
A Sharing-Aware Memory Management Unit for
Online Mapping in Multi-Core Architectures

Eduardo H. M. Cruz1, Matthias Diener1, Laércio L. Pilla2,
Philippe O. A. Navaux1

1 Informatics Institute, Federal University of Rio Grande do Sul (UFRGS), Brazil
{ehmcruz,mdiener,navaux}@inf.ufrgs.br
2 Department of Informatics and Statistics,

Federal University of Santa Catarina (UFSC), Brazil laercio.pilla@ufsc.br

Abstract. In modern shared-memory architectures, it is important to
map threads and data in a way that increases the locality of their memory
accesses, thereby improving performance and energy efficiency. Threads
that access shared data should be mapped close to each other in the
memory hierarchy, while the data they access should be mapped to their
NUMA node, which is called sharing-aware mapping. In this paper, we
propose SAMMU, which adds sharing-awareness to the memory man-
agement unit in current architectures. SAMMU analyzes the memory
access behavior in hardware and provides information to the operating
system so it can perform an online mapping of threads and data. In the
evaluation with a wide range of parallel applications, performance was
improved by up to 35.7% (13.1% on average).

1 Introduction

As parallel applications need to access shared data, the memory hierarchy
presents challenges for mapping threads to cores, and data to NUMA nodes [24].
Threads that access a large amount of shared data should be mapped to cores
that are close to each other in the memory hierarchy, while data should be
mapped to the same NUMA node that the threads that access it are execut-
ing on [22]. In this way, the locality of the memory accesses is improved, which
leads to an increase of performance and energy efficiency. This type of thread
and data mapping is called sharing-aware mapping. For optimal performance
improvements, data and thread mapping should be performed together [23]. For
the thread mapping, knowledge about how data is shared between the threads
is necessary. Data mapping additionally requires information about the memory
pages that are accessed by each thread.

Sharing-aware thread and data mapping improve performance and energy
efficiency of parallel applications by optimizing memory accesses [11]. Improve-
ments happen for three main reasons. First, cache misses are reduced by decreas-
ing the number of invalidations that happen when write operations are performed
on shared data [19]. For read operations, the effective cache size is increased by
reducing the replication of cache lines on multiple caches [6]. Second, the locality



of memory accesses is increased by mapping data to the NUMA node where it is
most accessed. Third, the usage of interconnections in the system is improved by
reducing the traffic on slow and power-hungry interchip interconnections, using
more efficient intrachip interconnections instead.

In this paper, we propose a Sharing-Aware Memory Management
Unit (SAMMU), which uses the virtual memory implementation to detect the
memory access pattern during the execution of a parallel application. SAMMU
modifies the memory management unit to analyze the memory access behavior,
which is used to perform online thread and data mapping. To the best of our
knowledge, SAMMU is the first mechanism that detects the memory access pat-
tern for thread and data mapping completely on the hardware level, considering
many more memory accesses than related work to achieve a higher accuracy.
It requires no changes to the application or its runtime system, and needs no
previous information about application behavior.

2 Related Work

Traditional data mapping strategies, such as first-touch and next-touch [15],
have been used by operating systems to allocate memory on NUMA machines.
In the case of first-touch, pages are not migrated during execution. Next-touch
can lead to excessive data migrations if the same page is accessed from different
nodes. The NUMA Balancing policy [7] was included in more recent versions of
Linux. In this policy, the kernel introduces page faults during the execution of
the application to perform lazy page migrations, reducing the number of remote
memory accesses. However, it does not detect sharing patterns between threads.

Marathe et al. [18] present an automatic page placement scheme for NUMA
platforms by tracking memory addresses from the performance monitoring unit
(PMU) of Itanium. Their work requires the generation of memory traces to
guide data mapping for future executions of the applications, which may lead to
a high overhead [3]. A similar technique is used in Marathe and Mueller [17] to
perform data mapping dynamically. They enable the profiling mechanism just
during the beginning of each application due to the high overhead, losing the
opportunity to handle changes in rest of the execution. Data mapping alone is
not able to improve locality when more than one thread accesses the same pages,
since threads may be mapped to cores of different NUMA nodes.

Azimi et al. [1] map threads based on information from the hardware coun-
ters of Power5 processors that sample the memory addresses resolved by remote
caches. Accesses resolved by local caches are not considered, generating an in-
complete sharing pattern. Cruz et al. [9] detect the pattern by monitoring the
invalidation messages of cache coherence protocols. Only thread mapping was
performed, which does not improve the locality of memory accesses in NUMA
architectures.

The kMAF affinity framework is proposed in [11]. It performs both thread
and data mapping and gather information from page faults. Carrefour [10] is
a similar mechanism that uses sampling to detect page usage. Due to its over-



head, the authors restrict the mechanism to 30,000 pages, which limits its use
to applications with a low memory usage. These mechanisms generate mapping
information based on a very small number of samples compared to SAMMU, as
all memory accesses are handled by the MMU. Some techniques such as Forest-
GOMP [4] require annotations in the source code and depend on specific paral-
lelization libraries. Similarly, Ogasawara [20] proposes a data mapping method
that is limited to object oriented languages.

The usage of the instructions per cycle (IPC) metric to guide thread mapping
is evaluated in Autopin [14]. Autopin itself does not detect the sharing pattern,
it only verifies the IPC of several mappings fed to it and executes the applica-
tion with the thread mapping that presented the highest IPC. The BlackBox
scheduler [21], similar to Autopin, selects the best mapping by measuring the
performance that each mapping obtained. When the number of threads is low,
all possible thread mappings are evaluated. When the number of threads makes
it unfeasible to evaluate all possibilities, the authors execute the application
with 1000 random mappings to select the best one. These mechanisms that rely
on statistics from hardware counters take too much time to converge to an opti-
mal mapping, since they need to first check the statistics of the mappings. The
convergence is usually not possible because the number of possible mappings is
exponential in the number of threads. Also, these statistics do not accurately
represent sharing and data access patterns.

3 SAMMU: A Sharing-Aware Memory Management Unit

Computer systems that support virtual memory use a memory management
unit (MMU) to translate virtual to physical addresses. To perform the transla-
tion, the operating system stores page tables in the main memory, which con-
tain the physical address and metadata of each memory page. A special cache
memory, the Translation Lookaside Buffer (TLB), is used to speed up the ad-
dress translation. A high-level overview of the operation of the MMU, TLB and
SAMMU is illustrated in Fig. 1. On every memory access, the MMU checks if
the page has a valid entry in the TLB. If it does, the virtual address is translated
to a physical address and the memory access is performed. If the entry is not
in the TLB, the MMU performs a page table walk and caches the entry in the
TLB before proceeding with the address translation and memory access.

The operation of the MMU is extended in two ways, both happening in par-
allel to the normal operation of the MMU without stalling application execution:
1. SAMMU counts the number of times that each TLB entry is accessed from
the local core. This enables the collection of information about the pages ac-
cessed by each thread. We store these saturating access counters (AC), one per
TLB entry, in a table that we call TLB access table, which is stored in the MMU.
2. On every TLB eviction or when an access counter saturates, SAMMU an-
alyzes statistics about the page and stores them in the main memory in two
separate structures. The first structure is the sharing matrix (SM), which esti-
mates the amount of sharing between the threads. The second structure is the



Application
accesses
memory

Valid entry
in TLB?

Perform address translation

Evict old entry from TLB

Fetch new TLB entry by
walking page table

Continue
execution

A

AC ≥ AT?
B

Update memory access
count (AC) in TLB Access
Table

No

TLB miss

Yes TLB hit

AC saturates?
Update AT using Eq. 1, the SV
and SM for thread mapping,
and NC for data mapping

D

Update
AT using
Eq. 2

C

Notify the operating
system if a migra-
tion is necessary

E

Yes

No

Do not
update

Yes

A

No

MMU

SAMMU

Fig. 1: Overview of the MMU and SAMMU.

page history table, which contains one entry per physical page in the system
with information about the threads and NUMA nodes that accessed them, and
is indexed by the physical page address. Each entry of the page history table
has three fields: (1) access threshold (AT), which defines the minimum number
of memory accesses required to modify the statistics; (2) sharers vector (SV),
which contains the ID of the last threads that accessed the page; (3) NUMA
counters (NC), which estimate the number of accesses from each NUMA node.

3.1 Gathering Information about Memory Accesses

SAMMU gathers memory access information by counting the number of memory
accesses to each page in the TLB of each core. We count the number of accesses
to the TLB entry of a page by adding a saturating access counter (AC) to the
TLB access table. When AC saturates or a TLB entry gets evicted, SAMMU
collects the information and updates the page history table entry of the page.
To filter out threads that perform only few accesses to a page, we use an access
threshold (AT ) in the page history table. AT specifies the minimum number of
memory accesses required to update the mapping-related information for a page.
A number of memory accesses smaller than AT means that a thread does not use
a page enough to influence its mapping. SAMMU updates the mapping-related
statistics of a page only when its AC saturates or if the page is evicted from
a TLB and the number of memory accesses registered in the AC of this TLB
entry is greater than or equal to the AT of the page (Fig. 1- B , D ).

A detailed example of the operation of SAMMU can be found in Fig. 1.
The initial value of AT is 0. Access thresholds are kept per page because the
number of memory accesses can vary from page to page. SAMMU automatically
adjusts the access threshold of a given page, separating this procedure into two
cases (Fig. 1- B ):



Case 1 (AC saturates or AC ≥ AT ): When AC saturates or, during a TLB
eviction, AC is greater than or equal to its access threshold (AT ) (Fig. 1- B , D ),
we need to increase AT to reduce the influence of threads that perform few
accesses to the page. Therefore, AT is updated with the average value of AC
and AT , as illustrated in Eq. 1. Also, the mapping statistics are updated, as
explained in Sections 3.2 and 3.3. It is important to note that, since we use the
same number of bits to store AC and AT , when AC saturates, it will be greater
than or equal to AT .

ATnew ←
AT + AC

2
, AC ≥ AT (1)

Case 2 (AC < AT ): In the second case, when the number of memory ac-
cesses registered by AC during a TLB eviction is lower than the access threshold
(Fig. 1- B , C ), we update AT in such a way that NUMA nodes with a small num-
ber of accesses to the page have a lower influence on the threshold. For that, we
use Eq. 2, which guarantees that AT will never be decreased by more than 25%
at each update. In this case, mapping statistics are not updated.

ATnew ← AT − AT −AC
AT/AC

, AC < AT (2)

3.2 Detecting the Sharing Pattern for Thread Mapping

To detect the sharing pattern, SAMMU identifies the last threads that accessed a
memory page. To obtain that information, SAMMU adds a small sharers vector
(SV ) to each page history table entry. Each SV stores the IDs of the last threads
to access its page. This has the advantage of maintaining temporal locality when
detecting which threads share each page. Old entries will be overwritten and
not considered as sharers. SAMMU also keeps a sharing matrix (SM) in main
memory for each parallel application to estimate the number of accesses to pages
that are shared between each pair of threads. In the TLB access table, SAMMU
stores the ID of the thread that accessed each TLB entry. Control registers
containing the memory address and dimensions of the sharing matrix, and the
ID of the thread being executed must be added to the architecture and updated
by the operating system.

When SAMMU is triggered for a certain page by thread T (Fig. 1- A ), it
accesses the SV of the corresponding page history table entry. If the access
counter is greater than or equal to the access threshold (Fig. 1- B ), SAMMU
then increments the sharing matrix in row T , for all the columns that correspond
to an entry in the SV (Fig. 1- D ): SM [T ][SV [i]]← SM [T ][SV [i]] + 1.

Each line of SM is accessed by its corresponding thread only, minimizing the
impact of coherence protocols. Finally, SAMMU inserts thread T into the SV of
the evicted page by shifting its elements, such that the oldest entry is removed.

3.3 Detecting the Page Usage Pattern for Data Mapping

To identify where a memory page should be mapped, SAMMU requires the
addition of a vector to each page history table entry. The vector, which we call



Table 1: Configuration of the experiments.

System Parameter Value

SAMMU Structure sizes AC, AT : 32 bits, SV : 2x 8 bits, NC: 4x 4 bits
Sharing matrix 256 threads, 4 Byte element size
Control registers Support up to 256 threads, Vadd = 2, NT = 10

Pin L1 TLB 64 entries, 4-way, shared between 2 SMT-cores
L2 TLB 512 entries, 4-way, shared between 2 SMT-cores

Xeon Processors 4x Xeon X7550 (Nehalem), 8 cores, 2-SMT
Caches/proc. 8x 32 KByte L1, 8x 256 KByte L2, 18 MByte L3
Main memory 128 GByte DDR3-1333, 4 KByte page size

NUMA counters (NC), has N elements for a system with N NUMA nodes. NC
employs saturating counters to count a relative number of accesses from different
NUMA nodes. The initial value of each NC is 0.

When a TLB entry from a core in NUMA node n is selected for eviction or
its AC reaches its maximum value (Fig. 1- A ), SAMMU reads the corresponding
page history table entry. If the number of memory accesses stored in AC is
greater than or equal to the threshold AT (Fig. 1- B ), SAMMU increments the
NUMA counter of node n, and decrements all other NUMA counters (Fig. 1- D ).
Since the NUMA counters are saturated, they do not overflow nor underflow.

After updating the values of NC, SAMMU checks if the corresponding
page is stored in NUMA node n. If the page is currently mapped to another
NUMA node m, SAMMU evaluates if the difference between the NUMA coun-
ters of n and m is greater than or equal to a global value NUMA threshold (NT )
(Fig. 1- E ): NC[n]−NC[m] ≥ NT . If that is the case, SAMMU notifies the op-
erating system of the page and its destination node n. The NUMA threshold
may be configured by a control register. The operating system then chooses how
it will handle the migration of the page. The higher the NUMA threshold NT ,
the lower the number of page migrations.

4 Experiments and Results

In this section, we present the experiments we performed with SAMMU. We
describe the methodology and then evaluate the performance and overhead.

4.1 Methodology

The parameters of our experiments are summarized in Table 1. The experiments
were performed using a real machine. The machine consists of 4 NUMA nodes
with one 8-core, 2-SMT Intel Xeon X7550 processor per node, with a total of
64 virtual cores. It is running version 3.8 of the Linux kernel. Information about
the hardware topology is gathered using Hwloc [5]. To generate the thread map-
pings, we used the EagerMap [8] mapping algorithm, which receives the sharing
matrix and a graph representing the memory hierarchy (from Hwloc) as input,
and it outputs which core will execute each thread.



As workloads, we used the OpenMP implementation of the NAS parallel
benchmarks (NPB) [13], v3.3.1. All experiments were executed 30 times. We
show average values as well as a 95% confidence interval calculated with Stu-
dent’s t-distribution. Results are normalized to the operating system original
mapping. We configured the benchmarks to run with one thread per virtual
core. Input sizes were chosen to provide similar total execution times and feasi-
ble simulation time. Benchmarks BT, LU, SP and UA were executed using input
size A. Benchmarks CG, EP, FT, IS and MG were executed using input size B.

Since SAMMU is an extension to the current MMU hardware, we simulate its
behavior with the Pin [2] dynamic binary instrumentation tool. The simulated
hardware uses the same TLB configuration as the real machines. We used Pin
because it is faster than a full system simulator. To make it possible to evaluate
SAMMU in real machines, the mapping information generated in Pin is fed into
the mapping mechanism in runtime. This is possible because the access pattern
of the applications we evaluated and their memory addresses remain the same
across different executions, since their memory is statically allocated. Besides
performance, we measured L3 cache misses per thousand instructions (MPKI)
and QPI interchip interconnection traffic using the Intel PCM tool [12].

4.2 Performance Results

The sharing patterns of a subset of our workloads are illustrated in Fig. 2. The
results of execution time can be found in Fig. 3, L3 cache misses per thousand
instructions (MPKI) in Fig. 4a, and interchip traffic in Fig. 4b. Lower values are
better. In these figures, we also show the average improvements, calculated using
the geometric mean function. In this section, we focus on the SAMMU results.
The next section presents a comparison to other mapping techniques that are
shown in the figures.

In applications whose pages are shared within a small subgroup of threads,
mapping presents a high potential for performance improvement. For instance, in
SP, most sharing happens between neighboring threads, which is very common in
parallel applications that use domain decomposition. In LU and MG, the sharing

(a) CG. (b) LU. (c) MG. (d) SP.

Fig. 2: Sharing patterns of some applications. Axes represent thread IDs. Cells
show the number of accesses to shared pages for each pair of threads. Darker
cells indicate more accesses.



BT CG EP FT IS LU MG SP UA Avg.
−40%
−30%
−20%
−10%

0%
10%
20%
30%
40%
50%
60%

Random Oracle SAMMU Marathe

Autopin kMAF Numa Balancing

Fig. 3: Execution time normalized to the operating system.

Random Oracle SAMMU

BT CG EP FT IS LU MG SP UAAvg.

−60%

−40%

−20%

0%

20%

(a) L3 cache MPKI.

BT CG EP FT IS LU MG SP UAAvg.
−75%

−50%

−25%

0%

25%

50%

75%

(b) Interchip interconnection traffic.

Fig. 4: Performance results, normalized to the operating system.

between more distant threads is more evident than in the other applications. The
threads of these applications are able to benefit from the shared cache memories
and faster interconnection when mapped nearby in the memory hierarchy, as well
as accessing shared pages from their local NUMA node. In general, the effect
is a reduction of cache misses and interchip traffic, observed in LU and SP. SP
presented the highest improvements, with an execution time reduction of 35.7%.

To illustrate how thread mapping also affects data mapping, consider MG.
MG’s sharing pattern indicates that it has a high potential for thread map-
ping. However, the reduction of interchip traffic is higher than the reduction of
cache misses. The reason is that the better fitting thread mapping results in a
placement of threads that share data on the same NUMA node, thus reducing
interchip traffic. Cache misses were not reduced to the same degree. Therefore,
although MG shows a high potential for thread mapping, we are able to observe
this by looking at interchip traffic, not at cache misses.

Some applications do not present a sharing pattern suitable for thread map-
ping. One example of this type of application is CG. The sharing pattern of CG
is illustrated in Fig. 2a, where we can observe that each pair of threads has a
similar amount of sharing. Therefore, no thread mapping is able to improve the



usage of cache memories. This is the reason that SAMMU does not decrease the
number of cache misses in CG. However, due to the data mapping, SAMMU
improved the memory access locality in CG such that the amount of interchip
traffic was decreased by 44.9%, leading to a performance improvement of 9.0%.

In some applications, no performance improvements are expected, either by
thread or data mapping. For instance, EP is a CPU-bound application [13] with
almost no data sharing among its threads. Due to this, there is no thread map-
ping that is able to optimize the memory accesses. Regarding data mapping,
since it is a CPU bound application, the memory accesses have very little influ-
ence in the performance of EP.

The number of cache misses and the traffic in the interconnections were re-
duced by SAMMU significantly. L3 MPKI was reduced by an average of 30.6%.
Interchip traffic was reduced by an average of 39.0%. The execution time was
reduced by an average of 13.1%. This smaller reduction happens because a bet-
ter mapping directly influences the number of cache misses and traffic on the
interconnections, while the execution time is influenced by several other factors.

Most applications are more sensitive to data mapping than thread mapping,
which can be observed in the results by the fact that the interchip traffic pre-
sented a higher reduction than cache misses. This happens because, even if an
application does not share much data among its threads, each thread will still
need to access its own private data, which can only be improved by data map-
ping. It is important to note that this does not mean that data mapping is more
important than thread mapping, because the effectiveness of data mapping de-
pends on thread mapping, in case of pages shared by several threads.

4.3 Comparison to Related Work

We compare SAMMU to the following techniques: Random and Oracle map-
pings, the Marathe [17] data mapping mechanism, Autopin [14], the kMAF
affinity framework [11] and NUMA Balancing [7]. For the random mapping,
we randomly generated a thread and data mapping for each execution. For the
Oracle mapping, we generated traces of all memory accesses for each application
and performed an analysis of the sharing and page usage patterns, similar to [3].
Autopin was executed with 5 mappings: the Oracle mapping and 4 random map-
pings. We implemented Marathe using a long latency load profile [17] in Pin and
fed the information during the execution of the application.

Execution time results of the related work are also shown in Fig. 3. In CG,
Marathe presented slightly better results than SAMMU. This happens because,
as previously explained, CG is only affected by data mapping, such that SAMMU
introduces thread migrations during execution that increase the overhead. Un-
necessary thread migrations could be avoided if our mapping algorithm presented
features to allow migrations only if the detected sharing pattern has high poten-
tial for mapping.

Autopin, in several executions, selected a mapping different from the Ora-
cle, which shows that indirect metrics are not accurate. Also, its performance



improvement is lower than ours because it needs to evaluate several other map-
pings. The results of kMAF are lower than SAMMU for most of the benchmarks.
Due to its sampling mechanism, kMAF needs more time to detect the memory
access behavior, losing opportunities for improvements. The only application in
which NUMA Balancing performed well was SP.

The comparison to the related work shows that mechanisms that perform
both thread and data mapping are able to achieve better improvements than
mechanisms that perform these mapping separately. It also shows that mecha-
nisms that have access to more accurate information about the memory accesses
can provide better performance improvements. SAMMU presented results sim-
ilar to the Oracle mapping, demonstrating its effectiveness. In most cases, it
performed significantly better than the random mapping. This shows that the
gains compared to the operating system are not due to the unnecessary migra-
tions introduced by the operating system, but due to a more efficient usage of
resources.

4.4 Overhead of SAMMU

SAMMU causes an overhead on the execution of the parallel application on the
hardware and software levels. In the hardware level, the additional hardware of
SAMMU is not in the critical path, since it operates in parallel to the MMU, such
that application execution is not stalled while SAMMU is operating. Therefore,
the time overhead introduced by SAMMU consists of the additional memory
accesses to update its structures stored in the main memory. To calculate this
overhead, we measured the average memory access latency in the Simics full
system simulator [16], and multiplied it by the number of additional memory
accesses introduced by SAMMU. On the software level, the operating system
introduces overhead when calculating the thread mapping, and when migrating
threads and pages.

The performance overhead caused by the hardware was 0.41%, due to the in-
troduction of 1.43% additional memory transactions, on average. The overhead
in the software level was 0.29%, on average. These results show that SAMMU
has only a small performance overhead. Regarding storage overhead, each entry
of the page history table would require 8 Bytes, with a total space overhead
of 0.2% relative to the total main memory. The sharing matrix would require
256 KByte, each of its elements with 4 Bytes. We estimate the additional hard-
ware required by SAMMU by counting the amount of transistors required in
the implementation. SAMMU would require 143, 000 transistors per core, which
results in an increase in transistors of less than 0.05% in a modern processor.

5 Conclusions and Future Work

In this paper, we presented SAMMU, an extension of the memory management
unit to improve locality of memory accesses. SAMMU analyzes the memory
accesses of multithreaded applications during execution, such that the operating



system can perform a sharing-aware online mapping of threads to cores and
data to NUMA nodes. In contrast to previous proposals, it detects the memory
access pattern completely in hardware, considering most memory accesses and
achieving a higher accuracy. It is independent of the application and its runtime
system, and requires no source code modification or previous information about
the behavior of the application.

Experiments with the NAS OpenMP benchmarks showed performance im-
provements of up to 35.7% (13.1% on average). L3 cache MPKI and interchip
interconnection traffic were reduced by an average of 30.6% and 39.0%, respec-
tively. Compared to previous work, SAMMU presented the best performance
improvements for most applications.

For the future, we will evaluate SAMMU using parallel applications with
several processes that do not necessarily share the same virtual address space,
as well as running multiple applications simultaneously.

Acknowledgment

This research received funding from the EU H2020 Programme and from
MCTI/RNP-Brazil under the HPC4E project, grant agreement n.o 689772. This
work was also supported by the STIC-AmSud/CAPES scientific cooperation
program under the EnergySFE research project grant 99999.007556/2015-02.
Additional funding was provided by CNPq and Capes.

References

1. Azimi, R., Tam, D.K., Soares, L., Stumm, M.: Enhancing Operating System Sup-
port for Multicore Processors by Using Hardware Performance Monitoring. ACM
SIGOPS Operating Systems Review 43(2), 56–65 (Apr 2009)

2. Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.K., Lyons, G., Patil, H., Tal, A.: Analyzing Parallel Programs
with Pin. IEEE Computer 43(3) (2010)

3. Barrow-Williams, N., Fensch, C., Moore, S.: A Communication Characterisation
of Splash-2 and Parsec. In: IEEE International Symposium on Workload Charac-
terization (IISWC) (2009)

4. Broquedis, F., Aumage, O., Goglin, B., Thibault, S., Wacrenier, P.A., Namyst, R.:
Structuring the execution of OpenMP applications for multicore architectures. In:
IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2010)

5. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: A Generic Framework for Managing Hardware
Affinities in HPC Applications. In: Euromicro Conference on Parallel, Distributed
and Network-based Processing. pp. 180–186 (2010)

6. Chishti, Z., Powell, M.D., Vijaykumar, T.N.: Optimizing Replication, Communica-
tion, and Capacity Allocation in CMPs. ACM SIGARCH Computer Architecture
News 33(2) (2005)

7. Corbet, J.: Toward better NUMA scheduling (2012), http://lwn.net/Articles/
486858/

http://lwn.net/Articles/486858/
http://lwn.net/Articles/486858/


8. Cruz, E.H.M., Diener, M., Pilla, L.L., Navaux, P.O.A.: An Efficient Algorithm for
Communication-Based Task Mapping. In: International Conference on Parallel,
Distributed, and Network-Based Processing (PDP). pp. 207–214 (2015)

9. Cruz, E.H.M., Diener, M., Alves, M.A.Z., Navaux, P.O.A.: Dynamic thread map-
ping of shared memory applications by exploiting cache coherence protocols. Jour-
nal of Parallel and Distributed Computing 74(3), 2215–2228 (Mar 2014)

10. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., Quema,
V., Roth, M.: Traffic Management: A Holistic Approach to Memory Placement
on NUMA Systems. In: Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2013)

11. Diener, M., Cruz, E.H.M., Navaux, P.O.A., Busse, A., Heiß, H.U.: kMAF: Au-
tomatic Kernel-Level Management of Thread and Data Affinity. In: Interntional
Conference on Parallel Architectures and Compilation Techniques (PACT) (2014)

12. Intel: Intel Performance Counter Monitor - A better way to measure CPU utiliza-
tion (2012), http://www.intel.com/software/pcm

13. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS Parallel
Benchmarks and Its Performance (1999)

14. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin – Automated Optimiza-
tion of Thread-to-Core Pinning on Multicore Systems. High Performance Embed-
ded Architectures and Compilers 3(4) (2008)

15. Löf, H., Holmgren, S.: affinity-on-next-touch: Increasing the Performance of an
Industrial PDE Solver on a cc-NUMA System. In: International Conference on
Supercomputing (2005)

16. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation
Platform. IEEE Computer 35(2) (2002)

17. Marathe, J., Mueller, F.: Hardware Profile-guided Automatic Page Placement for
ccNUMA Systems. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP) (2006)

18. Marathe, J., Thakkar, V., Mueller, F.: Feedback-Directed Page Placement for
ccNUMA via Hardware-generated Memory Traces. Journal of Parallel and Dis-
tributed Computing 70(12) (2010)

19. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why On-Chip Cache Coherence is Here
to Stay. Communications of the ACM 55(7), 78 (Jul 2012)

20. Ogasawara, T.: NUMA-Aware Memory Manager with Dominant-Thread-Based
Copying GC. ACM SIGPLAN Notices 44(10), 377–389 (Oct 2009)

21. Radojković, P., Cakarević, V., Verdú, J., Pajuelo, A., Cazorla, F.J., Nemirovsky,
M., Valero, M.: Thread Assignment of Multithreaded Network Applications in Mul-
ticore/Multithreaded Processors. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 24(12), 2513–2525 (2013)

22. Ribeiro, C.P., Mehaut, J.F., Carissimi, A., Castro, M., Fernandes, L.G.: Memory
Affinity for Hierarchical Shared Memory Multiprocessors. In: International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD)
(2009)

23. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread
Affinity in OpenMP Programs. In: Workshop on Memory Access on Future Pro-
cessors: A Solved Problem? (MAW) (2008)

24. Wang, W., Dey, T., Mars, J., Tang, L., Davidson, J.W., Soffa, M.L.: Performance
Analysis of Thread Mappings with a Holistic View of the Hardware Resources. In:
IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS) (2012)

http://www.intel.com/software/pcm

	A Sharing-Aware Memory Management Unit for Online Mapping in Multi-Core Architectures

