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Abstract 

In this thesis activated carbons from lignocellulosic biomass were prepared via microwave–

assisted pyrolysis, characterized and applied into the removal of Emerging Organic 

Contaminants (EOCs) in aqueous media. A scientific understanding of the three-step 

preparation of activated carbons (AC) using first-row transition metals as activating agents by 

microwaves heating is also provided. The mixtures obtained after preparation step were 

pyrolysed in a microwave system in less than 11 min. Afterwards a 6 mol L-1 HCl was used to 

treat the pyrolysed materials, under reflux, to eliminate the inorganic components—producing 

activated carbons. This technology allows producing activated carbons with high porosity. 

Elemental analysis, FTIR, UV-Vis DRS, SEM, N2 adsorption/desorption curves, TGA, XRD X-

ray fluorescence, pHzpc, hydrophobic properties, total acidity and basicity groups were used 

to characterise biomass, intermediary materials and activated carbons. Results showed that 

the metals were bound successfully in different amounts with surface functional groups of the 

wood biomass through ion exchange and surface complexation interaction during the 

impregnation step. However, MWAC prepared with Zn2+ showed higher pore volumes and 

surface areas, which was related to their high adsorption capacity (qe). The samples 

prepared with the mixtures biomass: inorganic components (20% lime + 80% ZnCl2 or 20% 

lime + 40% ZnCl2 + 40% FeCl3) at different ratios were used for the complete adsorption 

study of phenol (PhOH) and o-cresol from aqueous solution. Results indicated that 

adsorption kinetic was very fast and equilibrium contact time was attained in the first 10 min 

for both molecules. Pseudo first-order, pseudo-second order and Avrami fractional-order 

kinetic models were used to probe the kinetic of adsorption. Among the three models; Avrami 

fractional-order kinetic model best described the adsorption kinetics of PhOH and o-cresol 

onto the activated carbons. The main interaction of PhOH or o-cresol with the activated 

carbons should be governed by hydrophobic interactions, hydrogen bonds, polar interactions 

and electron donor-acceptor interaction. While desorption experiment showed that activated 

carbons can be regenerated easily using a mixture of EtOH (10 or 50%) + NaOH (5 M). 

Additionally, MWAC prepared with CuCl2, CoCl2 and NiCl2 also exhibited high adsorption 

capacity. The adsorption order of the molecules is as shown: 2-nitro phenol > Bisphenol A > 

hydroquinone > 4-nitro phenol > 2-naphtol > paracetamol > caffeine > resorcinol. However, 

ZnCl2 demonstrate to be the best activating agent, which allows for the development of 

materials of high porosity as well as good adsorptive properties, and this trend is followed 

subsequently by CuCl2, CoCl2, and NiCl2.  
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Resumo 

Nesta tese, carvões ativos (AC) oriundos de biomassa lignocelulósica foram preparados por 

pirólise assistida por microondas, caracterizados e aplicados na remoção de contaminantes 

orgânicos emergentes (EOCs) em meio aquoso. Foram estudadas as três etapas da 

preparação dos carvões ativos utilizando metais de transição  como agentes de ativação.  

As misturas obtidas após a etapa de preparação foram pirolisadas num sistema de 

microondas em menos de 11 min. Em seguida, utilizou-se uma solução de HCl 6 mol L-1 

para tratar os materiais pirolisados, sob refluxo, lixiviando os componentes inorgânicos e 

produzindo os carvões ativos. Esta tecnologia permitiu a produção de carvões ativos com 

alta porosidade. Análise elementar, FTIR, DR-UV, microscopia eletrônica de varredura, 

adsorção-dessorção de nitrogênio, TGA, DRX, FRX, pHpzc, propriedades hidrofóbicas e 

acidez e basicidade totais foram utilizados para a caracterização da biomassa, do material 

pirolisado e dos carvões ativos. Os resultados indicaram que os metais foram ligados em 

diferentes quantidades na superfície da biomassa através de interação iônica e interação de 

complexação superficial, durante a etapa de impregnação. Os carvões ativos (MWAC) 

obtidos a partir da impregnação com Zn2+ apresentaram maior volume de poros e maior área 

superficial específica. Esses dados foram relacionados com a capacidade de adsorção. 

Amostras preparadas com as misturas de biomassa : componentes inorgânicos em 

diferentes proporções (20% de cal+ 80% de ZnCl2 ou 20% de cal+ 40% de ZnCl2 + 40% de 

FeCl3) foram utilizadas para o estudo completo de adsorção de fenol (PhOH) e o-cresol. Os 

resultados indicaram que a cinética de adsorção para ambas as moléculas foi rápida e o 

tempo de contato em equilíbrio foi alcançado nos primeiros 10 minutos. Os modelos 

cinéticos de pseudo-primeira ordem, pseudo-segunda ordem e de ordem fracionária de 

Avrami foram utilizados para investigar a cinética de adsorção. Destes três modelos, o de 

ordem fracionária de Avrami descreveu melhor a cinética de adsorção de PhOH e o-cresol 

na superficie dos cavões ativos. As principais interações de PhOH ou o-cresol com os 

materias devem ser regida por interações hidrófóbicas, ligações de hidrogênio, interações 

polares e interação doadores e aceitadores de elétrons. Os estudos de dessorção 

mostraram que os carvões ativos podem ser regenerados facilmente utilizando-se uma 

mistura de EtOH (10 ou 50%) + NaOH (5 M). Além disso, o MWAC preparado com CuCl2, 

CoCl2 e NiCl2 também apresentou alta capacidade de adsorção. As capacidades de 

adsorção (qe) das moléculas seguiram esta ordem: 2-nitrofenol > bisfenol A > hidroquinona 

> 4-nitrofenol > 2-naftol > paracetamol > cafeína > resorcinol. Todavia, ZnCl2 parece ser o 

melhor agente ativador, permitindo o desenvolvimento de materiais de alta porosidade, bem 

como boas propriedades de adsorção, e essa tendência é seguida posteriormente por 

CuCl2, CoCl2 e NiCl2. 
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1. Introduction 

The current estimated global demand for activated carbons is 1.1 million tons per 

annum, increasing at a rate of 9 %/year, and expected to further increase to more than 10 

%/year over the next 5 years1,2. This fact has inflated the price of activated carbon on the 

market. The performance of activated carbon is influenced by surface area, pore volume, 

pore size distribution and surface chemistry, including oxygen-containing functional groups, 

degree of polarity and active surface area2. These properties are directly related to the 

physical and chemical properties of the precursor material, the type of the production method 

and conditions3.  
Finding an economical way of producing activated carbon, as well as understanding the 

key mechanisms involved in the process (impregnation and pyrolysis step), and production of 

highly porous materials are still outstanding challenges. Many studies have been performed 

on the development of low-cost activated carbons from various agricultural by-products or 

wastes, such as: sunflower seed hull and sugar cane bagasse4, wood chips5, cocoa shells6, 

pistachio shells7, cotton stalks8, corn shells9, pine corns10, corn cobs11, Elaeagnus 

angustifolia seeds12, barley husks13, wood sawdust14, orange peels15, etc. However, studies 

continuing to seek novel biomasses for the production of low-cost adsorbents and with high 

porosity.  

Conventionally, activated carbons are usually prepared through physical or chemical 

activation using a muffle furnace4,5,16,17. In these methods, heat is transferred to the samples 

by conduction and convection mechanisms. This thermal gradient leads to an 

inhomogeneous microstructure with a high heating rate18. As an alternative heating method, 

microwave irradiation has attracted considerable attention in recent years6,19-23. By using 

microwave heating, it is possible to produce activated carbon in a fast and easy way6,19-23. 

Due to the remarkable reduction in pyrolysis time, microwave-assisted pyrolysis has become 

an attractive alternative for the preparation of activated carbon. In this approach, microwaves 

supply energy to the carbon particles, which is converted into heat within the particles 

themselves by dipole rotation and ionic conduction. The microwave heating method has the 

advantages of rapid temperature rise, uniform temperature distribution and energy savings 

over conventional heating methods23.  

The common activating agents used during the carbonization process are FeCl316, 

H3PO4 17, KOH 19 and K2CO3 14,15. Generally, ZnCl2 and FeCl3 have proven to be excellent 

activating agents due their ability to develop narrow pore sizes and high surface areas of 

activated carbon24. As an activating agent, FeCl3 provides similar characteristics to ZnCl2, 

including the promotion of the dehydration process of biomass materials, the restriction of the 

formation of tars and the improvement of the carbon yield25. However, up to the best of our 
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knowledge, no study has been performed on the incorporation of CoCl2, NiCl2 and CuCl2, 

first-row transition metal salts into a wooden biomass (Entandrophragma cylindricum or 

Sapelli) structure and their effects on the physicochemical properties of the activated carbons 

produced via microwave-assisted pyrolysis. First-row transition metals have been 

successfully used in the catalysis industry for upgrading during the thermo-chemical 

conversion of biomass to bio-oil26-29. Likewise, only ZnCl2 and FeCl3 have been used 

extensively in the development of porous activated carbons4,9,10. However, CoCl2, NiCl2 and 

CuCl2 have not yet been reported in the literature as potential activating agents for the 

development of porous activated carbons. 

On the other hand, emerging organic contaminants (EOCs), detected in groundwater 

have drawn a lot of preoccupation. In fact, emerging contaminants such as pharmaceuticals, 

personal care products (PCPs), pesticides (including some phenols), synthetically and 

naturally occurring hormones, flame retardants and some disinfection by-products, most of 

them considered as potential endocrine disrupting compounds (EDCs), usually end up into 

the wastewater cycle after their industrial and domestic uses. Therefore, they can be 

detected in wastewater treatment plants effluents, since the conventional treatment 

technologies are not effective for the removal of these contaminants30. Phenol and its 

derivatives are usually used in the synthesis of pesticides and some time can be used 

directly for agricultural purposes. Because of high toxicity to living organisms31, these 

compounds must be removed from industrial effluents before their wastes are disposed. 

Several techniques for treatment of wastewaters contaminated with such pollutants 

have been proposed. These generally include membrane filtration32, oxidative degradation33, 

biodegradation34, photocatalytic degradation35, photo-Fenton36, and adsorption37-41. Amount 

them, adsorption process is generally accepted because of simplicity, easy operation and 

low-cost. Adsorption process involves transference of toxic substances from the aqueous 

phase to a solid phase thereby ameliorates exposure of living organisms to pollutants. After 

decontamination of effluents using adsorption technology, the treated effluents are safe to be 

released into the environment or the water could be reutilised for some industrial processes, 

which require water of low purity. Another advantage of adsorption method is that the spent 

adsorbents can be regenerated and reused42.  
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1.1-Objectives 

 The main goal of this work is to valorize lignocellulosic residue in the preparation and 

characterization of microwave–assisted activated carbons and application for the removal of 

Emerging Organic Contaminants (EOCs) in aqueous media. A part of this general objective 

was achieved by realizing several key objectives. 

 1. Firstly, the mechanism preparation of activated carbons using FeCl3, ZnCl2, CoCl2, 

NiCl2 and CuCl2 as activating agents at different impregnation ratios was studied.  

 2. Secondly, several techniques were used to characterize the materials such as N2-

adsorption/desorption analyses, SEM, FTIR, XDR, XF, UV-Vis DRS, elemental analysis, 

TGA/DTG, pHzpc, total acidity and basicity groups, and hydrophobic/hydrophilic ratio.  

 3. Finally, the activated carbons produced were used for the removal of bisphenol A, 

paracetamol, caffeine, 2-naphtol, 2-nitro phenol, 4-nitro phenol, resorcinol and hydroquinone 

from aqueous solution. A complete adsorption experimental study was carried out for phenol 

and o-cresol in aqueous solution. This includes equilibrium isotherms, kinetics, 

thermodynamic, adsorption mechanism, simulated of effluents and desorption study. The 

influence of some main adsorption parameters such as pH, initial concentration, and mass 

adsorbent were further considered. 

 

1.2-Structure of the thesis 

  This thesis was structured in the form of scientific Scopus articles, according to the 

Resolution N˚ 093/2007, of 12/06/2007 of the Post-graduation assembly of the Federal 

University of Rio Grande do Sul (UFRGS), which establishes guidelines for the publication 

and writing of Ph.D Thesis, Master dissertations and completion of Specialization Courses. In 

this view, the thesis was structured as follows: 

  1. General Introduction: briefly present the background, the scope and the objectives of 

this work. 

 

  2. Literature reviews: reviews the literature relating to activated carbon preparation 

technology, the environmental concerns about emerging organic contaminants (EOCs), the 

accent was put to phenols and it derivatives and caffeine. Additionally, some technologies 

commonly used to tackle those pollutants in aqueous solution were listed. However 

adsorption process, which was the process used in this thesis is presented in detail. 

 

  3. Materials and methods: describes the methods used in this study for the preparation 

of microwave-activated carbons using FeCl3, CoCl2, NiCl3 and CuCl2, and ZnCl2 as activating 
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agents. Advanced methods for characterization of the produced materials are described as 

well as the analytical method for the phenols and caffeine´s determination in aqueous 

solution after adsorption process. Furthermore, the experimental conditions and batch test 

adsorption procedures are also described in detail. 

 

 

  4. Conclusion and future studies: Summarizes the main results obtained in this thesis. 

The proposals for future work are also offered. 

 

  5. Annexes 1 and 2 present the preparation, characterization and application of 

microwave-assisted activated carbons from wood chips for removal of phenol and O-cresol 

from aqueous solution. FeCl3 and ZnCl2 were used as activating agents during the 

preparation of activated carbons, and was combined with lime (CaCO3 + Ca(OH)2 + CaO) to 

prevent permeation of aqueous solution in the carbonaceous material. Several 

characterizations was done to the four activated carbons produced and batch adsorption 

experiments were carried out with phenol and O-cresol molecules in aqueous solution. This 

includes, equilibrium isotherms, kinetics, thermodynamic, adsorption mechanism, simulated 

of effluents and desorption study. The influence of some main adsorption parameters such 

as pH, initial concentration, and mass adsorbent were further considered. 

 

 6. Annex 3 presents the study related to the effect of first–row transition metals and 

impregnation ratios on the physicochemical properties of microwave-assisted activated 

carbons from wood biomass. The effect of four activating agents CoCl2, NiCl2, CuCl2, and 

ZnCl2 at different impregnation ratios on the development of pore characteristics of surface 

functional groups of activated carbons produced via assisted microwaves irradiation was 

studied. Several techniques were used to characterize the 16-activated carbons produced. 

Additionally, the adsorption capacity of the aforementioned material was evaluated in the 

removal of bisphenol A, paracetamol, caffeine, 2-naphtol, 2-nitro phenol, 4-nitro phenol, 

resorcinol and hydroquinone from aqueous solution. 
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2. Literature Review 

2.1-Activated Carbons (ACs) 

 AC [Chemical Abstract Service (CAS) registry number: 7440-44-0 and atomic weight 

(A.W.):  12.00  g]43 is  a  carbon-based  material  which  has  a  high  surface  area  and 

relatively  high  porosity.  Its structure44 is  shown  in  Figure 1  and  it  is  primarily composed 

of sp2 graphite crystallites which comprise 3 to 4 parallel hexagonal carbon ring layers 

separated by 3.44 - 3.65 Å interlayer spacing which is slightly greater than that (3.35 Å) in 

graphite and are approximately 10 nm in length. However, the major structure in AC is 

composed of microcrystalline and amorphous graphitic-like sheets, called “basal planes” 

which are randomly cross-linked, unevenly stacked, and surrounded by a number of 

unpaired electrons. In fact, sp2 orbitals which are the basis of graphitic and aromatic 

structures, are directed in a plane at 1200 to each other and the fourth electron in a p-orbital 

is free to form π-bond with neighbouring atoms. These particular architectural features make 

AC enormously porous and useful for applications in catalysis and adsorption with a wide 

range of molecules. Moreover, AC contains various heteroatoms such as oxygen, hydrogen, 

nitrogen, phosphorous, and sulphur. However, the covalently bound atomic or adsorbed 

molecular oxygen is the major heteroatom, which can strongly alter the chemical properties 

of AC. 

 
 

Figure 1. Diagram of AC morphology. Straight line segments refer to graphene sheets. 
(adapted from Ref. 44). 
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2.2- Preparation of Activated Carbons from Biomass 

  In the last decades, many studies have been performed on the development of low-

cost activated carbons from various agricultural by-products or wastes, as an alternative for 

expensive coal-based activated carbon. Biomass mainly derived from industrial and  

agricultural  solid  waste is  a  preferable  option  for  activated  carbon  precursors, such as: 

sunflower seed hull and sugar cane bagasse4, wood chips5, cocoa shells6, pistachio shells7, 

cotton stalks8, acorn shells9, pine corns10, corn cobs11, Elaeagnus angustifolia seeds12, barley 

husks13, wood sawdust14, orange peels15, etc. Biomass materials are cheaper, renewable 

and abundantly available.    

Sapelli (Entandrophragma cylindricum) is a wood with a red colour and it is highly 

demanded for their durability. It is very strong and therefore widely used for various purposes 

and in particular in the manufacture of small bridges. This wood contains plant constituents 

such as cellulose, hemicellulose, lignin, and pectin at a very high rate of about 98%. Chips 

and sawdust are waste biomass from wood processing. A study in 28 sawmills in the city of 

Ngaoundere, Cameroon revealed very high use of lignocellulosic wood species (3.120 tons 

per year) such as Ayous, Sapelli and Iroko. The transformation of these species generates 

tons of waste per year5. Therefore, any attempt to reuse this waste will be useful for the 

country. 

   

 

 

 

 

 

 

 

 

 

 

Figure 2. Chips (A) and sawdust (B) waste biomass from wood processing 

 

2.3- Production processes of Activated Carbons. 

 There are mainly two processes by which activated carbons are produced: Conventional 

processes and most recently, microwaves assisted pyrolysis. The former is known as a 

(A) 
(B) 
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traditional heating system, with an external heat source such as an oil bath or heating mantle 

where heat is transferred from the surface towards the center of the material by conduction, 

convection, and radiation. However the latter is known as internal heating where dielectric 

heating transfers electromagnetic energy to thermal energy; it is a kind of energy conversion 

rather than heating. The both techniques are usually performed in the inert atmosphere. 

2.3.1- Conventional processes 

Conventionally, activated carbons are usually prepared through physical or chemical 

activation using a muffle furnace4,5,16,17. In these methods, heat is transferred to the samples 

by conduction and convection mechanisms in inert atmosphere (N2 or Ar). This thermal 

gradient leads to an inhomogeneous microstructure with a high heating rate18. 

2.3.1.1- Physical activation 
 

  Activated carbon (AC) is produced by carbonizing and subsequent activation of the 

precursor. In physical activation, char is produced, at the first step, by carbonization 

(pyrolysis) of precursor. This step removes non-carbon species and produces char with a 

high percentage of carbon. Because of blockage of the pores by tars45, the internal surface 

area of char is too low and it does not have a developed porous structure. Second step of 

physical activation is high temperature gasification (activation) using oxidizing agents such 

as steam or carbon dioxide (CO2), which produces activated carbon with high porosity. 

Porosity development is due to the penetration of oxidizing agent into the internal structure of 

char and removal of carbon atoms by reaction which results in opening and widening of 

inaccessible pores45, 46. 

  Both reactions between steam-carbon (heterogeneous water-gas reaction) and CO2-

carbon are endothermic47. This oxidation process is described in equations (1) and (2) as 

follows: 
C(s) + H2O(g)  CO (g) + H2(g) (29 kcal mol-1) (1) 

C(s) + CO2(g)  2CO(g)        (39 kcal mol-1) (2) 

 

  Macropores arising from randomly cross-linked and unevenly stacked basal planes are 

found on the surface of AC, however meso and micropores are found within the structure of 

AC because those pores are the result of oxidation. A schematic48 of the porous structure of 

AC is shown in Figure 3. Furthermore, heteroatoms are covalently bonded into the structure 

of AC during carbonization (e.g., nitrogen from the inert atmosphere) and activation (e.g., 

oxygen, hydrogen, sulphur, and phosphorous from chemical oxidizing agents). 
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Figure 3. Schematic of the pore structure observed in AC (adapted from Ref. 48).   

 

2.3.1.2- Chemical activation 
  

 Chemical activation of the precursor with a chemical (dehydrating) agent is another 

important industrial process for producing activated carbons. It is shown that some operating 

conditions such as temperature and heating rate affect the micropores distribution size to 

some extent49. The chemical activation is considered as a suitable method for producing 

highly microporous or mesoporous activated carbons; and is a combined process of 

carbonization and  activation  at  relatively  low  reaction  temperatures  (500°C  -  700°C). 

The common activating agents used during the carbonization process are FeCl316, 

H3PO4 17, KOH 19 and K2CO3 14,15.  

In comparison with the physical activation, the chemical activation mechanism is not well 

understood50, but it seems that the chemical agent dehydrates the sample, inhibits the tar 

formation and volatile compounds evolution, and therefore enhances the yield of the 

carbonization process51. After impregnating the organic precursor by chemical agent, the 

carbon material is pyrolyzed under inert atmosphere (500-700°C) for a suitable time (30 min-

2 h). After the carbonization, the inorganic contents present in the carbonized material should 

be eliminated by an efficient extraction with acid/base and water5,23. This extraction step 

makes the pore structure available, by removing the impregnating agent and its salts. In 

some cases, the precursor is in the form of fiber, cloth, or felt and the final activated carbon is 

in the same form.  

Generally, FeCl3 and ZnCl2 have proven to be excellent activating agents due to their ability 

to develop narrow pore size distributions and high surface areas of activated carbon24. As an 

activating agent, FeCl3 provides similar characteristics to ZnCl2, including the promotion of 

the dehydration process of biomass materials, the restriction of the formation of tars and the 
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improvement of the carbon yield25. Depending on the nature of biomass, FeCl3 and ZnCl2 can 

be mix with other inorganics such as Lime (CaCO3 + Ca(OH)2 + CaO) in the preparation of 

activated carbons in other to form homogenous paste and prevent permeation of aqueous 

solution in the carbonaceous material as reported for preparation of cocoa shell activated 

carbon6,52 and composite adsorbents from coffee waste53. However, up to the best of our 

knowledge, no study has been performed on the incorporation of CoCl2, NiCl2 and CuCl2, 

first-row transition metal salts into a wooden biomass structure and their effects on the 

physicochemical properties of the activated carbons. First-row transition metals have been 

successfully used in the catalysis industry for upgrading during the thermo-chemical 

conversion of biomass to bio-oil26-29. Likewise, only FeCl2 and ZnCl2 have been used 

extensively in the development of porous activated carbons4,9,10. However, CoCl2, NiCl2 and 

CuCl2 have not yet been reported in the literature as potential activating agents for the 

development of porous activated carbons. The mechanism reaction of the biomass with 

transition metals during the pyrolysis process could be quite different to others activating 

agents. Therefore, setting the information mechanisms involved in the process (impregnation 

and pyrolysis step), and production of highly porous materials are some of the most 

important and fundamental issues in the field. Moreover the application in the water 

contaminated by emerging organic contaminants (EOCs) in aqueous solution can be very 

interesting to solve important environmental issue.  

 

2.3.2- Microwaves heating process 

2.3.2.1- Theoretical aspects of microwave 
 

Microwave energy is a form of electromagnetic energy with the frequency range of 

300 MHz to 300 GHz and the corresponding wavelengths are between 1 mm and 1 m. In this 

process, the materials couple with microwaves, absorb the electromagnetic energy 

volumetrically, and transform into heat.  

The frequency and wavelength range of microwaves are shown in Figure 4. Microwaves 

have longer wavelengths and lower available energy quanta than other forms of 

electromagnetic energy such as visible, ultraviolet or infrared light. The first microwaves 

application came to the extensive use in communication such as radar, television and 

satellite applications. The second application is microwave heating of different materials. The 

most commonly used frequencies for heating purposes are 915 MHz and 2.45 GHz, which 

are derived from electrical energy with the transformation efficiency of about 85% and 50%, 

respectively18.  
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Figure 4. Frequency and wavelength range of microwaves (adapted from Ref. 54) 

 

The dielectric interaction of materials with microwaves can be described by two 

important parameters: absorbed power (P) and depth of microwave penetration (D). They will 

determine the uniformity of heating throughout the material. The average absorbed power, P, 

which is volumetric absorption of microwave energy (W/m3) in material, is expressed55 as:  

𝑃𝑃 = 2𝜋𝜋𝜋𝜋𝜀𝜀′′𝐸𝐸2                                                                                                                   (3) 

𝑑𝑑 = (𝑐𝑐𝜀𝜀0)/2𝜋𝜋𝜀𝜀′′                                                                                                               (4) 

 

f: electromagnetic wave frequency (Hz); ε″: dielectric loss (F/m); ε0: permittivity of free 

space (8.85 × 10−12F/m); E: electric field strength (v/m) and c  the speed of light (3 × 108 

m/s). 

2.3.2.2- Advantages of microwaves assisted-pyrolysis 
 

As an alternative heating method, microwave irradiation has attracted considerable 

attention in recent years6,19-23. By using microwave heating, it is possible to produce activated 

carbon in a fast and easy way6,19-23. Due to the remarkable reduction in pyrolysis time, 

microwave-assisted pyrolysis has become an attractive alternative for the preparation of 

activated carbon. In this approach, microwaves supply energy to the carbon particles, which 

is converted into heat within the particles themselves by dipole rotation and ionic conduction. 

The microwave heating method has the advantages of rapid temperature rise, uniform 

temperature distribution and energy savings over conventional heating methods23.  

Microwave synthesis is a non-contact technique where the heat is transferred to the 

product via electromagnetic waves, and large amounts of heat can be transferred to the 

interior of the material, minimizing the effects of differential synthesis56, 57. On the other hand, 

microwave radiation method is both internal and volumetric, where the huge thermal gradient 

from the interior of the sample to the cool surface allows the microwave-induced reaction to 
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proceed more quickly and effectively at a lower bulk temperature (Figure 5), providing 

shorter processing time and saving energy58. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic diagram of energy conversion and heat and mass transfer process 
during microwave heating (A) (T – Temperature, T3>T2>T1>T0; P–Pressure, P3>P2>P1>P0); 
(B) microwave and conventional heating mechanism (adapted and modified from Ref. 59)  

 

Activation agents are the main absorbers of microwave radiation at the initial stage of 

activation. Without using a chemical agent, the carbonaceous raw materials are hardly 

heated60. 

After the development of pore structure at the initial stages, the AC itself could receive 

the energy from microwave radiation during the activation process. Besides being used to 

develop high porous materials, transition metals usually offer good heat conduction 

proprieties into the microwaves system. Depending on the metal ions or others inorganics 

present in the impregnated organic precursor, the speed will be quite different. This may 

have a breathing effect to the porosity of the activated carbon. 

2.3.2.3. Disadvantages of microwaves assisted-pyrolysis 
 

Although microwave heating offer several advantages that were previously pointed out, it is 

important to underline that this technology suffers from some drawbacks in comparison with 

conventional heating methods: 

•  Microwave radiation presents an additional hazard over traditional heating methods, 

although this is easily contained within an appropriate Faraday cage. The nonionizing nature 

of the radiation also limits risk in the event of exposure, with the radiation having insufficient 

energy per quantum to create biologically damaging ionised atoms or molecules. 

Microwave  
heating 

Conventional 
heating 

A B 
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• Control of temperature is general difficult and need further study. 

• While the property of microwave heating only to target microwave-receptive materials can 

be an advantage in some cases, in the event that microwave transparent materials (such as 

plastics) require heating, an intermediate microwave receptor must be used. 

• Using microwave heating places limits on the materials that can be used in the 

construction of a reactor. While metal is essential in an electromagnetic containment role, its 

use should be minimised within the reactor itself to avoid causing arcing, with sharp metallic 

corners and small physical gaps between metal surfaces presenting the highest risk of 

potential arc formation61.  

 

 

2.4- Organic contaminants and Environmental Impacts 

 As a result of rapid development of chemical and petrochemical industries due to the 

increase of the world population, surface and ground waters are polluted by various organic 

and inorganic chemicals such as phenolic compounds, dyes, pesticides and heavy metals.  

2.4.1- Phenolic compounds 

  Phenol  and  its  derivatives  are  organic  compounds  with  one  or  more  OH groups  

attached  to  an  aromatic  ring;  acting  as  intermediates  in  the  production  of synthetic 

resins, flavours, pesticides and disinfectors62. 

  Ranked as second class of pollutants in the environment, phenol and its derivatives are 

considered noxious, because they are toxic and harmful to living organisms even at low 

concentrations31,63. Phenols are being discharged into the waters from various industrial 

processes such as oil refineries, petrochemical plants, paper mill, pharmaceutical factory, 

ceramic plants, dyes, coal conversion processes and phenolic resin industries64. The 

utilization of phenol-contaminated waters, foodstuff or any consumed products containing 

phenol could causes protein degeneration, tissue erosion, paralysis of the central nervous 

system, also damages the kidney, liver and pancreas in human body65. According to the 

recommendation of World Health Organization (WHO), the maximum admissible amount for 

phenolic contents in drinking waters66 is 1 µg.L−1; and the regulations by the U.S. 

Environmental Protection Agency (USEPA)67, call for lowering phenol content in wastewaters 

less than 1 mg.L−1. Therefore, removal of phenols from waters and wastewaters is an 

important issue in order to protect public health and environment.  

  Cresols are organic compounds which are methylphenols. The worldwide production 

only of O-cresol is approximately 37000-38000 tones/annum. Cresols are a widely occurring 
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natural and manufactured group of aromatic organic compounds which are categorized as 

phenols. These pollutants are widely found in the effluent from many chemical and allied 

industries, namely petrochemical, oil refinery, metal refining, chemical and glass fiber 

manufacturing, ceramic plants, steel plants and phenolic resin manufacturing. As they are 

slowly oxidized  by  length  exhibition  in  the  air,  these  pollutants  are  known  to  possess 

high  toxicity  and  low biodegradability, for which their occurrence in wastewater has become 

an important environmental issue68. In order to decrease the potential risk of these pesticides 

and reduce their appearance in the water, the Europe an Community  Directive  has 

determined  a  tolerance level  of  0.5µg/L  in  water  intended  for  human  consumption. In 

this sense, O-cresol was chosen as a pollutant because it is one of most abundant phenolic 

compound frequently found in industrial wastewater. In recognition of its toxicity and high 

mobility in the environment, the Environmental Protect ion Agency (EPA) and the European 

Environmental Agency (EEA) have included this compound in the lists of priority pollutants to 

be monitored in industrial effluents69, 70. 

Because they can be used directly as pesticides, cresols are considered as Emerging 

Organic Contaminants (EOCs), concept which is revised in the next section. 

2.4.2- Emerging Organic Contaminants (EOCs) 

 Synthetic organic substances are widely used in industry to manufacture food 

preservatives and pharmaceutical products. The release of these ‘micro-organic pollutants’ 

into environment, especially groundwater, has elicited interest among scientists due to their 

potential toxicity71. Although the concentrations of these substances, in aquatic systems, are 

relatively low, long term exposure may harm terrestrial and aquatic organisms. Hence, they 

are classified as emerging contaminants. ‘Emerging  Organic  Contaminants’  (EOCs),  which  

include  compounds newly discover or developed,  and substances that are  recently  listed 

as pollutants, contain a wide range of compounds, such  as pesticides, personal care 

products (PCPs), food additives, healthcare products and tailor-made nano-sized  

materials71.  These compounds are released into environment via several pathways including 

the effluents of hospital72  and industrial sites, agricultural land and household waste73. 

2.3.2.3. Caffeine (CAF) 
 Caffeine (C8H10N4O2) is one of the drugs which is an alkaloid belonging to 

methylxanthine family. In humans, caffeine acts as a central nervous system (CNS) 

stimulant. It is present in cola drinks, coffee, tea and energy drinks. The global average 

consumption of caffeine is about 70 mg person-1 day-1 but varies in different countries74. In 

Brazil, the average consumption is 171 mg person-1day-1, being coffee the main source of 

caffeine in the Brazilian diet75. Despite the fact that caffeine is extensively metabolized by 
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humans with only approximately 3% excreted unchanged in the urine76, it is broadly found in 

the environment due to its continual introduction into the sewage system by the disposal of 

unconsumed coffee, tea or soft drinks down drains, and the rinsing of coffee pots and cups. 

Caffeine (CAF) is one of the most commonly used anthropogenic markers in surface and 

groundwater. It has been used as a therapy for diuretic, but an excessive consume of 

caffeine may cause various adverse effects, such as sleep deprivation, risk of cardiovascular 

diseases, reduction of fertility rates and an increasing of miscarriages. CAF presents high 

water solubility (Ks values is more than 10 g L-1), low accumulation (log Kow is less than 0.5) 

and high removal in conventional wastewater treatment plants (about 80%). However, many 

part of ingested caffeine is metabolized in humans, mainly to theophylline, theobromine and 

1,7- dimethylxanthine (paraxanthine), which are frequently detected in the influent and 

effluent of wastewater treatment plants. Such releasing metabolites or degradation products 

can be more harmful than the original compounds77. 

 In addition, caffeine is used as an adjuvant in many prescription and over-the-counter 

drugs, e.g. in combination with nonsteroidal anti-inflammatory drugs in analgesic 

formulations and with ergotamine in drugs for treating migraine78. 

 

Table 1. EOCs detected in groundwater via different pathways (Source: Adapted from 75) 

Sources Compounds 

Pharmaceuticals Paracetamol, Carbamazepine, Ibuprofen, Primidone, Clofibric acid, Ketoprofen, 

Triclosan, Lopamidol, Diclofenac, Phenazone, Sulphamethoxazole,  

Lincomycin, Propyphenazone, Sulphamethazine 

Hormones Estrone, 17b-estradiol 

Industry Nonylphenol, Galoxalide, Bisphenol A 

Life-style Caffeine, Cotinine 

 

 

2.5- Water remediation Technologies 

 Considering the negative effects of Caffeine, phenol and its derivatives on the 

environment, many studies have been carried out aimed at their elimination from 

wastewaters and water intended for human consumption. Conventional water treatment 

processes have proven ineffective for the removal of these compounds. Thus several 

methods such as chemical oxidation, precipitation, distillation, solvent extraction, ion 

exchange, membrane processes, and reverse osmosis, etc. have been widely used for 

removal of phenols from aqueous solutions67. These methods have been found to be 

restricted, since they are very expensive which involve high initial capital and operational 
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costs. On the other hand adsorption is more attractive among the others because the 

pollutant can be removed from the aqueous effluent and the adsorbent can be reused 

several times, making the process of wastewater treatment economically feasible. Therefore, 

the produced activated carbons were used for the removal of bisphenol A, paracetamol, 

caffeine, 2-naphtol, 2-nitro phenol, 4-nitro phenol, resorcinol and hydroquinone from aqueous 

solution. A complete adsorption experiments were carried out with phenol and O-cresol 

molecules. 

2.5.1- Adsorption process 

  Adsorption is a mass transfer process which involves the accumulation of substances 

at the interface of two phases, such as, liquid–liquid, gas–liquid, gas–solid, or liquid–solid 

interface (Figure 6). The substance being adsorbed is the adsorbate and the adsorbing 

material is termed the adsorbent. The properties of adsorbates and adsorbents are quite 

specific and depend upon their constituents. The constituents of adsorbents are mainly 

responsible for the removal of any particular pollutants from wastewater when applying for 

that purpose79. Generally, the interaction can occurred by two ways: Physical Interaction 

(physisorption) or/and Chemical interaction (chemisorption). 

 Physisorption occurs when the interaction between the solid surface and the adsorbed 

molecules has a physical nature. In this case, the attraction interactions are Van Der Waals 

forces and, as they are weak the process results are reversible (<40kJ mol-1). Additionally, it 

occurs lower or close to the critical temperature of the adsorbed substance.  

 On the other hand, if the attraction forces between adsorbed molecules and the solid 

surface are due to chemical bonding, the adsorption process is called chemisorption. 

Contrary to physisorption, chemisorption occurs only as a monolayer and, furthermore, 

substances chemisorbed on solid surface are hardly removed because of stronger forces at 

stake (>200kJ mol-1). In this case the interactions are covalent or ionic bonds because of 

higher temperature (involves higher activation energies compared to physisorption) that may 

favoured the chemical interaction with the molecules at the surface of adsorbent80. 

Chemisorption  is  a  slow  and irreversible  process,  involving electron  sharing  or  electron  

transfer, causing  the formation of chemical bond;  limited to  the  formation  of  a  monolayer, 

adsorbate molecules adsorb only at specific sites on the surface. Under favourable 

conditions, both processes can occur simultaneously or alternatively. Physical adsorption is 

accompanied by a decrease in free energy and entropy of the adsorption system and, 

thereby, this process is exothermic. 

Adsorption process has been widely used in the removal of EOC in aqueous solution. 

This technology offers several advantages over others methods such as high adsorption 
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capacity, regenerability of the adsorbent, simplicity and inexpensive. In addition, after 

decontamination of effluents using adsorption technology, the treated effluents are safe to be 

released into the environment or the water could be reutilised for some industrial processes, 

which require water of low purity42. There are several factors affecting adsorption, hereafter, 

some of them are described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Some basic terms used in adsorption science and technology. (adapted and 
modified from Ref.81)  

2.5.2- Factors affecting adsorption process in aqueous media 

The main factors affecting the adsorption process are: (i) surface area, (ii) nature and 

initial concentration of adsorbate, (iii) solution pH, (iv) temperature, (v) interfering substances 

and (vi) nature and dose of adsorbent. 

Since adsorption is a surface phenomenon, the extent of adsorption can be 

proportional to the specific surface area which is defined as that portion of the total surface 

area that is available for adsorption82. Thus more finely divided and more porous is the solid 

greater is the amount of adsorption accomplished per unit weight of a solid adsorbent83. The 

major contribution to surface area is located in the pores of molecular dimensions.  
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The physicochemical nature of the adsorbent drastically affects both rate and 

adsorption capacity. The solubility of the solute greatly influences the adsorption equilibrium. 

In general, an inverse relationship can be expected between the extent of adsorption of a 

solute and its solubility in the solvent where the adsorption takes place. Molecular size is also 

relevant as it relates to the rate of uptake of organic solutes through the porous of the 

adsorbent material if the rate is controlled by intraparticle transport. In this case the reaction 

will generally proceed more rapidly with decrease of adsorbate molecule84. 

The pH of the solution affects the extent of adsorption because the distribution of 

surface charge of the adsorbent can change (because of the composition of raw materials 

and the technique of activation) thus varying the extent of adsorption according to the 

adsorbate functional groups85.  

Another important parameter is the temperature. Adsorption reactions are normally 

exothermic; thus the extent of adsorption generally increases with decreasing temperature82. 

Finally, the adsorption can be affected by the concentration of organic and inorganic 

compounds. The adsorption process is strongly influenced by a mixture of many compounds 

which are typically present in water and wastewater. The compounds can mutually enhance 

adsorption, may act relatively independently, or may interfere with one other. In most cases, 

natural organic matter (NOM) negatively affects the adsorption of emerging compounds in 

surface waters and wastewaters85. 

2.5.3- Adsorption Isotherms 

 In other to successfully represent the dynamic adsorptive behaviour of any substance 

from the fluid (liquid or gas) to the solid interface, it is crucial to have a satisfactory 

description of the equilibrium state between the two phases composing the adsorption 

system. Generally, an adsorption isotherm describes the relationship between the amount of 

adsorbate adsorbed by the adsorbent (qe) and the adsorbate concentration remaining in 

solution after equilibrium is reached, at a constant temperature (Ce). The parameters from 

the adsorption equilibrium models provide useful pieces of information on the surface 

properties, adsorption mechanism and interaction between the adsorbent and adsorbate86. 

There are numerous equations for describing the adsorption equilibrium of an adsorbate on 

an adsorbent. The most employed and discussed in the literature is the Langmuir equation87. 

Other isotherm models such as Freundlich isotherm88, Sips isotherm89, Liu isotherm90, 

Redlich–Peterson isotherm91 are also well discussed in the literature and described 

hereafter. 

2.5.3.1. Langmuir Isotherm model 

The Langmuir isotherm87 is based on the following assumptions: 
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• adsorbates are chemically adsorbed at a fixed number of well-defined sites; 

• a monolayer of the adsorbate is formed over the surface of the adsorbent when it gets 

saturated; 

• each site can hold only one adsorbate species; 

• all sites are energetically equivalent; 

• interactions between the adsorbate species do not exist. 

The Langmuir isotherm equation is depicted by Equation. 5: 

 

max
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L e
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L e

Q K C
q

K C
⋅ ⋅

=
+ ⋅

 
(5) 

 

where qe is the adsorbate amount adsorbed at equilibrium (mg g-1); Ce is the adsorbate 

concentration at equilibrium (mg L-1); Qmax is the maximum sorption capacity of the adsorbent 

(mg g-1) assuming a monolayer of adsorbate uptake by the adsorbent; KL is the Langmuir 

equilibrium constant (L mg-1). 

2.5.3.2. Freundlich Isotherm model 

Freundlich isotherm88 model is an exponential equation, and assumes that the concentration 

of adsorbate on the adsorbent surface increases as the adsorbate concentration increases. 

Theoretically, using this expression, an infinite amount of adsorption will occur. Similarly, the 

model assumes that the adsorption could occur via multiple layers instead of a single layer 

as Langmuir model assumes. The equation has a wide application in heterogeneous 

systems. Equation 6 shows the Freundlich isotherm model: 

 
1 Fn

e F eq K C= ⋅  (6) 

 

where qe is the adsorbate amount adsorbed at equilibrium (mg g-1); Ce is the adsorbate 

concentration at equilibrium (mg L-1); KF is the Freundlich equilibrium constant [mg.g-1.(mg.L-

1)-1/nF]; nF is the exponent of Freundlich model (nF is dimensionless). 

2.5.3.3. Liu Isotherm model 

The Liu isotherm90 model is a combination of the Langmuir and Freundlich isotherm models, 

but the monolayer assumption of Langmuir model and the infinite adsorption assumption that 

originates from the Freundlich model are discarded. The Liu model predicts that the active 

sites of the adsorbent cannot possess the same energy. Therefore, the adsorbent may 

present active sites preferred by the adsorbate molecules for occupation, however, 
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saturation of the active sites should occur unlike in the Freundlich isotherm model.  Equation 
7 defines the Liu isotherm model: 

 

max ( )
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L
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(7) 

 

where qe is the adsorbate amount adsorbed at equilibrium (mg g-1); Ce is the adsorbate 

concentration at equilibrium (mg L-1); Qmax is the maximum sorption capacity of the adsorbent 

(mg g-1); Kg is the Liu equilibrium constant (L mg-1); nL (dimensionless) is the exponents of 

Liu model. Contrary to the Sips isotherm (show hereafter), nL could assume any positive 

value.  

2.5.3.4. Sips Isotherm model 

Sips model, an empirical model, consists of the combination of the Langmuir and Freundlich 

isotherm models. The Sips model89 takes the following form: 
1/

max
1/1

s

s

n
s e

e n
s e

Q K Cq
K C
⋅ ⋅

=
+ ⋅

     where 0<1/ns ≤1 
             (8) 

where qe is the adsorbate amount adsorbed at equilibrium (mg g-1); KS is the Sips equilibrium 

constant (mg.L-1)-1/ns ; Qmax is the Sips maximum adsorption capacity (mg.g-1); ns 

(dimensionless) is the exponent, related to the heterogeneity surface of the adsorbent. It is 

assumed that the 1/nS should be ≤1 for integration purpose89. 

2.5.4- Adsorption Kinetics 

  Adsorption kinetic studies are important in treatment of aqueous effluents because they 

provide valuable pieces of information on the reaction pathways and the mechanism of 

adsorption reactions. Many kinetic models were developed in order to find intrinsic kinetic 

adsorption constants. Herein, we present only the most commonly employed and the same 

that were discussed in this thesis.   

 

2.5.4.1. Pseudo-first-order model 

Traditionally, the kinetics of adsorption of an adsorbate is described using the expressions 

originally given by Lagergren92. A simple kinetic analysis of adsorption is the pseudo-first-

order equation in the form of Equation. 9 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑓𝑓 . (𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡)                                                                                                                    (9)  

 

where qt is the amount of adsorbate adsorbed at time t (mg g−1), qe is the equilibrium 

adsorption capacity (mg g−1), kf is the pseudo-first-order rate constant (min−1), and t is the 

contact time (min). The integration of Equation.9 with initial conditions, qt = 0 at t = 0, and qt = 

qt at t = t leads to Equation. 10: 

 

[ ]t e 1q =q 1-exp(-k t)⋅ ⋅                                                                                                   (10) 

2.5.4.2. Pseudo-second-order model 

 According to this model, the adsorption kinetic is proportionally to the number of active 

sites of the adsorbent, rather than the concentration of the solution. This model was first 

discussed by Blanchard93 et al., 1984. The well-known pseudo-second-order equation of 

kinetic adsorption model is given by: 

 

( )
2

2

2 1
e

t
e

q k tq
k q t

=
⋅ +                                                                                                              

(11) 

 

where, ks is the pseudo-second-order rate constant (g mg−1min−1); and others terms the 

same as previously defined. 

2.5.4.3. Avrami fractional-order model 

  This model is an empirical equation, which was proposed as an alternative Avrami 

kinetic equation to find a correlation between good experimental and calculated data94. The 

model is an adaptation of kinetic thermal decomposition modelling. The Avrami kinetic 

equation could be written as: 

 

( ){ }nAV
t e AVq = q . 1- exp - k .t                                                                                            

(12) 

where kAV is the Avrami kinetic constant (min−1), and nAV is a fractional adsorption order, 

which is related to the adsorption mechanism94. 
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3. Experimental 

3.1. Chemicals, reagents and solutions 

Deionised water was used for the preparation of all solutions. Bisphenol A, paracetamol, 

caffeine, 2-naphtol, 2-nitro phenol, 4-nitro phenol, resorcinol, hydroquinone, phenol and O-

cresol (Figure 7), were purchased from Sigma-Aldrich (São Paulo, SP Brazil) and used 

without further treatment for the preparation of all solutions. Bisphenol A and paracetamol 

were prepared with a buffer solution (0.05 M boric acid and 0.05 M sodium borate) because 

of their pharmaceutical properties. Whereas the others solutions were prepared as described 

elsewhere95. The transition metal salts FeCl3, CoCl2, NiCl2, CuCl2 and ZnCl2 were purchased 

from Neon (São Paulo, Brazil). These reagents were used as activating agents. In aqueous 

solution (pH close to 6), Co, Ni, Cu and Zn have an oxidation state of +2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Structural formula of phenols and caffeine. The pKa of the chemical molecule was 
calculated using MarvinSketch 16.8.22.0 
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3.2. Biomass 

Sapelli sawdust was used as a precursor for the preparation of the microwave-

assisted activated carbons. It contains ca 98% of cellulose, hemicellulose, lignin and pectin5. 

In this study, Sapelli sawdust (Entandrophragma cylindricum) was obtained from sawmills of 

Ngaoundere city, Cameroon (7.3276500°, 13.5847200°, 1128 m) as previously reported5,96. 

The ash and moisture contents of the Sapelli wood chips were 10.42% and 16.48%, 

respectively5,96, whilst its elemental analysis (C, H, N, O) was 46.16%C, 6.17% H, 0.22% N 

and 37.03% O (Table. 2).  

 

Table 2. Elemental and Inorganic chemical composition of Sapelli wood chips5,96 

Sample % C %H %N %O⃰  %Ash 

Sapelli wood 46.16 6.17 0.22 37.03 10.42 

Inorganic Composition % Element 
0.3738 

0.1650 

0.0675 

0.1064 

0.0013 

0.0169 

0.0132 

0.0112 

0.0354 

 

Ca  

Si  

Mg  

Al  

S  

Fe  

K  

Sr  

Ni  

⃰ obtained by difference (%O =100% - % C - %H - %N - %Ash) 
 

3.3. Preparation of the activated carbons (MWAC) 

In this thesis, two processes were adopted in the preparation of the activated 

carbons. In the first process, lime (CaCO3 + Ca(OH)2 + CaO) was added in the preparation of 

activated carbons as an inorganic component to prevent permeation of aqueous solution in 

the carbonaceous material as described in Annexes 1 and 2 (see experimental part). Briefly 

biomass and inorganic components (20% lime + 80% ZnCl2 or 20% lime + 40% ZnCl2 + 40% 

FeCl3) were mixed to form pastes with inorganic : organic ratios of 1.0 and 1.5 . The mixtures 

were pyrolysed in a microwave in less than 11 min. Afterwards a 6 mol L-1 HCl was used to 

treat the carbonised materials, under reflux, to eliminate the inorganic components—

producing the activated carbons.   

However, in the second process, only the transition metals were mixed with the 

biomass (no lime was added) to form pastes, as described as follows and reported in Annex 
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3 (see experimental part):  

A known amount of the transition metal salt was dissolved in 100.0 mL of deionised 

water, after which 100.0 g of dried Sapelli sawdust (milled to diameter < 300 µm) was added 

to the solution and mixed continuously at approximately 80°C for 120 min to overcome the 

natural recalcitrance of the lignocellulosic biomass structure, as well as to ensure a high 

interaction between the transition metal ions and the lignocellulosic material. The 

impregnation ratios in mass of the metal salt : biomass were 0.5:1, 1:1, 1.5:1 and 2:1 (w/w). 

After mixing, the paste was oven-dried at 90°C for 720 min. Pyrolysis of the dried 

sawdust impregnated with different solutions of Co, Ni, Cu, and Zn was carried out in a 

quartz reactor as described elsewhere23,96, under a nitrogen atmosphere (150 mL min -1). The 

quartz reactor was inserted in a microwave oven and heated for 5.3 minutes at 1200 W. The 

system was then cooled after pyrolysis for 5 minutes under 60 mL min-1 of nitrogen. The total 

time for one cycle of pyrolysis was less than 11 min including 5 min of cooling down. 

Subsequently, other cycles of pyrolysis were carried out.  

Following the activation, the metals were thoroughly leached out with HCl 6 mol L-1 to 

complete the chemical activation process, then filtered and rinsed with deionised water 

several times until the pH value was approximately 6–7, as described elsewhere97. Finally, 

they were dried at 105°C for 24 h and milled (Ø< 53 µm)—producing sixteen activated 

carbons.  

 

Figure 8. Preparation process of MWAC 
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Figure 9. Microwave system 

 

3.4. Characterization of the activated carbons 

 The activated carbons were characterized by elemental analysis (EA), nitrogen 

adsorption-desorption analysis, FTIR, TGA/DTG, SEM, XDR, XRF, diffuse reflectance 

ultraviolet-visible (DRUV), total acidity and basicity surface functional groups, pHzpc and 

hydrophobic/hydrophilic ratio. 

3.4.1- Nitrogen adsorption–desorption analysis 

Nitrogen adsorption-desorption analysis is a very important parameter in the 

determination of the quality, utility and behaviour of many materials. The BET (Brunauer–

Emmett–Teller) method analyzer has been applied in the determination of the surface area 

and porosity of different adsorbent. In this study the specific surface area and pore structural 

parameters of the activated carbons were determined by the nitrogen adsorption–desorption 

isotherms (BET and t-plot methods) at −196°C using a Micromeritics Instrument, TriStar II 

302098,99. The pore-size distribution (PSD) was calculated by the Barrett–Joyner–Halenda 

(BJH) method using the adsorption branch. Before the measurements, samples were 

outgassed for 16 h at 200°C. 
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3.4.2- Elemental analysis 

 Elemental (CHN) analysis has been used to measure the level of organic matter 

degradation during the carbonization process. It is usually carried out using analytical 

instruments which operate based on the complete combustion of the material in pure oxygen 

atmosphere. Elemental analysis (EA) was performed using an elemental analyzer (Perkin 

Elmer M CHNS/O model 2400). Shortly, 0.05 g oven-dried samples were used to determine 

total carbon (C), nitrogen (N) and hydrogen (H) contents. Oxygen (O) mass fraction was 

determined by subtracting the ash, C, N, and H mass fraction from the total mass of the 

sample. 

3.4.3- Thermo gravimetric analysis (TGA) and derivative thermo gravimetric (DTG) 

Thermo gravimetric (TGA) is a technique by which the physicochemical properties 

(moistures, crystalline water, and/or volatile components) of a material can be probed as a 

function of temperature, whilst the material is subjected to a controlled heating rate. TGA 

allow studying the thermo stability of the material. In this study, TGA and DTG curves of 

biomass, pyrolysed materials and activated carbons were obtained on a TA Instruments 

model SDT Q600 (New Castle, USA) with a heating rate of 10°C min-1 at 100 mL min-1 of 

synthetic air flow (White Martins, Canoas, RS, Brazil). Operating temperature was varied 

from 20°C to 1000°C (acquisition time of 1 point per 5 s) using 10.00 – 15.00 mg of 

adsorbent97. The residual material after the experiment was considered as ash content of 

that material. 

3.4.4- Fourier Transform Infrared (FT-IR) analysis 

FT-IR analysis is regarded as a powerful technique for investigating the chemical 

functionality of carbonaceous materials. A range of different methods, such as, diffuse 

reflectance infrared Fourier transform (DRIFT) spectroscopy, where  the  carbon  materials  

are mixed with KBr to form a wafer, and the attenuated total  reflectance  Fourier  transform  

infrared (ATR-FTIR) spectroscopy have been applied in the infrared analysis to characterise  

carbon materials. In this study, the chemical characterization of functional groups in bulk 

phase and on the surface of the samples was studied by Fourier Transform Infrared (FT-IR) 

spectrometer (Bruker, model alpha) in the range of 4000–400 cm−1, using pellets with 0.01 g 

of samples dispersed in 0.2 g of KBr 100.  

3.4.5- Modified Boehm Titration applied to find acidity and basicity 

In order to determine quantitatively surface functional groups of the activated 
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carbons, total acidity and basicity method were applied based on modified Boehm titration101.  

A series of back titrations was performed to determine the concentrations of total acidity 

(carboxylic, lactonic, and phenolic) and basicity functional groups on activated carbon 

surfaces.  

 Activated carbons (ACs) were first dried in an oven at 100 °C for 24h. NaOH and HCl 

solutions were standardized as described by Oickle101 et al., 2010 in order to get the exact 

concentration. In a separate Falcon tube containing 0.15 g of each sample in 25 mL standard 

solutions of each HCl and NaOH (0.05 M each) were suspended. Na2CO3 and NaHCO3 were 

not used in this study as recommended by Boehm titration because they were found to be 

highly influenced by dissolved atmospheric CO2 even after degasification101. The solutions 

were then shaken at a constant temperature for 24 h at 25°C with a shaking speed of 150 

rpm. After this time, the slurry was centrifuged (3600 rpm) and heated for about 10 min in 

order to remove dissolved atmospheric CO2. 20- mL of 0.05 M HCl or NaOH were added to 

10.00 mL of aliquot depending for the original titrant (NaOH or HCl respectively) in order to 

ensure a complete neutralization of the base or the acid. The acidified or basified solutions 

were then back-titrated with standardized 0.05 M NaOH or HCl. The back-titration was 

performed with a digital burette Titras Pro Instrument (± 0,0003/50 mL) by using pH 

measurement while the solution was stirring. The endpoint was found when the pH reached 

at 7.   

 The numbers of acidic sites of various types were calculated under the assumption that 

NaOH neutralizes carboxylic, phenolic, and lactonic groups. The number of surface basic 

sites was calculated from the amount of hydrochloric acid which reacted with the carbon 

sample. Results are expressed as mmol g-1. The following equation was used to determine 

the amount of total acidic/basic groups present on the carbons surface. 

 

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 = 1
𝑚𝑚

([𝐵𝐵,𝐴𝐴]𝑉𝑉𝐵𝐵,𝐴𝐴 − ([𝐻𝐻𝐻𝐻𝐻𝐻]𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 − [𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁]𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)) 𝑉𝑉𝐵𝐵,𝐴𝐴
𝑉𝑉𝑎𝑎

                                                       (13) 

 

where [B, A] and VB, A are the concentration and the volume of the reaction base (or acid) 

mixed with the carbon sample; nSFG (mmol/g) represents the total amount of surface 

functional groups that react with the reaction base (or acid) during the mixing step; m is the 

mass of carbon and Va is the volume of aliquot taken from the filtrates. [HCl] and VHCl are the 

concentration and the volume of the HCl standard solution; [NaOH] and VNaOH are the 

concentration of the volume of the NaOH standard solution. 

3.4.6- Optical proprieties 

The optical characteristics of the biomass and metal-biomass materials were 
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evaluated by diffuse reflectance ultraviolet-visible (DRUV) and diffuse reflectance on a 

Shimadzu UV-2450 spectrophotometer using an ISR-2200 Integrating Sphere Attachment. 

 The optical characteristics of the biomass and metal-biomass materials were evaluated 

by diffuse reflectance ultraviolet-visible (DRUV) on a Shimadzu UV-2450 spectrophotometer 

using an ISR-2200 Integrating Sphere Attachment. For the measurements, the samples were 

treated as powder. The baseline was obtained using BaSO4 (Wako Pure Chemical 

Industries, Ltd.). Synchronous fluorescence spectroscopy was carried out in a Shimadzu RF-

5301PC spectrofluorometer with a solid state holder. The measurements were performed 

using excitation/emission slits of 1.5 nm/3.0 nm in a spectral range of 220-700 nm. The 

spectra were obtained through the simultaneous scanning of the excitation and the emission 

monochromators of the spectrofluorometer, with a fixed wavelength difference (∆λ) of 15, 30 

and 60 nm between them. All the measurements were carried out at room temperature. 

3.4.7- Scanning Electron Microscopy (SEM) 

 The SEM  has  been  used  in  providing information  about  the  structural  morphologies  

of  different  materials. Furthermore, this technique allows seeing the shape and size of the 

numerous microspheres at the surface of activated carbon. In this view, the surface texture 

of the samples were subjected to scanning electron microscopy (SEM) Instrument (JEOL 

microscope, model JSM 6060) 52. 

3.4.8- The point of zero charge (pHpzc) 

The pHpzc values were determined by a batch equilibrium method102. The technique 

consist in adding 20.00  mL of 0.050 mol L−1 NaCl with a previously adjusted  initial pH (the  

initial  pH (pHi)  values  of  the solutions were adjusted from 2.0 to 10.0 by adding 0.10 mol 

L−1 of  HCl  and NaOH)  to several  50.0 mL cylindrical high-density polystyrene flasks (height 

117 mm and diameter 30  mm) containing 50.0 mg of the activated carbons, which were 

immediately securely capped.  The suspensions were shaken in an acclimatized shaker at 

25°C and allowed to equilibrate for 24 h. The pHi of the solutions was accurately measured 

using the solutions that had no contact with the activated carbon; the final pH (pHf) values of 

the supernatant after contact with the solid were recorded. The value of pHpzc is the point 

where the curve of ∆pH (pHf− pHi) versus pHi crosses a line equal to zero.   

3.4.9- X-ray Diffractions (XRD) and Fluorescence (XF) analysis 

The nature of phases in the samples was analyzed by powder X-ray diffractions 

(XRD) (Philips X’pert MPD diffractometer, Netherlands). The instrument was operated at 40 

kV and 40 mA with Cu Kα radiation (λ = 1.5406 Å). Measurements were done with scanning 



 

 

28 
 

step width of 0.03o and time of 1 s, over the 2θ range of 10 – 80o. The chemical composition 

of the precursor and inorganics were determined using X-ray fluorescence (Shimadzu 

XRF1800 X-ray Fluorescence Spectrometer, Japan). 

3.4.10- Hydrophobic Index (HI) 

For hydrophobic-hydrophilic ratio experiments, the activated carbons were oven-dried 

in 10 ml glasses at 105°C for 24 h. The samples were cooled in a desiccator before 

determining the accurate weight. Then 0.3 g of each sample was weighed in 10 mL beakers 

and exposed in a saturated atmosphere with solvent vapor (n-heptane or water) in 

Erlenmeyer flasks plugged with a ground glass joint, using 60 ml of solvent. The samples 

inside the beakers were placed in such a way that they were not in contact with the solvent 

and wall of the Erlenmeyer flask103.  The experiment was carried out inside of a temperature-

regulated chamber at 25°C in static condition. After 24 h, the samples were removed from 

the Erlenmeyer flasks, dried carefully from the outside with laboratory tissues and weighed 

again. The vapor amount adsorbed on the activated carbons was obtained by the difference 

between the final and initial weight and expressed in mg.g-1. The hydrophobic-hydrophilic 

ratio were calculated by the ratio of the amount adsorbed of n-heptane vapor (mg.g-1) divided 

by the amount adsorbed of water-vapor (mg.g-1).  

 

   

                                (14) 

 

 

 

3.5. Adsorption study 

In order to evaluate the performance of the activated carbons produced, adsorption 

studies were carried out for the removal of bisphenol A, paracetamol, caffeine, 2-naphtol, 2-

nitro phenol, 4-nitro phenol, resorcinol and hydroquinone from aqueous solutions. A 

complete adsorption experimental study was carried out for phenol and o-cresol in aqueous 

solution. This includes, equilibrium isotherms, kinetics, thermodynamic, simulation of effluent 

and desorption study. All the experiment was performed as follow: In a separate 50.0 mL flat-

bottom Falcon tube, 30.0 mg of each activated carbon was suspended in 20.0 mL solution of 

each molecule (at defined experimental conditions). The mixtures were then shaken at a 

controlled temperature for 24 h with a shaking speed of 150 rpm. Afterwards, the slurry was 

centrifuged (3600 rpm) for 5 min to separate the adsorbents from the solutions. The 

𝐻𝐻𝐻𝐻 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 − ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑚𝑚𝑚𝑚𝑔𝑔 )

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑚𝑚𝑚𝑚𝑔𝑔 )
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unadsorbed adsorbates were measured using a T90+ PG Instruments spectrophotometer at 

a maximum wavelength (λmax) of 276.0 nm for bisphenol A, 243.0 nm for paracetamol, 273.0 

nm for caffeine, 278.0 nm for 2-nitro phenol, 226.5 nm for 4-nitro phenol, 273.0 nm for 2-

naphtol, 273.0 nm for resorcinol, 288.5 nm for hydroquinone, 269 nm for phenol (PhOH) and 

270 nm for o-cresol. Maximum wavelengths were obtained by scanning the UV-Vis spectra 

for each adsorbate from 190 to 500 nm. 

The adsorbed quantity expressed as a per unit mass of activated carbons of 

adsorbate removed is given by Equation 15: 

𝑞𝑞𝑒𝑒 =
𝐶𝐶0 − 𝐶𝐶𝑓𝑓
𝑚𝑚

 . V                                                                                                                                            (15) 

                                                                                                            

where qe is the amount of adsorbate adsorbed by the adsorbent (mg g-1); Co is the initial 

adsorbate concentration in contact with the adsorbent; Cf is the final adsorbate concentration 

after the batch adsorption study; m is the mass of adsorbent (g); and V is the volume of the 

adsorbate solution (L). 

3.6. Desorption study 

Adsorbent regeneration can be important to reduce the cost of the adsorption process 

in practical wastewater treatment systems. The regeneration of the activated carbons was 

examined through desorption experiments, described as follow: The adsorption experiment 

was first carried out to find the adsorbed amount. Afterward, the solid phase containing 

adsorbed molecule was put in contact with various solutions for the desorption experiments. 

The solutions, which served here as eluents were used for the desorption process. The 

solutions used were NaOH (1.0 – 5.0 M), 10%EtOH + NaOH 5.0 M and 50%EtOH + NaOH 

5.0 M. Afterward the mixtures were shaken at 25°C for 24 h with a shaking speed of 150 

rpm, the adsorbate amount which desorbed and present in the supernatant was quantified 

and compared to the adsorbated one. The recovery (%) was calculate by the ratio of the 

amount adsorbed of molecule (mg.g-1) divided by the amount desorbed of the same molecule 

(mg.g-1).  

 

3.7. Validation of the equilibrium and kinetic models 

The fitness of the kinetic and equilibrium data were done using nonlinear methods, 

which were evaluated using Simplex method, and the Levenberg–Marquardt algorithm using 

the fitting facilities of the Microcal Origin 2015 software. The suitableness of the kinetic and 

equilibrium models was evaluated using a determination coefficient (R2), an adjusted 

determination coefficient (R2
adj) and the standard deviation of residues (SD). Standard 
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deviation of residues measures the differences between the theoretical and experimental 

amounts of molecule adsorbed. Equations 16, 17 and 18 are the mathematical 

expressions86 for respective R2, R2
adj and SD. 

 

( ) ( )
( )

2 2n n
i,exp exp i, exp i, model2 i i

2n
i,exp expi

q -q - q -q
R =

q -q


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 

∑ ∑
∑
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( )
n 2

 i, exp i, model

i

1SD = . q -q
n-p




 
∑  

(18) 

 

In the above equations, qi, model is individual theoretical q value predicted by the model;  

qi, exp is individual experimental q value; expq  is the average of experimental q values; n is the 

number of experiments; p is the number of parameters in the fitting model. 
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4. Conclusion and Future works 

4.1. Conclusions 

   The main goal of this study was to prepare and characterize activated carbons from 

biomass via microwave–assisted pyrolysis and evaluate their adsorption capacity into the 

removal of Emerging Organic Contaminants (EOCs) in aqueous media.  

   The first two parts (Annexes 1 and 2) showed the preparation process, 

characterization and application of microwave-assisted activated carbons from wood chips 

for removal of phenol and o-cresol from aqueous solution. FeCl3 and ZnCl2 were used as 

activating agents at different impregnation ratios during the preparation of activated carbons, 

and was combined with lime (CaCO3 + Ca(OH)2 + CaO) to prevent permeation of aqueous 

solution in the carbonaceous material. The mixtures were pyrolysed in a microwave system 

in less than 11 min. Afterwards a 6 mol L-1 HCl was used to treat the carbonised materials, 

under reflux, to eliminate the inorganic components—producing four activated carbons. 

Characterization results indicated that activated carbons had mesoporous and microporous 

structure with a high SBET ranging from 647 to 914 m2 g-1, Vtot of 0.34-0.52 cm3 g-1 and Vmes 

between 0.14 and 0.27 cm3 g-1. The four activated carbons were used at optimize pH 7.0 to 

adsorb phenol (PhOH) and o-cresol from aqueous solutions.  

   The adsorption kinetic was very fast and equilibrium contact time was attained in the 

first ten minutes for both molecules. Pseudo first-order, pseudo-second order and Avrami 

fractional-order kinetic models were used to probe the kinetic of adsorption. Amount the 

three models; Avrami fractional-order kinetic model best describes the adsorption kinetics of 

PhOH and o-cresol onto the activated carbons. 

   The maximum amounts of phenol and o-cresol adsorbed onto activated carbons at 

25°C were ranging from 233.5 to 667.9 mg g-1 and from 183.4 to 222.4 239 mg g-1 

respectively. The activated carbons tested for simulated effluents, which was a mixture of 

different phenolic compounds plus organic matter in a medium of high salts concentrations 

removed not less than 93.0%. The efficiencies of the activated carbons to treat effluents 

concur with the Liu maximum sorption capacities for phenol molecule. This was directly 

related with the textural properties of the activated carbons. However, Sips and Freundlich 

models were more suitable for describing the equilibrium data of the adsorption of o-cresol 

on the four samples. 

  The interaction of PhOH or o-cresol with the activated carbons should be governed by 

hydrophobic interactions, hydrogen bonds, polar interactions and electron donor-acceptor 

interaction. Desorption experiment showed that activated carbons can be regenerated easily 

using a mixture of EtOH (10 or 50%) + NaOH (5 M). 
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 The third part (Annexes 3) was related to the effect of first–row transition metals and 

impregnation ratios on the physicochemical properties of microwave-assisted activated 

carbons from wood biomass. Four metals salts CoCl2, NiCl2, CuCl2, and ZnCl2 at different 

impregnation ratios were compared. Several techniques were used to characterize the 16-

activated carbons produced. It appears that metals were strongly bound with surface 

functional groups of the biomass by ionic or covalence interaction. FTIR and UV-Vis DRS 

spectra of the metals incorporated into the biomass structure revealed that Zn2+ and Cu2+ 

formed more complexes during the impregnation step. Co, Ni, Cu and Zn led to AC with wide 

variation in both physicochemical and sorption properties. As the ratio metal : biomass 

increased from 0.5:1 to 2:1, the surface areas and total pore volume of the ACs also 

increased independently of the metal used. Nevertheless, the samples prepared with Zn 

showed high porosity and surface areas independently of their ratios. This result was in 

accordance with the first study (Annex 1 and 2) carried out in this thesis, which also showed 

higher porosity for the activated carbon prepared only with Zn than the mixture Zn and Fe. 

Adsorption experiments carried out with the 16-samples showed a high adsorption capacity 

for the removal of bisphenol A, paracetamol, caffeine, 2-naphtol, 2-nitro phenol, 4-nitro 

phenol, resorcinol and hydroquinone from aqueous solution. These results have 

demonstrated that Sapelli wood sawdust is a promising precursor for preparing AC to 

remove emerging organic contaminants from aqueous solutions. 

  4.2. Future works 

  Although microwave assisted pyrolysis used in the preparation of activated carbons 

has many advantages over those using conventional heating, further investigations need to 

be performed.  More in-depth research is needed to develop and understand fast heating 

techniques involving other biomass and metal activating agents. Additionally, a study on 

temperature versus candle-power should be performed in other to master the heating.  

  This work showed that ACs produced with Co, Ni and Cu can be used in the removal of 

some emerging organic contaminants. Nevertheless, complete adsorption experiments need 

to be performed for terms of application. This should include isotherms, kinetics, simulated 

industrial effluent, effect of pH of adsorbate solution, and desorption experiments in order to 

check the reuse of the adsorbents. 

 Lastly, the activated carbons produced in this thesis was only tested in adsorption 

experiment, however more application can be done for other areas such as air purification, 

catalysis or supports, photocatalysis..etc.  
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SUPPLEMENTARY MATERIAL 
 

Microwave-assisted activated carbons from wood chips for removal of 

phenol from aqueous solutions 

 
 
Supplementary Table 1. Inorganic chemical composition of Sapelli wood.  

Inorganic Composition of Sapelli Wood % Element 

Ca 0.3738 
Si 0.1650 
Mg 0.0675 
Al 0.1064 
S 0.0013 
Fe 0.0169 
K 0.0132 
Sr 0.0112 
Ni 0.0354 

 

Supplementary Table 2. Inorganic chemical composition of lime. 

Inorganic Composition of lime % Element 

Ca 49.5722 
Mg 11.4041 
Si 0.7969 
Fe 0.3787 
Al 0.1766 
K 0.0772 

Mn 0.0684 
P 0.0120 
C 2.4394 
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Supplementary Table 3. FTIR vibrational bands of A) ZnCW-1.0; B) ZnCW-1.5; 
C) FeZnCW-1.0; D) FeZnCW-1.5. Assignments are based on literature (Smith, 1999)  
Band (cm-1)  
 ZnCW-1.0 Assignments  
3411 O-H stretch 
2921 Asymmetric C-H stretching 
2853 Symmetric C-H stretching 
1610 Asymmetric stretch of carboxylate 
1563, 1452, 1421 Ring modes of aromatic ring 
1099 C-O stretch of alcohols  
803 CH out of plane bends of aromatic rings 
ZnCW-1.5  
3404 O-H stretch 
2920 Asymmetric C-H stretching 
2852 Symmetric C-H stretching 
1572 Ring modes of aromatic ring 
1383 C-H bending 
1136 C-O stretch of alcohols  
885,811 CH out of plane bends of aromatic rings 
FeZnCW-1.0 Assignments  
3384 O-H stretch 
2923 Asymmetric C-H stretching 
2852 Symmetric C-H stretching 
1583 Ring modes of aromatic ring 
1379 C-H bending 
1167 C-O stretch of alcohols  
885,812,752 CH out of plane bends of aromatic rings 
  FeZnCW-1.5  
3417 O-H stretch 
2918 Asymmetric C-H stretching 
2853 Symmetric C-H stretching 
1617 Asymmetric stretch of carboxylate 
1565, 1460 Ring modes of aromatic ring 
1383 C-H bending 
1259 C-O stretch of phenol 
1104 C-O stretch of alcohols  
803 CH out of plane bends of aromatic rings 
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Supplementary Fig A1  ( ): Structural formula of ;PhOH

( )B Optimized three-dimensional structural formula of .PhOH

The dimensions of the chemical molecule was calculated using

MarvinSketch 15.6.1.0. Van der Waals surface areaversion

147.21 A (pH 0.0-10.0)  Polar surface area 20.23 A (pH 0.0-10.0);
2 2

;

Dipole Moment 2.79 Debye; LogP 1.67.
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Supplementary Fig 1. A)  o-cresol, B) Structural formula of Optimized 
three-dimensional structural formula of o-cresol. The dimensions of the
chemical molecule was calculated using MarvinSketch version 16.3.14.0.

2 2
Van der Waals surface area 179.01 A (pH 7.0); Polar surface area 20.23 A  
(pH 7.0); Dipole Moment 3.01 Debye; LogP 2.18; Log D 2.18;   
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Supplementary Fig 2. FTIR spectra of activated carbons.
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SUPPLEMENTARY MATERIALS 

Effects of first–row transition metals and impregnation ratios on the 

physicochemical properties of microwave-assisted activated carbons from 

wood biomass 

Modified Boehm Titration applied to find acidity and basicity  

 A series of back titrations was performed to determine the concentrations of total acidity 

(carboxylic, lactonic, and phenolic) and basicity functional groups on activated carbon 

surfaces.  

 Activated carbons (ACs) were first dried in an oven at 100 °C for 24h. NaOH and HCl 

solutions were standardized as described by Oickle et al., 2010 in order to get the exact 

concentration. In a separate Falcon tube containing 0.15 g of each sample in 25 mL standard 

solutions of each HCl and NaOH (0.05 M each) were suspended. Na2CO3 and NaHCO3 were 

not used in this study as recommended by Boehm titration because they were found to be 

highly influenced by  dissolved atmospheric CO2 even after degasification [36]. The solutions 

were then shaken at a constant temperature for 24 h at 25°C with a shaking speed of 150 

rpm. After this time, the slurry was centrifuged (3600 rpm) and heated for about 10 min in 

order to remove dissolved atmospheric CO2. 20- mL of 0.05 M HCl or NaOH were added to 

10.00 mL of aliquot depending for the original titrant (NaOH or HCl respectively) in order to 

ensure a complete neutralization of the base or the acid. The acidified or basified solutions 

were then back-titrated with standardized 0.05 M NaOH or HCl. The back-titration was 

performed with a digital burette Titras Pro Instrument (± 0,0003/50 mL) by using pH 

measurement while the solution was stirring. The endpoint was found when the pH reached 

at 7.   

 The numbers of acidic sites of various types were calculated under the assumption that 

NaOH neutralizes carboxylic, phenolic, and lactonic groups. The number of surface basic 

sites was calculated from the amount of hydrochloric acid which reacted with the carbon 

sample. Results are expressed as mmol g-1. The following equation was used to determine 



the amount of total acidic/basic groups present on the carbons surface. 

 

𝑛𝑆𝐹𝐺 =
1

𝑚
([𝐵, 𝐴]𝑉𝐵,𝐴 − ([𝐻𝐶𝑙]𝑉𝐻𝐶𝑙 − [𝑁𝑎𝑂𝐻]𝑉𝑁𝑎𝑂𝐻))

𝑉𝐵,𝐴
𝑉𝑎

 

Where [B, A] and VB, A are the concentration and the volume of the reaction base (or acid) 

mixed with the carbon sample; nSFG (mmol/g) represents the total amount of surface 

functional groups that react with the reaction base (or acid) during the mixing step; m is the 

mass of carbon and Va is the volume of aliquot taken from the filtrates. [HCl] and VHCl are 

the concentration and the volume of the HCl standard solution; [NaOH] and VNaOH are the 

concentration of the volume of the NaOH standard solution. 

 

Optical proprieties 

The optical characteristics of the biomass and metal-biomass materials were evaluated by 

diffuse reflectance ultraviolet-visible (DRUV)  on a Shimadzu UV-2450 spectrophotometer 

using an ISR-2200 Integrating Sphere Attachment. For the measurements, the samples were 

treated as powder. The baseline was obtained using BaSO4 (Wako Pure Chemical 

Industries, Ltd.). Synchronous fluorescence spectroscopy was carried out in a Shimadzu RF-

5301PC spectrofluorometer with a solid state holder. The measurements were performed 

using excitation/emission slits of 1.5 nm/3.0 nm in a spectral range of 220-700 nm. The 

spectra were obtained through the simultaneous scanning of the excitation and the emission 

monochromators of the spectrofluorometer, with a fixed wavelength difference () of 15, 30 

and 60 nm between them. All the measurements were carried out at room temperature. 

 

 

 

 

 

 



Supplementary Table 1. Elemental and Inorganic chemical composition of Sapelli wood 

chips 

Sample % C %H %N %O⃰  %Ash 

Sapelli wood 46.16 6.17 0.22 37.03 10.42 

Inorganic Composition % Element 

0.3738 

0.1650 

0.0675 

0.1064 

0.0013 

0.0169 

0.0132 

0.0112 

0.0354 

 

Ca  

Si  

Mg  

Al  

S  

Fe  

K  

Sr  

Ni  

⃰ obtained by difference (%O =100% - % C - %H - %N - %Ash) 
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pKa2 11.55
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Supplementary Fig.1. Structural formula of phenols and caffeine.
The pKa of the chemical molecule was calculated using MarvinSketch 16.8.22.0



 

Supplementary Fig.2 2+ 2+ 2+ 2+. Preparation mechanism of MWAC with Co , Ni , Cu  and Zn
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Supplementary Fig. 3. FT-IR spectra of non-leached activated carbons



0 200 400 600 800 1000

0

20

40

60

80

100
PCoMC-0.5

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

368.9°22.4°

-1.37%

507.4°

-80.65%

1000°

-4.03%

-86.05%

0 200 400 600 800 1000

0

20

40

60

80

100

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

19.7°

61.0°
-7.68%

325.6°
-3.41%

542.0°

-86.51%

1000°
-2.40%

-100%

CoMC-0.5

0 200 400 600 800 1000
0

20

40

60

80

100
PCoMC-1.0

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

20.2°

143.8°
-6.15%

335.4°
-0.30%

524.0°

-55.59%

1000°

-4.71%

-66.75%

0 200 400 600 800 1000
0

20

40

60

80

100
CoMC-1.0

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

20.0°

57.1°

-3.57%
379.9°

-3.39%

541.2°

-89.21%

1000°
-2.14%

-98.31%

0 200 400 600 800 1000
0

20

40

60

80

100
PCoMC-1.5

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

18.4°

48.8°
-2.79%

414.7°
-1.07%

540.9°

1000°

-5.81%

-40.42%

-50.09%

0 200 400 600 800 1000
0

20

40

60

80

100
CoMC-1.5

W
e

ig
h

t
lo

s
s

(%
)

Temperature (°C)

21.4°

63.4°-11.85%

363.0°
-1.88%

1000°527.0°

-80.72%

-2.31%

-96.76%

0 200 400 600 800 1000
0

20

40

60

80

100
PCoMC-2.0

W
e
ig

h
t
lo

ss
(%

)

Temperature (°C)

1000°
522.2°

407.2°

75.5°

27.5°

-2.11%

-1.21%

-1.92%

-44.08%
-38.84%

0 200 400 600 800 1000

0

20

40

60

80

100
CoMC-2.0

W
e
ig

h
t
lo

ss
(%

)

Temperature (°C)

1000°

531.0°

393.0°
59.9

°

23.8°

-13.56%

-3.09%

-2.05%

-97.71%

-79.01%

Supplementary Fig.4
2+. TGA curves of the activated carbons modified with Co  at different ratios.
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Supplementary Fig.5 2+
. TGA curves of the activated carbons modified with Ni  at different ratios.
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. TGA curves of the activated carbons modified with Cu  at different ratios.
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ERRATUM OF ANNEX 2 
This is related to the correction of Table 2 of the second annex of the thesis. The related 

comments are also provided. 

 

Table 2. Textural properties of activated carbons materials 

 
Sample BET 

surface 
area (m2 

g-1) 

t-Plot 
Micropore 
Area (m2 g-

1) 

t-plot 
extern. 
surface 

area  
(m2 g-1) 

Total pore 
volume 

(cm3 g-1) 

t-Plot 
micropore 

volume  
(cm3 g-1) 

Mesopore 
volume 

(cm3 g-1) 

Smic/Stot 
(%) 

Vmic/Vtot 
(%) 

AC-1A 914.08 518.65 395.43 0.52327 0.25177 0.27151 56.74 48.11 

AC-2A 874.72 560.60 314.11 0.55385 0.27025 0.28360 64.09 48.79 

AC-1B 805.06 435.17 369.89 0.44205 0.20864 0.23342 54.05 47.20 

AC-2B 647.05 405.89 241.15 0.34443 0.20020 0.14424 62.73 58.13 

 
3. Results and discussion 

 

3.1. Characterisation of activated carbons 

 

 The chemical activation of the Sapelli wood with inorganics and further pyrolysis 

assisted by microwaves generated different activated carbons with different adsorption 

characteristics. Among the main features of the adsorbents, the surface area and porosity 

are the most influential for adsorption processes. The N2 adsorption–desorption isotherms 

and the BJH plots of the AC-1A, AC-1B, AC-2A, and AC-2B samples are listed in Fig 1.  

 The nitrogen isotherms exhibited by the activated carbons are shown in Fig. 1A. 

According to IUPAC all these samples are classified all as a mixture of type I and II 

isotherms which is typical of mesoporous and microporous materials, with pore widths below 

2 nm and between 2nm and 50nm [38]. 

 The pore size distribution curves of AC-1A, AC-2A, AC-1B and AC-2B, are presented in 

Fig 1B-E, respectively. It can be seen that all activated carbons present a mixture of 

micropores and mesopores, presenting a peak maximum around 40 Ǻ (4 nm).  

 The effects of the differing types of chemical agents and impregnation ratios on the BET 

surface area, micropore area, external surface area, total pore volume, micropore volume, 

and mesopores volume are given in Table 2. 

 As can be seen from the results of Fig 1A and Table 2, the adsorbed N2 volume 

differed depending on the ratio biomass and activation agents used. The highest surface 



area was obtained for the AC-1A material (100 g Sapelli wood sawdust + 20 g lime + 80 g 

ZnCl2) followed by AC-2A (150 g Sapelli wood sawdust + 20 g lime + 80 g ZnCl2), and then 

AC-1B (100 g Sapelli wood sawdust + 20 g lime + 40 g ZnCl2 + 40 g FeCl3), and lastly AC-2B 

(150 g Sapelli wood sawdust + 20 g lime + 40 g ZnCl2+ 40 g FeCl3); see Table 2. The 

difference in total surface area between AC-1A and AC-2A was only 5.0 %, however, the 

difference total surface area between AC-1B and AC-2B was 19.62%. From these results, it 

is possible to infer that the ratio Biomass/Inorganic components is very important for 

increasing the surface area, as well as pore development in the activated carbon materials 

[39]. 

  The adsorbents with higher inorganic contents (AC-1A and AC-1B) showed higher 

surface areas and higher pore volume compared with the adsorbents with lower amounts of 

inorganics introduced during preparation of the activated carbon (AC-2A and AC-2B) [40,41].  

Another analysis that could be convenient with regards to these activated carbons is 

the ratio Smicropore/Stotal expressed in percentage. These values are 56.74, 54.05, 64.09 and 

62.73% for the activated carbons AC-1A, AC-1B, AC-2A and AC-2B, respectively. It can be 

observed that the micropore structure was created when ratio Biomass/inorganic increased. 

However, comparing all the results, one can infer that each of the four activated carbon 

materials presented a mixture of micro- and mesopores with the predominance of micropore 

structure. The lime + ZnCl2 + FeCl3 activating agent employed in the preparation (AC-1B, 

and AC-2B) as well as the lime + ZnCl2 activating agent (AC-1A, and AC-2A) can be used to 

create a predominantely microporous adsorbents. 

Furthermore, analyzing these results, it is expected that the sorption capacity of AC-

1B would be very close to that of AC-2A, since these materials did not exhibit remarkable 

differences in surface area (difference of only 8.0 %). Also the inorganic components used to 

form the paste with the organic precursor (20 g lime + 80 g ZnCl2 or 20 g lime + 40 g ZnCl2 + 

40 g FeCl3) presented practically the same performance. Only AC-2B presented worst 

surface area, being 19.6 % lower than for AC-1B, 26.0 % lower than for AC-2A, and 29.2 % 

lower than for AC-1A. Use of ZnCl2 as an activating agent is well known in literature [39–41], 

whereas use of FeCl3 as an activating agent for production of activated carbon is more 

recent in literature [27]. 

In addition, the ratio Vmicropore/Vtotal expressed as a percentage could be another useful 

parameter for analysis of these activated carbon materials. Its value was 48.11, 47.20, 48.79 

and 58.13 % for AC-1A, AC-1B, AC-2A, and AC-2B, respectively. Analyzing these results, 

only AC-2B (150 g biomass + 20 g lime + 40 g ZnCl2 + 40 g FeCl3) presented a 

predominance of micropores, because this ratio was slightly higher than 50 %. On the other 

hand, AC-1A, AC-1B, and AC-2A presented Vmicropore/Vtotal ratios lower than 50 %, indicating 

that these materials were predominantly mesoporous. Although this analysis differs from the 



analysis of the ratio Smicropore/Stotal, for which all the activated carbon materials presented a 

value higher than 50 %, both analyses indicate that all the activated carbon materials 

possess micropores and mesopores in their structure, and these pores are responsible for 

the sorption capacity of the obtained adsorbents [42–45]. 

In preparation of activated carbon, yield is an important parameter, usually being 

defined as the final weight of activated carbon produced after activation, washing, and 

drying, divided by the initial weight of raw material, both on dry basis [27, 46]. The global 

yield of activated carbon varied in the range from 24 to 35 %, considering the initial mass of 

sawdust used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A) Nitrogen adsorption–desorption isotherms for activated carbons (The compact 

symbols are for the adsorption branch and the hollow symbols are for the desorption branch). 

Pore size distribution: B) AC-1A; C) AC-2A; D) AC-1B; E) AC-2B. 
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