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“Anybody that thought the genome was going

to directly provide drugs was a fool.

Biological networks are not simple, and making
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ABSTRACT

One of the main research areas in Systems Biology concerns the discovery of biological net-

works from microarray datasets. These networks consist of a great number of genes whose

expression levels affect each other in various ways. We present a new way of analyzing mi-

croarray datasets, based on the different kind of cycles found among genes of the co-expression

networks constructed using quantized data obtained from the microarrays. The input of the anal-

ysis method is formed by raw data, a set of interest genes (for example, genes from a known

pathway) and a function (activator or inhibitor) of these genes. The output of the method is a

set of cycles. A cycle is a closed walk, in which all vertices (except the first and last) are dis-

tinct. Thanks to the new way of finding relations among genes, a more robust interpretation of

gene correlations is possible, because cycles are associated with feedback mechanisms that are

very common in biological networks. Our hypothesis is that negative feedbacks allow finding

relations among genes that may help explaining the stability of the regulatory process within

the cell. Positive feedback cycles, on the other hand, may show the amount of imbalance of a

certain cell in a given time. The cycle-based analysis allows identifying the stoichiometric rela-

tionship between the genes of the network. This methodology provides a better understanding

of the biology of tumors. As a consequence, it may enable the development of more effective

treatment therapies. Furthermore, cycles help differentiate, measure and explain the phenom-

ena identified in healthy and diseased tissues. Cycles may also be used as a new method for

classification of samples of a microarray (cancer diagnosis). Compared to other classification

methods, cycle-based classification provides a richer explanation of the proposed classification,

that can give hints on the possible therapies. Therefore, the main contributions of this thesis are:

(i) a new cycle-based analysis method; (ii) a new microarray samples classification method; (iii)

and, finally, application and achievement of practical results. We use the proposed methodology

to analyze the genes of four networks closely related with cancer - apoptosis, glucolysis, cell

cycle and NFκB - in tissues of the most aggressive type of brain tumor (Gliobastoma multi-

forme – GBM) and in healthy tissues. Because most patients with GBMs die in less than a year,

and essentially no patient has long-term survival, these tumors have drawn significant attention.

Our main results show that the stoichiometric relationship between genes involved in apopto-

sis, glucolysis, cell cycle and NFκB pathways is unbalanced in GBM samples versus control

samples. This dysregulation can be measured and explained by the identification of a higher per-

centage of positive cycles in these networks. This conclusion helps to understand more about

the biology of this tumor type. The proposed cycle-based classification method achieved the



same performance metrics as a neural network, a classical classification method. However, our

method has a significant advantage with respect to neural networks. The proposed classification

method not only classifies samples, providing diagnosis, but also explains why samples were

classified in a certain way in terms of the feedback mechanisms that are present/absent. This

way, the method provides hints to biochemists about possible laboratory experiments, as well

as on potential drug target genes.

Keywords: Bioinformatics. gene co-expression networks. cycle. negative feedback. positive

feedback. systems biology. microarrays. gene expression. gliobastoma multiforme. GBM.



Uma Abordagem para Analisar e Classificar Dados de Microarrays Usando Ciclos de

Redes de Co-expressão Gênica

RESUMO

Uma das principais áreas de pesquisa em Biologia de Sistemas refere-se à descoberta de redes

biológicas a partir de conjuntos de dados de microarrays. Estas redes consistem de um grande

número de genes cujos níveis de expressão afetam os outros genes de vários modos. Nesta tese,

apresenta-se uma nova maneira de analisar os conjuntos de dados de microarrays, com base

nos diferentes tipos de ciclos encontrados entre os genes das redes de co-expressão construídas

com dados quantificados obtidos a partir dos microarrays. A entrada do método de análise é

formada pelos dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via

conhecida) e uma função (ativador ou inibidor) destes genes. A saída do método é um conjunto

de ciclos. Um ciclo é um caminho fechado com todos os vértices (exceto o primeiro e o último)

distintos. Graças à nova forma de encontrar relações entre os genes, é possível uma interpre-

tação mais robusta das correlações dos genes, porque os ciclos estão associados a mecanismos

de feedback, que são muito comuns em redes biológicas. A hipótese é que feedbacks negati-

vos permitem encontrar relações entre os genes que podem ajudar a explicar a estabilidade do

processo regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, podem mos-

trar a quantidade de desequilíbrio de uma determinada célula em um determinado momento.

A análise baseada em ciclos permite identificar a relação estequiométrica entre os genes da

rede. Esta metodologia proporciona uma melhor compreensão da biologia do tumor. Como

consequência, pode permitir o desenvolvimento de terapias de tratamento mais eficazes. Além

disso, os ciclos ajudam a diferenciar, medir e explicar os fenômenos identificados em tecidos

saudáveis e doentes. Os ciclos também podem ser usados como um novo método para a clas-

sificação de amostras de um microarray (diagnóstico de câncer). Em comparação com outros

métodos de classificação, a classificação baseada em ciclos fornece uma explicação mais rica

da classificação proposta, que pode dar pistas sobre as possíveis terapias. Portanto, as principais

contribuições desta tese são: (i) um novo método de análise baseada em ciclos; (ii) um novo

método de classificação; (iii) e, finalmente, aplicação dos métodos e a obtenção de resultados

práticos. A metodologia proposta foi utilizada para analisar os genes de quatro redes fortemente

relacionadas com o câncer - apoptose, glicólise, ciclo celular e NFκB - em tecidos do tipo mais

agressivo de tumor cerebral (Gliobastoma multiforme - GBM) e em tecidos cerebrais saudáveis.

A maioria dos pacientes com GBM morrem em menos de um ano, essencialmente nenhum pa-



ciente tem sobrevivência a longo prazo, por isso estes tumores têm atraído atenção significativa.

Os principais resultados nesta tese mostram que a relação estequiométrica entre genes envol-

vidos na apoptose, glicólise, ciclo celular e NFκB está desequilibrada em amostras de GBM

em comparação as amostras de controle. Este desequilíbrio pode ser medido e explicado pela

identificação de um percentual maior de ciclos positivos nas redes das primeiras amostras. Esta

conclusão ajuda a entender mais sobre a biologia deste tipo de tumor. O método de classificação

baseado no ciclo proposto obteve as mesmas métricas de desempenho como uma rede neural,

um método clássico de classificação. No entanto, o método proposto tem uma vantagem sig-

nificativa em relação às redes neurais. O método de classificação proposto não só classifica as

amostras, fornecendo diagnóstico, mas também explica porque as amostras foram classificadas

de uma certa maneira em termos dos mecanismos de feedback que estão presentes/ausentes.

Desta forma, o método fornece dicas para bioquímicos sobre possíveis experiências laboratori-

ais, bem como sobre potenciais genes alvo de terapias.

Palavras-chave: Bioinformática, Redes de Co-expressão Gênica, Ciclo, Feedback Negativo,

Feedback Positivo, Biologia de Sistemas, Microarrays, Expressão Gênica, Apoptose, Glicólise,

Ciclo Celular, NFκB, Gliobastoma multiforme, GBM, Análise, Classificação.
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1 INTRODUCTION

Bioinformatics aims to treat biological data and answer questions related to the func-

tioning of biological systems. In this sense, the construction of models to analyze and predict

the behavior of biological systems is of extreme importance. These models can, along with

laboratory experiments, reduce the number, cost and time of experiments needed to discover

new information. Computational methods, besides enabling the manipulation of a large amount

of biological data, also allow the inference of models that can quantify and explain the data

produced by the biological system, enabling classification and analysis techniques.

Gene expression provides information for building models of biological systems. Gene

expression analysis comparing normal and neoplastic tissues have been used to identify genes

associated with tumor genesis and potential therapeutic targets (PARMIGIANI et al., 2003).

Genomic high-throughput technologies, such as microarrays, may considerably facilitate the

molecular profiling of human tumors. Thousands of genes can now be analyzed using a single

microarray hybridization chip (STEKEL, 2003). The expression profile from a single tumor

reflects the state of events of an individual malignancy at a certain time point. To generalize

the findings and provide conclusive evidence for the involvement of a molecular alteration, it

is often necessary to analyze several hundred tumors. Using traditional molecular pathology,

such verification could take several months, or even years, to reach completion. To facilitate

translational research in a large-scale manner, new techniques are needed.

1.1 Motivation

One of the main research areas in systems biology concerns the analyzes of biologi-

cal pathways or networks discovered from microarray datasets. A gene co-expression network

(GCN) can be inferred from microarrays experiments (DAS et al., 2009). A GCN is an undi-

rected graph, where nodes correspond to genes and undirected edges between nodes represent

significant co-expression relationships. In a GCN, two genes are connected by an undirected

edge if their activities have significant association (usually quantified by correlation or mutual

information) considering a series of gene expression measurements in many different condi-

tions or at different times (BOCCALETTI; LATORA; MORENO, 2010). Compared to gene

regulatory networks, a GCN does not attempt to represent direct causal relationships among the

participating genes in the form of directed edges.

GCNs can be analyzed in several ways (SERIN et al., 2016; RUAN; DEAN; ZHANG,
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2010), such as topology analysis (HSU; JUAN; HUANG, 2015; VIALANEIX et al., 2013;

XULVI-BRUNET; LI, 2010), modularity analysis and gene ontology analysis (GAITERI et

al., 2014; TEJERA; BERNARDES; REBELO, 2013; FULLER et al., 2007). GCNs can be

used to address questions related to modules (clusters of interconnected nodes), for example, to

summarize the node profiles of a given module by a representative (highly connected) hub node

(LANGFELDER; HORVATH, 2008). These networks allow the simultaneous investigation of

multiple gene co-expression patterns across a wide range of conditions; and the two main aims

of co-expression network analysis are to find new genes involved in the biological process under

investigation and to suggest the biological processes a gene is involved in (SERIN et al., 2016).

The aforementioned analysis techniques allow to inspect different aspects of GCN’s

structure. Although these approaches have led to many valuable insights, they tend to focus

attention on a few genes (for instance, hub genes) and ignore many others that may be used to

generate and translate systems biology insights into testable predictions. Thus, understanding

the network remains a challenge: how to model and explain biological process? Also how to

extract relevant information from biological data (specifically, from microarrays)?

1.2 Objectives and Thesis Contributions

The main objective of our research is to define a new way of analyzing microarray

datasets, based on the different kind of cycles found among genes of the GCN constructed

using quantized data obtained from microarrays. A cycle is a closed walk with all vertices being

distinct (except the first and last ones) (DIESTEL, 2012). We follow the hypothesis that cycles

are associated with feedback mechanisms very common in biological networks. Considering

this objective and hypothesis, our contributions are the following:

• We propose a new way of finding relations among genes, that allows a different inter-

pretation of gene correlations. The cycle-based analysis allows one to identify the stoi-

chiometric relationship between the genes of the network providing, for example, a better

understanding of tumor biology. Thus, cycle analysis may significantly contribute to the

development of more appropriate treatment therapies that act effectively on problematic

components. Furthermore, cycles help differentiate, measure and explain the phenomena

observed in healthy and diseased tissues.

• We propose using cycles as the basis of a new method for classification of samples of a

microarray (cancer diagnosis). The main advantage of our approach is embedded biolog-
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ical significance. Our classification method achieved the same performance than a neural

network, which is one of the most common classification method. Thus, our method

and a neural network have parity in the diagnosis of the disease. However, while the

neural network is a black box, our method provides biological information regarding the

response of classification. If the analyzed pathway is related to the disease, our method

may explain the action of the disease through cycles, providing hints to biochemists about

possible laboratory experiments, as well as on potential drug target genes.

• We use the proposed methodology to analyze the genes of three networks closely related

with cancer - apoptosis, glucolysis and cell cycle - in tissues of brain tumor Gliobastoma

multiforme (GBM) and in healthy tissues.

GBM is the most aggressive type of brain tumor. This collection of tumors arise from glia

or their pre-cursors within the central nervous system. Because most patients with GBMs

die in less than a year, and essentially no patient has long-term survival, these tumors

have drawn significant attention. In fact, GBMs have evaded increasingly clever and

intricate attempts at therapy over the last half-century. Since the prognosis of GBMs is

still extremely poor, the discovery of novel molecular therapeutic targets can be important

to optimize treatment strategies (MRUGALA, 2013). Our main results show that the

stoichiometric relationship between genes involved in apoptosis, glucolysis, cell cycle

pathways is unbalanced in GBM samples versus control samples. This dysregulation

can be measured and explained by the identification of a higher percentage of positive

cycles in these networks. This conclusion helps to understand more about the biology

of this tumor type. Furthermore, the results show that our method provided a faithful

classification of microarray samples based on the cycles of the three networks.

• We present a NFκB pathway analysis in tissues of the GBM tumor and in healthy tissues

using our method. GBM patients carry aberrant NFκB activation, but the pathway mech-

anisms are not completely understood. The genes of the NFκB pathway are involved

in the control of a plethora of biological processes ranging from inhibition of apoptosis

to metastasis in cancer. In GBM samples, we show that the stoichiometric relationship

between genes involved in NFκB pathway regulation is unbalanced. This can be mea-

sured and explained by the identification of a positive cycle. This conclusion helps to

understand more about the NFκB pathway and the biology of this tumor type.
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1.3 Research Context

The present work is part of the multidisciplinary project that combines knowledge from

the fields of Computer Science and Biochemistry, called BioModelos (Modelagem Computa-

cional de Sistemas Biológicos – Computational Modeling of Biological Systems). This way,

we have a close collaboration with researchers from the Department of Biochemistry of the

Universidade do Rio Grande do Sul (UFRGS), so that all experiments with models are sup-

ported (or not) with experimental analysis made in biochemistry laboratories.

The aim of this project is the construction and validation of different models of bio-

logical processes, allowing the analysis and prediction of the reactions that occur in biological

machines at different levels of abstraction. This will allow to interfere in a much more controlled

and predictable manner, as nowadays occurs when handling models silicon-based machines. In

addition, with the availability of models at adequate degrees of abstraction and accuracy, path-

way simulation and reactions allow an acceleration in the development of biochemical research,

with obvious productivity gains.

The challenge in terms of Computer Science research is provide computational models

to reflect complex biological processes reliable and faithfully, that can be used to analyze and

simulate in reasonable time the multiple reactions of the huge biological machines. Not only

the chain of reactions linked to a physical-chemical excitation is important, but relationships

between the different chains are also key, and many details are still unknown to researchers

from the Biochemistry area. Even to describe simple pathways, a lot of knowledge about the

agents involved is necessary. Each human cell contains about 20,000 to 25,000 genes that can

potentially generate the corresponding proteins, which in turn trigger the reactions in a pathway.

The same gene may influence various cellular pathways and in different ways (for example, by

promoting, inhibiting, accelerating). In addition to genes, other aspects, such as environmental

factors, affect pathways. Therefore, the construction of these models requires a lot of interdis-

ciplinary interaction, combining knowledge of Computer Science and Biochemistry areas.

1.4 Thesis Outline

The remaining chapters of this thesis are organized as follows:

• Chapter 2 presents background information on the main issues addressed in this thesis.

The concept of gene expression and measurement methods are introduced. We present
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concepts of the abstraction used to represent networks (graphs) and describe two types of

gene networks: (i) gene regulatory networks and (ii) gene co-expression networks. The

pathways used as case studies of our methodology are also presented.

• Chapter 3 revises the related literature. The first part of the chapter addresses different

methods of analysis of GCNs. The second part, in turn, discusses a set of methods used

for classification based on microarray data.

• Chapter 4 details our microarray data analysis methodology. In addition, we present

as case studies the analysis of GCNs that represent apoptosis, glucolysis and cell cycle

pathways in GBM tumor and in healthy tissues. We close the chapter with a discussion

of the results.

• Chapter 5 describes our microarray samples classification methodology. We use the pro-

posed method for classification based on microarray data in tissues of GBM tumor and

in healthy tissues using the information obtained in the analysis of GCNs that represents

apoptosis, glucolysis and cell cycle pathways. We discuss the results at the end of the

chapter.

• Chapter 6 presents a NFκB pathway analysis in tissues of the GBM tumor and in healthy

tissues using our method based on the different kind of cycles found among genes of a

GCN constructed with quantized data obtained from the microarrays. First, the NFκB

pathway is presented. Next, the results are described and discussed.

• Concluding remarks and research perspectives are presented in Chapter 7.
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2 BACKGROUND

In this chapter, we present background information on the main issues addressed in this

thesis. Section 2.1 introduces the concept of gene expression and presents some measurement

methods. In Section 2.2, we provide some concepts of the abstraction used to represent the gene

networks: graph. Section 2.3 presents two types of gene networks: (i) gene regulatory networks

and (ii) gene co-expression networks. In Section 2.4, we present the apoptosis, glucolysis and

cell cycle pathways, which are used as case studies of our methodology.

2.1 Gene Expression

The genetic information of an individual (the genome) is encoded in double-stranded

deoxyribonucleic acid (DNA) molecules, which are arranged into chromosomes. The DNA

describes all the proteins that are potentially present in every cell of a living organism. The

central dogma of molecular biology says “DNA makes RNA, RNA makes protein, and proteins

make the cell” (CRICK, 1970); so it explain how the cell converts the information contained

in the DNA in proteins or enzymes. Besides that, a separate process, called replication, occurs

more rarely, and only when a cell is ready to divide, and results in the DNA duplication, one

copy to each of the two daughter cells. See Figure 2.1.

Figure 2.1 – Central dogma of molecular biology.

Source: Barillot et al. (2012).

Gene expression refers to the process by which genetic information gets transformed

into working proteins. The main steps are transcription from DNA to RNA, translation from
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RNA to linear amino acid sequences, and folding of these into functional proteins. In any given

cell of an organism, at any time, thousands of genes and their products (RNA, proteins) actively

participate in a synchronized process. Thus gene expression is one of the main determinants of

a cell’s state, or phenotype. One can, for example, investigate the differences between a normal

cell and a cancer cell by examining their relative gene expression profiles.

Therefore gene expression provides information for building models of biological sys-

tems. When genes are expressed, the genetic information (base sequence) on DNA is first

transcribed (copied) to a molecule of messenger RNA (mRNA). The mRNA molecules then

leave the cell nucleus and enter the cytoplasm, where they participate in protein synthesis by

specifying the particular amino acids that make up individual proteins (National Center for

Biotechnology Information - NCBI, 2014).

Gene expression analysis is the determination of the pattern of genes expressed at the

level of genetic transcription, under specific circumstances or in a specific cell. Gene expres-

sion analysis is used to study regulatory gene defects in cancer and other devastating diseases,

cellular responses to the environment, cell cycle variation. Several techniques are available

for measuring gene expression, including serial analysis of gene expression (SAGE), cDNA li-

brary sequencing, differential display, cDNA subtraction, multiplex quantitative RT–PCR, gene

expression microarrays c and RNA-sequencing (RNA-seq) (MANTIONE et al., 2014).

The high-throughput technique known as microarray (or DNA chips) is particularly pow-

erful in providing a global view of gene expression patterns in biological samples. Thousands of

genes can now be analyzed using a single microarray hybridization chip (STEKEL, 2003). This

technique allows to increase the current knowledge about the causes and mechanisms involved

in various complex disorders. Researchers can compare the molecular behavior of different

types of cells lines or specific tissues that have been exposed to pathological or experimental

conditions. The method may provide insights into physiological processes and facilitate the

identification of novel biological markers for diagnostic, prognostic and pharmacological treat-

ments for a number of diseases.

The typical microarray data processing and analysis is presented in Figure 2.2. The

process consists of three major steps: (i) determination of the biological problem and sample

preparation, (ii) array generation and (iii) data analysis (ZHANG, 2006). In the first step, the

RNA sources are collected from the tissues of model systems or diseased/normal patients or

from cultivated homogeneous population as appropriate to the particular problem being inves-

tigated. Then, RNAs are extracted from these cells.
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Figure 2.2 – Microarray analysis flow.

Source: Author (2016).

In the second step, a microarray experiment is performed. There are different types of

microarrays. Two different approaches are prevalent, and they differ on the way probes are

placed on the slide (PARMIGIANI et al., 2003): (i) Spotted or cDNA microarrays, the DNA

molecules (also called probes) are synthesized apart and printed mechanically on the chip; and

(ii) oligonucleotide chips, whose main representatives are Affymetrix GeneChip, the probes are

directly synthesized on the surface. In the latter, a gene is not represented by one probe but by

a set of them (a probe set). All types of microarrays follow common basic procedures (Figure

2.3):

• Chip manufacture: a microarray is a small chip made of chemically-coated glass, nylon

membrane or silicon in which thousand of probes are attached in fixed grids. Each grid

cell is related to a DNA sequence.

• mRNA preparation, labeling and hybridization: usually, two mRNA samples (a test sam-

ple and a control sample) are reverse-transcribed into complementary DNA strand (cD-

NAs) targets, labeled using either fluorescent dyes or radioactive isotopics, and then hy-

bridized with the cloned sequences on the surface of the chip.

• Chip scanning: chips are scanned to read the signal intensity that is emitted from the

labeled and hybridized targets. The scanned image consists in a grid of shined spots,

each one corresponding to a probe. Finally, this image is processed and transformed into

numbers, consisting the basis of the gene expression analysis.
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Figure 2.3 – Microarray experiment.

Source: Adapted from supplementary material provided by Schlitt and Brazma (2007).

When theses procedures are completed, the raw microarray data are obtained, then data

preprocessing may need to be executed prior to any data analysis. The preprocessing include

data transformation and data normalization. After this, the microarray data can typically be rep-

resented by a two-dimensional matrix X = xij , where each row i in the data matrix correspond

to one gene, each column j corresponds to each biological sample (experimental condition:

disease or normal tissue; or different time points), and each cell xij is a real value recording the

expression level of gene i from sample j (or under condition j). Finally, the last step can be

performed: data analysis and visualization from the preprocessed data.

Gene expression measuring technologies are in continuous progress. Despite the ad-

vances in experiments technology, data availability is still an obstacle to be overcome in the

process of model biological process. Microarray data presents some challenges such as the di-

mensionality problem due to the scarcity of biological samples (instances). Microarray analysis

typically measure tens of thousands of genes in only tens of samples, which increases the risk

of detecting spurious relationships. Another important problem concerning biological data is

that the gene expression data provided by microarray quantify the concentration of mRNA and

ignores information about possible interventions and environmental changes after the transcrip-

tion phase.
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2.2 Graphs

Systems biology (IDEKER; GALITSKI; HOOD, 2001) is the study of an organism seen

as a network of biological components (genes, proteins, and chemical reactions). Instead of

analyzing individual components or aspects of the organism, the focus are all components and

the interaction between them, all as part of a single system, as indeed happens in reality. These

interactions are responsible for the shape and the functions of a body. Systems Biology seeks

to understand these complex interactions, as they are the key to understanding life.

A network is a collection of connected objects. Usually, the objects are called nodes or

vertices and drawn as points (or circles); the connections between the nodes are called edges and

drawn as lines between nodes (points). In mathematics, networks are often called as graphs and

its study is referred as graph teory (BORNHOLDT; SCHUSTER, 2003). Graphs can represent

all sorts of systems in the real world. One could, for example, describe the World Wide Web as

a graph where the pages are nodes and links are the edges. Social networks are other examples

of graphs.

Formally, a graphG is a pair (V,E), where V is the set of nodes (also called vertices) and

E is the set of edges (CORMEN et al., 2001). An edge eij ∈ E is a pair eij = (vi, vj), where vi

and vj are nodes (vi ∈ V and vj ∈ V ) to be connected, linked or adjacent to each other. Nodes

and edges can have labels (i.e., character strings, name, words attached to them) and weights

(i.e., numerical values). Nodes with a large number of connections are hubs. To model the

‘real world’, nodes are used to represent entities and edges various relationships between these

entities. Usually, nodes are depicted as dots or circles and edges as lines connecting nodes;

arrows represent arcs (directed edges), where the arrowheads indicate the directionality. Figure

2.4 presents basic elements of a graph representation.

Graphs can be directed or undirected (CORMEN et al., 2001). In the first case, edges

are ordered pairs of nodes and are often called arcs: (vi, vj) means an arc from vi to vj and

(vj, vi) means an arc from vj to vi. Directed graphs can be effectively used to represent causal

influences or communication between the nodes. In these graphs, we call nodes with outgoing

edges source nodes and nodes with incoming edges target nodes; for each source node we define

the target set as the set of all its target nodes. In an undirected graph, the edges do not have a

particular direction: if e1 ∈ E and e1 = (vi, vj), where vi ∈ V and vj ∈ V , and e2 ∈ E and

e2 = (vj, vi), where vj ∈ V and vi ∈ V , then e1 = e2.
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Figure 2.4 – Basic elements of a graph representation – Nodes are represented as circles and are named
as A and B; they, for example, represent gene A and gene B. Connections between nodes represent an
undirected relationship (edge) and a relationship where directionality is important (arc named a). The
source node A have an outgoing arc; and the target node have and incoming arc. The number of incoming
and outgoing arcs (and edges) is the degree of a node (node A and node B have degree 2).

Source: Author (2016).

A mixed graph G is a graph in which some edges may be directed and some may be

undirected. It is written as an ordered triple (V,E,D), where V is the set of nodes, E is the

set of edges and D is the set of arcs. With an edge an and arc defined as above. Directed

and undirected graphs are special cases of such mixed graphs. These graphs can thus represent

associations as well as causal influences between the nodes (DAS et al., 2009).

A graph where all nodes are connected to each other by an edge is called a complete

graph (CORMEN et al., 2001). A subgraph of a graph G is another graph formed from a subset

of the nodes and edges of G. A clique is a subset of the nodes in a graph such that every pair of

nodes are connected by an edge (i.e., a clique is complete subgraph) (CORMEN et al., 2001).

A walk is an alternating sequence of nodes and edges, starting and ending at a vertex,

in which each edge is adjacent in the sequence to its two endpoints. In a directed graph, the

ordering of the endpoints of each edge in the sequence must be consistent with the direction of

the edge. A closed walk is one that starts and ends at the same node. A cycle is a closed walk

with all nodes distinct (except the first and last nodes) (CORMEN et al., 2001).

The degree of a node is defined as a number of connections (edges) adjacent to this

node. For a node in a directed graph we can distinguish between the number of incoming arcs

(indegree) and outgoing arcs (outdegree). In an undirected network only the degree is defined

as the number of edges of a node (CORMEN et al., 2001). The average degree of a graph G is

a measure of how many edges are in set E compared to number of nodes in set V . A diameter

of a graph is the largest number of nodes which must be traversed in order to travel from one

node to another when backtrack, detour, or loop are excluded from consideration (CORMEN et
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al., 2001). The density of a graph G measures how many edges are in set E compared to the

maximum possible number of edges between nodes in set V (CORMEN et al., 2001).

2.3 Gene Networks

Genomic high-throughput technologies are generating a great amount of biological data

and represent a fertile source of knowledge. These data allowed to get inside main features of

gene expression and its regulation and, at the same time, to discover a more complex level of

organization (DAS et al., 2009). Networks offer a theoretical picture that can be used to explain

and analyze the structure of these data, and so from biological systems and their evolution.

Many theoretical studies on networks have demonstrated their application to model biological

networks, as, for example, metabolic networks, neuronal networks and gene networks.

Many different kinds of gene networks can be obtained, depending on which particular

biological target is considered. The Subsection 2.3.1 and 2.3.2 present, respectively, two types

of gene networks: (i) gene regulatory networks and (ii) gene co-expression networks. Often, in

the literature, the two terms are used as synonyms, but actually they are not.

2.3.1 Gene Regulatory Networks

A gene regulatory network (GRN) lies at the core of intracellular signal transduction. A

GRN can be defined as a collection of DNA segments in a cell which interact with each other in-

directly through their RNA and protein products (and with other substances in the cell), thereby

governing the rates at which genes in the network are transcribed into mRNA (STURROCK,

2013). In other words, these networks consist of a great number of genes whose expression

levels affect each other in various ways. Computational models of GRNs can take a variety of

forms. A graphical representation of a GRN is present in Figure 2.5.

A GRN is a mixed graph G = (V,E,D) over a set V of nodes, corresponding to gene-

activities (gene expression levels or RNA concentrations), with unordered pairs E, the undi-

rected edges, and ordered pairs D, the directed edges (DAS et al., 2009). A directed edge dij

from vi to vj is present if and only if a causal effect runs from node vi to vj and there exist no

nodes or subsets of nodes in V that are intermediating the causal influence (it may be mediated

by hidden variables, i.e. variables not in V ). An undirected edge eij between nodes vi and vj is

present if and only if gene-activities vi and vj are associated by other means than a direct causal
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Figure 2.5 – Gene regulatory network graphical representation – (A) A hypothetical instance of the
multilayered regulatory machinery underlies organisms functioning. The genetic elements are organized
in three levels: DNA, RNA and protein. Regulatory interactions, in turn, are distributed in transcriptional
layer, the post-transcriptional layer and the translational layer. These interaction could occur both intra
an inter-level, increasing the complexity of the system. (B) A simplified representation of a GRN, which
is given as a graph model, where the regulatory layers are no longer distinguishable and the type of
interactions covered by the model depends on the experiment goal, available data and the biological
knowledge.

Source: Mendoza (2014).

influence, and there exist no nodes or subsets of nodes in V that explain that association (it is

caused by a variable hidden to V ).

The directed edges in GRNs correspond to causal influences between gene-activities.

More accurately, these could include regulation of transcription by transcription factors, but

also less intuitive causal effects between genes involving signal-transduction or metabolism.

When GRNs are inferring from gene-expression data alone, the metabolites and proteins act as

hidden variables. These variables mediate communication between genes, but since they are not

included explicitly in the GRNs, only their effects appear as edges between the observed vari-

ables. Only cause-effect relations between observed quantities can be established. Thus these

networks describe communication between genes implicitly including all regulatory processes

inside living cells and therefore give a complete description of cellular regulation projected on

the gene activities. The undirected edges in GRNs, in turn, correspond to associations (for

instance, correlations) between gene expression levels or RNA concentrations. These edges

should not be confused with reciprocal effects, i.e. two nodes that are connected by directed

edges in both directions (DAS et al., 2009).
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2.3.2 Gene Co-expression Networks

A gene co-expression network (GCN) is an undirected graphG = (V,E) over a set V of

nodes and a set of the undirected edges, unordered pairs, E (DAS et al., 2009). The abstraction

from biological data to the mathematical model (graph) is realized by mapping genes to nodes

and putting edges representing similarity of gene expression according to a given quantitative

notion of similarity (or dissimilarity). Thus, GCNs are inferred from gene expression data.

Figure 2.6 shows an example of a GCN.

Of particular interest is the problem of analyzing GCNs construct by using gene expres-

sion data from DNA microarray experiments. Microarrays quantify gene expression by mea-

suring the hybridization, or matching, of DNA immobilized on a small matrix (array) to mRNA

representation from the sample under study. Arrays can currently have hundreds of thousands of

spots, so can measure simultaneously a large proportion of the genes on the genome allows the

investigation of the interactions among the genes on a large scale, the discovery of the role of the

vast number of genes whose function is not adequately understood and the characterization of

how pathways are changed under varying conditions (PARMIGIANI et al., 2003). Thus, GCNs

provide a conceptual framework to study gene interactions. However, their static representa-

tion does not capture all possible gene relationships as these do not operate simultaneously due

to spatial and temporal variation in gene expression (SERIN et al., 2016). Other applications

of GCNs include the gene functional annotation and the comparison of GCNs across tissues

and/or species. These different analysis will further contribute to the elucidation of important

biological processes and provide a valuable predictive tool for molecular breeding (SERIN et

al., 2016).

The network construction is conceptually straightforward: nodes represent genes and

nodes are connected if the corresponding genes have significantly similarity of gene expression

according to an used quantitative notion. Hence a co-expression link exists when the similarity

measure between two genes is higher than a defined cutoff. There are several questions asso-

ciated with the choice of a cutoff (ZHANG; HORVATH, 2005). The first is “how to pick a

cutoff?”. One strategie is picking a number based on the notion of statistical significance. Its

drawbacks include loss of information (if the threshold has been set to 0.8, there will be no

connection between two nodes if their similarity equals 0.79) and sensitivity to the threshold.

Usually, a networks can be specified with the following adjacency matrix: A = [aij] is

symmetric with entries in [0, 1]. By convention, the diagonal elements are assumed to be zero.
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Figure 2.6 – An example of gene co-expression network.

Source: Ruan, Dean and Zhang (2010).

For unweighted networks, the adjacency matrix contains binary information (one if connected

and zero if unconnected). In weighted networks, the adjacency matrix contains weights.

Given two genes it is possible to use different quantitative measures of co-expression

to construct different GCNs. Thus, two genes are connected by an undirected edge if their

activities have significant association over a series of gene expression measurements. Usually,

Pearson correlation, Spearman correlation or Mutual Information are used to quantify similarity

of gene expression (DAS et al., 2009).

It is important to emphasize the difference between GCNs and GRNs, since the first

has also been incorrectly called GRNs in the literature by several authors (DAS et al., 2009).

Gene activities (gene expression levels or RNA concentrations) can be correlated due to differ-

ent causal relationships: (i) direct effects, (ii) indirect effects (correlation is transitive) and (iii)

confounding. Several algorithms have been proposed to eliminate edges corresponding to the

cases (ii) and (iii), thus resulting in a network which is the undirected version of the GRN. A

correlation does not imply causation and many of the undirected edges may be due to hidden

confounding factors. Only gene expression data obtained through a strategy of gene pertur-

bations, or other targeted disturbances to the system, allow for inferring causal relationships.

While it has been shown that under certain assumptions it is possible to infer causality without
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making experimental interventions, such assumptions are unfortunately not justified in this con-

text. The strongest assumption is that there are no hidden variables with confounding effects

on the observed variables. Given the fact that gene expression levels are generally the only

observed quantities in the data used to infer GCNs or GRNs, and that all variables mediating

the causal effects between them, i.e. the proteins and metabolites are hidden, such assumption

can not be justified under any circumstance. Gene perturbations are thus necessary to infer

causality and thus GRNs. Such perturbations could be experimentally created by knocking-out

or over-expressing genes. Also natural genetic polymorphisms could be used to infer causal

relationships between gene-activities. Therefore, the major difference between the two types of

network is the semantics of undirected edges.

2.4 Pathways

Hanahan and Weinberg (2011) proposed six hallmarks of cancer that together constitute

an organizing principle for rationalizing the complexities of neoplastic disease. The hallmarks

of cancer comprise biological capabilities acquired during the multistep development of human

tumors. Implicit in their discussion was the notion that as normal cells evolve progressively to a

neoplastic state, they acquire a succession of these hallmark capabilities. The multistep process

of human tumor pathogenesis could be rationalized by the need of incipient cancer cells to

acquire the traits that enable them to become tumorigenic and ultimately malignant.

The hallmarks include sustaining proliferative signaling, evading growth suppressors,

resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating in-

vasion and metastasis (HANAHAN; WEINBERG, 2011). Underlying these capabilities are

genome instability, which generates the genetic diversity that expedites their acquisition, and

inflammation, which promotes multiple hallmark functions. Advances in the last decade has

added two emerging hallmarks of potential generality to the original list: (i) reprogramming of

energy metabolism and (ii) evading immune destruction.

In this work, we have a close collaboration with researchers from the Department of

Biochemistry of the Universidade do Rio Grande do Sul (UFRGS), so that all experiments with

models are supported (or not) with experimental analysis made in biochemistry laboratories. To

this end, we chose, together with the biochemistry group, as case studies three networks closely

related with these hallmarks: apoptosis, glucolysis and cell cycle. These three pathways are

discussed in the following subsections.



36

Figure 2.7 – Hallmarks of cancer - the first six hallmark capabilities proposed in 2000.

Source: Hanahan and Weinberg (2011).

2.4.1 Apoptosis

Apoptosis is the process of programmed cell death. It is considered a vital component

of various processes including normal cell turnover, proper development and functioning of the

immune system, hormone-dependent atrophy, embryonic development and chemical-induced

cell death (ELMORE, 2007). The apoptosis is associated with the maintenance of tissue home-

ostasis: the programmed cell death guarantees the substitution of old and/or dysfunctional cells

in multicellular organisms, which are impaired by the accumulation of cellular damages due to

environmental insults, as well as participates directly in tissue development (CASTRO et al.,

2008).

There are more then 100 genes (Figure 2.8) working coordinately in apoptosis (KANE-

HISA et al., 2006). Removing one of these components affects several others and affect the

whole pathway (CASTRO et al., 2008). Inappropriate apoptosis is a factor in many human

conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and

many types of cancer (ELMORE, 2007). Suppressed apoptosis, which is associated with un-

controlled cell growth is typically found in neoplastic diseases.

The apoptotic machinery is composed of both upstream regulators and downstream ef-

fector components. The first group is divided into two major circuits, one receiving and pro-

cessing extracellular death-inducing signals and the other sensing and integrating a variety of



37

Figure 2.8 – Human apoptosis and genome-stability gene network. Gene network from apoptosis and
DNA repair pathways. Different pathways are represented in different colors; and nodes with more than
one color represent genes participating in more than one pathway.

Source: Castro et al. (2008).

signals of intracellular (intrinsic) origin. Currently, the intrinsic apoptotic program is more

widely implicated as a barrier to cancer pathogenesis (HANAHAN; WEINBERG, 2011). The

“apoptotic trigger” that transmit signals between the regulators and effectors is controlled by

counterbalancing pro- and antiapoptotic members of the BCL2 family of regulatory protein.

This family are inhibitors of apoptosis, acting in largepart by binding to and thereby suppress-

ing two proapoptotic triggering proteins (BAX and BAK). When the proapoptotic signaling

proteins are release (cytochrome c), a cascade of caspases, that act via their proteolytic activi-

ties to induce the multiple cellular changes associated with the apoptotic program, is activated.

Between several abnormality sensors, that play key roles in tumor development, is a DNA dam-

age sensor, that functions via the TP53 tumor suppressor; TP53 induces apoptosis by upregu-

lating expression of the Noxa and Puma BH3-only proteins. Alternatively, insufficient survival

factor signaling can elicit apoptosis through a BH3-only protein called Bim. Hyperactive sig-

naling by certain oncoproteins, such as Myc, also triggers apoptosis unless counterbalanced

by antiapoptotic factors. Tumor cells evolve a variety of strategies to limit or bypass apopto-

sis (HANAHAN; WEINBERG, 2011). Most common is the loss of TP53 tumor suppressor

function, which eliminates this critical damage sensor from the apoptosis-inducing circuitry.

Tumors also may achieve similar results by increasing expression of antiapoptotic regulators or



38

of survival signals, by downregulating proapoptotic factors, or by short-circuiting the extrinsic

ligand-induced death pathway. This mechanisms for avoiding apoptosis presumably reflects

the diversity of apoptosis-inducing signals that cancer cell populations encounter during their

evolution to the malignant state.

The programmed cell death is recognized for its immense therapeutic potential, as a

barrier to cancer. However more research is necessary for elucidated how are the mechanisms

of action or inaction of the proteins from the apoptosis machinery.

2.4.2 Glucolysis

Glucolysis (glycolysis) is the metabolic pathway through which glucose is converted

into pyruvate (LEMAIGRE; ROUSSEAU, 1994). It is stimulated when the energy charge

falls. In yeast, glucose facilitates its own use by inducing expression of genes involved in

its metabolism while repressing that of those involved in the utilization of alternative carbon

sources. In mammals, the response to the glucose is more complex because it combines ef-

fects related to glucose metabolism itself and effects secondary to glucose-dependent hormonal

modifications, mainly pancreatic stimulation of insulin secretion and inhibition of glucagon

secretion (VAULONT; VASSEUR-COGNET; KAHN, 2000).

Glucolysis occurs in every tissue and its main function is to provide substrates for an-

abolic processes. The pathway flux must be adjusted according to conditions both inside and

outside the cell. The rate of conversion of glucose into pyruvate is regulated to meet two major

cellular needs (BERG; TYMOCZKO; STRYER, 2002): (i) the production of ATP (energy),

generated by the degradation of glucose, and (ii) the provision of building blocks for synthetic

reactions, such as the formation of fatty acids. Glucolysis can occur with oxygen (aerobic)

or without oxygen (anaerobic). In the former, glucolysis is the first stage of cellular respira-

tion. In the later, glucolysis allows cells to make small amounts of ATP: this process is called

fermentation, that produce lactic acid.

Second Heiden, Cantley and Thompson (2009), in the presence of oxygen, nonpro-

liferating (differentiated) tissues first metabolize glucose to pyruvate via glucolysis and then

completely oxidize most of that pyruvate in the mitochondria to CO2 during the process of ox-

idative phosphorylation. Oxygen is required as the final electron acceptor to completely oxidize

the glucose. Thus oxygen is essential for this process. When oxygen is limiting, cells can redi-

rect the pyruvate generated by glucolysis away from mitochondrial oxidative phosphorylation

by generating lactate (anaerobic glucolysis). This process of lactate produce during anaerobic
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glucolysis allows glucolysis to continue (by cycling NADH back to NAD+ – LDHA is the gene

which encodes these (National Center for Biotechnology Information - NCBI, 2016)), but re-

sults in minimal ATP production when compared with oxidative phosphorylation. Cancer cells,

in turn, make adjustments of energy metabolism in order to fuel cell growth and division caused

by deregulated control of cell proliferation, that represents the essence of neoplastic disease.

So these cells reprogram their energy production, by limiting their energy metabolism largely

to glucolysis (HANAHAN; WEINBERG, 2011), and tend to convert most glucose to lactate

regardless of whether oxygen is present (aerobic glucolysis or Warburg Effect) (GILLIES;

ROBEY; GATENBY, 2008). This property is shared by normal proliferative tissues. Mito-

chondria remains functional and some oxidative phosphorylation continues in both cancer cells

and normal proliferating cells. However, aerobic glucolysis is less efficient than oxidative phos-

phorylation for generating ATP. Figure 2.9 shows a schematic representation of the differences

between oxidative phosphorylation, anaerobic glucolysis and aerobic glucolysis.

Figure 2.9 – Difference between oxidative phosphorylation, aerobic glucolysis and anaerobic glucoly-
sis.

Source: Heiden, Cantley and Thompson (2009).

The reprogrammed energy metabolism as an emerging hallmark of cancer (HANAHAN;

WEINBERG, 2011). This reprogramming of energy metabolism is seemingly counterintuitive,

once cancer cells must compensate for the lower efficiency of ATP production provided by

glucolysis relative to mitochondrial oxidative phosphorylation. However, this cells do so in

part by upregulating glucose transporters, which substantially increases glucose import into the

cytoplasm. Heiden, Cantley and Thompson (2009) suggest that increased glucolysis allows
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the diversion of glycolytic intermediates into various biosynthetic pathways, including those

generating nucleosides and amino acids; this facilitates, in turn, the biosynthesis of the macro-

molecules and organelles required for assembling new cells.

2.4.3 Cell cycle

The cell cycle pathway governs cell growth-and-division. It controls the transition from

quiescence to cell proliferation, and through its checkpoints, ensures the fidelity of the genetic

transcript (SCHWARTZ; SHAH, 2005). The pathway mechanism is divided into four phases:

(i) chromosomes are replicated once (DNA synthesis or S-phase) and (ii) segregated to create

two genetically identical daughter cells (mitosis or M-phase). These events are spaced by in-

tervals of growth and reorganization, gap phases (iii) G1 and (iv) G2. Cells can stop cycling

after division, entering a state of quiescence. In G1, cells assume the commitment to traverse

an entire cycle.

Crucial parts of the cell cycle machinery are the cyclin-dependent kinases (CDKs),

which, when activated, drive the cell forward from one phase of the cell cycle to the next.

The CDKs are regulated positively by cyclins and regulated negatively by naturally occurring

CDK inhibitors (CDKIs). The pattern of cyclin expression varies with a progression of the cell

through the cell cycle, and this specific cyclin expression pattern defines the relative position

of the cell within the cell cycle. Cancer cells present a dysregulation of the cell cycle such that

cyclins are overexpressed or the CDKIs are not expressed, such that the cell growth become

unregulated (SCHWARTZ; SHAH, 2005).

Cell proliferation is necessary for replacement of destroyed cells, growth and develop-

ment (SCHWARTZ; SHAH, 2005; HANAHAN; WEINBERG, 2011). Survival and prolifera-

tion controls are highly integrated and dependent on inter-cellular communications: cells con-

stantly evaluate their own condition via continuous communication among neighboring cells

and tissues. Proliferation is regulated at the level of mitosis. Cells may be triggered into an

apoptotic cycle if they are damaged, dangerously abnormal, or needed only transiently during

embryo development. Normal tissues control the production and release of growth-and-division

cycle, thereby ensuring a homeostasis of cell number and thus maintenance of normal tissue ar-

chitecture and function. In cancer cells, in opposite, proliferation and apoptosis mechanisms

have failed due to mutations in tumor-suppressing genes, so the signals of these pathways are

deregulating and may influence yet other cell-biological properties, such as cell survival and
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(a) Normal cell – proliferation context. (b) Normal cell – death context.

(c) Cancer cell – proliferation context.

Figure 2.10 – Cell proliferation – In this schematic representation, one can see the differences between
normal cell and cancer cell proliferation. The normal cells are sensitive to cellular death and their prolif-
eration is dependent of external stimuli. The cancer cells, in turn, are resistant to cellular death and their
proliferation is independent of external stimuli.

Source: Krempels (2016)

energy metabolism. Figure 2.10 shows a schematic representation of the differences between

normal cell and cancer cell proliferation.

Thus the cell cycle machinery controls cell proliferation. An inappropriate cell prolif-

eration is a cancer characteristic. So this pathway is related to a cancer hallmark: sustaining

proliferative signaling (HANAHAN; WEINBERG, 2011). The cell cycle also serves to protect

the cell from DNA damage. Therefore, cell cycle also represents a survival mechanism that

provides the cancer cell the opportunity to repair its own damaged DNA. So cell cycle check-

points, before DNA repair is complete, can activate the apoptotis pathway, leading to cell death.

An understanding of the cell cycle is critical to understanding how best to develop drugs that

directly inhibit the CDKs, inhibit unrestricted cell growth, induce growth stop and make the

tumor cell susceptible to apoptosis (SCHWARTZ; SHAH, 2005).
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3 RELATED WORK

The present chapter revises the related literature. The first part, Section 3.1, addresses

different methods of GCNs analysis. The second part, Section 3.2, in turn, discusses a set of

methods used for microarray data classification. Finally, Section 3.3 presents a summary of the

chapter.

3.1 Gene Co-expression Networks Analysis

The availability of omics data allowed the system-wide study of the flow of biological

information underlying. However, dealing with the large datasets represents a challenging effort

that requires the development of powerful bioinformatics methods. In this context, a common

approach is the construction and analysis of gene networks (SERIN et al., 2016). One option

of network is the GCN, based on gene expression similarity. One of its main applications is the

functional annotation of unknown genes.

GCNs analysis allows the simultaneous identification, clustering and exploration of

thousands of genes with similar expression patterns across multiple conditions. GCNs con-

tains gene neighborhood relations that are usually overlooked in tradicional cluster analysis

(RUAN; DEAN; ZHANG, 2010). These relations permit an interesting geometric interpreta-

tion of GCNs. A principle called guilt-by-association, extensively validated, states that genes

which are associated or interacting (hence present similar expression profiles) sharing the same

function or are involved in the same pathway and tend to form clusters or modules in the net-

work (SERIN et al., 2016). In this way, genes of known function can be used to predict the

function of co-expressed unknown genes within the same module.

Although the GCN construction is generally straightforward (commented in Chapter

2, section 2.3.2), the resulting GCN can become very complex, with thousands of nodes that

difficult the visualization and comprehension, and limits its biological interpretation (SERIN et

al., 2016). Several strategies can be employed to improve the analysis of the resulting network.

It is necessary to establish a coherent strategy with the biological question addressed to obtain

reliable information from the network. The elucidation of relationships between genes in the

GCN can be enhanced by using prior knowledge and data integration (for example, metabolome

and proteome). Thus, these networks can provide more than the simple visualization of co-

expressed genes.

A meaningful GCN analysis depend on a combination of factors involved in the network



44

inference process: the quality, type and availability of the input data, the correlation coefficient,

the prior knowledge, the experimental and computational resources, any negligence can result

in unreliable networks and subsequent wrong biological interpretations (SERIN et al., 2016).

GCNs analysis allows the development of biological relevant hypotheses and have assisted in

the design of data-driven hypothesis experiments and gene prioritization for those experiments.

Also, it provides novel insights into the system-level understanding of cellular processes (AOKI;

OGATA; SHIBATA, 2007). Thus, it can help many researchers. In this study, we reviewed

different GCNs analysis approaches.

3.1.1 Topology analysis

The different network properties can provide valuable insight into the internal organiza-

tion of a GCN. Several studies have analyzed the topological properties of GCNs (HSU; JUAN;

HUANG, 2015; VIALANEIX et al., 2013; XULVI-BRUNET; LI, 2010). Different graph prop-

erties are commonly analyzed in networks (RUAN; DEAN; ZHANG, 2010; PAVLOPOULOS

et al., 2011; XULVI-BRUNET; LI, 2010):

• Singletons - is a node with zero connection;

• Average degree - is the average number of connections per node;

• Clustering coefficient - is the measurement that shows the tendency of a graph to be

divided into clusters;

• Average path length - is the average shortest path, or the smallest number of edges needed

to connect two nodes, between any two reachable nodes in the network;

• Diameter - is the longest path length between any two reachable nodes in the network;

• Density - shows how sparse or dense a graph is according to the number of connections

per node set.

Previous studies have analyzed the topological properties of GCNs and have shown

that these networks have small-world or scale-free properties, similar to many other biological

networks and real world networks. These studies have also reported that GCNs differ from

other types of biological networks in node degree and hierarchical organization (RUAN; DEAN;

ZHANG, 2010). A small-world network has a small diameter and a large clustering coefficient,

usually related to an efficient and controlled flow of information (RUAN; DEAN; ZHANG,

2010). A scale-free network is characterized by a few nodes highly connected, acting as hubs,

and most nodes with low degrees. These networks are considered robust to random failures, but
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vulnerable to deliberate attacks (RUAN; DEAN; ZHANG, 2010).

3.1.2 Centrality analysis

Network centrality is the method of ranking network elements used to identify inter-

esting elements of a network (KOSCHÜTZKI; SCHREIBER, 2008). It is particularly useful to

identify key players in biological processes (SERIN et al., 2016; KOSCHÜTZKI; SCHREIBER,

2008). That method consists of analyze parameters derived from network topology. Thus, this

analysis provided also structural information of the networks. Different centrality measures

indicate the importance of individual elements (nodes) of the network. Common centrality

measures result in different valuations of the elements (nodes) (KOSCHÜTZKI; SCHREIBER,

2008).

Formally, a network centrality is a function C that assigns every vertex v of a graph a

numeric value C(v). Usually, a vertex u is more important than another vertex v if and only

if C(u) > C(v) (KOSCHÜTZKI; SCHREIBER, 2008). Some network centralities often used

(KOSCHÜTZKI; SCHREIBER, 2008; PAVLOPOULOS et al., 2011):

• Degree Centrality - is defined by the vertices degree. Thus, an important node has a large

number of interactions. Nodes with highest degree centrality are called hubs because they

are connected to many neighbors. This is a local centrality measure, since only the im-

mediate neighborhood of the vertex is considered. However, the removal of such central

nodes has great impact on the topology of the network. It is common to analyze hub

genes, since they are almost always disease-correlated, as putative mediators of pathol-

ogy (GAITERI et al., 2014). This approach allows valuable insights. However, it tends

to focus attention on a few hub genes, so ignoring the many other ways in the networks

can be used to generate and translate systems biology insights into testable hypotheses.

• Eigenvector Centrality - is a measure of the influence of a node in a network: a node is

important if it is linked to by other important nodes. It is a natural extension of degree

centrality. In degree centrality, for every interaction, a node awarded one centrality point.

However, not all vertices are equivalent: some are more relevant than others, and, reason-

ably, links from important nodes count more. This is a global centrality measure, since

ranks higher the nodes that are connected to important neighbors.

• Closeness Centrality - is defined by the sum of the minimal distances of a vertex to all

other vertices. Thus, an important node can communicates quickly with other nodes of the
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network. This is a global centrality measure, since uses information about the length of

the shortest paths within a network. These nodes can help to identify network bottlenecks.

• Betweenness Centrality - is defined as the number of the shortest paths that go through an

vertex. Thus, an important node is intermediate between neighborhoods, it lies on a high

proportion of paths between other nodes in the network. Without the node, there would be

no way for two neighborhoods to communicate with each other. This is a global centrality

measure, since vertices with high betweenness may have considerable influence within a

network by virtue of their control over information passing between others. They are also

the ones whose removal from the network will most disrupt communications between

other vertices because they lie on the largest number of paths taken by messages. These

nodes can also help to identify network bottlenecks.

3.1.3 Modularity analysis

The identification of the modular structure of a network is the main aim of the GCNs

modularity analysis. Modules detection strategies depend only on the topological properties

of the networks. Modules are also called “functional modules” since they are associated with

specific biological processes. Modules are usually defined as groups of highly connected genes

(SERIN et al., 2016). Also, modules can be considered as subnetworks, where the nodes within

each subnetwork are relatively densely connected to one another but have fewer connections

to the other subnetworks (RUAN; DEAN; ZHANG, 2010). Genes within each subnetwork are

mutually co-expressed, while co-expression between genes in different subnetworks are sparse.

A gene of a module commonly reflects the module behavior when compared with genes

that mainly work alone, hence it may be more informative with respect to the biological process

(AOKI; OGATA; SHIBATA, 2007). Modules are many times the starting point for more detailed

studies because they minimize the global complexity, since they consider only part of the whole

network. A variety of tools can be used to explore these modules, make functional annotation

of genes (nodes) and modules and to elucidate the nature of the gene relationships (SERIN et

al., 2016).

Two practical protocols of modularity analysis can be performed (AOKI; OGATA; SHI-

BATA, 2007):

(i) Guide-gene: this approach is characterized by selecting an appropriate set of genes relat-

ing to the biological problem based on experimental knowledge and literature information
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before to calculate the correlation coefficient and to construct the network. The pre-

selected set of genes are called guide genes. Correlation coefficients between the guide

genes are calculated from gene expression data. Next, modules are extracted among the

guide genes. Thus, genes of interest are present in the modules.

(ii) Non-targeted: this approach is characterized by a knowledge-independent module search

within entire network based on the topology of the network. This approach is necessary

to achieve one of the main aims of GCNs: to infer gene function. If an unknown gene

is part of a densely connected module in which other member genes were known to be

involved in a certain biological process, it would be hypothesized that the unknown gene

had functional relationships with that process. The discovery of novel modules that may

not be obtained using the first approach is expected, because the modules are detected

from the entire network, according to the topology of the connections.

There are multiple methods to find modules in GCNs. Zhang and Horvath (2005) in

WGCNA define modules as groups of nodes with high topological overlap. The topological

overlap of two nodes reflects their relative interconnectedness. The topological overlap matrix

(TOM) provides a similarity measure, which has been found useful in biological networks. A

node has high TOM-based connectivity if it has high overlap with many other nodes. They

use average linkage hierarchical clustering coupled with the TOM-based dissimilarity to group

genes with coherent expression profiles into modules. Thus, WGCNA identifies modules with-

out the use of a priori guide gene, since it uses unsupervised clustering (LANGFELDER; HOR-

VATH, 2008). Hierarchical clustering algorithms identify clusters by iteratively assigning nodes

(genes) to clusters. In a first step, weights are assigned to the network vertices (for example,

using the calculated correlation coefficient). Clusters are then built from high weight vertices

and progressively expanded by including neighboring vertices. The number of final clusters

varies, for instance depending on a chosen threshold (cutoff). They have also used the TOM-

based dissimilarity in conjunction with partitioning around medoid clustering. A Medoid is

the most centrally located object of the cluster, with minimum sum of distances to other points

(JIN; HAN, 2010). Therefore, they consider that gene modules correspond to branches of the

hierarchical clustering tree (dendrogram). The choice of a height cutoff to cut branches off the

tree is the simplest method is to define the resulting branches correspond to gene modules. It

remains an open research question how to choose optimal cutting parameters or how to estimate

the number os cluster in a dataset.

Gaiteri et al. (2014) highlighted some emerging directions for GCN research beyond

modules and hubs that are especially relevant to complex brain disease. The authors present
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an important criticism of GCNs analysis focus on patterns of networks, since the search for

modules and hub genes is often treated as a black box that obscured other aspects of the net-

works. Usually, the identification of hub genes is disease-correlated, as putative mediators of

pathology. This approach tends to focus attention on a few hub genes and ignores the many

other ways in which networks can be used to develop systems biology insights into testable

hypotheses. Various biological activities can influence the expression of two or more genes and

yield correlated expression patterns. Thus, a network edge reflect the converging influences of

genetic, biochemical and environmental factors, so are potentially source of information about

the biological state of an individual. However, interpreting these networks composed of many

connections is challenging because they can arise from several biological and non-biological

sources that are mathematically indistinguishable. Studies suggest a possible aggregation of

multi-omic data to GCNs, so it is expected the proposal of new procedures to generate novel

hypotheses for disease mechanisms and changes in the interpretation of these networks.

3.1.4 Network Motifs

Shen-Orr et al. (2002) generalize the notion of motifs, widely used for sequence analysis,

to the level of networks to uncover their structural design principles. They define network motifs

as patterns of interconnections that recur in many different parts of a network at frequencies

much higher than those found in randomized networks. The motifs allow a representation of

the network in a compact, modular form: by using symbols to represent the different motifs,

the network is broken down to its basic building blocks (MILO et al., 2002). Thus, the motif

structure also allows an easily interpretable view of the entire known network (SHEN-ORR

et al., 2002). This approach may help define the basic elements of networks which could be

used for computational construction of networks. Detect and understand network motifs gains

insights into their dynamical behavior and allows to define classes of networks and network

homologies (MILO et al., 2002).

Milo et al. (2002) found motifs in networks from biochemistry, neurobiology, ecology,

and engineering. Similar motifs were found in networks that perform information processing,

even though they describe elements as different as biomolecules within a cell and synaptic con-

nections between neurons in Caenorhabditis elegans. These motifs may have specific functions

(for example, as elementary computational circuits) and they may be interpreted as structures

that arise because of the special constraints under which the network has evolved. The motifs

shared by ecological networks were distinct from the motifs shared by the genetic networks of
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Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web.

Motifs may thus define universal classes of networks.

Motif determination provides lots of information concerning the properties and the char-

acteristics of a network, however it does not necessarily reveal evidence about its function and

the function of its components (ALON, 2007). The fact that these patterns appear at frequen-

cies much higher than expected at random suggests that they may have specific functions in

the information processing performed by the network (SHEN-ORR et al., 2002). Their pos-

sible function could be inferred by common functions of the systems in which they appear.

Besides, a mathematical analysis of their dynamics could suggest additional insights. The con-

cept of homology between genes based on sequence motifs has been crucial for understanding

the function of uncharacterized genes. Moreover, the notion of similarity between connectivity

patterns in networks, based on network motifs, may be helpful in gaining insight into the dy-

namic behavior of newly identified gene circuits. Some motifs have been found to be associated

with optimized biological functions, like in the case of positive and negative feedback loops,

oscillators or bifans.

There are several studies which investigate network motifs in GCNs. Ma et al. (2013)

describe a bottom-up strategy to identify gene expression modules from GCNs that are regulated

by known promoter motifs. For any given motif, every gene in the network was first analyzed

to calculate its probability of belonging to an expression module regulated by that motif. Then,

all the top ranked genes were used to extract a subnetwork from the original GCN. From this

sub-network, the modular structures will extracted, thus enabling discovery of novel signaling

pathways. This approach identified novel expression modules for four well studied motifs from

an Arabidopsis thaliana GCN based on the graphical Gaussian model.

Peng et al. (2007) developed novel algorithms to decompose clusters of genes into

smaller ones by integrating protein domain information into the clustering algorithm. They

characterized a network motif as a completely connected subgraph (i.e., a clique) in a GCN

with genes encode proteins with the same combination of protein domains. They expect that a

motif may be reused multiple times within organisms. They have developed algorithms for con-

structing labeled GCNs with corresponding protein sequence domain combinations and then de-

tected recurring network motifs with similar protein domain memberships within these labeled

networks. The motifs statistical significance was evaluated by comparing the results with those

from randomized networks. The motifs biological relevance was evaluated by Gene Ontology

annotations on biological processes. Their approach was applied to the malaria transcriptome.

They found many motifs with three, four, and five members.
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Choobdar, Ribeiro and Silva (2015) propose a analysis that combined network edges

weights and network motifs. They characterized a subgraph as a motif if the weights of edges

inside the subgraph hold a significantly different distribution than what would be found in a

random distribution. They use the Kolmogorov-Smirnov test to calculate the significance score

of the subgraph, avoiding the time consuming generation of random networks to determine

statistic significance. Their approach was applied to GCNs related to three different types of

cancer (lung, breast and neuroblastoma) and also to two healthy datasets. The structure of the

networks is compared using weighted motif profiles (each profile is a feature vector containing

all the individual weighted scores found): the results show that they are able to clearly distin-

guish the networks and separate them by type. They also compare the biological relevance of

their approach to an unweighted motif profile. Their results of gene enrichment analysis show

that weighted motifs are biologically more significant than the unweighted.

3.1.5 Differential Network Analysis

The differential network analysis combined two common approaches to the analysis of

gene expression data: differential expression and networks (FUENTE, 2010). Usually, the dif-

ferential network analysis involve, either explicitly or implicitly, the construction of GCNs for

healthy and disease samples, followed by the comparison of the structure of the two networks

providing insights into disease-specific alterations in the biological processes underlying the

correlation patterns. Thus, the main goal is to identify differences in the network patterns in

healthy and disease-affected samples instead of evaluating the differences in mean gene ex-

pression levels (FUENTE, 2010). Pairwise relationships between network nodes result from

relationships among the genes in the biological process of interest, so identifying which of

these are altered in disease-affected tissue when compared to healthy tissue is a first step in

recognize dysfunctional systems.

The comparison of the structure of the two networks can be performed in several ways.

Fuente (2010) says that the simplest way to accomplish this task is to look at the degree (or

connectivity) of each vertex (gene) in the two networks. Genes that have a strongly altered con-

nectivity are thought to play an important role in the disease phenotype. According to Fuente

(2010), the main difficulty of this approach is establishing a threshold for each edge to be in-

cluded in the network. For example, a very high correlation threshold indeed guarantees the

exclusion of many spurious edges, but obviously will also exclude many relevant ones. Ide-

ally, the threshold level is defined such that the resulting networks include as many biologically
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relevant edges while keeping the spurious edges low. Use the global network topology of the

inferred GCNs to guide the choice is a potential effective way to select the threshold (FUENTE,

2010). Different global network topological properties have been observed in biological net-

works, for example the degree distribution and clustering coefficient. This analysis quantities

describing the relationships between the genes such as intramodular connectivity. Differen-

tial analysis of intramodular connectivity was used, for example, to identify key differences in

expression networks of human and chimpanzee brains (FULLER et al., 2007).

Fuller et al. (2007) used differential network analysis to uncover differences in the mod-

ules and connectivity between different datasets. They use body weight to arrive at two distinct

datasets: lean and obese mice. Each dataset was used to construct a network. Next, the networks

were contrasted to find nonpreserved modules, differentially expressed genes, and differentially

connected genes. Thus, their main goal was to relate differences in gene expression profiles to

phenotypic differences across different conditions (two different groups of mice). They iden-

tified the 30 mice at both extremes of the weight spectrum and constructed the first network

using the 30 leanest mice and the second network using the 30 heaviest mice. They defined as

a differential connectivity measure the difference between the connectivity each gene (divide

by the maximum network connectivity) of the two networks, but other measures of differen-

tial connectivity could also be considered. They used the absolute value of the Student t-test

statistic to measure differential gene expression between the lean and the obese mice. Their

differential network analysis revealed differences in connectivity and module structure between

two networks based on the liver expression data of lean and obese mice.

Iancu et al. (2013) used differential network analysis to investigate haloperidol response

and non-response in three mouse populations of increasingly complex genetic structure. They

goal was to detect significant changes in network structure. They used an adapted method (in-

spired in WGCNA method) for evaluation the preservation of network properties: they create

separate networks corresponding to the two biological conditions; for any collection of network

nodes of interest (module), preservation statistics are created by comparing network/module

statistics against changes that could occur by chance. They computed network preservation

statistics for pair of networks. The network statistics used include intramodular connectivity,

total network eigengene connectivity, module eigengene connectivity, clustering coefficient and

maximum adjacency ratio. These measures were applied to individual nodes and for a given

module the values for all nodes are arranged in a vector. Vectors originating from two different

networks are correlated. High correlation values correspond to strong preservation. Their anal-

ysis found that gene coexpression patterns changed significantly. A number of these changes
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were concordant across genetic backgrounds.

It is important to note that module changes and module preservation are related and

complementary concepts and they can both hold for a given module (IANCU et al., 2013).

Even though modules might be highly preserved across biological conditions, this does not

preclude the emergence of subtle changes in network structure that are not enough to render the

module non-preserved, but nevertheless are statistically significant and, potentially, biologically

meaningful. Several studies focus cross-species comparison of GCNs for understanding the

interplay between regulatory function and evolution and are interested in module preservation

(also called consensus modules analysis (LANGFELDER; HORVATH, 2008)).

Movahedi et al. (2012) study comparative co-expression analysis in plant biology. They

say that a major objective in this context is the systematic comparison of gene clusters across

species using homologous or orthologous genes. Defining sequence-based of these genes is a

powerful approach to link expression datasets across species and to identify genes with con-

served gene functions or conserved modules that participate in similar biological processes. As

most approaches use gene homology or orthology information to connect GCNs between differ-

ent species, larger co-expression clusters will logically also yield a higher number of shared or-

thologs. The probability to have shared orthologs between co-expression clusters is also higher

for genes involved in many-to-many orthology relationships compared with small families with

one-to-one orthology relationships.

Serin et al. (2016) list several advantages of cross-species network comparisons in a

study of different approaches applied to analyze plants. Networks of well-studied plants can

enrich sparse networks, reducing the need of extensive functional genomic and phenomic re-

sources. Besides, cross-species comparisons can accelerate the functional annotation of genes

and the discovery of gene-gene interactions, consequently accelerating the gene prioritization

process for targeted mutational studies. GCNs comparisons can be used also to identify func-

tionally conserved network patterns and to study their evolution. These comparisons can be

done at the global scale or focused on specific gene modules.

Hansen et al. (2014) also discuss comparative analyses. When GCNs from different

species are highly similar, a whole biological pathway are conserved across species. Thus, the

analysis can transfer gene function annotation from well-studied plants, to other uncharacterized

plant species. Functionally equivalent genes can be also identified, since the analysis could find

genes that have similar sequence and similar expression pattern across different organisms.

Furthermore, a comparative analysis should have higher performance, because it eliminates

the noise from coexpression analysis, since only parts of GCNs are conserved and tend to be
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functionally relevant. Biologically relevant associations are likely to be independently observed

in the different species, whereas false associations are less likely to be repeatedly observed. Sets

of genes that are conserved among multiple species are expected to play a key role in biological

responses. Thus, the analysis can be thought as biologically meaningful approach to remove

false positives (present due to noise in the data) and false negatives (due to missing data in one

of the species).

Lee et al. (2004) present a comparative analysis of 60 large human datasets contain-

ing a total of 3924 microarrays. They look for pairs of genes that were reliably coexpressed

in multiple datasets, establishing a high-confidence network that are observed in at least three

datasets. They have confirmed positive correlations between genes much more often than neg-

ative correlations. The confirmation of correlated expression provides a useful way to improve

the confidence in any particular correlated expression pattern and these patterns are more likely

to be functionally relevant. Several criteria must be met for a link to be confirmed: (i) the pairs

of genes must be present and detectably expressed in multiple datasets, so a gene that is only

represented in one dataset will never have any confirmed links; (ii) a link might be sample-

type specific, even if the genes are expressed in all cases. When a level of confirmation of a

link increases, it is more likely that the link is between two genes that are already known to

have a functional relationship. They evaluated this by examining the overlap of Gene Ontology

annotations for each pair of linked genes.

Yang et al. (2014) performed a analysis of the properties of prognostic genes (key

molecules informative for cancer prognosis and treatment) in networks across four cancer types

(GBM, ovarian serous cystadenocarcinoma, breast invasive carcinoma, and kidney renal clear

cell carcinoma) from TCGA. They used the GCNs constructed from a single type of microar-

ray, reducing various confounding factors in the data analysis, such as prior knowledge bias.

Their study revealed some distinct properties of prognostic genes. They found that prognostic

mRNA genes tend not to be hub genes and this pattern is unique to the corresponding cancer-

type specific network. The prognostic genes are enriched in modules, especially in module

genes conserved across different cancer co-expression networks. The target genes of prognostic

miRNA genes show similar patterns. Some modules enriched in various prognostic genes show

cross-tumor conservation. Their study provides a systems-level understanding of the behaviors

of cancer prognostic genes, thereby laying a foundation for how to incorporate the co-expression

network information into prognostic modeling. The analysis across tumor types allows eluci-

date the common/distinct biological processes involved in different cancer types, which may

facilitate novel subtype classifications.
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3.2 Microarray Classification

The use of microarrays to find groups of genes that can be used to determine a diagnosis

of a disease that an individual is suffering from or predict the prognosis of a course of a therapy

or the result of an experiment is one of the most exciting areas of research microarray (STEKEL,

2003). The samples are taken from several groups of individuals with known diseases, outcomes

or phenotypes and hybridized to microarrays. The objective then is to find a small number of

genes that can predict to which group belong each individual. These genes can then be used in

the future as part of a molecular test for certain individuals (using microarray or other method)

(STEKEL, 2003).

Different methods can be used for partitioning space and predicting the group of a new

sample. Some commonly used methods:

• N-nearest neighbors – we have a number of samples with known class membership, to

classify a new sample with unknown class membership there are three steps: (i) we look

at the gene expression measurements for the sample we are trying to classify; (ii) we

find the nearest of the known samples as measured by an appropriate distance measure

(typically Euclidean distance); (iii) the class of the sample is the class of the nearest

sample (STEKEL, 2003; PARMIGIANI et al., 2003). The method is intuitive and easy to

understand, there is no training time, but is not robust to outliers;

• Neural networks – are based on a model of the working of the brain – the network is

organized as a series of nodes (simulating neurons), which have inputs and outputs; the

output of the nodes depends on the input into the nodes; the inputs importance are deter-

mined by a set of parameters known as weights; the neural network learns by adjusting

the weights (STEKEL, 2003; PARMIGIANI et al., 2003). It is trained by giving it exam-

ples of samples to be classified; the network adjusts the weights on the input of the nodes

so that produces the correct output; the network is trained until it shows no improvements

in predicting the classes of the training set. After the train using the samples with known

classes, apply the neural network to the new individual to determine its class. There is

an important training time and a complex unknown architecture involved with the nodes;

neural networks are not transparent (usually called black box approach) (ASYALI et al.,

2006);

• Support vector machines – they work by separating space into two regions by a straight

line or hyperplane in higher dimensions, which is chosen so as to minimize the misclassi-

fication error of the method. There are three steps in applying the method: (i) project the
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data from the known classes into a suitable high-dimensional space; (ii) identify a hyper-

plane that separates the two classes; (iii) the class of the new individual is determined by

the side of the hyperplane on which the sample lines (STEKEL, 2003; PARMIGIANI et

al., 2003). There is training time and does not extend naturally to analyze more than two

classes.

There are many works that apply classical machine learning for classification of mi-

croarray data methods. Statnikov et al. (2005) evaluate the use of methods widely used in the

classification of genomic domains. The authors conclude that random forests, support vector

machines, kernel ridge regression, Bayesian logistic and regression with Laplace priors are the

most effective machine learning techniques for performing accurate classification from micro-

biomic date.

Liu et al. (2005) present a novel method based on network topology for cancer classi-

fication. In this method, first, are built basic GRNs using the Pearson correlation. For each

test sample, they add the sample into the dataset of each class and reconstruct all of the net-

works. Cancer type was classified according to the correlation of topological quantity between

the basic and the reconstructed networks. Although Carter et al. (2004) have established that

global topological properties are conserved in expression correlation and physical interaction

networks, the full significance of this finding is not well understood.

Rapaport et al. (2007) construct a classifier in which the predictor variables are grouped

according to their neighborhood relations in the network. They assume that the genes close

on the network are more likely to contribute to the prediction function. Their hypothesis is

that the genes close on the network should have similar expression profiles. However, this

is only a trend, valid when one takes the average large scale, so it is possible to find many

local exceptions. Thus, this method is very coarse-grained, it does not allow inferring a precise

network logic but rather detects average predictors of relatively big network modules.

3.3 Summary

Topology analysis allows the characterization of networks. The centralities analysis al-

lows one to identify the most important elements, which can provide many insights, but the

focus on only a few elements can ignore other elements and their relationships that could be

turned into precious insights for biologists (GAITERI et al., 2014). Some articles focus on how

to detect biologically meaningful modules (ZHANG; HORVATH, 2005) and recurring patterns
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called motifs (ALON, 2007) in networks. Langfelder and Horvath (LANGFELDER; HOR-

VATH, 2008), for example, do not assume prior pathway information and construct modules in

an unsupervised fashion. They relate a handful of modules to the clinical trait to find clinically

interesting modules, using intramodular connectivity along with gene significance to screen for

significant hub genes. The differential analysis, in turn, allows the comparison of the structure

of networks providing insights into specific alterations in the processes under study.

Our analysis is focused on the genes of a pathway so the goal is not to identify modules,

pathways or motifs, but rather to better understand the relationships among genes of the pathway

of interest and their variations on samples of diseased and control tissues. The overall goal is

to get insights on how alterations in the levels of expression may affect the activation of the

pathway based on target genes evaluation.

Our approach is complementary to the related works. We use also topological properties

to characterize our networks. We propose the use of cycles to identify central elements, imple-

menting centrality analysis. The genes of interest used in the application of our methodology

can be obtained in a module detection. In addition, we compared the networks of healthy and

diseased individuals, performing differential network analysis.

Finally, about the classification related works, although there are already many methods

for classifying microarrays, most of these still lack a biological explanation associated with the

samples classification, so there is still scope for defining new methods to close this gap, thus

the development of our method is justified, since it includes the biological information in the

classification.
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4 ANALYSIS METHODOLOGY

In this chapter, we present our approach of analyzing microarray datasets, based on

the different kind of cycles found among genes of the GCN constructed using quantized data

obtained from the microarrays. As mentioned before, a cycle is a closed walk with all vertices

distinct (except the first and last vertices) (DIESTEL, 2012) and is associated with feedback

mechanisms very common in biological networks.

Our challenge with the proposal of this new method is to understand the built network.

We look for the cycles, and we classify them in positive and negative, so we seek to know

the structure of the network and to be able to understand the relationships established by the

genes, and to identify and quantify the differences between different types of tissues. A greater

understanding of the structure and the differences may help to predict models that solve or

prevent the studied problem.

The proposed approach innovates by using the existing cycles in the network for anal-

ysis, instead of using the connectivity of the whole network or the intramodular connectivity

as the measure of node importance as other approaches do (MA et al., 2010), thus providing a

different and potentially fruitful strategy to analyze complex interactions in pathways.

Section 4.1 describes our analysis methodology. Section 4.2 relates our main results.

Finally, section 4.3 presents a discussion about the method and the results.

4.1 Analysis Method

This section is divided into two parts. First, section 4.1 explains our method of analysis

divided into two phases: (i) section 4.1.1 describes our approach to construct GCNs using

microarray data and to obtain cycles; and (ii) section 4.1.2 details the cycle-based analysis.

4.1.1 Phase I – Graphs and Cycles

Our analysis method starts with the following steps, which are depicted in Figure 4.1,

for the GCNs construction and obtaining cycles:
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Figure 4.1 – Overview of co-expression network analysis using cycles.
Source: Author(2016).
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1) Preprocessing of Affymetrix microarray data. This step consists in importing the raw mi-

croarray data and defining expression values per probe set. These values are obtained by

(a) background correction - adjusting hybridization effects; (b) normalization - remov-

ing systematic errors and biases to allow comparisons among arrays; (c) summariza-

tion - combining multiple probe intensities to obtain a single value for each gene. All

these operations are supported by the Bioconductor package affy. We used the function

ReadAffy to import the data and the function mas5 for defining corresponding expres-

sion values. Lim, Wang, Lefebvre and Califano (LIM et al., 2007) suggest that MAS5

provides the most faithful network reconstruction. It is worth mentioning that data from

high-throughput gene expression measurements are affected by a relatively high level of

noise (BOCCALETTI; LATORA; MORENO, 2010).

2) Data annotation. The purpose of the annotation is to provide detailed information about

the data. These operations are performed by the Bioconductor package annotate and

hgu133plus2.db. We extracted the feature names with the function featureNames and the

genes symbols with the function getSYMBOL. For each of the main genes involved in the

pathway of interest a data record is created, containing the feature name, the gene symbol,

the gene role in the pathway (activator or inhibitor) and the expression value (calculated

in step 1). The generated data records are classified in GBM samples and control samples.

3) Sigmoidal normalization. This step reduces the influence of extreme values or outliers in

the data without removing them from the dataset. Expression values are nonlinearly trans-

formed by using a sigmoidal function (PRIDDY; KELLER, 2005) and the normalized

values range from 0 to 1.

4) Calculation of Spearman’s correlation. Correlation is used to discover sets of genes with

similar expression profiles, and have been widely used to analyze gene expression data.

Genes with correlated expression profiles may correspond to protein complexes, path-

ways, or participate in regulatory and signaling circuits (HORVATH, 2011). Spearman’s

rank correlation coefficient is non-parametric and allows to identify whether two variables

(genes) are related by a monotonic function. We used the function cor (specifying the pa-

rameter for the type of correlation as method = spearman) for creating the correlation

matrix of expression values between the selected genes.

It is worth pointing out that GCNs are effectively only able to identify correlations (see

more in Section 2.3.2). Hence, GCNs indicate which genes are active simultaneously,

which often indicates they are active in the same biological processes, but do not nor-

mally confer information about causality or distinguish between regulatory and regulated
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genes (DAM et al., 2017). Correlation is the measurement of relationship occurring be-

tween two things. On the other hand, causation means that one thing will cause the other.

Causation can also be termed as causality or cause-effect feature. GRNs are able to iden-

tify causality (see more in Section 2.3.1).

5) Generate graphs. The undirected graphs (representing the GCNs) are constructed by com-

puting a correlation coefficient for each pair of genes. If the coefficient is above a certain

threshold and is statistically significant (p < 0.05), the gene pair gets connected in the

graph. If not, it remains unconnected. Ideally, the correlation coefficient used would be

1, but the graph generated with data from GBM samples does not show cycles with such

a high coefficient, so we decided to use the highest correlation coefficient in which the

GBM samples graph present at least one cycle, thus way allowing our algorithm to obtain

results. We consider weighted undirected graphs that can be represented by a symmetric

adjacency matrix A = [aij], where i and j are nodes and represent genes, and the pair-

wise adjacency (connection strength) aij takes values in the unit interval, i.e., 0 < aij ≤ 1.

The adjacency value of aij represents the coefficient of correlation between i and j; it is

greater than zero if nodes i and j are connected and 0 otherwise. For notational conve-

nience, we set the diagonal elements to 0. We used the R package igraph for obtaining

graphs statistics and we used the function graph.adjacency for creating the graphs.

6) Cycles. In order to seek the biological explanation of the observed gene associations, we

look for cycles in the gene network. A cycle is a path from a vertice back to itself (so the

first and last vertices are not distinct) (DIESTEL, 2012). A path, in turn, is a walk with

all vertices (and hence all edges) distinct (DIESTEL, 2012). Finally, given a graph G =

(V,E), where V is the set of vertices and E is the set of edges, a walk of length k from

v0 ∈ V to vk ∈ V is a sequence of vertices v0v1v2 . . . vk−1vk such that the adjacent pairs

v0v1, v1v2, . . . , vk−1vk are all edges (DIESTEL, 2012). We used a C++ implementation of

Johnson’s algorithm (JOHNSON, 1975) to find the cycles in the graphs. After the search

algorithm is completed, the repeated cycles are excluded from the analysis. Feedback

mechanisms are very common in biological networks. Our hypothesis is that negative

feedback induces relations among genes that may help explaining the stability of the

regulatory process within the cell. Positive feedback cycles, on the other hand, reflect

the amount of imbalance of a cell. The genes of interest are of two types: activators and

inhibitors. We assume that a cycle of a graph is positive when the number of inhibitors in

the cycle is zero. Similarly, it is said to be negative when the number of inhibitors in the

cycle is greater than or equal to one.
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Identifying these cycles of the graph manually (from a visual perspective) may not be an

obvious or even a feasible task. Enumerating cycles is a particular case of combinatorial

patterns in graphs. One of the defining features of the problem of listing combinatorial

patterns is that there frequently exists an exponential number of patterns in the input

graph. Other feature is explicitly generating each pattern found in the input graph. The

number of cycles in a complete undirected graph with n vertices is given by equation 4.1:

n∑
k=3

n!

(n− k)!k!
(4.1)

As n becomes big, the resulting combination can only be dealt with using the computer.

In this way, an automated tool that identifies the cycles and that can analyze them is

justified.

The identification of cycles is a computationally costly process. This way, it may be

necessary to limit the size of the cycles to make the method computationally feasible.

The maximum size to be considered depends on the size of the network being analyzed

and the pathway under investigation. In our case studies, cycles of small sizes (up to

size ten) were sufficient to show significant differences between the control and GBM

samples. We will discuss more about this in the conclusion.

4.1.2 Phase II – Analysis

Once the graphs and cycles are obtained, we start our analysis.

1) Generating graph statistics. We use topological metrics that provide an overview of the

network structure: (i) average degree – which defines the average number of edges con-

nected to a node (a measure of how many edges are in the graph compared to the number

of nodes); (ii) density – the measure of the level of edges connected in the network in re-

lation to the total of possible connections; density is defined by a decimal value between

zero and one; graphs with values close to one are typically dense graphs, while near zero

are called sparse graphs; (iii) diameter – this concept refers to the measurement of the

distance between the two most distant nodes in the network; it may be an indicative of

how complex the network is; for example, a graph with a diameter three is usually less

complex than one with a diameter seven. These measures can provide tangible numbers

that support a visual assessment of the network as well as can help explore facets of the

network that are less obvious from a visual perspective.
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2) Analyzing cycles. Next, we look at the cycles. We perform a subgroup analysis, which

refers to the search for patterns in subsets of the samples. This type of analysis aims to

compare the results of each particular subgroup of samples. Our analysis considers two

subsets of samples: GBM and control. Therefore, the execution of the previous section

steps results in a set of cycles for each subset of samples. Each cycle is represented by a

data record, containing the symbol of the genes that compose the cycle (i.e. the nodes),

the cycle length (determined by the number of nodes), the absolute correlation (i.e. the

product of the edges weight) and the cycle type (positive or negative). The generated data

records are summarized by cycle type as well as by cycle length. Our hypothesis is that the

number of positive and negative cycles (i.e., positive and negative feedback mechanisms)

are related to the functionality and complexity of a given pathway machinery. To increase

the confidence in the relevance of the found cycles, it is possible to consider data records

from samples of different experiments. In our study we considered data records for the

GBM samples in three different experiments: one available in the GEO and two in the

TCGA.

3) Find target genes. Finally, we check which genes appear most frequently in cycles. We

count the positive and negative cycles where each gene appears in each subset of samples

and compare these values. Subsequently, we compared the means of the expression level

of these genes among the subgroups using the t-test to verify if they have a statistically

significant difference. The identification of these genes provides an alternative way to

highlight important nodes for the network, as well as allows an information gain in rela-

tion to analysis of the gene expression level in cases in which the average difference is

not statistically significant.

The raw data of 276 GBM samples of all histology and eight normal adult brain samples

used in this study is available as experiment number GSE16011 (GRAVENDEEL et al., 2009) in

the Gene Expression Omnibus (GEO)1. Furthermore, we analyzed GBM samples of two inde-

pendent studies available on TCGA2: 220 samples characterized in (The Cancer Genome Atlas

(TCGA) Research Network, 2008) and 520 samples characterized in (BRENNAN et al., 2013).

Experimental data used in the analysis are available in AffymetrixGeneChip Human Genome

U133 Plus 2.0 Array format. The analyses of Affymetrix microarray data were performed using

R3 and Bioconductor4.

1http://www.ncbi.nlm.nih.gov/geo/
2http://cancergenome.nih.gov/
3http://www.r-project.org/
4http://www.bioconductor.org/
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4.2 Results

We use the proposed methodology to analyze the genes of three networks closely re-

lated with cancer: apoptosis, glucolysis and cell cycle. The gene expression analysis comparing

normal and GBM tissues was performed from previously published and characterized database

comprising 8 brain samples of non-neoplastic white matter tissue compared to 276 GBM sam-

ples of all histology (GRAVENDEEL et al., 2009). The difference in the number of samples

from both groups stems from the difficulty of obtaining normal control data (GRIZZLE; BELL;

SEXTON, 2010). The control samples were characterized as belonging to a single cluster of

gene expression level similarity, while the GBM samples were divided into twenty-four different

clusters (GRAVENDEEL et al., 2009). Therefore, a higher correlation coefficient is expected

between the genes of the control samples than in the GBM samples. However, one can not infer

from this characterization which genes are correlated (and constitute a network), as well as one

can not infer the classification of the cycles from a network in positive and negative.

We constructed several graphs for each network with different correlation coefficients

for control samples and GBM samples. Figure 4.2 shows the graphs created for both control

and GBM samples of the experiment available in GEO (GSE16011 (GRAVENDEEL et al.,

2009)) for the apoptosis pathway with correlation coefficient of at least 0.75. We selected 86

genes as main involved in this pathway: 32 activators and 54 inhibitors. The graph of control

samples has 84 nodes and 180 edges, its average degree is 4.286, its diameter is 8 and its

density is 0.052. The graph of GBM samples has 84 nodes and 5 edges, its average degree

is 0.119, its diameter is 2 and its density is 0.001. We found 201,942 cycles in the graph of

control samples (with the search limited to cycles of no more than 10 nodes), among which

three positive cycles, i.e., only three cycles have no inhibitors genes in their formation. In

the graph of GBM samples, three edges connect the nodes CASP8, TNFRSF1A and CAST,

forming a positive cycle, comprising activating genes without the presence of inhibitors genes.

This cycle was also found in the graphs built with the data of the two experiments provided in

TCGA: with the samples of the experiment described in (BRENNAN et al., 2013), the cycle was

found in the graph with threshold correlation 0.45; with samples of the experiment described

in (The Cancer Genome Atlas (TCGA) Research Network, 2008), the cycle was found in the

graph with threshold correlation 0.35.
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(a) Control samples (b) GBM samples
Figure 4.2 – Apoptosis graphs (threshold correlation 0.75). Nodes are represented as circles and cor-
respond to genes. Connections between nodes represent a weighted undirected relationship (edge), its
value represents the coeficient of correlation between genes.

Source: Author(2016).

Table 4.1 – Number of cycles of the most common gene in cycles of apoptosis pathway.
GBM GBM GBM Control Control Control

Gene Positive Negative Total Positive Negative Total
Cycles Cycles Cycles Cycles Cycles Cycles

CAST 1 0 1 1 114015 114016
TNFRSF1A 1 0 1 0 27404 27404
CASP8 1 0 1 0 0 0
PIK3R2 0 0 0 0 127453 127453
CFLAR 0 0 0 1 118662 118663
PRKAR1B 0 0 0 0 118623 118623
PPP3CB 0 0 0 0 92458 92458
BCL2 0 0 0 0 90421 90421
APAF1 0 0 0 1 83347 83348
PRKACA 0 0 0 0 79830 79830
AKT3 0 0 0 0 76269 76269
BID 0 0 0 0 74875 74875

Source: Author(2016).
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We list the genes that appear more often in cycles of the apoptosis network (with thresh-

old correlation 0.75) in the Table 4.1 (sorted by frequency in the GBM graph first and, in se-

quence, by frequency in the control graph). One can observe that the node CASP8, which form

the single cycle of the GBM graph, does not participate in the formation of any control cycle.

Still about the genes of the table, we observed that a t-test with 0.05 significance level indicated

that there is no significant difference between the average of the gene expression level of the

control samples and the GBM samples of the genes PIK3R2 and BCL2.

Figure 4.3 shows the graphs created for both control and GBM samples of the experi-

ment available in GEO (GSE16011 (GRAVENDEEL et al., 2009)) for the glucolysis pathway

with correlation coefficient of at least 0.65. We selected 68 genes as main involved in this path-

way: 67 activators and only one inhibitor gene. The graph of control samples has 67 nodes

and 168 edges, its average degree is 5.015, its diameter is 7 and its density is 0.076. The graph

of GBM samples has 67 nodes and 9 edges, its average degree is 0.269, its diameter is 4 and

its density is 0.004. We found 460,160 cycles in the graph of control samples (with the search

limited to cycles of no more than 10 nodes), among which 255,991 positive cycles and 204,169

negative cycles. In the graph of GBM samples, we found three positive cycles: (i) a cycle with

three nodes; (ii) a cycle with five nodes; and (iii) a cycle with six nodes. The cycle formed by

the nodes GPI, TPI1 and PKM is found in the control graph with threshold correlation 0.65 and

in the GBM graph with threshold correlation 0.55. In relation to the cycles of GBM samples,

the cycle formed by the nodes LDHA, TPI1 and PGK1 appear in the analysis of the three ex-

periments: GEO (GSE16011 (GRAVENDEEL et al., 2009)) and TCGA (The Cancer Genome

Atlas (TCGA) Research Network, 2008) in the graph with threshold correlation 0.60 and TCGA

(BRENNAN et al., 2013) in the graph with threshold correlation 0.55.

We also list the genes that appear more often in cycles of the glucolysis network (with

threshold correlation 0.65) in the Table 4.2 (sorted by frequency in the GBM graph first and,

in sequence, by frequency in the control graph). One can observe that the node C12orf5, only

inhibitor gene from this pathway, does not participate in the formation of any GBM cycle. Still

about the genes of the table, we observed that the t-test with 0.05 significance level indicated

that there is no significant difference between the average of the gene expression level of the

control samples and the GBM samples of the genes TPI1, ALDOA, PKM and GAPDH.

Figure 4.4 shows the graphs created for both control and GBM samples of the experi-

ment available in GEO (GSE16011 (GRAVENDEEL et al., 2009)) for the cell cycle pathway

with correlation coefficient of at least 0.85. We selected 133 genes as main involved in this
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(a) Control samples (b) GBM samples
Figure 4.3 – Glucolysis graphs (threshold correlation 0.65). Nodes are represented as circles and cor-
respond to genes. Connections between nodes represent a weighted undirected relationship (edge), its
value represents the coeficient of correlation between genes.

Source: Author(2016).

Table 4.2 – Number of cycles of the most common gene in cycles of glucolysis pathway.
GBM GBM GBM Control Control Control

Gene Positive Negative Total Positive Negative Total
Cycles Cycles Cycles Cycles Cycles Cycles

PGK1 3 0 3 171596 93845 265441
LDHA 3 0 3 9440 4220 13660
TPI1 2 0 2 75397 99482 174879
GPI 2 0 2 40506 75450 115956
ALDOA 2 0 2 53808 19205 73013
HK2 2 0 2 33985 26689 60674
PDHB 0 0 0 148509 81465 229974
ALDH9A1 0 0 0 141844 84857 226701
LDHB 0 0 0 97470 111253 208723
ALDOC 0 0 0 94589 112999 207588
C12orf5 0 0 0 0 204169 204169
ALDH7A1 0 0 0 143223 54655 197878
G6PC3 0 0 0 130742 50482 181224
PGM2 0 0 0 66300 111277 177577
ADH7 0 0 0 107314 58695 166009

Source: Author(2016).
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pathway: 96 activators and 37 inhibitors. Nine genes have dual function (are activators and

inhibitors). The graph of control samples has 122 nodes and 140 edges, its average degree is

2.295, its diameter is 17 and its density is 0.019. The graph of GBM samples has 122 nodes

and 37 edges, its average degree is 0.607, its diameter is 3 and its density is 0.005. We found

27,863 cycles in the graph of control samples, among which 152 positive cycles and 27,711

negative cycles. In the graph of GBM samples, we found 39,508 cycles, among which 2,679

positive cycles and 36,829 negative cycles. Genes with dual function were found only in cycles

of the control graph, which may suggest a greater level of control. We noticed that the percent-

age of positive cycles is greater in GBM graph than in the control graph, suggesting that cell

cycle pathway genes are showing an unbalanced behavior, without inhibitors genes there is no

negative feedback and activators genes are unregulated. Still in relation to the cycles of GBM

samples, 240 cycles appear in the analysis of the three experiments.

(a) Control samples (b) GBM samples
Figure 4.4 – Cell cycle graphs (threshold correlation 0.85). Nodes are represented as circles and cor-
respond to genes. Connections between nodes represent a weighted undirected relationship (edge), its
value represents the coeficient of correlation between genes.

Source: Author(2016).

4.3 Discussion

In this study we aimed to detect stable cycles with the basic genes of three networks

closely related with cancer – apoptosis, glucolysis and cell cycle – in GBM patients – which

are known to carry aberrant activation in these pathways but not completely understood mech-

anisms – comparing them with controls to further understand its physiopathology. Our main
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strategy is based on the idea that a network must present stable feedback connections. Hence, we

look for these stable connections among genes after pre-processing. Our main results show that

the stoichiometric relationship between genes involved in apoptosis, glucolysis and cell cycle

pathways is unbalanced in GBM samples. This dysregulation can be measured and explained

by the identification of a higher percentage of positive cycles in these networks, comprising

activators genes without the presence of inhibitors genes. This conclusion helps to understand

more about the biology of this tumor type.

The results evidence the differences between the GCNs of the control and GBM samples.

The cycles of the control graphs use about all the genes of each network, while the cycles of

the GBM graphs use a small group of genes of each network. In apoptosis, only a few cycles

were found in the GBM graph, which would indicate that the cell cannot die (HANAHAN;

WEINBERG, 2011). In glucolysis, LDHA is the gene which encodes an enzyme essential in

the process of glycolysis metabolism for formation of lactic acid. In the control graph, this gene

appears in negative cycles (more regulated, since this cycles have inhibitor). In the GBM graph,

it appears in positive cycles (dysregulated, without inhibitor), which may be associated with

accelerated metabolism of glucolysis in the tumor and, besides, generating acidification in the

tumor, which is well-known to accelerate tumor growth (HANAHAN; WEINBERG, 2011). In

the cell cycle, a greater number of cycles has been found in GBM, which might indicate that

the tumor has more active cell cycle mechanisms, since it is more proliferated (HANAHAN;

WEINBERG, 2011). Analyzing the most common genes found in the cycles, we observed that

the t-test with 0.05 significance level indicated that there is no significant difference between

the average of the gene expression level of the control samples and the GBM samples of some

genes of the three pathways. Thus, there is a new valuable information available with the

analysis using cycle with respect to analysis of the gene expression level, since cycles highlight

the difference between the control and the GBM samples.

Unfortunately, we have a small control sample size, so the results may be underpowered,

and as a consequence some potentially important relationships may be overlooked. Further stud-

ies should include a larger number of samples to confirm these results. The formation of this

group of samples raises the ethical issue of sampling normal brain tissue. Access to normal live

brain tissue is very limited, because typically it is not removed during routine surgery (GRIZ-

ZLE; BELL; SEXTON, 2010). Hence, this tissue is not available to be used as control sample

under all circumstances, consequently the control sample commonly used in GBM studies in-

clude brain tissue obtained during surgery for intractable epilepsy or from the margins of the

resection cavity during GBM surgery, with the informed consent of the patient (LEMéE et al.,
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2013). However, the use of tissue adjacent to the tumor as control should be avoided, since

there is the possibility of tumor cell infiltration. On the other hand, GBM specimens are eas-

ily obtained, since they were obtained from excess tissues collected from patients undergoing

surgical resection of their tumors (GRAVENDEEL et al., 2009).

Several studies have even described GBM heterogeneity at the cellular and molecular

level (LEMÉE; CLAVREUL; MENEI, 2015). Its heterogeneity is a hot topic in neuro-oncology.

Glioblastoma is multiforme as the name implies (HOLLAND, 2000). It is multiforme in many

levels: grossly, showing regions of necrosis and hemorrhage; microscopically, with regions of

pseudopalisading necrosis, pleomorphic nuclei and cells, and microvascular proliferation; and

genetically, with various deletions, amplifications, and point mutations leading to activation

of signal transduction pathways downstream of receptors (HOLLAND, 2000). These tumors

also show intratumoral genetic heterogeneity (LEMÉE; CLAVREUL; MENEI, 2015). GBM

heterogeneity is one of the reasons for its resistance to therapeutic intervention (HOLLAND,

2000). This heterogeneity also explains the lower correlation coefficients observed between the

genes in the GBM samples. Therefore, an interesting possibility of further work is to analyze

the cycles in GBM samples subdivided into histological and molecular subgroups defined in

(GRAVENDEEL et al., 2009) and (BRENNAN et al., 2013) . It is expected that the most ag-

gressive groups have lower correlation coefficients than the less aggressive, so possibly present

less cycles as well.

Tumor diversity is also a big problem in analysis based on classical samples generated

from large number of cells using gene-expression profiling. Samples are generally prepared

from a mixture of different cells that are present in unknown proportions. Tumors are unique in

cell composition and they contain different tumor cells, all with differences in growth, migration

and survival capacity and this heterogeneity confounds the expression profile (STåHLBERG;

KUBISTA; ÅMAN, 2011). Bulk measurements destroy crucial information about cell-to-cell

variability by averaging signals from individual cells together. These measurements are funda-

mentally constrained by averaging. The result of this averaging may mask information about

mRNA that are present only in a subset of cells in the tissue, as their impact will be diluted.

Thus accurately defining the cell types and states in our bodies and explaining how they arise

in development and disease demands single cell measurements. The capability to select and

analyze single cells constitutes a major step forward in tumor analysis. Today, gene expression

profiles of single cells can be measured with high precision and accuracy, identifying different

cell types as well as revealing heterogeneity among cells of the same kind. For GBM and for

normal live brain tissues this has huge implications. Single cell would make possible to assess
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a cell type overall contributions to the transcriptome and how transcriptome of a certain cell

type varies across different region of a tumor or brain (HOLLAND, 2000). It will also provide

individual RNA information about each cell type. This is particularly important for brain stud-

ies, where cell types of interest are often present in low numbers and have a huge intra cell type

gene expression variation (TRAPNELL, 2015). The use of single cell data in our method is a

very exciting further work possibility.

This thesis does not describe a new software or method for constructing networks. Our

challenge is not to find the network. Many studies have been developed in this direction

and today the network can be found easily (LANGFELDER; HORVATH, 2008; LEE; TZOU,

2009; HACHE; LEHRACH; HERWIG, 2009; ALTAY; EMMERT-STREIB, 2010; BUTTE et

al., 2000; MARGOLIN et al., 2006; FAITH et al., 2007; MEYER et al., 2007). Instead, our

challenge is to understand the network: we explore the structure of the network to be able to

understand better the relationships established among genes and identify and quantify differ-

ences between GBM and control networks. This greater understanding of the structure and the

differences can help predict models that solve or prevent the problem (the tumor).

The most important step of our analysis method is the identification of cycles and its clas-

sification into positive and negative cycles. There is an intuitive relationship between a cycle

(structure in the graph) and a biologically important concept (feedback). The cycle component

is responsible for most of the dynamical properties of the whole network. Cyclic dependencies

are associated with many fundamental properties of living systems, such as homeostasis, ro-

bustness, excitability, multistationarity and biological rhythms (THIEFFRY; THOMAS, 1998;

DAS et al., 2009). Although our method analyze a static model, the analysis of the cycles re-

lated to the function (activation and inhibition) of the genes - positive and negative feedback -

suggests the dynamical operation of the network.

A full enumeration of cycles is computationally costly. Johnson’s algorithm (JOHN-

SON, 1975) is the most efficient variant and has a time complexity that is proportional to the

number of cycles in the graph where the proportionality constant is the number of nodes and

edges. The algorithm is linear in the output size, but exponential in the input size because the

number of cycles can increase exponentially with network size (especially with the number of

edges). Although the identification of the cycles can be costly, their association with feedback

mechanisms could allow a greater understanding of the stability or imbalance of the process

in the cell in a given state, thus justifying the use of the method. Depending on the pathways

under investigation, it is possible to obtain significant differences between disease and control

samples even considering only cycles of small sizes (up to size ten), which could be computed
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in feasible time (depending on the size of the network).

Our method allows to contrast one network with another network (for example, con-

trol versus GBM). This differential network analysis can be used to identify changes in cycles

patterns in different conditions. Moreover, one can find shared cycles between two or more

networks (consensus cycles analysis). Consensus cycles may represent fundamental structural

properties of the network. Our method of analysis and classification is not dependent on net-

work construction method, so another method could be used for the network construction. Thus,

our methodology could be used as a complement to modularity analysis. After identifying mod-

ules of GCNs, each module can be taken as a new network, so one can search for cycles in these

networks to identify the relationship between the genes and better understand the role of a given

gene in a module of interest.

It is noteworthy that the proposed methodology is generic and can be used to study other

networks. Concentrations of key intracellular proteins that are prevalent in a diverse range of

important cellular processes are controlled by negative feedback loops (STURROCK, 2013).

Inflammation, meiosis and NFκB are examples of these. Thus, our approach for analyzing

microarray data using cycles of networks can be used for studying, for example, these processes.
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5 CLASSIFICATION METHODOLOGY

In this chapter, we present our approach for classifying microarray samples in tissues

of the most agressive type of brain tumor (GBM) and in healthy tissues, based on the different

kind of cycles found among genes of the GCN constructed using quantized data obtained from

the microarrays. Diestel (2012) defines a cycle as a closed walk with all vertices distinct (except

the first and last vertices). We hypothesize that a cycle is associated with feedback mechanisms

very common in biological networks.

Our challenge in proposing a new classification method is to associate a biological ex-

planation with the classification of a sample. We use the cycles found in the networks, as well as

their classification in negative and positive, to classify a sample. Hence, if a sample is classified

in a given group of individuals, it means that this sample has the cycles that represent the group,

and is thus associated with the feedback mechanisms related with those cycles. Therefore, we

associate an biological information gain with our classification.

Section 5.1 describes our classification methodology. Section 5.2 relates our main re-

sults. Finally, section 5.3 presents a discussion about the method and the results.

5.1 Method

Our approach for sample classification of microarray datasets use the different kind of

cycles found among genes of the co-expression networks constructed using quantized data ob-

tained from the microarrays. Initially, we need to apply the methodology described in the pre-

vious chapter (Chapter 4). These steps are required to build the network (graph) and to identify

the cycles that can be used for classifying the samples of the input microarray. Our classification

method continues with the following steps, which are depicted in Figure 5.1:

1) Cycles selection. This step selects the cycles with the highest absolute correlation in the

control samples graph and in the GBM samples graph (we use at most ten cycles, because

we did not observe that more cycles decrease the absolute error; as future work, the ideal

number of cycles can be set according to the obtained error).

2) Cycle characterization by an equation system. Each selected cycle is associated to an equa-

tion system. Each vertex (gene) of the cycle is represented by an equation, that is defined

as a regression function, because each edge indicates the existence of a significant corre-

lation between two vertices (genes). The correlation determines that there is a relationship
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Figure 5.1 – Overview of microarray samples classification using cycles.
Source: Author (2016).
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between the behaviors of the two genes; the regression determines how strong the rela-

tionship is.

The simple linear regression model for the variables X and Y is written

yi = β0 + β1xi + εi (5.1)

where yi is the response variable for the ith observation of Y ; xi is the ith observation of

independent variable X; εi is the error for the ith observation, that is, the effect of factors

that are affecting the Y observation randomly; and β0 and β1 are coefficients that must

be estimated. In our methodology, Y and X are variables that represent genes (vertices)

of the cycle; yi is the ith observation of gene expression of the gene Y and xi is the ith

observation of gene expression of the gene X . The goal is to estimate the coefficients β0

and β1. The most well-known method of estimating these coefficients is to use ordinary

least squares (OLS). OLS provides estimates of β0 and β1 by minimizing the sum of

the squared deviations of the yi for all possible i. Specifically, the sum of the squared

residuals is minimized when the OLS estimators of β0 and β1 are

b0 = ȳ − b1x̄ (5.2)

b1 =

∑n
i=1(xi − x̄i)(yi − ȳi)∑n

i=1(xi − x̄)
(5.3)

respectively. Note that the estimated regression function is written as

ŷi = b0 + b1xi (5.4)

We use an adaptation of the method of least squares to define the coefficients:

b0 = ȳ − b1x̄ (5.5)

b1 = coefficient of correlation between Y and X (5.6)

Note that Y and X are genes (vertices) of the cycle and the coefficient of correlation is

associated to the edge between Y and X . ȳ and x̄ indicate the mean of all samples values

of the gene expression, so the coefficient b0 is estimated based on the gene expression

values from the cycle of the normalized samples; and i denotes the sample we want to
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classify.

3) Sigmoidal normalization. For the classification the data needs also to be normalized, be-

cause the microarray data was normalized for the construction of the networks. The data

is normalized in two ways: (i) considering the mean and standard deviation of the control

samples and (ii) considering the mean and standard deviation of GBM samples. This is

necessary because we do not know a priori if the sample being classified is from healthy

individual or patient, the goal of this method is to make this differentiation.

4) Estimating equations. The estimation of the equation system of all selected cycles is per-

formed using the normalized data generated in the previous step. As the system of equa-

tions is cyclical, some iteractions are made to achieve system convergence (we define the

number of iteractions as 7, because we observed a decrease in the absolute error with this

number; as future work, the number of iterations can be set according to the obtained

error). At each iteraction the percentage error is computed. After the last iteration, we

calculate the mean of the absolute error of the equations that compose the system.

5) Classification. This last step is based on the error computed in the previous step. If the error

is small (different thresholds should be tested to obtain more robust results; the user can

set this threshold), we consider that the sample has the cycle. But to evaluate the error, we

must also consider that the data were normalized in two ways, so we have the possibilities

shown in Table 5.1.

Table 5.1 – Classification possibilities.

Sample normalized as Small errors in Large errors in Sample classification
control control cycles GBM cycles control
control GBM cycles control cycles GBM
GBM control cycles GBM cycles control
GBM GBM cycles control cycles GBM

Source: Author (2016).

As presented in the previous chapter, the raw data of 276 GBM samples of all histol-

ogy and eight normal adult brain samples used in this study is available as experiment number

GSE16011 (GRAVENDEEL et al., 2009) in the Gene Expression Omnibus (GEO)1. Further-

more, we analyzed GBM samples of two independent studies available on TCGA2: 220 samples

characterized in (The Cancer Genome Atlas (TCGA) Research Network, 2008) and 520 sam-

ples characterized in (BRENNAN et al., 2013). Experimental data used in the analysis are

1http://www.ncbi.nlm.nih.gov/geo/
2http://cancergenome.nih.gov/



77

available in AffymetrixGeneChip Human Genome U133 Plus 2.0 Array format. The analyses

of Affymetrix microarray data were performed using R3 and Bioconductor4.

5.2 Results

We use the proposed methodology to classify the samples of a microarray in tissues of

the most aggressive type of brain tumor (GBM) and in healthy tissues. We use the GCNs con-

struct to analyze the genes of the three pathways present in the previous section. The samples

classification in normal and GBM tissues was performed from previously published and char-

acterized database comprising 276 GBM samples of all histology compared to 8 brain samples

of non-neoplastic white matter tissue.

We compared the performance of our method to a neural network, since it is a commonly

algorithm used for classification in data science. Our approach uses the cycles as an a priori

knowledge. The neural network, in other hand, does not use network information. The neural

network was implemented in R using the nnet package, which lets one to construct neural

networks with three layers: an input layer where features are fed in, an output layer with one

neuron per class, and one hidden layer of sigmoid function neurons. We implement the neural

network using the nnet function. We performed the classification of the microarray samples

using the predict function. For our training set we use 70% of the dataset (284 elements): 199

samples. The validation set is composed by the remaining 30%: 85 samples. Our method

achieves the same performance metrics that the implemented neural network.

The performance of the methods was evaluated by computing the percentages of Sen-

sitivity (SE), Specificity (SP) and Accuracy (AC). We used the same definitions presented in

(SARHAN, 2009). The definitions are as follows: sensitivity – is the fraction of real events that

are correctly detected among all real events; specificity – is the fraction of nonevents that has

been correctly rejected. Sensitivity, specificity and accuracy of prediction have been calculated

according to the following formulas, where FP is control samples predicts as GBM; TP is GBM

samples predicts as GBM; FN is GBM samples predicts as control; and TN is control samples

predicts as control:

SE =
TP × 100

(TP + FN)
(5.7)

3http://www.r-project.org/
4http://www.bioconductor.org/
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SP =
TN × 100

(TP + FN)
(5.8)

AC =
(TP + TN)× 100

(TP + FP + TN + FN)
(5.9)

The metrics of performance of each method are shown in Table 5.2. The total number of

samples considered for both methods was 85 (30% of the total samples of the microarray). One

can observe that the metrics of our method and the metrics of the implemented neural network

are the same.

Table 5.2 – Performance metrics of the classification methods.
Method Pathway FP TP FN TN SE SP AC

Our Method Apoptosis 3 82 0 0 100 0 96.47
Neural Network Apoptosis 3 82 0 0 100 0 96.47

Our Method Glucolysis 0 85 0 0 100 0 100
Neural Network Glucolysis 0 85 0 0 100 0 100

Our Method Cell cycle 1 84 0 0 100 0 98.82
Neural Network Cell cycle 1 84 0 0 100 0 98.82

Source: Author (2016).

5.3 Discussion

Regarding the result of the classification method, we conclude that the metrics of our

method and of the implemented neural network are the same. As a major advantage of the

method over the neural network, we can point the information associated with the classifica-

tion. In our method, when an individual is placed in a certain group, we know that it has the

cycles used for the classification of this group, so there is biological information included in

the classification. In neural networks, on the other hand, the classification is performed using

formulas that are like black boxes. In addition, despite the parity in the diagnosis of the disease,

our method is superior to a neural network, because it provides information gain in the data

analysis. As mentioned before, our method allows classification and further helps to explain the

tumor biology: if the analyzed set of genes is related to the disease, the found cycles may help

to explain the action of the disease, since they are associated with feedback mechanisms. Thus,

the cycles could provide information to develop laboratory experiments as well as to identify

potential target genes for novel medications.
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Our method can also be used to analyze and classify samples of GBM with different

histological types. The conventional method of cancer diagnosis uses a combination of clini-

cal and examination of the morphological appearance of stained tissue specimens under light

microscopy. However, this method is subjective and depends on highly trained pathologists.

Microarrays datasets may allow a more objective and highly accurate cancer classification. The

use of microarray datasets to determine a diagnosis of a disease that an individual is suffering

from or predict the prognosis of a course of a therapy or the result of an experiment is one of

the most challenging areas of microarray research (STEKEL, 2003).
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6 NFκB PATHWAY ANALYSIS

In this work, as mentioned previously, we have a close collaboration with researchers

from the Department of Biochemistry of the Universidade do Rio Grande do Sul (UFRGS).

This group studied extensively the NFκB pathway, which is topic of a series of their publica-

tions: (ZANOTTO-FILHO et al., 2009; ZANOTTO-FILHO et al., 2010; ZANOTTO-FILHO

et al., 2011; ZANOTTO-FILHO et al., 2012a; ZANOTTO-FILHO et al., 2012b). So we chose,

together with the biochemistry group, the NFκB pathway to apply our analysis methodology.

The genes of the NFκB pathway are involved in the control of a large number of biolog-

ical processes ranging from inhibition of apoptosis to metastasis in cancer. GBM patients carry

aberrant NFκB activation, but the pathway mechanisms are not completely understood.

We present a NFκB pathway analysis in tissues of the GBM tumor and in healthy tissues

using our method. Section 6.1 describes the NFκB pathway. Section 6.2 presents an overview

of the analysis. Section 6.3 relates our analysis results. Finally, section 6.4 presents a discussion

about these results.

6.1 NFκB

NF-κB is a transcription factor formed by a group of 5 genes (NFKB1, NFKB2, RELA,

RELB, REL) codifying for the REL family of proteins (NFκB1, NFκB2, p65\RelA, RelB and

c-Rel, respectively), which are involved in the control of many of biological processes ranging

from inhibition of apoptosis to pro-apoptotic effects, as well as controlling other important

processes as inflammation, invasiveness and metastasis in cancer. These so diverse branches of

action are due to the ability of the NFκB family proteins to form homo and heterodimers, which

can modulate different group of genes by exerting inducer or repressor activities. While p65,

c-Rel and RelB proteins are synthetized in the mature form, the NFκB1 and NFκB2 proteins

are synthesized as large precursors, p105 and p100, which undergo processing by proteasome

to generate the mature NF-κB subunits, p50 and p52, respectively (ORLOWSKI; JR, 2002;

AGGARWAL, 2004; BAUD; KARIN, 2009).

The most well-described and studied NFκB dimer is p65/p50, which is frequently de-

scribed as a promoter of gene transcriptional activation. Unlike RelA, RelB, and c-Rel, the

p50 and p52 NFκB subunits do not contain C-terminal transactivation domains, but play pivotal

functions in modulating the specificity of NFκB function, since both participate in target gene

transactivation by forming heterodimers with RelA, RelB, or c-Rel. In addition, p50 and p52
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homodimers are also able to bind to the nuclear protein Bcl-3, and such complexes may act

as transcriptional repressors or activators in different cell contexts. Although the mechanisms

by which p65/p50 dimers drive gene expression are well described, the cellular functions of

other NFκB complexes remains to be completely elucidated (BARKETT; GILMORE, 1999;

BASAK; SHIH; HOFFMANN, 2008; BAUD; KARIN, 2009).

There are two well-defined mechanisms for NFκB activation (shown in Figure 6.1):

a canonical and a non-canonical. In the canonical mechanism, NFκB is sequestered in the

cytosol as an inactive ternary complex formed by p65/p50 proteins bounded by a family of

inhibitory proteins named IκBs (Inhibitor of κB). Although the IκB family consists of IκBα

(NFKBIA), IkBβ (NFKBIB), and IKBε (NFKBIE) and Bcl-3 (BCL3 gene), the most-studied

is IκBα. Activation of the NFκB is initiated by degradation of IκB proteins, which occurs via

activation of IKK (IκB kinase). IKK complex is composed of a heterodimer of the catalytic

IKKα and IKKβ subunits (CHUK and IKBKB genes, respectively) and a key regulatory pro-

tein named NEMO (NFκB essential modulator) or IKKγ (IKBKG gene). Stimuli as TNFα,

cytokines, AGE (Advanced Glycation End-products) and lipopolisacaride (LPS) as well as in-

tracellular stimuli as reactive oxygen species can induce phosphorylation of IKK proteins. Once

activated, IKKα phosphorylates IkBα at ser32 and 36 residues promoting its ubiquitination

and subsequent proteasomal degradation. This process releases active NFκB, which migrates

into nuclei and regulates gene expression. Active p65/p50 NFκB can modulate a variety of

anti/proapoptotic (bcl-2, bcl-xL, XIAP, survivin, cIAP1/2), inflammatory (IL1β, IL-8, TNFα)

and invasiveness/angiogenic (VEGF, MMP2, MMP9, TWIST) mediators ultimately assigning

to NFκB an important role in several normal and pathological conditions as inflammation, can-

cer and diabetes. The pathway shutdown comes from p65/p50-dependent induction of IκBα,

which binds to nuclear/active NFκB and drives it back to cytosol (ORLOWSKI; JR, 2002; AG-

GARWAL, 2004; BAUD; KARIN, 2009).

Non-canonical NFκB signaling involves the NIK (NFκB inducing kinase)-mediated ac-

tivation of RelB:p52 heterodimers. In this pathway, activation of the NIK upon receptor ac-

tivation led to the phosphorylation and proteasomal processing of NFκB2/p100 into p52 in an

IKKα-dependent manner. Then p52 dimerizes with RelB to pop up as a nuclear RelB:p52complex,

which harbor DNA binding activity and regulate a specific subset of genes (NAKANISHI; TOI,

2005; BASAK; SHIH; HOFFMANN, 2008; TCHOGHANDJIAN et al., 2013). Although much

has to be discovered on the non-canonical pathway, a select set of stimuli as lymphotoxin-α,

RANKL and BAFF are described to activate this route. Though RelB proteins expression was
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Figure 6.1 – Canonical, RelB-mediated canonical and Non-canonical mechanisms of NFκB activation.
In the canonical mechanisms, NFκB dimers (NFKB1:RELA; NFKB1:NFKB1 or NFKB1:RelB) are con-
stitutively inhibited by binding of inhibitory proteins (IκB family genes: NFKBIA, NFKBIB, NFKBIE,
NFKBIG). Upstream stimulation by LPS, cytokines among others causes IKK family proteins activation
(genes: IKBKB, CHUK and IKBKG), which phosphorylates IκB members to release NFκB dimers.
These dimers enter the nuclei to modulate a wide range of genes involved in inflammation, invasion and
antiapoptotic defenses. Non-canonical pathways is better described during immune system development,
and it involves NIK (NFκB inducing kinase)-dependent activation of CHUK homodimers, which induce
the processing of NFKB2 (p100) to form p52:RelB active transcription factor.

Source: Author (2016).
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initially described to be exclusive of lymphoid tissues and lymphoid organ development, re-

cent evidence has pointed out an involvement of RelB in the physiopathology of certain types

of cancers as GBMs (TCHOGHANDJIAN et al., 2013). In contrast to previous beliefs on the

functional independence of canonical and non-canonical pathways, recent studies have weighed

on the evidence that expression of constituents of the non-canonical pathway (RelB and p52)

is controlled by the canonical p65/p50 signaling. It suggests that an integrated NFκB system

network relies on activation of both p65 and RelB containing dimers and that a dysregula-

tion of canonical pathway will affect cellular responses through the non-canonical pathway

(TCHOGHANDJIAN et al., 2013).

Interestingly, dysregulation of NFκB system has long been reported in several cancer

cells types, suggesting that the classical mechanism controlling activation of this pathway is

impaired in tumors (AGGARWAL, 2004). Mutations in IKK proteins have been described

but whether these phenomena are sufficient to cause NFκB dysregulation is questionable, once

many tumors display NFκB overstimulation even in the absence of IKK mutations. It was re-

cently described that GBM cells overexpress miRNA-30e* which binds to and promotes degra-

dation of IKBα mRNA, thus sustaining a prolonged NFκB activation in these tumors (JIANG

et al., 2012). To complete the myriad of described mechanisms affecting NFκB activation,

MAPKs (ERK, p38 and JNK1/2), PKC- and Akt-mediated phosphorylation of IKK and/or p65

as well as p65 acetylation also modulate its activation, nuclear translocation and the transcrip-

tional activity of p65/p50 NFκB driving different levels of transcriptional activity for NFκB as

well as making the study of NFκB pathway an extremely complex task, which is frequently

incomplete (ORLOWSKI; JR, 2002; BASAK; SHIH; HOFFMANN, 2008; BAUD; KARIN,

2009).

When the transcription factor NFκB is active, there is a group of classical target genes

that also increase and exert inflammatory, metastatic and antiapoptotic responses in normal and

cancer cells (RAYCHAUDHURI et al., 2007; ZANOTTO-FILHO et al., 2011; JIANG et al.,

2012; TCHOGHANDJIAN et al., 2013). The target genes are, in fact, an indirect measure of

the activation of the transcription factor. Among the typical target genes of the NFκB transcrip-

tion factor are CCL2, ICAM1, IL1A, IL1B, CXCL8 (IL8), MMP2, MMP9, SELE, TNFα and

VCAM1, which are genes responsible for inflammation and cell invasion in GBM.



85

6.2 Analysis Overview

We present a NFκB pathway analysis in tissues of the most aggressive type of brain

tumor (GBM) and in healthy tissues, based on the different kind of cycles found among genes

of a gene co-expression network (GCN) constructed using quantized data obtained from the

microarrays. The input of the analysis method is formed by the raw data, the basic set of NFκB

pathway genes and the function (activator or inhibitor) of these genes. The output of the method

is a set of cycles formed with the NFκB pathway genes and present in the built networks.

We aimed to detect stable regulatory cycles with the basic NFκB gene network in GBM

patients - which are known to carry aberrant NFκB activation but not completely understood

mechanisms - comparing them with controls to further understand physiopathology. Our hy-

pothesis is that negative feedbacks allow finding relations among genes that may help explain-

ing the stability of the regulatory process within the cell. Positive feedback cycles, on the other

hand, may show the amount of imbalance of a certain cell in a given time.

We analyzed the target genes of the NFκB transcription factor, which are an indirect

measure of the activation, to complement the cycle-based analysis. We adopted a gene-by-gene

approach to discover which of the inflammatory genes of interest are differently expressed.

Several alternatives could be used to investigate genes differentially expressed in lists generated

from microarray data, including t-test (JEANMOUGIN et al., 2010), Significance Analysis of

Microarrays (SAM) (TUSHER; TIBSHIRANI; CHU, 2001) and Linear Models for Microarray

Data (limma) (RITCHIE et al., 2015). We used Welch two samples t-test to have an indication of

the differential expression of inflammatory genes between normal and tumoral brain tissues. T-

test is a widely used method to identify differentially expressed genes between two conditions,

presumably because of its simplicity and interpretability (JEANMOUGIN et al., 2010). We

calculated the adjusted p-values (the smallest family wise significance level at which a particular

comparison will be declared statistically significant as part of the multiple comparison testing)

using the function p.adjust supported by the R package stats. This function calculates a variety

of different approaches for multiple comparisons given a vector of p-values. We specified the

parameter for the type of correction as method = “fdr”. This method is a re-interpretation of

Benjamini and Hochberg (BENJAMINI; HOCHBERG, 1995) procedure in terms of adjusted p-

values; it controls the false discovery rate, the expected proportion of false discoveries amongst

the rejected hypothesis.

Our main results show that the stoichiometric relationship between genes involved in

NFκB pathway regulation is unbalanced in GBM samples in contrast to control samples. This
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unregulation can be measured and explained by the identification of a positive cycle, comprising

activators genes without the presence of inhibitors genes. This conclusion helps understanding

more about the biology of this tumor type. As a consequence, it may enable the development of

more appropriate treatment therapies that act effectively on problematic components. Further-

more, cycles help differentiate, measure and explain the phenomena identified in healthy and

diseased tissue.

As presented in previous chapter, the raw data of 276 GBM samples of all histology

and eight normal adult brain samples used in this study is available as experiment number

GSE16011 (GRAVENDEEL et al., 2009) in the Gene Expression Omnibus (GEO)1. Further-

more, we analyzed GBM samples of two independent studies available on TCGA2: 220 samples

characterized in (The Cancer Genome Atlas (TCGA) Research Network, 2008) and 520 sam-

ples characterized in (BRENNAN et al., 2013). Experimental data used in the analysis are

available in AffymetrixGeneChip Human Genome U133 Plus 2.0 Array format. The analyses

of Affymetrix microarray data were performed using R3 and Bioconductor4.

6.3 Results

The herein proposed methodology (presented in Chapter 4) analyzed genes of the NFκB

network in non-tumor compared to GBM tissues from previously published and characterized

database comprising 8 brain samples of non-neoplastic white matter tissue compared to 276

GBM samples of all histology (GRAVENDEEL et al., 2009). As observed previous, the differ-

ence in the number of samples from both groups stems from the difficulty of obtaining normal

control data (GRIZZLE; BELL; SEXTON, 2010). The control samples were characterized as

belonging to a single cluster of gene expression level similarity, while the GBM samples were

divided into twenty-four different clusters (GRAVENDEEL et al., 2009). Therefore, a higher

correlation coefficient is expected between the genes of the control samples than in the GBM

samples. However, one can not infer from this characterization which genes are correlated (and

thus constitute a network), as well as one can not infer the classification of the cycles from a

network in positive and negative.

1http://www.ncbi.nlm.nih.gov/geo/
2http://cancergenome.nih.gov/
3http://www.r-project.org/
4http://www.bioconductor.org/
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(a) Control samples (b) GBM samples
Figure 6.2 – NFκB graphs (threshold correlation 0.45). Nodes are represented as circles and correspond
to genes. Connections between nodes represent a weighted undirected relationship (edge), its value
represents the coefficient of correlation between genes.

Source: Author (2017).

We constructed several graphs for the network with different correlation coefficients for

control samples and GBM samples. Tables 6.1 and 6.2 show, respectively, Spearman corre-

lation coefficients and p-values for control and GBM samples. Figure 6.2 shows the graphs

created for both control and GBM samples of the experiment available in GEO (GSE16011

(GRAVENDEEL et al., 2009)) for the NFκ pathway with correlation coefficient of at least 0.45.

We selected 12 genes as main involved in this pathway: 9 activators (CHUK, IKBKB, IKBKG,

BCL3, NFKB1, NFKB2, RELA, RELB and REL) and 3 inhibitors (NFKBIA, NFKBIB, NFK-

BIE). The graph from the control samples has 12 nodes and 7 edges, its average degree is 1.167,

its diameter is 4 and its density is 0.106. The graph from the GBM samples has 12 nodes and

3 edges, its average degree is 0.5, its diameter is 1 and its density is 0.045. We found one cycle

in the graph of control samples: three edges connect the nodes IKBKB, RELA and NFKBIA,

forming a negative cycle, comprising activating genes and one inhibitor gene. In the graph of

GBM samples, three edges connect the nodes BCL3, RELB and NFKB1, forming a positive

cycle, comprising activating genes without the presence of inhibitors genes. This cycle was

also found in the graphs built with the data of the two experiments provided in TCGA: with

the samples of the experiment described in (BRENNAN et al., 2013), the cycle was found in

the graph with threshold correlation 0.35; with samples of the experiment described in (The

Cancer Genome Atlas (TCGA) Research Network, 2008), the cycle was also found in the graph

with threshold correlation 0.35. Tables 6.3 and 6.4 show, respectively, Spearman correlation
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coefficients and p-values for GBM samples of TCGA experiments (The Cancer Genome Atlas

(TCGA) Research Network, 2008) and (BRENNAN et al., 2013). These graphs suggest that

NFκB pathway genes are in fact working under a more regulated balance between activators

and inhibitors expression in normal samples, agreeing with the concept of regulated system in

normal tissues.

Table 6.5 shown that most genes of the classical target genes were up-regulate in GBM

samples compared to normal tissue counterparts when the transcription factor NFκB is active,

agreeing with our previously published data from other datasets (ZANOTTO-FILHO et al.,

2011). We observed that the T-test with significance level of 0.01 indicated that only the mean

of the gene expression level of the control samples and the GBM samples of SELE and TFNα

genes showed no significant difference. Furthermore, we observed that the t-test with signif-

icance level of 0.001 indicated that only IL1A, SELE and TFNα genes showed no significant

difference.

(a) Control samples (b) GBM samples
Figure 6.3 – NFκB and inflammatory genes graphs (threshold correlation 0.45) of experiment
GSE16011 (GRAVENDEEL et al., 2009). Nodes are represented as circles and correspond to genes.
Connections between nodes represent a weighted undirected relationship (edge), its value represents the
coeficient of correlation between genes.

Source: Author (2017).



89

Ta
bl

e
6.

1
–

Sp
ea

rm
an

co
rr

el
at

io
n

co
ef

fic
ie

nt
s

fo
rt

he
ge

ne
s

in
co

nt
ro

ls
am

pl
es

of
G

SE
16

01
1

(G
R

AV
E

N
D

E
E

L
et

al
.,

20
09

).
P-

va
lu

es
ar

e
gi

ve
n

in
pa

re
nt

he
si

s.
G

en
es

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

1.
B

C
L

3
-

2.
C

C
L

2
0.

11
-

(0
.7

7)
3.

C
H

U
K

0.
45

0.
38

-
(0

.2
6)

(0
.3

5)
4.

C
X

C
L

8
-0

.0
9

-0
.1

9
0.

19
-

(0
.8

2)
(0

.6
5)

(0
.6

5)
5.

IC
A

M
1

0.
52

0.
54

0.
59

0.
04

-
(0

.1
8)

(0
.1

6)
(0

.1
1)

(0
.9

1)
6.

IK
B

K
B

0.
42

-0
.5

4
0.

40
-0

.0
4

-0
.1

4
-

(0
.2

8)
(0

.1
6)

(0
.3

1)
(0

.9
1)

(0
.7

3)
7.

IK
B

K
G

0.
52

0.
11

0.
90

0.
28

0.
57

0.
47

-
(0

.1
8)

(0
.7

7)
(0

.0
0)

(0
.4

9)
(0

.1
3)

(0
.2

3)
8.

IL
1A

0.
07

0.
35

0.
50

0.
35

-0
.0

7
0.

02
0.

33
-

(0
.8

6)
(0

.3
8)

(0
.2

0)
(0

.3
8)

(0
.8

6)
(0

.9
5)

(0
.4

1)
9.

IL
1B

0.
35

0.
59

0.
80

-0
.1

9
0.

40
0.

21
0.

57
0.

66
-

(0
.3

8)
(0

.1
1)

(0
.0

1)
(0

.6
5)

(0
.3

1)
(0

.6
1)

(0
.1

3)
(0

.0
7)

10
.M

M
P2

0.
38

0.
30

0.
97

0.
28

0.
61

0.
38

0.
88

0.
47

0.
76

-
(0

.3
5)

(0
.4

5)
(0

.0
0)

(0
.4

9)
(0

.1
0)

(0
.3

5)
(0

.0
0)

(0
.2

3)
(0

.0
2)

11
.M

M
P9

0.
30

-0
.2

8
-0

.3
0

-0
.1

9
-0

.1
1

0.
30

-0
.2

6
-0

.5
9

-0
.4

7
-0

.3
8

-
(0

.4
5)

(0
.4

9)
(0

.4
5)

(0
.6

5)
(0

.7
7)

(0
.4

5)
(0

.5
3)

(0
.1

1)
(0

.2
3)

(0
.3

5)
12

.N
FK

B
1

0.
35

0.
14

0.
33

-0
.0

2
-0

.0
2

0.
11

0.
45

0.
61

0.
47

0.
23

-0
.5

0
-

(0
.3

8)
(0

.7
3)

(0
.4

1)
(0

.9
5)

(0
.9

5)
(0

.7
7)

(0
.2

6)
(0

.1
0)

(0
.2

3)
(0

.5
7)

(0
.2

0)
13

.N
FK

B
2

0.
61

0.
26

0.
40

0.
09

0.
66

-0
.0

4
-0

.0
4

0.
64

-0
.0

4
0.

14
0.

33
0.

47
-

(0
.1

0)
(0

.5
3)

(0
.3

1)
(0

.8
2)

(0
.0

7)
(0

.9
1)

(0
.0

8)
(0

.9
1)

(0
.7

3)
(0

.4
1)

(0
.9

1)
(0

.2
3)

14
.N

FK
B

IA
0.

47
-0

.6
6

0.
16

0.
19

0.
14

0.
71

0.
33

-0
.2

6
-0

.1
1

0.
26

0.
28

-0
.1

4
0.

07
-

(0
.2

3)
(0

.0
7)

(0
.6

9)
(0

.6
5)

(0
.7

3)
(0

.0
4)

(0
.4

1)
(0

.5
3)

(0
.7

7)
(0

.5
3)

(0
.4

9)
(0

.7
3)

(0
.8

6)
15

.N
FK

B
IB

0.
21

-0
.8

0
-0

.0
9

0.
02

-0
.5

4
0.

78
0.

14
-0

.0
9

-0
.2

6
-0

.1
4

0.
38

0.
23

-0
.0

4
0.

54
-

(0
.6

1)
(0

.0
1)

(0
.8

2)
(0

.9
5)

(0
.1

6)
(0

.0
2)

(0
.7

3)
(0

.8
2)

(0
.5

3)
(0

.7
3)

(0
.3

5)
(0

.5
7)

(0
.9

1)
(0

.1
6)

16
.N

FK
B

IE
0.

16
0.

76
0.

50
0.

21
0.

78
-0

.4
0

0.
26

0.
21

0.
45

0.
54

-0
.2

1
-0

.2
3

0.
21

-0
.1

9
-0

.8
3

-
(0

.6
9)

(0
.0

2)
(0

.2
0)

(0
.6

1)
(0

.0
2)

(0
.3

1)
(0

.5
3)

(0
.6

1)
(0

.2
6)

(0
.1

6)
(0

.6
1)

(0
.5

7)
(0

.6
1)

(0
.6

5)
(0

.0
1)

17
.R

E
L

0.
47

-0
.3

5
-0

.0
9

0.
07

-0
.1

9
0.

38
-0

.0
9

0.
26

0.
07

-0
.0

4
0.

09
0.

21
-0

.1
9

0.
57

0.
38

-0
.2

1
-

(0
.2

3)
(0

.3
8)

(0
.8

2)
(0

.8
6)

(0
.6

5)
(0

.3
5)

(0
.8

2)
(0

.5
3)

(0
.8

6)
(0

.9
1)

(0
.8

2)
(0

.6
1)

(0
.6

5)
(0

.1
3)

(0
.3

5)
(0

.6
1)

18
.R

E
L

A
0.

57
-0

.5
4

0.
09

-0
.1

9
-0

.0
4

0.
80

0.
14

-0
.1

9
0.

04
0.

11
0.

45
-0

.0
7

-0
.1

1
0.

85
0.

61
-0

.3
0

0.
71

-
(0

.1
3)

(0
.1

6)
(0

.8
2)

(0
.6

5)
(0

.9
1)

(0
.0

1)
(0

.7
3)

(0
.6

5)
(0

.9
1)

(0
.7

7)
(0

.2
6)

(0
.8

6)
(0

.7
7)

(0
.0

0)
(0

.1
0)

(0
.4

5)
(0

.0
4)

19
.R

E
L

B
-0

.4
2

0.
02

0.
50

0
-0

.1
4

0.
33

0.
33

0.
35

0.
50

0.
52

-0
.4

5
0.

02
-0

.3
8

-0
.0

9
0.

02
0.

02
-0

.3
3

-0
.0

9
-

(0
.2

8)
(0

.9
5)

(0
.2

0)
(1

.0
0)

(0
.7

3)
(0

.4
1)

(0
.4

1)
(0

.3
8)

(0
.2

0)
(0

.1
8)

(0
.2

6)
(0

.9
5)

(0
.3

5)
(0

.8
2)

(0
.9

5)
(0

.9
5)

(0
.4

1)
(0

.8
2)

20
.S

E
L

E
0.

14
-0

.3
0

0.
23

0.
71

0.
38

0.
09

0.
52

-0
.1

9
-0

.3
3

0.
30

0.
02

-0
.0

7
0.

54
0.

42
0.

14
0.

11
-0

.1
9

-0
.0

4
-0

.1
4

-
(0

.7
3)

(0
.4

5)
(0

.5
7)

(0
.0

4)
(0

.3
5)

(0
.8

2)
(0

.1
8)

(0
.6

5)
(0

.4
1)

(0
.4

5)
(0

.9
5)

(0
.8

6)
(0

.1
6)

(0
.2

8)
(0

.7
3)

(0
.7

7)
(0

.6
5)

(0
.9

1)
(0

.7
3)

21
.T

N
Fα

-0
.1

9
-0

.1
1

0.
28

0.
54

0.
19

0.
19

0.
19

-0
.1

1
-0

.1
1

0.
38

0.
23

-0
.6

9
-0

.2
3

0.
28

-0
.0

9
0.

40
-0

.2
3

0.
04

0.
33

0.
47

-
(0

.6
5)

(0
.7

7)
(0

.4
9)

(0
.1

6)
(0

.6
5)

(0
.6

5)
(0

.6
5)

(0
.7

7)
(0

.7
7)

(0
.3

5)
(0

.5
7)

(0
.0

5)
(0

.5
7)

(0
.4

9)
(0

.8
2)

(0
.3

1)
(0

.5
7)

(0
.9

1)
(0

.4
1)

(0
.2

3)
22

.V
C

A
M

1
0.

26
0.

04
0.

16
-0

.1
1

-0
.1

1
0.

07
0.

33
0.

47
0.

33
0.

07
-0

.4
7

0.
97

0.
45

-0
.1

6
0.

28
-0

.3
8

0.
16

-0
.0

9
-0

.0
2

-0
.0

9
-0

.7
8

-
(0

.5
3)

(0
.9

1)
(0

.6
9)

(0
.7

7)
(0

.7
7)

(0
.8

6)
(0

.4
1)

(0
.2

3)
(0

.4
1)

(0
.8

6)
(0

.2
3)

(0
.0

0)
(0

.2
6)

(0
.6

9)
(0

.4
9)

(0
.3

5)
(0

.6
9)

(0
.8

2)
(0

.9
5)

(0
.8

2)
(0

.0
2)

So
ur

ce
:A

ut
ho

r(
20

17
).



90
Table

6.2
–

Spearm
an

correlation
coefficients

forthe
genes

in
G

B
M

sam
ples

ofG
SE

16011
(G

R
AV

E
N

D
E

E
L

etal.,2009).P-values
are

given
in

parenthesis.
G

enes
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
1.B

C
L

3
-

2.C
C

L
2

0.55
-

(0.00)
3.C

H
U

K
-0.24

-0.19
-

(0.00)
(0.00)

4.C
X

C
L

8
0.56

0.62
-0.28

-
(0.00)

(0.00)
(0.00)

5.IC
A

M
1

0.65
0.65

-0.18
0.59

-
(0.00)

(0.00)
(0.00)

(0.00)
6.IK

B
K

B
0.35

0.32
0.03

0.13
0.32

-
(0.00)

(0.00)
(0.55)

(0.02)
(0.00)

7.IK
B

K
G

0.31
0.00

-0.03
-0.01

0.25
0.15

-
(0.00)

(0.88)
(0.55)

(0.82)
(0.00)

(0.01)
8.IL

1A
0.36

0.36
-0.07

0.37
0.31

0.23
0.07

-
(0.00)

(0.00)
(0.19)

(0.00)
(0.00)

(0.00)
(0.21)

9.IL
1B

0.41
0.63

-0.12
0.53

0.48
0.25

0.03
0.44

-
(0.00)

(0.00)
(0.03)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
10.M

M
P2

0.36
0.11

-0.06
0.12

0.16
0.23

0.13
0.03

0.05
-

(0.00)
(0.05)

(0.26)
(0.03)

(0.00)
(0.00)

(0.02)
(0.58)

(0.39)
11.M

M
P9

0.45
0.37

-0.27
0.57

0.39
0.14

0.15
0.19

0.25
0.33

-
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.01)
(0.00)

(0.00)
(0.00)

(0.00)
12.N

FK
B

1
0.56

0.49
-0.15

0.44
0.46

0.34
0.08

0.28
0.36

0.23
0.38

-
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.15)

(0.00)
(0.00)

(0.00)
(0.00)

13.N
FK

B
2

0.29
0.22

-0.00
0.15

0.42
0.27

0.26
0.16

0.17
0.05

0.11
0.18

-
(0.00)

(0.00)
(0.89)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.39)
(0.06)

(0.00)
14.N

FK
B

IA
0.32

0.30
-0.04

0.29
0.42

0.07
0.20

0.20
0.28

-0.09
0.14

0.32
0.30

-
(0.00)

(0.00)
(0.45)

(0.00)
(0.00)

(0.20)
(0.00)

(0.00)
(0.00)

(0.13)
(0.01)

(0.00)
(0.00)

15.N
FK

B
IB

0.40
0.17

-0.24
0.19

0.33
0.22

0.12
0.22

0.17
0.25

0.12
0.22

0.20
0.17

-
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.04)

(0.00)
(0.00)

(0.00)
(0.03)

(0.00)
(0.00)

(0.00)
16.N

FK
B

IE
0.28

0.31
-0.11

0.29
0.26

0.12
0.11

0.26
0.28

0.08
0.29

0.37
0.13

0.20
-0.02

-
(0.00)

(0.00)
(0.06)

(0.00)
(0.00)

(0.03)
(0.04)

(0.00)
(0.00)

(0.13)
(0.00)

(0.00)
(0.02)

(0.00)
(0.68)

17.R
E

L
0.32

0.27
0.01

0.20
0.41

0.21
0.24

0.30
0.33

0.01
0.15

0.25
0.36

0.42
0.19

0.24
-

(0.00)
(0.00)

(0.82)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.76)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

18.R
E

L
A

0.20
0.01

0.03
0.04

0.19
0.13

0.30
-0.00

0.01
0.04

0.09
0.19

0.26
0.39

0.02
0.22

0.12
-

(0.00)
(0.84)

(0.58)
(0.43)

(0.00)
(0.02)

(0.90)
(0.78)

(0.42)
(0.09)

(0.00)
(0.00)

(0.00)
(0.71)

(0.00)
(0.03)

19.R
E

L
B

0.65
0.53

-0.22
0.45

0.64
0.34

0.31
0.33

0.42
0.17

0.35
0.49

0.43
0.31

0.37
0.33

0.34
0.25

-
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
20.SE

L
E

0.27
0.25

-0.02
0.25

0.36
0.11

0.09
0.00

0.20
0.18

0.21
0.16

0.18
0.13

0.03
0.11

0.13
0.03

0.28
-

(0.00)
(0.00)

(0.67)
(0.00)

(0.00)
(0.05)

(0.12)
(0.96)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.02)

(0.59)
(0.05)

(0.02)
(0.51)

(0.00)
21.T

N
F
α

-0.06
0.03

0.12
-0.06

0.12
0.08

0.16
0.03

0.34
-0.10

-0.09
-0.05

0.12
0.16

0.08
-0.07

0.20
0.03

-0.00
0.06

-
(0.26)

(0.52)
(0.03)

(0.24)
(0.04)

(0.16)
(0.00)

(0.58)
(0.00)

(0.09)
(0.11)

(0.35)
(0.03)

(0.00)
(0.14)

(0.21)
(0.00)

(0.52)
(0.96)

(0.30)
22.V

C
A

M
1

0.39
0.57

-0.17
0.37

0.42
0.34

0.00
0.33

0.39
0.09

0.17
0.34

0.21
0.24

0.29
0.18

0.22
0.01

0.41
0.08

0.02
-

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.93)
(0.00)

(0.00)
(0.11)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.77)

(0.00)
(0.14)

(0.67)
Source:A

uthor(2017).



91

Ta
bl

e
6.

3
–

Sp
ea

rm
an

co
rr

el
at

io
n

co
ef

fic
ie

nt
s

fo
rt

he
ge

ne
s

in
G

B
M

sa
m

pl
es

of
T

C
G

A
(T

he
C

an
ce

rG
en

om
e

A
tla

s
(T

C
G

A
)R

es
ea

rc
h

N
et

w
or

k,
20

08
).

P-
va

lu
es

ar
e

gi
ve

n
in

pa
re

nt
he

si
s.

G
en

es
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
1.

B
C

L
3

-

2.
C

C
L

2
0.

44
-

(0
.0

0)
3.

C
H

U
K

-0
.0

4
-0

.1
2

-
(0

.5
0)

(0
.0

5)
4.

C
X

C
L

8
0.

46
0.

48
0.

04
-

(0
.0

0)
(0

.0
0)

(0
.4

8)
5.

IC
A

M
1

0.
60

0.
50

0.
02

0.
46

-
(0

.0
0)

(0
.0

0)
(0

.6
7)

(0
.0

0)
6.

IK
B

K
B

0.
03

0.
07

-0
.0

6
0.

02
0.

14
-

(0
.5

8)
(0

.2
7)

(0
.3

3)
(0

.6
8)

(0
.0

3)
7.

IK
B

K
G

0.
14

-0
.1

1
0

-0
.2

0
0.

12
0.

14
-

(0
.0

3)
(0

.0
8)

(0
.8

9)
(0

.0
0)

(0
.0

7)
(0

.0
3)

8.
IL

1A
0.

17
0.

18
0.

11
0.

33
0.

23
0.

19
0.

18
-

(0
.0

0)
(0

.0
0)

(0
.0

9)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
9.

IL
1B

0.
32

0.
55

0.
08

0.
54

0.
39

0.
11

-0
.0

2
0.

48
-

(0
.0

0)
(0

.0
0)

(0
.2

0)
(0

.0
0)

(0
.0

0)
(0

.1
0)

(0
.7

5)
(0

.0
0)

10
.M

M
P2

0.
19

0.
02

-0
.0

5
0.

11
0.

23
0.

10
0.

03
-0

.0
5

0.
02

-
(0

.0
0)

(0
.7

1)
(0

.4
5)

(0
.0

8)
(0

.0
0)

(0
.1

1)
(0

.6
0)

(0
.4

0)
(0

.7
6)

11
.M

M
P9

0.
27

0.
25

-0
.0

5
0.

38
0.

28
0.

06
0

0.
13

0.
30

0.
27

-
(0

.0
0)

(0
.0

0)
(0

.4
4)

(0
.0

0)
(0

.0
0)

(0
.3

3)
(0

.9
2)

(0
.0

5)
(0

.0
0)

(0
.0

0)
12

.N
FK

B
1

0.
39

0.
26

0.
04

0.
23

0.
49

0.
13

0.
08

0.
10

0.
30

0.
08

0.
24

-
(0

.0
0)

(0
.0

0)
(0

.4
6)

(0
.0

0)
(0

.0
0)

(0
.0

4)
(0

.2
2)

(0
.1

1)
(0

.0
0)

(0
.2

3)
(0

.0
0)

13
.N

FK
B

2
0.

20
0

0.
05

0.
11

0.
17

0.
05

0.
29

0.
32

0.
13

0.
03

0.
05

0.
30

-
(0

.0
0)

(0
.9

7)
(0

.3
8)

(0
.0

9)
(0

.0
0)

(0
.3

7)
(0

.0
0)

(0
.0

0)
(0

.0
3)

(0
.6

2)
(0

.4
5)

(0
.0

0)
14

.N
FK

B
IA

0.
39

0.
32

-0
.0

2
0.

28
0.

34
0.

11
0.

03
0.

12
0.

21
-0

.0
6

0.
09

0.
31

0.
15

-
(0

.0
0)

(0
.0

0)
(0

.7
2)

(0
.0

0)
(0

.0
0)

(0
.0

9)
(0

.5
7)

(0
.0

6)
(0

.0
0)

(0
.3

2)
(0

.1
4)

(0
.0

0)
(0

.0
1)

15
.N

FK
B

IB
0.

01
-0

.1
2

-0
.0

2
-0

.0
4

0.
08

0.
01

0.
14

-0
.0

3
-0

.1
0

0.
20

-0
.0

1
-0

.0
3

0.
11

-0
.1

6
-

(0
.8

7)
(0

.0
6)

(0
.7

1)
(0

.5
5)

(0
.1

9)
(0

.8
0)

(0
.0

3)
(0

.5
8)

(0
.1

2)
(0

.0
0)

(0
.7

9)
(0

.6
3)

(0
.0

9)
(0

.0
1)

16
.N

FK
B

IE
0.

22
0.

21
0

0.
28

0.
37

-0
.0

8
0.

13
0.

24
0.

36
0.

06
0.

19
0.

23
0.

19
0.

17
0.

02
-

(0
.0

0)
(0

.0
0)

(0
.8

9)
(0

.0
0)

(0
.0

0)
(0

.2
0)

(0
.0

4)
(0

.0
0)

(0
.0

0)
(0

.3
5)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.7

5)
17

.R
E

L
0.

25
0.

11
0.

07
0.

07
0.

38
0.

26
0.

28
0.

40
0.

22
0.

03
0.

11
0.

37
0.

47
0.

27
0

0.
15

-
(0

.0
0)

(0
.1

0)
(0

.2
4)

(0
.2

5)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.5

6)
(0

.0
8)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.9
3)

(0
.0

1)
18

.R
E

L
A

0.
01

0.
07

-0
.2

2
0

0.
03

0.
11

0.
10

-0
.1

0
-0

.0
2

0.
01

0.
03

-0
.0

1
-0

.0
8

0.
24

-0
.0

2
0.

07
-0

.1
6

-
(0

.8
0)

(0
.2

5)
(0

.0
0)

(0
.9

9)
(0

.5
9)

(0
.0

9)
(0

.1
0)

(0
.1

1)
(0

.6
9)

(0
.8

6)
(0

.5
8)

(0
.8

6)
(0

.2
2)

(0
.0

0)
(0

.7
3)

(0
.2

5)
(0

.0
1)

19
.R

E
L

B
0.

42
0.

30
-0

.0
1

0.
13

0.
45

0.
07

0.
13

0.
14

0.
22

0.
01

0.
07

0.
35

0.
10

0.
29

0.
06

0.
27

0.
30

0
-

(0
.0

0)
(0

.0
0)

(0
.8

0)
(0

.0
4)

(0
.0

0)
(0

.2
5)

(0
.0

4)
(0

.0
3)

(0
.0

0)
(0

.8
5)

(0
.2

6)
(0

.0
0)

(0
.1

2)
(0

.0
0)

(0
.3

0)
(0

.0
0)

(0
.0

0)
(0

.9
3)

20
.S

E
L

E
0.

08
0.

02
0.

11
0.

07
0.

09
-0

.0
8

0.
07

0.
08

0.
11

0
0.

04
0.

20
0.

13
0.

07
-0

.0
1

0.
03

0.
22

-0
.1

1
0.

14
-

(0
.2

3)
(0

.7
4)

(0
.0

7)
(0

.2
8)

(0
.1

3)
(0

.2
0)

(0
.2

5)
(0

.1
8)

(0
.0

8)
(0

.9
0)

(0
.5

0)
(0

.0
0)

(0
.0

4)
(0

.2
6)

(0
.8

1)
(0

.5
7)

(0
.0

0)
(0

.0
9)

(0
.0

2)
21

.T
N

Fα
-0

.0
5

0.
02

0.
10

0.
03

0.
04

0.
10

0.
04

0.
25

0.
26

-0
.1

2
-0

.0
1

0.
03

0.
19

0.
07

-0
.0

2
0.

12
0.

29
-0

.1
6

0.
11

0.
20

-
(0

.4
1)

(0
.6

7)
(0

.1
0)

(0
.6

4)
(0

.5
1)

(0
.1

2)
(0

.4
8)

(0
.0

0)
(0

.0
0)

(0
.0

6)
(0

.8
7)

(0
.5

6)
(0

.0
0)

(0
.2

9)
(0

.6
8)

(0
.0

7)
(0

.0
0)

(0
.0

1)
(0

.0
9)

(0
.0

0)
22

.V
C

A
M

1
0.

21
0.

36
-0

.0
3

0.
22

0.
29

0.
25

-0
.0

3
0.

17
0.

29
0.

05
0.

06
0

-0
.0

1
0.

35
-0

.0
5

0.
14

0.
08

0.
20

0.
20

-0
.1

2
0.

02
-

(0
.0

0)
(0

.0
0)

(0
.6

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.5

6)
(0

.0
1)

(0
.0

0)
(0

.4
2)

(0
.3

5)
(0

.9
3)

(0
.7

8)
(0

.0
0)

(0
.4

3)
(0

.0
3)

(0
.2

3)
(0

.0
0)

(0
.0

0)
(0

.0
5)

(0
.7

0)
So

ur
ce

:A
ut

ho
r(

20
17

).



92
Table

6.4
–

Spearm
an

correlation
coefficients

forthe
genes

in
G

B
M

sam
ples

ofT
C

G
A

(B
R

E
N

N
A

N
etal.,2013).P-values

are
given

in
parenthesis.

G
enes

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

1.B
C

L
3

-

2.C
C

L
2

0.52
-

(0.00)
3.C

H
U

K
-0.12

-0.10
-

(0.00)
(0.01)

4.C
X

C
L

8
0.49

0.51
-0.03

-
(0.00)

(0.00)
(0.43)

5.IC
A

M
1

0.61
0.60

-0.04
0.54

-
(0.00)

(0.00)
(0.29)

(0.00)
6.IK

B
K

B
0.05

0.11
-0.14

-0.07
0.10

-
(0.21)

(0.00)
(0.00)

(0.09)
(0.01)

7.IK
B

K
G

0.22
0.03

-0.10
-0.06

0.17
0.13

-
(0.00)

(0.43)
(0.02)

(0.11)
(0.00)

(0.00)
8.IL

1A
0.26

0.23
-0.04

0.31
0.30

0.16
0.19

-
(0.00)

(0.00)
(0.26)

(0.00)
(0.00)

(0.00)
(0.00)

9.IL
1B

0.41
0.54

-0.03
0.55

0.48
0.09

0.08
0.46

-
(0.00)

(0.00)
(0.42)

(0.00)
(0.00)

(0.03)
(0.06)

(0.00)
10.M

M
P2

0.10
0.01

-0.03
0.06

0.10
0.05

0.00
-0.04

0.05
-

(0.02)
(0.81)

(0.43)
(0.16)

(0.01)
(0.18)

(0.89)
(0.33)

(0.22)
11.M

M
P9

0.31
0.25

-0.10
0.37

0.31
-0.02

0.04
0.14

0.30
0.25

-
(0.00)

(0.00)
(0.01)

(0.00)
(0.00)

(0.64)
(0.29)

(0.00)
(0.00)

(0.00)
12.N

FK
B

1
0.40

0.37
0.02

0.24
0.47

0.23
0.17

0.17
0.38

0.09
0.19

-
(0.00)

(0.00)
(0.58)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.02)
(0.00)

13.N
FK

B
2

0.22
0.13

0.04
0.09

0.24
0.11

0.26
0.26

0.16
-0.02

0.03
0.33

-
(0.00)

(0.00)
(0.29)

(0.02)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.52)
(0.36)

(0.00)
14.N

FK
B

IA
0.40

0.34
-0.07

0.30
0.40

0.19
0.09

0.18
0.23

-0.02
0.09

0.35
0.20

-
(0.00)

(0.00)
(0.08)

(0.00)
(0.00)

(0.00)
(0.02)

(0.00)
(0.00)

(0.49)
(0.03)

(0.00)
(0.00)

15.N
FK

B
IB

0.01
-0.09

0
-0.10

-0.02
0

0.08
-0.07

-0.13
0.13

0
0.02

0.05
-0.09

-
(0.69)

(0.02)
(0.95)

(0.01)
(0.58)

(0.92)
(0.04)

(0.08)
(0.00)

(0.00)
(0.86)

(0.56)
(0.22)

(0.02)
16.N

FK
B

IE
0.23

0.20
0.030

0.31
0.25

-0.19
0.07

0.11
0.27

0
0.21

0.09
0.04

0.07
-0.05

-
(0.00)

(0.00)
(0.48)

(0.00)
(0.00)

(0.00)
(0.08)

(0.00)
(0.00)

(0.96)
(0.00)

(0.02)
(0.31)

(0.09)
(0.25)

17.R
E

L
0.29

0.22
0.03

0.08
0.34

0.25
0.25

0.35
0.28

0.09
0.11

0.34
0.39

0.23
-0.09

0.01
-

(0.00)
(0.00)

(0.46)
(0.05)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.02)

(0.00)
(0.00)

(0.00)
(0.00)

(0.03)
(0.69)

18.R
E

L
A

0.11
0.07

-0.02
-0.02

0.12
0.15

0.11
-0.07

0.03
0.06

0
0.25

0.11
0.16

0.12
0.04

0
-

(0.01)
(0.08)

(0.59)
(0.50)

(0.00)
(0.00)

(0.00)
(0.10)

(0.36)
(0.13)

(0.97)
(0.00)

(0.00)
(0.00)

(0.00)
(0.31)

(0.96)
19.R

E
L

B
0.44

0.37
-0.02

0.25
0.42

0.11
0.15

0.19
0.26

0
0.11

0.35
0.17

0.32
0.01

0.17
0.23

0.14
-

(0.00)
(0.00)

(0.54)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.97)

(0.00)
(0.00)

(0.00)
(0.00)

(0.76)
(0.00)

(0.00)
(0.00)

20.SE
L

E
0.15

0.08
0.13

0.14
0.12

-0.12
0.08

0.03
0.08

0.01
0.12

0.08
0.09

0.03
-0.04

0.09
0.17

-0.08
0.11

-
(0.00)

(0.05)
(0.00)

(0.00)
(0.00)

(0.00)
(0.04)

(0.38)
(0.04)

(0.71)
(0.00)

(0.04)
(0.03)

(0.46)
(0.33)

(0.03)
(0.00)

(0.05)
(0.00)

21.T
N

F
α

-0.01
0.11

0.04
0.04

0.11
0.14

0.06
0.15

0.29
-0.03

0.05
0.12

0.11
0.05

-0.02
0.02

0.23
-0.04

0.11
0.07

-
(0.81)

(0.00)
(0.27)

(0.32)
(0.00)

(0.00)
(0.12)

(0.00)
(0.00)

(0.48)
(0.17)

(0.00)
(0.01)

(0.17)
(0.59)

(0.62)
(0.00)

(0.26)
(0.00)

(0.08)
22.V

C
A

M
1

0.17
0.39

-0.02
0.19

0.31
0.21

0
0.17

0.27
-0.07

0.01
0.13

0.09
0.38

-0.11
0.08

0.16
0.14

0.22
-0.02

0.03
-

(0.00)
(0.00)

(0.50)
(0.00)

(0.00)
(0.00)

(0.82)
(0.00)

(0.00)
(0.08)

(0.74)
(0.00)

(0.03)
(0.00)

(0.00)
(0.04)

(0.00)
(0.00)

(0.00)
(0.61)

(0.42)
Source:A

uthor(2017).



93

Table 6.5 – Mean, standard deviation (SD), p-value and adjusted p-value of the gene expression values
of the inflammatory genes.

Gene Control Control GBM GBM p-value adjusted
Mean SD Mean SD p-value

CCL2 216.76 291.63 2740.85 4606.41 3.2871e-15 8.2179e-15
ICAM1 188.23 16.19 288.71 277.05 1.0968e-18 3.6561e-18
IL1A 65.32 22.13 101.71 50.26 1.7684e-03 2.2105e-03
IL1B 204.42 169.47 650.93 829.54 1.3687e-05 1.9553e-05
CXCL8 99.44 83.72 1654.08 3342.20 3.2944e-13 6.5888e-13
MMP2 93.13 15.85 616.98 504.23 5.7933e-45 5.7933e-44
MMP9 169.52 23.66 935.65 1898.20 1.2483e-10 2.0804e-10
SELE 27.21 21.78 37.01 127.74 3.7567e-01 3.7567e-01
VCAM1 156.19 94.22 1698.01 1788.33 5.6545e-32 2.8273e-31
TNFα 74.77 50.39 95.05 103.74 3.1123e-01 3.4582e-01

Source: Author (2017).

(a) GBM samples of TCGA (The Cancer
Genome Atlas (TCGA) Research

Network, 2008)

(b) GBM samples of TCGA

(BRENNAN et al., 2013)
Figure 6.4 – NFκB and inflammatory genes graphs (threshold correlation 0.45) of TCGA experiments
(The Cancer Genome Atlas (TCGA) Research Network, 2008; BRENNAN et al., 2013). Nodes are rep-
resented as circles and correspond to genes. Connections between nodes represent a weighted undirected
relationship (edge), its value represents the coeficient of correlation between genes.

Source: Author (2017).

We repeated the analysis of the NFκB pathway including among the genes of interest

CCL2, ICAM1, IL1A, IL1B, CXCL8, MMP2, MMP9, SELE, TNFα and VCAM1. Figure 6.3

shows the graphs created for both control and GBM samples of the experiment available in

GEO (GSE16011 (GRAVENDEEL et al., 2009)) for the NFκB pathway and aforementioned

inflammatory genes with correlation coefficient of at least 0.45. Spearman correlation coeffi-

cients and p-values for control and GBM samples are shown in Tables 6.1 and 6.2, respectively.
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We selected 22 genes as main involved in this set: 9 activators, 3 inhibitors and 10 inflamma-

tory gene. The graph from the control samples has 22 nodes and 17 edges, its average degree is

1.545, its diameter is 5 and its density is 0.074. The graph from the GBM samples has 22 nodes

and 20 edges, its average degree is 1.818, its diameter is 3 and its density is 0.087. One can

note that inhibitors genes (colored in red) are connected in the control samples graph, but none

connection was observed in the GBM samples graph, evidencing the same dysregulation pattern

described in Figure 6.2. This same behavior was also observed in the graphs with threshold cor-

relation 0.45 in the TCGA experiments (The Cancer Genome Atlas (TCGA) Research Network,

2008; BRENNAN et al., 2013) shown in Figure 6.4. Spearman correlation coefficients and p-

values for GBM samples of TCGA experiments (The Cancer Genome Atlas (TCGA) Research

Network, 2008) and (BRENNAN et al., 2013) are shown in Tables 6.3 and 6.4, respectively.

We found 5 cycles in the graph of control samples, among which 3 positive cycles (all

cycles with three nodes) and 2 negative cycles (one cycle with three nodes and one cycle with

four nodes). In the graph of GBM samples, we found 385 positive cycles: (i) 20 cycles with

three nodes; (ii) 47 cycles with four nodes; (iii) 93 cycles with five nodes; (iv) 117 cycles with

six nodes; (v) 87 cycles with seven nodes; and (vi) 21 cycles with eight nodes.

Six cycles of GBM samples graphs appears in the analysis of the three (GSE16011

(GRAVENDEEL et al., 2009) and TCGA (The Cancer Genome Atlas (TCGA) Research Net-

work, 2008; BRENNAN et al., 2013)) experiments with threshold correlation 0.45. Table 6.6

shown these cycles that could give tips to biochemists about possible laboratory experiments,

as well as on potential drug target genes.

Table 6.6 – Cycles with potential target genes.
Genes (vertices) of the cycle Size of the cycle
BCL3 - CXCL8 - ICAM1 3
CCL2 - CXCL8 - ICAM1 3
CCL2 - CXCL8 - IL1B 3
BCL3 - CCL2 - CXCL8 - ICAM1 4
CCL2 - ICAM1 - CXCL8 - IL1B 4
BCL3 - CXCL8 - IL1B - CCL2 - ICAM1 5

Source: Author (2017).
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6.4 Discussion

In this study, we aimed to detect stable cycles with the basic genes of NFκB network and

NFκB with inflammatory genes network in GBM patients, that are known to have an aberrant

activation in these pathways but not completely understood mechanisms, comparing them with

controls to further understand physiopathology. Our main strategy is based on the idea that

a network must present stable feedback connections (negative cycles). Hence, we look for

these stable connections among genes after pre-processing. Our main results show that the

stoichiometric relationship between genes involved in these networks is unbalanced in GBM

samples versus control samples. This dysregulation can be measured and explained by the

identification of a higher percentage of positive feedback (positive cycles) in these networks,

comprising activators genes without the presence of inhibitors genes. This conclusion helps to

understand more about the biology of this tumor type.

The results still evidence the differences between the GCNs of the networks among the

control samples and GBM samples. The control graphs present negative (and intrinsically sta-

ble) cycles. In these cycles, we observe the existence of an inhibitor gene (NFKBIA, NFKBIB

and NFKBIE). These cycles indicate stoichiometric balance between activators and inhibitors,

because there are inhibitors genes regulating activators genes. Based on the current knowledge

of NFκB system functioning from in-bench assays, this equilibrium implies in the blockade of

the NFκB transcription factor, an expected phenomena in normal brain tissues (RAYCHAUD-

HURI et al., 2007; ZANOTTO-FILHO et al., 2011).

In GBM samples, the stoichiometric relationship between activators and inhibitors dras-

tically changes. The cycles are positive, consisting of activators. There is no inhibitor gene

in these cycles; consequently the balance activator/inhibitor seems to be broken. Thus, from

these results, one could conclude there is activation of the NFκB transcription factor, agreeing

with findings from in-bench studies in GBM. Particularly in the NFκB regulatory system, an

inhibitor gene such as IκB proteins (NFKBIA, NFKBIB, NFKBIE genes), for example, do not

decrease the amount of the activator gene; it reduces the operation of these genes products, by

direct binding and cytoplasmic retention of activators thus impeding its nuclear activity (BAR-

KETT; GILMORE, 1999; AGGARWAL, 2004). Hence, with the absence of an inhibitor gene

in the cycle, NFκB activators genes can migrate into nucleus and regulate the activation of its

target genes ultimately affecting cell function.

Therefore, one could conclude that the inhibitory genes can participate in the cycles of

control samples, but are not involved in the cycles of GBM samples. In this way, it suggests
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that the NFκB genes and the inflammatory genes in the control sample remain with balanced

operation, since there is the negative feedback provided by NFκB inhibitors. Moreover, the

GBM samples are still showing an unbalanced behavior, without the inhibitors genes there is

no negative feedback and activators and inflammatory genes are unregulated.

Our challenge in the analysis of the NFκB pathway is to understand the NFκB network.

We explore the structure through the cycles of the network to be able to understand more of the

relationships established by genes of the pathway and identify and quantify differences between

GBM and control networks. Our analysis is focused on the genes from the NFκB pathway -

which is in fact a really intricate and multi-regulated transcription factor - so the goal was not

to identify modules, pathways or motifs, but rather to better understand the relationships of

the genes of the NFκB pathway and its variations between samples of GBM and control to

get insights on how alterations in the levels of upstream controllers (inhibitors) may affect the

activation of the NFκB based on target genes evaluation. Our findings show that stoichiometric

relation of genes within the NFκB network seems to be dysregulated in tumors versus normal

tissues, and it seems to be caused by absence of inhibitors in the system, which lead to increased

expression of NFκB targets.

As mentioned earlier, analysis results could provide tips to biochemists about possible

laboratory experiments. The results of this analysis drew the attention of the group of bio-

chemists who worked with us for the BCL3 gene. This gene does not have relations in the

control samples graphs. However, on the other hand, presents a set of connections in the GBM

samples graphs. In addition, BCL3 gene is present in the only positive cycle found in the GBM

samples graph (threshold correlation 0.45) built for the NFκB pathway genes, as well as is

present in the cycles found in the GBM samples graph (threshold correlation 0.45) construct for

the NFκB pathway and inflammatory genes. So the biochemists decided to perform laboratory

experiments for testing this specific gene.
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7 CONCLUSIONS

The amount of biological data available grows a lot. However, these data alone do

not help the experts in biology and biochemistry, computational models, techniques, tools and

methodologies are needed to analyze and extract relevant information from such data sets. Sys-

tems biology (IDEKER; GALITSKI; HOOD, 2001) studies an organism modeled as a network

of biological components (genes, proteins, and chemical reactions). Its focus are all components

and the interaction between them, all as part of a single system, as indeed happens in reality.

In computer science, a network is often called graph, an abstract data type that is meant to im-

plement the graph concept from mathematics (DIESTEL, 2012). Thus, the network language is

particularly intuitive for both areas and may be used as a basis to model and analyze biological

data, extracting relevant information. In this context, a widely used approach is the construction

and analysis of gene networks (SERIN et al., 2016) based on gene expression similarity. In this

thesis, we present a new way of analyzing co-expression networks constructed using quantized

data obtained from the microarrays, based on the different kinds of cycles found among genes

of these networks.

The input of the proposed method is the raw data of a set of samples (a microarray),

a set of interest genes (for example, genes from a known pathway) and a function (activator

or inhibitor) of these genes. The output is a set of cycles. Thanks to the new way of finding

relations among genes, a more robust interpretation of gene correlations is possible, because

cycles are associated with feedback mechanisms, that are very common in biological networks.

Our hypothesis is that negative feedbacks allow finding relations among genes that may

help explaining the stability of the regulatory process within the cell. Positive feedback cycles,

on the other hand, may show the amount of imbalance of a certain cell at a given time. The

cycle-based analysis allows identifying the stoichiometric relationships among the genes of the

network. This methodology provides a better understanding of the tumor biology. As a con-

sequence, it may enable the development of more effective treatment therapies. Furthermore,

cycles help differentiate, measure and explain the phenomena identified in healthy and diseased

tissues. Cycles may also be used as a new method for classification of samples of a microar-

ray (cancer diagnosis). Compared to other classification methods, cycle-based classification

provides a richer explanation of the proposed classification, that can give hints on the possible

therapies.

Therefore, the main original contributions of this thesis are:

(i) A new cycle-based analysis method. The new way of analyzing relations among genes al-
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lows a more robust interpretation of gene correlations. The cycle-based analysis enables

the identification of the stoichiometric relationships between the genes of a network. Fur-

thermore, it provides a better understanding of the tumor biology. Thus, it may aid the

development of more appropriate treatment therapies that act effectively on problematic

components. Cycles help differentiate, measure and explain the phenomena identified in

healthy and diseased tissues.

(ii) A new microarray samples classification method. The use of cycles as the basis of a new

method for classification of samples of a microarray allows, for example, cancer diagno-

sis. The main advantage of its use for these purposes is the embedded biological sig-

nificance. In the most classic algorithms, classification occurs in a black box through

complex mathematical formulas. With the proposed method, it is easy to understand the

classification: if the sample has cycles of a particular class, then the sample belongs to

that class.

(iii) Application and achievement of practical results. We use the proposed methodology to

analyze the genes of four networks closely related to cancer – apoptosis, glucolysis, cell

cycle and NFκB – in tissues of the most aggressive type of brain tumor (Gliobastoma

multiforme – GBM) and in healthy tissues.

Our main results show that the stoichiometric relationship between genes involved in

apoptosis, glucolysis, cell cycle and NFκB pathways is unbalanced in GBM samples

versus control samples. This dysregulation can be measured and explained by the identi-

fication of a higher percentage of positive cycles in these networks. This conclusion helps

to understand more about the biology of this tumor type. These results also confirmed our

hypothesis.

The results concerning the analysis of the first three networks validate our method, since

they can be confirmed in results of previous studies. The results of the analysis of the

NFκB pathway, in turn, allowed us to obtain a new significant result: the highlight of the

gene BCL3, because its behavior is different in control and GBM networks.

The proposed cycle-based classification method achieved the same performance metrics

as a neural network, a classical classification method. However, our method has a signif-

icant advantage with respect to neural networks. The proposed classification method not

only classifies samples, providing diagnosis, but also explains why samples were classi-

fied in a certain way in terms of the feedback mechanisms that are present/absent. This

way, the method provides hints to biochemists about possible laboratory experiments, as

well as on potential drug target genes.



99

GBM is the most aggressive type of brain tumor, with generally extremely poor progno-

sis. Thus, these tumors have drawn significant attention. Hence the discovery of novel molec-

ular therapeutic targets can be important to optimize treatment strategies (MRUGALA, 2013).

Therefore, it becomes evident the relevance of the results obtained in this thesis, as they help

to understand the tumor biology, they may assist biochemical formulate new and more effi-

cient protocols, propose new approaches for therapies, and even review the current concepts of

traditional pharmacological treatments for the disease.

The research presented in this thesis can be extended in several ways, some of which are

listed below:

(i) Multiple Data Integration. Our method of analysis could also integrate multiple types of

data (for example, miRNA data and proteomic data), thus extending the analysis to post-

transcription and translation levels. These possibilities are promising in particular be-

cause transcript levels does not correlate with protein levels due to variety of reasons

like differences in translation efficiency, protein stability and miRNA regulation (SOMA-

SUNDARAM; NIJAGUNA; KUMAR, 2011-08-23).

(ii) Single Cell Through single cell correlations complex interactions between genes might be

identified, so better suggestions could be provided to biochemists about possible labora-

tory experiments, as well as better potential drug target genes. To use single cell data

in our method, some changes considering the characteristic of the new format, including

an abundance of zeros, increased heterogeneity, and complex expression distributions are

required (BACHER; KENDZIORSKI, 2016). Although the construction of the networks

and the identification of the cycles will basically remain the same with single cell data,

the pre-processing of the new format will be different. Especially, it would be interest-

ing to compare the data obtained in our control samples with other experiments data (for

example, using the data published in (DARMANIS et al., 2015)).

(iii) Temporal Analysis. - The analysis using cycles could also be introduced into a dynamic

model (temporal). In the dynamic model (with temporal information), we would identify

the direction of the edges of the graphs that would then represent gene regulatory net-

works, thus providing more information about the relationships between genes. In addi-

tion, the analysis using cycles allows one to observe the stoichiometric relationships over

time, and identify and define rules regarding the changes over time associated with cycles.

This information can complement the static model information regarding the interactions

between genes and, moreover, could allow the prediction of future stoichiometric changes

associated with cycles. Thus, the predictions will have biological explanation.
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The development of such a new way of analyzing networks can help biochemists to an-

swer, for example, the following questions:

• what are the genes that remain in the cycles?

• what are the genes that appear and disappear in the cycles?

• what are the cycles that remain in the network?

• what are the cycles that disappear in the network?

• what are the new cycles in the network?

• how is the process of creating and destroying cycles?

The last question is the most important, since it is related to the evolution of the cell

treatment (i.e., the cell change process). This process will give us information about the

behavior of the cell in response to treatment. If we can identify patterns of behavior over

time, we can better understand the behavior of tumor progression/regression and we will

have more chances to interfere in it. Our methodology identifies the network and the

cycles, so it does not only describe the genes involved in a given moment, but it also

identifies the processes that are occurring (cycles) at the moment. In a temporal analysis,

we would analyze how these cycles are modified over time. Thus, we might explain

how the processes (cycles) evolve over time, which is quite different from other temporal

analysis approaches.

The extension of the methodology would allow a more complete analysis of microarray

data. Thus, the biological processes will be better understood, and biochemical opera-

tions will be performed safely in the cell, allowing, for example, as already mentioned,

treatment of diseases.

(iv) Cycles Visualization. - The visualization of the networks cycles in a graphical perspective

is very important further work, since ir could allow researchers to intuitively explore the

cycles and develop hypotheses. One possibility of visualization could be a graph that

could show the interactions between cycles and bring interesting insights. In this graph,

the nodes could represent the cycles and the edges could indicate the common genes,

the weight of a edge could indicate how many genes are shared by the connected nodes

(cycles). Another possibility of visualization would be a correlogram, which could allow

a visual perspective of how correlated the cycles are (a possible measure of correlation

could be the amount of shared genes).
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APPENDIX A — APOPTOSIS – LIST OF GENES

A.1 Activators Genes

APAF1, BAD, BAX, BID, CAPN1, CAPN2, CAPNS1, MCH4, CASP3, CASP6, CASP7,

CASP8, CASP9, CAST, CFLAR, CYCS, DFFA, DFFB, FADD, FAS1, FASLG, RIPK1, TNF,

TNFRSF10A, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF1A, TNFSF10, TP53, TRADD,

TRAP3.

A.2 Inhibitors Genes

AKT1, AKT2, AKT3, ATM, BCL2, BCL2L1, BIRC2, BIRC3, BIRC4, CHUK, CSF2RB,

IKBKB, IKBKG, IL1A, IL1B, IL1R1, IL1RAP, IL3, IL3RA, IRAK1, IRAK2, IRAK4, MAP3K14,

MYD88, NFKB1, NFKB2, NFKBIA, NGFB, NTRK1, PDCD8, PIK3C2A, PIK3C2B, PIK3C2G,

PIK3C3, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, PIK3R4, PIK3R5,

PPP3CA, PPP3CB, PPP3CC, PPP3R1, PRKCA, PRKACB, PRKACG, PRKAR1B, PRKAR2A,

PRKAR2B, RELA.
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APPENDIX B — GLUCOLYSIS – LIST OF GENES

B.1 Activators Genes

ACSS1, ACSS2, ADH1A, ADH1B, ADH1C, ADH4, ADH5, ADH6, ADH7, ADPGK,

AKR1A1, ALDH1A3, ALDH1B1, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2,

ALDH7A1, ALDH9A1, ALDOA, ALDOB, ALDOC, BPGM, DLAT, DLD, ENO1, ENO2,

ENO3, FBP1, FBP2, G6PC, G6PC2, G6PC3, GALM, GAPDH, GAPDHS, GCK, GPI, HK1,

HK2, HK3, HKDC1, LDHA, LDHAL6A, LDHAL6B, LDHB, LDHC, MINPP1, PCK1, PCK2,

PDHA1, PDHA2, PDHB, PFKL, PFKM, PFKP, PGAM1, PGAM2, PGAM4, PGK1, PGK2,

PGM1, PGM2, PKLR, PKM, TPI1.

B.2 Inhibitor Gene

C12orf5.
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APPENDIX C — CELL CYCLE – LIST OF GENES

C.1 Activators Genes

ABL1, ANAPC1, ANAPC10, ANAPC11, ANAPC13, ANAPC2, ANAPC4, ANAPC5,

ANAPC7, BUB1, BUB1B, BUB3, CCNA1, CCNA2, CCNB1, CCNB2, CCNB3, CCND1,

CCND2, CCND3, CCNE1, CCNE2, CCNH, CDC14A, CDC14B, CDC16, CDC20, CDC23,

CDC25A, CDC25B, CDC25C, CDC26, CDC27, CDC45, CDC6, CDC7, CDK1, CDK2, CDK4,

CDK6, CDK7, CREBBP, CUL1, DBF4, E2F1, E2F2, E2F3, E2F4, E2F5, EP300, ESPL1,

FZR1, GSK3B, HDAC1, HDAC2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, MDM2,

MYC, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, PCNA, PLK1, PRKDC, RAD21, SKP1,

SKP2, SMAD2, SMAD3, SMAD4, SMC1A, SMC1B, SMC3, STAG1, STAG2, TFDP1, TFDP2,

TTK, ZBTB17.

C.2 Inhibitors Genes

ATM, ATR, CHEK1, CHEK2, RB1, RBL1, RBL2, RBX1, SFN, TP53, CDKN1A,

CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CDKN2D, GADD45A, GADD45B,

GADD45G, MAD1L1, MAD2L1, MAD2L2, PKMYT1, PTTG1, PTTG2, WEE1, WEE2.

C.3 Dual Genes

TGFB1, TGFB2, TGFB3, YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ, YW-

HAZ.
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APPENDIX D — NFκB – LIST OF GENES

D.1 Activators Genes

BCL3, CHUK, IKBKB, IKBKG, NFKB1, NFKB2, REL, RELA, RELB.

D.2 Inhibitors Genes

NFKBIA, NFKBIB, NFKBIE.

D.3 Target Genes

CCL2, ICAM1, IL1A, IL1B, CXCL8 (IL8), MMP2, MMP9, SELE, TNFα and VCAM1.



118



119

APPENDIX E — RESUMO ESTENDIDO

Este capítulo apresenta um resumo das principais contribuições desta tese. Primeira-

mente, o contexto do trabalho de pesquisa é discutido. Em seguida, são descritos os métodos de

análise e classificação propostos. Por fim, os principais resultados são relatados e discutidos.

E.1 Contextualização

A expressão gênica fornece informações para a construção de modelos de sistemas bi-

ológicos. A análise de expressão genética comparando tecidos normais e neoplásicos tem sido

utilizada para identificar genes associados com a gênese tumoral e potenciais alvos terapêuticos

(PARMIGIANI et al., 2003). Tecnologias genômicas de alta performance, como microarrays,

podem facilitar consideravelmente o perfil molecular de tumores. Milhares de genes podem ser

analisados usando um único chip de hibridização de um microarray (STEKEL, 2003). O perfil

de expressão de um tumor reflete o estado de eventos de um tecido tumoral num determinado

momento. Para generalizar os achados e fornecer evidências conclusivas sobre uma alteração

molecular, muitas vezes é necessário analisar centenas de tumores. Usando a metodologia

molecular tradicional, tal verificação pode levar vários meses, ou mesmo anos. Para facilitar a

pesquisa em grande escala, novas técnicas são necessárias.

Uma das principais áreas de pesquisa em biologia de sistemas refere-se à análise de cam-

inhos biológicos ou descoberta de redes a partir de um conjunto de dados de microarrays. Uma

rede de co-expressão de genes (GCN) pode ser inferida a partir de experimentos de microarrays

(DAS et al., 2009). Uma GCN é um grafo não direcionado, em que os nodos representam genes

e as arestas, por sua vez, representam relações significativas de co-expressão. Em uma GCN,

dois genes são conectados por uma aresta se suas atividades tiverem associação significativa

(geralmente quantificada por correlação ou informação mútua) considerando uma série de me-

didas de expressão gênica em diferentes condições ou em diferentes momentos. Comparada

com uma rede regulatória de genes, uma GCN não tenta representar relações causais diretas

entre os genes participantes na forma de arestas direcionadas. Embora existam outras técnicas

estatísticas para analisar a correlação, a rede provê uma linguagem particularmente intuitiva

para os biólogos e permite analogias com redes sociais (LANGFELDER; HORVATH, 2008).

Esta tese apresenta uma nova maneira de analisar os dados de microarrays, com base

nos diferentes tipos de ciclos encontrados entre os genes da GCN construída utilizando dados

quantizados obtidos a partir dos microarrays. A entrada do método de análise é formada pelos



120

dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via conhecida)

e a função (ativador ou inibidor) destes genes. A saída do método é um conjunto de ciclos.

Um ciclo é um caminho fechado com todos os vértices distintos (exceto o primeiro e o último)

(DIESTEL, 2012). Graças à nova forma de encontrar relações entre genes, é possível uma inter-

pretação mais robusta das correlações de genes, porque os ciclos são associados a mecanismos

de feedback, muito comuns em redes biológicas. A hipótese é que o feedback negativo permi-

tiria encontrar relações entre os genes que poderiam ajudar a explicar a estabilidade do processo

regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, poderiam mostrar o

desequilíbrio que uma determinada célula está sofrendo em um dado estado. A análise baseada

em ciclos permite identificar a relação estequiométrica entre os genes da rede. Assim, esta

metodologia permite compreender melhor a biologia do tumor e pode permitir o desenvolvi-

mento de terapias de tratamento mais adequadas que atuem de forma eficaz sobre componentes

problemáticos. Além disso, os ciclos ajudam a diferenciar, mensurar e explicar os fenômenos

identificados em tecido saudável e tecido doente. Adicionalmente, os ciclos podem também ser

utilizados como um novo método para a classificação de amostras de um microarray (diagnós-

tico de câncer). A principal vantagem de seu uso para este propósito é o significado biológico

embutido.

Quatro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular

e NFκB - foram utilizadas como estudos de caso das metodologias propostas. Estas redes

foram comparadas em tecidos de tumor cerebral Gliobastoma multiforme (GBM), conhecido

por ter ativação alterada nessas vias e cujos mecanismos não são completamente entendidos,

e em tecidos saudáveis . GBM é o tipo mais agressivo de tumor cerebral. A maioria dos

pacientes com GBM morrem em menos de um ano e, essencialmente, nenhum paciente tem

sobrevivência a longo prazo, por isso estes tumores atraem atenção significativa. O prognóstico

do GBM ainda é extremamente pobre e a descoberta de novos alvos terapêuticos moleculares

pode ser importante para otimizar as estratégias de tratamento (MRUGALA, 2013).

Os principais resultados mostram que a relação estequiométrica entre os genes envolvi-

dos nas quatro vias é desequilibrada nas amostras de GBM em relação as amostras de controle.

Este desequilíbrio pode ser mensurado e explicado pela identificação de um percentual maior de

ciclos positivos nestas redes. Esta conclusão ajuda a entender mais sobre a biologia deste tipo de

tumor. O método de classificação proposto obteve as mesmas métricas de desempenho que uma

rede neural. Entretanto, enquanto a rede neural é uma caixa preta, o método proposto tem ganho

de informação em relação à análise de dados. Se a via analisada está relacionada à doença, o

método pode explicar a ação da doença através de ciclos, uma vez que estes estão associados
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com mecanismos de feedback. Portanto, o novo método permite a classificação e também ajuda

a explicar a biologia do tumor. Assim, poderia prover dicas para bioquímicos sobre possíveis

experiências de laboratório, bem como sobre potenciais genes alvo de medicações.

Portanto, as principais contribuições da tese são: (i) um novo método de análise baseado

em ciclos; (ii) um novo método de classificação; (iii) e, finalmente, a aplicação dos métodos e a

obtenção de resultados práticos.

E.2 Método de Análise

O método de análise proposto é explicado em duas fases: (i) a construção de GCNs

usando microarrays e a obtenção dos ciclos; e (ii) a análise baseada em ciclos.

E.2.1 Fase I – Grafos e Ciclos

O método de análise começa com as seguintes etapas, que são mostradas na Figura E.1,

para a construção de GCNs e obtenção de ciclos:

1) Pré-processamento de dados de microarrays Affymetrix. Essa etapa consiste em impor-

tar os dados brutos e definir os valores de expressão para cada conjuntos de sondas. Essas

operações são suportadas no pacote affy do Bioconductor. A função ReadAffy foi usada

importar os dados e a função mas5 para normalizar os valores de expressão. Lim et al.

(2007) sugerem que MAS5 permite a construção de uma rede mais fiel. Vale ressaltar que

os dados de medições de expressão gênica de alta performance são afetados por um nível

relativamente alto de ruído (BOCCALETTI; LATORA; MORENO, 2010).

2) Anotação de dados. A finalidade da anotação é fornecer informações detalhadas sobre os

dados. Estas operações são suportadas no Bioconductor pelos pacotes annotate e

hgu133plus2.db. Os nomes dos genes foram extraídos com a função featureNames e os

símbolos dos genes com a função getSYMBOL. Para cade gene envolvido na via de inter-

esse, foi criado um registro com o nome, o símbolo, a função (ativador ou inibidor) do

genes e o valor de expressão calculado na etapa 1. Os registros gerados foram classifica-

dos em amostras de GBM e amostras de controle.
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Figure E.1 – Visão geral da análise de redes de co-expressão usando ciclos.
Fonte: Autora (2017).
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3) Normalização Sigmoidal. Esta etapa reduz a influência de valores extremos ou outliers nos

dados sem removê-los do conjunto de dados. Os dados são transformados de forma não

linear usando uma função sigmoidal (PRIDDY; KELLER, 2005) e os valores normaliza-

dos variam de 0 a 1.

4) Correlação de Spearman. A correlação é usada para descobrir conjuntos de genes com per-

fis de expressão semelhantes. Métodos de correlação tem sido amplamente utilizados para

analisar dados de expressão gênica. Os genes com perfis de expressão correlacionados

podem corresponder a complexos protéicos, vias ou participar em circuitos reguladores

e de sinalização (HORVATH, 2011). O coeficiente de correlação de Spearman não é

paramétrico e permite identificar se duas variáveis (genes) se relacionam em uma função

monotônica. A função cor foi utilizada (especificando o parâmetro para o tipo de cor-

relação como method = spearman) para a criação da matriz de correlação de valores de

expressão entre os genes selecionados.

5) Grafos. Os grafos não direcionados (que representam a GCN) são construídos calculando

um coeficiente de correlação para cada par de genes. Se o coeficiente estiver acima de um

certo limiar e for estatisticamente significativo (p < 0, 05), o par de genes é conectado

no grafo; se não, ele permanece desconectado. Foram usados grafos não direcionados

ponderados representados por uma matriz de adjacência simétrica A = [aij], onde i e j

são nodos e representam genes e a adjacência aij tem valores 0 < aij leq1 e representa o

coeficiente de correlação entre i e j; se i e j estão conectados, é maior que zero; e 0 caso

contrário. Os elementos da diagonal foram definidos como 0 para facilitar a notação. O

pacote R igraph foi usado para obter estatísticas dos grafos e a função graph.adjacency

foi usada para criar os grafos.

6) Ciclos. A fim de procurar a explicação biológica da associação de genes observados, buscaram-

se os ciclos na rede de genes. Uma implementação C ++ do algoritmo de Johnson (JOHN-

SON, 1975) foi usada para encontrar os ciclos nos grafos. Após a conclusão do algoritmo

de busca, os ciclos repetidos são excluídos da análise. Os mecanismos de feedback são

muito comuns em redes biológicas. A hipótese é que o feedback negativo permitiria

encontrar relações entre os genes que poderiam ajudar a explicar a estabilidade do pro-

cesso regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, poderiam

mostrar o desequilíbrio que uma determinada célula está sofrendo em um dado estado.

Os genes de interesse podem ser de dois tipos: ativadores e inibidores. Assumiu-se que

um ciclo é positivo quando o número de inibidores no mesmo é zero. Similarmente, é dito

negativo quando o número de inibidores no ciclo é maior ou igual a um. A identificação
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de ciclos é um processo computacionalmente caro. Desta forma, pode ser necessário lim-

itar o tamanho dos ciclos para tornar o método computacionalmente viável. O tamanho

máximo a ser considerado depende do tamanho da rede que está sendo analisada e da

via sob investigação. Nesta tese, ciclos de tamanho pequeno (até o tamanho dez) foram

suficientes para mostrar diferenças significativas entre as amostras de controle e GBM.

E.2.2 Fase II – Análise

Uma vez que os grafos e os ciclos foram obtidos, começa a análise.

1) Gerando estatísticas de grafos. Foram usadas métricas estatísticas que fornecem uma visão

geral da estrutura da rede: (i) grau médio - que define o número médio de arestas conec-

tadas a um nodo (uma medida de quantas arestas estão no grafo em comparação com o

número de nodos); (ii) densidade - a medida do percentual de arestas conectadas na rede

em relação ao total de conexões possíveis; a densidade é definida por um valor decimal

entre zero e um; grafos com valores próximos de um são tipicamente densos, enquanto

que perto de zero são chamados de esparsos; (iii) diâmetro - este conceito refere-se à

medição da distância entre os dois nodos mais distantes da rede; pode ser um indica-

tivo de quão complexa é a rede; por exemplo, um grafo com diâmetro três é geralmente

menos complexo do que um com diâmetro sete. Estas medidas podem fornecer números

tangíveis que suportam uma avaliação visual da rede, bem como podem ajudar a explorar

facetas da rede que são menos óbvias de uma perspectiva visual.

2) Analisando ciclos. Em seguida, os ciclos são considerados. Realiza-se uma análise de sub-

grupos, que se refere à pesquisa de padrões em subconjuntos das amostras. Este tipo

de análise visa comparar os resultados de cada subgrupo particular de amostras. Nesta

análise foram considerados dois subconjuntos de amostras: GBM e controle. Portanto,

a execução das etapas da seção anterior resulta em um conjunto de ciclos para cada sub-

conjunto de amostras. Cada ciclo é representado por um registro de dados, contendo o

símbolo dos genes que compõem o ciclo (ou seja, os nodos), o tamanho do ciclo (deter-

minado pelo número de nodos), a correlação absoluta (produto do peso das arestas) e o

tipo de ciclo (positivo ou negativo). Os registros de dados gerados são sumarizados por

tipo de ciclo, bem como por tamanho de ciclo. A hipótese considerada é de que o número

de ciclos positivos e negativos (isto é, mecanismos de feedback positiva e negativa) estão

relacionados com a funcionalidade e complexidade de uma determinada via. Para au-
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mentar a confiança na relevância dos ciclos encontrados, é possível considerar bases de

dados de amostras de diferentes experimentos. Foram consideradas bases de dados para

as amostras de GBM em três experimentos diferentes: um disponível no GEO e dois no

TCGA.

3) Encontrando genes alvo. Finalmente, verificou-se quais genes aparecem mais freqüente-

mente em ciclos. Foram contados os ciclos positivos e negativos em que cada gene

aparece em cada subconjunto de amostras e os valores foram comparamos. Na seqüên-

cia, as médias do nível de expressão desses genes entre os subgrupos foram comparadas

usando o teste t para verificar se eles têm uma diferença estatisticamente significativa. A

identificação destes genes proporciona uma forma alternativa de destacar nodos impor-

tantes para a rede, bem como permite um ganho de informação em relação à análise do

nível de expressão genética nos casos em que a diferença média não é estatisticamente

significativa.

Os dados brutos das amostras de 276 GBM de todas as histologias e oito amostras nor-

mais de cérebro adulto utilizadas neste estudo estão disponíveis como número de experimento

GSE16011 (GRAVENDEEL et al., 2009) no Gene Expression Omnibus (GEO)1. Além disso,

foram analisadas amostras de GBM de dois estudos independentes disponíveis no on TCGA2:

220 amostras caracterizadas em (The Cancer Genome Atlas (TCGA) Research Network, 2008)

e 520 amostras caracterizadas em (BRENNAN et al., 2013). Os dados experimentais utilizados

na análise estão disponíveis no formato AffymetrixGeneChip Human Genome U133 Plus 2.0

Array. As análises de dados dos microarrays foram realizadas usando R3 and Bioconductor4.

E.2.3 Resultados e Discussão

O objetivo do estudo foi detectar ciclos estáveis formados pelos genes básicos de qua-

tro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular e NFκB -

em pacientes com GBM - que são conhecidos por apresentar ativação aberrante nessas vias

e mecanismos não completamente compreendidos - comparando-os com controles para com-

preender melhor a fisiopatologia. A estratégia é baseada na idéia de que uma rede deve apre-

sentar conexões de feedback estáveis. Assim, procuram-se estas conexões entre os genes após

o pré-processamento. Os principais resultados mostram que a relação estequiométrica entre
1http://www.ncbi.nlm.nih.gov/geo/
2http://cancergenome.nih.gov/
3http://www.r-project.org/
4http://www.bioconductor.org/
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genes envolvidos na apoptose, glicólise, ciclo celular e NFκB é desequilibrada em amostras

GBM. Esta desregulação pode ser medida e explicada pela identificação de uma maior porcent-

agem de ciclos positivos nestas redes, compreendendo genes de ativadores sem a presença de

genes inibidores. Esta conclusão ajuda a entender melhor a biologia deste tipo de tumor.

Os resultados evidenciam as diferenças entre as GCNs das amostras de controle e GBM.

Sobre as primeiras três vias, pode-se dizer que os ciclos dos grafos de controle usam todos os

genes de cada rede; enquanto os ciclos dos grafos GBM usam um pequeno grupo de genes de

cada rede. Além disso, analisando os genes mais comuns encontrados nos ciclos, observou-se

que o teste t com nível de significância de 0,05 indicou que não há diferença significativa entre

a média do nível de expressão gênica das amostras de controle e GBM de alguns genes das

três vias. Assim, há um ganho de informação com a análise usando ciclos em relação à análise

do nível de expressão gênica, uma vez que os ciclos destacam a diferença entre as amastras de

controle e as amostras GBM. Ainda sobre estas vias:

Apoptose. Apenas alguns ciclos foram encontrados no grafo GBM, o que indicaria que a célula

não pode morrer (HANAHAN; WEINBERG, 2011).

Glicólise. LDHA é o gene que codifica uma enzima essencial no processo de metabolismo da

glicólise para a formação de ácido láctico. No grafo de controle, este gene aparece em

ciclos negativos (mais regulados, já que estes ciclos têm inibidor). No grafo de GBM, ele

aparece em ciclos positivos (desregulados, sem inibidor), o que pode estar associado ao

metabolismo acelerado da glicólise no tumor e, além disso, gerar acidificação no tumor,

o que é bem conhecido por acelerar o crescimento tumoral (HANAHAN; WEINBERG,

2011).

Ciclo celular. O maior número de ciclos foi encontrado no grafo GBM, o que pode indicar que

o tumor tem mecanismos mais ativos do ciclo celular, uma vez que é mais proliferado

(HANAHAN; WEINBERG, 2011).

Na via do NFκB, os grafos de controle apresentam ciclos negativos (e intrinsecamente

estáveis). Nestes ciclos, observa-se a existência de um gene inibidor (NFKBIA, NFKBIB e

NFKBIE). Estes ciclos indicam equilíbrio estequiométrico entre ativadores e inibidores, porque

existem genes inibidores que regulam os genes ativadores. Com base no conhecimento atual

do sistema NFκB a partir de ensaios in-bench, esse equilíbrio implica no bloqueio do fator de

transcrição NFκB, fenômeno esperado em tecidos cerebrais normais (RAYCHAUDHURI et al.,

2007; ZANOTTO-FILHO et al., 2011). Nas amostras de GBM, a relação estequiométrica entre

ativadores e inibidores muda drasticamente. Os ciclos são positivos, consistindo em ativadores.
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Não existe um gene inibidor nestes ciclos; consequentemente, o equilíbrio ativador/inibidor

parece estar quebrado. Assim, a partir desses resultados, pode-se concluir que há ativação

do fator de transcrição NFκB, concordando com os achados dos estudos in-bench de GBM.

Particularmente no sistema regulador NFκB, um gene inibidor (NFKBIA, NFKBIB, NFKBIE),

por exemplo, não diminui a quantidade do gene ativador; reduz a operação destes produtos

de genes, por ligação direta e retenção citoplasmática de ativadores, impedindo assim a sua

atividade nuclear (BARKETT; GILMORE, 1999; AGGARWAL, 2004). Assim, com a ausência

de um gene inibidor no ciclo, os genes ativadores de NFκB podem migrar para o núcleo e regular

a ativação dos seus genes alvo, afetando em última instância a função celular. Portanto, pode-se

concluir que os genes inibidores podem participar nos ciclos de amostras de controle, mas não

estão envolvidos nos ciclos de amostras de GBM. Desta forma, sugere que os genes NFκB e

os genes inflamatórios na amostra de controle permanecem com operação equilibrada, uma vez

que existe o feedback negativo fornecido pelos inibidores NFκB. Além disso, as amostras GBM

ainda mostram um comportamento desequilibrado, sem os genes inibidores não há feedback

negativo e ativadores e genes inflamatórios não são regulados.

Infelizmente, tem-se um tamanho pequeno de amostra de controle, portanto os resul-

tados podem ser insuficientes e, como conseqüência, algumas relações potencialmente impor-

tantes podem ser ignoradas. Estudos futuros devem incluir um maior número de amostras para

confirmar esses resultados. A constituição deste grupo de amostras esta relacionada a questão

ética da amostragem do tecido cerebral normal. O acesso ao tecido cerebral vivo normal é

muito limitado, porque normalmente não é removido durante uma cirurgia de rotina (GRIZZLE;

BELL; SEXTON, 2010). Consequentemente, amostras de controle comummente utilizadas em

estudos GBM incluem tecido cerebral obtido durante a cirurgia para epilepsia intratável ou das

margens da cavidade de ressecção durante a cirurgia de GBM, com a consentimento informado

do paciente (LEMéE et al., 2013). No entanto, o uso de tecido adjacente ao tumor como con-

trole deve ser evitado, uma vez que existe a possibilidade de infiltração de células tumorais.

Por outro lado, os espécimes GBM são facilmente obtidos, uma vez que são obtidos a partir de

tecidos em excesso coletados de pacientes submetidos à ressecação cirúrgica de seus tumores

(GRAVENDEEL et al., 2009).

Vários estudos descreveram a heterogeneidade do GBM no nível celular e molecular

(LEMÉE; CLAVREUL; MENEI, 2015). Sua heterogeneidade é um tema atual em neuro-

oncologia. O glioblastoma é multiforme como o nome implica (HOLLAND, 2000). É mul-

tiforme em muitos níveis: grosseiramente, mostrando regiões de necrose e hemorragia; mi-

croscopicamente, com regiões de necrose pseudopalisadora, núcleos pleomórficos e células,
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e proliferação microvascular; e geneticamente, com várias deleções, amplificações e mutações

pontuais que levam à ativação de vias de transdução de sinal dos receptores (HOLLAND, 2000).

Estes tumores também mostram heterogeneidade genética intratumoral (LEMÉE; CLAVREUL;

MENEI, 2015). A heterogeneidade do GBM é uma das razões para sua resistência à intervenção

terapêutica (HOLLAND, 2000). Esta heterogeneidade também explica os menores coeficientes

de correlação observados entre os genes nas amostras de GBM. Portanto, uma possibilidade in-

teressante de trabalho futuro é analisar os ciclos em amostras GBM subdivididas em subgrupos

histológicos e moleculares definidos em (GRAVENDEEL et al., 2009) e (BRENNAN et al.,

2013). Espera-se que os grupos mais agressivos tenham coeficientes de correlação mais baixos

do que os menos agressivos, possivelmente também apresentam menos ciclos.

O uso de dados de célula única com método proposto é uma possibilidade de trabalho

futuro muito interessante. Através de correlações de células únicas interações complexas en-

tre os genes podem ser identificados, por isso melhores sugestões poderiam ser fornecidas aos

bioquímicos sobre possíveis experiências de laboratório, bem como melhores genes potenci-

ais alvo de drogas. Para usar dados de célula única com o método proposto, algumas mu-

danças considerando a característica do novo formato, incluindo uma abundância de zeros,

maior heterogeneidade, e distribuições de expressão complexas são necessárias (BACHER;

KENDZIORSKI, 2016). Embora a construção das redes e a identificação dos ciclos sejam

basicamente as mesmas com os dados de célula única, o pré-processamento do novo formato

será diferente. Especialmente, interessante seria comparar os dados obtidos com as amostras

de controle com dados de outros experimentos (por exemplo, usando os dados publicados em

(DARMANIS et al., 2015)).

Esta tese não descreve um novo software ou método para construir redes. O desafio não

é encontrar a rede. Muitos estudos têm sido desenvolvidos nessa direção e hoje a rede pode

ser encontrada facilmente (LANGFELDER; HORVATH, 2008; LEE; TZOU, 2009; HACHE;

LEHRACH; HERWIG, 2009; ALTAY; EMMERT-STREIB, 2010; BUTTE et al., 2000; MAR-

GOLIN et al., 2006; FAITH et al., 2007; MEYER et al., 2007). Em vez disso, o desafio é

entender a rede: explorou-se a estrutura da rede para compreender melhor as relações estabele-

cidas entre os genes e identificar e quantificar as diferenças entre redes de controle e GBM. Essa

maior compreensão da estrutura e das diferenças pode ajudar a prever modelos que resolvam ou

impedem o problema (o tumor).

O passo mais importante do método de análise é a identificação de ciclos e sua classifi-

cação em ciclos positivos e negativos. Existe uma relação intuitiva entre um ciclo (estrutura no

grafo) e um conceito biologicamente importante (feedback). O ciclo é responsável pela maioria
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das propriedades dinâmicas de toda a rede. As dependências cíclicas estão associadas a muitas

propriedades fundamentais dos sistemas vivos, como a homeostase, a robustez, a excitabilidade,

a multiestationaridade e os ritmos biológicos. Embora o método analise um modelo estático, a

análise dos ciclos relacionados à função (ativação e inibição) dos genes - feedback positivo e

negativo - sugere a operação dinâmica da rede.

Uma enumeração completa de ciclos é computacionalmente caro. O algoritmo de John-

son (JOHNSON, 1975) é a variante mais eficiente e tem uma complexidade temporal que é

proporcional ao número de ciclos no grafo onde a constante de proporcionalidade é o número

de nodos e arestas. O algoritmo é linear no tamanho da saída, mas exponencial no tamanho da

entrada porque o número de ciclos pode aumentar exponencialmente com o tamanho da rede

(especialmente com o número de arestas). Embora a identificação dos ciclos possa ser onerosa,

sua associação com mecanismos de feedback pode permitir uma maior compreensão da estabil-

idade ou desequilíbrio do processo na célula em um dado estado, justificando assim o uso do

método. Dependendo das vias sob investigação, é possível obter diferenças significativas entre

as amostras de doença e controle, mesmo considerando apenas ciclos de tamanho pequeno (até

o tamanho dez), o que pode ser calculado em tempo viável (dependendo do tamanho da rede).

O método proposto permite contrastar uma rede com outra (por exemplo, controle versus

GBM). Esta análise de rede diferencial pode ser usada para identificar mudanças nos padrões

de ciclos em diferentes condições. Além disso, pode-se encontrar ciclos compartilhados entre

duas ou mais redes (análise de ciclos de consenso). Os ciclos de consenso podem representar

propriedades estruturais fundamentais da rede. O método proposto de análise e classificação

não depende do método de construção da rede, então outro método poderia ser usado para

a construção da rede. Assim, nossa metodologia poderia ser usada como um complemento

à análise de modularidade. Depois de identificar módulos de GCNs, cada módulo pode ser

tomado como uma nova rede, de modo que pode-se procurar ciclos nessas redes para identificar

a relação entre os genes e entender melhor o papel de um determinado gene em um módulo de

interesse.

Na literatura, alguns artigos focam em como detectar módulos biologicamente significa-

tivos (ZHANG; HORVATH, 2005) e padrões recorrentes chamados motifs (ALON, 2007) em

redes. Langfelder and Horvath (2008), por exemplo, não assumem informações prévias sobre

a via e constroem módulos de forma não supervisionada. Eles relacionam módulos com traços

clínicos para encontrar módulos clinicamente interessantes, usando conectividade intramodular

juntamente com a significância do gene para a detecção de genes hub significativos. A análise

proposta está focada nos genes de uma via, de modo que o objetivo não é identificar módulos,
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vias ou motifs, mas sim entender melhor as relações entre os genes da via de interesse e suas

variações em amostras de tecidos doentes e de controle. O objetivo geral é obter informações

sobre como as alterações nos níveis de expressão podem afetar a ativação da via com base na

avaliação dos genes alvo. A abordagem proposta inova usando os ciclos existentes na rede para

análise, em vez de usar a conectividade de toda a rede ou a conectividade intramodular como a

medida da importância do nodo como outras abordagens (MA et al., 2010), fornecendo assim

uma estratégia diferente e potencialmente frutífera para analisar interações complexas em vias.

Vale ressaltar que a metodologia proposta é genérica e pode ser usada para estudar out-

ras redes. Concentrações de proteínas intracelulares chave que são prevalentes em uma gama

diversa de importantes processos celulares são controlados por loops de feedback negativo

(STURROCK, 2013). A inflamação e a meiose são exemplos disso. Assim, nossa abordagem

para analisar dados de microarrays usando ciclos de redes pode ser usada para estudar, por

exemplo, esses processos.

E.3 Método de Classificação

O método de classificação de amostras de microarray usa os diferentes tipos de ciclos

encontrados entre os genes de uma GCN construída utilizando dados quantificados obtidos a

partir de microarrays. Inicialmente, é preciso aplicar a metodologia descrita na seção anterior.

Essas etapas são necessárias para construir a rede (grafo) e para identificar os ciclos que podem

ser usados para classificar as amostras do microarray de entrada. O método de classificação

continua com as seguintes etapas, que são descritas na Figura ??:

1) Seleção de ciclos. Esta etapa seleciona os ciclos com a maior correlação absoluta no grafo

de amostras de controle e no grafo de amostras GBM (usamos no máximo dez ciclos,

porque não se observou que mais ciclos diminuem o erro absoluto; como trabalho futuro,

o número ideal de ciclos pode ser ajustados de acordo com o erro obtido).

2) Caracterização do ciclo por um sistema de equações. Cada ciclo selecionado é associado

a um sistema de equações. Cada vértice (gene) do ciclo é representado por uma equação,

que é definida como uma função de regressão, porque cada aresta indica a existência de

uma correlação significativa entre dois vértices (genes). A correlação determina que há

uma relação entre os comportamentos dos dois genes; a regressão determina quão forte é

a relação.
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Figure E.2 – Visão geral da classificação de amostras de microarrays usando ciclos.
Fonte: Autora (2017).



132

3) Normalização Sigmoidal. Para a classificação, os dados também precisam ser normaliza-

dos, pois os dados do microarray foram normalizados para a construção das redes. Os

dados são normalizados de duas maneiras: (i) considerando a média e o desvio padrão das

amostras de controle e (ii) considerando a média e o desvio padrão das amostras de GBM.

Isto é necessário porque não se sabe a priori se a amostra que está sendo classificada é de

um indivíduo saudável ou paciente, o objetivo deste método é fazer essa diferenciação.

4) Estimando equações. A estimativa do sistema de equações de todos os ciclos seleccionados

é realizada utilizando os dados normalizados gerados no passo anterior. Como o sistema

de equações é cíclico, algumas iterações são feitas para alcançar a convergência do sis-

tema (definiu-se o número de iterações como 7, porque foi observada uma diminuição

no erro absoluto com este número; como trabalho futuro, o número de iterações pode ser

definido de acordo com o erro obtido). Em cada iteração, o erro percentual é calculado.

Após a última iteração, calcula-se a média do erro absoluto das equações que compõem

o sistema.

5) Classificação. Este último passo é baseado no erro calculado no passo anterior. Se o erro

for pequeno (diferentes limites devem ser testados para obter resultados mais robustos, o

usuário pode definir esse limite), considera-se que a amostra tem o ciclo. Mas para avaliar

o erro, deve-se também considerar que os dados foram normalizados de duas maneiras,

então tem-se as possibilidades mostradas na Tabela E.1.

Table E.1 – Possibilidades de classificação.

Amostra normalizada Erros pequenos Erros grandes Classificação
como em em da amostra
controle ciclos de controle ciclos de GBM controle
controle ciclos de GBM ciclos de controle GBM
GBM ciclos de controle ciclos de GBM controle
GBM ciclos de GBM ciclos de controle GBM

Source: Autora (2017).

Como descrito anteriormente, ss dados brutos das amostras de 276 GBM de todas as

histologias e oito amostras normais de cérebro adulto utilizadas neste estudo estão disponíveis

como número de experimento GSE16011 (GRAVENDEEL et al., 2009) no Gene Expression

Omnibus (GEO)5. Além disso, foram analisadas amostras de GBM de dois estudos indepen-

dentes disponíveis no on TCGA6: 220 amostras caracterizadas em (The Cancer Genome Atlas

5http://www.ncbi.nlm.nih.gov/geo/
6http://cancergenome.nih.gov/
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(TCGA) Research Network, 2008) e 520 amostras caracterizadas em (BRENNAN et al., 2013).

Os dados experimentais utilizados na análise estão disponíveis no formato AffymetrixGeneChip

Human Genome U133 Plus 2.0 Array. As análises de dados dos microarrays foram realizadas

usandoR7 and Bioconductor8.

E.3.1 Resultados e Discussão

Sobre o resultado do método de classificação, conclui-se que as métricas do método pro-

posto e de uma rede neural são as mesmas na classificação usando os ciclos das redes de apótese,

glicólise e ciclo celular para classificar as amostras. Como uma grande vantagem do método

proposto sobre a rede neural, pode-se apontar as informações associadas com a classificação.

No método proposto, quando um indivíduo é colocado em um determinado grupo, sabemos que

ele tem os ciclos utilizados para a classificação deste grupo, por isso há informações biológ-

icas incluídas na classificação. Em redes neurais, por outro lado, a classificação é realizada

usando fórmulas que são como caixa preta. Além disso, apesar da paridade no diagnóstico da

doença, nosso método é superior a uma rede neural, pois fornece ganho de informação com a

análise de dados. Como mencionado anteriormente, o novo método permite a classificação e

ajuda a explicar a biologia do tumor: se o conjunto de genes analisado está relacionado com

a doença, os ciclos encontrados podem ajudar a explicar a ação da doença, uma vez que es-

tão associados a mecanismos de feedback. Assim, os ciclos podem fornecer informações para

desenvolver experiências de laboratório, bem como para identificar potenciais genes-alvo para

novos medicamentos.

O método proposto também pode ser utilizado para analisar e classificar amostras de

GBM com diferentes tipos histológicos. O método convencional de diagnóstico de câncer uti-

liza uma combinação de exame clínico e exame do aspecto morfológico de espécimes de tecido

sob microscopia óptica. No entanto, este método é subjetivo e depende de patologistas alta-

mente treinados. Os conjuntos de dados de microarrays podem permitir uma classificação de

câncer mais objetiva e altamente precisa. O uso de conjuntos de dados de microarrays para de-

terminar o diagnóstico de uma doença que um indivíduo está sofrendo ou prever o prognóstico

de um curso de uma terapia ou o resultado de um experimento é uma das áreas mais desafiadoras

da pesquisa de microarrays (STEKEL, 2003).

7http://www.r-project.org/
8http://www.bioconductor.org/
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