
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CRISTIANO WERNER ARAUJO

Bug Prediction in
Procedural Software Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Ingrid Nunes

Porto Alegre
August 2017

CIP — CATALOGING-IN-PUBLICATION

Araujo, Cristiano Werner

Bug Prediction in
Procedural Software Systems / Cristiano Werner Araujo. –
Porto Alegre: PPGC da UFRGS, 2017.

90 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Ingrid Nunes.

1. Bug prediction. 2. Procedural programming. 3. Static code
metrics. I. Nunes, Ingrid. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Prof. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“ For of him, and through him, and to him, are all things: to whom be glory for

ever”

— ROMANS 11:36

THANKS

I would like to thank first my wife, for her support and patience in all my nights

working and do not giving her the attention she deserves. Also, to all my family, especially

to my mother, whom listened to my complaints and discussed with me about machine

learning and statistics; and for my sister-in-law for her revision of my Portuguese.

Thanks for the folks back in Parks, thanks everyone for their patience on my ev-

erlasting subject: masters; and namely thanks to Alex, Leandro Lucas and Pedro for the

inspirations, ideas and discussions.

I also want to thank my Prosoft group colleges, for the help and tips, especially

for Jhonny and Vanius. Also for my advisor which corrected me with patience and taught

me the way into the academic research.

Thanks also for my friends from church, namely Ricardo, Matheus, Cristiano, Vic-

toria, Giovana for their conversations about software and academia. And last but not least,

I want God for his sovereign path and the lessons he taught me through this dissertation.

ABSTRACT

Information regarding bug fixes has been explored to build bug predictors, which provide

support for the verification of software systems, by identifying fault-prone elements, such

as files. A wide range of static and change metrics have been used as features to build

such predictors. Many bug predictors have been proposed, and their main target is object-

oriented systems. Although object-orientation is currently the choice for most of the

software applications, the procedural paradigm is still being used in many—sometimes

crucial—applications, such as operating systems and embedded systems. Consequently,

they also deserve attention. This dissertation extends work on bug prediction by evalu-

ating and tailoring bug predictors to procedural software systems. We provide three key

contributions: (i) comparison of bug prediction approaches in context of procedural soft-

ware systems, (ii) proposal of the use of software quality features as prediction features

in the studied context, and (iii) evaluation of the proposed features in association with the

best approach found in (i). Our work thus provides foundations for improving the bug

prediction performance in the context of procedural software systems.

Keywords: Bug prediction. procedural programming. static code metrics.

Predição de Bugs para Sistemas Procedurais

RESUMO

Informação relacionada a concertos de bugs tem sido explorada na construção de predi-

tores de bugs cuja função é o suporte para a verificação de sistemas de software identifi-

cando quais elementos, como arquivos, são mais propensos a bugs. Uma grande variedade

de métricas estáticas de código e métricas de mudança já foi utilizada para construir tais

preditores. Dos muitos preditores de bugs propostos, a grande maioria foca em sistemas

orientados à objeto. Apesar de orientação a objetos ser o paradigma de escolha para a

maioria das aplicações, o paradigma procedural ainda é usado em várias — muitas ve-

zes cruciais — aplicações, como sistemas operacionais e sistemas embarcados. Portanto,

eles também merecem atenção. Essa dissertação extende o trabalho na área de predição

de bugs ao avaliar e aprimorar preditores de bugs para sistemas procedurais de software.

Nós proporcionamos três principais contribuições: (i) comparação das abordagens exis-

tentes de predição de bugs no contexto de sistemas procedurais, (ii) proposta de uso dos

atributos de qualidade de software como atributos de predição no contexto estudado e

(iii) avaliação dos atributos propostos em conjunto com a melhor abordagem encontrada

em (i). Nosso trabalho provê, portanto, fundamentos para melhorar a performance de

preditores de bugs no contexto de sistemas procedurais.

Palavras-chave: predição de defeitos, programação procedural, métricas estáticas de có-

digo.

LIST OF ABBREVIATIONS AND ACRONYMS

AMC Average Method Complexity

AST Abstract Syntax Tree

BTS Bug Tracking System

Ca Afferent Couplings

CAM Cohesion among Methods of Class

CBM Coupling between Methods

CBO Coupling between Object Classes

Ce Efferent Couplings

CK Chidamber & Kemerer

CPL Compiler Warnings

CPS Standard Code Warnings

CPW Wall Code Warnings

CPX Wextra Code Warnings

DAM Data Access Metrics

DIT Depth of Inheritance Tree

DSL Domain Specific Languages

DT Decision Tree

DUP Duplicated Code

EDC External Duplicated Code

FN False Negative

FP False Positive

GCC GNU Compiler Collection

GQM Goal Question Metric

GY Gyimothy Approach

IC Inheritance Coupling

IDC Internal Duplicated Code

IDE Integrated Development Environment

JU Jureczko Approach

KI Kim Approach

KO Koru Approach

LCOM Lack of Cohesion in Methods

LCOMN allowing Negative value

LOC Lines of Code

LOCM3 Lack of Cohesion in Methods

LR Logistic Regression

LWIP Light Weight IP

MFA Measure of Functional Abstraction

MOA Measure of Aggregation

MO Moser Approach

NB Naive Bayes

NN Neural Network

NOC Number of Children

NPM Number of Public Methods

OO Object-Oriented

PCA Principal Component Analysis

PRC Constants Preprocessor Count

PRE Preprocessor Count

PRI Includes Preprocessor Count

PRK Keys Preprocessor Count

PRM Macros Preprocessor Count

RFC Response for a Class

RF Random Forest

RQ Research Question

SAC CppCheck Static Analyser

SAL Static Analysers

SAU Uno Static Analyser

SCM Software Configuration Management

SVM Support Vector Machine

TN True Negative

TP True Positive

UML Unified Modeling Language

VCS Version Control System

WMC Weighted Methods per Class

XML Extensible Markup Language

LIST OF FIGURES

Figure 2.1 Relations of predicted and real classes for machine learning scores cal-
culation. ..18

Figure 3.1 Effectiveness Measurements by Each Approach. ..41
Figure 3.2 Effectiveness Measurements by Target System...43

Figure 4.1 Running Example. ...48

Figure 5.1 Measurement variance analysis across target projects: best feature sub-
sets selected based on f-measure..68

Figure B.1 Measurement variance analysis across target projects: best feature sub-
sets selected based on precision. ..89

Figure B.2 Measurement variance analysis across target projects: best feature sub-
sets selected based on recall. ..90

LIST OF TABLES

Table 2.1 Metrics and hypotheses used by Gyimothy et al. ..20
Table 2.2 Metrics used by Zimmermann et al...21
Table 2.3 Metrics used by Elbaum and Munson. ..23
Table 2.4 Metrics used by Nagappan and Ball..24
Table 2.5 Systems evaluated by Sunghun et al. ..25
Table 2.6 Change metrics used by Moser et al..28
Table 2.7 Summary of Investigated Approaches...31

Table 3.1 Target Systems...37
Table 3.2 Static Code Metrics used by Bug Prediction Approaches...............................40
Table 3.3 Approach Applicability to Procedural Software Systems...............................41
Table 3.4 Summary of Effectiveness Evaluation of Each Approach.42

Table 4.1 Types of Preprocessor Directives. ...52

Table 5.1 Analysed Features. ..56
Table 5.2 Target Projects. ..60
Table 5.3 Individual Feature Analysis. ..61
Table 5.4 Analysis of Best Feature Subsets. ...67

Table B.1 Position Ordered By Precision ...86
Table B.2 Position Ordered By Recall ..86
Table B.3 Position Ordered By F-measure ...87
Table B.4 Performance for Selected Sets Using Precision. ..87
Table B.5 Performance for Selected Sets Using Recall. ...87
Table B.6 Performance for Selected Sets Using F-Measure. ..88

CONTENTS

1 INTRODUCTION...13
1.1 Problem Statement and Limitations of Related Work ..14
1.2 Proposed Solution and Overview of Contributions ...15
1.3 Outline..16
2 DEFECT PREDICTION APPROACHES..17
2.1 Machine Learning Background...17
2.2 Defect Predictors based on Static Code Metrics ..18
2.3 Defect Predictors based on Change Code Metrics...22
2.4 Defect Predictors using Heterogeneous Code Metrics...25
2.5 Comparisons and Measurements ..27
2.6 Cross-Project Defect Prediction...29
2.7 Approaches Selected for Evaluation..30
2.8 Final Remarks ...32
3 EVALUATION OF EXISTING BUG PREDICTION APPROACHES33
3.1 Study Settings ..33
3.1.1 Goal and Research Questions ..33
3.1.2 Procedure ...34
3.1.3 Target Systems ...36
3.2 Results and Analysis ...38
3.3 Discussion ..44
3.4 Final Remarks ...46
4 QUALITY FEATURES FOR BUG PREDICTION IN PROCEDURAL SOFT-

WARE SYSTEMS..47
4.1 Compiler Warnings...47
4.2 Static Code Analysers ...49
4.3 Duplicated Code..50
4.4 Preprocessor Usage ...52
4.5 Final Remarks ...53
5 EVALUATION...54
5.1 Goal and Research Question..54
5.2 Procedure...55
5.2.1 Dataset Preparation ..55
5.2.2 Execution Details of the Classification Algorithm ..57
5.2.3 Result Analysis Method...58
5.3 Target Projects ..59
5.4 Results ..59
5.4.1 Individual Feature Effectiveness (RQ1)...60
5.4.2 Best Feature Subsets (RQ2) ...62
5.5 Threats to validity ...65
5.6 Final Remarks ...66
6 CONCLUSION ...69
6.1 Contributions...69
6.2 Future Work ..70
REFERENCES...72
APPENDIX A — RESUMO EXTENDIDO ..78
APPENDIX B — COMPLETE RESULTS ...86

13

1 INTRODUCTION

In software development, a significant amount of time is dedicated to bug correc-

tions. The bugs—or defects—have a variety of root causes. They are caused by many

factors, such as wrong API (application user interface) usage, wrong or incomplete spec-

ification and other factors (KO; MYERS, 2005). To identify bugs development processes

include steps for testing each piece of software delivered. In each test step of the process,

previous parts are combined, and more sophisticated tests are applied.

The further in the integration process the bug is found, the higher the cost (BLACK,

2003). Consequently, the earlier a bug is found, the cheaper the correction is. This fact

brings motivation for better software testing. An ideal test must always lead to a specific

piece of code that contains defects.

In practice, finding and locating a bug is a hard task. The relationship among

multiple modules, different interfaces, and many abstractions layers may complicate it.

Ensuring that when a test fails the outcome is a defect detection with its context is not an

easy task. This requires a precise specification, which is not always available. Neverthe-

less, some code patterns are known (SOMMERVILLE, 2010) and when applied, can be

used to reduce bug incidence even before running tests, hence reducing testing costs even

further. This results in semi-automated methods based on static and run-time analysis for

quality improvement. One example of such methods is code lints.

More complex approaches use code change and code metrics for predicting the

location of bugs (HASSAN; HOLT, 2005) (ZIMMERMANN; NAGAPPAN; ZELLER,

2008) (KIM et al., 2007). These approaches lead to the construction of bug predictors,

which take as input information of a given software system, typically collected from issue

trackers and software repositories, and build a prediction model that is used to indicate

fault-prone elements of the system, such as classes, files or modules. Often, results can

also include the fault probability. The output of bug predictors can be used to drive deci-

sions regarding the effort demanded to test, review and verify software systems, and the

prioritisation of which entities should be tested.

Previous work focused mostly, if not only, on object-oriented (OO) systems. Ob-

ject orientation is the choice for many software systems, such as web and mobile ap-

plications. However, the procedural paradigm is still being used in many—sometimes

crucial—software systems, such as operating systems, embedded systems, and scientific

computing applications. These applications deserve attention not only because they must

14

be maintained, but also because they are often long-lived systems and procedural lan-

guages lack some mechanisms (e.g. inheritance and polymorphism) that improve code

quality. These factors may cause the maintenance and evolution of those systems to be

even harder. In this work, we address the gap between bug prediction and procedural soft-

ware systems. In next section, we describe in more detail the problem and limitations of

existing bug prediction approaches, and in Section 1.2 we present the work we performed

to fill this gap.

1.1 Problem Statement and Limitations of Related Work

As introduced, most of the existing bug predictors focus on OO systems and lever-

age OO code-extracted information such as OO metrics or were investigated and validated

in the context OO systems. Explored static code metrics are often limited to those part

of traditional metric suites, e.g. that proposed by Chidamber and Kemerer (CK) (CHI-

DAMBER; KEMERER, 1994) and Halstead (HALSTEAD, 1977), which capture struc-

tural code properties. Other studies are based on text change, which uses version con-

trol systems (VCSs) information, hence are independent of the programming language

used (MOSER; PEDRYCZ; SUCCI, 2008). Some approaches (D’AMBROS; LANZA;

ROBBES, 2010) also use previous process information, e.g. a number of post-release

bugs and number of commits to determine current release stability.

Approaches that use metrics as a predictor (BASILI; BRIAND; MELO, 1996) (ZIM-

MERMANN; PREMRAJ; ZELLER, 2007) typically rely on CK metrics suite (CHI-

DAMBER; KEMERER, 1994). Because CK metrics suite is focused on OO systems,

procedural systems cannot be well measured with them. There is a simpler and widely

known set of metrics described by Sommerville (SOMMERVILLE, 2010). Most known

examples are Lines of Code, Cyclomatic complexity, fan-in and fan-out.

Because procedural systems have different characteristics and are usually adopted

to implement systems of a particular nature—e.g. embedded systems, operating systems,

and scientific computing—the code structure may differ from OO software, causing pro-

cedural software to be potentially different. Consequently, bug predictors can be tailored

to procedural software systems. This can be achieved by exploring particularities of pro-

cedural languages, extracting information, such as metrics, that captures particular struc-

tures present in systems implemented in procedural languages, like C. Our goal in this

work is thus to improve bug prediction in the context of procedural software systems.

15

More specifically, given that procedural programming languages are mostly used to de-

velop low-level applications, such as drivers and scientific applications, we focus on bug

prediction in these application domains.

1.2 Proposed Solution and Overview of Contributions

In this work, we address the aforementioned problem by first presenting a study

conducted to evaluate approaches that rely on static code metrics (RADJENOVIć et al.,

2013) in the context of procedural software systems. We evaluate only static source code

metrics despite the existence of evidence that source code change metrics are a valu-

able source of information for bug prediction (MOSER; PEDRYCZ; SUCCI, 2008). The

reasons for performing this analysis are: (i) static code metrics, which are useful to be

incorporated to bug predictors, can be combined with change metrics; and (ii) there are

cases in which a version control system is not available to extract change metrics, due to

for example third-party development. Approaches were evaluated from two perspectives:

(i) degree of applicability, by measuring the amount of OO-specific information they use;

and (ii) effectiveness, by measuring their precision, recall and F-measure with a set of

procedural software systems. Effectiveness was evaluated with the subset of metrics ap-

plicable to procedural systems, and with this subset together with metrics adapted to the

procedural paradigm. For building our dataset, we selected a range of procedural software

systems from many application domains, both open-source and proprietary, including op-

erating systems and tools, bare-metal environments (software that does not require the

support of a host operating system), and embedded commercial applications. Static code

metrics and defects were extracted from each target system. Prediction was performed

using learning techniques applied by the evaluated approaches.

We then investigate the use of code quality tools and analysis of bad programming

practices to obtain information regarding source code problems and use it to build bug

predictors for procedural software systems. We specify a set of four features associated

with code issues, namely presence of duplicated code, issues of static analysers, com-

piler warnings, and use of preprocessors, and evaluate how effective such features are

for bug predictions. We used as baseline an existing set of metrics used for bug predic-

tion (KORU; LIU, 2005), which performed best in our investigated context. In order to

evaluate the effectiveness of the features, our evaluation consists of an empirical study

that assessed accuracy metrics obtained with different subsets of features. This evaluation

16

allowed us not only to evaluate the effectiveness of our proposed features, but also iden-

tify the sets of features with highest results, and thus are the best candidates to be used to

build bug predictors in our target context.

Therefore, the main contributions of this work are the following: (i) comparison of

existing bug prediction approaches in our investigated context; (ii) extension of features

used in bug prediction to the context of procedural software systems and; (iii) evaluation

of the improvement provide by the proposed features. Moreover, we also provide a rank

of individual attributes based on the machine learning scores used.

1.3 Outline

The remainder of this dissertation is arranged as follows. Existing bug prediction

approaches are described in Chapter 2, presenting the related work using source code

changes, static source code metrics, combination and comparison of both, and studies

regarding using bug prediction models across multiple systems. In Chapter 3 we present

the study performed to find which approach is more suitable for procedural software sys-

tems. Proposed features to enhance bug prediction in the context of procedural software

systems are presented in Chapter 4 and an empirical study using these proposed features

is described in Chapter 5. Finally, we summarise our contributions and future work in

Chapter 6.

17

2 DEFECT PREDICTION APPROACHES

Defect prediction, or bug prediction, consists of predicting whether a given entity

has a probability of having bugs based on extracted information about system. This can be

done using a snapshot of the system or analysing the way it changes over time. In addition,

the outcome can be a binary decision (with or without bug) or a score, pointing out the

probability that a given entity has of having defects. Entities can have different granularity

levels, which can be functions, classes, packages, modules and entire programs. The list

of bug prediction approaches presented here are not exhaustive, a more complete survey

is presented by Jaechang (JAECHANG, 2017).

In this chapter existing bug prediction approaches are presented. First, we in-

troduce a machine learning background in Section 2.1. In Section 2.2, the use of static

source code metrics for defect prediction is presented. Next, the use of process and change

metrics are presented in Section 2.3. Combinations of both methods are presented in Sec-

tion 2.4 and comparisons of change and static source code based predictors are presented

in Section 2.5. Cross-project defect prediction studies are presented in Section 2.6. Fi-

nally, we present the approaches selected for evaluation on this work in Section 2.7.

2.1 Machine Learning Background

Because most of bug prediction approaches use machine learning classification

algorithms, we next describe the metrics used to evaluate their performance. The concepts

of TP (true positive), FP (false positive), FN (false negative) and TN (true negative), used

to calculate the machine learning scores, are presented in Figure 2.1.

Precision is the fraction of all classified files that are classified as defective. It is calcu-

lated as follows: Precision = TP/(TP +FP), where TP is the correctly classified

defective files and FP is non-defective files classified as defective.

Recall is the fraction of all files that should be classified as defective that are classified

as defective. It is calculated as follows: Recall = TP/(TP + FN), where TP

is the correctly classified defective files and FN is the defective files classified as

non-defective.

F-measure is a score that combines recall and precision. It is the harmonic mean between

18

Figure 2.1: Relations of predicted and real classes for machine learning scores calculation.

them, calculated as follows: F-measure = (2 · Precision · Recall)/(Precision +

Recall).

All presented scores are in [0, 1], were the closer to one, the better the classifica-

tion. Other scores (e.g. accuracy) are presented by Alpaydin (ALPAYDIN, 2010) and are

not within the scope of this work. Next, we present the bug prediction approaches.

2.2 Defect Predictors based on Static Code Metrics

With the rise of static source code metrics as a measurement for software systems

complexity, one of their first applications were to use them to predict defects. In this

section we discuss bug predictors based on static source code metrics. First we present the

approaches that are the inception for bug prediction, providing evidence of the correlation

between bugs and complexity. Later, we present an approach that was applied to a large

open source project also has this characteristic and last we discuss an approach which

uses metrics for bug prediction in five different systems.

Based on the CK metric, Basili et al. (BASILI; BRIAND; MELO, 1996) per-

formed an experiment to evaluate if such metrics could be used as an indicator for bug

presence. In the first step of the experiment, the participants—undergraduate students—

wrote a medium size software in the C++ language. System metrics were then calculated

and stored. In the second step, the software was evaluated, and the errors found were

reported back to the students. After fixing the errors, the metrics were calculated again.

The difference of metrics at each step were used to evaluate if the set of metrics could be

correlated with buggy code. The conclusion was that this correlation is true.

In parallel, Binkley and Schach (BINKLEY; SCHACH, 1998) evaluated a similar

19

set of metrics for three systems. The systems used were implemented in different lan-

guages: C, Cobol and C++. Some metrics used were different for each case. In the C and

Cobol systems, run-time behaviours—accessing external data elements for example—

were used as metrics. With the C++ system the metrics used are similar to the CK met-

rics. When available, they used CDM (Coupling dependency metric), fan-in, fan-out and

the number of clients (run-time information). The coupling dependency metric was a

combination of three other metrics.

• Referential dependency: measures the dependency on declarations.

• Structural dependency: measures the dependency on internal organisation.

• Data integrity dependency: measures the vulnerability of the data in a module from

changes by other modules.

The Spearman coefficient was used to correlate each system metrics with the defects

detected at run-time. The metrics with greater correlation with defects were the ones

that indicate the coupling degree (CDM, fan-in, fan-out and RFC). Therefore, the study

concluded that coupling metrics are a better predictor of bugs.

Instead of comparing three different systems with different metrics, Olague et

al. (OLAGUE et al., 2007) compare the same system—Rhino, a JavaScript interpreter

written in Java—using three sets of OO metrics: CK, MOOD and QMOOD. The metrics

were computed for each release of Rhino and paired with that release reported defects.

Afterwards, a univariate binary logistic regression was done to determine which metrics

were the most significant. The study concluded that the coupling dependency metric was

the best estimator for bug presence. No limitations for the study were presented, but

because only one system was evaluated, there is no evidence for generalisation.

Koru and Liu (KORU; LIU, 2005) used five systems from NASA which only the

metrics are available, it is found on in the PROMISE data repository (SHIRABAD; MEN-

ZIES, 2005). They built J48 regression trees using the WEKA (HALL et al., 2009) soft-

ware suite for machine learning. One finding was that the module size chosen is related

to the accuracy and recall of the prediction model. Modules too small do not have enough

variance. Hence, the differences between buggy and not buggy entities are unclear. A

large module, in turn, contains a significant portion of code to be evaluated. Based on

this, they advise against fine granularity bug prediction, using classes instead of methods,

for example. A suggestion is made on aggregating (through sum) the method metrics in

a class metrics. The F-measure, the harmonic measure between precision and recall, was

20

Table 2.1: Metrics and hypotheses used by Gyimothy et al.
Name Description Hypothesis
WMC (weighed
methods per class)

Number of methods in classes
weighed by complexity

The larger the function is
the higher the bug density

RFC (response for a
class)

Methods called from method A large response increase
bug probability

DIT (depth of inheri-
tance tree)

Information from other classes The deeper the inheritance
the higher the bug chance

NOC (number of chil-
dren)

Number of class descendants High NOC reduces bug
probability

CBO (coupling be-
tween object classes)

Number of other classes that
are used by a class

High coupling correlates
with defect density

LCOM (Lack of Co-
hesion on Methods)

Measures the methods similar-
ity (variables sharing)

High coupled classes are
more defect prone

LOC (Lines of code) Number of lines not empty or
commented

The class size is propor-
tion to bug rate

used for model evaluation. They found F-measures from 0.16 to 0.56 at the class level,

meaning that in the best case, the accuracy is slightly better than randomness, which has

an average f-measure of 0.5. In one of the cases, KC1, they had the method information

and error count, they used the information and obtained an improvement in the predictor

performance. The F-measure found was 0.65 with binary decision and 0.56 with classifi-

cation. The classes used for classification were buggy and not buggy.

Gyimothy et al. (GYIMOTHY; FERENC; SIKET, 2005), instead of using only

the source code as input, retrieved information from Bugzilla, an issue tracking system.

The source code metrics were extracted from a targeted project, the Mozilla project1—a

Browser and E-mail suite, developed in C++. Metrics extraction was performed using the

Colombus tool, developed and presented by Ference et al. (FERENC et al., 2002). The

prediction techniques used went further than previous methods, using, aside from linear

regression, neural networks and decision trees machine learning techniques as prediction

engines. These techniques are compiled and presented by Alpaydin et al. (ALPAYDIN,

2004). The claimed difference from previous work was to use of a system that has millions

of lines of code, but still a single system was evaluated. Table 2.1 shows the metrics used

and the related hypotheses associated with the use of each for measuring defects.

A model for each metric and a model using all metrics was then generated. Three

metrics were used for evaluating the models: accuracy, completeness and correctness.

Correctness measures how much of the predicted classes are buggy. Completeness mea-

sures how many faults in total are predicted. Accuracy is the percentage of total correct

1<http://www-archive.mozilla.org>

http://www-archive.mozilla.org

21

Table 2.2: Metrics used by Zimmermann et al.
Metric Name
Fan-Out
Methods LOC
Total LOC
Nesting Depth
Number of Parameters
Number of Classes
Number of Static Methods
Number of anonymous type declarations
Number of interfaces

predictions of the total buggy classes. As result, they concluded that CBO and all metrics

were the best models, staying roughly 5% better than other metrics. The best complete-

ness was achieved by all metrics, LOC and CBO. Logistic regression had better accuracy,

but decision trees better completeness. The neural network produced was the model with

the lowest performance.

Similarly to Binkley and Schach, Zimmermann et al. (ZIMMERMANN; PREM-

RAJ; ZELLER, 2007) used the Spearman coefficient for evaluating the correlation be-

tween metrics collected from pre-release and post-release defects. The Eclipse defects

and its source code metrics were used. Used metrics are enumerated in Table 2.2.

These metrics were computed for each file and module. Next, bug occurrence in

each module and file were then predicted using a linear regression model. Finally, predic-

tion was correlated using the Spearman coefficient. It was found that there is correlation

between complexity metrics and post-release defects.

Another static source code metric used is clone metric, Kamei et al. (KAMEI et al.,

2011) analysed three versions of the Eclipse system using clone metrics. They found that

“clone metrics did not improve the performance of a fault prediction model”, nevertheless

they found that the performance of clone metrics is better in the component level. They

extended the work of Monden et al. (MONDEN et al., 2002), which found that modules

with some small clones are more reliable.

These approaches showed that there is correlation between source code metrics

and bug occurrence. Using the correlation information, some bad smells—code pat-

terns that can lead to errors—were found. This can improve performance enforcing pro-

grammers to avoid those when writing code. Furthermore, existing code can be analysed

and potential sources of defects can be localised and refactored. None of these meth-

ods, thought, analysed the change of the source code over time. Also, the methods used

22

simple linear regression, which has limitations approximating non-linear functions. Nev-

ertheless, the area of software and maintenance engineering increased from simple lints

to advanced bug predictors based on these works.

2.3 Defect Predictors based on Change Code Metrics

As pointed out in the previous section, the first defect predictors were based only

on static code metrics. An alternative to analysing the code statically is to analyse the way

it changes. This is done by seeking correlation between defects and changes over-time,

and specifically, the moment where the defect was introduced. Given this scenario, the

next set of approaches we present are based on change metrics. These metrics typically

include the number of lines added, removed and changed. Other information used is, for

example, meta-data extracted from Version Control Systems (VCS) and Bug Tracking

Systems (BTS), such as Git 2 and Bugzilla 3.

One of the first approaches on code change was proposed by Munson and El-

baum (MUNSON; ELBAUM, 1998). A large embedded system, QTB, was used as case

study. This system has 300K LOC and 3700 functions and uses C as the programming

language. System complexity metrics based on module control flow graph and number

of operands were computed into a single metric. This particular metric is denominated

code delta. The complete set of metrics is shown in Table 2.3. Metric compositions were

then used for comparing different builds. One limitation presented by the authors is that

changed modules with approximately the same size in the metrics composition would

pass unnoticed. For this, the number of code churn must be evaluated. They define code

churn as the sum of deleted and inserted lines of code. Comparing code churn, code delta,

change requests and people involved in each version, the greatest correlation with soft-

ware faults found was code churn. Thus, the study concluded that code churn is a better

predictor for defects, among the investigated projects.

Instead of defining code churn as the sum of deleted and inserted lines of code,

Nagappan and Ball (NAGAPPAN; BALL, 2005) split code churn in two categories: lines

churned and lines removed. They used the Windows Server 2003 (SP1) as case study,

using code churn to analyse the most defect-prone binaries. The post-release defects

were collected for each release. The metrics presented in Table 2.4 were computed for

2<https://git-scm.com/>
3<https://www.bugzilla.org/>

https://git-scm.com/
https://www.bugzilla.org/

23

Table 2.3: Metrics used by Elbaum and Munson.
Name Description
Comm Total comment count
ExStmt Executable statements
NonEx Non executable statements
N1 Total number of operands
η1 Unique operands
N2 Total number of operators
η2 Unique operators
η3 Unique operators with overloading
Nodes Number of nodes in the module control flow graph
Edges Number of edges in the module control flow graph
Paths Number of distinct paths in the module control flow graph
MaxPath Maximum path length in the module control flow graph
Path Average path length in the module control flow graph
Cycles Total cycle count in the module control flow graph

the time between releases. They were associated with each other and validated using a

cross check correlation with a 0.01 significance. A predictive model was created using

statistical regression and discriminant analysis was used to classify the binaries. It was

found that code churn is a good predictor for code defects. They used R2, a measure

of model fitness, and Root MSE, a measure for model deviations (DRAPER; SMITH,

2014). Values found were 0.811 and 1.301, respectively. These values indicate that the

model found fits to the data. Validity threats pointed out are the untraceable changes in

the machine and the analysis of a single software system.

In contrast to Nagappan and Ball’s work, Hassan and Holt (HASSAN; HOLT,

2005) performed a case study in six Open Source projects (NetBSD, OpenBSD, FreeBSD,

KDE, KOffice and Postgres) instead of using a single closed source application. The goal

was to give managers a top ten list of the most error-prone modules, therefore pointing

out the modules for improved test efforts. The output is a dynamic list containing the top

ten currently most error-prone modules. A requirement is also the need for keeping the

developers routine unchanged. The objective is to present a short response time, instead

of long term planning. Four policies for cache replacement were evaluated: most fre-

quently modified, most recently modified, most frequently fixed and most recently fixed.

As performance metric, besides hit rate, an adjusted hit rate was used, where the module

must be in the top ten list at least 24 hours before a bug happens on it. Furthermore, the

average prediction age was used to determine how early each replacement heuristic iden-

tified a defective module. The commits analysed were also classified into three classes:

fault repairing modifications, general maintenance modifications and feature introduction

24

Table 2.4: Metrics used by Nagappan and Ball.
Absolute Metrics
Total LOC
Churned LOC
Deleted LOC
File count
Weeks of churn
Churn count
Files churned
Relative Metrics
Churned LOC / Total LOC
Deleted LOC / Total LOC
Files Churned / File Count
Churn Count / Files Churned
Weeks of churn / File Count
(Churned LOC + Deleted LOC) / Weeks of Churn
Churned LOC / Deleted LOC
(Churned LOC + Deleted LOC) / Churn Count

modifications. The heuristics based on modification frequency obtained the best perfor-

mance. Moreover, using modification commits was a better predictor than fix commits.

Similarly to Hassan and Holt (HASSAN; HOLT, 2005), Kim et al. (KIM et al.,

2007) proposed a cache architecture to bug detection. Using the locality concept—

common in cache systems—the following concepts were used.

• Changed entity locality: changed entities may present defects soon.

• New entity locality: new entities may present defects soon.

• Temporal locality: if an entity introduced a defect recently, it might present defects

soon.

• Spatial locality: related entities will present defects in the same time span.

The spatial locality is measured by entity co-change. If two entities are often

changed together, they are related and changes to one may cause or trigger defects in the

other. Furthermore, the concepts of BugCache and FixCache are introduced. FixCache is

a cache that is changed when a fix is committed, and the temporal and spatial entities re-

lated to the bug commit that introduced this bug are added to the cache. The hypothetical

BugCache adds the commit and surroundings when a bug is committed. This approach

25

Table 2.5: Systems evaluated by Sunghun et al.
System Implementation

Language
Number of Files Number of Enti-

ties
Apache HTTP
1.3

C 154 2.113

Subversion C 255 3.963
PostgreeSQL C 598 8.569
Mozilla C/C++ 396 8.203
JEdit Java 420 5.429
Columba Java 1428 8.428
Eclipse Java 3330 33.214

is unfeasible, otherwise the bug would not be committed, so FixCache is the only vi-

able approach for bug detection in this context. The FixCache must have a heuristic for

detecting which commit introduced the bug. Based on the aforementioned localities, a

FixCache containing the most defect-prone entities is built. Granularity used in the model

was function and files. A 73–95% accuracy was found in the file level using 10% of files

in the cache. At function/method level, the accuracy was 46%-72% with 10% of the func-

tions/methods level in the cache. The best predictor found was recently used entities, in

contrast to Hassan and Holt’s work (HASSAN; HOLT, 2005), which found that frequency

is a better defect indicator.

2.4 Defect Predictors using Heterogeneous Code Metrics

The approaches discussed in Section 2.3 showed that code change is associated

with defects. In Section 2.2, the presented approaches also demonstrated that static code

metrics are also related to bugs. Because both sets of approaches were useful for bug

prediction, combining both change metrics and static code metrics in the same model can

potentially increase accuracy. In this section we discuss work that follows this approach,

integrating both change metrics and static code metrics.

Sunghun et al. (KIM; WHITEHEAD JR.; ZHANG, 2008) used both approaches

to bug forecasting. The proposed process has the following stages: (i) extract file level

changes; (ii) identify commits that are bug fixes; (iii) identify bug introducing changes;

(iv) extract features from all changes; and (v) train classifier using all changes.

The features used are VCS meta-data, code metrics and text (containing the text

of all possible artefacts in the process). Commit meta-data used were the author, hour and

size of changes. Text (commit messages, source code and file name) is also mined, using

26

all words and operators, including comments and numbers. The Understand software

suite4 is used for extracting source metrics, which are supplied as features. After feature

extraction for each change, the features and corresponding status (clean or buggy) are

feed to a machine learning algorithm. The machine learning algorithm used in this case

is Support Vector Machine (SVM) (CORTES; VAPNIK, 1995). An average accuracy of

73% was found in the projects evaluated. Given that all previous changes can be computed

and cached, a new commit has a low computational cost for prediction. A limitation is

that if no difference is found between fix and new feature, the prediction will be of a fix

or a new feature, therefore not helping bug forecasting. Some next steps towards a better

classifier were proposed by the authors. Among them are using online machine learning

techniques, using more features, using semantic analysis and tweaking machine learning

methods for this problem.

Instead of using machine learning algorithms, Ambros et al. (D’AMBROS; LANZA;

ROBBES, 2010) used statistic methods like PCA (Principal Component Analysis) (ABDI;

WILLIAMS, 2010), regression models (DRAPER; SMITH, 2014),R2 (DRAPER; SMITH,

2014) and Spearman coefficient (YULE, 1968) for building and validating models. Five

systems were used as case study; four are part of the Eclipse ecosystem (JDT Core, PDE

UI, Equinox and Mylyn) and the other is the Apache Lucene. All of them are written in

Java. The previously mentioned systems were used to create a corpus that can be used

as benchmark for others defect predictors. The corpus was created using a meta-model

to describe the source code (in the FAMIX language). Moreover, the corpus contained a

model of the change history, saving all the commits meta-data together with the change-

set. Commit log messages were used to link classes to commits. The metrics used were

then combined to form new metrics, among them are the introduced OO metrics and

change metrics. Entropy measures were also used, they were based on the change met-

rics. Given that a lot of data were examined, many conclusions were found, detailed as

follows.

1. Metrics based on code churn are more efficient than static metrics.

2. Bug-fixes and code metrics are more data-wise (less cost) than code churn.

3. OO and traditional metrics have nearly the same explanatory power, but are better

together.

4<https://scitools.com/>

https://scitools.com/

27

4. Bug prediction based on a single metric is unstable, with large variance among

projects.

5. Use of string matching without validation in commits messages decreases accuracy.

6. Combining all metrics (source code and change) can improve prediction.

2.5 Comparisons and Measurements

The introduced approaches focused on proposing new bug prediction techniques.

There is also work on comparing such techniques, in order to evaluate them and also

possibly enhance or combine them. This section discusses comparisons of bug predictors

using static and change metrics.

Zimmermann et al. (ZIMMERMANN; NAGAPPAN; ZELLER, 2008) followed

the same research line of Nagappan and Ball (NAGAPPAN; BALL, 2005), presented in

Section 2.3. The goal of their work is to understand what makes a module defect-prone

and how can we avoid it. First of all, four characteristics are discussed, namely Com-

plexity, Problem Domain, Evolution and Process. All of them are related to introducing

defects into code. The first is related to the number of details that programmers can pay

attention in the same context. The second is related to the fact that some problems are

harder than others. Evolution is related to architecture changes due to constant refactor-

ing and always changing requirements with the related code. At last, the development

process can compensate for the previously cited problems. For example, if a requirement

is changed, but process ensures unit and integration tests, new bugs due to requirement

change are detected earlier.

Their own implementation was compared to the work of Basili et al. (BASILI;

BRIAND; MELO, 1996) and with the prior work of Nagappan and Ball (NAGAPPAN;

BALL, 2005). The first used static code metrics to predict bug density in academic

projects, and the second used source code change for forecasting defects for five Mi-

crosoft applications (Internet Explorer HTML rendering module, Internet Information

Services, Process Messaging Component, Microsoft Direct X, Microsoft NetMeeting). In

the first approach, in each project, a source code metric (or a set of) was found to have high

correlation with defect density. Notwithstanding, the metric(s) which had correlation to

defects were not common among projects, although some intersections were found. The

second approach used code churn as an estimator for defects, as previously discussed in

28

Table 2.6: Change metrics used by Moser et al.
Change Metric
Revisions
Bug Fixes
LOC Added
Average LOC Added
Max LOC Deleted
Code Churn
Max Change-set (files changed together)
Age
Refactorings
Authors
Max LOC Added
LOC Deleted
Average LOC Deleted
Average Code Churn
Average Change Set
Weighted (by LOC added) Age

Section 2.3. The conclusion found is that metrics do correlate with defect density, but

also code churn. Because each project has a different approach and performance for each

technique, the authors propose that new metrics and more process data (instead of only

source code information) should be used in bug prediction. Furthermore, more combined

approaches and granularity change (more specific) are encouraged.

Instead of comparing previous implementations, Moser et al. (MOSER; PEDRYCZ;

SUCCI, 2008) used static code metrics and change metrics from the Eclipse project. They

analysed the behaviour of models built using the static code metrics and change metrics.

The goal is to determine which one has a better predictive power. The set of metrics used

is the same used by Zimmermann et al. (ZIMMERMANN; PREMRAJ; ZELLER, 2007),

31 in total. As change metrics, 18 metrics were used, they are enumerated in Table 2.6.

Using these metrics, they built the predictors using the following techniques: Naive

Bayes, Logistic Regression and J48 Decision Tree. These three techniques are presented

by Alpaydin E. (ALPAYDIN, 2004).

They built three predictors, one for static code metrics, other for change metrics

and a third combining both. Among the nine predictors built, the best performance was

with the J48 Decision Tree using only change metrics. Nevertheless, the performance of

the other predictors were also satisfactory. One limitation cited by the authors is that only

one project was analysed; therefore no further conclusions can be extracted.

To select which metrics perform better in the bug prediction context, several work

29

performed a feature selection. Catal and Diri performed a statistical feature selection,

using the Chi-Squared technique in same dataset used by Koru et al. (KORU; LIU, 2005).

Shivaji et al. (SHIVAJI et al., 2013) performed a feature selection using Gain Ratio, Chi-

Squared, Significance, and Relief-F feature rankers. They used the same metrics used

by Kim et al. (KIM; WHITEHEAD JR.; ZHANG, 2008) and reported gains of more

than 20% in accuracy, precision, recall and f-measure over the existing approaches. Gao

et al.(GAO et al., 2011) used genetic algorithms to select the features, they found that

removing up to 85% of features does not reduce predictor performance and may even

increase it in some cases.

Hall et al. (HALL et al., 2012) presented a systematic literature review comparing

208 articles in the bug prediction context. They found that 108 of it used Eclipse data,

moreover 136 used Object-Oriented systems. They found that 23% of the articles used

files as granularity for the prediction. Regarding metrics, seventeen used LOC; forty-two

used Object-Oriented metrics and 71 used process metrics or SCM. The more used ma-

chine learning algorithm used were: Logistic Regression(56), Naive Bayes(33) Random

Forest(13). They found that in most of the study, the performance achieved is related

to the system size. Moreover, they found that feature selection improves bug prediction

performance.

2.6 Cross-Project Defect Prediction

A limitation found in all previously presented approaches the result generalisation.

This limitation implies that no method can be applied in different projects. Furthermore,

one cannot use other projects for creating a bug predictor for a new project. This section

introduces work proposed in this area addressing these limitations.

Jureczko and Madeyski (JURECZKO; MADEYSKI, 2010) have addressed this

issue analysing 48 releases of 15 open software systems, 27 releases of 6 commercial

systems and 17 academic software projects. They tried to cluster software projects in

categories with the same characteristics regarding defect prediction. K-Means (FORGY,

1965) and Kohonen’s neural network (KOHONEN, 1982) were used for clustering the

projects. As features for clustering, they used static code metrics. After clustering they

built a defect predictor for each cluster and for the all projects. All predictors were built

using step-wise linear regression and all metrics. They found two significant clusters, but

most of the projects were uncovered by it. Some improvements suggested are removing

30

outliers from clusters and narrowing down the clusters founded.

Later, Zhang et al. (ZHANG et al., 2014) obtained better results building a cross-

project predictor. They used projects from SourceForge5 and GoogleCode6 as basis.

Projects with few commits and short existing time were cut off. Project metrics were

calculated splitting the project in frames of six months. A regular expression was used for

marking which commits were defective. Context from the project (source code language,

use of issue tracking, number of files) was used as features in the predictor. Precision,

recall, false positive rate, f-measure, g-measure and AUC (area under the curve) were

used for evaluation. For matching metrics for each cluster, they used rank transforma-

tion. Static code metrics were extracted using the Understand tool. They achieved similar

precision for a within project predictor and a universal predictor, proving that a universal

defect predictor can be built. F-measure ranged from 0.50 for within project predictor

and 0.46 for universal predictor to 0.55 using project context and process metrics. In an

external project, the F-measure ranged from 0.26 to 0.62.

Finally, Lewis et al. (LEWIS et al., 2013) implemented a bug predictor across all

Google Projects. The predictor pointed out which files were more bug-prone on the code-

review system. They evaluated how developers behaved across four months using the

tool. The study concluded that the tool was not ready for use by the developers and that

the most required feature was "actionable messages," hence, a way of developers to fix a

bug-prone file.

2.7 Approaches Selected for Evaluation

In Table 2.7, we detail the set of approaches selected for comparison in our study.

The proposed bug predictors are based on static code metrics—approaches that directly

evaluated the correlation between metrics and defects rather than proposed predictors

were excluded. They vary mainly in two aspects: (i) used metrics (this table overviews

used metric suites); and (ii) investigated learning techniques. These approaches are those

evaluated in this work, and hereafter they are referred to as the acronyms introduced

in Table 2.7. Two criteria were used for narrowing the approaches presented before:

(i) approaches within fifteen years since their publication; and (ii) approaches that used

static source code metrics. We included in the study approaches that also use change

5<http://sourceforge.net/>
6<https://code.google.com/>

http://sourceforge.net/
https://code.google.com/

31

Table 2.7: Summary of Investigated Approaches.
Approach Acronym Metric Suites Learning

Techniques
Gyimothy et
al. (GYIMOTHY;
FERENC; SIKET,
2005)

GY CK (CHIDAMBER; KEMERER,
1994)

Decision
Trees,
Linear
Regression,
Neural
Networks

Jureczko and
Madeyski
(JURECZKO;
MADEYSKI,
2010)

JU CK (CHIDAMBER; KEMERER,
1994), QMOOD (BANSIYA;
DAVIS, 2002), Tang et
al. (TANG; KAO; CHEN,
1999), Martin (MARTIN,
1994), Henderson-
Sellers (HENDERSON-
SELLERS, 1996)

Linear
Regression

Kim et al. (KIM;
WHITEHEAD
JR.; ZHANG,
2008)

KI Metrics provided by the
Understand (TOOLWORKS,
2017) tool

SVM

Koru and
Liu (KORU;
LIU, 2005)

KO Halstead (HALSTEAD, 1977),
McCabe (MCCABE, 1976)

Decision
Tree,
K-Star,
Random
Forests

Moser et
al. (MOSER;
PEDRYCZ;
SUCCI, 2008)

MO CK (CHIDAMBER; KEMERER,
1994), traditional OO metrics

Decision
Trees,
Logistic
Regression,
Naive Bayes

metrics (KIM; WHITEHEAD JR.; ZHANG, 2008), but only static metrics were taken

into account. Moser et al. (MOSER; PEDRYCZ; SUCCI, 2008)’s approach extended

that proposed by Zimmermann et al. (ZIMMERMANN; PREMRAJ; ZELLER, 2007),

by including change metrics and exploring other learning techniques. In our evaluation,

we use the static code metrics as well as learning techniques used by Moser et al. They

used a subset of metrics from Zimmermann et al.’s dataset because all code metrics would

“involve overly complex models and not yield better performance as most of the measures

are highly correlated with each other.”

32

2.8 Final Remarks

In this chapter, we presented the state-of-art of bug prediction related to the proce-

dural software systems context. We presented approaches using static and change source

code metrics, besides mixed techniques and comparisons. Next, we present a comparison

of bug prediction approaches that used static source code metrics. Finally, we introduced

a set of approaches selected for the study we conduced, described in the next Chapter.

33

3 EVALUATION OF EXISTING BUG PREDICTION APPROACHES

Given the lack of provision of bug predictors dedicated to procedural software sys-

tems, we performed a study to fulfil this gap. We used existing bug prediction approaches

with procedural software systems, also making required adaptations in this process, and

evaluated and compared the obtained performance. In Section 2.7 we presented a set of

bug prediction approaches. These approaches are compared and evaluated regarding their

effectiveness and adaptability for procedural software systems in the study presented in

this chapter.

This chapter is structured as follows. In Section 3.1 we introduce the study set-

tings, the targeted systems, and the methodology applied. In Section 3.2 we present the

results we obtained. Finally, in Section 3.3 we discuss the results found.

3.1 Study Settings

Next, we present the methodology used in this study. We used two research ques-

tions as guidelines and analysed both the applicability and performance of approaches in

the context of bug prediction for procedural software systems. To address the questions,

we perform a machine learning prediction in five different systems. We next detail our

study.

3.1.1 Goal and Research Questions

In order to design our study, we followed the GQM (goal-question-metric) paradigm

proposed by Basili et al. (BASILI; SELBY; HUTCHENS, 1986). According to it, the first

step is to specify the goal of the study, which is the following according to the GQM

template: to assess the effectiveness of existing bug prediction approaches in the context

of procedural software systems, evaluate existing bug prediction approaches based on

static code metrics from the perspective of the researcher in the context of 8 open source

and proprietary software projects. Based on our goal, we derived two research questions

presented as follows.

RQ-1: How bug prediction approaches based on static code metrics can be applied to

procedural software systems? Given that some approaches consider OO-specific

34

metrics, we investigate the amount of metrics that can be used with procedural

software systems and, from metrics that cannot be used, which can be adapted to

our context.

RQ-2: What is the effectiveness of bug prediction approaches based on static code metrics,

possibly adapted, with procedural software systems? Considering the investigated

approaches and the set of metrics that can be extracted from procedural software,

possibly with adaptations, we measure and compare the effectiveness of each ap-

proach. We evaluate both the set of metrics that can be extracted as-is, and also a

set including adapted metrics.

The metrics used to answer these research questions are detailed in the next section

together with our study procedure.

3.1.2 Procedure

Our study procedure is composed of three main steps. We first analysed each in-

vestigated approach in order to verify whether their metrics can be used in our study. In

the second step, we prepared our dataset, by performing two activities: (i) extraction of

defects; and (ii) extraction of static code metrics. Last, we executed all the approaches

with our target systems and measured their performance. We next provide details regard-

ing our procedure.

Metric Adaptations. In order to answer our RQ1, we identified all metrics used by

each approach, and verified whether they can be extracted from procedural systems. In

the cases that they cannot, we adapted the metric calculation using the following mapping

between OO concepts and procedural structures. In OO systems, there are classes with

attributes and methods, with visibility modifiers. In procedural systems, there are source

files (in C, files *.c), which contain global variables and functions, and header files (in C,

files *.h), which contain function declarations and possibly global variables. In order to

adapt metrics, we map: (i) classes to a combination of header and source files; (ii) public

attributes and methods to variables and functions, respectively, declared in header files;

and (iii) private attributes and methods to variables and functions, respectively, declared

only in source files. Header files are thus considered similar to public interfaces of classes.

Inheritance is not mapped, given that there is no similar concept in procedural languages,

like C.

35

For evaluating the applicability of each approach to procedural systems, we mea-

sured the following scores.

Applicability with No Adaptations Ratio (A-scoreNA) is the fraction of metrics that can

be extracted from procedural systems with no adaptations. It is calculated as fol-

lows:

A-ScoreNA =
|MP |
|M |

where MP is the set of metrics that can be extracted from procedural systems with

no adaptations, and M is the set of all metrics used by the approach.

Applicability with Adaptations Ratio (A-scoreWA) is the fraction of metrics that can

be extracted from procedural systems with or without adaptations. It is calculated

as follows:

A-ScoreWA =
|MP ∪MA|
|M |

where MP is the set of metrics that can be extracted from procedural systems with

no adaptations, MA is the set of metrics that can be extracted from procedural sys-

tems with adaptations, and M is the set of all metrics used by the approach.

a Defect and Metric Extraction. We used commits indicated as fixes to identify defects in

our target systems, which is an approach typically used in similar work. When a certain

file is modified in a fix, it counts as one defect in that file. In order to mine commits,

we used two approaches, depending on the tools available (only VCS, or VCS and issue

tracker). For projects in which an issue tracker was available, we searched for commit

messages that contained the issue id of issues that are bugs (and not features). Therefore,

the issue category was used to identify commits that are fixes. For projects in which we

had no access to an issue tracker, we searched for commit messages that matched a regu-

lar expression, which is a method adopted in previous work (JURECZKO; MADEYSKI,

2010; KIM; WHITEHEAD JR.; ZHANG, 2008; ZHANG et al., 2014). Regular expres-

sions were selected for each project according to message patterns adopted by developers,

e.g. in Linux, the regular expression includes “fix” and its variants. We have not addressed

the bug criticality of the defects because of two issues: (i) defect criticality cannot be ex-

tracted directly from commits and (ii) most of the evaluated approaches did not use the

bug criticality in their analysis.

Extraction of static source code metrics was performed using the Understand (TOOL-

WORKS, 2017) static code analysis tool. Metrics for pure C not available in the Under-

36

stand, or those we adapted, were extracted using: (i) implemented and available scripts1;

and (ii) open-source tools, namely Cflow, CTags, and CCCC2. Cflow provides a call-graph

for a C file, which can be parsed and used for extracting the fan-in and fan-out metrics.

Complementary, CTags provides the functions and variables available both in header and

source files, used for computing the public and private attributes and methods. CCCC,

in turn, is a tool for metric measurement for C and C++. The dataset created combining

static source code metrics and defect is available online.3

Prediction and Evaluation. The evaluation of the effectiveness of each approach

was made by building a predictor for our dataset using machine learning algorithms

adopted by each investigated approach. Details of how these algorithms were executed

are available elsewhere3, as well as the used dataset. We then measured results with

common machine learning scores, also used by most of the evaluated approaches (thus

being used as a baseline), and used 10-fold cross-validation. The Scikit-Learn Frame-

work (PEDREGOSA et al., 2011) was used for prediction and score calculation. The

scores described in Section 2.1 are applied for evaluation. Now that we have described

our procedure, we proceed to the presentation of the target procedural systems of our

study.

3.1.3 Target Systems

In order to build our dataset, we selected known open-source procedural systems

as well as proprietary systems to which we have access. The latter have the advantage of

having an accessible issue tracker, from which we can extract reported bugs and associated

commits. Some open-source systems have available issue trackers, but we could not

trace bug fixes to the files that changed in commits. In total, our study involved eight

target systems, as listed in Table 3.1, from which three are proprietary. In order to be

selected, systems had to satisfy two requirements. The first is that selected systems must

be implemented in the C language. This is mainly due to two reasons: (i) it simplifies the

process of extracting metrics; and (ii) C is the most popular and used procedural language.

The second requirement is that information regarding bug fixes should be available, either

through commit messages or an issue tracker. Selected applications are from different

1<https://github.com/dborowiec/commentedCodeDetector>
2Available at <http://www.gnu.org/software/cflow/>, <http://ctags.sourceforge.net/>, and <http://cccc.

sourceforge.net/>, respectively.
3<http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/>

https://github.com/dborowiec/commentedCodeDetector
http://www.gnu.org/software/cflow/
http://ctags.sourceforge.net/
http://cccc.sourceforge.net/
http://cccc.sourceforge.net/
http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/

37

Table 3.1: Target Systems.
System Description LOC #Files #Commits Bugs

(%)
Linux 4 Operating

System
9,434,808
9,529,552

30,058
30,252

560,519 16
22

Commercial
System A 5

Telecom
Embedded
Application

407,660
509,856

1027
1148

1,027
1148

4
10

Commercial
System B 5

Telecom
Embedded
Application

337,203
351,923

939
949

2,211 6
12

Commercial
System C 5

Telecom
Embedded
Application

279,325 394 109 5

Busybox 6 Operating
System
Applications

153,448 624 13,891 19

Git 7 Version
Control
System

153,855
157,193

500 41,356 16
29

Light Weight
IP 8

Network
Stack for
Microcontrollers

18,510
32579

89
132

3,658 14
49

CpuMiner 9 Bitcoin
Mining
Application

4,455
6,927

20 339 20

domains and have multiple sizes, as can be seen in Table 3.1.

Our target systems include Linux, which is an established operating system and a

well documented project. Much work has been developed specifically on bug prediction

for Linux (JIANG; TAN; KIM, 2013; TIAN; LAWALL; LO, 2012), but all used change

metrics. It is the largest project used in our study. Busybox, in turn, provides operating

system tools for embedded systems, being associated with Linux. Git is a widely used

multi-platform VCS, with a consolidated development process, while Light Weight IP

is a bare-metal network stack, thus being a low-level microcontroller environment, with

restricted resources. CpuMiner is the smallest investigated system, but with a complex do-

main. It consists of a Bitcoin calculator, performing cryptographic calculations. Finally,

the commercial applications included in our study consist of logic controllers for network

4<https://www.linux.org/>
5<http://parks.com.br/>
6<https://busybox.net/>
7<https://git-scm.com/>
8<https://savannah.nongnu.org/projects/lwip/>
9<https://github.com/pooler/cpuminer>

https://www.linux.org/
http://parks.com.br/
https://busybox.net/
https://git-scm.com/
https://savannah.nongnu.org/projects/lwip/
https://github.com/pooler/cpuminer

38

devices containing hardware configuration, network protocols, configuration management

and user interface.

To investigate a larger dataset, we used more than one system version when possible—

some versions were not available and we excluded versions that diverged from the master

branch. For each system, we analysed bug fixes of a release i, extracting metrics from

the source code of this release and bugs using commits made before the release i + 1.

Therefore, if we had N releases available, we managed to evaluate N − 1 releases. Con-

sequently, for applications with just one analysed release, e.g. Commercial System C, we

had, in fact, two available releases. Releases were determined using VCS tags for all

systems. We investigated only two Linux versions due to the computational time needed

for metric extraction. Moreover, only one version was investigated from the Commercial

System C, because it was mostly developed by a third-party company, and the company

that gave us access to it is responsible only for evolving it. Therefore, we had no access

to the source code repository used during this initial application development. This ex-

plains the low number of commits presented in Table 3.1. In this table we also present

the percentage of files containing bugs for each system. Because defect criticality is not

present in the commit message, and not all evaluated approaches used this information, no

information regarding defect criticality was extracted or used to compose the dataset. In

next section, we present how the investigated bug prediction approaches performed using

these introduced systems.

3.2 Results and Analysis

In this section, we report obtained results, after performing the procedure de-

scribed above. Results are presented and discussed according to our research questions.

RQ1: How bug prediction approaches based on static code metrics can be

applied to procedural software systems?

Each of the five investigated approaches was analysed, and we assessed how ap-

plicable they are to our context. In Table 3.2, we list all static code metrics used by the

selected approaches. We grouped some sets of metrics, due to space restrictions. The

number in parenthesis indicate the number of metrics in each group. Based on Table 3.2,

it is possible to observe that all but one of the approaches use metrics that rely on OO

concepts. Therefore, we adapted such metrics in order to extract them from procedu-

ral systems to build bug predictors—they are described in the last column of Table 3.2.

39

Adaptations follow the overall mapping rule described in our study procedure.

Considering this information, we classified metrics used by each approach in three

classes (column Class): (i) those that can be extracted from procedural systems, labeled

with Y; (ii) those that cannot be extracted from procedural systems, labeled with N; and

(iii) those that can be extracted from procedural systems only with adaptations, labeled

with A. Based on this classification, we verified how much applicable each approach is,

using the measurements described in the previous section. We present results in Table 3.3,

which shows the applicability ratios (without and with adaptations) of each approach.

Note that, although MO approach, in theory, uses 31 static code metrics from Zimmer-

mann et al.’s (ZIMMERMANN; PREMRAJ; ZELLER, 2007) dataset, its provided dataset

contains only 17 metrics extractable from source code. Other metrics in the dataset are

target metrics, e.g. TrivialBugs, or rely on CVS information, e.g. CvsEntropy, which is

not our focus.

Results indicate that the GY, JU, and MO approaches largely rely on OO metrics,

while KO uses only metrics that do not rely on OO concepts. With our adaptations, it

is possible to use at least 67% (KI has the minimum A-ScoreWA) of proposed metrics of

each approach. Given this analysis, we proceed to the evaluation of the effectiveness of

each approach.

RQ2: What is the effectiveness of bug prediction approaches based on static

code metrics, possibly adapted, with procedural software systems?

We executed each investigated approach, considering different learning techniques,

with all target systems (and their different versions). As result, we obtained the precision,

recall and F-measure values presented in Figure 3.1 and Table 3.4. On the left hand side

charts of Figure 3.1, we show results using only the metrics that can be extracted from

procedural systems, while those on the right hand side also include adapted metrics. Ta-

ble 3.4 reports the mean and standard deviation of the values obtained with our different

target systems. For a comparison, we show in the baseline row the results reported by

each approach’s authors, if they were provided.

Comparing results obtained with and without adaptations, we observed that they

are similar to each other—all measurements vary±0.05. The differences are so small that

they could be due to the randomness of the 10-fold cross validation. This can be seen in

the KO approach (A-ScoreNA = 1.00), which uses no OO metrics, thus both evaluations

use the same set of metrics. Consequently, there is evidence that the OO-inspired metrics

bring little information associated with defect presence in procedural software systems

40

Table 3.2: Static Code Metrics used by Bug Prediction Approaches.
Suite Metric GY JU KI KO MO Class Adaptation

Lines of Code (LOC) 3 3 3 3 3 Y
Line Count 3 3 Y
Lines of Comment 3 3 Y
Lines of Code with Comments 3 Y
Blank Lines 3 3 Y
Fan-in/Fan-out (2) 3 Y
Branch Count 3 Y

McCabe Cyclomatic Complexity (avg) 3 3 Y
McCabe Cyclomatic Complexity (max) 3 3 3 Y
McCabe Essential Complexity 3 3 Y
McCabe Design Complexity 3 3 Y
Halstead Standard and Derived Metrics (12) 3 Y

Understand Metrics (29) 3 Y
Understand Metrics - OO (18) N

OO Number of Inherited Attributes 3 N
OO Number of Inherited Methods 3 N
OO Number of Attributes 3 A Number of global variables
OO Number of Methods 3 A Number of functions
OO Number of Private Attributes 3 A Number of global variables

not declared in the header file
OO Number of Public Attributes 3 A Number of global variables

declared in the header file
OO Number of Private Methods 3 A Number of functions not de-

clared in the header file
QMOOD Number of Public Methods (NPM) 3 3 A Number of functions de-

clared in the header file
QMOOD Data Access Metrics (DAM) 3 Y
QMOOD Measure of Aggregation (MOA) 3 Y
QMOOD Measure of Functional Abstraction

(MFA)
3 N

QMOOD Cohesion among Methods of Class
(CAM)

3 A Use of types of function pa-
rameters instead of method
parameters

CK Depth of Inheritance Tree (DIT) 3 3 3 3 N
CK Number of Children (NOC) 3 3 3 3 N
CK Coupling between Object Classes

(CBO)
3 3 3 3 A Functions or global variables

from other files used in a tar-
get file

CK Response for a Class (RFC) 3 3 3 3 A Number of distinct functions
from other files called by a
target file

CK Weighted Methods per Class (WMC) 3 3 3 3 A Weighted functions per file
CK Lack of Cohesion in Methods

(LCOM)
3 3 3 3 A Global variables count as at-

tributes and functions count
as methods

HS Lack of Cohesion in Methods
(LOCM3)

3 Y Same as LCOM

Lack of Cohesion on Methods allow-
ing Negative value (LCOMN)

3 Y Same as LCOM

Tang et al. Inheritance Coupling (IC) 3 Y
Tang et al. Coupling between Methods (CBM) 3 N
Tang et al. Average Method Complexity (AMC) 3 A Average complexity of func-

tions in file
Martin Afferent Couplings (Ca) 3 A Number of files that use a

pair of header and source file
Martin Efferent Couplings (Ce) 3 A Number of referenced header

files
Legend: Y-Yes; N-No; A-Adaptations Required.

41

Table 3.3: Approach Applicability to Procedural Software Systems.
GY JU KI KO MO

Extractable Metrics 1 5 37 21 3
Metrics Extractable with Adaptations 5 11 4 0 10
Not Extractable Metrics 2 4 20 0 4
Total 8 20 61 21 17
A-ScoreNA 0.12 0.25 0.60 1.00 0.17
A-ScoreWA 0.75 0.80 0.67 1.00 0.76

Figure 3.1: Effectiveness Measurements by Each Approach.

and increase model complexity. Therefore, they can be discarded. Note that, for some

approaches, the number of adapted metrics is not small, as discussed in the previous

research question.

The best results were obtained with KO RF (which is based only on no OO met-

rics), considering F-measure, which combines precision and recall. Two approaches pre-

sented the worst results. The first, KI, relies on a large set of metrics. The second,

GY, presented worse results only with NN, but results obtained with the other algorithms

(DT and LR) are much better, providing evidence of the importance of the selected al-

gorithm. Considering precision and recall individually, it is possible to observe that two

other approaches (GY LR and MO LR) have higher precision than KO, at the cost of

compromising recall.

42

Table 3.4: Summary of Effectiveness Evaluation of Each Approach.
GY GY GY JU KI KO KO KO MO MO MO
DT LR NN DT KS RF DT LR NB

Precision
Without
Adaptations

0.52
(0.27)

0.64
(0.21)

0.34
(0.21)

0.62
(0.22)

0.36
(0.30)

0.49
(0.28)

0.39
(0.26)

0.52
(0.26)

0.48
(0.25)

0.64
(0.25)

0.53
(0.30)

With
Adaptations

0.52
(0.28)

0.66
(0.20)

0.38
(0.27)

0.59
(0.21)

0.38
(0.30)

0.49
(0.28)

0.40
(0.26)

0.53
(0.26)

0.46
(0.25)

0.61
(0.21)

0.53
(0.30)

Baseline 0.68 0.68 0.82 0.72 0.62 0.65
Recall
Without
Adaptations

0.51
(0.25)

0.37
(0.30)

0.35
(0.25)

0.42
(0.33)

0.52
(0.35)

0.47
(0.23)

0.55
(0.25)

0.72
(0.18)

0.45
(0.25)

0.39
(0.34)

0.44
(0.29)

With
Adaptations

0.51
(0.26)

0.40
(0.29)

0.40
(0.25)

0.44
(0.27)

0.50
(0.30)

0.47
(0.22)

0.57
(0.28)

0.71
(0.15)

0.44
(0.24)

0.41
(0.29)

0.47
(0.28)

Baseline 0.67 0.64 0.89 0.68 0.68 0.42 0.33 0.40
F-Measure
Without
Adaptations

0.51
(0.26)

0.44
(0.29)

0.33
(0.22)

0.47
(0.31)

0.40
(0.31)

0.48
(0.24)

0.44
(0.26)

0.59
(0.23)

0.46
(0.25)

0.45
(0.32)

0.42
(0.26)

With
Adaptations

0.51
(0.26)

0.48
(0.28)

0.37
(0.25)

0.49
(0.25)

0.40
(0.30)

0.47
(0.24)

0.45
(0.27)

0.58
(0.23)

0.45
(0.24)

0.46
(0.27)

0.43
(0.25)

Baseline 0.67 0.65 0.85 0.69 0.65 0.36
Legend: DT-Decision Trees; KS-K-Star; LR-Logistic Regression; NB-
Naive Bayes; NN-Neural Networks; RF-Random Forest.

With respect to the GY approach, the approach that with DT obtained the second

best results, it is interesting to highlight that it has only one metric used without adapta-

tions: LOC. Other approaches with best results also use this metric. However, the other

metrics used by GY slightly improved both precision and recall for LR and NN but for

DT, which obtained the best results for GY, they remained the same. Therefore, there is

evidence that LOC plays a key role in our context. Although KI also uses LOC, the other

used metrics might have introduced noise in the model used for prediction.

In addition to comparing results across different approaches, we also investigated

how our measurements vary across different target systems, as presented in Figure 3.2.

We observed that commercial applications presented worse results in comparison with

open source systems. This observation holds even for the Commercial System C, which

has a low number of commits as described in Section 3.1.3. Analysing results, we con-

sidered two hypotheses: (1) there are differences in the system datasets that has impact in

the construction of the prediction model; and (2) coding standards and practices adopted

by developers of our commercial applications are less suitable for bug prediction. The

number of investigated systems is not large enough to allow us to reach a conclusion re-

garding this and, therefore, further studies could help clarify this issue. However, it is

43

Figure 3.2: Effectiveness Measurements by Target System.
(a) Precision (b) Recall

(c) F-Measure

possible to observe in Table 3.1 that the percentage of files with bugs is much lower in

commercial applications. Consequently, the highly unbalanced classes in these datasets

make the prediction model construction more difficult. Moreover, although our propri-

etary applications are maintained by the same company, they were originally developed

outside this company (not by the same provider). Consequently, hypothesis (2) is less

likely to be true.

With LwIP, an open source system, results obtained were impressively high, for

three of its four analysed versions. Based on an analysis of LwIP’s commits and release

information, our hypothesis is that, again, the balance between the dataset classes is the

reason for these results. In the version in which LwIP performed significantly well, the

44

number of files with bugs are similar to that of files with no bugs. Therefore, this facilitates

the machine learning process.

3.3 Discussion

We now discuss relevant issues that emerged from the analysis of our results.

These issues are related to the differences of results obtained using different sets of met-

rics or systems.

Use of Adapted Object-oriented Metrics. Based on our results, we observed that all met-

rics adapted from OO metrics were not helpful to predict defects in procedural systems.

On the one hand, this was expected given that programming practices are different in pro-

cedural and OO systems. Moreover, metrics that are associated with inheritance could

not be adapted, because this concept does not exist in procedural systems, and such met-

rics may be relevant to be used in combination with other OO metrics to build predictors.

On the other hand, some of the metrics, such as CBO, capture coupling and cohesion in

classes, while our adapted metrics capture them in source files. Therefore, they could

have been helpful. Although coupling is useful in predictors for OO systems, we could

not observe this in our study. Possibly, this metric alone may be not enough for the pre-

dictor, and it should be combined with other metrics that cannot be adapted, e.g. those

related with inheritance, so that a proper correlation with bugs is found.

Open-source vs. Proprietary Systems. As discussed before, the results obtained with

open-source and proprietary systems are different. This can be seen in Figure 3.2. As

discussed before, a potential explanation is that these differences are due to the unbal-

anced classes (i.e. number of files with bugs and with no bugs) in the proprietary systems’

datasets. Because of the low number of instances of files with bugs, it is difficult to the

learning technique to build a model that distinguishes these two classes. This is actually

a general problem of bug prediction because, typically, the number of files with bugs is

relatively small. Moreover, datasets usually contain noise, because the bugs are not those

that exist, but those that were identified. Therefore, techniques that address these issues

are essential and should be explored in the context of bug prediction.

Another possible explanation for the differences between results is the develop-

ment process adopted in open-source and proprietary systems. In the former, developers

have their own agenda (most of them are volunteers or employers of different companies),

while in the latter changes can be limited to a set of files in each software release, because

45

it may be focused on a particular system feature.

Effectiveness with Object-oriented vs. Procedural Systems. In Table 3.4, we presented

previously reported results for us to have as a baseline. Note that the results reported by

the KI approach include change metrics, and KO’s evaluation included procedural and

OO systems, made available by NASA. As can be seen, for all approaches but MO, our

results are worse. The only approach that presented results similar to ours is KO but with

a different learning technique (our results with RF is similar to the baseline performance,

which used DT). All approaches performed better with the original set, indicating that

obtained results may not generalise to systems other than those obtained with the dataset

used for evaluation. Moreover, the differences between results can also be explained

using the arguments we presented above, when we compared results using adapted OO

metrics—use of a subset of metrics and different meanings of the relationships between

the metrics and defects.

In addition to these issues that might explain difference between results, the typi-

cal application domains of procedural systems may also be an issue. Such domains often

involve low level details or complex calculations. Consequently, complexity metrics may

be more correlated with defects than metrics associated with aspects more relevant to OO

systems, such as response for a class or number of children. In fact, previous work in-

dicates that there is a correlation between code complexity and defects (TASHTOUSH;

AL-MAOLEGI; ARKOK, 2014). Moreover, variability is often present in such applica-

tion domains, which results in the inclusion of macro definitions from the C language.

This may compromise code legibility and make it more fault-prone.

A relevant observation from the results of the GY approach is the importance

of the lines of code (LOC) metric for building a bug predictor for procedural systems.

Using only LOC for identifying fault-prone files is almost as good as using other metrics,

confirming the correlation between LOC and defects (JAY et al., 2009; NAGAPPAN;

BALL; ZELLER, 2006). This may be an indication that approaches are overfitting their

models with large amounts of metrics, which do not bring useful information. Therefore,

studies that identify which metrics are in fact responsible for good prediction results, both

for OO and procedural systems, are needed. This also helps reduce the cost of metric

extraction.

46

3.4 Final Remarks

In this chapter, we presented a comparison of existing bug prediction approaches

using static source code metrics adapting these approaches, i.e. the source code metrics if

needed, to procedural software systems. We found no performance increase by adapting

existing static source code metrics. Moreover, the best performing approach uses only

metrics directly applicable to procedural software systems. Based on that, we next pro-

pose a set of attributes which can be extracted from procedural source code and increase

bug prediction performance in this context.

47

4 QUALITY FEATURES FOR BUG PREDICTION IN PROCEDURAL SOFTWARE

SYSTEMS

Based on our findings in Chapter 3, we concluded that the adaptation of OO static

source code metrics does not improve bug predictors performance. In this chapter, we

propose a set of features to be used for bug prediction that can be extracted from the

source code of procedural software systems. The selected element granularity is that used

in Chapter 3, i.e. file, because: (i) it is more specific than a system module, which provides

less useful information to make decisions regarding the system; and (ii) more information

can be extracted from files than from single procedures, thus helping build a prediction

model.

We selected four features to be investigated in our work based on two main criteria.

First, we selected features to which we can find a rationale that explains the relationship

between them and faults, i.e., there are arguments that justify the investigation of those

features, considering our target context. Second, we aimed at exploring features that can

be extracted from tools typically adopted in the existing development processes, so that

the impact of obtaining them would be reduced in existing projects.

We next detail each of our selected features, detailing the reason for including

them in the study and also how we made them operational but, before, we introduce an

example in Figure 4.1 that is used to explain our features. In this example, there are

functions and a struct to represent Cartesian points developed to calculate the distance

between two points. A possible debug feature can be enabled.

4.1 Compiler Warnings

A tool used in every software project is a compiler. Compilers significantly changed

since they were conceived, evolving from simple transformers from a higher-level to a

lower-level code to tools that not only do so, but also provides warnings of points in the

code that can potentially lead to faults. An example is casting a 64-bit floating point to

16-bit signed integer value, which can lead to fatal failures if done without precaution, as

it was the case with Ariane 5 (BEN-ARI, 2001).

Therefore, compiler warnings is the first feature we describe to be incorporated

48

Figure 4.1: Running Example.
(a) main.c

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include "point.h"
5

6 int display(char *str) {
7 #ifdef DEBUG
8 debug(__FUNCTION__);
9 #endif

10

11 print(str);
12 }
13

14 void debug(char *s) {
15 print(s);
16 }
17

18 int distance(struct point *p1, struct point *p2) {
19 #ifdef DEBUG
20 debug(__FUNCTION__);
21 #endif
22 return sqrt(pow((p1->x - p2->x),2) +
23 pow((p1->y - p2->y),2));
24 }
25

26 #define ZERO 0
27 #define ALLOC(size) malloc(size)
28

29 int main(int argc, char *argv[]) {
30 struct point* p1, *p2;
31 int d;
32 char s[100];
33 p1->x = ZERO;
34 p2->x = ZERO;
35 p2 = ALLOC(2);
36 p2->x = atoi(argv[1]);
37 p2->y = atoi(argv[2]);
38 d = distance(p1, p2);
39 sprintf(s,"Distance: %d",d);
40 display(s);
41 }

(b) io.c

1 #include <stdio.h>
2 int print(char *s) {
3 printf(s);
4 }

(c) io.h

1 int print(char *s);

(d) point.h

1 struct point {
2 int x;
3 int y;
4 };

to bug predictors. Besides being intuitively associated with possible faults, Moser et

al. (MOSER; RUSSO; SUCCI, 2007) provided evidence that there is a positive corre-

lation between software defects and compiler warnings. Moreover, these warnings are

49

information that can be easily extracted given that it is a mandatory tool used in software

development.

To practically use compiler warnings as a feature of bug predictors, we count

the number of warnings present in each source file. In the particular case of the C lan-

guage, the GCC1 compiler is widely adopted. Therefore, this is the compiler investigated

in our further presented evaluation, although we are aware that there are alternative op-

tions, such as the Clang/LLVM suite2. GCC provides many levels of warnings: (i) stan-

dard; (ii) medium (with the option Wall enabled); and (iii) all warnings (with the option

Wextra enabled). There are occurrences of all these different levels of warnings in the

file main.c of our running example. In lines 33 and 34, there is a warning displayed

in all levels (request for member ‘type’ in something not a structure or union). In lines

12 and 41, there is a warning displayed only with either the Wall or Wextra option

enabled (control reaches end of non-void function). Finally, the warning shown in line 29

(unused parameter) is displayed only if the Wextra option enabled.

Although promising, this feature has a limitation. In many integrated develop-

ment environments (IDEs), compiler warnings are automatically displayed to developers.

Hence, developers may have already processed them, and left in the code only the warn-

ings that are associated with safe commands.

4.2 Static Code Analysers

Static code analysers are helpful tools that analyse source code without the need

for executing it, and typically report issues that are considered poor programming prac-

tices and can thus lead to faults. Such reported issues range from allocation problems to

non-compliance with standards. Developers may introduce these issues due to, e.g. inex-

perience, time pressure or even intentionally. In the last case, there is a justification for

introducing issues and those reported are ignored.

However, unintentionally introduced issues can be associated with faults, if they

are not fixed. So we use the output of static code analysers as a feature to be investigated

in bug predictors. Although there is evidence (RAHMAN et al., 2014) that the use of

static analysis does not improve bug predictors based on machine learning, such evidence

was obtained in the context of object-oriented systems. As our investigated context is pro-

1<https://gcc.gnu.org/>
2<http://llvm.org/>

https://gcc.gnu.org/
http://llvm.org/

50

cedural software systems, this might not be the case, given that there is a range of coding

issues reported only in this context, mainly for the C language, which provides developers

with freedom, for example, with type casting. Nevertheless, if a project incorporates the

use of static code analysers as part of the development process, so that developers are

always aware of coding issues, the use of such tools is expected to be not helpful for bug

prediction.

From the many static code analysers available, we focused on exploring those

that do not require compilation or customisation’s. If so, this would make their adoption

more difficult and human-dependent, which could prevent their practical adoption. Given

this criterion, we selected two open-source static code analysers, namely CppCheck3 and

Uno4.

Examples of coding issues present in Figure 4.1a reported by such tools in our

running example are in line 29 (local variable never used) and in lines 33, 34 and 38

(uninitialised variable).

4.3 Duplicated Code

Duplicated code (DUP) is a widely known poor programming practice, being re-

ported as code smell by Fowler (FOWLER; BECK, 1999). Code smells are symptoms

present in the source code, which are usually associated with larger code problems. They

can be used as hints of points in the code that should be refactored. Moreover, there is

evidence that duplicated code is correlated to faults (JUERGENS et al., 2009; KAMEI et

al., 2011; MONDEN et al., 2002). Therefore, the presence of duplicated code in portions

of a given system is a potential candidate of feature to be included in bug predictors.

Evaluating duplicated code can be done at different levels of granularity, ranging

from the analysis of sequences of characters to file content as a whole. The finer the

selected granularity, the higher the computational cost to evaluate duplication. Using a

fine-grained granularity can compromise the technical feasibility of calculating duplicated

code in a large-scale system. Within a file, it is less likely that there are large portions of

duplicated code, because it does not make sense to copy a procedure to the same file.

However, this may occur across different files. Consequently, we evaluate duplicated

code from two perspectives: internal and external, explained as follows together with how

3<http://cppcheck.sourceforge.net/>
4<http://spinroot.com/uno/>

http://cppcheck.sourceforge.net/
http://spinroot.com/uno/

51

we measure them. We propose a particular measurement of duplicated code, instead of

using clone detection tools, because the tools available require (i) a significant amount of

memory and processing power, making the computation practically unfeasible for large

systems (e.g. Linux, which is used in our evaluation); and (ii) a significant amount of

effort to setup, requiring changes in the build process of each project.

Internal duplicated code (IDC) is a metric that refers to the number of portions of

code that are equal within a file, considering the character level of granularity. In order

to detect duplicated portions of code, the minimum size of a sequence of characters must

be specified, so that it is considered a case of code duplication. This minimum size is

a parameter of the IDC metric. The value of this metric is then the number of cases

of duplicated code, which are above the specified threshold. In Figure 4.1, there are two

cases of duplicated code, if the threshold were 14: (1) lines 18 and 30, (2) lines 14 and 26;

and (3) lines 28 and 42. If the threshold were 20, only (1) would be a case of duplicated

code. The internal duplicated code metric only counts each pair of duplicated code once,

and sub-sequences of characters are also not counted. Moreover, spaces and indentation

are not taken into account.

For analysing external duplicated code (EDP), we use a courser-grained granular-

ity, namely lines of code. This metric corresponds to sum of the amount of code dupli-

cated in other files. For every pair of files, we calculate the amount of shared lines of

code. Therefore, the external duplicated code metric is defined as follows.

EDP (fi) =
∑

fj∈F,fi 6=fj

shared_loc(fi, fj)
min(loc(fi), loc(fj))

(4.1)

where fi and fj are files in the file set F , shared_loc(fi, fj) is the number of shared lines

of code between fi and fj , and loc(f) is the number of lines of code of a file f . In order to

support the extraction of the EDP metric, we use the comm utility, available in Unix-like

operating systems. We used it instead of clone detection tools because the tools available

were (i) not easy to setup – requiring changes in the build process of each project, (ii)

have an exponential complexity (pair-wise comparison of each file), hence requiring too

much CPU/memory, turning the computation for big systems, e.g. Linux, unfeasible.

52

Table 4.1: Types of Preprocessor Directives.
Directive
Type

Example Description

Include #include <stdio.h> Includes the text of the re-
ferred file

Constant #define SIZE 100 Creates a symbolic name for
a constant number

Macro #define CtF(C)
C * 1.8 + 32

Creates a symbolic name for
an expression (example con-
verts Celsius to Fahrenheit)

Key #ifdef __mobile__
[...]
#endif

Removes the code in between
the directives, if the given key
is disabled

4.4 Preprocessor Usage

Preprocessors, in C, processes the written source code before it is compiled, to

replace written text, i.e. preprocessor directives, for the text that will be actually compiled.

This step, which occurs before the compilation, provides developers with the ability to

include header files, macro definitions and expansions, and conditional compilation. In

Table 4.1, we detail the most common types of directives. Even though constants are also

considered macros, we distinguish them because macros are more complex than a simple

constant declaration. Keys are used for conditional compilation.

Although this gives pre-compilation flexibility for developers, it can decrease code

legibility, leading to maintainability problems and consequently faults (SPENCER; COL-

LYER, 1992). However, it is not reasonable to expect that this would reduce the use of

directives, because it is a powerful tool to address configurable software (MEDEIROS

et al., 2015). Given that there is evidence that software variability and defects are re-

lated (NIE; ZHANG, 2011)—measuring variability in terms of options (keys) used in

the compilation, which are associated with directives used for conditional compilation—

analysing directives can give us information regarding fault-proneness. We thus count the

number of directives used in each file, according to their type, and used them as metrics

for bug prediction. There are other types of directives, e.g. to specify user-defined compi-

lation errors (#error), but we limit ourselves to focus on those that are most commonly

used.

The four directives presented in Figure 4.1 have different impact on the source

code. The use of of includes accounts for the coupling of the file, i.e. the higher the num-

ber of includes, the higher the number of functions the developers use or can use within

53

that file. Macros decrease legibility, because often some functions, casts or loops are hid-

den within a chain of macros. Constants, despite helping legibility, have better forms of

implementation than using preprocessor 5, thus are analysed for correlation with defects.

The constant and macro attributes are counted by occurrence recursively in headers within

the same project. Hence, values of a header file are added to the source file including it.

The number of #include and keys are also counted by occurrence, but using only those

present in the file, except that the #undef is not counted given that it always co-occur

another key.

In our example, there are the following preprocessor directives in the main.c

file: (i) four includes (lines 1–4); (ii) one constant (line 26); and (iii) one macro (line 27);

and (iv) one compilation key (line 19).

4.5 Final Remarks

We presented a set of software quality attributes in this chapter. These attributes

are extractable from procedural software systems and provide descriptions of aspects that

are not covered entirely by traditional metrics such McCabe or Halstead. In next chap-

ter, we describe our evaluation of these attributes combined with the traditional metrics

in a subset of the systems used in Chapter 3 analysing their impact on bug prediction

performance individually and combined in the context of procedural software systems.

5<http://stackoverflow.com/questions/1674032/static-const-vs-define-vs-enum>

http://stackoverflow.com/questions/1674032/static-const-vs-define-vs-enum

54

5 EVALUATION

The features proposed in Chapter 4 to increase bug predictor performance in the

procedural software system context are based on an intuitive reasoning considering our

practical experience and empirical investigations. Therefore, there is a need for evaluating

their effectiveness to obtain concrete evidence of their contribution to bug prediction. In

this section, we detail an empirical study performed to do so.

We next present our study settings in Section 5.1. In Section 5.2 we detail the

procedure followed. The targeted systems are presented in Section 5.3. Then, we present

and analyse obtained results in Section 5.4. Finally, we point out threats to the validity of

our study in Section 5.5.

5.1 Goal and Research Question

The main goal of bug predictors is to identify fault-prone elements. To assess how

our proposed features support this task, as in our study in Chapter 3, we designed our

study using the Goal-Question-Metrics (GQM) (BASILI; SELBY; HUTCHENS, 1986)

paradigm. Therefore, we first define our study goal that, following the GQM template,

is to validate the relevance of our proposed features to bug prediction, evaluate their

effectiveness in identifying fault-prone files from the perspective of the researcher in the

context of five procedural software systems. Based on this goal, we derived two research

questions:

RQ-1: How effective are our proposed features to identify fault-prone elements compared

to previously investigates features?

RQ-2: What is the best set of features for predicting bugs in the context of procedural

software systems?

In order to answer both research questions, we rely on the metrics typically used to mea-

sure effectiveness in binary classification problems, which is our case given that we clas-

sify each project file as with or without bugs. Such metrics are: (i) precision, which

presents the relation between predicted bugs (PB) that are correctly predicted consider-

ing the known bugs (KB) (Precision = |PB∩KB|/|PB|); (ii) recall, which calculates

the portion of known bugs that are correctly predicted (Recall = |PB ∩ KB|/|KB|);

55

and f-measure, which combines them, calculated according formula presented next.

f-measure = 2× precision× recall
precision + recall

(5.1)

Our study uses as a baseline the set of features used in Koru and Liu’s (KORU;

LIU, 2005) work. Such set of features (detailed in next section) was chosen due the best

performing approach found in Chapter 3, which compared the effectiveness of differ-

ent existing bug prediction approaches that rely on static code metrics in the context of

procedural software systems. Koru and Liu’s (KORU; LIU, 2005) approach performed

best, together with the use of the random forests (BREIMAN, 2001) machine learning

algorithm. This selected set of features includes only metrics that can be extracted from

procedural systems, as opposed to object-oriented metrics, e.g. coupling between objects

(CBO).

Next, we describe the procedure of our study, detailing how we use the selected

metrics to answer our research questions.

5.2 Procedure

Our study procedure consists of three key steps: (i) construction of the dataset

(which includes feature and bug extraction); (ii) execution of the machine learning algo-

rithm and machine learning scores collection; and (iii) result analysis. We next detail each

of them.

5.2.1 Dataset Preparation

The dataset preparation requires us to extract the selected features (proposed and

those used as a baseline) from a given software project, associated with each file of a

procedural software system, and classify such files as a file with or without bugs. This

is the information that is required to build and evaluate a prediction model. In order to

obtain features, we extracted a given version of a project’s source code from a version

control system (VCS), and calculated such features, which are all quantitative. Most of

the features are obtained with the Understand1 static code analysis tool. We also use the

1<https://scitools.com/>

https://scitools.com/

56

Table 5.1: Analysed Features.
Feature Metric Suite Description
DOrH DOrH Halstead Distinct Operators
OpCH OpCH Halstead Operands Count
DOpH DOpH Halstead Distinct Operands
LENH LENH Halstead Program Length
V OCH V OCH Halstead Program Vocabulary
V OLH V OLH Halstead Volume
DIFH DIFH Halstead Difficulty
EFFH EFFH Halstead Effort
TIMH TIMH Halstead Time
BUGH BUGH Halstead Bug
LOC LOC Lines of Code
CyCMc CyCMc McCabe Cyclomatic Complexity (sum)
EsCMc EsCMc McCabe Essential Complexity (sum)
CPL CPS Compiler Warnings Standard

CPW Compiler Warnings Wall
CPX Compiler Warnings Wextra

SAL SAU Static Analysers Uno
SAC Static Analysers CppCheck

DUP IDC Internal Duplicated Code
EDC External Duplicated Code

PRE PRC Preprocessor Constants
PRM Preprocessor Macros
PRK Preprocessor Keys
PRI Preprocessor Includes

tools reported in the previous section to calculate our proposed features.

We detail in Table 5.1 all features included in our dataset, which consists of Koru

and Liu’s (KORU; LIU, 2005) features and those proposed in 4. The former is com-

posed of the Halstead’s metrics suite (HALSTEAD, 1977), Lines of Code (LOC), and

two McCabe’s complexity metrics (MCCABE, 1976). As can be seen in Table 5.1, we

distinguish the term feature and metrics, and this distinction is relevant only for our pro-

posed features. We use the term feature to refer to our general properties examined in the

code, such as duplicated code, while metric is used describe the concrete value extracted

from the code. This differs from the terminology from the machine learning community,

which would refer to our metrics as features. This distinction is important in the next step

of our procedure. In addition to the feature and metric names, we also provide in Table 5.1

the suite to which they belong and a short description.

The dataset preparation also includes classifying each file as with or without bugs.

This is done by using information either available in an issue tracker system, such as

57

Bugzilla, or a VCS. If the former is used, we retrieve from the issue tracker closed issues

classified as bug fixes, and classify files related to the commit associated with the issue

as with bug. If the latter is used, we analyse VCS commit messages, such as in previous

work (KIM et al., 2007). More specifically, we search, in commit messages, for terms

that indicate that a commit is associated with a bug fix. For example, in one of our target

systems, Linux, commits marked with “fix” are related to solving bugs. We preferably

use issue trackers to identify files with bugs but, when they are unavailable, we use VCS.

We provide the complete dataset and the methodology used to generate it online.2

5.2.2 Execution Details of the Classification Algorithm

With a built dataset, we are able to run a machine learning algorithm. As afore-

mentioned, among the many classification algorithms available, we adopted the random

forests algorithm, as presented in Chapter 3. In particular, we used the Random Forest

implementation of the Scikit-Learn Framework (PEDREGOSA et al., 2011), executed

with the default parameters. This implementation also provides the precision, recall, and

f-measure metrics. To obtain such measurements, we used 3-fold cross-validation. We

did not use 10-fold cross-validation due to the size of some of our target systems, thus

demanding significant computational cost.

In order to evaluate the effectiveness of our proposed metrics and identify the

best set to build the prediction model, we used a brute-force feature selection (WITTEN;

FRANK, 2005) process. This means that we executed the classification algorithm using

different subsets of features, and measured the effectiveness of each. By using a brute-

force approach, we investigated all possible subsets of features, i.e. all subsets with one

feature, two features, and so on. This allows us to obtain optimal results, rather than

executing the algorithm with only some subsets selected using a heuristic, for example.

However, a brute-force approach comes with a computational cost, because the

number of subsets grows exponentially in terms of the number of investigated features.

Given the high computational costs of the feature selection process and that we are inter-

ested in evaluating our proposed features in a general way, the different metrics associated

with each of our proposed features are treated as a group. Therefore, in the feature selec-

tion process, we either include all metrics associated with a given feature, or none of them

is used. Consequently, our feature selection process investigates subsets of 17 features in

2<http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/>

http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/

58

total, which results in 217 − 1 = 131, 071 subsets.

5.2.3 Result Analysis Method

The execution of the feature selection process, with all possible feature subsets,

leads us to a large amount of data to analyse. Therefore, we used a systematic process

to analyse them. For RQ1, we look at subsets that have only one feature and compared

them. We not only compare them in terms of the selected measurements, but also their

position in a ranking ordered according to each of these measurements. The analysis of

results to answer RQ2 is more complicated than RQ1 because each target project in our

study is associated with different measurements. Therefore, different feature groups may

achieve the best measurements for different projects.

For selecting the best feature subset, alternative perspectives may be adopted. It is

possible to take the average of the value obtained for each project, but this means that a

high value obtained with one project can compensate a low value obtained with another.

Therefore, we selected a collection of best subsets, using alternative criteria adopted in the

context of social choice (MASTHOFF, 2011). These criteria are described below, which

are used to select the best subsets considering each of our measurements (precision, recall,

and f-measure).

Average. The Average criterion selects the feature subset that has the best average value.

Borda Count. The Borda Count criterion builds a general ranking of feature subsets

based on rankings made for each target project. For a given project, a ranking

is built and the worst set of features gets a value 0, the second worst gets 1, and so

on until the best set of features gets the maximum value (i.e. the number of subsets

in the ranking). A final value is given to each feature subset as the sum of the values

in each project ranking. The general ranking is built based on such final values, in

descending order. The best subset is the first in the general ranking.

Copeland Rule. The Copeland Rule criterion calculates how many times a feature subset

is better than another using a majority vote (wins), and how many times it is worse

(losses). Then, the best subset is the one that has the maximum difference between

wins and losses.

Least Misery. The Least Misery criterion associates with each feature subset the worst

59

obtained value, considering all projects. Then, the best subset is that with the best

value (from these worst values).

5.3 Target Projects

We selected five systems to be evaluated in our study, from which two are pro-

prietary and three are open source systems. These systems were selected based on two

requirements: (i) the systems must have at least two versions released, so that the earlier

version allows extraction of features and the later version is used to extract bugs; and

(ii) there must be a way to identify bug fixes in commit messages, when an issue tracker

is not available or do not trace a bug fix to changed files. We present details of the se-

lected systems in Table 5.2. The largest system selected to be part of our study is Linux,

which is widely used and has a well-structured development process. The smallest system

is Busybox, which creates binaries of operating system infrastructure. We also selected

Light Weight IP (or LwIP), which is a networking stack used in environments without op-

erating systems (i.e. bare metal). The remaining systems are proprietary systems (referred

to as System A and System B, due to a confidentiality agreement), which are core appli-

cations of telecommunication equipment, responsible for handling network protocols, as

well as configuring and monitoring equipment. These two proprietary systems are main-

tained by the same company, but their first version(s) was developed by third-parties. The

used systems are a subset of the systems used in the study described in Chapter 3. In

this study we used a smaller number of systems because the complexity for executing the

feature selection and evaluating its results in more systems would not be done in a timely

fashion, either to computing power, either to data examination. Moreover, we only used

one version of each system, in contrast to the two to four versions used previously.

5.4 Results

We next present and analyse our experiment results, with the aim of answering our

research questions. We detail collected data that provide foundations for our observations,

and the complete obtained results are available in Appendix B. Results presented in this

section refer to the average of the values obtained for individual target projects, for each

measurement.

60

Table 5.2: Target Projects.

Project Description LOC Files Commits Extracted VersionDefects
Linux Operating

System
10,290,337 20,962 560,519 16% 3.0

System A Telecom
Embedded
Application

437,530 394 1,060 5% Confidential

System B Telecom
Embedded
Application

336,354 497 2,211 7% Confidential

Busybox Operating
System
Applications

156,314 627 13,891 19% 1.8.3

LwIP Network
Stack for
Microcontrollers

53,596 95 3,658 14% 1.0.0

5.4.1 Individual Feature Effectiveness (RQ1)

To investigate the effectiveness of each individual feature, including those pro-

posed, in the identification of fault-prone files, we analysed results obtained with each

feature subset containing a single feature. Table 5.3 details results obtained with all in-

dividual feature subsets ordered in a descending order according to each measurement.

When results are the same, we use first the standard deviation (the lowest, the better) and

then the average ranking position obtained across different projects (the highest, the bet-

ter) to determine the position in the ranking. This analysis helps evaluate the contribution

of each feature for bug prediction in our context, i.e. procedural software systems.

As expected, results are low, because a single feature is likely not enough to cor-

rectly predict bugs. Interestingly, this is more evident in recall (0.04–0.26) than in pre-

cision (0.05–0.50). This may occur because high values of certain features—e.g. due

to (very) long (high LOC) or complex (high EsCMc) files, or files in which there is

a high number of preprocessors (high PRE)—may lead to the introduction of defects.

However, not so high values depend on other factors to increase the probability of defect

introduction. Therefore, a classification algorithm may be unable to classify such files as

fault-prone based solely on the information of a single feature.

The feature that obtained best results, both for precision (0.50) and recall (0.26)

and consequently for f-measure (0.33), is LOC. In fact, LOC has been acknowledged to

have a high correlation with software faults in previous work (JAY et al., 2009; NAGAP-

61

Table 5.3: Individual Feature Analysis.
M—Mean, SD—Standard Deviation

(a) Precision

Feature M SD
LOC 0.50 0.16
EsCMc 0.50 0.29
CyCMc 0.44 0.28
PRE 0.41 0.11
DUP 0.41 0.20
OpCH 0.39 0.33
CPL 0.35 0.32
SAL 0.31 0.20
DOpH 0.27 0.37
BUGH 0.20 0.24
V OLH 0.20 0.28
V OCH 0.12 0.10
LENH 0.07 0.07
TIMH 0.06 0.07
EFFH 0.06 0.07
DIFH 0.06 0.08
DOrH 0.05 0.07

(b) Recall

Feature M SD
LOC 0.26 0.08
EsCMc 0.20 0.17
DUP 0.17 0.10
PRE 0.16 0.07
SAL 0.16 0.11
CPL 0.16 0.23
CyCMc 0.10 0.15
BUGH 0.09 0.11
V OCH 0.08 0.08
V OLH 0.08 0.10
DOpH 0.08 0.11
DIFH 0.08 0.12
OpCH 0.06 0.06
TIMH 0.06 0.12
DOrH 0.05 0.06
EFFH 0.04 0.07
LENH 0.04 0.07

(c) F-Measure

Feature M SD
LOC 0.33 0.07
EsCMc 0.25 0.20
PRE 0.22 0.08
DUP 0.22 0.10
SAL 0.19 0.13
CPL 0.18 0.27
CyCMc 0.12 0.14
BUGH 0.10 0.10
V OLH 0.10 0.12
OpCH 0.09 0.05
V OCH 0.09 0.08
DOpH 0.07 0.08
DIFH 0.07 0.09
DOrH 0.05 0.07
TIMH 0.05 0.09
LENH 0.04 0.07
EFFH 0.04 0.07

PAN; BALL; ZELLER, 2006) and in the findings described in Chapter 3. This indicates

that this feature should be included in most of the bug predictors, unless they are system-

tailored. The feature that consistently obtained second best results is EsCMc, which has

a similar precision to LOC (0.50), but lower recall (0.20). However, the precision ob-

tained with EsCMc is mainly due to the precision obtained with some target projects.

It achieved precisions of 0.87, 0.80, 0.38, 0.37, and 0.10 to LwIP, System B, Busybox,

Linux, and System A, respectively. This precision variation can be observed in its high

standard deviation (0.29). Consequently, the relationship between EsCMc and faults is

highly system-dependent.

Regarding our code quality features (highlighted in Table 5.3), it can be seen that

they obtained high results in comparison with many of the features, being always ranked

in the first eight positions (first half of the positions). Considering f-measure, which

balances precision and recall, our proposed features obtained results that are only not

better than the two best features (LOC and EsCMc), but are better than all other eleven

features. This gives evidence that our proposed features can indeed be useful to predict

bugs in procedural software systems. For recall, all features presented similar results,

varying only in 0.01. The difference among precision is larger, ranging from 0.31 to 0.41.

PRE and DUP obtained the best results among our proposed features. We observed

62

that mainly CPL, but also DUP and SAL, have high standard deviation. This may be

explained by project-specific practices. For example, if compiler warnings are taken into

account by developers of a certain project, this feature will likely be not very helpful to

identify fault-prone files in that project.

Finally, we observed that features associated with the Halstead metric suite are the

least helpful. All of them obtained values lower than or equal to 0.10 for all measure-

ments, except OpCH , DOpH , BUGH , and V OLH for precision. The last three, although

achieved higher precision, it is still low (0.20–0.27). OpCH has a high precision (0.39) in

comparison with other features, but also high standard deviation (0.33). Surprisingly, this

feature obtained 1.00 of precision with System A, but this same measurement is 0.06 for

System B.

These presented results and observations indicate that our proposed code quality

features can be potentially useful in bug prediction in our investigated context, mainly

when compared to metrics of the Halstead suite. Nevertheless, as discussed, individual

features are insufficient to obtain good results if used alone. We thus next investigate all

possible feature subsets, focusing on those that obtained best results.

5.4.2 Best Feature Subsets (RQ2)

As explained in our study procedure, the number of all possible feature subsets

considering 17 features is extremely large. Therefore, we selected representative subsets

to be analysed, presented in Table 5.4, split into three groups. The first is composed of

complete feature sets: (i) the set with all baseline features (baseline); (ii) the set with all

proposed code quality features (quality features); and (iii) the set that includes both (full

set). The second refers to the best subsets selected according to the four criteria adopted

in social choice, introduced in Section 5.2. The third presents the subsets that have the

best value for a particular project, referred to as P Best, where P is the project name.

Selected feature subsets vary according to the measurement used in the selection. For

each feature, we present not only the average precision, recall, and f-measure obtained

across the different projects, but also the features present in the respective subset.

Considering the subset with our proposed features, it is possible to observe that it

achieved superior results in comparison with our baseline, considering precision (0.50 vs.

0.39) and f-measure (0.27 vs. 0.24). Recall is the same for both subsets. However, we

highlight that the variance in recall across target projects using our code quality features

63

is smaller. This can be seen in Figure 5.1, which shows the box blot of obtained results

for each measurement, showing the variance across different projects. Subsets presented

in this figure are those selected based on f-measure only, due to space restrictions; but we

remind the reader that the first three subsets are independent of the measurement used for

selection.

Given that the quality features set achieved better results, a naive approach would

be to believe that a set combining the baseline and quality features would achieve better

results. However, the results in Table 5.4 show that the improvement is minimal. Obtained

precision is the same (0.50), while recall is slightly better (0.19 vs. 0.20). In fact, none

of these initially investigated sets achieved results better than those obtained with LOC

only, as discussed in the previous section. Therefore, this emphasises the need for feature

selection.

Large improvements can be seen in the selected best subsets (considering the so-

cial choice criteria), with respect to the subsets discussed above and LOC. For all best

subsets, which are twelve in total as there are four selected subsets for each of the three

measurements, results are improved not only considering the measurement that was used

for the subset selection, but also the other measurements. The only exception is the

subset using the least misery criterion considering recall, which has a lower precision

(0.46) than the full set (0.50). However, obtained results can be perceived in each of the

measurements—gains are at least 0.12 of precision, 0.09 of recall, and 0.08 of f-measure,

with respect to the full set. Therefore, depending on the goal of using a bug predictor, a

subset that would better satisfy the goal should be adopted.

With respect to the lower result aforementioned associated with the least misery

criterion, we clarify that this is expected because social choice criteria, other than average,

do not aim at maximising average results. Maximising average results have the disadvan-

tage that one (very) high value may compensate a low value. Consequently, there may

be projects with poor results. Borda count and Copeland rule address this by not taking

into account absolute values, but the relative position among subsets, considering a rank-

ing based on a certain criterion. Least misery, in turn, prevents projects with (very) low

values, as can be seen in Figure 5.1.

Now we analyse the features present in each of the best subsets. First, we observed

that the number of features used to improve precision is higher than the number to improve

recall. The best subsets have from 11 to 15 features. All features are present in at least

two subsets, except TIMH that is present only in the least misery subset. Recall, in turn,

64

has on average 7 features, not taking into account the Copeland rule subset that, different

from the other subsets, has a high number of feature (13). The prioritisation of f-measure

leads also to small feature subsets, being Copeland rule also an exception. This means

that more information is needed to identify true positives, but the cost is to increase the

number of false negatives as well.

Given the good results that LOC obtains individually, it is expected that it is al-

ways present in best subsets. This actually occurred, as can be seen in Table 5.4. The

second best individual feature, EsCMc, is also present in all best subsets considering pre-

cision. Although it has results similar to those obtained with the baseline and full sets

for both precision and recall, interestingly it is present in none of the best subsets con-

sidering recall, and only one considering f-measure. OpCH is also present in the best

subsets according to precision—its ranking position was relatively high considering this

measurement. Although it achieved low recall when considered individually, it is present

in two best subsets considering recall.

Regarding our code quality features, they are largely present in subsets selected

using precision (only DUP is not present in the average subset), and at least two of them

are present in each of the subsets considering recall and f-measure, except the least misery

subset considering recall that included only DUP . This gives evidence that regardless of

the criteria to select a subset, code quality features are present in the selected subset,

indicating their value to our investigated problem.

Finally, we focus on the project-specific best subsets, shown in the last part of

Table 5.4. They, on average, present lower results than best subsets selected according to

the social choice criteria, because they have a larger variance in the results as shown in

Figure 5.1. However, due to a high value obtained with at least one of the projects (often

outliers), the average is higher than the full set in many cases.

With respect to the feature presence in these subsets, we observed that they, in gen-

eral, include a small number of features, with some exceptions (mainly Busybox), being

this number as low as one feature in three cases for precision. Moreover, there is little in-

tersection among these subsets. This further indicates that project-specific characteristics

highly impact on the adequate set of features to bug prediction. This indicates that it is

possibly better to tailor bug predictors to individual projects than aiming to search for the

best off-the-shelf bug predictor. However, it is fundamental to identify a set of features

that can potentially contribute to the identification of fault-prone software elements, in

order to serve as a starting point for making customisations in a predictor. Moreover, it

65

is important to specify bug predictors that have the best performance in general, because

they can be used when there is no information available to make such customisations.

5.5 Threats to validity

We now report threats to the validity of our study, and describe how they were

mitigated. A construction threat is the method used to extract defects to build our dataset,

which (i) may be not completely accurate, mainly when commit messages from VCSs are

used; and (ii) extracts only known defects, rather than those that actually exist. The latter

problem is a general known problem in bug prediction (HERZIG; JUST; ZELLER, 2013)

and, given that all existing defects are unknown in real software, existing work in this

context limit themselves to do the best considering the information available. Regarding

the former problem, we used whenever possible issue trackers, which are less dependent

on the consistent use of message patterns. Nevertheless, when it was not available, our

defect extraction method is in accordance with those adopted in previous work (ZHANG

et al., 2014; KIM; WHITEHEAD JR.; ZHANG, 2008; BIRD et al., 2009). Another

problem is that the applicability of the approaches is compromised without the ability

to predict the critically of the predicted bug. Nevertheless, despite the presence of the

information of the critically in some of the examined projects, the approaches examined

in Chapter 3 did not use this information either. Hence, for a fair comparison, we used

only the binary presence of bugs in this work.

We also identified four threats to the external validity. The first is that we used

only one single classification algorithm, namely random forests. Consequently, results

are not generalisable to other algorithms. However, we emphasise that the exploration

of alternative algorithms is not in the scope of this study, and we selected the algorithm

that performed best with procedural systems in the study performed on Chapter 3. The

second external threat is the limited number of target projects. In order to mitigate this

threat, we selected systems varying in size, domain and development environment (open

source vs. proprietary). The third external threat is that different executions of k-fold

cross validation can present different results when random folds are used. We used 3-fold

cross validation (as opposed to a higher number, such as 10-fold), due to computational

restrictions. To prevent random extremely positive or negative results, we checked for

outliers in the three executions. We identified no outlier in the results. The forth and last

threat derives from the number of projects, which is not large. The number of projects is

66

sufficient to support our conclusions. However, it is not a number large enough to perform

statistical tests and obtain results that are valid (that is, a statistical test can be performed,

but results would not be meaningful). This was also the case of many of previous similar

studies. Finally, we highlight that our results are valid in the context of our investigated

scenario, i.e. procedural systems written in the C language. Consequently, further studies

should be conducted to verify whether our results hold in other contexts.

5.6 Final Remarks

In this chapter, we presented a study which evaluated the software quality at-

tributes proposed in Chapter 4. We found that these attributes, together with long-standing

software metrics, e.g. lines of code, enhance the bug predictor performance in the proce-

dural software systems. Next, we present a summary of our contributions and issues that

shall be addressed in future work.

67

Table 5.4: Analysis of Best Feature Subsets.
(a) Selection based on Precision

Feature Subset D
O
r H

O
p
C

H

D
O
p
H

L
E
N

H

V
O
C

H

V
O
L
H

D
I
F
H

E
F
F
H

T
I
M

H

B
U
G

H

L
O
C

C
y
C

M
c

E
sC

M
c

C
P
L

S
A
L

D
U
P

P
R
E

Pr
ec

is
io

n

R
ec

al
l

F-
M

ea
su

re

Baseline 3 3 3 3 3 3 3 3 3 3 3 3 3 0.39 0.19 0.24
Full Set 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.50 0.20 0.28
Quality Features 3 3 3 3 0.50 0.19 0.27

Average 3 3 3 3 3 3 3 3 3 3 3 0.71 0.20 0.29
Borda Count 3 3 3 3 3 3 3 3 3 3 3 0.69 0.22 0.33
Copeland Rule 3 3 3 3 3 3 3 3 3 3 3 3 3 0.64 0.20 0.29
Least Misery 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.62 0.22 0.32

System A Best 3 0.39 0.07 0.09
System B Best 3 3 0.55 0.19 0.24
Busybox Best 3 3 3 3 3 3 3 3 3 3 3 0.57 0.24 0.30
LwIP Best 3 0.44 0.11 0.13
Linux Best 3 0.36 0.16 0.19

(b) Selection based on Recall

Feature Subset D
O
r H

O
p
C

H

D
O
p
H

L
E
N

H

V
O
C

H

V
O
L
H

D
I
F
H

E
F
F
H

T
I
M

H

B
U
G

H

L
O
C

C
y
C

M
c

E
sC

M
c

C
P
L

S
A
L

D
U
P

P
R
E

Pr
ec

is
io

n

R
ec

al
l

F-
M

ea
su

re

Baseline 3 3 3 3 3 3 3 3 3 3 3 3 3 0.39 0.19 0.24
Full Set 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.50 0.20 0.28
Quality Features 3 3 3 3 0.50 0.19 0.27

Average 3 3 3 3 3 3 3 0.58 0.35 0.40
Borda Count 3 3 3 3 3 3 0.58 0.32 0.40
Copeland Rule 3 3 3 3 3 3 3 3 3 3 3 3 3 0.56 0.29 0.37
Least Misery 3 3 3 3 3 3 3 3 0.46 0.30 0.36

System A Best 3 3 3 3 3 3 3 3 3 3 0.53 0.26 0.34
System B Best 3 3 3 0.51 0.28 0.34
Busybox Best 3 3 3 3 3 3 3 0.49 0.26 0.33
LwIP Best 3 3 3 0.39 0.29 0.28
Linux Best 3 3 3 0.44 0.21 0.24

(c) Selection based on F-Measure

Feature Subset D
O
r H

O
p
C

H

D
O
p
H

L
E
N

H

V
O
C

H

V
O
L
H

D
I
F
H

E
F
F
H

T
I
M

H

B
U
G

H

L
O
C

C
y
C

M
c

E
sC

M
c

C
P
L

S
A
L

D
U
P

P
R
E

Pr
ec

is
io

n

R
ec

al
l

F-
M

ea
su

re

Baseline 3 3 3 3 3 3 3 3 3 3 3 3 3 0.39 0.19 0.24
Full Set 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.50 0.20 0.28
Quality Features 3 3 3 3 0.50 0.19 0.27

Average 3 3 3 3 3 3 0.58 0.32 0.40
Borda Count 3 3 3 3 3 3 0.58 0.32 0.40
Copeland Rule 3 3 3 3 3 3 3 3 3 3 3 3 3 0.60 0.28 0.36
Least Misery 3 3 3 3 0.56 0.29 0.38

System A Best 3 3 3 3 3 3 3 0.57 0.27 0.36
System B Best 3 3 3 0.51 0.28 0.34
Busybox Best 3 3 3 3 3 3 0.49 0.28 0.35
LwIP Best 3 3 3 3 3 3 3 3 3 3 3 0.54 0.29 0.34
Linux Best 3 3 3 0.44 0.21 0.24

68

Figure 5.1: Measurement variance analysis across target projects: best feature subsets
selected based on f-measure.

(a) Precision

(b) Recall

(c) F-Measure

69

6 CONCLUSION

Bug prediction is an important means of improving the verification of software

systems. Its use within development processes is still a work in progress, and further

improvement is necessary for the practical use of bug predictors. Static source code met-

rics play an important role in bug prediction because it has two important characteristics

which other types of features—e.g. source code change metrics—do not have: (i) it does

not depend on source code history and (ii) it provide means for the developer to remove

an entity from the bug-prone entities list by refactoring the code and thus fixing static

source code metrics. Hence, improvement of techniques using static source code metrics

is one of the objectives that should be sought to improve bug prediction.

In this work, we evaluated bug prediction approaches in the context of procedural

software systems. We found that the adaption of OO static source code metrics does not

improve the prediction performance. Given the best existing approach we found, we ex-

tended it with quality features based on software engineering good practices. With these

new features and already used ones, we evaluated it and concluded that our quality fea-

tures performed, on average, as better as the approach found. We also found that feature

selection remains as an important step towards a better bug prediction in the procedural

software systems context.

6.1 Contributions

Given the results presented in this dissertation, we list below our main contribu-

tions.

Comparison of bug prediction in the context of procedural software systems. In Chap-

ter 3 we presented a comparison of bug prediction approaches in the context of pro-

cedural software systems. Based on our findings we determined which source code

static metrics perform best together with the associated machine learning algorithm.

We also concluded that adapting OO static source code metrics does not improve

bug prediction models for the evaluated context. A difference was also found be-

tween proprietary systems and open source software as described in Chapter 3.

Use code quality features as bug prediction features. We also proposed to use source

code quality features to enhance bug prediction models for procedural software

70

systems. The reasoning and details of these features are detailed in Chapter 4. A

study, described in Chapter 5, was performed and we concluded that the proposed

features (i) perform better for prediction than the baseline approach when used

alone, and (ii) enhanced the bug prediction performance for procedural software

systems when used combined.

Importance of feature selection for procedural software systems bug prediction. Based

on the study presented in Chapter 5, we found improvement of more than twenty

percent prediction performance when tailoring the features set for a system. Nev-

ertheless, this set may perform much worse for other systems. Hence for a specific

system with a established dataset, performing a feature selection will enhance the

prediction results for procedural software system, corroborating the literature that

found this same results for the OO context (SHIVAJI et al., 2013; GAO et al., 2011;

CATAL; DIRI, 2009).

6.2 Future Work

This work contribution improves the applicability of bug prediction in the evalu-

ated context. Nevertheless, our work has limitations that can be explored in future work.

We discuss them below.

Reproduction with a higher number of systems. Our work is limited due to the num-

ber of systems used. For a higher confidence a much higher number of software

systems should be evaluated. Such evaluation has many issues to be addressed first

like (i) the correct finding of defective files and(ii), the finding of meaningful soft-

ware systems, i.e. with a development cycle long enough to be studied.

Explore other source code quality features. Static code analysis used in this study were

turn-key tools. The use of more comprehensive tools (e.g. Clang static analyser1)

is a possible path to improving the performance of bug prediction. An alternative

not explored in our code quality features in Chapter 5 is the Splint static analyser. 2

It was not used because it required build system integration, i.e. makefile tweak-

ing. Moreover, other methods such as graph measurements of the abstract syntax

tree provided by compilers or amount of unreachable code were also not taken into
1<https://clang-analyzer.llvm.org/>
2<http://splint.org/>

https://clang-analyzer.llvm.org/
http://splint.org/

71

account due to the same reason. We believe that the use of this other information

will improve more bug prediction performance in the procedural software systems

context as the extra features we used improved the model we evaluated.

Integration of bug prediction in the software life-cycle. Another remaining question we

did not address in our work is How to integrate bug prediction to the existing devel-

opment software development process. To the best of our knowledge, Lewis et al.

(LEWIS et al., 2013) is the single report of work in this context. Defining in which

step of the development process and how the information should be listed is specific

to each process. We believe that some contexts are worth studying: (i) listing the

most bug-prone entities before testing, (ii) listing the entities for peer-review, and

(iii) determining the stability of a version, providing a threshold for the release of

it.

In summary, we investigated the use of bug prediction in the context of procedural

software systems. We evaluated existing approaches, finding the best for this context.

Based on it, we proposed new features and combined with the best approach found to

enhance the performance in the procedural software systems context. Now, our objective

is to implement the use of bug prediction within a development process, determining the

best step to do it, easing the adoption of such promising technique by developers.

72

REFERENCES

ABDI, H.; WILLIAMS, L. J. Principal component analysis. [s.n.], 2010. 433–470 p.
Disponível em: <http://doi.org/10.1002/wics.101>.

ABREU, F. B.; CARAPUçA, R. Object-Oriented Software Engineering : Measuring
and Controlling the Development Process. 4th. International Conference of Software
Quality, v. 4, n. October, p. 3–5, 1994.

ALPAYDIN, E. Introduction to machine learning (OIP). [S.l.: s.n.], 2004.

ALPAYDIN, E. Introduction to Machine Learning. 2nd. ed. [S.l.]: The MIT Press,
2010.

BANSIYA, J.; DAVIS, C. G. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, IEEE Press, Piscataway,
NJ, USA, v. 28, n. 1, p. 4–17, jan. 2002.

BASILI, V. R.; BRIAND, L. C.; MELO, W. L. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering, IEEE
Press, Piscataway, NJ, USA, v. 22, n. 10, p. 751–761, Oct 1996. Disponível em:
<http://doi.org/10.1109/32.544352>.

BASILI, V. R.; SELBY, R. W.; HUTCHENS, D. H. Experimentation in software
engineering. IEEE Transactions on Software Engineering, SE-12, n. 7, p. 733–743,
July 1986. Disponível em: <http://doi.org/10.1109/TSE.1986.6312975>.

BEN-ARI, M. The bug that destroyed a rocket. ACM SIGCSE Bulletin, ACM,
New York, NY, USA, v. 33, n. 2, p. 58–59, jun. 2001. Disponível em: <http:
//doi.org/10.1145/571922.571958>.

BINKLEY, A. B.; SCHACH, S. R. Validation of the coupling dependency metric as a
predictor of run-time failures and maintenance measures. In: Proceedings of the 20th
International Conference on Software Engineering. [S.l.: s.n.], 1998. p. 452–455.

BIRD, C. et al. Fair and balanced?: Bias in bug-fix datasets. In: Proceedings of the
the 7th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering.
New York, NY, USA: ACM, 2009. (ESEC/FSE ’09), p. 121–130. Disponível em:
<http://doi.acm.org/10.1145/1595696.1595716>.

BLACK, A. Critical Testing Process: Plan, Prepare, Perform, Perfect. [S.l.]:
Addison-Wesley Longman Publishing Co., Inc., 2003.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.
Disponível em: <http://doi.org/10.1023/A:1010933404324>.

CATAL, C.; DIRI, B. Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem. Information Sciences, v. 179,
n. 8, p. 1040 – 1058, 2009. Disponível em: <http://www.sciencedirect.com/science/
article/pii/S0020025508005173>.

http://doi.org/10.1002/wics.101
http://doi.org/10.1109/32.544352
http://doi.org/10.1109/TSE.1986.6312975
http://doi.org/10.1145/571922.571958
http://doi.org/10.1145/571922.571958
http://doi.acm.org/10.1145/1595696.1595716
http://doi.org/10.1023/A:1010933404324
http://www.sciencedirect.com/science/article/pii/S0020025508005173
http://www.sciencedirect.com/science/article/pii/S0020025508005173

73

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 20, n. 6,
p. 476–493, Jun 1994. Disponível em: <http://doi.org/10.1109/32.295895>.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p.
273–297, 1995.

D’AMBROS, M.; LANZA, M.; ROBBES, R. An extensive comparison of bug
prediction approaches. In: 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010). [s.n.], 2010. p. 31–41. Disponível em:
<http://doi.org/10.1109/MSR.2010.5463279>.

DRAPER, N. R.; SMITH, H. Applied Regression Analysis. [s.n.], 2014. 704 p.
Disponível em: <https://books.google.ca/books?id=uSReBAAAQBAJ>.

FERENC, R. et al. Columbus - reverse engineering tool and schema for C++.
International Conference on Software Maintenance, 2002. Proceedings., 2002.

FORGY, E. Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics, v. 21, n. 1, p. 768, 1965.

FOWLER, M.; BECK, K. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999. (Component software series). Disponível em:
<https://books.google.com.br/books?id=1MsETFPD3I0C>.

GAO, K. et al. Choosing software metrics for defect prediction: An investigation
on feature selection techniques. Softw. Pract. Exper., John Wiley & Sons,
Inc., New York, NY, USA, v. 41, n. 5, p. 579–606, abr. 2011. Disponível em:
<http://dx.doi.org/10.1002/spe.1043>.

GYIMOTHY, T.; FERENC, R.; SIKET, I. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on
Software Engineering, v. 31, n. 10, p. 897–910, Oct 2005. Disponível em:
<http://doi.org/10.1109/TSE.2005.112>.

HALL, M. et al. The weka data mining software: An update. SIGKDD Explorations,
v. 12, 2009.

HALL, T. et al. A systematic literature review on fault prediction performance in
software engineering. IEEE Transactions on Software Engineering, v. 38, n. 6, p.
1276–1304, Nov 2012.

HALSTEAD, M. H. Elements of Software Science (Operating and Programming
Systems Series). New York, NY, USA: Elsevier Science Inc., 1977.

HASSAN, A. E.; HOLT, R. C. The top ten list: dynamic fault prediction. In: 21st IEEE
International Conference on Software Maintenance (ICSM’05). [s.n.], 2005. p.
263–272. Disponível em: <http://doi.org/10.1109/ICSM.2005.91>.

HENDERSON-SELLERS, B. Object-oriented Metrics: Measures of Complexity.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

http://doi.org/10.1109/32.295895
http://doi.org/10.1109/MSR.2010.5463279
https://books.google.ca/books?id=uSReBAAAQBAJ
https://books.google.com.br/books?id=1MsETFPD3I0C
http://dx.doi.org/10.1002/spe.1043
http://doi.org/10.1109/TSE.2005.112
http://doi.org/10.1109/ICSM.2005.91

74

HERZIG, K.; JUST, S.; ZELLER, A. It’s not a bug, it’s a feature: How misclassification
impacts bug prediction. In: Proceedings of the 2013 International Conference
on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p.
392–401. Disponível em: <http://doi.org/10.1109/ICSE.2013.6606585>.

JAECHANG, N. Survey on Software Defect Prediction. 2017. Disponível em:
<http://lifove.github.io/files/PQE_Survey_JC.pdf>.

JAY, G. et al. Cyclomatic Complexity and Lines of Code : Empirical Evidence of a
Stable Linear Relationship. Journal of Software Engineering and Applications, v. 2,
n. 3, p. 137–143, 2009. Disponível em: <http://doi.org/10.4236/jsea.2009.23020>.

JIANG, T.; TAN, L.; KIM, S. Personalized defect prediction. In: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). [s.n.], 2013.
p. 279–289. Disponível em: <http://doi.org/10.1109/ASE.2013.6693087>.

JUERGENS, E. et al. Do code clones matter? In: Proceedings of the 31st
International Conference on Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2009. (ICSE ’09), p. 485–495. Disponível em: <http:
//doi.org/10.1109/ICSE.2009.5070547>.

JURECZKO, M.; DIOMIDIS, S. Using Object-Oriented Design Metrics to Predict
Software Defects. Models and Methods of System Dependability. Oficyna
Wydawnicza Politechniki Wrocławskiej, p. 69–81, 2010.

JURECZKO, M.; MADEYSKI, L. Towards identifying software project clusters with
regard to defect prediction. In: Proceedings of the 6th International Conference
on Predictive Models in Software Engineering. New York, NY, USA: ACM, 2010.
(PROMISE ’10), p. 9:1–9:10. Disponível em: <https://doi.org/10.1145/1868328.
1868342>.

KAMEI, Y. et al. An empirical study of fault prediction with code clone metrics. In: 2011
Joint Conference of the 21st International Workshop on Software Measurement and
the 6th International Conference on Software Process and Product Measurement.
[S.l.: s.n.], 2011. p. 55–61.

KIM, S.; WHITEHEAD JR., E. J.; ZHANG, Y. Classifying software changes:
Clean or buggy? IEEE Transactions on Software Engineering, IEEE Press,
Piscataway, NJ, USA, v. 34, n. 2, p. 181–196, mar. 2008. Disponível em:
<http://doi.org/10.1109/TSE.2007.70773>.

KIM, S. et al. Predicting faults from cached history. In: Proceedings of the
29th International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007. (ICSE ’07), p. 489–498. Disponível em:
<http://doi.org/10.1109/ICSE.2007.66>.

KO, A. J.; MYERS, B. a. A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages and
Computing, v. 16, n. 1-2 SPEC. ISS., p. 41–84, 2005.

KOHONEN, T. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, Springer-Verlag, v. 43, n. 1, p. 59–69, 1982.

http://doi.org/10.1109/ICSE.2013.6606585
http://lifove.github.io/files/PQE_Survey_JC.pdf
http://doi.org/10.4236/jsea.2009.23020
http://doi.org/10.1109/ASE.2013.6693087
http://doi.org/10.1109/ICSE.2009.5070547
http://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
http://doi.org/10.1109/TSE.2007.70773
http://doi.org/10.1109/ICSE.2007.66

75

KORU, A. G.; LIU, H. Building effective defect-prediction models in practice.
IEEE Software, v. 22, n. 6, p. 23–29, Nov 2005. Disponível em: <http:
//doi.org/10.1109/MS.2005.149>.

LEWIS, C. et al. Does bug prediction support human developers? findings from a
google case study. In: 2013 35th International Conference on Software Engineering
(ICSE). Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 372–381. Disponível
em: <http://doi.org/10.1109/ICSE.2013.6606583>.

MARTIN, R. Oo design quality metrics: An analysis of dependencies. In: OOPSLA’94.
[S.l.: s.n.], 1994.

MASTHOFF, J. Group recommender systems: Combining individual models. In: .
Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 677–702.
Disponível em: <http://doi.org/10.1007/978-0-387-85820-3_21>.

MCCABE, T. J. A complexity measure. IEEE Transactions on Software Engineering,
SE-2, n. 4, p. 308–320, Dec 1976. Disponível em: <http://doi.org/10.1109/TSE.1976.
233837>.

MEDEIROS, F. et al. The Love/Hate Relationship with the C Preprocessor: An Interview
Study. In: BOYLAND, J. T. (Ed.). 29th European Conference on Object-Oriented
Programming (ECOOP 2015). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015. (Leibniz International Proceedings in Informatics (LIPIcs), v. 37),
p. 495–518. Disponível em: <http://doi.org/10.4230/LIPIcs.ECOOP.2015.495>.

MONDEN, A. et al. Software quality analysis by code clones in industrial legacy
software. In: Proceedings Eighth IEEE Symposium on Software Metrics. [S.l.: s.n.],
2002. p. 87–94.

MOSER, R.; PEDRYCZ, W.; SUCCI, G. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of the
30th International Conference on Software Engineering. New York, NY, USA:
ACM, 2008. (ICSE ’08), p. 181–190. Disponível em: <http://doi.org/10.1145/1368088.
1368114>.

MOSER, R.; RUSSO, B.; SUCCI, G. Empirical analysis on the correlation between
gcc compiler warnings and revision numbers of source files in five industrial software
projects. Empirical Software Engineering, v. 12, n. 3, p. 295–310, 2007. Disponível
em: <http://doi.org/10.1007/s10664-006-9029-x>.

MUNSON, J. C.; ELBAUM, S. G. Code churn: A measure for estimating the impact of
code change. In: Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272). Washington, DC, USA: IEEE Computer Society, 1998. (ICSM
’98), p. 24–31. Disponível em: <http://doi.org/10.1109/ICSM.1998.738486>.

NAGAPPAN, N.; BALL, T. Use of relative code churn measures to predict system
defect density. In: Proceedings of the 27th International Conference on Software
Engineering. New York, NY, USA: ACM, 2005. (ICSE ’05), p. 284–292. Disponível
em: <http://doi.org/10.1145/1062455.1062514>.

http://doi.org/10.1109/MS.2005.149
http://doi.org/10.1109/MS.2005.149
http://doi.org/10.1109/ICSE.2013.6606583
http://doi.org/10.1007/978-0-387-85820-3_21
http://doi.org/10.1109/TSE.1976.233837
http://doi.org/10.1109/TSE.1976.233837
http://doi.org/10.4230/LIPIcs.ECOOP.2015.495
http://doi.org/10.1145/1368088.1368114
http://doi.org/10.1145/1368088.1368114
http://doi.org/10.1007/s10664-006-9029-x
http://doi.org/10.1109/ICSM.1998.738486
http://doi.org/10.1145/1062455.1062514

76

NAGAPPAN, N.; BALL, T.; ZELLER, A. Mining metrics to predict component
failures. In: Proceedings of the 28th International Conference on Software
Engineering. New York, NY, USA: ACM, 2006. (ICSE ’06), p. 452–461. Disponível
em: <http://doi.org/10.1145/1134285.1134349>.

NIE, K.; ZHANG, L. On the relationship between preprocessor-based software
variability and software defects. In: High-Assurance Systems Engineering (HASE),
2011 IEEE 13th International Symposium on. [s.n.], 2011. p. 178–179. Disponível
em: <http://doi.org/10.1109/HASE.2011.44>.

OLAGUE, H. M. et al. Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly iterative or agile
software development processes. IEEE Transactions on Software Engineering, v. 33,
n. 6, p. 402–419, June 2007. Disponível em: <http://doi.org/10.1109/TSE.2007.1015>.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

RADJENOVIć, D. et al. Software fault prediction metrics. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 55, n. 8, p. 1397–1418, ago. 2013.
Disponível em: <http://dx.doi.org/10.1016/j.infsof.2013.02.009>.

RAHMAN, F. et al. Comparing static bug finders and statistical prediction. In:
Proceedings of the 36th International Conference on Software Engineering.
New York, NY, USA: ACM, 2014. (ICSE 2014), p. 424–434. Disponível em:
<http://doi.org/10.1145/2568225.2568269>.

SHIRABAD, J. S.; MENZIES, T. The PROMISE Repository of Software Engineering
Databases. 2005. School of Information Technology and Engineering, University of
Ottawa, Canada. Disponível em: <http://promise.site.uottawa.ca/SERepository>.

SHIVAJI, S. et al. Reducing features to improve code change-based bug prediction.
IEEE Transactions on Software Engineering, v. 39, n. 4, p. 552–569, April 2013.

SOMMERVILLE, I. Software Engineering. [S.l.: s.n.], 2010. 56–81 p.

SPENCER, H.; COLLYER, G. #ifdef considered harmful, or portability experience
with c news. In: USENIX Annual Technical Conference. [S.l.: s.n.], 1992.

TANG, M.-H.; KAO, M.-H.; CHEN, M.-H. An empirical study on object-oriented
metrics. In: Proceedings Sixth International Software Metrics Symposium (Cat.
No.PR00403). [S.l.: s.n.], 1999. p. 242–249.

TASHTOUSH, Y.; AL-MAOLEGI, M.; ARKOK, B. The Correlation among Software
Complexity Metrics with Case Study. International Journal of Advanced Computer
Research, v. 4, n. 2, p. 414–419, 2014.

TIAN, Y.; LAWALL, J.; LO, D. Identifying linux bug fixing patches. In: 2012 34th
International Conference on Software Engineering (ICSE). Piscataway, NJ, USA:
IEEE Press, 2012. p. 386–396. Disponível em: <http://doi.org/10.1109/ICSE.2012.
6227176>.

http://doi.org/10.1145/1134285.1134349
http://doi.org/10.1109/HASE.2011.44
http://doi.org/10.1109/TSE.2007.1015
http://dx.doi.org/10.1016/j.infsof.2013.02.009
http://doi.org/10.1145/2568225.2568269
http://promise.site.uottawa.ca/SERepository
http://doi.org/10.1109/ICSE.2012.6227176
http://doi.org/10.1109/ICSE.2012.6227176

77

TIOBE. TIOBE Index for July 2015. 2015. Disponível em: <http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html>.

TOOLWORKS, I. S. Understand. 2017. "<https://scitools.com/features/>. [Online:
accessed 29-April-2017].

WITTEN, I. H.; FRANK, E. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

YULE, G. U. An introduction to the theory of statistics /. 1968.

ZHANG, F. et al. Towards building a universal defect prediction model. In:
Proceedings of the 11th Working Conference on Mining Software Repositories.
New York, NY, USA: ACM, 2014. (MSR 2014), p. 182–191. Disponível em:
<http://doi.acm.org/10.1145/2597073.2597078>.

ZIMMERMANN, T.; NAGAPPAN, N.; ZELLER, A. Predicting bugs from history. In:
. Software Evolution. [S.l.]: Springer, 2008. cap. 4, p. 69–88.

ZIMMERMANN, T.; PREMRAJ, R.; ZELLER, A. Predicting defects for eclipse.
In: Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE
Workshops 2007. International Workshop on. [s.n.], 2007. p. 9–15. Disponível em:
<http://doi.org/10.1109/PROMISE.2007.10>.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://scitools.com/features/
http://doi.acm.org/10.1145/2597073.2597078
http://doi.org/10.1109/PROMISE.2007.10

78

APPENDIX A — RESUMO EXTENDIDO

No processo de desenvolvimento de software, uma parte significativa do esforço e

do tempo é dedicada à identificação de defeitos — ou bugs. Esse processo normalmente

consiste em integrar módulos menores em porções mais sofisticadas. A descoberta de

um defeito na etapa de integração e teste de um módulo de alto nível possui, portanto,

um custo mais alto pois todas integrações anteriores devem ser validadas. Para endereçar

esses problema várias técnicas são aplicadas: testes, análise estática, verificação formal e

semi-formal, padrões de projeto e padrões de código (SOMMERVILLE, 2010).

Um método (semi)automático para priorizar recursos de todas ferramentas de-

scritas acima são os preditores de bugs (HASSAN; HOLT, 2005) (ZIMMERMANN; NA-

GAPPAN; ZELLER, 2008) (KIM et al., 2007).Estes consistem em ferramentas que usam

informações coletadas de controle de versões, controle de tarefa e métricas de código

fonte para construir um modelo preditivo de quais seriam os módulos mais propícios a ap-

resentar erros no sistema. Essas abordagens se dividem naquelas que: (i) utilizam métri-

cas do código fonte, (ii) utilizam métricas de mudança do código fonte e (iii) utilizam

métricas do processo. As abordagens (i) e (ii) podem ser usadas para prever módulos a

nível de arquivo, enquanto a (iii) geralmente é mais útil como indicador de estabilidade do

software como um todo. No caso de abordagens de mudança de código fonte, a linguagem

é indiferente, ao passo que abordagens que usam métricas de código fonte dependem da

linguagem e do paradigma utilizado.

Um nicho cujas abordagens existentes usando métricas de código para predição

de bugs não abordam com profundidade é o de sistemas procedurais. Esses sistemas, nor-

malmente escritos em C, ainda são responsáveis por uma porcentagem considerável do

desenvolvimento de software (TIOBE, 2015), sendo geralmente utilizados na implemen-

tação de sistemas críticos: sistemas operacionais, bibliotecas chaves, computação de alto

desempenho, etc. Esses sistemas não são contemplados pela maioria das abordagens pois

as mesmas usam métricas aplicáveis a sistemas orientados a objetos, reduzindo o número

de métricas úteis para predição nesse contexto. Com base nisso nós chegamos à seguinte

questão de pesquisa:

Como prever bugs (semi)-automaticamente em sistemas procedurais?

No nosso primeiro estudo comparamos cinco abordagens existentes (GYIMOTHY;

FERENC; SIKET, 2005; JURECZKO; MADEYSKI, 2010; KIM; WHITEHEAD JR.;

ZHANG, 2008; MOSER; PEDRYCZ; SUCCI, 2008; KORU; LIU, 2005) no contexto

79

de sistemas procedurais, usando nove sistemas de diversos domínios. Nós encontramos

que Koru e Liu (KORU; LIU, 2005) obteve a melhor performance. Baseados nisso, pro-

pusemos quatro novos atributos para serem utilizados para predição de bugs nesse con-

texto: código duplicado, avisos de compilador, analisadores estáticos e contagens de pré-

processador. Em um segundo estudo realizamos uma seleção de atributos completa em

cinco sistemas, usando os atributos propostos e os utilizados por Koru e Liu, assim como

o mesmo algoritmo de aprendizado de máquina usado por eles: Random Forests. Nesse

estudo encontramos que linhas de código e a complexidade de McCabe obteve uma mel-

hor performance sobre todos os sistemas, seguido pelos atributos propostos. Também

encontramos que a seleção para cada sistema supera o modelo com a melhor média para

qualquer uma das métricas utilizadas: precisão, recall e f-measure. Abaixo iremos repas-

sar as abordagens existentes de bugs, descrever em detalhes o primeiro estudo, os atributos

propostos, o segundo estudo, nossas principais contribuições e trabalho futuro.

Como já introduzido acima, preditores de bugs podem ser divididos em várias cat-

egorias. Aqui apresentamos as seguintes divisões: métricas de código fonte, métricas de

mudança de código fonte, comparações a abordagens híbridas, e por fim abordagens cujo

objetivo é estudar a migração de modelos entre sistemas. Além dessa categorização outras

muito mais complexas já foram realizadas (HALL et al., 2012), levando em consideração

quais as métricas utilizadas, qual o algoritmo de aprendizado de máquina, etc. A seguir

mostramos apenas as divisões pertinentes ao escopo desse trabalho.

Métricas Estáticas de Código Fonte Métricas de código fonte medem, de diversas for-

mas, a complexidade do código fonte. Entre essas métricas estão: McCabe (MC-

CABE, 1976), Halstead (HALSTEAD, 1977), CK (CHIDAMBER; KEMERER,

1994), Abreu e Carapuça (ABREU; CARAPUçA, 1994) e Bansiya e Davis (BAN-

SIYA; DAVIS, 2002). Basili et al. (BASILI; BRIAND; MELO, 1996) e Bink-

ley e Schach (BINKLEY; SCHACH, 1998) são precursores do uso de métricas

de código fonte para a predição de bugs, o primeiro realizou o primeiro estudo

registrado, enquanto que o segundo comparou esse modelo à métricas de tempo

de execução. Olague et al. (OLAGUE et al., 2007), Koru e Liu (KO; MYERS,

2005), Gyimothy et al. (GYIMOTHY; FERENC; SIKET, 2005), Zimmermann et

al. (ZIMMERMANN; PREMRAJ; ZELLER, 2007) utilizaram métricas de código

fonte para predição de bugs em sistemas mais realistas que os anteriores, obtendo

bons resultados. Outra métrica usada é o de clone de código. Kamei et al. (KAMEI

et al., 2011) e Monden et al. (MONDEN et al., 2002) encontraram pouca corre-

80

lação com predição de defeitos, porém encontraram correlações com confiabilidade

de código.

Métricas de Mudança de Código Fonte Outra metodologia é extrair métricas de mu-

dança, baseado na premissa de que o defeito será introduzido na porção do sis-

tema que foi alterado. Munson e Elbaum (MUNSON; ELBAUM, 1998) usaram

a variação do código fonte para previsão de um sistema embarcado. Nagappan e

Ball (NAGAPPAN; BALL, 2005) estenderam o conceito à variação e à remoção,

aplicando a abordagem nos sistemas da Microsoft R©. Hassan e Holt (HASSAN;

HOLT, 2005) usaram seis sistemas de código aberto para sua avaliação, a proposta

era proporcionar uma lista dos dez módulos mais propensos a defeitos, usando uma

abordagem baseada em caches. Kim et al. (KIM et al., 2007)a usou o conceito de

localidade temporal e especial para predição, além de usar o conceito de mudança

conjunta.

Comparações e Abordagens Híbridas de Métricas Estáticas e de Métricas Mudança

Outras abordagens comparam e/ou combinam tanto métricas estáticas quanto métri-

cas de mudança, e em alguns casos usam métricas de processo. Zimmermann et

al. (ZIMMERMANN; NAGAPPAN; ZELLER, 2008) analisa a evolução dos de-

feitos em contraste com o processo de desenvolvimento, comparando sua própria

implementação com Basili et al. (BASILI; BRIAND; MELO, 1996) e Nagappan e

Ball (NAGAPPAN; BALL, 2005) usando, como esses componentes da Microsoft R©.

Moser et al. (MOSER; PEDRYCZ; SUCCI, 2008) comparou métricas estáticas e de

mudança no projeto Eclipse. Outros executaram uma seleção fina de atributos us-

ando heurísticas (SHIVAJI et al., 2013; GAO et al., 2011).

Uso de Modelos em Múltiplos Sistemas Um outro ponto endereçado por outros trabal-

hos é a migração de modelos entre diferentes sistemas. Jureczko e Madeyski (JU-

RECZKO; MADEYSKI, 2010) e Zhang et al. (ZHANG et al., 2014) agruparam

diversos projetos e construíram preditores específicos para cada sistema e também

genéricos. Encontraram que apesar preditores específicos possuírem uma melhor

performance, preditores genéricos possuem uma performance adequada, sendo a

melhor alternativa para projetos cujo histórico de defeitos não permita a construção

de um preditor próprio. Nesse contexto Lewis et al. (LEWIS et al., 2013) incor-

porou um preditor de bugs à todos projetos do Google R©, encontrando que para um

melhor uso por parte dos usuários são necessárias ações que possam ser disparadas

81

pelo usuário para resolver a indicação de bugs.

Como não existem avaliações das abordagens existentes sobre predição de bugs no

contexto de sistemas procedurais, nós efetuamos um estudo aplicando essas abordagens

à sistemas procedurais, adaptando métricas de código fonte quando necessário. Abaixo

listamos o GQM conforme proposto por Basili et al. (BASILI; SELBY; HUTCHENS,

1986). Verificar a eficácia de abordagens de predição de bugs no contexto de sistemas de

software procedurais, avaliando abordagens existentes baseadas em métricas de código

estáticas da perspectiva do pesquisador no contexto de oito sistemas de código aberto e

projetos de código proprietário.

Os sistemas utilizados para essa avaliação são: (i) Linux, sistema operacional al-

tamente difundido com mais de 30.000 linhas de código; (ii) Sistemas Comerciais A,B e

C, todos no contexto de equipamentos de telecomunicação; (iii) BusyBox, sistema com

624 arquivos para geração de utilitários de sistema para sistemas embarcados; (iv) LwIP,

protocolos de rede para microcontroladores sem sistema operacional; (v) CpuMiner apli-

cação com 20 arquivos para computação de BitCoin. Todos os sistemas escolhidos são

escritos em C.

No estudo, as cinco abordagens existentes foram comparadas, a nível de aplica-

bilidade e performance em sistemas procedurais (GYIMOTHY; FERENC; SIKET, 2005;

JURECZKO; DIOMIDIS, 2010; KIM; WHITEHEAD JR.; ZHANG, 2008; KORU; LIU,

2005; MOSER; PEDRYCZ; SUCCI, 2008). Métricas de código fonte cujo foco são sis-

temas orientados a objetos foram adaptadas usando-se a premissa que um arquivo fonte

e seu respectivo cabeçalho são uma classe, métricas de herança não foram adaptadas.

Com base nessa adaptação a adaptabilidade das abordagens foi extraída. Com base nas

métricas extraídas, foi executada uma predição para cada sistema usando o(s) algoritmos

de aprendizado de máquina propostos por cada abordagem. Com base nos resultados da

predição usando validação cruzada em 10 estratos, foram medidas as performances, tanto

para cada sistema quanto para cada abordagem. Como resultado, foi encontrado que a

abordagem de Koru e Liu (KORU; LIU, 2005) possui o mais alto grau de adaptabilidade

(100%). Além disso, essa mesma abordagem apresentou, em média, a melhor perfor-

mance quando usando o algoritmo Random Forests, com F-Measure de 0.59 e desvio

padrão de 0.23. A abordagem de Gyimothy et al. (GYIMOTHY; FERENC; SIKET, 2005)

sem métricas adaptadas continha apenas linhas de código, e mesmo assim obteve uma

performance razoável, mostrando que uma parcela significativa do poder preditivo dessas

abordagens está presente nesse atributo. Baseado nos resultados obtidos, os três pontos a

82

seguir são apresentados.

Uso de métricas orientadas a objetos adaptadas O uso de métricas adaptadas de sis-

temas orientados a objetos para sistemas procedurais não mostrou nenhuma melhor

de performance. Tal diferença pode ser pelo fato de que o paradigma de desenvolvi-

mento usado difere, ou pela informação contida nas métricas de herança.

Contraste entre sistemas abertos e proprietários Sistemas de código aberto possuíram,

em média, uma melhor performance do que sistemas proprietários. Isso pode ser

devido ao desbalanceamento da classe alvo ou pela diferença no desenvolvimento

dos sistemas procedurais cujos objetivos em uma determinada versão geralmente

são apontados por um número menor de stakeholders.

Comparação da eficácia em sistemas orientados a objetos e procedurais As abordagens

obtiveram para sistemas procedurais desempenho inferior ao obtido para sistemas

orientados a objetos. Isso pode ser consequência do fato descrito acima, da restrição

das métricas, ou uma característica do sistemas em si.

Com base nas restrições encontradas e no desempenho inferior dos preditores para

sistemas procedurais, nós propomos o uso de alguns atributos baseados em boas práticas

de engenharia de software. O raciocínio utilizado se baseia em duas premissas: (i) onde

há defeitos simples, provavelmente haverá defeitos complexos; (ii) código com pouca

legibilidade ou informações ocultas induz o desenvolvedor a cometer erros. Abaixo são

listados os quatro atributos utilizados.

Código Duplicado Como existe evidência de que código duplicado é correlacionado aos

defeitos (JUERGENS et al., 2009; KAMEI et al., 2011; MONDEN et al., 2002), e

intuitivamente o código duplicado pode induzir a um concerto parcial, o mesmo foi

usado. Para implementação foram usadas duas granularidades, código duplicado

dentro do arquivo fonte e entre arquivos fontes.

Warnings de Compilador Warnings de compilador são locais no código onde uma falha

latente está presente. Em alguns casos a falha não se manifesta; porém ao deixa-los

o desenvolvedor pode estar apressado, desleixado ou ser inexperiente, em qual-

quer dos casos a presença de outros defeitos nesse arquivo é mais provável. Moser

et al. (MOSER; RUSSO; SUCCI, 2007) também encontrou correlação de Warn-

ings com defeitos. Nesse trabalho foi usado o GCC e seus três respetivos níveis

de Warnings: normal, Wall e Wextra.

83

Erros de Analisadores Estáticos Analisadores estáticos procuram padrões de código com

defeitos conhecidos, como alocação e a não desalocação de recursos. O raciocínio

para sua inclusão é o mesmo dos Warnings de compilador: se o desenvolvedor se

permite deixar erros de análise estática, outros defeitos mais graves podem estar

presentes. Foram usados analisadores estáticos que não requerem integração com o

processo de compilação e que são abertos. Os selecionados foram o CppCheck e o

Uno.

Contagens de Pré-Processador O pré-processador é uma forma de adicionar código

condicional em C. Ele pode gerar macros que atuam como funções, porém que são

expandidas em código fonte diretamente antes da compilação, também pode ser us-

ado para definir constantes, incluir outros arquivos e também habilitar/desabilitar

partes do código para a compilação. Essas funcionalidades podem causar proble-

mas por aumentar a variabilidade do código, introduzindo uma maior complexidade

ao desenvolvimento. Para cada arquivo foram contadas o número dessas diretivas e

usadas como atributos.

Para avaliar os atributos propostos acima, um estudo foi executado combinando os

atributos propostos com a abordagem de melhor performance: Koru e Liu (KORU; LIU,

2005). O propósito do estudo é avaliar a relevância dos atributos propostos no contexto

de predição de bugs e encontrar o melhor conjunto de atributos para predição de bugs em

sistemas de software procedurais. Nesse segundo estudo, cinco sistemas foram avaliados,

sendo estes um subconjunto dos sistemas de primeiro estudo: Linux, Sistemas Comerciais

A e B, BusyBox e LwIP. Somente uma versão foi avaliada por sistema, pois a avaliação

de múltiplas versões gera uma complexidade computacional que torna o estudo imprat-

icável. No estudo foram seguidos os seguintes passos: (i) preparação do conjunto de

dados usando-se as métricas de Koru e Liu (KO; MYERS, 2005), combinadas com os

atributos propostos; (ii) execução de uma seleção de atributos usando-se todas as combi-

nações de atributos(brute force feature selection);(iii) análise dos resultados utilizando-se

métodos de escolha(média, Copeland, menor miséria e contagem de borda(Borda Count).

Foram comparados os melhores conjuntos para cada métrica de aprendizado de máquina:

f-measure, precisão e recall. Também foram comparados a execução de cada atributo sep-

aradamente. Foi encontrado que, para cada sistema individualmente um conjunto pequeno

de atributo alcança uma alta performance; porém para melhores conjuntos para todos os

sistemas continham mais métricas. Foi encontrado que os artefatos de qualidades propos-

tos como atributos aumentaram a precisão sem interferir nas demais métricas. Eles tam-

84

bém estiveram no topo da performance média considerando-se apenas um atributo para

o modelo. As métricas de complexidade de McCabe, juntamente com linhas de código

apresentaram uma performance melhor ainda, entretanto os melhores conjuntos para pre-

cisão contêm tanto um artefato de qualidade como uma das métricas de McCabe, no caso

de recall e f-measure todos melhores conjuntos para todos sistemas contêm pelo menos

um artefato de qualidade, e apenas 3 contêm métricas de McCabe. Linhas de código es-

tive presente em todos os conjuntos para todos os sistemas e em parte considerável dos

conjuntos para sistemas individuais. Abaixo listamos as principais conclusões derivadas

dos resultados obtidos.

Linhas de código e complexidade de McCabe são os atributos mais gerais para predição de bugs

Como métricas de complexidade de McCabe e linhas de código estiveram em prati-

camente todos os melhores conjuntos, apresentaram boa performance como único

atributos, sugerimos que os mesmos sejam sempre considerados como atributos

para a construção de preditor de bugs no contexto de sistemas procedurais.

Artefatos de qualidade são bons atributos de predição de bugs Os artefatos de quali-

dade apresentaram, apesar de não em todos os sistemas, uma boa capacidade pred-

itiva, sendo assim, também devem ser considerados ao aplicar-se predição de bugs

para sistemas procedurais.

Cada sistema possui um subconjunto de atributos ótimo Outra conclusão é a diferença

de atributos no conjunto ótimo de cada sistema, mostrando que a seleção de atribu-

tos para cada sistema, nesse contexto, pode aumentar a performance consideravel-

mente.

Seguem abaixo as principais contribuições realizadas nesse trabalho.

Comparação de abordagens de predição de bugs no contexto de sistemas procedurais

Foram comparados, no contexto de sistemas procedurais de software, cinco abor-

dagens, mostrando que a adaptação de métricas orientadas à objetos não melhora o

desempenho dos mesmos, também foi encontrado que a melhor abordagem utiliza

métricas de Halstead, McCabe e linhas de código, juntamente com o algoritmo Ran-

dom Forests.

Uso de artefatos de qualidade como atributos de predição de bugs Após determinar a

melhor abordagem, foi proposto o uso de artefatos de qualidade de software como

85

atributos adicionais na predição de bugs no contexto de sistemas procedurais. Constatou-

se que os atributos propostos aumentam a precisão dos modelos de predição sem

prejudicar o recall e a f-measure. Foi encontrado também que a seleção de atributos

é importante para um modelo com melhor desempenho também nesse contexto.

A partir desse trabalho duas questões podem ser estudadas. O uso de analisadores

estáticos cuja integração com o processo de compilação é necessário, descobrindo mais

defeitos (latentes ou não) e portanto aumentado a informação presente nos modelos. E a

integração de modelos desse tipo no processo de desenvolvimento, seja utilizando-os no

ordenamento de testes ou revisões, seja recomendando alterações ou refatorações para o

desenvolvedor, seja atribuindo um grau de estabilidade para a versão a ser liberada.

86

APPENDIX B — COMPLETE RESULTS

In this appendix, we present the complete results obtained in the study described

in the Chapter 5. We present the obtained results for the three machine learning metrics

evaluated: precision in Table B.1, recall in Table B.2 and f-measure in Table B.3. The

results for each best set are presented for sets selection by the three metrics also: precision

in Table B.4, recall in Table B.5 and F-measure in Table B.6.We present the same results

presented in Figure 5.1, but for precision in Figure B.1 and for recall in Figure B.2.

Table B.1: Position Ordered By Precision
System A System B Busybox LWIP Linux Mean

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

DOpH 640 1.00 EsCMc 424 0.80 EsCMc 39337 0.38 CyCMc8060 1.00 CPL 0 0.66 EsCMc 57754 0.50
OpCH 683 1.00 PRE 11553 0.60 LOC 73368 0.32 EsCMc 34447 0.87 CyCMc42040 0.40 PRE 72704 0.41
LOC 6616 0.75 DUP 34868 0.52 PRE 98958 0.28 CPL 49445 0.83 PRE 54705 0.39 LOC 72787 0.50
PRE 67324 0.45 LOC 50181 0.48 SAL 114971 0.23 VOLH 90581 0.75 EsCMc 84869 0.36 CyCMc80218 0.44
DUP 99229 0.33 CyCMc113739 0.33 CyCMc118452 0.22 DUP 90584 0.75 LOC 111218 0.33 CPL 87060 0.35
CyCMc118800 0.25 SAL 124337 0.25 OpCH 121288 0.21 SAL 101635 0.71 DUP 120261 0.30 DUP 94438 0.41
VOCH 120804 0.22 TIMH 129175 0.08 VOCH 126881 0.17 BUGH 114162 0.66 BUGH 128412 0.20 OpCH 102227 0.39
SAL 121049 0.22 OpCH 129298 0.06 DOpH 127093 0.17 LOC 122552 0.62 VOLH 128490 0.20 DOpH 103855 0.27
CPL 128414 0.13 LENH 129340 0.05 DUP 127249 0.16 OpCH 129913 0.50 VOCH 128762 0.20 SAL 118611 0.31
EsCMc 129696 0.10 VOLH 129465 0.00 CPL 127825 0.16 PRE 130982 0.33 TIMH 129349 0.20 VOLH 122035 0.20
EFFH 130748 0.00 DIFH 129498 0.00 DIFH 128940 0.14 DOpH 131040 0.00 LENH 129546 0.19 BUGH 126437 0.20
TIMH 130751 0.00 DOpH 129562 0.00 DOrH 128941 0.14 LENH 131043 0.00 OpCH 129953 0.19 VOCH 127412 0.12
BUGH 130755 0.00 VOCH 129573 0.00 BUGH 129105 0.14 VOCH 131044 0.00 DIFH 130728 0.18 DIFH 130196 0.06
VOLH 130760 0.00 CPL 129616 0.00 EFFH 129872 0.12 TIMH 131045 0.00 EFFH 130781 0.18 LENH 130217 0.07
DIFH 130768 0.00 EFFH 129710 0.00 LENH 130385 0.10 DIFH 131048 0.00 DOpH 130943 0.17 TIMH 130247 0.06
LENH 130774 0.00 BUGH 129753 0.00 VOLH 130880 0.05 EFFH 131049 0.00 SAL 131066 0.15 EFFH 130432 0.06
DOrH 131070 0.00 DOrH 131070 0.00 TIMH 130919 0.05 DOrH 131070 0.00 DOrH 131069 0.14 DOrH 130644 0.05

Table B.2: Position Ordered By Recall
System A System B Busybox LWIP Linux Mean

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

LOC 7595 0.21 LOC 3887 0.25 SAL 7080 0.16 CPL 5714 0.62 EsCMc142 0.41 LOC 26686 0.26
DUP 44751 0.14 PRE 17230 0.20 CPL 10342 0.15 EsCMc83437 0.43 CyCMc182 0.41 DUP 71151 0.17
PRE 91336 0.09 DUP 49601 0.16 LOC 10349 0.15 SAL 111049 0.31 LOC 470 0.38 EsCMc75113 0.20
VOCH 91341 0.09 EsCMc116825 0.05 DOrH 25460 0.12 LOC 111133 0.31 DUP 2493 0.35 CPL 79690 0.16
CyCMc121849 0.03 SAL 123270 0.04 DIFH 28280 0.12 PRE 124826 0.25 TIMH 11382 0.31 SAL 83753 0.16
EsCMc121853 0.03 TIMH 126784 0.02 EsCMc53312 0.10 DUP 128923 0.18 DIFH 12399 0.30 DIFH 86390 0.08
SAL 121859 0.03 OpCH 128961 0.01 VOCH 53448 0.10 VOLH 128957 0.18 BUGH 22565 0.29 PRE 86913 0.16
CPL 121863 0.03 CyCMc129181 0.01 DOpH 53469 0.10 BUGH 130599 0.12 DOpH 22820 0.29 DOpH 93134 0.08
DOpH 128844 0.01 LENH 129344 0.01 OpCH 97098 0.06 CyCMc130978 0.06 SAL 55508 0.26 CyCMc102434 0.10
OpCH 129684 0.01 CPL 129462 0.00 PRE 106195 0.05 OpCH 131036 0.06 VOLH 92811 0.24 VOCH 104372 0.08
DIFH 130729 0.00 EFFH 129465 0.00 BUGH 123380 0.03 TIMH 131040 0.00 PRE 94979 0.23 TIMH 106119 0.06
VOLH 130730 0.00 BUGH 129481 0.00 CyCMc129984 0.01 EFFH 131041 0.00 VOCH 116544 0.22 BUGH 107355 0.09
LENH 130734 0.00 VOCH 129486 0.00 DUP 129987 0.01 DIFH 131042 0.00 EFFH 127110 0.20 DOrH 109903 0.05
EFFH 130747 0.00 VOLH 129489 0.00 LENH 130632 0.00 VOCH 131043 0.00 LENH 129635 0.18 VOLH 122528 0.08
TIMH 130748 0.00 DOpH 129492 0.00 TIMH 130644 0.00 LENH 131044 0.00 OpCH 129824 0.18 OpCH 123320 0.06
BUGH 130752 0.00 DIFH 129503 0.00 VOLH 130654 0.00 DOpH 131046 0.00 DOrH 130847 0.14 EFFH 129804 0.04
DOrH 131070 0.00 DOrH 131070 0.00 EFFH 130657 0.00 DOrH 131070 0.00 CPL 131070 0.00 LENH 130277 0.04

87

Table B.3: Position Ordered By F-measure
System A System B Busybox LWIP Linux Mean

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

O
rd

er

Po
si

tio
n

Va
lu

e

LOC 2153 0.33 LOC 3281 0.33 LOC 16525 0.20 CPL 3325 0.71 CyCMc3 0.40 LOC 28937 0.33
DUP 52795 0.20 PRE 10569 0.30 SAL 21053 0.19 EsCMc56522 0.58 EsCMc39 0.39 EsCMc69374 0.25
PRE 87385 0.15 DUP 39905 0.24 EsCMc45905 0.15 SAL 115899 0.43 LOC 1639 0.35 DUP 76619 0.22
VOCH 97514 0.12 EsCMc116811 0.10 CPL 48875 0.15 LOC 121091 0.41 DUP 31180 0.32 PRE 83745 0.22
CyCMc124698 0.06 SAL 124787 0.06 DOrH 68302 0.13 DUP 129273 0.30 PRE 86427 0.29 CPL 88054 0.18
SAL 125688 0.06 TIMH 128060 0.04 DIFH 68303 0.13 VOLH 129322 0.30 TIMH 124613 0.24 CyCMc102739 0.12
CPL 127080 0.05 CyCMc128247 0.02 VOCH 75349 0.12 PRE 130264 0.28 BUGH 124633 0.24 SAL 103516 0.19
EsCMc127595 0.05 OpCH 129327 0.02 DOpH 76132 0.12 BUGH 130723 0.21 DIFH 126330 0.23 VOCH 112525 0.09
DOpH 127850 0.03 LENH 129362 0.02 OpCH 99441 0.10 CyCMc130953 0.11 VOLH 127617 0.22 DIFH 117270 0.07
OpCH 127960 0.03 DOpH 129914 0.00 PRE 104080 0.09 OpCH 131014 0.11 DOpH 127758 0.22 DOrH 118509 0.05
BUGH 130746 0.00 VOCH 129915 0.00 BUGH 127219 0.05 EFFH 131040 0.00 VOCH 128808 0.21 DOpH 118539 0.07
TIMH 130749 0.00 VOLH 129916 0.00 CyCMc129794 0.03 DOpH 131041 0.00 SAL 130154 0.19 OpCH 123647 0.09
EFFH 130751 0.00 DIFH 129917 0.00 DUP 129942 0.03 LENH 131042 0.00 EFFH 130367 0.19 BUGH 128648 0.10
DIFH 130756 0.00 EFFH 129918 0.00 EFFH 130665 0.01 VOCH 131043 0.00 LENH 130388 0.19 TIMH 129075 0.05
VOLH 130760 0.00 BUGH 129919 0.00 LENH 130686 0.01 DIFH 131045 0.00 OpCH 130493 0.18 VOLH 129697 0.10
LENH 130762 0.00 CPL 129920 0.00 VOLH 130871 0.01 TIMH 131046 0.00 DOrH 131036 0.14 LENH 130448 0.04
DOrH 131070 0.00 DOrH 131070 0.00 TIMH 130908 0.01 DOrH 131070 0.00 CPL 131070 0.00 EFFH 130548 0.04

Table B.4: Performance for Selected Sets Using Precision.
System A System B Busybox LWIP Linux Mean

P R F P R F P R F P R F P R F P R F
Baseline 0.42 0.09 0.15 0.25 0.05 0.09 0.20 0.05 0.08 0.73 0.50 0.59 0.34 0.26 0.30 0.39 0.19 0.24
Full Set 0.55 0.11 0.18 0.53 0.12 0.20 0.31 0.10 0.15 0.70 0.44 0.54 0.42 0.24 0.31 0.50 0.20 0.28
Quality Features 0.36 0.09 0.14 0.44 0.15 0.22 0.45 0.16 0.23 0.83 0.31 0.45 0.43 0.25 0.32 0.50 0.19 0.27
Average 1.00 0.13 0.23 0.71 0.13 0.22 0.54 0.12 0.19 0.86 0.38 0.52 0.45 0.23 0.30 0.71 0.20 0.29
Borda Count 0.77 0.18 0.29 0.72 0.17 0.28 0.50 0.11 0.18 1.00 0.44 0.61 0.46 0.22 0.30 0.69 0.22 0.33
Copeland 0.75 0.11 0.19 0.67 0.16 0.26 0.44 0.10 0.16 0.86 0.38 0.52 0.46 0.25 0.33 0.64 0.20 0.29
Least Misery 0.71 0.18 0.29 0.68 0.17 0.28 0.50 0.09 0.15 0.70 0.44 0.54 0.49 0.24 0.32 0.62 0.22 0.32
System A V. 2 Best 1.00 0.02 0.04 0.06 0.01 0.02 0.21 0.07 0.10 0.50 0.06 0.11 0.20 0.18 0.19 0.39 0.07 0.09
System B V. 2 Best 0.08 0.02 0.03 1.00 0.05 0.10 0.50 0.12 0.20 0.86 0.38 0.52 0.33 0.40 0.36 0.55 0.19 0.24
Busybox 1.8.3 Best 0.35 0.15 0.21 0.48 0.15 0.22 0.88 0.06 0.11 0.71 0.62 0.67 0.43 0.23 0.30 0.57 0.24 0.30
Lwip 1.0.0 Best 0.25 0.04 0.06 0.33 0.01 0.03 0.22 0.02 0.03 1.00 0.06 0.12 0.41 0.41 0.41 0.44 0.11 0.13
Linux 3.0 Best 0.13 0.04 0.06 0.00 0.00 0.00 0.16 0.15 0.16 0.83 0.62 0.71 0.67 0.00 0.00 0.36 0.16 0.19
Baseline Improve-
ment

0.58 0.09 0.14 0.75 0.12 0.19 0.68 0.11 0.15 0.27 0.12 0.12 0.33 0.15 0.11 0.32 0.05 0.09

P - Precision R - Recall F - F-Measure

Table B.5: Performance for Selected Sets Using Recall.
System A System B Busybox LWIP Linux Mean

P R F P R F P R F P R F P R F P R F
Baseline 0.42 0.09 0.15 0.25 0.05 0.09 0.20 0.05 0.08 0.73 0.50 0.59 0.34 0.26 0.30 0.39 0.19 0.24
Full Set 0.55 0.11 0.18 0.53 0.12 0.20 0.31 0.10 0.15 0.70 0.44 0.54 0.42 0.24 0.31 0.50 0.20 0.28
Quality Features 0.36 0.09 0.14 0.44 0.15 0.22 0.45 0.16 0.23 0.83 0.31 0.45 0.43 0.25 0.32 0.50 0.19 0.27
Average 0.67 0.18 0.29 0.56 0.19 0.28 0.49 0.21 0.29 0.78 0.88 0.82 0.41 0.27 0.32 0.58 0.35 0.40
Borda Count 0.71 0.22 0.33 0.47 0.29 0.36 0.43 0.17 0.24 0.91 0.62 0.74 0.39 0.32 0.35 0.58 0.32 0.40
Copeland 0.56 0.18 0.27 0.50 0.25 0.34 0.50 0.15 0.23 0.90 0.56 0.69 0.35 0.30 0.32 0.56 0.29 0.37
Least Misery 0.29 0.25 0.27 0.45 0.25 0.32 0.40 0.24 0.30 0.80 0.50 0.62 0.35 0.26 0.30 0.46 0.30 0.36
System A V. 2 Best 0.54 0.36 0.43 0.53 0.21 0.30 0.32 0.07 0.12 0.86 0.38 0.52 0.42 0.27 0.33 0.53 0.26 0.34
System B V. 2 Best 0.50 0.07 0.13 0.56 0.37 0.45 0.45 0.17 0.24 0.73 0.50 0.59 0.33 0.30 0.31 0.51 0.28 0.34
Busybox 1.8.3 Best 0.43 0.18 0.26 0.38 0.13 0.20 0.42 0.35 0.38 0.86 0.38 0.52 0.35 0.26 0.30 0.49 0.26 0.33
Lwip 1.0.0 Best 0.17 0.04 0.06 0.42 0.07 0.11 0.39 0.10 0.16 0.74 0.88 0.80 0.24 0.35 0.28 0.39 0.29 0.28
Linux 3.0 Best 0.42 0.09 0.15 0.31 0.05 0.09 0.32 0.07 0.11 0.83 0.31 0.45 0.34 0.54 0.42 0.44 0.21 0.24
Baseline Improve-
ment

0.29 0.27 0.28 0.31 0.32 0.36 0.30 0.30 0.30 0.18 0.38 0.23 0.09 0.28 0.12 0.19 0.16 0.16

P - Precision R - Recall F - F-Measure

88

Table B.6: Performance for Selected Sets Using F-Measure.
System A System B Busybox LWIP Linux Mean

P R F P R F P R F P R F P R F P R F
Baseline 0.42 0.09 0.15 0.25 0.05 0.09 0.20 0.05 0.08 0.73 0.50 0.59 0.34 0.26 0.30 0.39 0.19 0.24
Full Set 0.55 0.11 0.18 0.53 0.12 0.20 0.31 0.10 0.15 0.70 0.44 0.54 0.42 0.24 0.31 0.50 0.20 0.28
Quality Features 0.36 0.09 0.14 0.44 0.15 0.22 0.45 0.16 0.23 0.83 0.31 0.45 0.43 0.25 0.32 0.50 0.19 0.27
Average 0.71 0.22 0.33 0.47 0.29 0.36 0.43 0.17 0.24 0.91 0.62 0.74 0.39 0.32 0.35 0.58 0.32 0.40
Borda Count 0.71 0.22 0.33 0.47 0.29 0.36 0.43 0.17 0.24 0.91 0.62 0.74 0.39 0.32 0.35 0.58 0.32 0.40
Copeland 0.79 0.20 0.32 0.59 0.17 0.27 0.33 0.13 0.19 0.83 0.62 0.71 0.44 0.27 0.33 0.60 0.28 0.36
Least Misery 0.50 0.24 0.32 0.55 0.23 0.32 0.46 0.27 0.34 0.88 0.44 0.58 0.39 0.27 0.32 0.56 0.29 0.38
System A V. 2 Best 0.82 0.33 0.47 0.42 0.13 0.20 0.42 0.12 0.18 0.80 0.50 0.62 0.38 0.27 0.32 0.57 0.27 0.36
System B V. 2 Best 0.50 0.07 0.13 0.56 0.37 0.45 0.45 0.17 0.24 0.73 0.50 0.59 0.33 0.30 0.31 0.51 0.28 0.34
Busybox 1.8.3 Best 0.14 0.05 0.08 0.49 0.25 0.33 0.58 0.29 0.39 0.89 0.50 0.64 0.36 0.30 0.33 0.49 0.28 0.35
Lwip 1.0.0 Best 0.37 0.13 0.19 0.62 0.13 0.22 0.41 0.06 0.10 0.88 0.88 0.88 0.42 0.24 0.31 0.54 0.29 0.34
Linux 3.0 Best 0.42 0.09 0.15 0.31 0.05 0.09 0.32 0.07 0.11 0.83 0.31 0.45 0.34 0.54 0.42 0.44 0.21 0.24
Baseline Improve-
ment

0.40 0.24 0.32 0.37 0.32 0.36 0.38 0.24 0.31 0.18 0.38 0.29 0.10 0.28 0.12 0.21 0.13 0.16

P - Precision R - Recall F - F-Measure

89

Figure B.1: Measurement variance analysis across target projects: best feature subsets
selected based on precision.

(a) Precision

(b) Recall

(c) F-Measure

90

Figure B.2: Measurement variance analysis across target projects: best feature subsets
selected based on recall.

(a) Precision

(b) Recall

(c) F-Measure

	Thanks
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Related Work
	1.2 Proposed Solution and Overview of Contributions
	1.3 Outline

	2 Defect Prediction Approaches
	2.1 Machine Learning Background
	2.2 Defect Predictors based on Static Code Metrics
	2.3 Defect Predictors based on Change Code Metrics
	2.4 Defect Predictors using Heterogeneous Code Metrics
	2.5 Comparisons and Measurements
	2.6 Cross-Project Defect Prediction
	2.7 Approaches Selected for Evaluation
	2.8 Final Remarks

	3 Evaluation of Existing Bug Prediction Approaches
	3.1 Study Settings
	3.1.1 Goal and Research Questions
	3.1.2 Procedure
	3.1.3 Target Systems

	3.2 Results and Analysis
	3.3 Discussion
	3.4 Final Remarks

	4 Quality Features for Bug Prediction in Procedural Software Systems
	4.1 Compiler Warnings
	4.2 Static Code Analysers
	4.3 Duplicated Code
	4.4 Preprocessor Usage
	4.5 Final Remarks

	5 Evaluation
	5.1 Goal and Research Question
	5.2 Procedure
	5.2.1 Dataset Preparation
	5.2.2 Execution Details of the Classification Algorithm
	5.2.3 Result Analysis Method

	5.3 Target Projects
	5.4 Results
	5.4.1 Individual Feature Effectiveness (RQ1)
	5.4.2 Best Feature Subsets (RQ2)

	5.5 Threats to validity
	5.6 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References
	Appendix A — Resumo Extendido
	Appendix B — Complete Results

