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ABSTRACT

The quest for performance has been a constant through the history of computing systems.

It has been more than a decade now since the sequential processing model had shown its

first signs of exhaustion to keep performance improvements. Walls to the sequential com-

putation pushed a paradigm shift and established the parallel processing as the standard in

modern computing systems. With the widespread adoption of parallel computers, many

algorithms and applications have been ported to fit these new architectures. However,

in unconventional applications, with interactivity and real-time requirements, achieving

efficient parallelizations is still a major challenge.

Real-time performance requirement shows up, for instance, in user-interactive simulations

where the system must be able to react to the user’s input within a computation time-step

of the simulation loop. The same kind of constraint appears in streaming data monitoring

applications. For instance, when an external source of data, such as traffic sensors or

social media posts, provides a continuous flow of information to be consumed by an on-

line analysis system. The consumer system has to keep a controlled memory budget and

deliver a fast processed information about the stream.

Common optimizations relying on pre-computed models or static index of data are not

possible in these highly dynamic scenarios. The dynamic nature of the data brings up

several performance issues originated from the problem decomposition for parallel pro-

cessing and from the data locality maintenance for efficient cache utilization.

In this thesis we address data-dependent problems on two different applications: one on

physically based simulations and another on streaming data analysis. To deal with the

simulation problem, we present a parallel GPU algorithm for computing multiple shortest

paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data

analysis problem is a parallelizable data structure, based on packed memory arrays, for

indexing dynamic geo-located data while keeping good memory locality.

Keywords: Parallel processing. data locality. stream processing. real-time processing.

physically based simulation.



Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas

RESUMO

A busca por desempenho tem sido uma constante na história dos sistemas computacio-

nais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus

primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houve-

ram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma

e estabeleceram o processamento paralelo como padrão nos sistemas computacionais mo-

dernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram

desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas

arquiteturas. No entanto, em aplicações menos convencionais, com características de in-

teratividade e tempo real, alcançar paralelizações eficientes ainda representa um grande

desafio.

O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações in-

terativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo

de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de

monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados pro-

venientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo

contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em

tempo real e ao mesmo tempo manter um consumo de memória controlada.

A natureza dinâmica desses dados traz diversos problemas de performance, tais como a

decomposição do problema para processamento em paralelo e a manutenção da localidade

de dados para uma utilização eficiente da memória cache. As estratégias de otimização

tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os

dados, não atendem às exigências de performance necessárias nesses cenários.

Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferen-

tes: um na área de simulações baseada em física e outro em análise de dados em fluxo

contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU,

para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com

topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma

estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados

dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória.

Palavras-chave: algoritmos paralelos, localidade de dados, processamento de fluxo de

dados, processamento em tempo real, simulação baseada em física.



Algorithmes et Structures de Données Parallèles pour Applications Interactives

RÉSUMÉ

La quête de performance a été une constante à travers l’histoire des systèmes informa-

tiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait

ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les bar-

rières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le

traitement parallèle comme standard dans les systèmes informatiques modernes. Avec

l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications

ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des ap-

plications non conventionnelles, avec des exigences d’interactivité et de temps réel, la

parallélisation efficace est encore un défi majeur.

L’exigence de performance en temps réel apparaît, par exemple, dans les simulations in-

teractives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération

de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les ap-

plications d’analyse de données en continu. Par exemple, lorsque des donnes issues de

capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le

système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce

flux tout en conservant un budget de mémoire contrôlé.

La caractéristique dynamique des données soulève plusieurs problèmes de performance

tel que la décomposition du problème pour le traitement en parallèle et la maintenance de

la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques

qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne

conduisent pas aux performances souhaitées.

Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applica-

tions différentes : la première dans le domaine de la simulation physique interactive et la

seconde sur l’analyse des données en continu. Pour le problème de simulation, nous pré-

sentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et

des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse

de données en continu, nous présentons une structure de données parallélisable, basée sur

des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout

en conservant une bonne localité de mémoire.

Mots clés: algorithmes parallèles, localité de données, traitement de flux de données,

traitement en temps réel, simulation physique.
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1 INTRODUCTION

Since the invention of early computers, we have seen an impressive growth in the

amount of applications and problems that could be solved by these machines. The role

of computers have nowadays by far surpassed the applications thought by their inven-

tors. A long road has been traveled, from the first calculation machines up to the modern

supercomputers. Practical limits of what we can do with computers are still unknown.

For every technology improvement made to the computing systems, new possibilities and

challenges arise pushing the frontier of what can be done on these pieces of silicon. At

the same time, scientists have created a kind of "chicken-egg" problem. For every new

improvement made to current computing systems, larger problems and more demanding

applications require the development of a new generation of computers. The quest for

performance has been a constant through the computing history.

Amongst the fascinating possibilities, computers can simulate our world, capture

information from it, process the data and output it back to the world in a glimpse of eyes.

For a large class of applications, performance is closely related to the reactivity of the sys-

tem, the ability to process information within a negligible time. Real-time processing for

example happens in interactive simulation systems where the user can interact with a vir-

tual model of the world without experiencing unrealistic delays. For instance, such kind

of systems is common in medical simulation applications. The realism and complexity

of the model to simulate is limited by the real-time processing power that the computing

system is able to deliver.

Not only user-interactive systems require real-time processing. In big-data sys-

tems, for instance, sensors from road networks or even social media on the web generate

massive amounts of data every second. On-line data processing systems must be able to

process the continuous stream of data to produce valuable information in real-time. In

such cases, the maximum affordable computing performance limits the amount of infor-

mation that can be digested on-the-fly.

Until recently, solutions to the performance requirements of these problems could

rely on the sequential processing paradigm backed by a constant improvement on the

sequential hardware architectures. This model of computing has now reached a point of

exhaustion and is not able anymore to continue delivering the same growth in processing

speed. Pushed by physics limitations, the computing paradigm made a shift to the parallel

processing model. Nowadays, and until quantum computers become viable, any hope
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for performance to keep the pace with the continuous increase of problems scale passes

through the parallel computing paradigm.

Parallel processing capabilities are nowadays widespread and available in every

computing device whatever its scale. Current operating systems already do a good job in

scheduling different sequential applications to run concurrently on multicore processors.

However the OS alone can’t provide individual applications. Application performance de-

pend on how well the problem can be decomposed into independent tasks to benefit from

parallel architectures. Generally, effective parallelization depends on two main aspects:

Computation decomposition: how the amount of computation can be evenly distributed

among all the processing cores;

Memory access and locality: How to keep data close to the cores to reduce access la-

tency, and how to maintain data locality during an interactive computation.

Some applications are trivially parallelizable, like on image processing, where fil-

ters and transformations can be applied independently on each pixel in a data parallel

style, also known as SIMD (Single Instruction Multiple Data). These problems are char-

acterized by very limited data-dependency and by a balanced amount of computation of

each piece of data, which make it simple to split and schedule for parallel execution. The

computation to be executed and corresponding data are known since the beginning of the

execution, allowing to optimize the data partitioning and scheduling on processors.

Unfortunately for the majority of applications, data partitioning and computation

parallelization are not straightforward. In the case of interactive computation, like user-

interactive physically based simulations or on-line streaming processing, data and com-

putation are subject to the interactions of an external agent hard to predict. The chal-

lenges presented on these domains require special data-structures and algorithms capable

of adapting to the dynamic nature of the problems while still keeping good properties of

memory locality and computational load balance.

In this research we tackle the challenges of parallelizing and keeping data locality

in unconventional problems like interactive simulation and streaming data processing.

Each problem has its particular characteristics but share a similar performance issue that

has its roots on how to deal with data dependent computations dynamically. We deal

with the performance problem of these two applications. To address it we propose two

techniques, one targeting graphics parallel processors (GPUs) and another focusing in a

dynamic data organization structure to maintain locality of references.
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1.1 Outline

The core of this document is organized in chapters according to the contributions

proposed:

• The first problem is related to physically based simulations: it involves a user-

interactive system that changes the state of the data in a virtual model. Challenges

on how to update data to keep the real-time execution of the simulation are ad-

dressed by parallelizing the underlying data structures on the GPU. We present this

problem and the associated contributions in Chapter 2.

• The second one is on Big and Fast data processing: the real-time requirement in

this case comes from the need of a data exploration system to keep the pace with

a continuous real-time data stream. We propose a data-structure that stores the

incoming information and is able to keep a good memory organization favoring

data locality and speed-up queries on the data. The contributions are presented in

Chapter 3.

Additionally, before diving into the specific contribution topics, we provide further

context that motivates our work on Section 1.2. Finally, the last chapter provides final

remarks and perspectives for possible continuations of this work (Chapter 4).

1.2 General Context And Motivations

In this work we face problems of how to enhance the computation of data depen-

dent problems. In the context of physically based simulations, we need to compute values

based on neighborhood data. As we will see later in Section 2.3.3, the arithmetic opera-

tions executed over them are simple and represent a much lower cost than accessing the

data itself. Keeping data locality during the simulation is paramount.

One main characteristic of this problem is that with the right underlying data-

structure we are able to expose the data parallelism underneath it. This leads us to propose

efficient solutions based on the SIMT (Single Instruction Multiple Threads) paradigm of

modern massively parallel architectures (GPUs). However optimizing load balance and

occupation of these data-dependent programs still represents a major challenge. Effec-

tively placing data in memory to speed-up locality access is a major concern to keep all

the processors busy.

At the same time, in the context of interactive and streamed data problems, the
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volume of data to process can change during execution and the pre-computed data de-

pendency relations can be modified in unpredictable ways. Exploration of large datasets

requires structure and organization of data to reduce memory access latency. Maintain-

ing this organization when the dataset is dynamic and when the system has to respect

real-time constraints is a challenging task. We refer to this problems as dynamic-data

problems.

In the next sections we discuss the more fundamental problem of keeping the

computational efficiency on dynamic-data problems. To understand the role that memory

plays in computation and how historically computers turned into the parallel processing

paradigm, we start with a brief review of how memory and computation capacities evolved

over the past years and what are the boundaries they are facing. Finally we also present

the current perspectives towards the era of exascale computing and big data problems that

motivates our contribution on the development of new dynamic data structures for parallel

machines.

1.2.1 Walls to Sequential Computation

The evolution from the sequential programming paradigm to the current parallel

paradigm happened relatively recently in the past two decades (MCCOOL et al., 2012).

The idea of parallel computation however is much older that this. There were factors that

pushed a shift in the computing paradigm that are commonly know as the "three walls to

sequential computation":

The Power wall refers to unacceptable increases in power consumption of the chip with

the increase of processor clock rates. The maximum frequency at which a processor

can operate has reached a limit and is now generally around 3Ghz. With the Moore’s

law still holding true, the industry kept increasing the amount of transistors per unit

area, which led to the design of multicore chips.

The Instruction-level parallelism (ILP) wall refers to a set of parallel techniques used

at chip level that for some years allowed to speed-up sequential programs. Tech-

niques like instruction pipelining, superescalar execution, out-of-order execution,

register renaming, branch prediction, and speculative execution have fulfilled to a

very large extent their potential.
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The Memory wall is the consequence of several years of improvements in CPU process-

ing speed that were not followed at the same rate by improvements in the memory

speed. The memory and communication problems are related to two "speeds": la-

tency and bandwidth . Latency is the time spent for starting a transaction. Once

the transfer has started the bandwidth is the rate at which data is delivered at the

destination. The use of larger caches allowed to temporarily cope with these prob-

lems, however, latency is difficult to decrease due to fundamental physical limits

such as the speed-of-light. On sequential processing streams the latency for a mem-

ory access could not be hidden anymore causing the processor to stall waiting for

data. Bandwidth on the other hand is easier to improve by increasing the number of

lanes and sending big chunks of data at a time. This favored parallel executions for

example in the SIMD computation paradigm.

1.2.2 Big Data and Exascale Computing

In the scientific and engineering community, exascale computing refers to com-

puting systems able to process 1018 operations per second. To achieve this goal, industry

and scientific community still have several challenges to tackle (REED; DONGARRA,

2015).

Big data is one of the main use cases that will benefit from exascale computing

systems. Processing the enormous quantity of data generated today poses several chal-

lenges in different fields. In the exascale regime, the energy cost to move a unit of data

will exceed the cost of a floating-point operation (REED; DONGARRA, 2015). Improve-

ments on the hardware will continue to enhance memory features. New advanced memory

technologies will provide large capacities and a high performance interconnect will pro-

vide energy efficient, low-latency and high-bandwidth data exchange among hundreds of

thousands of processors.

However, hardware improvements alone will fail to provide application speed-

ups. At the software level there is still a need for locality aware algorithms to improve

computation efficiency and reduce energy needs.

1.2.3 In-memory Big Data Processing

Big data has become widespread in industry with several systems being designed

to address a wide range of problems (ZHANG et al., 2015). More recently, with the cur-
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rent improvements in memory technologies like Non Volatile Memories (e.g. SSD) and

larger capacities of DRAMs, traditional disk-base database systems have been shifting to

a heavier use of in-memory storage and processing.

We may differentiate these data processing systems into "classes" according to the

structure and dynamicity of data. Data-processing can be well structured like relational

databases, semi-structured like graph processing, or completely unstructured as in texts.

The dynamicity refers to the amount of insertion, deletion and update operations that are

applied on the data. Such datasets can vary from a static set of records with regular updates

with low insertion ratio, up to completely dynamic elements as in real-time streams of

data. Each scenario requires different memory optimization techniques and often presents

a trade-off between efficient indexing and querying of records. In this work we will focus

on the problem of keeping an efficient update ratio on dynamic data while keeping good

access performance by favoring spatial locality.

1.2.4 A Use Case Problem: Interactive Exploration of Geo-Located Data Streams.

Several business applications rely on stream processing to get real-time knowl-

edge about events currently happening and take fast decisions, such as in the stock mar-

ket, sensor networks or in social networks. These systems often employ Complex Event

Processing (CEP) to identify patterns of events in the stream and if needed triggers the

appropriate alarm. The main characteristic of this stream processing is that historic data

is usually not stored due to the high unbounded amount of data that a stream generates.

This comes with the drawback that we must know in advance what kind of event we are

expecting to setup a continuous query that will filter the incoming stream. Once an auto-

matic alarm is triggered we have lost access to the previous historic raw data, which could

have been useful for a more detailed analysis by a specialist.

For instance, a system that monitors microblogs streams such as twitter could de-

tect natural disaster and point the location where humanitarian aids should be deployed

with priority (SAKAKI et al., 2010). While storing full history of tweets would be un-

practical and out of purpose, having a significant time window of past tweets stored about

the area of interest would enable a more detailed analysis after a natural disaster alarm is

triggered.

The real-time nature of such systems requires data to be resident in memory. This

not only allows fast answer time of exploratory queries but also keeps a high rate of in-
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sertions and index update capable of processing the incoming data stream. Furthermore,

geo-spatial data must be indexed and stored in a way to provide fast access time. While

several types of spatial-indices exist, it is important in real-time systems to avoid expen-

sive updates and physical reorganization of data in memory.
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2 A PROBLEM ON PHYSICALLY BASED SIMULATIONS

2.1 Context

Physically based simulations are widely used in several domains of applications.

Digital animation, as used in films and games, rely on physical models to try to reproduce

their behavior as realistically as possible to achieve the best visual effects. Physical mod-

els, traditionally used in scientific computing and visualization domains, are also largely

applied in the engineering industry. Here, the use of virtual models can help to anticipate

problems in the project of a new product still in the earliest stages of conception, before

going to production. For example, the automobile industry uses physically based simu-

lations on virtual car models to perform crash tests, which permits reducing the number

of expensive real crash tests. More recently, another growing field using this kind of sim-

ulation is that of medical applications such as computer-assisted surgery. In this case,

a physically based simulation can be used for planning and training surgical procedures

reducing costs and avoiding complications during the real surgery.

On the other hand, the algorithms used in physically based simulations usually

face a compromise between speed and accuracy (COURTECUISSE, 2011). This led us

to analyze these application fields with different requirements. Computer games for ex-

ample have a strong requirement for speed as it has to be done in real-time while accu-

racy just needs to be approximated using a visually correct simulation. In contrast, virtual

crash tests simulations, for example, require very accurate results but can be done offline.

Surgery simulation is, perhaps, the most challenging field. Here, we have an equal in-

terest for efficiency, to enable real-time, and accuracy to get valid simulation results that

corresponds to the actual surgery on a human body.

Many methods have been proposed over the past decades for simulation of de-

formable objects. A good survey on physically based deformable objects can be found in

(NEALEN et al., 2006). A common problem of these methods is the sampling size used.

Accuracy of simulation greatly depends on how many samples are used in the model. This

is a major problem when we need to simulate deformations of a complex object composed

of many different materials with various degrees of stiffness. Softer regions would require

higher sampling than stiffer ones and would incur in higher computation costs.

In (FAURE et al., 2011) a new frame-based method is proposed to simulate de-

formations on objects of heterogeneous materials. Their method uses meshless models
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with sparse sampling combined with specific functions, called shape functions, to inter-

polate deformations within the simulation nodes. Their major contribution was the use of

a novel material-aware shape function that computes distances based on compliance. This

approach allows to have fewer simulation nodes and still capture the most relevant defor-

mation modes to achieve good realism. Computation of shape functions and placement

of simulation nodes are done at initialization steps. After initialization, the simulation

can efficiently run in real-time at interactive frame rates. However, if any topology mod-

ification is applied to the object during the simulation, the initialization step needs to be

recomputed. The overhead added by on-line modifications of the model is prohibitive for

an interactive simulation. For example, if we simulate a cut of an organ during a virtual

surgery, the whole distribution of simulation nodes and shape functions has to be recom-

puted on-the-fly. Therefore, a major concern of this method is to speed up the computation

of shape functions to allow real-time simulations.

At the same time, the hardware technology of modern computers has evolved con-

siderably. Over the last decade, parallel computers have become ubiquitous and it is now

usual to have multiple processors in the same computer. Massively parallel hardware such

as Graphics Processing Units (GPU) are becoming commodity processors and can easily

be found in general desktop computers. This clear trend of increasing the core count of

modern processors has direct implications at the software and programming levels. Ef-

ficiently programming applications for this kind of platform requires an extra amount of

effort from programmers. Algorithms and data structures have to be carefully designed

to harvest the benefits of parallelism. As a consequence, new parallel languages and pro-

gramming tools have been developed to help on such tasks.

In this chapter we look into the method of sparse meshless simulation proposed by

Faure et al. (2011) and study a parallel approach to the costly initialization steps where

the shape functions are computed. Material-aware shape function computation involves

computing a special kind of Voronoi diagram on a graph with grid topology. We will

abstract the concepts from the physically based simulation domain and focus on the algo-

rithms. As we will see, the underlying problem is strongly related to the Multiple-Source

Shortest Path (MSSP) problem.

In the next sections we will present in more details how shape functions are com-

puted and what kind of algorithms are used (Section 2.2). In Section 2.3 we review the

related works about parallel computation of Voronoi diagrams and shortest-paths.
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2.2 Background

2.2.1 Sofa - Simulation Framework

The work described in this chapter is part of the real-time simulation framework

called SOFA (2017). It results from a cooperation work with the IMAGINE research

team1 from Inria-Alpes, one of the main contributors to the development of SOFA.

The Simulation Open Framework Architecture (SOFA, 2017) seeks to reduce

complexity in interactive physically based simulations by providing a well-defined com-

mon interface for physical algorithms. Its goal is to improve research collaborations, al-

lowing to reuse and easily compare a variety of available methods. Although the primary

target application of SOFA is medical simulation such as in virtual surgery, applications

from different domains also rely on this framework. Examples include motion planning

and control in robotics simulations (LARGILLIERE et al., 2015; RODRIGUEZ et al.,

2017), augmented reality in deformable objects (PAULUS et al., 2015) and virtual im-

mersion environments (PETIT et al., 2009).

The current SOFA implementation targets execution on a single machine, with

some extensions allowing parallel applications on multicore and GPUs, but not on clus-

ters or supercomputers architectures. The use of parallelism in this framework is highly

desirable as a way of enhancing the performance of its simulation algorithms. The con-

tribution we bring to the SOFA project is a new parallel algorithm for Voronoi-shape

functions computation.

2.2.2 Voronoi Diagrams

The Voronoi diagram is a data structure extensively studied in the context of com-

putational geometry for many different applications, but most of the time on a contiguous

Euclidean space (RONG et al., 2011) or computing its discrete approximation (HOFF

et al., 1999; RONG; TAN, 2006). Originally the Voronoi diagram (Figure 2.1) was de-

fined for a set of seed points P = {p1, p2, ..., pn} as the partitioning of the space into n

cells such that every seed pk is the closest one to any other point enclosed in the cell k,

according to a distance metric (usually Euclidean distance)(BERG et al., 2008).

Another particular type of Voronoi diagram is the Centroidal Voronoi Diagram,

also known as Centroidal Voronoi Tessellation (CVT). In this case, the seeds must be the

1<https://team.inria.fr/imagine/>

https://team.inria.fr/imagine/
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Figure 2.1: Voronoi diagram in Euclidean space for a given set of seeds (blue dots).

centroids of their cells. The computation of a CVT is usually done using the Lloyd’s

algorithm. In this iterative method, seeds are moved to the current center of each cell and

the Voronoi diagram is recomputed at each iteration until convergence.

Although most works found on the literature study Voronoi diagrams on the Eu-

clidean space, there are situations where a distance is defined using other metrics, such

as the distance between vertices in a graph (ERWIG, 2000; HURTADO et al., 2004).

In this context, the distance metric considered corresponds to the shortest path (also re-

ferred as geodesic) between two vertices. This formulation of Voronoi diagrams arises,

for instance, in the problem of facility location, where clients and suppliers lie in an inter-

connection network. Computing these Voronoi diagrams basically consists in computing

the shortest paths on a weighted graph.

The Parallel Dijkstra algorithm proposed by Erwig (2000) is a variant to the Dijk-

stra algorithm for computing the Voronoi diagram on directed weighted graphs. The term

"Parallel" in this algorithm refers to the fact that the shortest-path trees, rooted at each

Voronoi seed, grow rather simultaneously, although the algorithm is still sequential.

2.2.3 Shape Functions in Numerical Simulation

In computer graphics, the numerical simulation of continuous deformable objects

is based on a set of independent control points called Degrees of Freedom (DoFs). For

instance, in the popular Finite Element Method (FEM), the DoFs are the vertices of the

mesh representing the discretized model.

In this work we deal with another particular class of methods for modeling de-

formable objects know as meshless models. In particular, in the meshless frame-based

models proposed by Gilles et al. (2011), the simulation does not use any underlying struc-
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Figure 2.2: Example of an object with two Degrees of Freedom (q0 and q1) and their
corresponding shape functions (W0 and W1). Displacement of a point u is the weighted
sum of sampled displacements at q0 and q1.
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ture like a mesh. In this case, the DoFs are unstructured control points called frames to

which are associated shape functions. For each control point of the model there is a cor-

responding shape function that defines a region of influence. The design of theses shape

functions plays a central role in the simulation. It will determine how the displacements

captured at different control points will be combined to result in the final deformation of

the object.

Consider the following steps when simulating the deformation on an object sub-

jected to some forces. The displacement of the object is sampled at the control points

(DoFs). Each DoF and associated shape function define where and how other points in

the object are influenced. This region of influence is commonly referred as the support

of the shape function, i.e. the region of the object where the function is defined. The

evaluation of the shape function at any point within the support results in a normalized

weight that encodes the influence of the corresponding DoF at that point. In general,

these weights decrease with the distance to the control point. For instance, in Figure 2.2

there are two control points in the object (red dots). The shape function of each one is

defined everywhere within the object boundaries. Their normalized weights are shown

by a heatmap and varies from 1, at each respective frame’s location, down to zero at the

coordinates of the other frames. The displacement at any point u (green dot), parame-

terized with coordinates x in the object, is therefore computed by a weighted sum of the

displacements sampled at the DoFs (Equation 2.1).

u(x) = w0(x) ∗ u0 + w1(x)u1 (2.1)
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Figure 2.3: A frame-based method to simulate complex deformable solids composed with
heterogeneous material properties.

(a) T-bone Steak (b) Stiffness (c) Discretization (d) Compliance
Distance

(e) Deformation

Source: (FAURE et al., 2011)

Finally, it remains the problem of defining how weights should be computed for a

given placement of control nodes. These weights describe how shape functions from dif-

ferent DoFs are blended on the rest of the domain. In (FAURE et al., 2011), these weights

are computed using a novel method based on Voronoi diagrams, called the Voronoi Shape

Functions. We conceptually explain their method in the next section. A more detailed dis-

cussion on shape functions is deferred to Section 2.5 where we describe different schemes

for interpolating node values using the Voronoi diagram generated from the simulation

nodes.

2.2.4 Material-Aware Shape Functions

This section briefly introduces the frame-based simulation method presented in

(FAURE et al., 2011), which is the motivation problem of this chapter.

Shape functions are a fundamental part in the simulation of deformable solids.

They are used to compute the displacement in the object within the simulation nodes. The

displacement applied to simulation nodes is combined according to their shape functions

(also called weights) and is interpolated inside the deformed object.

A material-aware shape function takes into account the material properties, such

as stiffness, to compute the displacement. This is particularly interesting in objects com-

posed with various types of materials, with different stiffness, as these regions will not

deform in the same way or with the same intensity. For example, a steak composed of

bones, fat and flesh will present different degrees of deformation in each material region

(Figure 2.3).

The input data for this method is given as a 3D voxel map of material properties

and a quantity of simulation nodes according to the expected execution time. The prob-

lem consists in defining the placement of nodes and the shape function associated. A
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major challenge here is to define a proper region of influence of each shape function. For

example, consider the steak object from Figure 2.3, a deformation applied to a node on

the left side of the rigid bone should not be propagated to the other side.

To limit this kind of unrealistic behaviour, the authors create Voronoi partitions of

the voxelized material property map. Similarly, the problem of placement of simulation

nodes can be approached as the Centroidal Voronoi Diagram computation on a weighted

graph. The distances used to compute the Voronoi diagrams are based on the values of

compliance (inverse of stiffness) of each voxel. The compliance distance, as referred in

their work, is the length (compliance) of the shortest (stiffest) path from one point to the

other.

We highlight some specific features in this problem that differs from a general

Voronoi computation. First of all, it should be noted that the Voronoi diagram here is

not computed on the Euclidean space. This means that distances between any two points

cannot be computed directly. Instead, we have a geodesic on a 3D discrete voxel map

where each voxel knows the local distances (compliance distance computed from the

material property map) in its 26-neighborhood. Each voxel is mapped to a vertex of the

graph and is connected with the 26 vertices corresponding to the adjacent voxels in a 3D

image 2. Finally, edges are weighted according to the compliance value of the pair of

adjacent voxels.

2.3 Related Work

2.3.1 Parallel Voronoi Computations

The parallelization of Voronoi diagram computations has been studied through

several works in literature with a lot of different approaches. Early studies used graphics

hardware to compute an approximation of these diagrams using the OpenGL graphics

library, before the proposal of the CUDA or OpenCL architecture (HOFF et al., 1999).

For most works found in the literature, a discrete approximation of the Voronoi diagram is

sufficient to fulfill the precision requirements of its applications. Approximations can be

either computed by the Euclidean distance on 2D pixel-maps and in 3D surfaces using the

Euclidean distance between 3D-coordinates of sampled points over the surface (RONG et

al., 2011).

2The 26-neighborhood results from voxels sharing faces (6), edges (12) or corners (8).
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Figure 2.4: JFA: starts propagating the information from the seed (bottom left corner). At
each step, the neighbours with coordinates offset k are reached and start propagating the
data about the seed.

Source: (RONG et al., 2011)

The many parallel approaches vary in the way the information of proximity from

the Voronoi centers is propagated to each pixel.

Rong and Tan (2006) propose jump flooding (JFA) as an algorithmic paradigm for

GPGPU and show its application on Voronoi diagram computation. In JFA, the seeds

start propagating their coordinates to neighbour pixels according to a pattern that halves

the offset at each step (Figure 2.4). Each pixel compares the new information received

with the previous one and keep the coordinates of the closest seed. In this case, distances

can easily be computed on the Euclidean plane.

Weber et al. (2008) introduce an interesting parallel algorithm called parallel

marching method (PMM) to compute distances on surfaces with application on Voronoi

diagrams. This method is indeed an extension of the fast marching method, which is

based on a priority-queue. However, this kind of data structure is difficult to be efficiently

parallelized. Instead, their method replaces it by using a specific traversing order of the

grid, called raster scan, and show an efficient parallelization algorithm.

Reem (2012) proposed a substantially different method from previous ones. It uses

a combinatorial approach to compute the exact polygons that form each cell of the Voronoi

diagram in parallel. This work, however, is mainly theoretical, focusing on formal proofs

of correctness and complexity analysis while leaving aside the implementation issues and

experimental results.

All of these works only consider distance computation on the Euclidean space.

None of them were found to deal with Voronoi diagrams on graph space. In those contexts

the shortest distance is always a straight line, hence these methods cannot be directly

applied on graph problems. Nonetheless, Weber et al. (2008) show that PMM can also be

used to compute distance on curved domains by repeating Niter iterations of raster scans,

where Niter is a data-dependent bound.
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2.3.2 The Shortest Path Computation

Clearly, the shortest-path problem is an essential building-block for Voronoi dia-

gram computation on graphs. Efficiently finding shortest paths on graphs is a well known

problem widely studied in the literature for a plethora of applications. Probably the best

known sequential algorithm for Single-Source Shortest-Path (SSSP) was developed by

Dijkstra. The original Dijkstra’s algorithm has O(V 2) complexity on the number of ver-

tices, while the min-priority-queue based version shows O(E + V logV ) where E is the

number of edges (CORMEN et al., 2009).

Naturally, the use of parallel processors to compute shortest paths has attracted a

lot of attention from researchers. Early implementation of a parallel Dijkstra’s SSSP is

reported in (CRAUSER et al., 1998). However, this is an inherently sequential algorithm

with lots of synchronizations leaving no possibility for an efficient PRAM implementation

(HARISH et al., 2009). As an alternative, Kumar et al. (2011), worked on parallel SSSP

based on Bellman-Ford’s algorithm, which is less efficient than Dijkstra on sequential

implementations but has a higher degree of parallelism.

Most of the parallel SSSP algorithms introduced in the literature have to deal with

a trade-off between the amount of parallelism exposed and the extra work generated.

Madduri et al. (2006) proposes a parallel ∆−stepping method that shows a good compro-

mise between these two factors. They report an implementation exhibiting 30x speed-up

on a CRAY MTA-2 shared memory architecture with 40 processors.

Implementations on Graphics Processors also showed to be a viable and relatively

cheap solution for SSSP computation (HARISH et al., 2009; HARISH; NARAYANAN,

2007). On massively dense graphs, Kumar et al. (2011) use a modified Bellman-Ford

algorithm on GPU and reports 10 to 12 times speedup over previous work for SSSP com-

putation.

Edmonds et al. (2006) introduce the Parallel Boost Graph Library (Parallel BGL),

a library of graph algorithms for distributed-memory computation on large graphs. Their

implementation of SSSP extends Dijkstra by allowing to remove several vertices at once

from the top of the priority queue. This technique is used to expose more parallelism but

introduces unnecessary computation of edges.

Regarding the graph topologies, the literature shows that, in general, the pro-

posed methods scale better on random-topology graphs with regular vertex-degrees than

on structured graphs (grid-like topology) or scale-free graphs (containing few vertices
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with very high degree and a large majority with small degree) (EDMONDS et al., 2006;

HARISH et al., 2009; HARISH; NARAYANAN, 2007).

2.3.3 Existing Implementations of SSSP Algorithms

Several GPU implementations have been proposed over the last years for differ-

ent graph algorithms (HARISH et al., 2009). For the shortest path problem specifically,

Dijkstra-based parallelizations are more frequently used (MADDURI et al., 2006; HAR-

ISH et al., 2009; ORTEGA-ARRANZ et al., 2013). Even so, there are also other ap-

proaches based on the Bellman-Ford algorithm, like on (KUMAR et al., 2011) targeting

dense graphs on GPUs.

In general, Dijkstra based algorithms use a technique known as edge relaxation.

In this technique, each vertex maintains a shortest-path estimate with distance v.d. The

process of relaxation consists of trying to improve this estimate by going from vertex u to

v through an edge of weight w(u, v) (Algorithm 2.1).

Algorithm 2.1 Shortest path computation: relaxation algorithm
1: procedure RELAX(u, v, w)
2: if v.d > u.d+ w(u, v) then
3: v.d← u.d+ w(u, v)
4: end if
5: end procedure

When done in parallel, each vertex u is assigned to threads that may update v.d

concurrently, thus creating a critical section. Consequently, lines 2 - 4, of Algorithm 2.1,

have to be protected in an atomic region. In modern CUDA devices this atomic region

can be efficiently implemented by the single atomic instruction atomic_min(addr, val) .

atomic_min(addr, val) reads word old located at the address addr, com-
putes the minimum of old and val, and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction
(NVIDIA, 2017).

2.4 Parallel Graph Voronoi on GPU

We present in this section our parallel algorithm for computing Voronoi diagrams

on graphs. As mentioned previously, the Graph Voronoi can be seen as an extension of

the shortest path problem. However, its parallelization poses additional problems of con-

current access to shared variables. In the Voronoi diagram problem, each voxel has to
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Figure 2.5: Encoding information of distance and Voronoi index in a single word. Values
d and k can be changed to adjust precision.

Distance estimate Voronoi Index

32-bit word

d bits k bits

keep the distance estimate value to the seed and an extra variable for its Voronoi cell in-

dex. These variables would then be updated serially in the relaxation procedure, which,

if executed by two threads in parallel, could lead to any combination of results in these

variables. On concurrent programming this is a classical case of race condition. The

straightforward solution for this problem would be to enclose the whole critical section

(Algorithm 2.1) within mutex locks. However, mutexes are expensive structures to imple-

ment on GPUs. To deal with this problem, we choose to encode both variables, Voronoi

index and distance estimate, in a single 32-bit word (Figure 2.5) that can then be atomi-

cally updated in a single atomic_min() instruction. Our encoding can be adjusted to bal-

ance distance precision and maximum number of Voronoi cells. In our implementation,

we reserved 24 bits for the distance and 8 bits for the Voronoi region index.

2.4.1 Data Structure

Our data representation in memory substantially differs from the classical graph

data structures. Instead of using adjacency matrices or lists for the shortest path compu-

tation, like in (HARISH et al., 2009), we are dealing directly with 3D images of voxels.

In order to use the graph nomenclature, we refer to voxels as nodes of a graph. Each node

has in general 26 neighbors (except at the image boundaries). Information stored at each

node contains its compliance value, Voronoi cell index, and distance to a Voronoi source.

The weight of each edge is given by some generalized distance function, dist(Cv, Cu),

defined for every pair of voxels (v, u) as long as they are adjacent in the image. In this

work specifically, we employ the compliance scaled distance function used by Faure et

Al. (FAURE et al., 2011). In this case, the distance between two adjacent nodes is a

function of the measure of compliance of the material at each node.
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Figure 2.6: Scatter updates: each active thread propagates its current information about
distance and Voronoi index to its neighbors.

2.4.2 Parallel Algorithm

Our algorithm uses five internal arrays, C0, C1, Vor , Mask and Mat , stored on the

GPU global memory. Each one has the same size of the input volume (Algorithm 2.2).

The Mat matrix contains the discretized material map, and is used to computed the dis-

tance between neighbor voxels. The cost arrays C0 and C1 are used to keep the shortest-

path estimates of each voxel. They are initialized with 0 at the seeds and∞ (maximum

unsigned integer value) everywhere else. The Voronoi diagram, stored on array Vor , is

initially empty on every voxel, except for those corresponding to the seed’s coordinate

that are initialized with a unique Voronoi cell index. Finally, the boolean array Mask is

used as activity mask to mark which voxels have an updated cost estimate indicating that

it will be relaxed on the next step.

We assign one thread to every voxel. The execution then follows a scatter approach

(Figure 2.6) where each active thread, marked on Mask , will relax the cost estimate of

its neighbors and set their correct Voronoi index. The algorithm is divided in two par-

allel phases: relaxation and update. The host code (Algorithm 2.2) initializes the data

structures and then iteratively calls the GPU kernels RELAXKERNEL (Algorithm 2.3),

add UPDATEKERNEL (Algorithm 2.4), until the termination condition is satisfied. The

distance function, at line 5 in RELAXKERNEL, computes the local distance between two

neighbor voxels based on their compliance values in the material map (FAURE et al.,

2011). At each iteration, C1 maintains the intermediate values computed during the re-

laxation. In the UPDATEKERNEL procedure, the values from C1 are copied back to C0
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and the activity mask is updated. The duplication of these cost matrices is needed to avoid

read-after-write hazards when writing to global memory.

Algorithm 2.2 Parallel Voronoi computation in CUDA (host code).
1: procedure VORONOI(Seeds ,Vor ,Mat)
2: for all v ∈ Mat do
3: C0[v]←∞;C1[v]←∞
4: end for
5: for all s ∈ Seeds do
6: C0[s]← 0;C1[s]← 0
7: Mask [s]← true
8: Vor [s]← idx+ +
9: end for

10: repeat
11: RELAXKERNEL(Mask ,C0,C1,Mat)
12: TERM ← true
13: UPDATEKERNEL(Mask ,C0,C1)
14: until TERM
15: end procedure

Algorithm 2.3 CUDA kernel for the relaxation algorithm: atomically updates the current
shortest path estimates and the closest Voronoi seed.

1: procedure RELAXKERNEL

2: tid← getV oxelIndex()
3: if Mask [tid] then
4: for all neighbors nid of tid do
5: dnew ← C0[tid] + localDist(tid, nid,Mat)
6: AtomicMin((C1[nid]|Vor [nid]), (dnew|Vor [tid]))
7: end for
8: Mask [tid]← false
9: end if

10: end procedure

Algorithm 2.4 CUDA update kernel: verifies the termination condition and updates the
activity mask.

1: procedure UPDATEKERNEL

2: tid← getThreadIndex()
3: if C0[tid] > C1[tid] then
4: C0[tid]← C1[tid]
5: Mask [tid]← true
6: TERM ← false
7: end if
8: end procedure
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Figure 2.7: At each iteration, the thread activity mask is updated. This process triggers
propagation waves leaving from each Voronoi seed (red dots). As the distances are not
linear some pixels will be recomputed causing the effect of "thicker waves" (b).

(a) Iteration 3 (b) Iteration 17 (c) Iteration 42

The propagation of distance and cell Id starts simultaneously at each seed and, for

each iteration of lines 11 to 13 in Algorithm 2.2, are expanded one step further away. Plot-

ting the trace of thread activations at each step generates the wave-like pattern shown in

the 2D plan of Figure 2.7. The algorithm finishes when the Voronoi diagram computation

reaches a fixed point, where no more voxel is updated.

2.4.3 Experimental Evaluation

Several benchmarks were performed to evaluate the performance of our algorithm.

In the following sections we describe our test environment and input instances used for

the experiments.

2.4.3.1 Test Environment

The platform used for the CPU benchmarks was an Intel CoreTM i7 CPU model

930 with 4 cores running at 2.89Ghz and 12 GB memory. Despite the multi-core archi-

tecture, the CPU implementation is strictly sequential.

The results of our GPU algorithm were obtained on a NVIDIA GPU GTX480 with

1.5 GBytes of global memory and 15 Multiprocessors with 32 cores each, totaling 480

CUDA cores. The CPU codes were compiled with GCC 4.8 using -O2 optimization flags.

The CUDA driver is version 6 while the run-time is version 5.5.
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Figure 2.8: Comparison of Voronoi diagrams generated with the same set of seeds on two
different material maps. Left: with an uniform stiffness. Right: with a stiffness gradient.

2.4.3.2 Input Instances

The input dataset differs on 3 different parameters: volume size, material map

topology and number of Voronoi seeds. For the material map topologies we considered

both synthetic and real-application data. The synthetic topologies represents a cube vol-

ume with (a) an uniform constant stiffness and (b) a gradient stiffness varying uniformly

from left to right (called Gradient). In these topologies, we variate the volume from 323 to

2563 voxels, which are the common discretization sizes used for physically based simula-

tions in (FAURE et al., 2011). For each volume size, a placement of seeds was randomly

generated and kept constant for each run of the benchmark. We note that, due to the

compliance-scaled distance function employed, the same set of seeds actually generate

very different Voronoi diagrams, depending on the topology of the material map used

(see Figure 2.8).

The real-application dataset is the discretized material map of the T-bone steak

(Figure 2.3). The map of the steak has a volume of size 64x64x15 voxels and exhibits

non-uniform stiffness distribution. The data of the steak is freely available for download

with the SOFA framework (SOFA, 2017; FAURE et al., 2012).

2.4.4 Results and Discussion

In this section we evaluate the implementation described in the previous sections.

Performance of Voronoi computation is analyzed regarding 3 main parameters: volume

size, topology of the material map and number seeds of the diagram. Following these
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Table 2.1: Benchmark results with execution times and speed-up obtained with the base
GPU algorithm.

CPU GPU

Volume #Seeds Iters. Time(ms) 99% CI Iters. Time(ms) 99% CI Speed-up

T
o
p
o
lo
g
y

G
ra
d
ie
n
t

323 10 32768 32.24 ±0.23 30 1.96 ±0.02 16.46

643 10 262144 296.77 ±1.48 70 12.13 ±0.04 24.46

1283 10 2097152 3863.54 ±11.36 126 105.91 ±0.15 36.48

2563 10 16777216 38756.80 ±176.48 195 985.80 ±0.20 39.31

100× 40× 20 20 80000 77.04 ±0.37 21 2.51 ±0.02 30.68

C
o
n
st
a
n
t

323 10 32768 21.37 ±0.19 20 1.27 ±0.01 16.80

643 10 262144 190.81 ±0.56 52 9.20 ±0.03 20.73

1283 10 2097152 1957.65 ±6.59 79 61.85 ±0.02 31.65

2563 10 16777216 22103.64 ±55.85 159 812.03 ±0.28 27.22

100× 40× 20 20 80000 52.31 ±0.26 22 2.47 ±0.01 21.15

S
te
a
k 64× 64× 15 3 12276 10.80 ±0.10 38 2.16 ±0.03 5.01

64× 64× 15 10 12276 10.39 ±0.19 45 2.72 ±0.02 3.82

results we proposed an enhancement to the base algorithm which will be presented on

Section 2.4.5.

2.4.4.1 Base Algorithm Speed-up

We start by comparing our parallel algorithm with its sequential reference imple-

mentation on CPU. For each input instance, we ran the benchmark 10 times, for the CPU

and GPU algorithms, and computed the mean execution time. The obtained means and

99% confidence intervals are reported in Table 2.1.

Figure 2.9 presents the speed-ups obtained with GPU implementation over the

sequential one on CPU. Each bar represents a different input instance where labels

cube32310s, cube64310s , cube128310s and cube256310s denote a cube with gradient

topology with dimensions 32, 64, 128 and 256 respectively, each with 10 seeds. The plate

100x40x10 20s input is a plate of stiffness gradient with 20 seeds. Both steak instances

have a bounding volume of 64x64x15 voxels.

In this benchmark the speedup achieved varies from 3.8x for small volumes

(Steak) up to almost 40x for bigger ones. These results show that our algorithm bene-

fits from bigger input sizes, because they expose more parallelism. This observation is

also confirmed by the trace of thread activity shown in Figure 2.10. Notice for instance

the different scale on y-axis between facets (a) and (b) (Figure 2.10) showing a higher

maximum of active parallel threads in the Cube volume of size 1283 than in the Plate

one with 100× 40× 20 voxels.
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Figure 2.9: Speed-up for different input sizes. Gradient and constant topologies are
presented for synthetic benchmarks only. Steak’s topology corresponds to the real data-
set of Figure 2.3.
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Figure 2.11: Average speed-up when increasing the number of seeds of the Voronoi
diagram. Standard deviations are shown on top of each bar.
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2.4.4.2 Voronoi Seeds

On a second scenario, we investigated the impact of the number of seeds in the

performance. For this benchmark we fixed the volume size at 1283 and used the same

gradient topology to vary the number of seeds. For each number, we randomly generated

10 different seed placements.

The execution time was measured for each configuration of seeds and the speed-

up was computed. Each reported value in the bar plot of Figure 2.11 is an average of the

speed-ups over 10 different seed placements. The standard deviation plotted on top of

each bar gives a notion of the variability of the speed-up according to the placement of

seeds in the object. With more than 4 seeds, these results suggest that for larger amounts

of seeds the speed-up generally increases. Indeed, having more Voronoi seeds has the

effect of allowing more active threads right at the first iterations. Moreover, assuming a

uniform distribution of seeds, the number of iterations of the algorithm tends to reduce as

more Voronoi cells expand concurrently. Notice the different number of iterations (x-axis)

shown on Figure 2.10, facets (c) and (d) (same volume with 10 and 3 seeds respectively).

In real scenarios, more sophisticated algorithms are used to configure the place-

ment of seeds. However, the rationale behind them is usually to keep a uniform dis-
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tribution over the material map. Therefore, the random placement strategy used in this

experiment remains a fair choice for our synthetic benchmarks.

2.4.5 Optimization with Stream Compression

The base implementation presented on the previous section already exhibits con-

siderable speed-up over the sequential algorithm. The mapping from voxels on the volume

to CUDA threads is done directly. This means that for a volume of dimensions 323, there

will be 323 threads, one for each voxel, deployed every iteration of the algorithm. This

direct mapping from pixels to threads is a common practice on GPU algorithms and bene-

fits from their lightweight thread scheduling features. Nonetheless, as observed in picture

Figure 2.10 and Figure 2.7, the number of threads that are actually updating values at each

iteration is much smaller than the total size of the volume (i.e. the amount of threads de-

ployed at each iteration). Figure 2.7 shows how the computation propagates to neighbors

in a wave-like form. The black front indicates, at each step, which threads are set to true

in the activity mask at the beginning of the relaxation kernel (line 3 in Algorithm 2.3).

Over the execution of the algorithm, the number of active threads is much lower than the

total grid size and varies considerably along time (Figure 2.10). This causes our thread

blocks to be very inefficient as most of the threads will actually evaluate the conditional

to false, without computing anything (line 3, Algorithm 2.3) .

One might question if a finer control of the number of threads reflects in a better

utilization of the GPU with consequent performance enhancements. To tackle this is-

sue, we proposed a modification to our base algorithm that applies a technique known as

stream compression (HOBEROCK et al., 2009; HARISH et al., 2009).

With stream compression, we perform an extra pass on the activity mask to count

the number of voxels marked for update and to generate a new indirect mapping from

thread Ids to voxel Ids. This way, the active threads are grouped in fewer and more com-

pact blocks, thus reducing branch divergence and runtime overhead of scheduling idle

threads. Stream compression is achieved by a Scan operation over the activity mask fol-

lowed by a Scatter as shown in Figure 2.12. These operations can be easily implemented

in CUDA using the Thrust template library (HOBEROCK; BELL, 2011). The result of

the compression is an array mapping thread indices to voxel coordinates, that are used in

the RELAXKERNEL to retrieve the correct data (Algorithm 2.3 line 2).

This process adds a non-negligible overhead that sometimes can actually super-



37

Figure 2.12: Stream compression can be used to deploy only the exact amount of threads
required to update the active voxels.
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sede the gains of performance. To be able to balance the trade-off between performance

gains of compression and time spent by the scan+scatter process, we implemented a

coarse grain compression. This optimization defines a coarser subdivision over the activ-

ity mask as shown in Figure 2.14 (in 2D) and detailed in Figure 2.13. The coarser mask

is parametrized by a grain size. The algorithm then scans the coarser mask, identifying

which grains contain active threads and launches only this amount of threads. Note that

the coarser the grain used, the more idle threads will be deployed. As we are dealing with

3D volumes, the granularity of the mask is defined by their x, y and z dimensions. We

use the notation dimx× dimy × dimz to refer to different grains used in our performance

analysis.

2.4.6 Stream Compression Evaluation

As explained in the previous section, stream compression optimization can be

parametrized by setting the grain dimensions used for the subdivision of the coarser mask

(Figure 2.14). We used the CUDA profiling tools to analyze the trade-off between over-

head of stream compression and gained performance at several grains. We summarized

the most representative result in the stacked histogram of Figure 2.15, which shows results

for a volume size of 1283 with gradient topology and a set of 10 fixed seeds. The bars are

sorted by total execution time and each grain size is indicated on the x axis, where "static"

refers to the base algorithm (without stream compression).
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Figure 2.13: A coarser activity mask is used to reduce overhead of stream compression.
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Figure 2.14: View in the 2D plan of the activity mask with stream compression at a coarse
grain size.
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Figure 2.15: Profiling of stream compression optimization.
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Finer grains generate larger masks, therefore add more overhead for generating

the map of active threads. A finer grain, however, results in a better compression, which

reduces the amount of idle threads and useless thread-blocks. This positively impacts the

time spent on the RELAXKERNEL procedure. See column 1 × 1 × 1 in Figure 2.15. On

the other hand, more compact thread-blocks will also increase the number of threads ac-

cessing non-coalesced memory locations. In our application the volume is stored linearly

in memory, which means that neighbour voxels on the x dimension are stored contigu-

ously in memory. Favoring a larger x grain-dimension increases the number of threads

accessing the same memory segment, thus achieving a better memory throughput. This

fact can be observed comparing grains of same sizes, but different shapes like 4 × 1 × 1

and 1× 1× 4.

Experiments with smaller volume sizes, like 323 and 643, showed worse total ex-

ecution time than the base algorithm. Nevertheless, for the 1283 volume, the technique

of stream compression led to a 23.29% performance gain over the base implementation.

The size of the volumes tested in this benchmark were limited by the amount of memory

available by the GPU, used by auxiliary masks and indirect mappings structures. It was

not possible to test the instance of 2563, however we expect that coarse stream compres-

sion would represent an even larger speed-up because there would be more idles threads

in such cases.
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2.4.7 Conclusion

In this section we presented a GPU algorithm for computing the Voronoi dia-

gram with generalized distance functions. Our method adapts a graph algorithm, for the

SSSP problem, to compute the Voronoi diagram on a 3D grid of voxels. We have shown

through an experimental evaluation that our base parallel implementation significantly

speeds-up Voronoi computation. Additionally, we proposed a new optimization strategy

called Coarse Stream Compression that allows to increase utilization of the GPU on large

volumes. Different from previous approaches of stream compression, we have shown that

we are able to trade-off the overhead of the method by carefully choosing a grain size.

Regarding our implementation, there is still room for optimization on the data

representation in memory. Its current linear representation cannot benefit from the locality

present in the neighborhood computation. A better memory layout, like Z-curves, could

further enhance the performance.

The contributions presented in this chapter have direct application on physi-

cally based simulation algorithms where Voronoi diagrams are used to compute shape-

functions. The GPU algorithm proposed is useful in scenarios where a fast computation

of Voronoi diagrams is required, for instance when the shortest-path distance change be-

cause of on-line modification on the object’s topology or on the material’s property map

(e.g. stiffness). Such situations are common, for instance, in interactive simulation of

tearing and cutting (MANTEAUX et al., 2015).

2.5 Parallel Voronoi-based Interpolations

In this section we present another contribution of this thesis. We build on the

first algorithm that we just presented and extend it to a classical application of Voronoi

diagrams – the Natural Neighbors Interpolation method (NNI). We propose a parallel

NNI implementation based on the GPU algorithm of Section 2.4. The NNI and derivatives

are used in the context of meshless simulations to interpolate shape functions’ weights

from different DoFs over the object domain. Before detailing the parallel algorithm, we

briefly introduce the NNI method.
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2.5.1 The Natural Neighbor Interpolation Method

In applied mathematics, a classical application of the Voronoi diagram was

brought to bear by Rodin Sibson in 1981 on the development of the natural neighbor inter-

polation method (SIBSON, 1981). Sibson’s interpolation is a well-known method for in-

terpolating irregular spatial data. It has applications in several different fields such as med-

ical imaging, meteorological or geological modeling (BEUTEL et al., 2010), flow map re-

construction (BARAKAT; TRICOCHE, 2013) and scattered data visualization (PARK et

al., 2006). Natural Neighbor based interpolations have also been used in the field of solid

mechanics by Sukumar (2003) in the Natural Element Method (NEM) where Sibson’s

and non-Sibsonian (Laplace) interpolators are employed to perform crack simulations.

A lot of effort has already been dedicated to improve the performance of Sibson’s

interpolation, particularly when interpolating on a discrete grid in the Euclidean space

- known as the Discrete Sibson Interpolation. A popular approach relies on the paral-

lelization with Graphics Processing Units (GPUs) of the Discrete Voronoi diagram like

on (BEUTEL et al., 2010) for Digital Elevation Model (DEM) construction.

2.5.2 Voronoi Based Interpolation Methods

One of the most well-known interpolation methods based on the Voronoi diagram

is the NNI method proposed by Sibson (1981). Consider the problem of finding neigh-

bors in a set of non uniformly distributed data points. By taking the Voronoi tessellation

induced by these points, the natural neighbors are the data points whose Voronoi cells

share a common frontier.

We briefly explain below three different methods of scattered data interpolation

that require the computation of Voronoi diagrams.

The Sibson interpolation is defined as a ratio of areas in 2D (volumes in 3D). We insert

the query point q in the initial Voronoi tessellation of sample points (Figure 2.16(b)).

The interpolating weight wi of each data point is given by the ratio between the area

Ai overlapping the neighbor Voronoi cell and the total areaAq of the newly inserted

cell. In the example of Figure 2.16, the interpolation of a function f at the point q

is given by:
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Figure 2.16: NNI: (a) A Voronoi partitioning of the space is generated from sample data
points (p1, p2, p3); (b) Interpolated values can be queried at any point q by inserting a
query seed (red point). The Voronoi cell of q is shown by the shaded area. A1 and
A2 are the intersection areas between p1’s and p2’s Voronoi cell, respectively, with q’s.
The coeficients for interpolating values from p1 and p2 at q are the ratios of A1 and A2,
respectively, by the shaded area.
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f(q) =
∑
n=1,2

wi ∗ f(pi) ,

where

w1 =
A1

Aq

w2 =
A2

Aq

.

The Laplace (non-Sibsonian) interpolation ((BELIKOV et al., 1997) as cited in

(SUKUMAR, 2003)) uses the same notion of natural neighbor but it computes the

ratio between segments in 2D (areas in 3D). Instead of taking the area of the neigh-

bor cells it uses the ratio between the length of the Voronoi frontier (line in 2D /

facet in 3D) and the distance from q to its natural neighbor nodes p.

Both natural neighbors interpolation methods described above require the compu-

tation of a new Voronoi diagram for each query point q added to the input diagram of the

data samples. This results in Q Voronoi diagram computations where Q is the interpola-

tion resolution desired. To reduce the complexity in terms of number of Voronoi diagrams

computed per query point, Faure et al. (2011) use an alternative interpolation method

where the number of Voronoi diagrams computed is a constant factor of the amount of

data samples S.

The Distance Ratio interpolation (FAURE et al., 2011) applies a particular scheme that

computes the ratio between the distance from the query point q to the Voronoi bor-
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Figure 2.17: Example comparing two methods for interpolation of shape-functions’
weights (WP1 ,WP2 ,WP3) of three control frames (green dots) on the steak object. In-
terpolation method: Sibson interpolation (top), Distance Ratio (bottom). Weights are
normalized starting from 1 at the frames location (Voronoi cell center) and decreases until
they vanish outside of the support.
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der dbi and the distance from q to the Voronoi seed dpi . Although less formal

guaranties on the properties were presented for this interpolant, this algorithm is

implemented on SOFA (SOFA, 2017) and shows good practical results, with the

advantage of being more computationally efficient. Figure 2.17 presents a visual

comparison of this method with Sibson’s. The heatmaps show the interpolated

weights relative to the three control frames over the steak object.

2.5.3 Parallel NNI Algorithm

In the classical natural neighbor interpolation, each query point q is inserted, one

at a time, to the Voronoi diagram of initial data samples. For each seed added, the initial

diagram is updated to generate the new Voronoi cell that will then be used to compute the

interpolation.

As seen previously, in the experimental results of Section 2.4.4.2, the number of
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seeds computed in the Voronoi diagram has a big impact on the amount of parallelism

that will be exposed. Computing a single Voronoi cell in parallel reduces the possibilities

of parallelization. This situation is even worse when we consider to update an existing

Voronoi diagram with the addition of a new seed (we refer to it as the query seed). In

this case, only a limited region around the query seed would be recomputed (see shaded

Voronoi cell in Figure 2.16(b)). Performing the interpolation simply as a sequence of

(parallel) Voronoi computations on the GPU doesn’t payoff the overheads of memory

transfers and thread scheduling inherent to this architecture.

The evident strategy to generate interpolated values over a grid would be to per-

form multiple queries concurrently in parallel. This approach was used in (BEUTEL et

al., 2010) to generate the interpolation over a regular grid using the assumption that every

sample has a limited radius of influence. This allowed to decompose the domain in inde-

pendent blocks where queries could be answered in parallel batches. Park et al. (2006)

propose a more efficient implementation of Sibson’s interpolation on raster images. Their

method avoids the explicit construction of a new Voronoi diagram for each query point.

Instead they use a Kd-tree structure to find the closest seed to the current query point

and use this distance as a radius of influence to increment the interpolation weight. Once

again, these techniques make assumptions that are valid for Euclidean space but not triv-

ially generalized for geodesic (graph) distances.

Parallelization can still be implemented for NNI over graph spaces if we duplicate

some data structures. More precisely, for each NNI query running in parallel, we copy

the input distance map of shortest paths and insert a new seed at the queried coordinates

with distance zero. The distance map is then updated using the same algorithm of Voronoi

computation presented in Section 2.4.2 with the added difference that we update an extra

counter for each Voronoi cell of the input diagram to track the number of voxels overlap-

ping in each cell. The array of counters is then copied back to the CPU, where the ratio of

areas is computed and the weights images generated. With this approach several queries

can be grouped in a parallel batch and deployed for execution on the GPU. The batch

size is a parameter that allows to control the trade-off between the amount of parallelism

exposed and extra memory consumed. Note that for each query in the batch, the distance

map and the counters of the overlapping voxels must be replicated.
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Table 2.2: Comparison of running times of the parallel Sibson interpolation algorithm
varying the number of queries per batch. Parallel NNI queries run in batches until a
whole grid of 100× 40× 20 voxels is computed.

Impl.ion Size N Mean(ms) SD SEM Sum(ms) SES Tot
80k

CPU 1 80k 1.004 0.230 0.001 80284.528 65.042 1.004
GPU 1 80k 9.746 1.210 0.004 779657.760 342.332 9.746
GPU 10 8k 12.414 1.424 0.016 99309.125 127.361 1.241
GPU 100 800 29.537 3.041 0.108 23629.871 86.005 0.295
GPU 150 534 34.807 3.278 0.142 18587.131 75.752 0.232

2.5.4 Performance Evaluation

This section evaluates the performance of our GPU implementation of parallel

NNI queries on non-Euclidean spaces. The dataset used for this experiment consists of

the plate volume with (100 × 40 × 20) voxels with uniform topology and 20 data points

(Voronoi seeds). The experiment performs a total of 80, 000 NNI queries, one for each

voxel. Queries are grouped in batches of fixed size that are deployed sequentially to

the GPU until the whole grid of voxels is computed. The program outputs a 4D im-

age with (100 × 40 × 20 × 20) normalized weights, one for each voxel and data point.

These benchmarks were performed on a GPU NVidia Tesla K40c, with 11.25 GB

of global memory and 2880 CUDA cores.

Time was measured once and individually for each batch execution. In Table 2.2,

we report the mean runtime, and standard deviation (SD), for batches of a given Size

over a total of N batches required by a complete grid interpolation. We also report the

total time for computing the full volume interpolation as the Sum of runtimes of each

batch. For the sake of statistical comparison we compute the Standard Error of the Mean

(SEM) and Standard Error of the Sum (SES), respectively, as SD√
N

and SD
√
N . Finally,

the amortized time per voxel (i.e. Total time/ 80k) is shown in the last column of this

same table.

A graphical comparison of runtimes is shown in Figure 2.18. The left-side plot

presents the time of batch executions with 99.7% confidence interval (3 × SEM ). The

right-side plot compares the total runtimes and shows, on top of each bar, the speed-up

relative to the sequential CPU version. In this plot, confidence intervals were negligible

and therefore omitted. Notice the 10× factor difference between the total runtime of

the sequential CPU implementation and the GPU with a unitary batch (GPU1). This

difference characterizes the approximated overhead of the GPU implementation. Indeed,
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Figure 2.18: Parallel Sibson interpolation analysis. Left: average time per batch (Mil-
liseconds) ; Right: total running time of the grid interpolation (Seconds).
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when testing with a batch 10× larger, the runtimes get much closer reaching a "speed-up"

of 0.81, although it still represents a slow-down. Speed-up can be achieved at larger batch

sizes like on the 100 and 150 batches.

2.5.5 Conclusions

Previously, in Section 2.4 we have revisited a classical geometrical structure –

the Voronoi diagram – in the context of its non-usual application to meshless interactive

simulations. These diagrams, have the particularity of been defined over a non-Euclidean

space. The existing technique to compute these diagrams were not suited to the real-

time requirements of the simulation application. We proposed an algorithm that uses the

parallelism in GPUs to speed-up Voronoi diagrams computation. For the current image

size used in the simulation (323), our implementation achieves near 17× speed-up and

can be computed in under 2 ms.

In section Section 2.5, we built on the parallel Voronoi diagram algorithm and

extended it to compute the well-known natural neighbor interpolation. The proposed

algorithm allows to compute the NNI of a set data samples on a discrete grid with non-

Euclidean distances. Points in the grid (i.e. NNI queries) can be computed in parallel

when grouped in batches. For sufficiently large batches, the parallel algorithm shows

good performances with reported speed-up of 4.32× on batches of size 150.

Both parallel algorithms presented have a valuable application in soft object sim-
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ulation methods. They provide performance solutions to the physically based simulation

community willing to employ Voronoi shape-functions in their meshless simulations.

In current simulations, the grid for interpolation is static and computed at initial-

ization for fixed image resolution. Typically, during the simulation only a subset of the

precomputed weights on the image will be actually used. Clearly, an interpolation over

the full set of points in the grid represents a wasteful amount of computation. Precompu-

tation was required to avoid doing NNI queries during the simulation itself. As the full

grid is not usually needed, with our parallel batch algorithm we could afford the on-line

computation of a subset of NNI queries. This represents a change in the way these sim-

ulations are currently designed. We expect that these parallel solutions can be used to

support dynamic modifications of topologies during the simulation with on-demand re-

computation of shape functions. Incorporating this work into SOFA, for experimenting

with actual simulations, represents a significant programming effort that is left as future

work.

Finally, recent work have proposed to also use Voronoi Shape-functions on grids

with "extended" connectivity called non-manifold grids (MANTEAUX et al., 2015),

which would allow to represent objects with more complex topologies in meshless frame-

works. A possible extension of this work could consider the application of our parallel

algorithms in these new domains.
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3 A PROBLEM ON STREAMING DATA VISUALIZATION

3.1 Context

Advanced visualization tools are essential when it comes to big data analysis. First

approaches focused on large static datasets stored in cloud infrastructures. However, on

a worldwide scale, there are always active users on social networks or buyers on on-line

retailers. Analyzing and visualizing these streams of data as they are generated is be-

coming essential. Twitter is a common example. The flow of tweets is continuous, and

users want to be aware of the latest trends. This need is expected to further grow with

the Internet of things (IoT) and the associated massive deployment of sensors that will

generate extremely large and heterogeneous data streams. Over the past years, several

in-memory big-data management systems have appeared in academia and industry. In-

memory databases systems avoid the overheads related to traditional I/O disk-based sys-

tems and have made it possible to perform interactive data-analysis over large amounts of

data. A vast literature of systems and research works address different aspects of these

systems (ZHANG et al., 2015). Notably, algorithms in this area must deal with the lim-

ited storage size and a multiple level memory hierarchy of caches. Maintaining a right

data layout that favors locality of access is a determinant factor for the performance of in-

memory processing systems. Stream processing engines like Spark or Flink (ZAHARIA

et al., 2013; CARBONE et al., 2015) support the concept of a window, which collects

the latest events without a specific data organization. It is possible to trigger the analysis

upon the occurrence of a given set of criteria (time, volume, specific event occurrence).

After a window is updated, the system simply shifts the processing to the next batch of

events. There is a need to go one step further to keep a live window continuously updated

while having a fine grain data replacement policy to control the memory footprint. The

challenge is the design of dynamic data structures to absorb high rate data streams, stash

away the oldest data in order to stay within the allowed memory budget while enabling

fast queries executions to update visual representations. A possible approach consists

in extending data structures such as R-trees (GUTTMAN, 1984) used in databases like

SpatiaLite (SPATIALITE, 2017) or PostGis (POSTGIS, 2017), or to develop ded-

icated frameworks like Mercury and Venus based on a pyramid structure (MAGDY et

al., 2014; MAGDY et al., 2016).

In this work, we propose a novel self-organized cache-oblivious data structure,
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called Packed-Memory Quadtrees (PMQ), for in-memory storage and indexation of fixed

length records tagged with a spatiotemporal index. The PMQ combines a Packed Memory

Array (BENDER et al., 2005) and a Morton indexed quadtree (GARGANTINI, 1982). We

store the data in an array with a controlled density of gaps, i.e. empty slots. These slots

guarantee that insertions can be performed with a low amortized number of data move-

ments (O(log2(N))) while enabling efficient spatiotemporal queries. During insertions,

parts of the array are rebalanced when required to respect density constraints, and the old-

est data stashed away when reaching the memory budget. We sort data according to their

Morton index ensuring a good spatial locality in the array, leading to efficient spatiotem-

poral queries. We experiment the PMQ for absorbing a stream of tweets and query the

data structure to support different types of visual queries. The PMQ significantly outper-

form other approaches like the specialized Kite framework (MAGDY; MOKBEL, 2017;

MAGDY et al., 2014; MAGDY et al., 2016) or the R-tree based geospatial databases like

the in-memory SpatiaLite (SPATIALITE, 2017) and PostGis (POSTGIS, 2017).

In summary, we contribute:

• a self-organized cache-oblivious data structure for storing and indexing streaming

spatiotemporal datasets;

• algorithms to support visual queries and automatic alert detection over streaming

data;

• comparison against state-of-the-art competing strategies.

3.2 Background

In this section we review background material on packed-memory arrays, Z-

curves, and linear quadtrees used for the PMQ.

3.2.1 The Packed Memory Array (PMA)

Consider the following toy example: Given an array of <key,value> elements

sorted by their keys (where the keys are not necessarily unique), a new element is to

be inserted in this array in the correct position following the current order. The naive

approach could be to insert it at the end of the array, leaving the array temporally in an

unsorted state and performing a complete sort on this array. Another approach, appar-

ently more efficient, could be to search the insertion position for the newcomer and shift
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all the following elements to make place for the insertion at the position found. These

approaches are expensive in terms of memory movements because a single insertion of a

new element on a dense array may cause the displacement of a large extent of memory.

Alternatively, using a dynamic storage structure like a linked list would solve this prob-

lem at the expense of managing pointers to elements. However, a linked list would lose

the capacity of direct indexing of elements as well as all the benefits of data locality when

performing a sequential scan.

The Packed-Memory Array (PMA), first proposed by Itai et al. (1981) and later

revised by Bender et al. (2005), is a data structure designed to handle modifications on

sorted data. In summary, it tries to fulfill two objectives:

1. To provide efficient sequential access to sorted data.

2. To perform fast element insertion and suppression in a sorted array by having min-

imum memory movements.

To achieve these goals, the PMA manages a sparse array where "gaps" are kept

inside the array to allow future insertions of new elements. A PMA stores N elements in

an array of size P = cN , with c > 1, where the remaining (P − N) positions are gaps

maintained to speed-up the insertion operations. The idea behind the gaps is that each

insertion will need to shift only a small and local amount of data to insert the new element

in its correct position.

We give an overview of the PMA algorithm before further detailing it in the next

sub-sections. Initially, gaps in the PMA are uniformly distributed in the array. After a few

insertions, some sub-ranges of the array might get more populated (i.e. denser) than oth-

ers. This unbalance in elements distribution negatively affects the insertion performance

in the PMA as some ranges get closer to a dense array. When such situations are detected

an operation called Rebalance takes place to redistribute the elements (and consequently

the gaps) in a larger sub-range of the array. The extent of a Rebalance range is chosen

according to thresholds of minimum and maximum densities allowed within this range.

Small ranges have a high maximum threshold and a low minimum threshold, whereas

large ranges have less variability between their maximum and minimum thresholds.
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Figure 3.1: Example of a PMA with 4 segments. ρl and τl are the minimum and maximum
allowed densities at each level of the PMA.

d=3/4=0.75 d=2/4=0.5

4

9

PMA to store tweets

ρ2 = 0.3     τ2 = 0.7

ρ1 = 0.19    τ1 = 0.81

ρ0 = 0.08    τ0 = 0.92

2 5 7
d=2/4=0.5 d=2/4=0.5

8 9 10 11 15 35

d= 9/16 = 0.5625

d=5/8=0.625

5

3 2 2 2

d=4/8=0.5

Level 2

Level 1

Level 0

Segment 0 Segment 1 Segment 2 Segment 3

he
ig

ht

root window

3.2.1.1 PMA Structure and Thresholds

We make a concise description of the sequential PMA algorithm of Bender et al.

(2005) with the batch insertion scheme proposed by Durand et al. (2012), and we refer to

these publications for more details.

The PMA array (size P counting the gaps) is divided into Θ(P/logP ) consecutive

segments of size Θ(logP ). For convenience, the number of segments is chosen to be a

power of 2. The array is stored in memory and keeps for each element an indexing key

and its associated value. The segments are paired in a hierarchical fashion, creating a

perfect binary tree structure where individual segments are the tree leaves and the root the

full array. A group of segments corresponding to a tree node is called a window.

Windows have a bounded density: the ratio of the number of elements they contain

over the total window capacity should always be in between the allowed density bound.

The minimum and maximum density thresholds for a window at level l in the tree are

respectively ρl and τl. Let l = 0 denote the lowest level of the tree (i.e a single segment)

and l = h be the root node (i.e. the full array). The density bounds are defined such that:

ρ0 < · · · < ρh < τh < · · · < τ0 (3.1)

Thus, the larger a window, the more constraining its density bounds. It also implies that

if a window of size i respects its density bounds, then all sub-windows also respect their

density bounds. The minimum and maximum densities of windows at intermediate levels

in the tree are linearly interpolated between the [ρ0, ρh] and [τh, τ0] thresholds as defined

below:
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τl = τh + (τ0 − τh)
(h− l)
h

(3.2)

ρl = ρh + (ρ0 − ρh)
(h− l)
h

(3.3)

The upper and lower density thresholds, respectively, decrease and increase by

O(1/ logN). This O(1/ logN) interval is fundamental to guarantee that an insertion or

deletion requires O(log2(N)) amortized data movements. Figure 3.1 shows an example

of PMA for 9 elements. The density thresholds are: ρ2 = 0.3, ρ0 = 0.08, τ2 = 0.7,

τ0 = 0.92, and the values for ρ1 and τ1 as described in Equation 3.2 and Equation 3.3

above.

3.2.1.2 PMA Operations

Lets now consider a PMA filled with K elements: the K elements are correctly

ordered and spread in the segments such that all windows respect their associated density

thresholds. Now suppose that we need to insert I new elements stored in what we call the

insertion array (Ins). The goal is to insert these new elements while keeping a PMA that

respects all density thresholds. The insertion algorithm goes top-down.

First we consider the case where inserting the new elements does not cause the full

array density to go over τh. Let p be the key of the first element of the right top window

(the element 10 in Figure 3.1). We re-order the Ins array such that all elements smaller

than p stay on the left side, while the others stay on the right. The left elements will go in

the top left window of the PMA, the others in the top right window. We test for each top

window their new densities against the corresponding thresholds, counting the elements

to insert. If at least one top window does not respect the density thresholds, we rebalance

the elements of the full array while including the new ones, i.e. we evenly redistribute

all elements. Otherwise, if density thresholds are respected, the algorithm proceeds re-

cursively on the left and right windows. In the best case rebalances are only required in

individual segments at the bottom of the tree. If the density of the full array goes beyond

τh counting the I new elements, we double its size and rebalance all elements. To make

sure that after doubling the array size the new PMA is not below ρh, the top densities must

respect:

2ρh < τh (3.4)
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Figure 3.2: Z-curve ordering: each cell has a Morton code obtained by interleaving its X
and Y-binary coordinates.
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3.2.2 Z-curve

The Z-curve (or Morton curve) is a space-filling curve that maps multidimensional

data into a one dimension code (the Morton code) while preserving some of the data

locality. We give an example of the Z-curve in Figure 3.2. The Z-curve passes through all

cells in this 4 × 4 grid, from the top-left corner to the bottom-right corner. The order the

cells are visited corresponds to the Morton code of the cell (from 0 to 15). The Morton

code can be computed using the integer coordinates of each cell by simply interleaving

the binary representation of the X and Y-coordinates. Inside each cell, we display the

interleaving of the X and Y binary codes used to produce the Morton code. Such ordering

allows multidimensional data to be stored into any one-dimensional data structure while

keeping a good spatial locality. This ordering is exploited, for example, in GPUs to store

texture maps and thus increase spatial locality of reference.

3.2.3 Linear Quadtrees

Spatial-indexing techniques are commonly employed when dealing with spatial

data (i.e. data with position information in space). Indexing structures based on quadtrees

for instance, are widely used to speed-up spatial operations like neighborhood search and

spatial queries.

Quadtrees are efficient data structures to represent geographical informa-

tion (SAMET, 2005). In a quadtree, a rectangular 2D domain is recursively partitioned
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Figure 3.3: Examples of linear quadtrees and codes of each cell.
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into four cells (quadrants) and stored as a 4-way tree. Each one of the four quadrants re-

ceives an index from 0 to 3, and have corresponding sub-regions in the 2D domain. Each

quadrant may be subject to further partitioning, resulting in an adaptive partitioning of the

plane that is very efficient to answer geometric queries. Usually, the quadtree recursion

terminates when a maximum depth is reached or when the leaf satisfies a threshold of

maximum number of elements in it.

A suitable way to refer to nodes in the quadtree is the linear quadtree proposed by

Gargantini (1982). In the linear quadtree, the code of each node aggregates a subsequent

index for each level (e.g. code 123 corresponds to a quadrant following children 1, 2, and

3 respectively). We refer to this code as the geohash of a given node. We show these codes

for all cells in the quadtree in Figure 3.3. In fact, the linear quadtree code is none other

that the Morton code. Another property of this representation is that the different prefixes

of a given code (for code 1203 would be 120, 12, and 1) represent the nodes on the upward

path from the node 1203 to the root of the tree. Hence, this kind of data-structure is a trie

or (a prefix-tree).

3.3 Related Work

Research in processing real-time streaming data spans over a wide range of related

domains. One good example is real-time microblog processing like on Twitter streams. In

building an efficient system to enable interactive exploration of microblogs data streams,

we must deal with several challenges common to areas like in-memory big-data, stream

processing, geo-spatial processing and information visualization. The real-time require-

ments combined with a large amount of data produced in microblogs meets the issues

faced by the works on in-memory big-data processing systems and stream-processing

community. At the same time, microblog posts often contain location information. As
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such, they can be treated as geospatial data and take benefit of several techniques used

in geospatial databases like spatial indexes and spatial query languages. Some stream

processing engines, like GeoInsight for MS SQL StreamInsight (KAZEMITABAR et al.,

2010), are tailored for single-pass processing of the incoming data without the need to

keep in memory a large window of events that would require an advanced data structure.

Rather than extensively covering all these domains, we focus on the characteristics of the

core data structures.

3.3.1 Adaptive Sorting Algorithms

The goal is the design of a data structure that can be dynamically updated to store

streams of geospatial data while enabling the fast execution of spatiotemporal queries,

such as the top-k query that ranks and returns only the k most relevant data matching

predefined spatiotemporal criteria. One possible approach is to keep the data sorted in a

(dense) array. To keep a good spatiotemporal locality, a classical approach is to rely on

a space-filling curve for sorting the data in the array. Answering a range query is effi-

cient. Data is ordered and stored continuously in memory with good locality. We benefit

from the various processor optimization features for continuous data access (pages, cache,

prefetching, coalesced data transfers, etc.). Using a dense array shows its limits during

insertions. The cost of memory allocations can be reduced using an amortized scheme

that doubles the size of the array every time it gets full. Inserting a single element takes

on average O(N) data movements, i.e. the number of elements to move to make room

for the newly inserted element. However, elements often are inserted by batches in an

already sorted array. In that case, one possible approach is to rely on adaptive sorting

algorithms, a specific class of sorting algorithms able to take advantage of already sorted

sequences (ESTIVILL-CASTRO; WOOD, 1992). Practically, the complexity of an adap-

tive algorithm ranges from O(N) if the disorder is very limited up to the classical optimal

bound O(N log(N)). Publications on this topic mainly present theoretical results with a

small number of experimental studies (COOK; KIM, 1980; MCGLINN, 1989). One ex-

ception is Timsort (PETERS, 2017), an adaptive sorting algorithm with known efficient

implementations. We show experiments that compare our data structure to Timsort.
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3.3.2 Tree-Based Indexes

Another classical approach is to rely on a tree of linked arrays. The B-

tree (BAYER; MCCREIGHT, 1972) and its variations (BRODAL; FAGERBERG, 2003)

is probably the most common data structure for databases. The UB-Tree is a B-tree for

multidimensional data using space filling curves (RAMSAK et al., 2000). These struc-

tures are to our knowledge seldom used for in-memory storage with a high insertion rate.

They are competitive when data access time is large enough compared to management

overheads, often the case for on-disk storage. These data structures are cache-aware, i.e.

to ensure cache efficiency they require a calibration according to the cache parameters of

the target architecture.

The emergence of geospatial databases led to the development of a specialized tree

called a R-tree (GUTTMAN, 1984), that associates a bounding box to each tree node.

Several data processing and management tools have been extended to store geospatial data

relying on R-trees or variations of R-trees like the SpatiaLite (SPATIALITE, 2017) exten-

sion for SQLite or PostGis (POSTGIS, 2017) for PostgreSQL. Our experiments include

comparisons with both. Though such spatial libraries brought flexibility for applications

in the context of traditional spatial databases, their algorithms are not adapted to swallow

a large continuous stream of incoming data. Magdy et al. (2014) proposed an in-memory

data structure to query and update real-time streams of tweets. Initially called Mercury,

then Venus (MAGDY et al., 2016) and eventually Kite (MAGDY; MOKBEL, 2017) for

the latest implementation (Kite is benchmarked as well in our experiments). They rely

on a pyramid structure that decomposes the space into hierarchical levels. Periodically

the pyramid is traversed to remove the oldest tweets to keep the memory footprint bel-

low a given budget. This idea to rely on bounding volume hierarchies is also popular in

computer graphics for indexing 3D objects and accelerating collision detection (YOON;

MANOCHA, 2006). One difficulty in these data structures is to ensure fast insertions

while keeping the tree balanced. The data structure may also become too fragmented in

memory leading to an increase of cache misses. The partitioning criteria is usually based

on heuristics, but there is often no theoretical performance guarantees.

3.3.3 Cache-Oblivious Data Structures

Another direction that somehow lies in between the two formerly discussed ap-

proaches is to store all data into an array of size Θ(N) larger than the actual number
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of elements to store. The elements are spread in the array following a scheme that en-

ables efficient insertions and deletions while keeping efficient range queries. Itai et al.

(1981) were probably the first to propose such data structure. Bender et al. (2005) refined

it, leading to the Packed Memory Array (PMA). The main idea is that by maintaining

a controlled spread of gaps, insertions of new elements can be performed moving much

less than O(N) elements. The PMA guarantees that one element insertion only requires

O(log2(N)) amortized element moves. This cost goes down to O(log(N) for random

insertion patterns. Bender and Hu (2007) also proposed a more complex PMA, called

adaptive PMA, that keeps this O(log(N)) for specific insertion patterns like bulk inser-

tions. The PMA is a cache-oblivious data structure (FRIGO et al., 1999), i.e. it is cache

efficient without explicitly knowing the cache parameters. Such data structures are par-

ticularly interesting today as the memory hierarchy is getting deeper and more complex

with different block sizes. Cache-oblivious data structures are seamlessly efficient in this

context. Since a CPU and a GPU can share data structures, they become more complex.

Bender et al. (2005),(2007) also proposed to store a B-tree on a PMA using a van Emde

Boas layout, leading to a cache-oblivious B-tree. However, it leads to a complex data

structure with no known practical implementation. The PMA also has very few known

applications. Mali et al. (2013) use the PMA for dynamics graphs. Durand et al. (2012)

rely on the PMA to search for neighbors in particle-based numerical simulations. They

index particles in the PMA based on the Morton index computed from their 3D coor-

dinates. They also propose an efficient insertion scheme for batches of elements, while

Bender relies on single element insertions. In this work, we propose to extend the PMA

for in-memory storage of streamed geospatial data.

3.3.4 Visual Analytics Data Structures

Several data structures were proposed recently for the visual analysis of big

data. A common theme is the idea of pre-computing aggregations in datacubes pro-

posed by Gray et al. (1997). Representative work include imMens (LIU et al., 2013),

nanocubes (LINS et al., 2013), hashedcubes (PAHINS et al., 2017) and Gaussian

Cubes (WANG et al., 2017).

The idea behind these systems is to offload records from tables in a database and

create several pre-defined summaries called the datacube. To allow interactive exploration

of the dataset, these summaries are optimized to fit in main memory and the aggregation is
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driven by the display resolution used in the visualization. Notice that these data structures

therefore don’t store the raw data, once a subset of keys (dimensions in the datacube)

are fetched from the database, only the pre-computed summary results are available for

exploration. In general, the summaries are a count on the aggregated keys.

While the goal it to support interactive exploration on static datasets, the main

focus is to reduce the query latency and memory consumption to support larger datasets.

Updates due to insertions and removals of records are not possible and construction times

are usually too long to afford on-demand reconstruction of the aggregations (LINS et al.,

2013; PAHINS et al., 2017).

The PMQ data structure extends the visual queries described in their work to

streaming data. The main difference is that, instead of pre-computing aggregations, we

maintain the raw data in a dynamic <key-value> store coupled with a spatial index. Ad-

ditionally, we support true ad-hoc queries like aggregations that are performed on-the-fly

over a time-window on the stream. We present an interface based on the PMQ that pro-

vides the same kind of heatmap visualization on a live stream instead of on a static set of

records.

3.4 The Packed-Memory Quadtree

In this section, we introduce the PMQ, our proposal of a data structure for sup-

porting spatiotemporal queries in streaming data.

3.4.1 Overview

The PMQ uses a PMA to store the streaming data, and a quadtree with its as-

sociated Z-ordering for indexing and sorting the data. Our proposal is inspired by the

connection between quadtrees and the Z-ordering established by Bern et al. (1993). They

show that the Z-ordering is equivalent to the ordering produced by a depth-first traversal in

a quadtree. We combine this idea with the self-reorganization capabilities of the PMA to

keep the stream of incoming data well sorted. The Z-ordering provides a one-dimension

index used to sort the data into the PMA. It guarantees that the data records contained

within the region of any quadtree node are stored contiguously in the PMA array, and

thus support efficient range queries. We sort data in the PMA first by z-index and next by

data timestamp.

We developed two versions of PMQ: an explicit (Section 3.4.3) and an implicit
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Figure 3.4: PMQ data structure: Example of Packed-Memory Quadtree storing 9 el-
ements spread in space as depicted in (a). The explicit PMQ has a quadtree as the one
in (b - top). The elements are actually stored in the PMA array on (b - bottom), sorted
according to their Morton index (key). Each quadtree node stores an index of the first
and last PMA segment that contains elements under its sub-tree (noted as beg-end next to
each node). A quadtree node is split down to the deepest level a soon as it contains at least
one element. Notice that the quadtree cells are not necessarily aligned with segments. For
instance the cell 030 (index build reading from root to leaf) contains two elements stored
between segments 0 and 1 respectively. The implicit PMQ consists only in the PMA array
(b - bottom) and search for a cell content is performed directly through a binary search
for its Morton index.
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one (Section 3.4.2). The explicit PMQ combines a PMA with a pointer-based quadtree

(Figure 3.4(b)). The quadtree creates an index that associates quadtree nodes to intervals

in the PMA that store the corresponding data. Since quadtree cells and segments might

not align, each quadtree node saves a delimiter index to the first and last PMA segment

(beg and end, respectively) that contains its data. Because segments always contain empty

gaps, we insert new data in the quadrant without having to change its indices. Of course,

when an insertion violates the density thresholds, rebalancing is required and the delimiter

indices need to be updated. The search for all elements inside a quadrant requires an extra

cost of identifying the elements in the PMA between delimiter indices that do not belong

to the expected cell. It suffices to do a sequential scan in the PMA between beg and end.

Since the region defined between the delimiter indices may contain elements outside the

desired quadrant, we compare the Morton codes of the quadrant with the keys in the PMA

until we find the first element that is inside the quadrant of the query node. Similarly, we

find the last valid element on the end segment.

The implicit PMQ does not store a quadtree. While this approach saves on the

maintenance costs of the quadtree, it also makes the search more expensive. To find the
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elements contained in a given quadrant (aligned to the quadtree partitioning), we compute

the Morton code Q of this quadrant and search in the PMA for the keys starting with the

prefix Q. This search is facilitated by the z-curve ordering. We can compute the first

and the last keys in this quadrant by padding ,respectively with zeros and ones, the least

significant bits of the prefix codeQ up to the keys’ length (64 bits in our implementation).

Because the keys are ordered in the PMA, we perform two binary searches for the first and

last key to find the extremities of the range that contains the elements in the quadrant Q.

For instance, in Figure 3.4 all the keys in quadrant 0 of the first level of the quadtree, start

with the prefix 0xx (keys: 000, 002, 030, 030, 032, 032), and every key with this prefix

is in quadrant 0.

The PMQ is designed to support two main operations: insertion to integrate the

data stream and search to answer the queries. Queries are detailed in Section 3.5. Only

the insertion operations require writing into the PMA. Because we also need to comply

with a given memory budget, the PMQ needs a protocol to flush the oldest data away,

to a persistent storage, for instance, keeping only the most recent records. Instead of

progressively removing data at each insertion, we adopt a lazy approach in which we only

trigger memory stashing when an insertion is about to overflow the PMA (density at the

root of the PMA goes over the τh threshold).

3.4.2 Implicit PMQ

We first detail the insertion operation for the implicit PMQ. We perform batch

insertions as described by Magdy et al. (MAGDY et al., 2014; MAGDY et al., 2016).

Consider a PMA of size P , containing N sorted elements stored in its array such that

all density bounds are satisfied. The PMA that we use behaves exactly as presented in

Section 3.2.1. Let Ins be the array containing a batch of I elements to insert in the

PMQ, and a deletion condition rm(x) that returns true if x can be removed. The algo-

rithm (see Algorithm 3.1) starts at the topmost window of the PMA (the full array) by

checking if the density would be violated after inserting the I new incoming elements

(N + I > τhP ). Two possible paths follows, one where the PMA is close to full (Sec-

tion 3.4.2.1) and the other where elements can be accommodated in the current available

slots (Section 3.4.2.2).
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3.4.2.1 Insertion with memory stashing

In the classical PMA, an overflow of the maximum density always requires the

reallocation of a new array twice its size. In our PMQ, we first try to free some space

by running a stashing procedure that checks and removes elements based on a predicate

(rm(x)) prior to any redoubling operation. The PMQ is scanned counting the number

of elements D satisfying the remove predicate rm(x) (Line 6). We then check again the

density bounds taking D into account (N + I −D > τhP ). Note that it may happen that

the number of elements to remove is such that the density of the array drops below the

lower bound (N + I − D < ρhP ), case where the array is halved. In every case (when

the array size is halved, doubled or left unchanged) the array content is rebalanced while

performing the insertions and deletions, and evenly spreading elements into the array.

Note on remove predicate rm(x) : the remove predicate is used to limit

the maximum amount of data that the PMQ keeps in memory. Often, the

condition to remove elements is based on a difference of timestamp to keep

only the records that arrived in the last T time units. Memory consumption

can then be controlled by setting T based on the arrival rate of the data stream.

In practice the PMQ self-stabilizes: it doubles its size until reaching a steady

state where insertions and removal equilibrate.

3.4.2.2 Standard Recursive Insertion

In case where the density bound was already respected at the topmost window

(N+I < τhP ) (Line 5), we follow the insertion process presented in Section 3.2.1. We do

not delete any element since we have the guarantee that the array contains sufficient empty

gaps to insert the new elements. The algorithm enters a recursive procedure (Line 15 on

Algorithm 3.1) starting at the root of the PMA, splitting the window in two and checking

the densities of both sub-windows. Let us call Nl the number of valid elements in the

left window and Nr the one on the right-hand side. We identify the first valid element p

of the right window. We partition the elements of the arrays Ins such that all elements

smaller than p are packed on the left array Ins l while the remaining elements are on the

right array Insr. We check the new expected density on each of the left and right windows

against the threshold τj , Nl + Insl < τjPl and Nr + Insr < τjPr, where j denotes the

window level. If an overflow happens at this level, we rebalance the elements across both
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Algorithm 3.1 PMQ algorithm for batch insertions (Ins) with supression condition
(rm(x)).

1: procedure INSERTBATCH(PMA,Ins ,rm())
2: P ← capacity(PMA)
3: N ← size(PMA)
4: I ← size(Ins)
5: if N + I > τhP then
6: D ← count_if(P, rm())
7: if N + I −D > τhP then
8: double_and_remove(PMA, Ins , rm())
9: else if N + I −D < ρhP then

10: halve_and_remove(PMA, Ins , rm())
11: else
12: remove_and_rebalance(PMA, Ins , rm())
13: end if
14: else
15: recursive_rebalance(PMA, Ins);
16: end if
17: end procedure

windows while inserting the elements from Ins . Otherwise, the densities are respected

for both windows and we recursively proceed on each sub-window of level j − 1. We

have the guarantee that all sub-windows down to segments at level 0 satisfy their density

bounds since densities are less constraining as the window size decreases

If the process goes all the way down to the segments without violating any thresh-

old, the rebalance is directly performed by inserting the elements in the correct order.

Note that when performing a rebalance or an insertion in a segment, we always keep the

elements sorted based on their z-curve index and insertion timestamp. As the sorting in

the rebalance procedure is stable, the only requirement is that the elements of the Ins

array are ordered by arrival time (which is the natural order in a real-time stream). If no

element from Ins needs to be inserted into the considered window, the recursion stops for

this window.

The implicit PMQ has the PMA worst case complexity of O(log2(N)) amortized

element moves per insertion (see (BENDER et al., 2005; BENDER; HU, 2007) for the

proof). This algorithm is elegant as the reorganizations (rebalances) are automatically

triggered when needed. No heuristic is needed to decide when to split a node or when to

trigger a deletion as in (MAGDY et al., 2014; MAGDY et al., 2016). Memory allocations

are only needed when doubling or halving the array.
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3.4.3 Explicit PMQ

The PMA of the explicit PMQ is managed exactly like the one of the implicit PMQ

presented before. However, the explicit PMQ has an additional quadtree structure that

needs to be updated during insertions to address the correct segments in the PMA (Fig-

ure 3.4(b)). The advantage of the explicit PMQ is that rebalances often operate on small

windows while large rebalances are less frequent (O(log2(N) rebalanced elements per

insertion on average). Therefore, we only need to perform local updates in the quadtree

index. Keeping such index on a dense array is impracticable as any insertion array would

invalidate all the following positions.

We present here how we update the quadtree. If a rebalance of the full PMA

is required, we recompute the quadtree from scratch. Otherwise we update the existing

quadtree as follows. First, for each new element, we build the corresponding sub-tree

down to the deepest level by recursively splitting the quadrants (see Figure 3.4). If the leaf

node does not exist, we allocate a new node and insert the element in the PMA. Whenever

a rebalance happens in a window of the PMA, we mark as invalid all previous PMQ

indexes referring to segments in this window. Therefore, the nodes in the corresponding

sub-tree of the PMQ must have their delimiter indexes updated. We start by updating

the leaves of this sub-tree. We scan the rebalanced window looking for the first and last

appearance of the Morton code (i.e. the key) of each leaf node. We respectively update the

delimiter indexes in each node. After the leaves were updated, these values are propagated

back to the parents by return value of the recursive call. The beg and end indexes of the

parent node are assigned with the corresponding delimiter indexes from its first and last

child respectively.

3.5 PMQ Interface for Interactive Tweet Exploration

In this section we demonstrate the usage of our PMQ data structure in a tool for

interactive exploration and visualization of a live stream of tweets. The system stores

records of geo-located tweets with text and additional metadata information (like device

and language) which can be queried through the visual interface. The interface displays a

global view of the concentration of twitter posts by region using a heatmap representation

and allows interactive zooming and selection on sub-areas (Figure 3.5). In the follow-

ing sections, we describe three types of interface queries implemented and how they are

processed by the PMQ data structure.
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Figure 3.5: PMQ interface: A Twitter stream is consumed in real-time, indexed and
stored in the Packed-Memory Quadtree data structure. A : A live heatmap is built to
visualize the tweets in the current time window. B : Alerts are displayed on the interface
indicating regions with high activity of Twitter posts at the moment. C : The interface
allows to zoom into any region and issue queries on the current data. D : The actual text
records can be retrieved from the Packed-Memory Quadtree to analyze what the tweets
are saying in the region of interest.

A

B

C D

3.5.1 Heatmap Queries

The visual interface of our system relies on a heatmap view continuously updated

based on the content stored in the PMQ (see Figure 3.5 A). We use the same tiling scheme

of most map services on the World Wide Web. For instance in OpenStreetMaps1, tiles are

represented by coordinates (x, y, z). Coordinate z corresponds to the zoom level. For

instance a tile with coordinates (0,0,0) represents the entire world map, whereas a tile at

zoom 13 will map to the level of a village or town. Typically, each tile has resolution of

256× 256 pixels. For a given tile with coordinates (x, y, z), a heatmap query on the PMQ

must return an array with 2562 aggregated counts, one for each pixel of the tile. The query

algorithm traverses the PMQ quadtree down to level z and gets the quadrant indexed by

(x, y). This quadrant maps to a range in the PMA. Because the tile is a square of side 28,

the algorithm further refines this quadrant to depth z+ 8, which results in 2562 quadrants.

At this point we count, in the corresponding ranges of the PMA, the number of tweets

grouped by quadrants into 2562 bins.

Notice that we only count elements, since actually reading their values is not nec-

essary. Therefore, instead of a normal scan on the array, the counting algorithm leverages

an existing internal auxiliary data structure of the PMQ that keeps the count of elements

per segment (implementation details are discussed later in Section 3.6).

1<http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames>

http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
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3.5.2 Range Queries

A range query is a spatial query that requests all elements stored in a given rect-

angular region (Figure 3.5 C). We define a range query by specifying the corners of a

bounding box in the map. Given a range query, we have to access the PMQ to retrieve

all records within the rectangular region. We return the result to the application for any

post-processing of this information. In our interface, we currently just display a subset of

the results (e.g. a fixed number of tweets – Figure 3.5 D). Unlike heatmaps, which queries

the PMQ using a fixed resolution grid, the range query can define any arbitrary rectangu-

lar region and the result is a single list of elements contained in the area. Therefore, we

need to find the coarsest quadrants in the quadtree that exactly match the bounding box of

the range query. We use the traditional region quadtree intersecting algorithm to compute

the minimal disjoint set of quadtree nodes contained in the query region (SAMET, 2005).

Once the set of quadtree nodes is found, we search where its elements are stored in the

PMQ. As explained in Section 3.4.1, in the explicit PMQ, this search is done by directly

accessing the positions in the PMA between the delimiter indexes. In the case of the im-

plicit PMQ, we compute the Morton codes for each node in the search set and perform

binary searches for keys with prefix matching these Morton codes.

3.5.3 Top-K Queries

The third type of query combines the temporal ordering with the spatial dimension

to find the top-k most relevant data according to a given spatiotemporal interval. It is

processed like the range query but filters the candidate values in a temporary priority

queue of size k.

Given a 2D point p, the top-k query finds the elements e with k lowest bestScore

values according to a score function (Equation 3.7). The search space of the top-k queries

can be reduced using the bounding parameters R and T , for spatial and time boundaries

respectively. The parameter R defines a radius around p where records are going to be

ranked. In the same way, parameter T limits the oldest timestamp to consider in the

scoring function. The spatial and temporal scores are computed for the records returned

by a range query centered at p and 2×R wide. Both scores are then normalized between

[0, 1] (Equation 3.5 and Equation 3.6) and combined in a final spatio-temporal score using

the parameter α to balance whether spatial (α = 1) or temporal (α = 0) dimension is more

relevant (Equation 3.7).



66

spatialScore(e, p) =
distance(e.location, p)

R
(3.5)

temporalScore(e) =
NOW − e.timestamp

T
(3.6)

bestScore(e, p) = α× spatialScore(e, p)

+ (1− α)× temporalScore(e)
(3.7)

At the bottom level of the quadtree index, records (tweets) in the same cell (i.e.

with the same Morton code) are ordered based on their timestamp. The top-k search uses

the same refinement algorithm of range queries (Section 3.5.2) to find the records included

inside the bounding box of radius R centered at p.

When scanning the PMQ range, elements that are within R and T are inserted in a

priority queue of max-size k, ordered by the spatiotemploral score (Equation 3.7). Once

the priority queue gets filled with the first k elements, we start to use the worst score Ws

found so far to tighten the search boundaries R′ < R and T ′ < T . If Ws < α then

R′ ← (Ws/α) × R, and if Ws < α − 1 then T ′ ← (Ws/(α − 1)) × T . At every new

insertion on the priority queue, Ws is updated and boundaries are tightened. At the end of

the scan, the queue contains the resulting elements of the top-k query.

3.6 Implementation Details

We implemented the PMQ in C++. Each element has a 64-bit key representing

the spatial index plus a fixed-length value for storing additional information. We describe

below our choices for the microblog content in the Twitter dataset. We use a quadtree

with fixed depth of 25 levels of refinement, which requires a 50-bit length Morton code

for the index. The choice of microblog content to consider depends on the application

needs. If only the metadata is required, we use a 32-byte struct to store latitude, longitude,

insertion timestamp, and identifiers of device, application and language. If the full tweet

text is required, we use a 156-byte struct to store latitude, longitude, timestamp and a

140-bytes string.
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The segments have a fixed size of eight elements. We depart from the original

PMA that have segments of size Θ(logN) because we found no significant performance

benefit in increasing the segment size with the array size. Fixed-size segments also make

it easier to maintain segments aligned with the cache lines, a parameter that does not

change across the cache hierarchy and that is often equal among a large family of pro-

cessors. The PMQ is still oblivious to the cache sizes. Elements are packed at the left

of a segment while leaving empty gaps on the right, as in Figure 3.1. We experienced

a significant performance difference when scanning the full array compared to having

gaps spread at any place in segments, which requires checking the valid elements inside

a given region. Compact segments lead to a more regular access pattern that is friendly to

low-level optimizations, such as prefetching.

In addition to the PMA array, we use an auxiliary array to store the number of

valid elements in each window. This array starts at the segment level and moves up to

the full array. We update it during insertions and deletions. The auxiliary array is used to

estimate window densities or to speed up queries. We use this array when counting the

valid elements in a given interval (in heatmap queries for example).

Before we rebalance a given window of the PMA, we copy the data to a temporary

array. An in-place implementation is possible that leverages the existing empty gaps in

the segments, as well as the space that becomes available in the insertion array once we

merge the elements into the PMA. This implementation is more delicate but enables us

to save memory space. The PMQ density thresholds were set to ρ2 = 0.3, ρ0 = 0.08,

τ2 = 0.7 and τ0 = 0.92 which led to good performance. We found the PMQ performance

not too sensitive to these parameters except at extreme values.

3.7 Performance Evaluation

In this section we conduct a series of benchmarks to evaluate the performance of

the PMQ. We start by a preliminary comparison on Section 3.7.2 to confirm our hypoth-

esis that standard database solutions together with their extensions to geospatial data are

not adapted to stream processing. Following these preliminary conclusions, database so-

lutions were judged not competitive and therefore removed from the further benchmark

comparison presented from Section 3.7.3 to Section 3.7.5

The preliminary analysis also let us have a first insight about the scalability and

bottlenecks of the PMQ implementation. This led us to propose the more "light weight"
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version of the PMQ - the implicit PMQ (described on Section 3.4.2) which was then added

to the comparative analysis.

3.7.1 Experimental protocol

The dataset used in our benchmarks consists of geolocated tweets collected with

the Twitter API between November 2011 and June 2012 over the United States. The

dataset has a total of 210.6 millions tweets. We simulate an incoming stream of tweets by

grouping them into batches of fixed size and iteratively inserting it into the PMQ. In the

experiments with variation of the tweet arrival rate, we modify the streaming by changing

the size of the batches inserted at each step of the simulation.

Time is measured for each batch insertion. Depending on the data structure, time

is broken down into two operation, index update and container insert. The total insertion

time is, therefore, the sum of both running times except for the implicit PMQ, which does

not have an index structure. In this case, the total insertion time is equal to the container

insert operation.

The benchmarks were run in a dedicated Linux machine with an Intel R©CoreTM i7-

4790 CPU @ 3.60GHz with 24GB of main memory. Code is compiled with GCC v5.4

and -O3 compilation flags, and does not explicitly use any parallel processing capability.

3.7.2 Standard Database Solutions

In this section we start by conducting a set of experiments to evaluate three differ-

ent storage solutions for spatial data, namely:

Spatial databases: Opensource databases with geospatial library extensions – SQLite

+ SpatiaLite and PostgreSQL + PostGIS. SQLite uses in-memory storage, while

PostgreSQL uses disk.

Dense vectors with quadtree index: Pointer-based quadtree index on a dense C++

std::vector. Spatial ordering of elements in the container is maintained us-

ing two sorting algorithms – the C++ std::sort() implementation from GNU

GCC libstdc++, and the C++ TimSort adaptive sorting algorithm (GORO,

2017).

Explicit PMQ: The Packed-Memory Quadtree with an explicit pointer-based index de-

scribed in Section 3.4.3.
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Figure 3.6: Performance comparison of spatial data management solutions. top row:
Standard geospatial databases cannot handle real-time insertions. bottom row: In-
memory containers based on dense or sparse (PMQ) vectors indexed with pointer-based
quadtrees.
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This set of benchmarks gives an insight about the scalability of insertion and query

operations of the solutions above. The different data structures are initially empty and

increase their size as elements arrive in batches of 100 tweets. We measure the insertion

time of each batch, which includes the time for updating the index and physically storing

the data into the storage container. We also measure the latency for accessing data from

the storage. After each batch insertion, we query all elements indexed by the data structure

(Figure 3.6 right).

Insertion time has two major operations: Index Update - to insert the key of the

new elements in the indexing structure (Figure 3.6 left); and container insert - to insert

and reorder the records in the data structure (Figure 3.6 middle). As can be seen, even

with a small number of elements, the database solutions have poor scalability. While

PostgreSQL uses disk storage, it spends most of the time optimizing index and physically

reordering elements on disk. SQLite, on the other hand, seems to have a less efficient in-

dexing strategy than PostgreSQL. It spends less time on indexing and insertion operations,

but pays a significant cost to access the data (Figure 3.6 right), even if stored in-memory.
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None of the database solutions are suited to the real-time latency requirements of update

and read operations.

For both in-memory solutions, insertion latency is dominated by the index update

operation, which is one order of magnitude larger than container insert. The spikes on

the PMQ benchmarks correspond to doubling the array size when the PMQ reaches the

maximum density. However, the sparse storage of PMQ allows to reduce the time on

index update when compared to the dense vectors (Figure 3.6 bottom-left). Finally, notice

that the PMQ pays a small overhead compared to dense storage scheme when querying

elements (Figure 3.6 bottom-right). This is an expected overhead caused by the extra

management and memory transfers required by the empty slots (gaps) in the PMA.

3.7.3 PMQ Insertions

In the previous experiments, we observed that the index maintenance (index up-

date operation) on quadtrees was significantly slower than the actual data insertion (con-

tainer insert). This observation inspired the creation of the implicit PMQ, which trades-

off the high cost of quadtree maintenance by slightly slower queries based on range

searches.

Insertion on the PMQ is analyzed by breaking it down into two operations:

• Index Update - responsible for inserting the key in the quadtree index.

• Container Insert - responsible for storing the records ordered into the storage array.

We simulated the insertion of 1 million tweets inserted in batches of 100 elements

at each step of the simulation. Figure 3.7 presents the insertion time of the Explicit PMQ

and its dense-vectors counterparts. As shown, the total insertion time is dominated by

index update, which is several orders of magnitude larger than container insert in all of

the three methods. We note that the index update operation in dense arrays is much slower

than on the PMQ (Figure 3.7 left). One explanation for this low performance is the fact

that every insertion in a sorted dense array invalidates most of the pointers in the index. In

practice, this is equivalent to a full index reconstruction. On the other hand, a sparse array

like the PMA has more flexibility while performing local updates, which greatly reduces

the average insertion time. However, we observe that worst-case insertions happen on the

PMQ (clearly seen in the spikes in the PMQ benchmark in Figure 3.7). These insertions

require global rebalance operations that resize the PMA, thus invalidating the full index.

With the Implicit setup, insertions on the PMQ and Dense container do not per-
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Figure 3.7: Insertions with Explicit index: total insertion time accounts for the index
update plus container insert operations. 106 elements are inserted by batches of size 100.
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Table 3.1: Insertions with Implicit index: total insertion time is reduced to the container
insert operation (Figure 3.7 middle). Mean batch insertion time of 104 batches.

Sorting Algorithm Mean (ms) Max. (ms) Total Time (ms)
PMQ / Implicit 0.154 41.560 1543.454
Dense / TimSort 3.725 7.866 37251.072
Dense / std::sort 30.320 74.240 303187.010
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form the costly index update operations. Therefore, the performance is dominated by the

container insert alone, which depends on the algorithm used to maintain elements sorted

after a batch insertion. Table 3.1 summarizes the insertion time in implicit setups with

different order maintenance strategies. The values presented actually correspond to the

time spent on the container insert operation (Figure 3.7 middle). As shown by the mean

batch insertion time on Table 3.1, the implicit PMQ outperforms the dense array solutions

by at least one order of magnitude.

3.7.4 Temporal Deletions

In streaming data, the amount of records is in unbounded by definition. Therefore

the data structures must be able to evict elements when the storage capacity is depleted.

The PMQ supports a lazy deletion protocol. Removals work with the concept of a time

horizon T which removes elements arrived more than T time units in the past. We note

that removal happens only periodically at the rebalance operations, details of this algo-

rithm are explained in Section 3.4.2.

In the set of experiments that follows, we perform insertions on the implicit PMQ

under a regime of fixed time horizon. At each timestep one batch is inserted. For conve-

nience we stipulate that a simulation timestep is equivalent to one second. This way, an

insertion rate of 1000 Tweets/sec means a simulation with one batch of 1000 tweets in-

serted by timestep. The timestamp of every tweet is set to be the Id of the batch by which

it was inserted. We evaluate the scalability of the data structure varying two parameters,

time horizon T (Section 3.7.4.1) and insertion rate (Section 3.7.4.2).

3.7.4.1 Time Horizon Variation

In Table 3.2 we simulate a twitter insertion rate of 1000 tweets per second. We

present the average insertion time in the PMQ after reaching the steady phase, i.e after

elapsed T time steps of the simulation. At this point, whenever the max capacity of the

PMQ is reached, tweets older that T time units are removed. Note that during this steady

phase, tweet removals neither lead to halving nor doubling the PMQ size. In this phase,

the amount of tweets in the PMQ grows from Eltsmin to Eltsmax as shown in Table 3.2.

The Max column corresponds to the insertion operation in which the capacity of the

container is reached and consequently triggers the rebalance procedure with elements

removal. Although this is a slow procedure, taking up to one second, it happens rarely
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Table 3.2: Insertion time varying time horizon: Batches of 1K elements are inserted in
an implicit PMQ. The amount of element in the container varies from Eltsmin to Eltsmax.

T Eltsmin Eltsmax Mean(ms) 99th pctl. Max(ms)
3h 10.8 ∗ 106 11.74 ∗ 106 1.209 1.066 265.613
6h 21.6 ∗ 106 23.48 ∗ 106 1.310 1.134 554.971
9h 32.4 ∗ 106 46.97 ∗ 106 1.278 1.587 1007.040
12h 43.2 ∗ 106 46.97 ∗ 106 1.423 1.321 1045.950

Table 3.3: PMQ remove procedure: duration of the removal operation (ms); capacity of
the PMQ (number of slots); number batch insertions between removals (steady period).

Batch size 250 500 1000 2000 4000 6000 8000
Time (ms) 136.97 259.33 554.97 1034.65 2092.26 3961.14 4194.38
PMQ capacity 8× 220 8× 221 8× 222 8× 223 8× 224 8× 225 8× 225

# Batch ins.tions 1889 1889 1889 1889 1889 9718 1889

enough as shown by the 99th-percentiles. Additionally, notice that the mean execution

time is much smaller than the target 1-second time step meaning that there is enough

slack in the system to support an insertion rate of 1000 tweets/sec.

3.7.4.2 Variable Insertion Rate

When the time horizon is kept fixed, the size of the storage used in the PMQ will

depend on the arrival rate of the stream. We simulate a scenario of a PMQ with a fixed

time horizon of 6 hours (i.e. T = 21600 time steps) and show how the insertion time

varies with the increase of the insertion rate. For each experiment we doubled the batch

size between 250 and 8000 elements. Figure 3.8(a) shows the insertion time variation after

the PMQ reaches the steady phase. In this picture, after the timestep t = 21600, removal

operations will be triggered periodically every 1889 timesteps. The variation shown in

this picture represents a period of a cyclic behavior, where the average time is presented

by the horizontal dashed lines. The amount of elements in the PMQ increases from time

step t0 = 21600 to t1 = 23489 by an amount of Batch size per time step. At t1 + 1 the

removal procedure takes place and all the elements inserted before told = (t1 + 1 − t0)
are removed. Notice that during the period between t0 and t1 the PMQ capacity stays

constant. Table 3.3 presents, for each configuration of batch size tested, the execution

time of the removal operation and the actual size of the PMQ array (capacity) and number

of batch inserted between two removal operations.

The capacity of the PMQ increases exponentially, only doubling when the cur-
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Figure 3.8: Insertion performance during steady phase of the PMQ
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rent capacity is reached. We separately compare the insertions using two different batch

sizes (6000 and 8000) that result in same PMQ capacity. The PMQ with smaller inser-

tion rate (6000 Tweets/timestep) will last a longer "steady" period between two removal

operations (see # batch insertions on Table 3.3). The boxplot on Figure 3.8(b) summa-

rize the distribution of the observed insertion times at each timestep during the steady

period. The central rectangle spans the interquartile range (IQR). The red diamond in the

center presents the average insertion time. The triangles denotes the "suspected outliers"

which are in fact insertions happening a few time steps before the removal procedure is

triggered, when the PMQ is almost full. These operations are expected to be slower than

the average because the array is becoming denser and thus insertions will spend more

time rebalancing elements over wider ranges of segments. Notice that the presence of

outliers is not problematic, as the average time is very small, slower operations (even

the removal ones) are amortized in the next batch insertions. In practice the system is

very efficient and supports insertion rates well above the streaming rates of real systems.

For instance the current average number of Twitter posts per second, worldwide, is 6000

tweets (STATS, 2017). The PMQ supports this amount of insertions under 8 ms, which

represents a theoretical rate of 750.000 tweets per second.
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3.7.5 Range Queries

In this section we analyze the range query performance. The user interface enables

standard map navigation, like vertical and horizontal panning and zooming. A heatmap

is overlayed on top of the map and shows the aggregated count of tweets per pixel. Addi-

tionally, a selection tool allows to query rectangular areas in the map to retrieve the twitter

post for further inspection.

Range queries performance is influenced by two factors:

• The size and location of the selected area: for a given selected rectangle the algo-

rithm must find the intersecting quadrants with the quadtree.

• The amount of data currently lying inside the selected area: each quadrant iden-

tified in the quadtree translates directly to a sequential scan on PMQ array. More

populated areas will have longer scans.

To analyze the performance, we run a sample query centered at the coordinates

of the Central Park, NY, and varied the radius of the selection from 1 to 400 KM (as

illustrated in the usecase of Figure 3.12). At the time of the queries execution, the PMQ

contained 21.6 M of tweets. We repeated this query three times and reported the mean

execution time with standard deviation on Figure 3.9. This amount of repetitions showed

to be sufficient for our analysis and no more repetitions were required.

As expected, the implicit PMQ search pays a small overhead compared to the

other approaches using an explicit quadtree index. Notice that the difference between

implicit/explicit is larger in the case of the count operation than on the read one (respec-

tively, left and right plots of Figure 3.9). This is due to the fact that count operations

in the PMA are done using the same internal structure used for controlling the density

thresholds of the PMA segments. This operation is relatively fast and therefore the cost of

this type of query is dominated by the quadtree refinement algorithm. The refinement is

faster done with the Explicit index than with the Implicit PMQ algorithm, which requires

several binary searches in the array to find the quadrants.

In the read operation, the time used to scan sequences of records from mem-

ory plays a significant role in performance, consequently the three approaches have a

more similar running time. As expected, the Dense Vector/TimSort implementation is

the fastest one because it does not have the overhead of scanning empty gaps like on the

PMA. Nonetheless, the time for reading the actual tweets with the PMQ lies below 30 ms

acceptable for real-time analysis.
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Figure 3.9: Range Query: performance comparison between dense vector approach vs
sparse vector (PMQ). R = radius of the square region being searched.
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3.7.6 Top-K Performance

We compare the performance of top-k queries implemented on top of our implicit

PMQ against the Kite framework (MAGDY; MOKBEL, 2017). We generated 10K top-

k queries from the check-in locations of the Brightkite social network. This dataset of

check-ins is publicly available in Leskovec’s Stanford Large Network Dataset Collection

(LESKOVEC; KREVL, 2017). The queries we generate correspond to users, in a giving

location, trying to find the most relevant tweets nearby.

At the moment of execution of the top-k queries, there were 10M tweets stored

in PMQ. For each query, we measured the latency of accessing the storage array and

computing the top-k elements. The top-k ranking function (Section 3.5.3) used the default

parameters values K = 100 , R = 30 km and T = 10000 seconds. Temporal and spatial

scores in the PMQ were balanced with α = 0.2 . Kite does not offer a balancing parameter

for the temporal and spatial dimensions, their ranking function consider all the elements

within radius r and score them according to the temporal dimension.

In Figure 3.10 we summarize the execution time of the 10.000 different queries

executed. Queries were divided in bins of a cummulative histogram, which shows the
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Figure 3.10: Top-K Queries: cumulative percentages of query latency for K = 100 , R=
30 km and T = 10000 seconds. We compare the search performance of the implicit PMQ
against the Kite framework.
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amount of queries answered under a given latency limit. The PMQ is able to answer 90%

of the queries in less than 4 ms while Kite can only process 3% of them. Kite uses a regular

grid as a spatial index. Since a grid of fixed resolution cannot adapt to the distribution the

data, Kite does not perform well under common scenarios of streaming datasets.

3.8 Closing Remarks on Performance

Packed Memory Arrays have a complex performance behavior to be analyzed.

Usually, its performance is measured in terms of amortized running times. However, one

of their main characteristic is that its operations have variable running time (by a constant

amount) and depends on the relative occupation of the storage array. Nonetheless, we

have show that average insertion time is well suited for the real-time constraints.

In a real streaming system, the insertion rate is usually subjected to some variations

and burst of tweets are likely to happen. In the case of an increase of the stream rate, the

PMQ will naturally resize itself. Alternatively, to keep a same storage size, the time

horizon (T ) could be parameterized proportionally to the stream rate.
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Figure 3.11: Dynamic heatmap: The heatmap on the interface is updated dynamically
as the stream of tweets is received. With an average insertion rate of 1000 tweets/sec
we show the heatmap at different timesteps, when the PMQ contains 1M (top) and 10M
(bottom) elements.
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Figure 3.12: Range queries: Heatmap zoom and range queries are used to explore the
latest streamed tweets. The in-memory storage of PMQ provides fast access to the actual
tweets’ content allowing real-time user interaction even on large range queries (R = radius
of the selected area).

a) R = 400 km b) R = 200 km c) R = 1.6 km

3.9 Use Cases of Interactive Exploration

We present an example of the interactive exploration of tweets enabled by the

PMQ and its user interface. The PMQ allows to keep in main memory several hours of

the last arrived tweets, filling the gap between stream processing engines working only on

a small window of the stream, and classical solutions based on a persistent storage. The

heatmap enables to display the aggregated count of tweets posted over the last hours.

In Figure 3.11 we simulate a system consuming a stream of 1000 tweets per second

with a time horizon of 6 hours. The PMQ is able to index each new batch of 1000 tweets

and keep all the elements sorted in less than 1.5 ms on average. The slowest performance

peaks, caused by the removal procedure, take about 1 second as shown previously on

Table 3.2. Notice that the PMQ and the user interface are implemented in two separate

process, therefore the interaction fluidity is not affected by the longer removal operations.

The PMQ performance is good enough for keeping up with the stream update rate and

supporting the visual queries.

The interface allows the user to zoom into the heatmap or to perform range queries.

We display the tweets inside the selected areas in a separate text area next to the map. Fig-

ure 3.12 shows the combined use of heatmaps and range queries at different zoom levels

over New York. The user can interactively zoom until finding the desired information.

Additionally, we implemented a simple pre-processing of batches, before its insertion on

the PMQ, to trigger alerts in regions with a high percentage of tweets arrivals. Alerts

indicate areas with high tweet activity (Figure 3.13). Once an alert is triggered, the user

can further investigate it by interactively exploring the last received tweets. During ex-

ploration, one can also perform top-k queries to retrieve the top-most relevant tweets at a

given point.
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Figure 3.13: Top-k queries: Our system consumes an incoming stream of tweets and
displays them in a dynamic heatmap. Triggers configured by the user show alerts (yellow
squares) on regions with a high rate of Twitter posts. We zoom into the region of interest
and filter tweets using a top-k query. The interface shows elevated tweet activities at
several major US cities during the Super Bowl 2012. Zooming into Indianapolis and
performing a top-k query retrieve the most relevant tweets in the area.
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For instance, on February 5th of 2012 at 14:22 UTC, the system indicates a high

tweet activity over Indianapolis. Zooming into the alert zone and using range queries,

we observe that many people are at the Lucas Oil Stadium commenting about the Super

Bowl game. We set a top-k query at the stadium and configure on-the-fly (T, R and α) to

follow the most relevant tweets nearby. The filtered feed displayed on the right panel of

the interface shows tweets with information like the teams playing (New York Giants Vs

New England Patriots), or about the half-time show of Madonna (Figure 3.13).

3.10 Conclusion

We introduced PMQ, a new data structure to keep sorted the latest streamed data

that can fit in a controlled memory budget. The PMQ reorganizes itself when needed with

a low amortized number of data movements per insertion (O(log2(N))). Amongst the two

versions we proposed, the implicit and explicit PMQ, the implicit one proved to have the

best performance tradeoff between insertion and search times. Experiments demonstrated

that the PMQ enables to explore several hours of the latest tweets interactively.

The PMQ can maintain a significant amount of data in memory, filling the gap

between stream processing engines working only on small windows of received stream,

and more classical persistent storage solutions. One direction for improvement would be

to combine in-memory and persistent storage in a multi-level PMQ. The lazy stashing

protocol might not adapt to some needs, as old data may stay a long time (up to the next

top rebalance) before removal. We plan to develop a more reactive protocol for such situ-

ations. The current implementation uses the Mongoose library (MONGOOSE, 2017) for

handling multiple HTTP requests concurrently, but the PMQ was not designed to support

read (queries) and write (insertions) operations concurrently. To sort this out, we impose

that every operation must acquire a thread lock before accessing or modifying the PMQ.

All requests are thus performed sequentially limiting the volume of transactions the PMQ

can support. Algorithms for supporting concurrent operations in the PMA were proposed

in (BENDER et al., 2005). This work, however, is mostly focused on the correctness

aspects of the concurrency management. To our knowledge, no implementation or practi-

cal experiments were conduced. The support of concurrent and parallel operations in the

PMQ will be addressed in future works.
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4 FINAL REMARKS

Along the development of this thesis, we approached several application-specific

problems that derived into a more general one. In the quest of developing new efficient

parallel algorithms for physically based simulations we approached the problem of com-

puting a Voronoi diagram on a graph with grid-like topology (Chapter 2). We further

applied this algorithm to the computation of natural neighbor interpolation in the scope

of the Sofa project. A main characteristic of these algorithms is related to locality aspects

of their computation. The Voronoi diagram computation is based on local distance com-

putation from several seed points in the space. While these problems have good solutions

on static scenarios (FAURE et al., 2011), these solutions can hardly be used on dynamic

data were the locality relationship is constantly changing.

In another seemly unrelated field, big data and stream processing, the same prob-

lem is present: maintaining locality on dynamically changing data. The application prob-

lem, in this case, relates to the interactive exploration of spatial data, more precisely, a

stream of geo-localized feed from Twitter (Chapter 3).

Despite the different context of these problems, a common concern is to identify

the data structure that best handles dynamic modifications on data without compromising

locality. The Packed Memory Array is a data structure that targets this issue. Although

most literature about the PMA have proved that it shows good complexity bounds, a few

have actually performed experimental performance evaluations. Additionally, with the

continuous expansion of computing architecture with multiple processing units, there is

the need to parallelize these solutions to leverage the benefits of the current hardware.

4.1 Bibliographic Production

During the research work of this thesis, we made an effort for publishing into high-

venue conferences and journals. Regarding the specific contributions to field of physically

based simulations, we presented:

• Application of the parallel Graph Voronoi to compute the natural neighbor interpo-
lation method (TOSS et al., 2016):

Toss, J., Raffin, B., & Comba, J. (2016). Parallel Voronoi Computation
for Physics-Based Simulations. Computing in Science and Engineer-
ing, 18(3), 88–94. <http://doi.org/10.1109/MCSE.2016.52>

• The parallel computation of the Graph Voronoi Diagram (TOSS et al., 2014):
Toss, J., Comba, J. L. D., & Raffin, B. (2014). Parallel Shortest Path Al-
gorithm for Voronoi Diagrams with Generalized Distance Functions. In

http://doi.org/10.1109/MCSE.2016.52
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27th SIBGRAPI - Conference on Graphics, Patterns and Images (SIB-
GRAPI) (pp. 212–219). <http://doi.org/10.1109/SIBGRAPI.2014.1>

Another journal paper about the Packed-Memory Quadtree for streaming data was

submitted early this year but not accepted for publication in the IEEE Transaction on

Visualization and Computer Graphics. Reviews however were rather constructive. Ac-

cording to the reviewers, rejection was justified because the contribution presented where

more related to the databases community that to the visualization one. Following this

feedback, we are trying a submission targeting the Very Large Data Bases conference

(PVLDB’2018).

http://doi.org/10.1109/SIBGRAPI.2014.1
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