qa = 2( -1 + fx1, -h+ 2f, I+ fxs, h+ fx4, fxs,Jx6) 

w here, for simplicity, we denote I ( X1, x:J) = x1 + xs, h( xz, x4 ) = x2 + x,., and 

f(xl, Xz, Xs, x4) = (x1 + xs)2 + (x2 + X-t)2 = P(x1, x3 ) + h2(x2, x4). 

We have that < (grad(/))Qa, (grad(/))Q6 >= 4j2 and in the points of 

M we have j(grad(f) )Qal2 = 4. 

·- (grad(I))Qa _ (gradunça 
For a vector field X.- l(grad(f))g

6
l - 21 we recall that 

4 

divQ6(X) = L < Ve;X,e; >- < V;zX,iz > 
i=l 

4 

= L< 'le;X,ei >- < \lizX,iz > 
i=l 

where V and \! are the semi-Riemannian connection of Q6 and R 6 respec­

tively. X can be extended, in a natural way, to a vector field on R 6 , also 

denoted by X, and 

o r 

(a) divga(X) = divR~(X)+ < d(X)(z), z > . 
On the other hand, considering grad(f)ga as a map from R 6 to R 6 , its 

derivative d{grad(f)ga) is given by the matrix: 

2lx1 - 1 +f 2hx1 2lx1 -1 2hx1 o o 
2lx2 2hx2 -1 +f 2lx2 2hx2 -1 o o 

=2 
1 + 2/xs 2hxs 1 + 2/xs +f 2hxs o o 

2/x4 1 + 2hx4 2lx4 1 + 2hx,. +f o o 
2lx5 Zhx5 Zlx5 Zhx5 f o 
2lx6 2hx6 2lx6 2hx6 o f 
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so that 

(b) < d(grad(f))Q6(z) 1 z >= -4f and < dX(z) 1 z > IM= -4/2 = - 2. 

Moreover, 

(c) divRe(X) = 
I y( -1 + 2/xl +f -1 + 2hxz +f+ 1 + 2/xs +f+ 1 + 2hx,. +f+ 3!} 

+(-2/ + 2fxt)(- ) 2 ) + (-2h + 2fxz)(- ; 2 ) 

l h 
+(2/ + 2fx5 )(- fZ) + (2h + 2fx,.)(- Jz) = 6. 

From (a) 1 ( b) and (c) it follows that H = 1 as required. 

We will prove now that RiccQ6(N) + IIBW =O for the hypersurface Í 
of Q6

• From section 2.51 it will follows that the horospheres are stable. 

Observe that in this case N is the restriction of the foJlowing vector fieJd 

o f R 6, also denoted by N: 

N(xt 1 ••• , x6) = (xi -/, Xz- h, Xs + l, x,. + h,jx5,fx6). 

The matrix of dN in the standard basis {ei}r=1 of R 6 with < e1,e1 >= 
< e2, e2 >= -1 is given by: 

o o -1 o o o 
o o o -1 o o 

dN = I o 2 o o o 
o 1 o 2 o o 
o o o o 1 o 
o o o o o 1 

Set .8 = dN. Then É= Bit· We have 
6 

IIBIIh_e =- < B(et), B(er) > - < B(ez), ~(ez) > +L< B(ei), B(ec) >= 6. 
i=l 

17 



Since the nonn of B independs on the given orthononnal basis, we can 

choose an orthononnal basis o f Tx (L), for z E L and add to this basis the 

vectors z and N to obtaín an orthonormal basis of R6 • Therefore, we obtain: 

so that 

IIBW = 6 + 1-3 = 4. 

But RiccQ6(N) = -4 thus RiccQ6(N) + IIBW =O, as desired. 

Let us describe now the (full) subgroup of isometries of CH2 which leaves 

invariant a horosphere of CH2
. As before, we work just in Q5 , by taking 

the lift L of a horosphere of CH2
• Up to a congruence, we may assume that 

L is given by 

( *) lzo + zd = 1 

We will determine the Killing fields X of Q5 belonging to u(l, 2) such that 

X(z) E Tz(L), for any z E L. These Killing fields will constitute a Lie 

subalgebra of the Lie algebra u(l, 2) of the group U(l, 2) whose associated 

Li e group is the largest Li e subgroup o f U ( 1, 2) acting in L. 
We recall that u(l, 2) is given by: 

u(l,2) = {c: ~ n , a,p,ry ER, u,v,wE C}. 

F\rrthermore, if X E u(l, 2), then X determines a Killing vector field of 

Q5 by setting X(z) = X.z 1 where . denotes the usual product of matrices. 

Any Killing field of Q6 which is S1-invariant is projected, via 1T, in a Killing 

field on CH2 and ali Killing fields of CH2 are obtained this way. 

Observe that a vector field X= (Xo, xl' X2) of Q5 is a vector field of L 
iff it satisfies 

(Xo + Xl)(zo + zi) + (zo + zt)(Xo +XI)= O 
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for any ( zo, z1, Z2) E L; this equation is obtained simply by derivating the 

equation ( *) along a curve on L. 
Therefore, if 

X= ('f ~ 
then X is a Killing field on L iff 

(**) (u + u)(lzol2 + lzd2
) + zoz1(211 +i( a- ,8)) + zoz1(2u + i(,B - a)) 

+ (z2zo + z2zt)(w +v)+ (zoz2 + z2zt)(w +v)= O. 

Taking the point zo = 1, z1 = z2 =O, which is a point of L in (**), we 

obtain 11 + u = O, that is u = ix for some x E R. 

Now, any point of the type (z0 , z1 , O) of L satisfies the equation z0 z1 = 

-(z0 z1 + 2lzd2 ). Replacing z0 z1 given by this equality in(**), we obtain: 

Since we can take ( zo, z1; O) in L with lz1 j2 + zo z1 ;f O, we h ave 2x+ P -a = 
O. Then u = (1/2)i(a- {3). Finally, taking the points z0 = -3/2, z1 = 1/2, 

z2 = i and z0 = -3/2, z1 = 1/2, z2 = 1, which are points of L, in ( ** ), we 

obtain v + w = O. 

Summarizing ali these facts, we obtain that the set R of vectors of u(l, 2) 

whose associated Killing fields are vector fields of L is given by 

R= { ( -:~~P i:j~ ~r~-i:s ) , a, {3, /,r, sE R} 
r -1s r - •s q 

By construction, Ris aLie subalgebra of u(1, 2) which, as it is immediate 

to see, has dimension 5. The Lie subalgebra of the isotropy subgroup of the 

Li e group R associated to R, corresp onding to the point ( 1, O, O) o f M , is 

constituted by the vectors X in R such that X.(l, O, O) = O. This subalgebra 
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is generated, as it is easy to see, by the matrix of R having a = f3 = r = s = O 

and 1 = 1. Therefore, the orbit o f the point ( 1, O, O) under R h as dimension 

4. Since both this orbit and L are complete and connected, L with dimension 

4, they must coincide. 

Observe that the subspace 9 of R given by 1 = O is a Lie subalgebra of 

R and the associated Lie group, say G, acts transitively on Í without fixed 

points. This induces on Í a natural structure of a Lie group. 

As we have seen before, L := Í/ S1 is a horosphere of CH2 , and, by 

the previous construction, R acts on L since it contains S1 as a subgroup. 

Clearly, this action is transitive. Since S1 is in the center of R, and since the 

action of S 1 on L is trivial, R/ S 1 is a Lie group which still acts transitively 

on L. The Lie algebra of R/ SI is naturally identified with the Lie subalge­

bra of R such that a + f3 + 1 = O. As an intersectioon of two Lie algebras, 

the subspace 9 of R. given by 1 = O and a + f3 = O is a Lie subalgebra of 

R and, via the above identification, is a Lie subalgebra of the Lie algebra of 

R/ SI. The associated Lie group G of 9 is a 3-dimensional Lie group acting 

transitively on L and without fixed points, inducing therefore a structure of 

Lie group on the horosphere L. We claim that G is the Heisenberg's group. 

In fact, straightforward computations show that g is non commutative and 

that its derivative Lie subalgebra [9, 9] coincides with the center of 9, that 

is, 9 is a nilpotent 3-dimensional non commutative Lie algebra, that is, it 

is the Lie algebra of the Heisenberg group. ~ 

5. Equidistant hypersurfaces. 

As it is well known, the complex hyperbolic space CH2 is a complex 

manifold and the image of any complex line of the tangent space of CH2 

at any point under the exponential map is a totally geodesic submanifold. 

We observe that two totally geodesic complex hypersurfaces T1 and T2 of 

20 



CH2 coincide up to an isometry of CH2
• In fact: since CH2 is a homoge­

neous manifold, we can assume that they have a point of intersection, say 

p. Moreover, it is known that the isotropy group of the isometry group of 

CH2 at any point is the group U(2) which acts transitively on the complex 

!ines through the origen of the tangent space at the point. Hence, up to an 

isornetry we may assume that T1 and T2 have the same tangent plane at p. 

Since they are totally geodesic, they have to coincide. 

By definition, an equidistant hypersurface of CH2 is the boundary of 

a tubular neighborhood around a totally geodesic complex hypersurface of 

CH2
• 

We want to describe now the lift to Q6 of a equidistant hypersurface 

of CH2
• We need one lemma. We will say that a hypersurface P of a 

Riemannian manifold N is an equidistant hypersurface of a submanifold M 

of N if P is contained in the boundary of a tubular neighborhood of M in N. 

Lemma 5.1. Let N be a complete Riemannian manifold and let G be a 

Lie subgroup of the isometry group of N acting on N with cohomogeneity 

one. Assume that the orbits of G are properly embedded in N. Then, any 

principal orbit of G is an equidistant hypersurface of any orbit of G. 

Proof. 
Let P be a principal orbit o f G and O any orbit o f G. Chom~e p in P. 

Since O is properly embedded, there exists q E O such that 8 := d(p, O) = 

d{p, q) >O, where d denotes the Riemannian distance in N. Therefore, there 

exists v E Tq(O).l., llvll = s such that expqv = p, where 

expq : Tq(N) ---+ N is the usual exponential map of Riemannian geometry. 

Hence, given g E G, since g is an isometry, we have g(expqv) = exp9(q)g.(v) 

with g.(v) E T9 (p)(O).l., llg.(v)ll = 8. This proves that P = G(p) is con­

tained in a tubular neighbourhood o f radius s o( O, proving the lemma. 

We can prove now the following proposition. 
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Proposition 5.2. Given c ~ O, let Pc be the hypersurface of Q5 defined 

as the set of ali poÚlts (z0 , z1, zz) in Q5 such that lz2 j2 = c2 (therefore, 

- lzol2 + lzd2 = -(l+c2)). ThenT := n(i>o) ú a totally geodesic surface of 

CH2 lsometrlc to the 2-ds"menslonal hyperbolic space, and any Pc := 1r(Fc) 

ls the bov.ndary o/ a tv.bv.lar neighbourhood of radiv.s sinh-1 (c) o/T. 

Proof. 

Straightforward computations show that T is a totally geodesic surface 

in CH2 isometric to the 2-dimensional hyperbolic space. 

We observe that the hypersurfaces Pc, c > O, are principal orbits and T 

a singular orbit of the action on C H 2 (via 1r) of the subgroup U(1, 1) x U(1) 

o f U ( 1, 2) consisting of the matrices o f the form 

where B E U(l, 1) and 8 E [0, 21r], so that we can apply the previous lemma 

to conclude that the hypersurfaces Pc are equidistant hypersurfaces around 

T. 
Finally, observe that the geodesic 7T o 'Y : R --+ CH2 where 'Y(t) = 

(cosh( t), O, O, O,sinh(t), O) is orthogonal to T at t =O, is parametrized by are 

lenght, and satisfies 1( t) E Psinh~(t), concluding the proof of the proposi­

tion. ~ 

Theorem 5.3. An equidistant hypersurface Pc in CH2 is a homogeneous 

hypersurface ws"t!L constant mean curvature (1 + 4c2)/3c~. It s"s stable 

sf c ~ /2/2 and unstable otherwise. Two equidistant hypersurfaces are con­

grv.ent iff they have the same mean curvature. 

Proof. 
It follows from the above that the equidistant hypersurfaces are homo­

geneous hypersurfaces of C~. Let us compute now their rnean curvature. 
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lt is sufficient to compute the mean curvature of the lift Fc at a particular 

point p. We choose p = ( .jf+C2, O, O, O, c, 0). We have 

where { vi}~=1 is the standard orthonormal basis of R 6 with < v1 , v1 >= 

< v2,v2 >= -1 and < vi,vi >= 1, i= 3,4,5,6. The set {v2 ,v3 ,v .. ,v6 } is 

an orthonormal basis of Tp(Fc), and it is not diffi.cult to prove that N := 

-cv1 - Jf+C2v5 is unitary and normal to Fc in Q5 . 

As in the case of the geodesic spheres (see §3), we have 

Íip·= l (t((i < ci(vi, vi), N > )+ < ci(v6 , v6), N >) 
1::2 

where ci is the second fundamental form of Pc in R 6
• From the definition of 

Fc, it follows that 

and 

so that 
~ 1 1 + 4c2 

Hp = 4(c.jf+C2) 

hence, the mean curvature of Pc is 

as required. 

We study now the stability of the Pc. To do that, we first compute the 

value of RiccN + IIBII2 of the hypersurface Pc of Q6
• 

We have that the Ricci curvature of Q5(with respect to any direction) 

is constant with value -4 (see [02J p. 88). Since Pc is a homogeneous 
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submanifold of Q5 , IIBII is constant so that it is enough to compute its 
value at the point p fixed above. 

Using the computations above and the ones of section §2.5, we obtain 

IIBW = ~ + 1 + cz 
1 + c2 c2 

and 
• - - 2 1- 2c2 

RtcCQa(N) + IIBII = cZ(l + cZ) 

Thus, c2 ~ t implies that RiccQa(N) + IIBUZ s O and from 2.5 it follows 

that Pc is stable in this case. 

Let us assume c2 < ~- To prove that Pc is unstable it suffices to ex.hibit 

a piecewise smooth function f defined in a relatively compact domain D of 

Pc satisfying the following conditions: 

f is S1-invariant, that is, f( ei11 z) = f( z) 

and 

J"(O)(f) = kllgradfl2
- (RiCCQs(N) + IIBW)JZJdFc <O. 

To compute this integral, we use the following local coordinates of Pc: 

r: (cx,/3,/,t)---+ (eiO'Acosh(t/A),eiPAsinh(t/A),eh'c) 

w here A = .JI+C2, ex, {3 and 1 vary in the interval (O, 2rr), and t E R. In 

these coord.inates, the volume element of Pc is 

dPc = c(I + c2)cosh(t/A)jsinh(t/A)jdt 1\ dcx 1\ dP 1\ di. 

For a fixed real number a, set 

Da:= {r(cx,/3,1,t) I tE (-a,a)}. 

Cleary, Da is a relatively compact domain in Pc. 
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Now, for a fixed b E (0, a), consider the piecewise smooth real function 

f defined in [-a, a] by: 

{ 

-t-a b if -a < t < -b 
f(t)= / -b if-b~t~b 

~tj:6a b if b ~ t ~ a 

f determines a piecewise smooth function j on Da by setting 

](r(a,p,,,t)) := f(t). 

1t follows that ]I& Da = O since f( a) = f( -a) and that 

/Da ]dPc = (c2(1 + c2) L~:.r-o dadPd1] J:a f(t)cosh(t/A)jsinh(t/A)Idt =O 

the last integral being zero since f is an odd function. 

N ow, we will calcula te J" (O)(]). In these coordinates, it is easy to prove 

that 

lgradjf = f'(t)2. 

For simplicity, set 

G .- c2 (1 + c2 ) rz'/( dadPd1 
}a,~,r-0 

= 8c2 (1 + c2)7i3 

and 
. - - 1- 2c2 

I:= Riccq6(N) + IIBUZ = cZ(I + cz). 

We observe that I> O since by hypothesis c2 < ~· Then: 

J"(O)(j} =!Da (lgrad(])l2- I f) dPc 

= G (J:a f'(t) 2cosh(t/A)Isinh(t/A)Idt- I 1-: /(t)2 cosh(t/A)Isinh(t/A)!dt) 

Since f' and j2 are even functions, we have 

(1) /_
4

4 

f'(t)2 cosh(t/A)Isinh(t/A)Idt = 2 hb cosh(t/A)sinh(t/A)dt+ 
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2b2 rb 
+(a _ b)2 }a cosh(t/A)sinh(t/A)dt 

and 

111 [b t t 
(2) I - a f(t) 2 cosh(t/A)Isinh(t/A)Idt = 2[ }o t

2cosh(A)sinh(A)dt+ 

2b2 rb 
+(a_ b)2 }a (a- t)2cosh(t/A)sinh(/tA)dt. 

We will prove that it is possible to choose a and b such that (2)- (1) >O, 
that is, J"(O)(j) <O. 

We have 

· (2)- (1) = 2 !ob (It2- 1)cosh(t/A)sinh(t/A)dt 

2b2 1b 
+(a_ b)Z a (J(a- t)2

- 1)cosh(t/A)sinh(t/A)dt 

= 2hb(It2 -1)cosh(t/A)sính(t/A)dt 

2b2 t-->t + (a_ b)2 }b (I(a- t)2
- 1)cosh(t/A)sinh(t/A)dt 

2b2 r 
+(a_ b)2 }a-~ (I(a- tY- l)cosh(t/A)sinh(t/A)dt. 

We observe that It2 - 1 > O if t > -jr so that it is possible to choose b 

with b <a such that 

hb(It2 - l)cosh(t/A)sinh(t/A)dt >O. 

By another hand, a - ~ is a root of the polinomial p(t) := I( a- t)2 -1, 

and p(t) ~ O for O ~ t ~ -jr. Then, the second term of the last equality 

above is positive for ali b such that O < b < a- -jr. Since -1 ~ p( t) ~ O for 

a - -jr ~ t ~ a we have 

fb (I(a- t)2 -l)cosh(t/A)sinh(t/A)dt ~ r -cosh(t/A)sinh(t/A)dt 
}a--jr }a--jr 
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= - ~ ( sinh 2 (a I A) - sinh 2 
( ( 1 I A) (a - ( 1 I JI))) . 

This last term is negative but tends to zero when a increases. This means 

that fixing b with b < a such that 

hb(If - l)cosh(tiA)sinh(t/A)dt >O 

it is possible to choose a satisfying b < a - -jr with 

{
71 

-cosh { t/ A)sinh( t/ A)dtl 

small enough in such a way that (2)- (1) is positive. ~ 
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