
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

EDER JOHN SCHEID

INSpIRE: an Integrated NFV-baSed
Intent Refinement Environment

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Lisandro Zambenedetti
Granville

Porto Alegre
May 2017

CIP – CATALOGING-IN-PUBLICATION

Scheid, Eder John

INSpIRE: an Integrated NFV-baSed
Intent Refinement Environment / Eder John Scheid. – Porto Ale-
gre: PPGC da UFRGS, 2017.

83 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Lisandro Zambenedetti Granville.

1. Policy-based management. 2. Policy refinement.
3. Software-defined networking. 4. Network functions virtual-
ization. 5. Intent-based Networking. I. Granville, Lisandro Zam-
benedetti. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

Only in Brazilian Portuguese. See page 4.

AGRADECIMENTOS

Em primeiro lugar, gostaria de agradecer à minha família, a qual é a base de tudo. Ao meu
pai e minha mãe, que são exemplo a serem seguidos de integridade, perseverança, honestidade,
trabalho duro e por me ensinarem que o estudo é uma fundação essencial no crescimento do
indivíduo. Ao meu irmão, companheiro desde sempre, exemplo de dedicação e que sempre
torceu por mim e pelo Internacional :). A minha namorada, que esteve presente em todos os
momentos, bons ou ruins e sempre acreditou em mim. Sem vocês nunca teria chegado até aqui.
Obrigado!

Gostaria de também agradecer ao meu orientador, Lisandro, que durante todo o decorrer de
meu mestrado contribuiu com diversos elementos essenciais para a conclusão desta dissertação,
oportunidades e pela valiosa orientação tanto acadêmica e pessoal. Destaco as reuniões e en-
contros que foram fonte de esclarecimento para problemas de pesquisa e para indicar a direção
na qual seguir durante toda minha formação. Meus agradecimentos ao corpo docente e técni-
cos administrativos da Universidade Federal do Rio Grande do Sul (UFRGS), em especial aos
professores das disciplinas que cursei durante o mestrado, obrigado pelos ensinamentos.

Estendo meus agradecimentos à todo o grupo de Redes de Computadores do Instituto de
Informática da UFRGS, grupo que mais que colegas, se tornaram amigos. Expresso minha
gratidão ao Lab. 210 pela fiel parceria, amizade, e churrascos durante estes dois anos, em
especial ao Cristian Machado (Batman), Muriel Franco (Mumu), Ricardo Pfitscher (Tocaio) e
Ricardo Santos (Ricardão) pelas múltiplas contribuições nos artigos e nesta dissertação. Valeu,
gurizada!

Uma menção à todos meus amigos que estão do meu lado até hoje, desde o ensino funda-
mental, ensino médio e graduação. Espero que toda a amizade que temos continue se perpet-
uando.

Por fim, obrigado à todos as pessoas, departamentos e órgãos federais que contribuíram de
alguma maneira, direta ou indireta, para minha formação.

"Desire to know why, and how, curiosity; such as is in no living creature but man: so
that man is distinguished, not only by his reason, but also by this singular passion

from other animals; in whom the appetite of food, and other pleasures of sense, by
predominance, take away the care of knowing causes; which is a lust of the mind, that

by a perseverance of delight in the continual and indefatigable generation of
knowledge, exceedeth the short vehemence of any carnal pleasure".

— THOMAS HOBBES - LEVIATHAN.

ABSTRACT

Many aspects of the management of computer networks, such as quality of service and secu-
rity, must be taken into consideration to ensure that the network meets the users and clients
demands. Fortunately, management solutions were developed to address these aspects, such
as Intent-Based Networking (IBN). IBN is a novel networking paradigm that abstracts net-
work configurations by allowing administrators to specify how the network should behave and
not what it should do. In this dissertation, we introduce an IBN solution called INSpIRE

(Integrated NFV-based Intent Refinement Environment). INSpIRE implements a refinement
technique to translate intents into a set of configurations to perform a desired service chain in
both homogeneous environments (virtualized functions only) and heterogeneous environments
(virtualized functions and physical middleboxes). This refinement technique relies on Non-
Functional Requirements (NFRs) and clustering to determine the network functions that will
compose the service chain. Our solution is capable of (i) determining the specific functions
required to fulfill an intent, (ii) chaining these functions according to their dependencies, and
(iii) presenting enough low-level information to network devices for posterior traffic steering.
Furthermore, to assess the feasibility of our solution we detail case studies that reflects real-
world management situations and evaluate the scalability of the refinement process. Finally, the
results showed that INSpIRE is capable of delivering a service chain that meets the require-
ments specified in the intent in small and large scenarios.

Keywords: Policy-based management. Policy refinement. Software-defined networking. Net-
work functions virtualization. Intent-based Networking.

INSpIRE - Ambiente Integrado de Refinamento de Intenções Baseado em NFV

RESUMO

Muitos aspectos da gestão de redes de computadores, como a Qualidade de Serviço (QoS) e
segurança, devem ser levados em consideração para garantir que a rede atenda às exigências
de usuários e clientes. Felizmente, soluções de gestão de rede foram desenvolvidas para lidar
com estes aspectos, tais como Redes Baseadas em Intenção (Intent-based Networking - IBN).
IBN é um novo paradigma de rede que abstrai configurações de rede, permitindo que admi-
nistradores especifiquem como a rede deve se comportar e não o que ele deve fazer. Nesta
dissertação, apresentamos uma solução de IBN chamada INSpIRE (Integrated NFV-based In-
tent Refinement Envirorment). INSpIRE implementa uma técnica de refinamento para tradu-
zir intenções em um conjunto de configurações para executar uma desejada cadeia de serviço
em ambos, ambientes homogêneos (somente funções virtualizadas) e ambientes heterogêneos
(funções virtualizadas e middleboxes físicas). A técnica de refinamento baseia-se em Requisi-
tos Não Funcionais (Non-Functional Requirements - NFRs) e clustering para determinar quais
funções de rede deverão compor a cadeia de serviços. Nossa solução é capaz de (i) determinar
as funções específicas necessárias para o cumprimento de uma intenção, (ii) encadear estas fun-
ções de acordo com suas dependências e (iii) apresentar informações de baixo nível suficientes
para que dispositivos de rede possam posteriormente orientar o tráfego de rede por essa cadeia
de serviço. Além disso, para avaliar a viabilidade da nossa solução, estudos de caso no qual
refletem situações de gestão do mundo real e uma avaliação da escalabilidade do processo de
refinamento são detalhados. Por fim, os resultados mostraram que INSpIRE é capaz de for-
necer uma cadeia de serviços que atende aos requisitos especificados na intenção em cenários
pequenos e grandes.
Palavras-chave: Gerenciamento de Rede Baseado em Políticas. Refinamento de Políticas. Re-
des Definidas por Sofware. Virtualização de Funções de Rede. Redes Baseadas em Intenções.

LIST OF FIGURES

2.1 SDN OpenFlow Architecture . 18
2.2 NFV-enabled Infrastructure . 20
2.3 Synergy between NFV and SDN with Service Chaining 21
2.4 Static and Dynamic Service Chaining Examples 22
2.5 The IETF Policy-Based Management Architecture 22
2.6 Diagram of the Types of Policies . 23
2.7 ECA Policy and Intent Example . 24

4.1 INSpIRE Architecture and Main Components 31
4.2 Valid Intent Parsing Example . 34
4.3 INSpIRE Index Page . 35
4.4 Intent Authoring Screen . 36
4.5 INSpIRE Web-Interface Views . 37

5.1 SIG Example . 40
5.2 Pre-defined SIG for Middlebox Security 41
5.3 INSpIRE Intent Refinement Flow . 45
5.4 VNF Clustering Example . 46

6.1 Modeled SIG for Middlebox Privacy . 50
6.2 Example of a SIG in YAML Format . 51
6.3 Operationalizations Tree View . 52
6.4 Time to discover 3 clusters in different scenarios 58
6.5 Time to calculate the scores in different SIGs 58

LIST OF TABLES

4.1 Regular Expressions Examples . 33
4.2 Exposed INSpIRE REST Functions . 36

5.1 Quantitative Contribuitions from Affleck and Krishna (AFFLECK; KR-
ISHNA, 2012) . 42

6.1 Impact of Operationalizations towards Leaf-Softgoals 49
6.2 User Domains and Respective IP Ranges 54
6.3 Results Obtained for the Case Study 1 . 54
6.4 Results Obtained for the Case Study 2 . 55
6.5 Results Obtained for the Case Study 3 . 56

LIST OF ABBREVIATIONS AND ACRONYMS

BSS Business Support System

CAPEX CApital EXpenditure

CNL Controlled Natural Language

COTS Commerical-Of-The-Shelf Server

CPU Central Processing Unit

ECA Event-Condition-Action

ETSI European Telecommunications Standards Institute

FTP File Transfer Protocol

GiB Gigabyte

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IBN Intent-Based Networking

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

IP Internet Protocol

IPS Intrusion Prevention System

ISG Industry Specification Groups

ISP Internet Service Providers

JSON JavaScript Object Notation

KAOS Knowledge Acquisition in autOmated Specification

MANO Management and Orchestration

MD5 Message-Digest algorithm 5

MVC Model View Controller

NAT Network Address Translation

NB North Bound

NFR Non-Functional Requirement

NFV Network Functions Virtualization

NS Network Service

OPEX OPerational EXpenditure

OSS Operational Support System

PBNM Policy-Based Network Management

PDP Policy Decision Point

PEP Policy Enforcement Point

PIN Personal Identification Number

QoS Quality of Service

RAM Random Access Memory

RFC Request For Comments

SCaaS Service Chain as a Service

SDN Software-Defined Networking

SFC Service Function Chaining

SHA Secure Hash Algorithm

SLA Service Level Agreement

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SSL Secure Socket Layer

SSH Secure Shell

SIG Softgoal Interdependency Graph

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNF Virtual Network Function Descriptor

VoIP Voice over Internet Protocol

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

CONTENTS

1 INTRODUCTION . 15

2 BACKGROUND . 18

2.1 Software-Defined Networks (SDN) . 18

2.2 Network Functions Virtualization (NFV) . 19

2.3 Traffic Steering and Service Chaining . 21

2.4 Policy-Based Network Management (PBNM) 22

2.4.1 Policy Refinement . 23

2.5 Intent-based Networking (IBN) . 24

3 RELATED WORK . 26

3.1 Network Functions Virtualization . 26

3.2 SDN-based Traffic Steering and Service Chaining 26

3.3 Policy-Based Network Management . 27

3.3.1 Policy Refinement . 28

3.4 Intent-Based Networking . 29

3.5 Discussion of Related Work . 29

4 INTEGRATED NFV-BASED INTENT REFINEMENT ENVIRONMENT 30

4.1 Integrated NFV-baSed Intent Refinement Environment Overview 30

4.1.1 Main Components . 30

4.2 Controlled Natural Language (CNL) . 32

4.3 Intent Translation . 33

4.3.1 Intent Validation . 33

4.3.2 Conflict Detection . 33

4.4 INSpIRE Prototype GUI Implementation 34

5 REFINEMENT TECHNIQUE . 38

5.1 Non-Functional Requirements Framework 38

5.2 Softgoal Interdependency Graphs (SIGs) . 39

5.3 Quantitative Calculation of NFR . 40

5.4 Intent Refinement . 44

5.4.1 Clustering . 44

5.4.2 VNF Selection . 46

5.4.3 VNF Dependency Ordering . 47

6 PROTOTYPE AND EVALUATION . 49
6.1 INSpIRE Prototype Case Study . 49
6.1.1 SIG Modeling . 49
6.1.2 VNF Insertion . 52
6.1.3 Intent Authoring . 53
6.2 Intent Refinenemt Case Studies . 53
6.2.1 Case Study 1 - Generic Academic Network 53
6.2.2 Case Study 2 - Common Company Network 55
6.2.3 Case Study 3 - VNF Service Chain as a Service (VNF-SCaaS) 56
6.3 Evaluation . 57
6.3.1 Clustering Evaluation . 57
6.3.2 Score Calculation Evaluation . 57

7 CONCLUDING REMARKS . 60
7.1 Summary of Contributions . 60
7.2 Final Remarks and Future Work . 61

REFERENCES . 63

APPENDIXA PUBLISHED PAPER – ISCC 2016 67

APPENDIXB PUBLISHED PAPER – IM 2017 74

15

1 INTRODUCTION

Many aspects of computer networks management, such as Quality of Service (QoS) and se-
curity, must be taken into account to ensure that the network meets the requirements of the users
and clients. The devices that form the network must be individually configured to achieve a sat-
isfactory performance, and this requires time and effort on the part of the network administrators
(VERMA, 2009). This activity generally leads to an interruption of the network and results in
rules that depend, on a great extend, on the physical network topology. Fortunately, many
approaches have been adopted to tackle these issues, including well-known and widely em-
ployed solutions such as Simple Network Management Protocol (SNMP) (CASE et al., 1990)
and Policy-Based Network Management (PBNM) (STRASSNER, 2003) (VERMA, 2002), as
well as more recent techniques based on Intent-Based Networking (IBN) (BEHRINGER et al.,
2015).

IBN is a novel networking paradigm that abstracts network configurations by allowing ad-
ministrators to specify how the network should behave and not what it should do. For example,
in IBN solutions, one must write an intent (e.g. “All outgoing network traffic is encrypted and
secure”) and not an instruction (e.g. “If a packet’s destination IP is not in the company’s subnet
IP range, then encrypt it using the f() function with the SHA3 parameter”). Intent introduces
a context and is not vendor-specific, which means that the underlying mechanisms must be ca-
pable of translating it to low-level configurations and maintaining the desired state throughout
the entire network operation. Given the dynamicity involved in IBN, the underlying technolo-
gies must be flexible enough to cope with an ever-changing network environment, by scaling
and moving accordingly. Novel technologies have arisen as alternatives to provide this flexibil-
ity, and include Network Functions Virtualization (NFV) (ETSI, 2012), and Software-Defined
Networking (SDN) (FEAMSTER; REXFORD; ZEGURA, 2014).

Network functions, such as load balancing, firewalls, and Intrusion Detection Systems (ID-
Ses) are traditionally implemented in physical devices (often referred to as middleboxes). Mid-
dleboxes tend to be proprietary and vendor-specific, and thus force network operators to learn
about their peculiarities from different vendors, which is counter-productive. Moreover, physi-
cal middleboxes are not flexible enough to accommodate bursts of demand, which intrinsically
hinders their scalability. NFV is a novel technology that addresses the lack of flexibility of
physical middleboxes and makes use of Commercial Off-The-Shelf (COTS) hardware to host
virtualized network services. By adopting this approach, the CApital EXpenditure (CAPEX)
and OPerational EXpenditure (OPEX) can be significantly reduced. In addition, with NFV, ser-
vice provisioning can be easily scaled up or down depending on the requirements of the network.
These benefits are driving the application of innovative network functions and accelerating the
adoption of NFV by large companies.

NFV allows the chaining of multiple Virtual Network Functions (VNFs). This VNF chain-
ing enables network operators to decide which sequence of VNFs a packet should undergo. The

16

act of specifying the sequence of VNFs is called Service Function Chaining (SFC) (QUINN;
NADEAU, 2015). Service chaining in current network infrastructures is statically defined and
dependent on the network’s topology. This imposes a challenge to the operator when adding
or removing services, since earlier technologies are difficult to redeploy (JOHN et al., 2013).
When NFV is allied with SDN, this chaining can be performed dynamically. SDN decou-
ples the control plane from the data plane, and provides (a) a global view of the network and
(b) a controller that makes decisions about traffic forwarding (FEAMSTER; REXFORD; ZE-
GURA, 2014). As a result of this separation, a controller can be implemented to steer the
traffic dynamically during runtime. This means that service chaining can be easily adapted to
the administrator’s needs. The chaining is created from existing VNFs and middleboxes, and
thus ensures that network resources are used efficiently (BLENDIN et al., 2014). However,
the management of network functions, service chains, and other network resources becomes a
challenging task as the dynamicity of the network increases. Thus, the employment of intents

and IBN is appropriate in the context of service chaining. Moreover, intents can be used to de-
couple management strategies from implementation details, and this way reduce the amount of
specific knowledge from system-level administrators when configuring low-level settings, e.g.

the chaining of VNFs.

Even though IBN is a novel networking paradigm, intents can still be regarded as a sys-
tem of high-level abstract policies. In addition, they do not involve specific requirements or
configurations, e.g. OpenFlow rules (MCKEOWN et al., 2008). Thus, IBN solutions must be
able to translate these high-level policies into specific lower-level configurations, e.g. IPTables
rules or routing tables. This translation process is referred to as “policy refinement” and has
been investigated for several years within the context of PBNM (MOFFETT; SLOMAN, 1993)
(CRAVEN et al., 2011). However, to the best of our knowledge, refinement techniques em-
ployed alongside IBN and NFV, have not been exploited in any other solution, which means
that there is an opportunity to investigate refinement techniques in the context of IBN. More-
over, network administrators have different needs depending on the network traffic that they
manage and different customers and end-users of the network do not necessarily have the same
security concerns. For example, SSH packets exchanged inside a company’s network can be
allowed to pass through a less secure firewall, instead of passing through a more sophisticated
firewall and a DPI. However, these premises give rise to an important question: how can these
security concerns can be specified with regard to service chaining? One approach to solving
this problem is the use of IBN and policy refinement to assist the administrator in translating
these concerns into service chains in a straightforward, and uncomplicated manner.

In this dissertation, we introduce an IBN solution called INSpIRE (Integrated NFV-based
Intent Refinement Environment). INSpIRE implements a refinement technique to translate in-

tents , constrained by a Controlled Natural Language - CNL (SCHEID et al., 2016), into a set of
configurations to provide the required service chain in both homogeneous environments (VNFs

17

only) and heterogeneous environments (VNFs, physical network functions, and middleboxes)1.
Our solution involves a refinement process that is based on non-functional requirements and
softgoals, to decompose the intents and calculate the values that are relied on as selection cri-
teria for the choice of the middleboxes that will compose the service chain – ultimately, by
satisfying the desired intent. INSpIRE is capable of (i) determining the specific VNFs re-
quired to fulfill an intent, (ii) pre-chaining these VNFs according to their dependencies, and
(iii) providing enough low-level information to the network devices for posterior traffic steer-
ing.

Moreover, a prototype has been implemented to provide an evaluation of the feasibility
of our solution. The prototype contains a Graphical User Interface (GUI) and a computing
module. In the GUI, a network operator can write intents, manage the available VNFs in its
infrastructure, and also configure all the variables and constraints involved in the refinement
process. The compute module is responsible for carrying out all the heavy-duty tasks, such
as calculating the values that make up the selection criteria and are used for cluster analysis.
However, our prototype does not tackle the question of the traffic steering process to provide a
more consistent evaluation of the refinement procedure, as this can be undertaken by external
elements. Finally, we describe three case studies and conduct experiments to demonstrate the
scalability of the refinement features and evaluate our solution in real-world scenarios.

The remainder of this dissertation is structured as follows. Chapter 2 provides a brief
overview of the main concepts employed in our solution. Next, in Chapter 3 we discuss the
related work of the area. INSpIRE is examined in detail, in Chapter 4, together with the
elements, techniques, and prototype. In Chapter 5 we provide a formal definition and represen-
tation of softgoals and the quantitative calculation of the softgoals’ values. There is a prototype
case study, together with case studies, and experiments in Chapter 6. Finally, in Chapter 7 we
conclude this dissertation with some final remarks and make suggestions for future work.

1We use these terms (VNFs, network functions, and middleboxes) interchangeably in this dissertation.

18

2 BACKGROUND

This chapter provides an overview of the main concepts, standards, and technologies in-
volved in INSpIRE. First, there is a description of SDN in Section 2.1. Then, we set out NFV
and related factors in Section 2.2. Following this, the concepts of Traffic Steering and Service
Chaining are defined in Section 2.3. PBNM and the refinement of policies are described in
Section 2.4 and Section 2.4.1, respectively. Finally, IBN is outlined in Section 2.5.

2.1 Software-Defined Networks (SDN)

Figure 2.1: SDN OpenFlow Architecture

Data Plane

Control Plane

 Communication
Interface

SDN
Controllers

SDN-enabled
Infrastructure

Applications

Source: the Author, 2017

In traditional networks, the control plane and the data plane are united in a single network
element (e.g. a switch). The control plane runs in every single network element in the network;
this means that the forwarding decisions are processed locally, and the same element forwards
the packet on the basis of a local decision. Moreover, many vendors develop their network
elements and sell these solutions as black boxes. In other words, the implementation, protocols,
and technology of these solutions are proprietary. As a result, the management of the different
types of network elements that can be found in traditional networks, is a challenging task for
administrators.

Software Defined Networks (SDN) is a new networking paradigm that was introduced a
few years ago (FEAMSTER; REXFORD; ZEGURA, 2014). In its early stages, the attempt to
create a new networking paradigm originated in universities. However, as a result of contribu-
tions being made from companies over the years, SDN has become an attractive alternative to
traditional networks. What attracted companies to SDN was the main concept underlying it,

19

which is to provide a more programmable network. This makes it possible to find innovative
network solutions. In addition, SDN provides a centralized (in the case of a single controlling
entity) and global view of the network as well. Having a global view of the network enables
companies to rapidly develop novel and personalized network management solutions, and thus
increase the flexibility of the network and reduce capital and operational expenses.

The cornerstone of SDN is the clear separation of the data plane from the control plane,
which is shown in Figure 2.1. The control plane (SDN Controllers) only handles traffic in the
network while the data plane (SDN-enabled Infrastructure) only forwards the packets in compli-
ance with the decisions made by the control plane. Before the controllers can make forwarding
decisions, they have to possess knowledge about the infrastructure. For this reason, every switch
in the network must send control messages to the controllers containing information about fea-
tures, such as connected links, ports, and incoming packets. This communication between the
control plane and the data plane is carried out by novel protocols, e.g. OpenFlow (MCKEOWN
et al., 2008).

OpenFlow was designed to be the standard protocol employed by SDN-enabled infrastruc-
tures. It also provides a secure communication channel between the controllers and OpenFlow-
capable switches. By means of OpenFlow, developers can create controllers that are able to
communicate with different types of OpenFlow switches from different vendors, and thus assist
in integrating the SDN solutions.

2.2 Network Functions Virtualization (NFV)

Network Functions Virtualization (NFV) exploits virtualization techniques to address the
separation of the middlebox hardware and software. NFV is designed to use general pur-
pose x86 servers to host Virtual Machines (VM) which contain Virtualized Network Func-
tions (VNFs). The operations carried out by these VNFs vary from DPI to video streaming
and caching. In NFV infrastructures (Figure 2.2), the hardware particularities (e.g. storage
technology, CPU architecture, and memory size) are abstracted, and VNFs can be instantiated
and deployed dynamically in the infrastructure, while leveraging the virtualization of physi-
cal resources. This means that NFV decouples network functions from the underlying vendor-
specific hardware, and can enable the VNF software to evolve separately from the hardware and
the other way round as well. The benefits offered by NFV allow network operators to create
innovative services, reduce CAPEX and OPEX, and rapidly deliver new services to end-users.

The concept of NFV was first introduced by the European Telecommunications Standards
Institute (ETSI), which formed the NFV Industry Specification Group (ISG). This committee is
concerned with specifying requirements, architectures, and constraints for the successful adop-
tion of NFV by industry. In 2012, the ETSI NFV ISG published a white paper (ETSI, 2012),
that formally set out a definition of NFV, together with its benefits, and challenges. Another
outcome of this group was the ETSI NFV Management and Orchestration (MANO) (European

20

Figure 2.2: NFV-enabled Infrastructure

NFV Infrastructure

CPU Storage Network Memory

NFV MANO

Operational & Business Support Systems (OSS/BSS)

NFV
Orchestrator

VNF
Manager

Virtualized
Infrastructure
Manager (VIM)

Physical Resources

Virtualized Resources

VNF VNF VNF VNF VNF

Source: the Author, 2017

Telecommunications Standards Institute (ETSI), 2014) specification, which has established a
framework for the provisioning of VNFs, and all the necessary operations for the proper con-
figuration of VNFs in infrastructures. The main objective of MANO is to meet the particular
requirements of the management and orchestration of NFV, and to provide guidance on novel
requirements that may appear in this context. Figure 2.2 shows the relationship between the
NFV MANO and the different components of an NFV-enabled infrastructure.

The three functional blocks of the NFV MANO are described below:

• NFV Orchestrator: This block is responsible for the global management of resources,
such as Network Services (NS) and VNF packages and this block handles all the requests
from the NFV Infrastructure. The orchestrator manages the lifecycle of NSs, as well.

• VNF Manager: This block governs all the lifecycle events of VNF instances. These
events comprise the instantiation, scaling up/down, updating/upgrading, and termina-
tion of VNF instances. It also communicates with the VIM, and reports on VNF-related
events.

• Virtualized Infrastructure Manager (VIM): This block controls and manages com-
puting, storage and network resources of the NFV Infrastructure. It is also responsible
for the collection and forwarding (to the orchestrator or VNF Manager) of performance
measurements and events occurring within the infrastructure.

21

2.3 Traffic Steering and Service Chaining

Figure 2.3: Synergy between NFV and SDN with Service Chaining

Dynamic
Service

Chaining

Control Plane
& Data Plane
Decoupled

Fast Network
Function

Instantiation

Virtualized
Network Functions

Flexible
Traffic Steering

NFV SDN

Source: the Author, 2017

After the concepts of SDN and NFV have been described, two further factors will be exam-
ined – traffic steering and service chaining – which involve both technologies.

Service chaining is the capacity to create chains of network functions (e.g. firewalls, NATs,
and IDSes) that are connected, in a determined order, by virtual links. In traditional networks,
the chaining of these network functions is static and defined in physical terms, which means
that all the traffic traverses the same middleboxes regardless of the type of packet. In Figure
2.4a, there are multiple traffic types that traverse the same chain (Firewall, DPI, and Gateway)
before reaching the external network. This type of chain is dependent on the topology, and
the middleboxes are connected with wires, so it is difficult to add or remove services and any
change since requires the full/partial stoppage of the network connection.

The capacity to dynamically compose service chains relies on the ability of the SDN con-
troller to manage the steering of the incoming traffic through the defined chain in a flexible
way. By being able to separate the network control from the data plane, the SDN controller is
provided with a global view of the network, and thus the forwarding of packets is simplified.
Figure 2.4b depicts a possible dynamic service chaining, where the traffic is steered through
different network functions in a SDN before reaching the external network. In addition to this
flexibility, NFV ensures the fast instantiation and deployment of VNFs, which means that the
functions can operate in a timely way. Figure 2.3 shows the synergy between NFV and SDN
that is required to enable dynamic service chaining. Moreover, as the data plane and the control
plane are decoupled from each other, Internet Service Providers (ISPs) can design different ser-
vice chains that provide customized services for a particular client, or create a catalog of service
chains with different features.

22

Figure 2.4: Static and Dynamic Service Chaining Examples

(a) Traditional Static Service Chaining (b) Dynamic Service Chaining with SDN

Source: the Author, 2017

2.4 Policy-Based Network Management (PBNM)

Figure 2.5: The IETF Policy-Based Management Architecture

Packet In Packet Out

PEP

Policy Decision
Point

Policy
Repository

Policy Management Framework

Source: the Author, 2017

Policy-Based Network Management (PBNM) is a concept that has already been widely
employed and studied for years (STRASSNER, 2003) (VERMA, 2002). This management
approach relies on rules to determine configurations, actions, access control, and different level
of performance for systems and devices in small or large scale networks. Moreover, PBNM
allows the network administrators to manage several devices and network features in an abstract
manner (i.e. the administrator does not need specific a low-level configuration knowledge to
write policies). This means that the policies are separate from the underlying technology of the
target entity, and this leads to a more dynamic execution of the whole system.

The Internet Engineering Task Force (IETF) has defined, in the document Policy Core In-
formation Model (MOORE et al., 2001), an architecture (Figure 2.5) that supports the many

23

components involved in a PNBM system. Three key components were defined in this archi-
tecture, the Policy Decision Point (PDP), the Policy Enforcement Point (PEP), and the Policy
Repository; these are described below.

• Policy Decision Point (PDP): This component decides, upon a request, which policy
matches the input request and forwards it to the PEP.

• Policy Enforcement Point (PEP): This component is any entity capable of enforcing
policy decisions in network elements, e.g. switches, routers, middleboxes, and so on.

• Policy Repository: This component stores policies, actions, conditions, and related pol-
icy data for later retrieval by the PDP.

2.4.1 Policy Refinement

Figure 2.6: Diagram of the Types of Policies

Intents

Service Level Agreements
(SLAs)

Configuration Files and Manual or Automated Actions

Event-Action-Condition Policies

Low-Level Configuration PoliciesA
b
st

ra
ct

io
n
 L

e
v
e
l

Technical Details

Po
ss

ib
le

 R
e
fi
n
e
m

e
n

t
Fl

o
w

Source: the Author, 2017

Policies can have different abstraction levels that vary in accordance with the technical
knowledge level required to formulate them. Figure 2.6 shows a pyramid representing some
types of policies and their abstraction level related to the low-level technical knowledge con-
tained in each one. At the top of the pyramid is the intent type, a high-level abstract policy that
does not contain any technical details – this will be more fully described in Section 2.5. It is fol-
lowed by Service Level Agreements (SLAs), which are business specifications and on the whole
contain just a few technical details. On the other hand, Event-Condition-Action (ECA) policies
include more details because the network operators must have specific knowledge about the
action that must be carried out when an event meets a desired condition, as well as information
about the event itself. Low-level configuration policies are the most raw type of policies and

24

include all the specific nuances of hardware, software, and technology, which often can only be
interpreted by computer programs. The bottom of the pyramid consists of configurations files,
manual and automated actions, which are not policies but contain the most amount of technical
detail and the lowest level of abstraction.

The process of translating high-level policies into lower-level configurations is referred to
as policy refinement and has been investigated for several years (MOFFETT; SLOMAN, 1993)
(CRAVEN et al., 2011). Even though several refinement techniques, such as those that are
goal-based (BANDARA et al., 2004), and ontology-based (USZOK et al., 2003), have been put
forward to address this problem, some features are still underexploited; this is mainly because
of the complexity involved in the refinement process. As can be seen in Figure 2.6, a possible
refinement flow passes through a series of types of policies, each with a lower level abstraction
and containing as much information as possible. Ultimately, as described by Moffett and Slo-
man (MOFFETT; SLOMAN, 1993), refinement techniques must seek to answer a number of
questions such as:

1. What resources are needed to fulfill the policy requirements?

2. How can high-level policies be translated into a set of low-level actions that a system can
enforce?

3. Are the low-level policies accurate enough to satisfy the requirements laid down by the
high-level policy?

2.5 Intent-based Networking (IBN)

Figure 2.7: ECA Policy and Intent Example

ON packet_in_on_port_7 IF (dest_ip!=10.1.1.0/24
AND dest_port=80)

THEN (SHA1(packet) AND send_port_8)

HTTP traffic to Internet is encrypted

} ECA Policy

Intent}

Source: the Author, 2017

Unlike traditional network management paradigms (e.g. SNMP, PBNM, and configuration
by command line), the purpose of Intent-Based Networking (IBN) is to provide a more natural
and straightforward management technique. IBN achieves these aims by allowing administra-
tors to (a) configure network elements and (b) to formulate rules by giving information about
what they wish (in the form of an intent). Figure 2.7 gives an example of a general ECA policy
and an example of an intent. The former contains specific information about what the system

25

must do (i.e. match the destination IP address and port, then use an encryption algorithm and
forward the packet), while the latter only describes a desire (i.e. that all HTTP traffic to the
Internet should be encrypted).

The definition of intent is described in the RFC 7575 - Autonomic Networking: Definitions
and Design Goals (BEHRINGER et al., 2015) as being an abstract high-level policy. Within
the scope of the RFC an intent does not contain any low-level configuration or any information
about a particular node; moreover, it is usually both defined and provided by a central entity.
Intent is related to Autonomic Networking in so far as this policy expects the network to be
self-managed, which means that the network operator should have the least possible interaction
with the network configuration. Moreover, Autonomic networks should adapt to a change in
the network on their own on the basis of the defined intents. This means that the network
operators should only specify their intentions to a central entity, and the network will carry out
all the low-level configurations, providing feedback to itself, and thus self-manage the network
operation.

26

3 RELATED WORK

This chapter provides an overview of the related work in the literature. It includes a descrip-
tion of some works that boost the NFV research in Section 3.1. In Section 3.2 we describe the
works related to Traffic Steering and Service Chaining that can be integrated with INSpIRE.
Section 3.3 examines studies in the area of PNBM. Following this, in Section 3.3.1 some policy
refinement solutions are set out. Finally, the IBN solutions are analyzed in Section 3.4, and
some related work with INSpIRE is discussed in Section 3.5.

3.1 Network Functions Virtualization

NFV is a novel network architecture, and as it is still in the early stages of being standard-
ized, it requires closer investigation. However, the scientific community and industry itself are
involved in exploring solutions, and implementations that may accelerate the adoption of this
technology.

Some examples of NFV solutions that seek to enable the development and deployment
of NFV infrastructures and VNFs are OpenNF (GEMBER-JACOBSON et al., 2014), OP-
NFV (Linux Foundation, 2015), and OpenANFV (GE et al., 2014). While as in the case of
OpenANFV, just exploit existing cloud solutions, such as OpenStack (SEFRAOUI; AISSAOUI;
ELEULDJ, 2012), others, such as OpenNF and OPNFV are underpinned by SDN and able to
take advantage of its adaptability as well. In addition, the European Union has launched a
project with the aim of bridging the gap between Cloud and carrier networks, that is called
UNIFY (Unify Project, 2014). The purpose of this is to provide a dynamic service creation
architecture, which can leverage Cloud virtualization techniques and SDN. This architecture
comprises three layers: Service, Orchestration, and Infrastructure.

Implementations that rely on NFV vary from the monitoring of VNFs in distributed scenar-
ios to the visualization of different VNF features and data. Pfitscher et al. proposed DReAM,
which employs a management by delegation system, where each agent (that is running along-
side a VNF) computes a defined diagnostic model to estimate the state of the network services
(PFITSCHER et al., 2016). On the other hand, Franco et al. proposed VISION. VISION em-
ploy a set of interactive and selective visualizations to help network operators to detect causes
of problems in NFV-enabled networks (FRANCO et al., 2016). Both implementations are
example of solutions originating from academia, and are an evidence of their involvement in
fostering the adoption and dissemination of NFV.

3.2 SDN-based Traffic Steering and Service Chaining

With regard to service chaining, the Internet Engineering Task Force (IETF) has described
an architecture for the development of Service Function Chains (SFCs) (HALPERN; PIG-

27

NATARO, 2015). In addition, the Network Service Headers (NSH) (QUINN; ELZUR, 2015) is
an approach that introduces a new header in packets traveling through service instances. This
header is designed to help in the separation of the traffic. However, its addition increases the
traffic processing time, which may cause delays or even packet loss.

Qazi et al. developed SIMPLE, which is a solution that relies on SDN to provide middlebox
traffic steering (QAZI et al., 2013). SIMPLE introduces a policy enforcement layer which
translates user-defined policies into OpenFlow rules and tracks packets that have their headers
altered by service instances. This solution addresses the service chaining problem with SDN
but ignores the question of whether the middleboxes are deployed as VNFs, and hence is unable
to leverage flexibility and scalability of NFV.

Ding et al. introduced OpenSCaaS, a platform to provide a tailor-made service for the
introduction of service chaining as a service (DING et al., 2015). OpenSCaaS classifies the
incoming flow, e.g. video or HTTP services, and steers this flow through a set of services
depending on what type of flow is involved. For example, a flow classified as a video service
is steered through a service chain composed of three functions, a cache, a firewall, and a NAT,
before it reaches its destination.

Csoma et al. introduced ESCAPE, a prototyping framework that allows the developer to
test and chain customized VNFs in an SDN environment (CSOMA et al., 2014). ESCAPE
employs consolidated tools, such as Mininet (LANTZ; HELLER; MCKEOWN, 2010) and
ClickOS (MARTINS et al., 2014), that form a strong basis to carry out and evaluate differ-
ent types of NFV and SDN projects. Although the prototype allows the developer to compose
any kind of VNF chain, it does not accept any modification of this chain during runtime.

Zhang et al. proposed StEERING, a framework that allows the dynamic routing of network
traffic through any sequence of middleboxes (ZHANG et al., 2013). This solution takes ad-
vantage of existing OpenFlow specifications to introduce a novel solution without making any
extensions to the OpenFlow specifications. Moreover, in Frenetic (FOSTER et al., 2011), the
traffic steering and classification of traffic is simplified by the abstraction of packet-forwarding
policies and modularization of the components.

3.3 Policy-Based Network Management

With the recent interest in both NFV and SDN among the scientific and industrial com-
munity, the concept of PBNM is emerging again. Moreover, some high-level languages for
programming OpenFlow networks (e.g. Frenetic), simplify the steering and the classification
of traffic by abstracting packet-forwarding policies and modularizing components and thus, en-
courage the adoption of PBNM approaches in OpenFlow networks.

Batista et al. designed a system for a Policy-Based OpenFlow Network Management (PBONM)
(BATISTA; CAMPOS; FERNANDEZ, 2013). The paper argues that the concepts of flows and
rules in OpenFlow are not very easy for companies to adopt whereas the concepts of policies

28

and SLAs are. Thus, this can justify setting up a framework in which these two concepts are
merged.

Machado et al. attempt to manage an SDN environment with minimal changes for the
controller implementation (MACHADO et al., 2015b). To achieve this, the authors introduce a
framework that translates, within the scope of the work, Quality-of-Service (QoS) policies into
a set of OpenFlow rules. The study seeks to reduce the complexity of management tasks and
enable high-level policies to be written by using a CNL. However, the authors do not address
the question of traffic steering policies or NFV.

3.3.1 Policy Refinement

Early work on policy refinement in the context of PBNM has achieved promising results.
Bandara et al. attempted to decompose high-level policies down to low-level concrete policies
based on goal mapping (BANDARA et al., 2004). As a result of a formal representation of a
system based on Event Calculus (EC), it possible to follow a sequence of operations that will
allow it to achieve the desired goal. These goals can be accomplished by reaching one or more
of the underlying goals that were previously derived.

Rubio-Loyola et al. used linear temporal logic by conducting an analysis of reactive systems
to provide a solution for goal-based policy refinement (RUBIO-LOYOLA et al., 2006). By
leveraging the Knowledge Acquisition in autOmated Specification (KaOS) methodology, the
solution is able to derive goals into low-level policies in the Ponder specification language
(DAMIANOU et al., 2001). In addition, the authors outline their solution within a DiffServ
QoS management scenario.

Craven et al. described a method for the refinement of two types of policies – authorization
and obligation policies (CRAVEN et al., 2011). In this study, the domains are represented in
UML diagrams, which are used as inputs for the refinement process, together with a policy and
decomposition rules. After the decomposition, operationalization and re-refinement stages have
been completed, the policy is ready for deployment.

More recently, there has been an investigation of the use of high-level abstractions for con-
figuring and managing SDN-based infrastructures. Machado et al. introduced a formalism
based on EC to represent high-level Service-Level Agreements (SLA) and then applied logical
reasoning to refine these SLAs into low-level rules to manage an SDN network (MACHADO et
al., 2015a). The authors argue that some aspects of SDN, such as information gathering about
the network (e.g. jitter and delay) is made easy by OpenFlow controllers, and thus enhances the
policy refinement process in these kinds of environments.

29

3.4 Intent-Based Networking

As IBN is a novel concept, research in this field is still in its early stages. However, there
have been some projects regarding the introduction of intents in the area of SDN, such as the
ONOS Intent Framework (ONOS Project, 2014) and the NeMo Project (NeMo Project Team,
2015).

The ONOS Intent Framework provides applications with the means to specify requirements
of the network, such as new flow rules, link tunneling, or reservations of optical lambdas (wave-
lengths), in the form of intents and then the framework translates these intents into activities in
the network environment. However, these intents are restricted to the Open Network Operating
System (ONOS) control plane, and thus are not applicable to different control plane solutions.

The NeMo project provides a North Bound (NB) API that allows applications to specify, (in
a domain specific policy language), which intents can be translated to create virtual networks.
These virtual networks are composed of flows controlled by policies that are translated from the
intent. Even though NeMo provides a “prescriptive” language for the creation of intents, the
language still contains low-level information, and is only focused on SDN and not NFV.

3.5 Discussion of Related Work

In this chapter, we listed and described works that are related to INSpIRE in different
contexts, such as PBNM, policy refinement, service chaining, and IBN. However, as INSpIRE
adopts an approach to intent refinement we only delve into the discussion of the different short-
comings of policy refinement approaches within the intent refinement case.

All the works described in Section 3.3.1 address the question of the refinement of high-level
policies into low-level policies. However, intents are abstract and subjective, and tend to vary
from domain to domain. In view of this, there is a need to consider this subjectivity when
refining intents. Furthermore, the scope of most refinement techniques is restricted to specific
domains, such as QoS management in conventional IP networks or access control systems,
which confines their employment to the refinement of intents. Moreover, a single intent can
alter the configuration of several elements in the network. Thus, the modeled domains used
for the refinement process must accurately reflect the elements and configurations of the whole
network and not just be confined to a single area.

As INSpIRE is only focused on the refinement of intents, it does not handle the steering
of the traffic through the composed service chain. The traffic steering can be carried out by an
external solution, such as that described in Section 3.2. As a result, INSpIRE can be employed
in any environment, by acting as a Policy Repository and PDP. For example, in a SDN-enabled
network whenever a packet-in control message reaches the SDN controller, the controller can
request INSpIRE to retrieve the matching intent together with the packet data (e.g. source,
destination, and port) and then steer the traffic through the related service chain.

30

4 INTEGRATED NFV-BASED INTENT REFINEMENT ENVIRONMENT

In this chapter we describe INSpIRE (Integrated NFV-baSed Intent Refinement Environ-
ment). In Section 4.1 we provide an overview of the solution along with a description of its main
components. Then, in Section 4.2, the proposed natural language to write intents is described.
The phases of the intent translation are outlined in Section 4.3. Lastly, we show screens and
functions from the implemented prototype in Section 4.4.

4.1 Integrated NFV-baSed Intent Refinement Environment Overview

INSpIRE address the refinement of intents into a set of network functions and information
that satisfy a defined intent. In addition, INSpIRE provides a framework for the management
of VNFs and related configurations, allowing network operators to insert, remove, edit, and
visualize information regarding the VNFs’ status.

Figure 4.1 depicts the main components and related elements of INSpIRE. The conceptual
architecture of INSpIRE is primarily divided into three elements, (i) Graphical User Inter-
face, (ii) Database, and (iii) Compute Module. The Graphical User Interface (GUI) comprises
all the elements responsible for interacting with the network operator; they are available in
a Web-based interface. The Database stores all the required data about VNFs, intents, and
configurations of INSpIRE. In order to perform the heavy-duty tasks, such as clustering and
calculations, the Compute Module is detached from the GUI so that this element can be placed
on a dedicated hardware. The communication between these elements is performed using a
REST API. All the components that compose these elements are described in Section 4.1.1.

4.1.1 Main Components

Our solution consists of several components that act together during the task of refining a
written intent into a chain of VNFs. They are described below.

• Intent Editor: This component allows business-level operators to create, retrieve, update
and delete intents. Operators can also enable or disable intents accordingly to their needs.
A pre-defined CNL, which is later described in Section 4.2, is used to write the intents.

• VNF Management: In order for the system to recognize the available VNFs in the in-
frastructure, infrastructure-level operators must inform their description and details. To
manage this information (create, remove and update VNFs) a set of functions are acces-
sible using the operator’s account to login in the Web-based interface. The NFV ETSI
ISG formalizes the information that a VNF should contain (European Telecommunica-
tions Standards Institute (ETSI), 2014). This information is stored in the VNF Descriptor
(vnfd), which contains elements regarding requirements of the deployment and opera-
tion of VNFs, such as the number of virtual CPUs (computation_requirement),

31

Figure 4.1: INSpIRE Architecture and Main Components

Graphical User Interface

Intent Editor VNF Management SIG Editor

Compute Module
Management

Infrastructure
Management

Compute Module

Score
Calculation

Clustering

Rest API}

VNFs

Intents

Configurations

Database

Network Infrastructure

Traffic Steering
Solution

Rest API}

Source: the Author, 2017

the amount of virtual network bandwidth needed (virtual_network_bandwith_
resource) and the version of the VNF software. All this data is required by INSpIRE
along with the operations that the VNF performs.

• SIG Editor: This component enables network operators to change the Softgoal Interde-
pendency Graph (SIG) accordingly to the domain that the SIG will be applied. The net-
work operator can write a SIG with the Non-Functional Requirements (NFRs) designed
exclusively for the company that he/she works for, resulting in a more precise refinement
process. The SIG and NFR concepts are described later in Chapter 5.

• Compute Module Management: This component present information about the com-
pute module, e.g. system status (memory and processor usage).

• Infrastructure Management: This component manages the infrastructure information,
where infrastructure level administrators can specify the different user domains and the IP
ranges destined to them. Also, the traffic types that travel through the company’s network
must be informed, such as HTTP, FTP, SSH, and so on.

• Score Calculation: All the functions related to the calculations of NFRs’ scores and the
processing of the SIG is performed by this component. The mathematical basis for the
calculations are presented in Section 5.3.

• Clustering: This component performs the task of grouping the VNFs in groups that
share similar scores defined in the intent. The clustering function and related algorithm
are described in Section 5.4.

32

• Traffic Steering Solution1: This external component can be an SDN controller that steers
the flows through the desired set of VNFs based on the defined service chaining graph.
This steering is ruled by the written intents, which are stored in the INSpIRE database.

• Network Infrastructure: Within this components are comprised all the physical re-
sources and controllers. Resources are composed of machines containing compute, stor-
age, and network resources as also their respective managers. In our solution users, VNFs,
middleboxes, routers, and servers compose this layer.

4.2 Controlled Natural Language (CNL)

The syntax of many policy languages often resembles the syntax of traditional programming
languages, which is the case of Ponder (DAMIANOU et al., 2001). This approach requires the
network operator to have a prior knowledge of the language and to translate intents into a par-
ticular format. On the other hand, with the employment of CNLs (KUHN, 2014) to write policy
languages, network operators can write intents in (a subset of) English, which diminish the need
for prior specific knowledge. Machado et al. proved the feasibility of using a CNL to write
SLAs that are translated to QoS rules and then enforced in the network elements (MACHADO
et al., 2015b). Given this premise, we present a CNL to write rules for the creation of service
chaining graphs. The grammar of the proposed CNL is presented in the Listing 4.1.

Listing 4.1: Proposed CNL grammar
1 Language :→< S e r v i c e ><Flow >< P r e p o s i t i o n >< E x p r e s s i o n >
2 S e r v i c e :→ s e r v i c e−r e g e x e s
3 Flow :→< D i r e c t i o n >< Targe t >< D i r e c t i o n >< Targe t >
4 D i r e c t i o n :→ From | To
5 T a r g e t :→ use r−d e f i n e d−r e g e x e s
6 P r e p o s i t i o n :→Have
7 E x p r e s s i o n :→<Term >| < Term>< Connec t ive >< E x p r e s s i o n >
8 Term :→< C on te x tL ev e l >< Contex t >
9 C o n t e x t L e v e l :→ c o n t e x t L e v e l−r e g e x e s

10 C o n t e x t :→ c o n t e x t−r e g e x e s
11 C o n n e c t i v e :→And

As our intent language is defined as a CNL, in order to identify strings that compose a
intent in a solid way we defined a set of regular expressions. We have classified these regular
expressions into four main types according to their purposes:

• service-regexes: Utilized to identify the type of service.

• user-defined-regexes: User domains that are set by the user, e.g. teachers, students, and
staff.

• contextLevel-regexes: Used to identify the level of the context provided.

1This component, as stated before, was not implemented.

33

• context-regexes: Regexes that identify the contexts of the intent.

Some examples of regular expressions are presented in Table 4.1. The “dynamic” column
specifies if a regex is dynamic, where “Yes” means that a regex can be configured by a network
operator, and “No” implies that it is statically defined, thus can not be modified.

Table 4.1: Regular Expressions Examples

Type Expression Dynamic

service-regexes HTTP, SMTP, FTP, VoIP... Yes

user-defined-regexes teachers, staff, Internet... Yes

contextLevel-regexes low, medium, high No

context-regexes security, perfomance, inspection... Yes

4.3 Intent Translation

The process of translating intents into service chains comprises three phases: Intent Valida-
tion, Conflict Detection, and Service Chain Graph Construction. The first two are performed
by the Intent Editor and the last one is performed by the Compute Module. To provide a better
organization of this dissertation, we only describe the Intent Validation, and Conflict Detection
phases in this chapter. The Service Chain Graph Construction phase is described in depth in
Chapter 5.

4.3.1 Intent Validation

To validate an intent written by an operator, the Intent Editor has to parse this intent into a
set of defined regular expressions, as depict in Figure 4.2. The Intent Editor iterates over the
input string to find the service-regexes first; then it moves to user-defined-regexes that specifies
the source and destination of the flow. Finally, it searches for the contextLevel-regexes followed
by the context-regexes. However, if the parser encounters an error (e.g. type of traffic not found
or missing information) in any part of the parsing process, the intent is marked as invalid and
is not stored in the database. Also, the operator receives an error message in the Web-based
interface to address the error.

4.3.2 Conflict Detection

The main focus of this dissertation is not to resolve conflicts among intents. However, our
system estimates some conflicting intents before its insertion in the database. The Web-based
interface displays the conflicting information to the current operator, who must write a new

34

Figure 4.2: Valid Intent Parsing Example

contextLevel

Source: (SCHEID et al., 2016)

non-conflicting intent. Conflicts can vary from already defined intents (two identical intents)
to priority conflicts (the inclusion of two equal intents but with different contextLevel-regex).
For example, if an operator writes an intent “HTTP traffic from teachers to students have high

inspection” and later tries to insert another intent informing “HTTP traffic from teachers to

students have none inspection”, the system will notify the operator of the conflict, which in this
case is the same service-regex (HTTP), same user-defined-regexes (teachers and students) and
different contextLevel-regexes (high and none) for the same context-regex (inspection). Next,
after the notification, the operator must resolve the conflicting intent.

4.4 INSpIRE Prototype GUI Implementation

In this section we present the prototype developed. We developed the Web-based GUI using
the CakePHP Web framework2. We chose CakePHP due to the author’s previous knowledge
in working with this framework. For the interface design we used the Bootstrap front-end
framework3. The database used for storing all the data about the VNFs, intents, and related
information about the environment is the MySQL4. To develop the Compute Module we utilized
the Python5 language along with the NetworkX library6 to construct and work with graphs.

CakePHP is an open-source framework for the fast development of PHP applications. It
is focused on providing all the necessary CRUD (Create, Read, Update, and Delete) functions
to integrate Web applications with databases. It is built following the Model View Controller
(MVC) architecture, and the applications developed on top of the CakePHP framework follows
the same architecture. In INSpIRE, all the interaction with the user was designed and im-
plemented as Views (i.e. templates in the CakePHP). The CRUD operations with the database

2https://cakephp.org/
3http://getbootstrap.com/
4https://www.mysql.com/
5http://www.python.org/
6https://networkx.github.io/

35

were implemented in the models, one model for each table in the database. In order to retrieve
and deliver the information to be presented in the views, we implemented the controllers for
INSpIRE. Each table in the database has its controller, and each View has its function inside
a controller, i.e. one function for the view that composes the VNF editor, one for the view that
lists the VNFs, one for the view that enables the addition of VNF in the database, and so on.

Figure 4.3 depicts the index page of INSpIRE. On the center of the index page, there is a
dashboard, where the user can visualize gadgets that present information regarding the number
of Active Intents, Users Domains, Virtual Network Functions, and Traffic Types. The user can
click in View Details to be redirected to view the details of this information. Also, under these
gadgets, the historical information, which is updated every second, of the Network Usage is
presented in the form of a line chart. The rate between Active Intents and Available Intents
is represented in a circle green gadget in the right side of the page. On the left side of the
page, under a couple of information (i.e. username and avatar) about the user, a menu is placed
allowing the user to navigate within all the components of INSpIRE.

Figure 4.3: INSpIRE Index Page

Source: the Author, 2017

Figure 4.4 depicts the page used by users to input intents in INSpIRE. We can notice that
in Figure 4.3 the menu in the left is expanded, whereas in this screen the menu is collapsed.
This option to collapse the menu provides extra space for the user to interact with the authoring
screen and write intents. To facilitate the process of writing intents we provide an example

36

of an intent in both the input field and in a static example below the input field. Also, in the
bottom of the figure, we placed all the regexes that can be used to write an intent, such as
available traffic types, available user domains, and available contexts. Once the user has written
the intent, he/she gives a full description of the intent and selects if it will be active or not in the
Active checkbox. Furthermore, INSpIRE include a set of different pages, such as the Compute
Module Information view (Figure 4.5a) and the SIG Editor view (Figure 4.5b).

Figure 4.4: Intent Authoring Screen

Source: the Author, 2017

Finally, the CakePHP framework allows controllers to publish REST API functions to be
used as Web services. Table 4.2 shows some of the functions, and their respective outputs,
published by INSpIRE. These functions can be used to create novel solutions in different
contexts, such as traffic steering, or data visualization.

Table 4.2: Exposed INSpIRE REST Functions

Relative INSpIRE URL Type Output

/configurations/getSig GET Return the SIG saved in INSpIRE

/configurations/getSoftGoals GET Return all the softgoals of the SIG

/configurations/getLeafSoftGoals GET Return all the leaf-softgoals of the SIG

/configurations/getOperationalizations GET Return all the operationalizations present in the SIG

/vnfs/getVnfs GET Return all VNFs stored in the database in a JSON object

/getChain/SRC_IP/DST_IP/TRAFFIC_TYPE/ GET Return the low-level policy that matches with the arguments informed in the URL

37

Figure 4.5: INSpIRE Web-Interface Views

(a) Compute Module CPU and Memory Status View

(b) SIG Editor and Configurations View

Source: the Author, 2017

38

5 REFINEMENT TECHNIQUE

In this chapter we present our refinement technique, which is implemented by INSpIRE.
The technique is composed of three steps. The first step relates to the modeling of the domain
in which the intent is being applied, including specifying the operations performed by network
functions (e.g. L2 inspection and packet filtering) and non-functional requirements (e.g. secu-
rity). We detail the modeling and requirements in Section 5.1 and Section 5.2. The second step
includes the quantitative calculation of the non-functional requirements of a VNF based on the
modeled domain, resulting in numerical values for these requirements. This step is described in
Section 5.3. Finally, the third step includes the parsing of the intent and the clustering of VNFs
based on the resultant values from the quantitative calculation, which is detailed in Section 5.4.

5.1 Non-Functional Requirements Framework

When designing software, it is crucial that software engineers consider both functional re-
quirements and non-functional requirements. The former dictates what the software is expected
to do (e.g. store employees data and exchange email), the latter defines the qualities of the
software (e.g. store data securely and exchange email quickly). Non-Functional Requirements
(NFRs) are, usually, informally specified during the software development process, being based
on empirical observation from stakeholders, and thus are hard to model. Therefore, one of the
main challenges is to define how one can model the qualities of a system in a comprehensive
manner (CHUNG; LEITE, 2009).

To model NFRs, we rely on the NFR Framework (CHUNG et al., 2000). In which softgoals

and operationalizations represent the requirements in a Softgoal Interdependency Graph (SIG).
An example of a SIG is depicted in Figure 5.1. One softgoal (cloud shape) can have different
types of contributions and relationships towards other softgoals, such as BREAK (-), HELP
(+), HURT (-), and MAKE (++). While MAKE and HELP contribute positively to satisfice1

an upper softgoal, BREAK and HURT contribute negatively. To satisfice these softgoals, one
must first identify possible techniques that must be implemented in the system, named opera-

tionalizations (bold cloud shape). These operationalizations are the external nodes of the SIG.

In INSpIRE we formally define a SIG with the set below:

SIG = (V , E)
V ∈ {SG,LSG,OP}

where

• SG: represents the primary set of softgoals, which are the root-node of the graph.

1According to the Oxford Dictionary satisfice is defined as “Accept an available option as satisfactory”. There-
fore, we utilize this word instead of satisfy in this context.

39

• LSG: is the set of refined leaf-softgoals from the primary softgoal.

• OP : contains the set of operationalizations that contributes to satisfice the LSG or the
SG.

and

E ∈ {↑++, ↑+, ↑−−, ↑−,∧}

where

• ↑++ (MAKE): Denotes a strong positive contribution towards a softgoal. One single
MAKE contribution fully satisfices a parent softgoal if the offspring is satisficed.

• ↑+ (HELP): Denotes a positive contribution. Which means that a child softgoal partially
contributes to satisfice a parent softgoal.

• ↑−− (BREAK): Denotes a strong negative contribution. If a softgoal is satisficed then the
parent softgoal is automatically denied.

• ↑− (HURT): Denotes a negative contribution. Which means that a child softgoal partially
contributes negatively to satisfice a parent softgoal.

• ∧ (AND): This contribution relates to a group of softgoals to their parent. If all child
softgoals are satisficed then the parent is also satisficed.

5.2 Softgoal Interdependency Graphs (SIGs)

In software engineering, the modeling of the SIG follows a top-down approach, starting with
a high-level softgoal being refined into other softgoals until the operationalizations are defined
and selected. However, in our solution, we assume the SIG is already pre-defined, and each
VNF is submitted through a bottom-up process in the SIG to quantify its initial softgoal score,
i.e. attributing a numerical value for the primary non-functional requirement. In order to model
this pre-defined SIG, we first identify the domain in which the SIG is going to be applied, in our
case, middleboxes. Then, we select the non-functional requirements that we want to measure,
such as security or performance.

Let us consider the SIG depicted in Figure 5.2. We have extracted the NFRs to compose this
SIG from the work Guide to Intrusion Detection and Prevention Systems (IDPS) by Scarfone
and Mell (SCARFONE; MELL, 2007). In the work, the authors provide an overview of Intru-
sion Detection Systems (IDSes) and Intrusion Prevention Systems (IPSes) to help organizations
understand such systems. We use this work as a guideline to model a pre-defined SIG, which is
then used for evaluating VNFs. To cope with the subjectiveness of the intents and requirements,
one can alter the SIG at any time to reflect its domain, middleboxes, and network.

To simplify and provide a more straightforward example, we only address the refinement
and modeling of one non-functional requirement, which is Security. Therefore, following the
traditional SIG modeling approach, we start with an initial softgoal (Security). This softgoal

40

Figure 5.1: SIG Example

Source: (SCHEID et al., 2017)

is then refined into four leaf-softgoals: Information Gathering, Logging, Detection, and Pre-

vention. These refined softgoals are common security capabilities that, accordingly to Scarfone
and Mell, most IDPS technologies provide. For each refined softgoal, we attribute a weight cor-
responding to the importance of this softgoal in satisficing the initial softgoal. These weights
are arbitrary and not set in stone, thus they can be altered by the network operator according
to his/her needs. As operationalizations are techniques that contribute to satisfice softgoals, a
single operationalization can have an impact on one or more softgoals. For example, the op-

erationalization Blacklist and Whitelist Support contributes to both Detection and Prevention

softgoals, while the operationalization Identify Applications contributes to only one softgoal

(Information Gathering). These contributions have numerical values attributed to them (simi-
lar to the softgoal weight) which reflects the impact to satisfice softgoals. The bold red values
inside the clouds are calculated by INSpIRE following the steps presented in the next section.

5.3 Quantitative Calculation of NFR

To accurately quantify the non-functional requirements of a VNF, we leverage the extension
of the NFR Framework proposed by Affleck and Krishna (AFFLECK; KRISHNA, 2012). This

41

Figure 5.2: Pre-defined SIG for Middlebox Security

Source: (SCHEID et al., 2017)

extension provides a lightweight quantitative support for the NFR Framework, defining a math-
ematical base for the calculation of scores and weights for softgoals and operationalizations.
Given the formalization of the NFRs presented in Section 5.1 and the SIG modeled in Section
5.2, we adapt this extension to our objectives.

Leaf-Softgoal weights are defined as:

∀LSG ∈ V , (0.0 ≤ LSGweight ≤ 1.0)

where lower values (closer to 0.0) denote a non-critical softgoal, while higher values (closer
to 1.0) represent critical softgoals. The relationships between softgoals and operationalizations

are defined following the contributions depicted in Table 5.1 and are referred to as impactLSGXOP .
For example, the HELP relationship between the “Alert Support" operationalization towards the
leaf-softgoal Detection has an impactLSGXOP of 0.2, which is in [0, 1] range.

Operationalization scores are calculated from top to bottom following Equation 5.1. There-
fore, if the network operator decides to add operationalizations and softgoals to the graph,
he/she only includes in the SIG the values of LSGweight and impactLSG×OP .

OPscore =
∑

LSG

LSGweight × impactLSG×OP (5.1)

Given the SIG depicted in Figure 5.2, let us calculate the “Blacklist and Whitelist Support"
operationalization’s score. This operationalization contributes positively to two leaf-softgoals

(Detection and Prevention). Therefore, we have as the result from Equation 5.1, the score of

42

Table 5.1: Quantitative Contribuitions from Affleck and Krishna (AFFLECK; KRISHNA,
2012)

Symbol Name Contribution

↑++ MAKE 1

↑+ HELP [0,1]

↑−− BREAK -1

↑− HURT [-1,0]

∧ AND 1
numChilds

0.85, which means a positive contribution to the system. The steps are shown in Equation 5.2.

OPscore = (Detectionweight × impactDetection×BlacklistandWhitelistSupport)

+ (Preventionweight × impactPrevention×BlacklistandWhitelistSupport)

OPscore = (0.8× 0.8) + (0.7× 0.3)

= 0.64 + 0.21

= 0.85

(5.2)

The next step proposed by Affleck and Krishna is the selection of operationalizations based
on the scores previously calculated (AFFLECK; KRISHNA, 2012). However, in our approach,
this step occurs when a network operator inserts a VNF or middlebox in the system. The
operator must select which operations the VNF is capable of performing (e.g. identify which
flows are harmful or detect attacks). Considering the SIG in Figure 5.2, if a network operator
specifies that a VNF does not store logs on a centralized server (Logging [Middlebox]), the
impactLSG×OP of that operationalization is going to be zero. Consequently, the OPscore is
going to be also zero (OPscore = 0.5× 0) and score of the leaf-softgoal will decrease.

To calculate leaf-softgoal scores, we employ the same equation as Affleck and Krishna
(AFFLECK; KRISHNA, 2012). The only difference is that we consider all operationalizations

and not only the accepted ones. Equation 5.3 shows that the LSGscore is the sum of the impact
(even zero impact) of every operationalization that contributes to the leaf-softgoal. This score
is limited to [−1.0, 1.0] by max and min functions, where -1.0 means that the softgoal was not
satisficed and 1.0 means that the softgoal was 100% satisficed. Equation 5.4 reproduces the
steps for the calculation of the Detection[Middlebox] score.

LSGscore = max(min(
∑

OP

impactLSG×OP , 1),−1) (5.3)

43

LSGscore = max(min(impactDetection×ThresoldBased + impactDetection×AlertSupport

+ impactDetection×BlacklistandWhitelistSupport, 1),−1)
LSGscore = max(min(0.8 + 0.2 + 0.8, 1),−1)

= max(min(1.8, 1),−1)
= 1

(5.4)

Once the operationalizations and leaf-softgoals scores are computed, the initial softgoal

(Security[Middlebox]) score can be calculated. This score ultimately represents how much (in
terms of percentage) the softgoal has been satisficed. To simplify our system, we only address
AND (∧) contributions from the initial softgoal towards leaf-softgoals. Thus, Equation 5.5
considers the sum of leaf-softgoal scores divided by the number of children of that softgoal, so
that every leaf-softgoal contributes with a percentage of its score to satisfice the initial softgoal.

SGscore = max(min(

∑
LSG LSGscore

SGnumChilds

, 1),−1) (5.5)

Finally, as our intention is not to calculate how secure a middlebox is, but rather how much
security a middlebox can provide to a specific flow passing through it, this score of 0.825
(calculated in Equation 5.6) means that the middlebox or VNF can provide 82.5% of security
to this flow. This value is relative to the SIG that was modeled by network operators and may
vary from organization to organization. Therefore, as now we have a numerical value for the
security softgoal of the VNF, we can use this value to cluster the available VNFs into groups
with different levels of security. We emphasize that it is important that network operators,
administrators and, business partners discuss and model this SIG exhaustively so that the defined
weights can faithfully reflect the domain. This is due to the influence of the weights in future
service chaining decisions, which directly impact in the clustering process.

SGscore =
InformationGatheringscore + Loggingscore +Detectionscore + Preventionscore

4

SGscore =
0.5 + 1 + 1 + 0.8

4

= 0.825

(5.6)

44

5.4 Intent Refinement

INSpIRE needs to posses knowledge about the environment to properly refine intents.
Therefore, a network operator has to insert the middleboxes or VNFs present in the infras-
tructure into a database for later selection. This insertion process consists of uploading in the
system a descriptor (vnfd in the case of a VNF), filling in information about the middlebox (e.g.

IP address, switch port, and type of network function), and selecting the operations performed
by this network function. These operations are the operationalizations defined in the SIG and
are necessary for the calculation of softgoals. Once this data is informed, INSpIRE computes
the softgoal score of the target VNF using the Equations described in Section 5.3 and stores it
in the database.

After the intent is validated, does not conflict with another saved intent, and is translated
into the regexes described in Section 4.3, INSpIRE can start the refinement process. The
refinement process is depicted in Figure 5.3 and includes elements such as a traffic classifier
and a service chaining identifier. The former translates part of the intent, the services-regex

and user-defined-regex into traffic objects with low-level information (e.g. traffic type, port,
source IP, and destination IP), that will be used for posterior traffic steering and retrieval by an
external component (illustrated by a dashed line box). The latter fetches the contextLevel-regex

(high) and context-regex (security) of the intent and forwards this regexes to the component
responsible for constructing the related chaining, named Service Chain Graph Builder. To
construct the output service chain, the Service Chain Graph Builder carry out three tasks that
are described in the next Sections – the Clustering, VNF Selection, and VNF Dependency
Ordering tasks.

5.4.1 Clustering

To cluster the VNFs in sets with similar scores, we employ the k-means clustering algorithm
(MACQUEEN, 1967). This algorithm was proposed to classify n values into a defined k number
of clusters sharing similar scores. In our case, we set k = 3, representing the levels of the
contexts supported by the CNL (low, medium, and high), and n is the number of available
VNFs. The dimensionality (i.e. number of features) of the plot depends on the number of
softgoals specified in the intent. For example, one can write an intent addressing more than one
softgoal, e.g. “FTP traffic from teachers to teachers have medium security, detection, and log
support”. Thus, the resulting graph (Figure 5.4) will have three axes (security, detection, and
log support) and so forth for more softgoals.

45

Figure 5.3: INSpIRE Intent Refinement Flow

Source: (SCHEID et al., 2017)

46

Figure 5.4: VNF Clustering Example

Security

0
2

4
6

8
10

Log Support

0

2

4

6

8
10

D
e

te
ct

io
n

0

2

4

6

8

10

Low
Medium
High

Source: (SCHEID et al., 2017)

5.4.2 VNF Selection

After the k-means algorithm is executed, and the estimation of the clusters is completed, we
must select the VNFs that will compose the service chain. To select from which cluster we will
retrieve the VNFs, we leverage the level of the context that was defined by the network operator
in the intent. In the past intent example, one defined as the level being “medium”, therefore, we
only select the VNFs that are inside the middle cluster, represented as squares in Figure 5.4. We
select x random VNFs from the cluster, where x = 3 in a first moment. However, this number
can be adjusted if the network operator desires. To utilize the full capacity of the VNFs in the
infrastructure and not to impact on the overall chaining performance, we employed a selection
algorithm. This algorithm prioritizes the selection of VNFs that are already deployed and are
not under CPU stress (V NFCPUload ≤ α, where α = 0.8, defined by empirical observation
but customizable). If all the deployed VNFs are under CPU stress, then the algorithm selects
the undeployed VNFs and the NFV orchestrator takes care of the placement of those VNFs.
Bear in mind that is not the scope of this dissertation the placement of VNFs in the network
infrastructure.

Algorithm 1 guide the selection of the VNFs that will compose the output service chain. The
algorithm starts with an empty list, which will contain the selected VNFs, then it iterates over
all the VNFs present in the cluster, if the vnfList size is equal to n, it stops, if not, it selects

47

one VNF from the input cluster and starts the verification process. The verification process
checks if the VNF is deployed (we prioritize already deployed VNFs to diminish the need for
new VNF instances in the network) and what is the CPU load of the VNF, if the CPU load is
above a certain threshold the VNF is not selected. After this part of the selection algorithm is
finished, if the vnfList is not full, it begins the verification process all over again, but this time
selecting only not deployed VNFs to fill the vnfList.

Algoritmo 1 VNF Selection Algorithm

1: procedure SELECTVNFS(n, cluster[])
2: vnfList = []
3: shuffle(cluster) . We shuffle the cluster to randomize the selected VNFs
4: for each vnf in cluster
5: if len(vnf) == n then . VNF list is full
6: break
7: end if
8: if isDeployed(vnf) then
9: if getCPULoad(vnf) ≤ α then . VNF is not under stress

10: insert vnf in vnfList
11: end if
12: end if
13: shuffle(cluster) . We shuffle again the cluster to randomize the selected VNFs
14: for each vnf in cluster
15: if len(vnf) == n then
16: break
17: end if
18: if isDeployed(vnf) then
19: continue
20: end if
21: insert vnf in vnfList
22: return vnfList
23: end procedure

5.4.3 VNF Dependency Ordering

Many VNFs often depend on other deployment units (i.e. VMs) to be deployed/initiated
before an orchestrator can deploy them. The information about this dependency is stored, ac-
cordingly to the ETSI NFV MANO, in the element dependency inside the vnfd of the VNF.
Therefore, if a VNF is selected and is not deployed, INSpIRE attempts to resolve this depen-
dency by searching for a VNFD Virtual Deployment Unit (vnfd:vdu) that fulfills this depen-
dency. First, it seeks if one of the selected VNFs produced by the selection procedure contains
the vnfd:vdu specified in the dependency element. If there is no match, then it searches all
the deployed VNFs for a match and then informs the orchestrator to address this issue. Note
that this dependency process relates to the deployment and placement of VNFs, which is out of

48

the scope of this dissertation, and thus we do not delve into details.
Moreover, when designing service chains, it is important to consider the logical order of the

network functions in the chain. This ordering process is not a trivial process, mainly because of
the hidden and subjective dependencies across the many network functions. For example, there
is no explicit definition that a firewall must come first in the chaining order and then be followed
by a DPI. This ordering is based on empirical observation and the logic behind the operations
performed by the network functions. It is illogical to put a DPI in front of a firewall, because
the DPI will have to inspect every single incoming packet, causing performance degradation.
Whereas if the firewall is set in front of the DPI, the firewall will only forward filtered packets,
reducing the number of packets to be processed by the DPI, and thus, not impacting on the
overall service chain performance.

To address this ordering issue, we propose to order the chain based on the complexity of the
selected network functions.2 We advocate that the complexity of a network function is based on
the number of operationalizations that were previously selected by the network operator during
the insertion of the network function in the database. Thus, if we have a DPI performing ten
operationalizations and a firewall performing only three operationalizations. Then, as the DPI
is performing more actions, it will be included after the firewall in the chain, i.e. the flow will
pass through the firewall first, then go through the DPI and so on to more complex network
functions.

2Note that after INSpIRE completes all of its stages (clustering, selection, and ordering), the chain can be
ordered by a network operator to fit his/her needs directly in the database.

49

6 PROTOTYPE AND EVALUATION

This chapter provides an overview of the prototype and the experiments carried out in order
to validate our intent refinement solution. In Section 6.1 we conduct a case study of the complete
INSpIRE flow, from SIG modeling to intent authoring. Then, in Section 6.2 the refinement
output chains of three different case studies are described. Finally, in Section 6.3 we present
and discuss the experimental evaluation of two INSpIRE components.

6.1 INSpIRE Prototype Case Study

Let us describe the interaction of users with INSpIRE. This interaction is composed of
three distinct stages: (i) SIG modeling, (ii) VNF insertion, and (iii) Intent authoring. These
stages are described in Section 6.1.1, Section 6.1.2, and Section 6.1.3, respectively.

6.1.1 SIG Modeling

In a first moment, without the intervention of INSpIRE, network operators along with
business partners assemble a team to identify the non-functional requirements (initial softgoal

and leaf-softgoals) that are important for the proper operation of the company. Suppose that the
company is concerned about the privacy of its data. Therefore, the team identifies the initial
softgoal as Privacy and two requirements (leaf-softgoals) that must contribute to it, such as
Encryption, and Traffic Anonymization.

These two requirements are satisficed by the operationalizations, which must also be iden-
tified and outlined by the team, either by reviewing common functions realized by middleboxes
or by empirical knowledge. In the privacy context, the team outlines functions such as Tor-

based anonymizer, SSL traffic encryptor, and SHA-1 encryptor. Next, the team attributes the
weights of all leaf-softgoals and the impact of each operationalizations in these leaf-softgoals.
The attributed impacts of the mentioned operationalizations are described in Table 6.1. As the
team identified two leaf-softgoals they attributed equal weights to both of them, e.g. 0.5.

Table 6.1: Impact of Operationalizations towards Leaf-Softgoals

Operationalization Contribution Leaf-softgoal Impact

Tor-based anonymizer MAKE Traffic Anonymization 1

SSL traffic encryptor HELP Encryption 0.7

SHA-1 encryptor HELP Encryption 0.5

50

The modeled SIG is shown in Figure 6.1 with its scores already calculated. This SIG can
be represented in YAML (YAML Ain’t Markup Language), XML (eXtensible Markup Lan-
guage), or JSON (JavaScript Object Notation) format and then imported to INSpIRE as well
as being edited inside INSpIRE. An example of imported SIG in YAML format is depicted
in Figure 6.2. We adopted the YAML format due to its readability. In the YAML file, nodes
of the SIG are described after the node: tag (line 27) in the node:{atributes:value}
format. For example, the node Traffic Anonymization (line 36) is represented as Traffic
Anonymization:{lsg: true, w: 0.5}, which means it is a leaf-softgoal (lsg:
true) with a weight of 0.5 (w: 0.5). Edges are described after the adj: tag (line 2)
in the sourceNode: format. New lines with indentation describe the destination nodes
and attributes in the destinationNode:{attribute:value} format. For example,
there is an edge from node SSL Traffic Encryptor: (line 15) to node Encryption:
{impact: 0.7} (line 16), meaning that the node SSL Traffic Encryptor impacts on 70% to
satisfice the node Encryption.

Figure 6.1: Modeled SIG for Middlebox Privacy

0.5 0.35 0.25

11

1

Source: the Author, 2017

51

Figure 6.2: Example of a SIG in YAML Format

Source: (SCHEID et al., 2017)

52

6.1.2 VNF Insertion

After the SIG is modeled and imported to INSpIRE, the network operator can start to add
the VNFs and middleboxes that are available in the infrastructure. To perform this addition,
he/she utilizes a GUI provided by INSpIRE, which contains a form with the necessary fields
to be filled by the network operator with information about the middlebox. Such fields include
name, description, IP address, switch, switch port, VNFD file (VNF only), and dependencies.
Within this GUI, a list of operationalizations in a tree view format, separated by leaf-softgoal,
is presented for the network operator to select the functions that the VNF carry out (Figure
6.3). For example, if the VNF is a firewall, the network operator will select operations such
as Blacklist and Whitelist Support and Alert Support and submit the form. The operational-

izations list is composed of nodes of the SIG and may change if the SIG is altered. Once
the form is submitted, INSpIRE automatically calculates the scores following the equations
described in Section 5.3 and stores the scores in a database along with the information about
the middlebox previously informed. One example of entry in the scores database is the tuple
<vnfId,[Security:0.825,...,Detection:1]>.

Figure 6.3: Operationalizations Tree View

Source: the Author, 2017

53

6.1.3 Intent Authoring

The next step is to write intents. This process in based on the language described Sec-
tion 4.2. We utilize this language for the composition of intents in INSpIRE. The intents

that are going to be written in INSpIRE are in the format “trafficType from source to

destination have contextLevel contextsList". For example, let us assume that a
board of directors described an SLA specifying that all email traffic from the Finance Depart-
ment must have high security and privacy. Therefore, a network operator would translate this
SLA into two intents: (i) “SMTP traffic from finance_department to * (any) have high secu-

rity and privacy", and (ii) “IMAP traffic from finance_department to * have high security and

privacy". Then, INSpIRE refines these two intents (one at a time) into objects to be used
for traffic classification and service chain construction purposes. As INSpIRE only address
service chain construction, the refined elements utilized are: contextLevel: high and
contextList:[security,privacy]. Therefore, INSpIRE retrieves all the entries of
the score database in order to utilize these scores to cluster the VNFs. In the example above,
the cluster will have two dimensions (security and privacy) and INSpIRE will plot every VNF
based on its score of these two softgoals.

Once the entries are plotted, INSpIRE discover the three clusters and selects only the
entries that belong to the context level defined in the intent, e.g. (high). Next, INSpIRE
orders the selects VNFs following the process described in Section 5.4.3 and informs the traffic
steering element of the service chain related to the traffic classification objects and the intent.
Finally, packets originated from IPs in the 192.168.1.5\24 range (i.e. finance_department) and
classified as SMTP (port 25) are steered through the chain related to these objects by an external
solution.

6.2 Intent Refinenemt Case Studies

To provide an evaluation of the feasibility of INSpIRE , we describe its behavior in three
different scenarios that serve as case studies. The choice of these scenarios was based on two
premises: the various levels of hierarchy present in the infrastructure and the presence of het-
erogeneous traffic in the network. As an example of the level hierarchy, we can state that in the
case of VNF Service Chain as a Service, “gold users” have a higher priority than “silver users”

and so on. Heterogeneous traffic is described as the presence of different protocols competing
for a network share.

6.2.1 Case Study 1 - Generic Academic Network

Typically in universities, schools or colleges the network is shared with different users, such
as teachers, students, staff and guests. These users also have different levels of freedom in

54

Table 6.2: User Domains and Respective IP Ranges

Scenario 1 Scenario 2 Scenario 3
User Domain IP Range User Domain IP Range User Domain IP Range
teachers 192.168.0.0/24 human_resources 10.0.2.1/24 platinum 172.16.1.1/22
students 192.168.3.0/24 accounting 10.0.3.1/24 diamond 172.16.4.1/22
staff 192.168.5.0/24 development 10.0.4.1/24 gold 172.16.8.1/22
msc_students 192.168.7.0/24 directory 10.0.5.1/24 silver 172.16.12.1/22
phd_students 192.168.9.0/24 inventory 10.0.6.1/24 bronze 172.16.16.1/22
library 192.168.11.0/24 marketing 10.0.7.1/24 standard 172.16.20.1/22

the network depending on their occupation. Thus, the set of services that a packet travels in the
network changes accordingly to its source and destination. In order to guarantee this forwarding
in a dynamic form, infrastructure-level operators have to define, in our system, the user domains
that are present in the network. In column Scenario 1 in Table 6.2 are represented some common
user domains that can be present in an academic network, followed by their respective IP range.
This information is used to steer the traffic correctly when a packet matches with an user-defined
domain, and a traffic type.

In the case of a university, if the dean, which can be characterized as a business-level op-
erator, wants to determine that the traffic from Master students must experience a high level
of security before achieving the Internet, he/she will write the following intent in the Intent
Editor: “HTTP traffic from msc_students to Internet have high security”. This intent will then
be refined to a service chaining graph containing the highest level of security that the available
VNFs in the university’s infrastructure can provide. This chaining can be dynamically changed
if another intent is written, e.g., “FTP traffic from msc_students to phd_students have low se-

curity”. There is now a different intent to traffic originated from Master students, so INSpIRE
creates a new service chaining graph with the desired level of security. The output generated by
INSpIRE of these intents is shown in Table 6.3.

Table 6.3: Results Obtained for the Case Study 1

context contextLevel INSpIRE Output Chain

security

high WAF→ Deep Packet Inspection→ Complete IDS

medium Logger→ Simple vFirewall→ Firewall

low Alert VNF→ Tor-based Anonymizer

We notice that the requirement of dynamically steering the traffic through a set of network
functions is achieved. Packets from the same user with different destinations in the network
do not necessarily traverse the same network functions as occurs in traditional networks. In
addition, the path that a packet will traverse is ruled by the previously defined intents and the
context level specified in each one.

55

6.2.2 Case Study 2 - Common Company Network

Consider the case of a generic company, with different departments, such as Marketing,
Human Resources, Directory, and among others. These departments have different network
requisites due to the diversity of applications in each of them. For example, the need for a
high level of privacy on financial transactions originated from the Marketing department or
a strong security between the communication of two branches. Thus, the organization’s net-
work business-level operator and infrastructure-level operators must guarantee that these re-
quirements are fulfilled. In order to comply with these requirements, infrastructure-level opera-
tors can define different IP ranges for the departments. Moreover, business-level operators can
define sets of intents for the traffic traveling on the organization’s network.

As an example, we will define an company with the user domains presented in Table 6.2,
column Scenario 2. The board of directors may hold weekly meetings with the human resources
department. In order to eliminate the need of physical presence in the conference room, the
participants can use VoIP calls to attend the meeting. This possibility introduces the VoIP
privacy requirement. To address this requirement, one could write an intent of the type “VoIP

traffic from accounting to directory have high privacy” and only activate this intent once a
week, during the meeting. The traffic matching the intent will then be steered through the set of
middleboxes imposed by INSpIRE, guaranteeing a private communication, and dynamically
using network resources. Furthermore, if we consider an organization with more than one
branch, infrastructure-level operators can detail branch domains and user domains for these
branches and a business-level operator can write intents accordingly, e.g., “HTTP traffic from

branch1 to branch3 have medium privacy” and so on.

Table 6.4: Results Obtained for the Case Study 2

context contextLevel INSpIRE Output Chain

privacy

high Encryption VNF

medium Tor-based Anonymizer

low Alert VNF→ Logger→ Firewall

This example aims to provide a picture of how can our approach be used in organizations
with multiple departments. As we can see, the lowest level of privacy was composed of three
VNFs, and the highest level was composed of just one, however, the three VNFs of the lowest
level (Alert VNF, Logger, and Firewall) do not provide any privacy to the traffic, whereas just
the one (Encryption VNF) alone provide the privacy of the traffic. The CNL proposed by
our solution is generic enough to include the requirements of different types of departments
and occasions present in companies. In addition, there is support for companies with multiple
branches, as user domains can be assumed to be edge routers inside a branch.

56

6.2.3 Case Study 3 - VNF Service Chain as a Service (VNF-SCaaS)

The price of current Internet middleboxes represents a significant percentage of a company’s
expenses. With this premise, there is the possibility to monetize service chaining graphs spe-
cially designed for exclusive corporations, reducing its CAPEX and OPEX. Our approach facil-
itates this monetization of service chains by allowing the network operator to set different users
domains in the infrastructure with different classes, such as represented in column Scenario 3

in Table 6.2. If a company does not require a high level of inspection or traffic performance it
does not need to buy an expensive middlebox just to use some of it features, it pays to have a
low degree of inspection in a private NFV environment and redirect the traffic to them. Some
examples of intents that can be applied to a VNF-SCaaS environment are: (i) “VoIP traffic from

diamond to Internet have high logging, and detection”, (ii) “VoIP traffic from gold to Internet

have medium logging, and detection”; and (iii) “VoIP traffic from silver to Internet have low

logging, and detection”.
As the steering of traffic is dynamic, business-level operators can define not only classes but

generic traffic from different tenants. Let us consider the case where a company provides VNF
as a Service. In this case, there is more than one subscriber to this service, so a business-level
operator can define user domains for different subscribers (tenants). Once these domains are
defined, the operator can write intents such as “HTTP traffic from tenantX to tenantY have

high inspection” or “Video traffic from tenantX to tenantZ have medium performance”. The
first intent is translated, and our solution constructs a service chain for this flow containing an
IDS, a Firewall and a DPI. Having the service chain defined, the SCaaS provider can charge the
tenantX accordingly. The second intent specifies that video service from tenantX to tenantZ
must have some level of performance. However, the SCaaS provider only owns a license for
a single video caching virtualized function; therefore, the resultant graph will be composed of
only the video cache function. This service chain (a video caching function) may improve the
overall video quality in streaming, meeting some of tenantZ’s expectation.

Table 6.5: Results Obtained for the Case Study 3

context contextLevel INSpIRE Output Chain

logging, and detection
high Logger→ Firewall Raspberry→ Complete IDS

medium Firewall→WAF→ nDPI

low Alert VNF→ Tor-based Anonymizer→ Encryption VNF

This case study is focused on applying NFV as a Service alongside with Service Chaining as
a Service. We observe that both service chaining and NFV can be monetized as a business-level
operator can add value to different service chains and VNFs, thus charging accordingly. Also,
we can notice that intents can comprise more than one leaf-softgoals, and/or softgoals, such as
logging and detection.

57

6.3 Evaluation

We conducted two evaluations. The first, in Section 6.3.1, evaluates the clustering process.
While the second, in Section 6.3.2, presents experiments with the score calculation process.
The algorithms, equations, and simulations were implemented in Python utilizing well-know
graph (NetworkX (HAGBERG; SCHULT; SWART, 2008)) and clustering (SciPy (JONES et
al., 2001–)) libraries.

This section describes the scalability of the clustering phase of INSpIRE. Also, this section
aims to evaluate the time that is necessary to calculate all the scores of a network function.
The simulations were performed in a Dell XPS 8900 with an Intel Core i7-6700 CPU at 4GHz
processor and 16GiB of RAM memory.

6.3.1 Clustering Evaluation

This component, the clustering phase, of INSpIRE is implemented utilizing the k-means
algorithm. The simulations were ran thirty times to provide enough significance level. The
error bars display the standard deviation. We simulated different types of environments varying
the number of elements (n) to be clustered and the number of dimensions of the elements. The
number of dimensions represented the number of requirements specified in the intent and the
number of elements represented the number of VNFs and middleboxes in the database. The
score of each requirement was randomly attributed varying from 0 to 1. Also, the number of
clusters (k) for the algorithm to estimate was set to 3 due to the different context levels (low,
medium, and high).

Figure 6.4 shows the Execution Time (in seconds) for each set of VNFs varying the number
of Dimensions. The number of VNFs varied from 10 VNFs up to 1 million VNFs, and the
number of dimensions ranged from 1 to 16. We notice that the k-means execution time is
relatively insignificant up to 10.000 VNFs with 16 dimensions. Even for a million of VNFs with
four (4) dimensions (square dashed line) the algorithm took 5 seconds to execute. Therefore,
INSpIRE can cluster up to 10000 (ten thousand) VNFs and middleboxes with 16 dimensions
in less than 1 second.

6.3.2 Score Calculation Evaluation

To evaluate this component, the score calculation phase, we simulated different SIGs with
the number of leaf-softgoals and operationalizations varying from 2 to 64 in a logarithmic
scale. For example, we created a SIG with 2 leaf-softgoals with 2 operationalizations each,
then a SIG with the same number of leaf-softgoals (2) but with 4 operationalizations each and
so son until we reached a SIG with 64 leaf-softgoals with 64 operationalizations each. Due
to the simplicity of the equation to calculate the score of the initial-softgoals, which is only a

58

Figure 6.4: Time to discover 3 clusters in different scenarios

0.
00

5
0.

10
0

5.
00

0

Number of VNFs (n)

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

10 100 1000 10000 100000 1000000

●

●

●

●

●

●

●

●

●

●

●

●

Clustering Time (k=3)

●

●

Dimensions

01
02
04
08
16

Source: (SCHEID et al., 2017)

Figure 6.5: Time to calculate the scores in different SIGs

0.
00

01
0.

01
00

1.
00

00

Number of leaf−Softgoals

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

2 8 16 32 64

●
●

●

●

●

●

Score Calculation Time (# of SGs=1)

●

Number of Operationalizations
02 04 08 16 32 64

Source: (SCHEID et al., 2017)

division, the number of initial-softgoals in the experiments was fixed to 1.

For every SIG configuration, we ran the calculations of the scores thirty times. The results
of this simulation are depicted in Figure 6.5. The error bars display the standard deviation. The

59

x-axis characterizes the number of leaf-softgoals and the different lines characterize the number
of operationalizations of each leaf-softgoal. The time to calculate all the equations (in seconds)
related to softgoals scores, leaf-softgoals scores and operationalizations scores are depicted in
the y-axis in a logarithmic scale. As we can notice, the execution time increases as we increase
the number of operationalizations for each leaf-softgoal. This execution time stays below 1
second until the number of leaf-softgoals reaches 64 and the number of operationalizations

attached to them reaches 64 as well. With this SIG configuration, the time to calculate the scores
of the total amount of nodes (64× 64 = 4096) reaches approximately 3 seconds. In INSpIRE,
we consider an acceptable execution time of less than 1 second. Therefore, the number of nodes
in a SIG scale up to 2048 nodes without affecting the overall INSpIRE performance.

60

7 CONCLUDING REMARKS

This dissertation has presented INSpIRE, which is an Intent-based Networking (IBN) so-
lution that refines intents into service chains of VNFs by employing a technique based on
Softgoal Interdependency Graphs (SIGs) and clustering. INSpIRE is able to automatically
calculate and attribute scores to meet the non-functional requirements of a VNF. In addition,
it draws on these scores to cluster and select the appropriate VNFs to fulfill a defined intent.
Thus, INSpIRE adopts an approach that involves solving the refinement of intents into ser-
vice chains.

7.1 Summary of Contributions

We have defined a CNL to allow business-level operators to write intents in a Web-based
interface. These intents guide the construction and the enforcement of service chains in the
network. In our approach, the employment of IBN with the aid of a CNL to dynamically write
service chaining graphs, reduces the need from network operators to have previous knowledge,
and thus reduces OPEX. Additionally, combining NFV and SDN to build the infrastructure and
virtualize the related elements, adds elasticity and at the same time, lowers CAPEX. Further-
more, when selecting the network functions that will form the chain, they must be characterized
on the basis of their non-functional requirements. We have proposed the use of the NFR Frame-
work to provide this characterization. The NFR Framework employs Softgoal Interdependency
Graphs to express non-functional requirements while the software is being developed; each
non-functional requirement is influenced (either positively or negatively) by different softgoals,
and operationalizations. We have adopted this approach and quantified each non-functional re-
quirement, on the basis of previous work in the literature, so that the network functions can be
grouped with similar non-functional requirements values. It is worth mentioning that the graphs
are designed by drawing on empirical knowledge from the network operators, and business-level
operators, and thus vary from scenario to scenario.

In addition, we provided a case study and simulations of the components of INSpIRE to
validate its feasibility. The case study examines the interaction of the users (stakeholders and
network operators) during the different stages of INSpIRE (SIG modeling, insertion of VNFs,
intent writing, and the refinement process). We also included three case studies to validate the
feasibility of our solution in translating intents. The case studies describe different intents and
the outputs provided by INSpIRE within various network management situations. The first
case study describes an academic network shared by students, teachers and staff. The second
examines a company network that is divided into departments and branches. The third sets out a
scenario where our solution helps operators to monetize their deployment of middleboxes. The
monetization of service chains is achieved by implementing VNF service chaining as a service,
by allowing a business-level operator to set priority classes for different customers, and thus

61

setting different prices to each class.

A set of simulations of the clustering and score calculation components have been carried
out as a means of evaluating INSpIRE. These are generally time consuming components that
are carried out during the whole refinement process due to the complexity of the algorithms
implemented in them. However, the results showed that INSpIRE is able to work in small
scenarios (with hundred of VNFs and SIGs containing 128 nodes) and large scenarios (tens of
thousands of VNFs and SIGs containing 2048 nodes) as well. It can thus be concluded that
INSpIRE is versatile and can be employed in different scenarios.

On the basis of our findings, it has been demonstrated that INSpIRE achieves the three
main objectives outlined in the introduction of this dissertation:

(i) Determining the specific VNFs required to fulfill an intent: INSpIRE determines
the specific VNFs required to fulfill an intent by employing the use of Softgoal Interde-
pendency Graphs to calculate the values needed to select the correct VNFs by means of
clustering techniques.

(ii) Pre-chaining the required VNFs according to their dependencies: INSpIRE em-
ploys the number of operationalizations (i.e. the functions that a network function is
capable of performing) to determine where the network function will be placed in the
chain.

(iii) Providing enough low-level information to network devices for posterior traffic steer-
ing: INSpIRE refines intents into JSON objects with the maximum low-level informa-
tion available. In addition, INSpIRE publishes a REST API that contains functions to
help external traffic steering solutions in the retrieval of the chains.

7.2 Final Remarks and Future Work

It should be noted that the act of defining a service chain is a subjective process – one
service chain might be optimal for a specific infrastructure but poor for another. In view of this,
INSpIRE is far from providing a perfect and well-tailored service chaining creation solution
that can be applied to every situation. Nevertheless, we hope that our work can shed light on the
complexity of the question and enable future research to characterize network functions, VNFs,
and middleboxes on the basis of the functions that they carry out. Moreover, as computer
network management solutions are moving towards needing the least human intervention as
possible, the research on IBN, and the refinement of intents is indispensable to provide more
autonomous solutions.

In future work, we plan to provide a complete solution, by extending INSpIRE so that it
can be integrated with a consolidated NFV framework, such as the ones outlined in Section 3.1.
We also intend to model a comprehensive SIG to represent other non-functional requirements,
such as Integrity, Availability, and Performance. In addition, we seek to conduct a qualitative

62

evaluation of INSpIRE, i.e. to assess its degree of accuracy when providing the service chain
and enforcing it in the network. With regard to the refinement process, INSpIRE does not
take account of the feedback from the service chain when the graphs are already saved in the
database. In light of this, there is a need to design a tool to monitor the service chains and
provide the related feedback, e.g. high latency, slow VNF performance, and incorrect chaining.
In addition, INSpIRE only selects network functions and pre-orders them. However, there can
be cases when only one network function is chosen on the basis of the contexts of the intent. In
this case, a network operator can choose to add more network functions to the chain. Thus, it
is important to allow the network operator to decide whether to adjust the chain, and add more
functions to it.

Finally, to extend INSpIRE further and provide a consolidated prototype, it is recom-
mended that future work should include: (i) integrating with a traffic steering solution, (ii)
testing our solution in production scenarios, (iii) improving the VNF ordering process; and (iv)
implementing additional features in the Web-based interface.

63

REFERENCES

AFFLECK, A.; KRISHNA, A. Supporting Quantitative Reasoning of Non-functional
Requirements: A Process-oriented Approach. In: Proceedings of the International
Conference on Software and System Process. [S.l.: s.n.], 2012. (ICSSP ’12), p. 88–92.

BANDARA, A. K. et al. A Goal-based Approach to Policy Refinement. In: Proceedings of the
Fifth IEEE International Workshop on Policies for Distributed Systems and Networks.
Washington, DC, USA: IEEE Computer Society, 2004. (POLICY ’04), p. 229–.

BATISTA, B.; CAMPOS, G. de; FERNANDEZ, M. A proposal of policy based OpenFlow
network management. In: Telecommunications (ICT), 2013 20th International Conference
on. [S.l.: s.n.], 2013. p. 1–5.

BEHRINGER, M. et al. Autonomic Networking: Definitions and Design Goals. [S.l.]:
IETF, 2015. RFC 7575 (Informational). (Request for Comments, 7575). Available at
<https://tools.ietf.org/html/rfc7575> Accessed April 12, 2017.

BLENDIN, J. et al. Position Paper: Software-Defined Network Service Chaining. In: Software
Defined Networks (EWSDN), 2014 Third European Workshop on. [S.l.: s.n.], 2014. p.
109–114.

CASE, J. D. et al. Simple Network Management Protocol (SNMP). [S.l.], 1990. Available at
<https://www.ietf.org/rfc/rfc1157.txt> Accessed April 12, 2017.

CHUNG, L.; LEITE, J. C. P. In: . Conceptual Modeling: Foundations and
Applications. 1. ed. Berlin, Heidelberg: Springer-Verlag, 2009. chp. On Non-Functional
Requirements in Software Engineering, p. 363–379.

CHUNG, L. et al. Non-Functional Requirements in Software Engineering. 1st. ed. [S.l.]:
Springer Publishing Company, Incorporated, 2000.

CRAVEN, R. et al. Policy Refinement: Decomposition and Operationalization for Dynamic
Domains. In: Network and Service Management (CNSM), 2011 7th International
Conference on. [S.l.: s.n.], 2011. p. 1–9. Available at <http://ieeexplore.ieee.org/document/
6103981/> Accessed April 12, 2017.

CSOMA, A. et al. ESCAPE: Extensible Service Chain Prototyping Environment Using
Mininet, Click, NETCONF and POX. In: Proceedings of the 2014 ACM Conference on
SIGCOMM. New York, NY, USA: ACM, 2014. (SIGCOMM ’14), p. 125–126.

DAMIANOU, N. et al. The Ponder Policy Specification Language. In: Proceedings of the
International Workshop on Policies for Distributed Systems and Networks. London, UK,
UK: Springer-Verlag, 2001. (POLICY ’01), p. 18–38.

DING, W. et al. OpenSCaaS: an open service chain as a service platform toward the integration
of SDN and NFV. Network, IEEE, v. 29, n. 3, p. 30–35, May 2015.

ETSI. Network Functions Virtualisation (NFV). 2012. White Paper. Available at
<https://portal.etsi.org/nfv/nfv_white_paper.pdf> Accessed 15 October, 2015.

https://tools.ietf.org/html/rfc7575
https://www.ietf.org/rfc/rfc1157.txt
http://ieeexplore.ieee.org/document/6103981/
http://ieeexplore.ieee.org/document/6103981/
https://portal.etsi.org/nfv/nfv_white_paper.pdf

64

European Telecommunications Standards Institute (ETSI). ETSI Group Specification
Network Functions Virtualisation (NFV); Management and Orchestration. 2014.
Deliverable 1.1.1. Available at <http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/
01.01.01_60/gs_NFV-MAN001v010101p.pdf> Accessed December 17, 2015.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The Road to SDN: An Intellectual History of
Programmable Networks. SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA,
v. 44, n. 2, p. 87–98, abr. 2014.

FOSTER, N. et al. Frenetic: A Network Programming Language. In: Proceedings of the 16th
ACM SIGPLAN International Conference on Functional Programming. New York, NY,
USA: ACM, 2011. (ICFP ’11), p. 279–291.

FRANCO, M. F. et al. VISION – Interactive and Selective Visualization for Management
of NFV-Enabled Networks. In: 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA). [S.l.: s.n.], 2016. p. 274–281.

GE, X. et al. OpenANFV: Accelerating Network Function Virtualization with a Consolidated
Framework in Openstack. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
New York, NY, USA: ACM, 2014. (SIGCOMM ’14), p. 353–354.

GEMBER-JACOBSON, A. et al. OpenNF: Enabling Innovation in Network Function Control.
In: Proceedings of the 2014 ACM Conference on SIGCOMM. New York, NY, USA: ACM,
2014. (SIGCOMM ’14), p. 163–174.

HAGBERG, A. A.; SCHULT, D. A.; SWART, P. J. Exploring Network Structure, Dynamics,
and Function using NetworkX. In: VAROQUAUX, G.; VAUGHT, T.; MILLMAN, J. (Ed.).
Proceedings of the 7th Python in Science Conference. Pasadena, CA USA: [s.n.], 2008.
p. 11 – 15. Available at <http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf>
Accessed April 12, 2017.

HALPERN, J.; PIGNATARO, C. Service Function Chaining (SFC) Architecture. [S.l.]:
IETF, 2015. RFC 7665 (Informational). (Request for Comments, 7665). Available at
<https://tools.ietf.org/html/rfc7665> Accessed April 12, 2017.

JOHN, W. et al. Research Directions in Network Service Chaining. In: Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for. [S.l.: s.n.], 2013. p. 1–7.

JONES, E. et al. SciPy: Open source scientific tools for Python. 2001–. Available at
<http://www.scipy.org/> Accessed April 12, 2017.

KUHN, T. A Survey and Classification of Controlled Natural Languages. Comput. Linguist.,
MIT Press, Cambridge, MA, USA, v. 40, n. 1, p. 121–170, mar. 2014.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A Network in a Laptop: Rapid Prototyping for
Software-defined Networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. New York, NY, USA: ACM, 2010. (Hotnets-IX), p. 19:1–19:6.

Linux Foundation. Open Platform for NFV. 2015. Available at <https://www.opnfv.org>
Accessed October 18, 2017.

http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf
https://tools.ietf.org/html/rfc7665
http://www.scipy.org/
https://www.opnfv.org

65

MACHADO, C. C. et al. An EC-based Formalism for Policy Refinement in Software-Defined
Networking. In: 2015 IEEE Symposium on Computers and Communication (ISCC). [S.l.:
s.n.], 2015. p. 496–501.

MACHADO, C. C. et al. Policy authoring for software-defined networking management. In:
Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on.
[S.l.: s.n.], 2015. p. 216–224.

MACQUEEN, J. Some Methods for Classification and Analysis of Multivariate Observations.
In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability. [S.l.: s.n.],
1967. p. 281–297. Available at <http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.
8619> Accessed April 12, 2017.

MARTINS, J. et al. ClickOS and the Art of Network Function Virtualization. In: Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2014. (NSDI’14), p. 459–473.

MCKEOWN, N. et al. OpenFlow: Enabling Innovation in Campus Networks. In: . New York,
NY, USA: ACM, 2008. v. 38, n. 2, p. 69–74.

MOFFETT, J. D.; SLOMAN, M. S. Policy Hierarchies for Distributed Systems Management.
In: . [S.l.: s.n.], 1993. v. 11, n. 9, p. 1404–1414.

MOORE, B. et al. Policy Core Information Model. [S.l.], 2001. 1-100 p. Available at
<https://www.rfc-editor.org/rfc/rfc3060.txt> Accessed April 12, 2017.

NeMo Project Team. An Application’s Interface to Intent Based Networks. 2015. Available
at <http://nemo-project.net/> Accessed March 08, 2017.

ONOS Project. ONOS Intent Framework. 2014. Available at <https://wiki.onosproject.org/
display/ONOS/Intent+Framework> Accessed March 08, 2017.

PFITSCHER, R. J. et al. DReAM - a Distributed Result-Aware Monitor for Network Functions
Virtualization. In: 2016 IEEE Symposium on Computers and Communication (ISCC).
[S.l.: s.n.], 2016. p. 663–668.

QAZI, Z. A. et al. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In: Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York, NY, USA: ACM,
2013. (SIGCOMM ’13), p. 27–38.

QUINN, P.; ELZUR, U. Network Service Header. [S.l.], 2015. Available at <https:
//tools.ietf.org/html/draft-ietf-sfc-nsh-12> Accessed April 12, 2017.

QUINN, P.; NADEAU, T. Problem Statement for Service Function Chaining. [S.l.]: IETF,
2015. RFC 7498 (Informational). (Request for Comments, 7498).

RUBIO-LOYOLA, J. et al. A Functional Solution for Goal-Oriented Policy Refinement. In:
IEEE. Policies for Distributed Systems and Networks, 2006. Policy 2006. Seventh IEEE
International Workshop on. [S.l.], 2006. p. 133–144.

SCARFONE, K. A.; MELL, P. M. SP 800-94. Guide to Intrusion Detection and
Prevention Systems (IDPS). Gaithersburg, MD, United States, 2007. Available at
<http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf> Accessed
April 12, 2017.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8619
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8619
https://www.rfc-editor.org/rfc/rfc3060.txt
http://nemo-project.net/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://tools.ietf.org/html/draft-ietf-sfc-nsh-12
https://tools.ietf.org/html/draft-ietf-sfc-nsh-12
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf

66

SCHEID, E. J. et al. INSpIRE: Integrated NFV-baSed Intent Refinement Environment. In:
15th IFIP/IEEE International Symposium on Integrated Network Management (IM
2017). [S.l.: s.n.], 2017. Accepted. To be published.

SCHEID, E. J. et al. Policy-based dynamic service chaining in Network Functions
Virtualization. In: 2016 IEEE Symposium on Computers and Communication (ISCC).
[S.l.: s.n.], 2016. p. 340–345.

SEFRAOUI, O.; AISSAOUI, M.; ELEULDJ, M. OpenStack: Toward an Open-source Solution
for Cloud Computing. International Journal of Computer Applications, v. 55, n. 3, p.
38–42, October 2012. Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
245.229&rep=rep1&type=pdf>, Accessed at October 15, 2015.

STRASSNER, J. Policy-Based Network Management: Solutions for the Next Generation
(The Morgan Kaufmann Series in Networking). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003.

Unify Project. UNIFY Deliverable 2.2 Final Architecture. 2014. Deliverable 2.2.
Available at <https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%
20Deliverable%202.2%20Final%20Architecture.pdf> Accessed September 11, 2015.

USZOK, A. et al. KAoS Policy and Domain Services: Toward a Description-Logic Approach
to Policy Representation, Deconfliction, and Enforcement. In: Policies for Distributed
Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. [S.l.: s.n.], 2003. p. 93–96.

VERMA, D. C. Simplifying Network Administration Using Policy-based Management. IEEE
Network: The Magazine of Global Internetworking, IEEE Press, Piscataway, NJ, USA,
v. 16, n. 2, p. 20–26, mar. 2002.

VERMA, D. C. Principles of Computer Systems and Network Management. 1st. ed. [S.l.]:
Springer Publishing Company, Incorporated, 2009.

ZHANG, Y. et al. StEERING: A Software-Defined Networking for Inline Service Chaining.
In: Network Protocols (ICNP), 2013 21st IEEE International Conference on. [S.l.: s.n.],
2013. p. 1–10.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.245.229&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.245.229&rep=rep1&type=pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%20Deliverable%202.2%20Final%20Architecture.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%20Deliverable%202.2%20Final%20Architecture.pdf

67

AppendixA PUBLISHED PAPER – ISCC 2016

Eder John Scheid, Cristian Cleder Machado, Ricaro Luis dos Santos, Alberto Egon Schaeffer-
Filho and Lisandro Zambenedetti Granville. Policy-based dynamic service chaining in Net-
work Functions Virtualization. 2016 IEEE Symposium on Computers and Communication
(ISCC), Messina, 2016, pp. 340-345. DOI: 10.1109/ISCC.2016.7543763

• Title: Policy-based Dynamic Service Chaining in Network Functions Virtualization.

• Contribution: An architecture to translate high-level policies into dynamic service chains
in NFV.

• Abstract: Network Functions Virtualization (NFV) enables the rapid development, flex-
ible management, and the dynamic placement of new, innovative Virtualized Network
Functions (VNFs), such as load balancers, firewalls, and Intrusion Detection Systems (ID-
Ses). Furthermore, NFV along with Software-Defined Networking (SDN) allows VNFs
and physical middleboxes to be dynamically composed into service chaining graphs. De-
spite these benefits, service chaining graphs can be further improved through the use of
techniques that have not been satisfactorily explored yet, such as Policy-Based Network
Management (PBNM). In PBNM, policies can be written and triggered during runtime,
thus supporting the dynamic (re)configuration of service graphs with minimal disruption.
In this paper, we propose an approach to automatically design NFV service chaining
graphs based on policies. These policies rule the forwarding of traffic and the construc-
tion of service chaining graphs. In our approach, service chaining graphs are enforced
dynamically in the network during runtime. Finally, to assess its feasibility and general-
ity, we create two different scenarios to demonstrate and discuss how our solution can be
employed and its expected results.

• Status: Published.

• Qualis: A2.

• Conference: 21st IEEE Symposium on Computers and Communication (ISCC).

• Date: June 27 - June 30, 2016.

• Local: Messina, Italy.

• URL: <http://iscc2016.unime.it/>.

• Digital Object Identifier (DOI): <http://dx.doi.org/10.1109/ISCC.2016.7543763>.

http://iscc2016.unime.it/
http://dx.doi.org/10.1109/ISCC.2016.7543763

Policy-Based Dynamic Service Chaining in
Network Functions Virtualization

Eder J. Scheid, Cristian C. Machado, Ricardo L. dos Santos, Alberto E. Schaeffer-Filho, Lisandro Z. Granville
Institute of Informatics - Federal University of Rio Grande do Sul

Porto Alegre, RS, Brazil
Email: {ejscheid, ccmachado, rlsantos, alberto, granville}@inf.ufrgs.br

Abstract—Network Functions Virtualization (NFV) enables
the rapid development, flexible management, and the dynamic
placement of new, innovative Virtualized Network Functions
(VNFs), such as load balancers, firewalls, and Intrusion Detection
Systems (IDSes). Furthermore, NFV along with Software-Defined
Networking (SDN) allows VNFs and physical middleboxes to
be dynamically composed into service chaining graphs. Despite
these benefits, service chaining graphs can be further improved
through the use of techniques that have not been satisfacto-
rily explored yet, such as Policy-Based Network Management
(PBNM). In PBNM, policies can be written and triggered during
runtime, thus supporting the dynamic (re)configuration of service
graphs with minimal disruption. In this paper, we propose an
approach to automatically design NFV service chaining graphs
based on policies. These policies rule the forwarding of traffic
and the construction of service chaining graphs. In our approach,
service chaining graphs are enforced dynamically in the network
during runtime. Finally, to assess its feasibility and generality,
we create two different scenarios to demonstrate and discuss how
our solution can be employed and its expected results.

Index Terms—Policy-based Network Management; Network
Functions Virtualization; Service Chaining.

I. INTRODUCTION

Network functions, such as load balancing, firewalls, and
Intrusion Detection Systems (IDSes) are traditionally real-
ized in physical devices often refereed to as middleboxes.
Middleboxes tend to be proprietary and vendor-specific, and
thus force network operators to learn about the peculiarities
of middleboxes from different vendors, which is counter-
productive. Also, physical middleboxes are not flexible enough
to accommodate bursts of demand, which intrinsically hinders
their scalability. Network Functions Virtualization (NFV) [1]
is a novel technology that addresses the lack of flexibility of
physical middleboxes. NFV proposes the use of Commercial
Off-The-Shelf (COTS) hardware to host virtualized network
services. With this approach, the capital expenditure (CAPEX)
and operational expenditure (OPEX) can be significantly re-
duced. Also, with NFV, service provisioning can be easily
scaled up and down according to network demands.

NFV allows the chaining of multiple Virtualized Network
Functions (VNFs). Such VNF chaining enables network ope-
rators to dictate to which sequence of VNFs a packet should go
through. The act of specifying the sequence of VNFs is called
network service chaining [2]. Service chaining on current
network infrastructures is statically defined and dependent
on the network’s topology. This imposes a challenge to the

operator when adding or removing services, considering that
earlier technologies are difficult to redeploy [3]. With NFV and
Software-Defined Networking (SDN) [4], this chaining can
be performed dynamically. SDN decouples the control plane
from the data plane, providing a global view of the network
and a controller that performs traffic forwarding decisions
[4]. With this separation, a controller can be implemented to
steer the traffic dynamically during runtime. Therefore, service
chaining can be easily adapted to the administrator’s need.
This chaining is created from existent VNFs and middleboxes,
thus using network resources efficiently [5].

Network operators have different needs according to the
traffic of the networks that they manage. Also, network users
do not necessarily need the same services (e.g., packets
exchanged inside the enterprise’s network can pass through
a simple firewall instead of a more sophisticated one). From
these premises, a question emerges: how can the operator
dynamically compose a set of VNFs to handle customized
traffic flows? An approach to solving this problem is to use
policies to govern the service chain of a flow. Policy-Based
Network Management (PBNM) in computer networks is a
concept widely applied and well-defined [6], but as long as
the authors of this paper are aware of, its use in NFV service
chaining has not been exploited.

In this paper, we present a PBNM solution to design and
manage service chaining, where business-level operators can
write Service Level Agreements (SLAs) to guide the building
of service chaining graphs. We also introduce a Controlled
Natural Language (CNL) to establish requirements and con-
straints for the writing of policies. Further, we discuss our
solution’s feasibility and generality in two different scenarios.
Our proposed solution can be employed in both homogeneous
environments (VNFs only) and heterogeneous environments
(composed of both VNFs and physical middleboxes).

This paper is structured as follows. In Section II, we review
work related to this approach. Then, in Section III, the solution
and associated architecture are described. In Section IV, two
case studies are outlined and discussed. Finally, in Section V,
we finish this paper with conclusions and future work.

II. RELATED WORK

PBNM is a concept already widely employed and studied
for years. However, with the recent scientific and industrial
interest in both NFV and SDN, this concept is emerging back.

68

Moreover, some high-level languages for programming Open-
Flow networks (e.g., Frenetic [7]), simplify the steering and
the classification of traffic by abstracting packet-forwarding
policies and modularizing components. Thus, promoting the
use of PBNM approaches in OpenFlow networks.

Machado et al. [8] propose to manage an SDN environment
with minimal changes in the controller implementation. To
achieve this, the authors introduce a framework that translates,
in the work’s scope, Quality-of-Service (QoS) policies into
a set of OpenFlow rules. The work aims to reduce the
complexity of management tasks and to enable the writing of
high-level policies by using a CNL. Nevertheless, the authors
do not address traffic steering policies nor NFV.

In the service chaining area, the Internet Engineering Task
Force (IETF) has described an architecture for the develop-
ment of Service Function Chains (SFCs) [9]. In addition, the
Network Service Headers (NSH) [10] is an approach that
introduces a new header in packets traveling through services
instances. This header is intended to help the separation of
traffic. However, the addition of this header increases the traffic
processing time, which may cause delays or even packet loss.

Qazi et al. [11] proposed SIMPLE, a solution that relies
on SDN to provide middlebox traffic steering. SIMPLE intro-
duces a policy enforcement layer which translates user-defined
policies into OpenFlow rules and track packets that had their
headers modified by service instances. This solution addresses
the service chaining problem with SDN but does not take
into consideration if the middleboxes are deployed as VNFs,
consequently, not leveraging NFV’s flexibility and scalability.

Likewise, Csoma et al. [12] introduced ESCAPE, a proto-
typing framework that allows the developer to test and chain
customized VNFs in an SDN environment. ESCAPE employs
some consolidated tools, such as Mininet and ClickOS, pro-
viding a strong basis to develop and evaluate different types
of NFV and SDN solutions. Although allowing the developer
to compose any VNF chain, the prototype does not support
the modification of this chain during runtime.

Several solutions have been proposed in the NFV and SDN
area [13] [14] [15] [16] (due to space constraints they are not
detailed in this paper). Despite the efforts employed by the
authors to provide these solutions, such solutions have some
important shortcomings. For example, the synergy between
SDN and NFV that introduces the possibility to write high-
level rules to guide the composition of service chains is not
considered. In addition, the mechanisms to analyze low-level
rules in order to provide richer data to guide this composition
are not covered. Therefore, we pursued to cover all these
aspects during the development of our solution.

III. POLICY-BASED DYNAMIC SERVICE CHAINING

We present an approach to enable network operators to write
management policies that govern the chaining of VNFs. Based
on the set of available VNFs in the infrastructure, our proposed
framework creates a graph that represents the Service Chaining
(SC). This graph is then used by an SDN controller to perform
the traffic steering. The primary objective of our solution is to

ease the tasks of network operators when specifying service
chains and also decouple the need of expressing how low-
level configurations must be implemented in the infrastructure.
Therefore, is not under the scope of our solution how the
controller will perform the steering of traffic.

A. Controlled Natural Language

The syntax of many policy languages often resembles the
syntax of traditional programming languages, which is the case
of Ponder [17]. This approach requires the network operator
to have a prior knowledge of the language and to translate
SLAs into a particular format. On the other hand, with the
employment of CNLs [18] to write policy languages, network
operators can write SLAs in (a subset of) English, which
diminish the need for prior specific knowledge. Machado et al.
[8] proves the feasibility of using a CNL to write SLAs that
are translated to QoS rules and then enforced in the network
elements. Given this premise, we present a CNL to write rules
for the creation of service chaining graphs. The grammar of
the proposed CNL is presented in the Listing 1.

Listing 1: Proposed CNL grammar
1 Language : !<S e r v i c e ><Flow><P r e p o s i t i o n ><E x p r e s s i o n >
2 S e r v i c e : ! s e r v i c e �r e g e x e s
3 Flow : !<D i r e c t i o n ><Targe t><D i r e c t i o n ><Targe t>
4 D i r e c t i o n : ! From | To
5 T a r g e t : ! use r�d e f i n e d�r e g e x e s
6 P r e p o s i t i o n : !Have
7 E x p r e s s i o n : !<Term>|<Term><Connec t ive><E x p r e s s i o n >
8 Term : !<A d j e c t i v e ><Contex t>
9 A d j e c t i v e : ! a d j e c t i v e �r e g e x e s

10 C o n t e x t : ! c o n t e x t�r e g e x e s
11 C o n n e c t i v e : !And | Or

As the policy language is defined as a CNL, in order
to identify strings that compose a policy in a solid way
we defined a set of regular expressions. We have classified
these regular expressions into four main types according their
purposes: (i) service-regexes to identify the type of service;
(ii) user-defined-regexes that are set by the user; (iii) adjective-
regexes to identify the level of requirement; and (iv) context-
regexes to identify the context of the policy. Some examples
of regular expressions are presented in Table I.

TABLE I: Regular Expressions Examples

Type Expression

service-regexes HTTP, SMTP, FTP, VoIP...

user-defined-regexes teachers, staff, Internet...

adjective-regexes none, low, medium, high...

context-regexes inspection, perfomance, resiliency...

B. Architectural Model

In this section, we propose a solution that permits the
writing of SLAs which are an abstraction of a service chain.
This means that the network operator only specifies the level
of context enforcement a flow must have. Thus, a flow has to
pass through the respective service chain that complies with
the stored policies.

69

We present in Figure 1 a high-level perspective of the
conceptual model of our solution. The components charac-
terized with a dashed line are existing solutions and were not
implemented, given that our solution is generic enough and can
be applied on top of them. In the next sections, we present a
more in-depth description of the layers and its components.

Fig. 1: Proposed System Architecture

1) Service Layer: The Service Layer comprises: (i) tradi-
tional lifecycle management functions, such as Operation Sup-
port Systems (OSS) and Business Support Systems (BSS), (ii)
virtualization-related management functions, such as lifecycle
management for VNFs; and (iii) adaptation functions toward
lower layer. As the management functions of the service layer
must not depend on the infrastructure of the network, their
implementation is generic. They are described below.

• Web-based Interface: This component acts as a frontend
that allows the operator to interact with the VNF Manage-
ment and the Policy Editor using a user-friendly interface.
With the utilization of a Graphical User Interface (GUI),
the interaction with the system is simplified.

• VNF Management: In order for the system to recognize
the available VNFs in the infrastructure, infrastructure-
level operators must inform their description and details.
To manage this information (create, remove and update
VNFs) a set of functions are accessible using the op-
erator’s account to login in the web-based interface. The
NFV ETSI Industry Specification Group (ISG) formalizes
the information that a VNF should contain [19]. This
information is stored in the VNF Descriptor (vnfd),
which contains elements regarding requirements of the
deployment and operation of VNFs, such as the num-
ber of virtual CPUs (computation requirement),
the amount of virtual network bandwidth needed
(virtual network bandwith resource) and
the version of the VNF software.

• Policy Editor: This component allows business-level ope-
rators to create, retrieve, update and delete policies.
Operators can also enable or disable policies accordingly
to their needs. The aforementioned CNL is used to input
the policies. Also, the Policy Editor has to parse and
match the given CNL with low-level rules.

• Policy Repository: Policies wrote by business-level ope-
rators are stored in this component. This repository is
accessed by the Policy Decision Point (PDP) and the
Service Chaining Graph Builder to design the graphs.

2) Orchestration Layer: This layer comprises two compo-
nents, the resource orchestrator, and the controller adapter,
which are embedded in this layer and are not depict in
architecture. The first is composed of virtualizers, policy
enforcement and orchestration with underlying resources. The
latter comprises resource abstraction functions and virtualiza-
tion for different technologies. This layer is in charge of all
the infrastructure management and networking control, being
the main layer of our solution. Within these two components,
we place a set of elements; they are detailed below.

• VNF Repository: This component holds information
about the VNFs informed by the infrastructure-level op-
erator in the GUI. The ETSI defines that once an instance
of a VNF is deployed, a VNF Record (vnfr) is created.
This record (e.g., IP Address (vnf address), type of
service, and status) is updated during the lifecycle of the
respective VNF by the NFV Orchestrator.

• Service Chaining Graph Builder: This component access
the policies wrote by business-level operators and auto-
matically creates service chaining graphs based on those
policies. In addition, to have sufficient information to
create these graphs, this element retrieves the available
VNFs from the VNF Repository. Once it retrieved the
detailed information about the policies and VNFs, the
graphs are created and stored or updated in a repository.

• SC Graphs Repository: This repository stores the Service
Chaining graphs created by the builder. The stored tuple
consists of a policy and its respective service chain.

• Policy Decision Point (PDP): This component determines
which policy is going to be enforced based on the
information given by the SDN Controller and the NFV
orchestrator. It decides which policy matches with a flow
informed by the SDN Controller given the stored policies
in the Policy Repository. Information about the network
and VNFs are constantly fed to this component.

• Policy Enforcement Point (PEP): This component informs
the Traffic Steering Component to access the respective
graph in the SC Graphs Repository and install the rules.

• Traffic Steering Component: This component communi-
cates with the SDN controller and steers the flows through
the desired set of VNFs based on the defined service
chaining graph. This steering is ruled by the policies
enforced by the PEP. Thus, when a policy is enforced, this
component access the SC Graphs Repository to retrieve
the graph and informs the SDN controller of the rules
that must be installed in the switches.

3) Infrastructure Layer: Within this layer are compromised
all the physical resources, and controllers. Resources are com-
posed of machines containing compute, storage and network
resources and their respective managers. In our model users,
VNFs, routers, and servers compose this layer.

70

C. Policy Translation

The process of translating SLAs into service chains com-
prises three phases, performed by the Policy Editor (Phase 1
and 2) and Service Chaining Graph Builder (Phase 3).

1) Phase 1 - Policy Validation: To validate an SLA written
by an operator, the Policy Editor has to parse this SLA into a
set of defined regular expressions, as depict in Figure 2. The
Policy Editor iterates over the string to find service-regexes
first, then it moves to user-defined-regexes that specifies the
source and destination of the flow, and finally, it searches for
the adjective-regexes followed by the context-regexes. If the
parser encounters an error in any part of the parsing process,
the SLA is marked as invalid and is not stored in the database.
In the web-based interface, the operator receives an error
message. In addition, there is an option that allows the operator
to validate the SLA before committing it to the database.

Fig. 2: Valid SLA Policy Parsing Example

2) Phase 2 - Conflict Detection: The primary focus of this
paper is not to resolve conflicts among policies. However, our
system estimates some conflicting policies at the insertion.
Then, the GUI displays this information to the current operator,
who must write a new nonconflicting policy. Conflicts can
vary from already defined policies to priority conflicts, such
as the inclusion of two equal policies but with different
adjective-regex will trigger a priority conflict. For example,
if an operator writes an SLA “HTTP traffic from teachers to
students have high inspection” and later tries to insert another
SLA informing “HTTP traffic from teachers to students have
none inspection”, the system will notify the operator of the
conflict, which in this case is the same service-regex (HTTP),
same user-defined-regexes (teachers and students) and different
adjective-regexes (high and none) for the same context-regex
(inspection). Next, after the notification, the operator must
resolve the conflicting SLAs.

3) Phase 3 - Service Chain Graph Construction: Once
policies are defined and inserted into the database, the Service
Chaining Graph Builder component has to create the desired
service chains. To construct these service chains, the builder
must have knowledge of what VNFs are available for compos-
ing the graphs. It does that by accessing the VNF Repository
and retrieving the information stored at the VNF descriptors
or records. This process of retrieval is guided by the context-
regexes (e.g., if the context-regex=“inspection”) the builder
only retrieves VNFs related with security or inspection, which
minimizes the amount of VNF information to process.

After retrieving the VNFs, the SC builder sets a chaining
threshold for the highest level related to the context. This
threshold is based on the available VNFs. For instance, a graph

composed of a firewall, an intrusion detection system, and a
deep packet inspection may represent the highest “inspection
level” for an infrastructure with those three VNFs available.
In a first moment, this threshold is a suggestion based on pre-
defined thresholds; the infrastructure-level operator can add
or remove VNFs as required. After setting this threshold, the
adjective-regex is examined to determine the desired context
level of the to-be-constructed service chain. If the desired
context level is high, the service chain is set to the threshold,
which is the case of adjective-regex depict in Figure 2.
Otherwise, the builder conducts the removal of virtualized
functions until it reaches the desired level.

In Table II some examples of context levels and its
equivalent service chain are represented. It also represents
the different chaining possibilities given a set of VNFs.
The “!” character represents an edge in the graph, and
the functions are those defined as present in the infrastruc-
ture by infrastructure-level operators. The resultant graph is
composed of network functions (nodes) and links (edges);
the sequence of the network functions is determined based
on the “vnf depedency” element present in the ETSI
Network Service Descriptor (nsd). This element describes
the dependency among VNFs and informs which source VNF
must exist before a target VNF is deployed. The information
stored in the node is a pointer to the desired VNF in the
repository and in the edges are stored only linking information,
such as the source’s and destination’s port.

Lastly, the Service Chaining Graph Builder inserts the tuple
<policy,graph> in the SC Graph Repository for posterior
access by the Traffic Steering Component.

TABLE II: Service Chains and Context Levels Examples

context-regex adjective-regex Graph Builder Output

inspection

high Firewall ! DPI ! IPS
medium Firewall ! DPI

low Firewall

D. Traffic Classification and Steering

To properly steer the traffic through the set of desired
VNFs, the incoming flow of packets must be classified. This
classification is performed by the PDP, in which the services-
regexes and the user-defined-regexes are employed to match
with the policies stored at the Policy Repository. The former
is used to classify the type of service of the current flow. The
latter defines the source and destination of the graph (e.g.,
“from teachers to Internet”). This information is then utilized
to retrieve the matching policy from the Policy Repository.

Having retrieved the policy, the PDP forwards the infor-
mation and the policy to the PEP to enforce it. This act of
enforcing is performed by informing this policy to the Traffic
Steering Component so that it can retrieve the matching SC
graph from the SC Graph Repository.

Considering that SDN helps to address the problem of
dynamic steering of traffic, with the use of OpenFlow [20]
enabled switches and routers; and that OpenFlow rules are

71

installed and expired during runtime, SDN was elected as the
networking paradigm to compose the solution. With the use of
this approach, the network becomes more flexible and more
manageable, as service graphs can be modified during runtime.

TABLE III: User Domains and Respective IP Ranges

Scenario 1 Scenario 2
User Domain IP Range User Domain IP Range

human-resources 154.15.2.0/24 platinum 135.98.1.0/24
accounting 154.15.3.0/24 diamond 135.98.5.0/24
development 154.15.4.0/24 gold 135.98.10.0/24
directory 154.15.5.0/24 silver 135.98.15.0/24
marketing 154.15.7.0/24 bronze 135.98.25.0/24

IV. CASE STUDIES

To provide an evaluation of the feasibility of our solution,
we describe its implementation in two different scenarios that
serve as case studies. The choice of these scenarios was based
on two premises: the various levels of hierarchy present in the
organization and the presence of heterogeneous traffic in the
network. As an example of the level hierarchy, we can state
that in the case of VNF Service Chain as a Service, “gold
users” have a higher priority than “silver users” and so on.
Heterogenous traffic is described as the presence of traffic such
as different internet protocols competing for a network share.

A. Scenario 1 - Common Enterprise Network

Let us consider the case of a generic enterprise, with
different departments, such as Marketing, Human Resources,
Directory, and among others. These departments have different
network requisites due to the diversity of applications in each
of them. For example, the need for a high level of inspection
on financial transactions originated from the Marketing de-
partment or a strong security between the communication of
two branches. Thus, the organization’s network business-level
operator and infrastructure-level operators must guarantee that
these requirements are fulfilled. In order to comply with
these requirements, infrastructure-level operators can define
different IP ranges for the departments, an example of user
domains can be found in column Scenario 1 in Table III.
Moreover, business-level operators can define sets of policies
for the traffic traveling on the organization’s network.

As an example, we will define an enterprise with the user
domains presented in Table III, column Scenario 1. This
scenario is depicted in Figure 3. The board of directors may
hold weekly meetings with the human resources department.
In order to eliminate the need of physical presence in the
conference room, the participants can use VoIP calls to attend
the meeting. This possibility introduces the VoIP QoS require-
ment. To address this requirement, one could write an SLA of
the type “VoIP traffic from human-resources to directory have
high performance” and only activate this SLA once a week,
during the meeting. This traffic will then be steered to the
set of middleboxes imposed by our solution, guaranteeing a
good VoIP user experience for the participants, dynamically
using network resources (solid red line). If we consider an
organization with more than one branch, infrastructure-level

operators can detail branch domains and user domains for
these branches and a business-level operator can write SLAs
accordingly, e.g., “HTTP traffic from branch1 to branch3

have low security” (blue dashed line) and so on.

Fig. 3: Traffic Flows in a Common Enterprise Network

This example aims to provide a picture of how can our
approach be used in organizations with multiple departments.
The CNL proposed by our solution is generic enough to
englobe the requirements of different types of departments and
occasions present in enterprises. In addition, there is support
for enterprises with multiple branches, as user domains can be
assumed to be edge routers inside a branch’s.

B. Scenario 2 - VNF Service Chain as a Service (VNF-SCaaS)

The price of current Internet middleboxes represents a
significant percentage of a company’s expenses. With this
premise, there is the possibility to monetize service chaining
graphs specially designed for exclusive corporations, reducing
its CAPEX and OPEX. Our approach facilitates this moneti-
zation of service chains by allowing the network operator to
set different users domains in the infrastructure with different
classes, such as represented in column Scenario 2 in Table
III. If a company does not require a high level of inspection
or traffic performance it does not need to buy an expensive
middlebox just to use some of it features, it pays to have a
low degree of inspection in a private NFV environment and
redirect the traffic to them. Some examples of SLAs that can
be applied to a VNF-SCaaS environment are: (i) “VoIP traffic
from diamond to Internet have high performance”, (ii) “FTP
traffic from Internet to bronze have none inspection”; and (iii)
“SMTP traffic from silver to Internet have low inspection”.

As the steering of traffic is dynamic, business-level ope-
rators can define not only classes but generic traffic from
different tenants. Let us consider the case where a company
provides VNF as a Service, portraited in Figure 4. In this case,
there is more than one subscriber to this service, so a business-
level operator can define user domains for different subscribers
(tenants). Once these domains are defined, the operator can
write policies such as “HTTP traffic from tenantX to tenantY
have high inspection” or “Video traffic from tenantX to
tenantZ have medium performance”. The first policy is
translated, and our solution constructs a service chain for this
flow containing an IDS, a Firewall and a DPI (solid red line).

72

Having the service chain defined, the SCaaS provider can
charge the tenantX accordingly. The second policy specifies
that video service from tenantX to tenantZ must have some
level of performance. However, the SCaaS provider only owns
a license for a single video caching virtualized function;
therefore, the constructed graph will comprise only the video
cache function (blue dashed line). This service chain (a video
caching function) may improve the overall video quality in
streaming, meeting some of tenantZ’s expectation.

Fig. 4: Traffic Flows in a VNF-SCaaS Infrastructure

This case study is focused on applying NFV as a Service
alongside with Service Chaining as a Service. We observe
that both service chaining and NFV can be monetized as
a business-level operator can add value to different service
chains and VNFs, thus charging accordingly.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a policy-based approach to
chain multiple VNFs. We also have defined a CNL to allow
business-level operators to write SLAs in a GUI. These SLAs
guide the construction and the enforcement of service chains
in the network. Our approach takes in consideration some
elements from the ETSI specification to guide the construction
of service chaining graphs. In our approach, PBNM is applied
to support the implementation of the components. With the
employment of PBNM and a CNL to dynamically compose
service chaining graphs, the need for previous knowledge from
network operators is lowered, thus reducing OPEX. Addition-
ally, combining NFV and SDN to compose the infrastructure
adds elasticity and lowers CAPEX.

We provided two case studies that have validated the fea-
sibility of our solution. The first details a common enterprise
network divided by departments and branches. The second
presents a scenario where our solution helps operators to
monetize their middleboxes. This is achieved by implementing
means to provide VNF service chaining as a service, allowing
a business-level operator to set classes of priority to different
customers, thus charging accordingly. In these two cases, the
PBNM approach proved to simplify the management and
creation of customized service chains to different flows.

To extend our solution, future work proposals include: (i)
integration with an implemented NFV framework, such as the

ESCAPE framework described in Section II, (ii) extension of
our solution to address currently not supported requirements,
such as QoS and performance; and (iii) propose a more
sophisticated approach to the suggestion of thresholds and
VNF order in the service chaining graph.

REFERENCES

[1] “Network Functions Virtualisation (NFV),” White Paper, European
Telecommunications Standards Institute (ETSI), 2014.

[2] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” (IETF), RFC 7498, 2015.

[3] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research Directions
in Network Service Chaining,” in 2013 IEEE SDN4FNS, 2013.

[4] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, 2014.

[5] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer,
“Position Paper: Software-Defined Network Service Chaining,” in 2014
Third European Workshop on Software Defined Networks (EWSDN).

[6] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Language,”
in Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP ’11. ACM, 2011.

[8] C. Cleder Machado, J. Araujo Wickboldt, L. Zambenedetti Granville,
and A. Schaeffer-Filho, “Policy authoring for software-defined net-
working management,” in Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, May 2015, pp. 216–224.

[9] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Archi-
tecture,” (IETF), RFC 7665, 2015.

[10] P. Quinn and U. Elzur, “Network Service Header,” Working Draft,
(IETF), Internet-Draft draft-ietf-sfc-nsh-01, 2015.

[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 27–38.

[12] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier,
and S. Sahhaf, “ESCAPE: Extensible Service Chain Prototyping Envi-
ronment Using Mininet, Click, NETCONF and POX,” in Proceedings
of the 2014 ACM Conference on SIGCOMM. ACM, 2014.

[13] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014.

[14] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “OpenANFV: Accelerating Network Function Virtualization with
a Consolidated Framework in Openstack,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. ACM, 2014.

[15] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula, “StEERING: A software-defined networking for
inline service chaining,” in Network Protocols (ICNP), 2013 21st IEEE
International Conference on, Oct 2013, pp. 1–10.

[16] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: an open service
chain as a service platform toward the integration of SDN and NFV,”
Network, IEEE, vol. 29, no. 3, pp. 30–35, May 2015.

[17] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy
Specification Language,” in Proceedings of the International Workshop
on Policies for Distributed Systems and Networks, ser. POLICY, 2001.

[18] T. Kuhn, “A Survey and Classification of Controlled Natural Lan-
guages,” Comput. Linguist., vol. 40, no. 1, pp. 121–170, Mar. 2014.

[19] European Telecommunications Standards Institute (ETSI), “ETSI Group
Specification Network Functions Virtualisation (NFV); Management and
Orchestration,” 2014.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, 2008.

73

74

AppendixB PUBLISHED PAPER – IM 2017

Eder John Scheid, Cristian Cleder Machado, Muriel Figueredo Franco, Ricaro Luis dos San-
tos, Ricardo Jose Pfitscher, Alberto Egon Schaeffer-Filho and Lisandro Zambenedetti Granville.
INSpIRE: Integrated Intent-baSed Intent Refinement Environment. 15th IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 2017), Lisbon, Portugal.

• Title: INSpIRE: Integrated Intent-baSed Intent Refinement Environment.

• Contribution: An intent refinement technique based on non-functional requirements.

• Abstract: Many aspects of the management of computer networks, such as quality of
service and security, must be taken into consideration to ensure that the network meets
theusers and clients demands. Fortunately, management solutions were developed to ad-
dress these aspects, such as Intent-Based Networking (IBN). IBN is a novel networking
paradigm that abstracts network configurations by allowing administrators to specify how
the network should behave and not what it should do. In this paper, we introduce an IBN
solution called INSpIRE (Integrated NFV-based Intent Refinement Environment). IN-
SpIRE implements a refinement technique to translate intents into a set of configurations
to perform a desired service chain in both homogeneous environments (VNFs only) and
heterogeneous environments (VNFs and physical middleboxes). Our solution is capable
of (i) determining the specific VNFs required to fulfill an intent, (ii) chaining these VNFs
according to their dependencies, and (iii) presenting enough low-level information to net-
work devices for posterior traffic steering. Finally, to assess the feasibility of our solution
we detail a case study that reflects real-world management situations and evaluate the
scalability of the refinement process.

• Status: Accepted - to appear.

• Qualis: B1.

• Conference: 15th IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2017).

• Date: May 08 - May 12, 2017.

• Local: Lisbon, Portugal.

• URL: <http://im2017.ieee-im.org/>.

• Digital Object Identifier (DOI): –.

http://im2017.ieee-im.org/

INSpIRE: Integrated NFV-baSed Intent Refinement
Environment

Eder J. Scheid, Cristian C. Machado, Muriel F. Franco, Ricardo L. dos Santos, Ricardo P. Pfitscher,
Alberto E. Schaeffer-Filho, Lisandro Z. Granville

Institute of Informatics - Federal University of Rio Grande do Sul
Porto Alegre, RS, Brazil

{ejscheid, ccmachado, mffranco, rlsantos, rjpfitscher, alberto, granville}@inf.ufrgs.br

Abstract—Many aspects of the management of computer
networks, such as quality of service and security, must be
taken into consideration to ensure that the network meets the
users and clients demands. Fortunately, management solutions
were developed to address these aspects, such as Intent-Based
Networking (IBN). IBN is a novel networking paradigm that
abstracts network configurations by allowing administrators to
specify how the network should behave and not what it should do.
In this paper, we introduce an IBN solution called INSpIRE (In-
tegrated NFV-based Intent Refinement Environment). INSpIRE
implements a refinement technique to translate intents into a
set of configurations to perform a desired service chain in
both homogeneous environments (VNFs only) and heterogeneous
environments (VNFs and physical middleboxes). Our solution
is capable of (i) determining the specific VNFs required to
fulfill an intent, (ii) chaining these VNFs according to their
dependencies, and (iii) presenting enough low-level information
to network devices for posterior traffic steering. Finally, to assess
the feasibility of our solution we detail a case study that reflects
real-world management situations and evaluate the scalability of
the refinement process.

I. INTRODUCTION

Many aspects of the management of computer networks,
such as quality of service and security, must be taken into
consideration to ensure that the network meets the users and
clients demands. In order to achieve the desired behavior, the
devices composing the network must be individually config-
ured, requiring time and effort from network administrators
[1]. This activity typically involves the interruption of the
network and results on rules that highly depend on the physical
network topology. Fortunately, many approaches have been
developed to tackle these issues, including well-known and
widely employed solutions such as Simple Network Man-
agement Protocol (SNMP) [2] and Policy-Based Networking
(PBNM) [3] [4], as well as more recent techniques based on
Intent-Based Networking (IBN) [5].

IBN is a novel networking paradigm that abstracts network
configurations by allowing administrators to specify how the
network should behave and not what it should do. For example,
in IBN solutions, one must write an intent “All outgoing
network traffic is encrypted” and not an instruction “If a packet
is destined to outside the network then encrypt it using SHA3”.
Intent brings context and is not vendor-specific, which means
that the underlying mechanisms must be capable of translating
this intent to low-level configurations and maintaining the

desired state through the entire network operation. Given
the dynamicity involved in IBN, the underlying technologies
must be flexible enough to cope with an ever-changing net-
work environment, scaling and moving accordingly. Novel
technologies arise as alternatives to provide this flexibility,
such as Software-Defined Networking (SDN) [6] and Network
Functions Virtualization (NFV) [7].

NFV introduces the possibility to instantiate and terminate
network functions dynamically in the infrastructure. Addition-
ally, NFV combined with SDN provides a paradigm shift from
earlier technologies, as now different traffic flows can be dy-
namically steered through any sequence of network functions
to provide specialized network services. This act of specifying
the sequence of network functions is known as service function
chaining [8]. However, the management of network functions,
service chains, and other network resources becomes challeng-
ing as the dynamicity of the network increases. Therefore,
the employment of intents and IBN in the service chaining
context is appropriate. Moreover, intents can be used to
decouple management strategies from implementation details,
reducing the amount of specific knowledge from system-level
administrators when configuring low-level settings, e.g., the
chaining of Virtual Network Functions (VNFs).

Even though IBN is a novel networking paradigm, intents
can still be considered high-level abstract policies. In addition,
intents do not hold specific requirements nor configurations,
e.g., OpenFlow rules [9]. Thus, IBN solutions must be able
to translate these high-level policies into lower-level specific
configurations e.g., IPTables rules or routing tables. This
translation process is referred to as policy refinement and it
has been investigated for several years [10] [11] in the PBNM
context. However, to the best of our knowledge, refinement
techniques alongside with IBN and NFV were not exploited
in any other solution. Therefore, there is an opportunity to
investigate refinement techniques in the IBN context.

In this paper, we introduce an IBN solution called
INSpIRE (Integrated NFV-based Intent Refinement Environ-
ment). INSpIRE implements a refinement technique to trans-
late intents (constrained by a Controlled Natural Language -
CNL [12]) into a set of configurations to perform a desired
service chain in both homogeneous environments (VNFs only)
and heterogeneous environments (VNFs and physical mid-
dleboxes). Our solution applies a refinement process, based

75

on non-functional requirements and softgoals, to decompose
intents and to calculate values that are utilized as selection
criteria for the choice of middleboxes that will compose
the service chain; ultimately, satisfying the desired intent.
INSpIRE is capable of (i) determining the specific VNFs
required to fulfill an intent, (ii) chaining these VNFs according
to their dependencies, and (iii) presenting enough low-level
information to network devices for posterior traffic steering.
Further, we extend the descriptor of VNFs defined in the ETSI
Management and Orchestration (MANO) framework [13] to
contain meta-data to aid in the ordering of VNFs. Finally, we
describe a case study and conduct experiments to demonstrate
the scalability of the refinement elements and to evaluate the
feasibility of our solution in real-world scenarios.

This paper is structured as follows. In Section II, we review
related work. Section III provides a brief description of the
main concepts used in our solution, presents INSpIRE, and
describes a case study. In Section IV, the experiments, and
results are described. Finally, in Section V, we finish this paper
with conclusions and future work.

II. RELATED WORK

Early work on policy refinement in the context of PBNM
has achieved promising results. Bandara et al. [14] proposed to
decompose high-level policies into low-level concrete policies
based on goal mapping. Given a formal representation of a
system, based on Event Calculus (EC), the proposed solution
can derive the sequence of operations that will allow a system
to achieve the desired goal. The goals can be accomplished
by reaching one or more of the underlying goals that were
previously derived. Rubio-Loyola et al. [15] used linear tem-
poral logic and reactive systems analysis to provide a solu-
tion for goal-based policy refinement. Leveraging the KaOS
methodology to goal elaboration, the solution can derive goals
into low-level policies in the Ponder specification language
[16]. Also, the authors present their solution in a DiffServ
QoS management scenario. Craven et al. [11] described a
method for the refinement of authorization and obligation
policies. In the work, the domains are represented in UML
diagrams, which are used as inputs to the refinement process,
alongside with a policy and decomposition rules. After the
decomposition, operationalization and re-refinement stages the
policy is ready for deployment.

More recently, the use of high-level abstractions for con-
figuring and managing SDN-based infrastructures has been
investigated. A novel language for programming OpenFlow
networks was proposed by Foster et al. called Frenetic [17].
Frenetic provides a high-level language for handling network
traffic and a reactive library to compose packet-forwarding
policies. This language aims to ease the work of network
operators when developing SDN controllers. Machado et al.
[18] presented a formalism based on EC to represent high-
level Service-Level Agreements (SLA) policies and then apply
logical reasoning to refine these SLAs into low-level rules to
manage an SDN. The authors advocate that some aspects of
SDN, such as the ease to gather information about the network

(e.g., jitter and delay) by OpenFlow controllers, enhances the
policy refinement process in such environments.

All these works address the refinement of high-level into
low-level policies. However, intents are abstract and subjective,
changing from domain to domain. Therefore, we need to
consider this subjectiveness when refining intents. Further-
more, the scope of most refinement techniques is restricted to
specific domains, such as QoS management in conventional
IP networks or access control systems, which limits their
employment in the refinement of intents. Moreover, a single
intent can alter the configuration of many elements in the
network. Thus, the modeled domains used for the refinement
process must accurately reflect the elements and configurations
of the whole network and not just a single scope.

III. INTEGRATED NFV-BASED INTENT REFINEMENT
ENVIRONMENT

In this section, we present INSpIRE to address the re-
finement of intents, which are defined as high-level abstract
policies, into a set of network functions and information that
satisfy a specific intent. Our refinement technique is composed
of three steps. The first step relates to the modeling of the
domain in which the intent is being applied, including opera-
tions performed by network functions (e.g., L2 inspection and
packet filtering) and non-functional requirements (e.g., security
and performance). We detail this model and requirements in
Section III-A and Section III-B. The second step includes the
quantitative calculation of the non-functional requirements of
a VNF based on the modeled domain, resulting in numerical
values for those requirements. Finally, the third step includes
the parsing of the intent and the clustering of VNFs based on
the resultant values from the quantitative calculation.

A. Non-Functional Requirements (NFR) Framework

When designing a software, it is crucial that software
engineers consider both functional requirements and non-
functional requirements. The former dictates what the soft-
ware is expected to do (e.g., store employees data and ex-
change email), the latter defines the qualities of the software
(e.g., store data securely and exchange email quickly). Non-
Functional Requirements (NFRs) are, usually, informally spec-
ified during the software development process, being based on
empirical observation from stakeholders, and thus are hard to
model. Therefore, one of the main challenges is to define how
one can model the qualities of a system [19].

To model NFRs, we rely on the NFR Framework [20].
In which softgoals and operationalizations represent the re-
quirements in a Softgoal Interdependency Graph (SIG). An
example of a SIG is depicted in Figure 1. One softgoal
(cloud shape) can have different types of contributions and
relationships towards other softgoals, such as BREAK (--),
HELP (+), HURT (-), and MAKE (++). While MAKE and
HELP contribute positively to satisfice1 an upper softgoal,

1According to the Oxford Dictionary satisfice is defined as “Accept an
available option as satisfactory”. Therefore we utilize this word instead of
satisfy in this context.

76

BREAK and HURT contribute negatively. To satisfice these
softgoals, one must first identify possible techniques that must
be implemented in the system, named operationalizations
(bold cloud shape). These operationalizations are the external
nodes of the SIG.

We formally define a SIG with the set below:

SIG = (V, E)
V ∈ {SG,LSG,OP}

where
• SG: represents the primary set of softgoals, which are

the root-node of the graph.
• LSG: is the set of refined leaf-softgoals from the primary

softgoal.
• OP : contains the set of operationalizations that con-

tributes to satisfice the LSG or the SG.
and

E ∈ {↑++, ↑+, ↑−−, ↑−,∧}
where

• ↑++ (MAKE): Denotes a strong positive contribution
towards a softgoal. One single MAKE contribution fully
satisfices a parent softgoal if the offspring is satisficed.

• ↑+ (HELP): Denotes a positive contribution. Which
means that a child softgoal partially contributes to sat-
isfice a parent softgoal.

• ↑−− (BREAK): Denotes a strong negative contribution.
If a softgoal is satisficed then the parent softgoal is
automatically denied.

• ↑− (HURT): Denotes a negative contribution. Which
means that a child softgoal partially contributes nega-
tively to satisfice a parent softgoal.

• ∧ (AND): This contribution relates to a group of softgoals
to their parent. If all child softgoals are satisficed then the
parent is also satisficed.

Fig. 1: SIG Example

B. SIG Modeling

In software engineering, the modeling of the SIG follows a
top-down approach, starting with a high-level softgoal being
refined into other softgoals until the operationalizations are
defined and selected. However, in our solution, we assume the
SIG is already pre-defined, and each VNF is submitted through
a bottom-up process in the SIG to quantify its initial softgoal
score, i.e., attributing a numerical value for the primary non-
functional requirement. In order to model this pre-defined SIG,
we first identify the domain in which the SIG is going to
be applied, in our case, middleboxes. Then, we select the
non-functional requirements that we want to measure, such
as security or performance.

Let us consider the SIG depicted in Figure 2. We have
extracted the NFRs to compose this SIG from the work Guide
to Intrusion Detection and Prevention Systems (IDPS) by
Scarfone and Mell [21]. In the work, the authors provide an
overview of Intrusion Detection Systems (IDSes) and Intrusion
Prevention Systems (IPSes) to help organizations understand
such systems. We use this work as a guideline to model a
pre-defined SIG, which is then used for evaluating VNFs. To
cope with the subjectiveness of the intents and requirements,
one can alter the SIG at any time to reflect its domain,
middleboxes, and network.

To simplify and provide a more straightforward example,
we only address the refinement and modeling of one non-
functional requirement, which is Security. Therefore, follow-
ing the traditional SIG modeling approach, we start with an
initial softgoal (Security). This softgoal is then refined into
four leaf-softgoals: Information Gathering, Logging, Detec-
tion, and Prevention. These refined softgoals are common
security capabilities that, accordingly to Scarfone and Mell,
most IDPS technologies provide. For each refined softgoal,
we attribute a weight corresponding to the importance of this
softgoal in satisficing the initial softgoal. These weights are
arbitrary and can be altered by the network operator according
to his needs. As operationalizations are techniques that con-
tribute to satisfice softgoals, a single operationalization can
have an impact on one or more softgoals. For example, the
operationalization Blacklist and Whitelist Support contributes
to both Detection and Prevention softgoals, while the oper-
ationalization Identify Applications contributes to only one
softgoal (Information Gathering). These contributions have
numerical values attributed to them (similar to the softgoal
weight) which reflects the impact to satisfice softgoals. The
bold red values inside the clouds are calculated by INSpIRE
following the steps presented in the next section.

C. Quantitative Calculation of NFRs

To accurately quantify the non-functional requirements of
a VNF, we leverage the extension of the NFR Framework
proposed by Affleck and Krishna [22]. This extension provides
a lightweight quantitative support for the NFR Framework,
defining a mathematical base for the calculation of scores
and weights for softgoals and operationalizations. Given the
formalization of the SIG presented in Section III-A and the

77

Fig. 2: Pre-defined SIG for Middlebox Security

TABLE I: Quantitative Contribuitions from Affleck and Kr-
ishna [22]

Symbol Name Contribution

↑++ MAKE 1

↑+ HELP [0,1]

↑−− BREAK -1

↑− HURT [-1,0]

∧ AND 1
numChilds

SIG modeled in Section III-B, we adapt this extension to our
objectives.

Leaf-Softgoal weights are defined as

∀LSG ∈ V, (0.0 ≤ LSGweight ≤ 1.0)

where lower values (closer to 0.0) denote a non-critical
softgoal, while higher values (closer to 1.0) represent critical
softgoals. The relationships between softgoals and opera-
tionalizations are defined following the contributions depicted
in Table I and are referred to as impactLSGXOP .

Operationalization scores are calculated from top to bottom
following Equation 1. Therefore, if the network operator
decides to add operationalizations and softgoals to the graph,
he only includes in the SIG the values of LSGweight and
impactLSG×OP .

OPscore =
∑

LSG

LSGweight × impactLSG×OP (1)

Given the SIG depicted in Figure 2, let us calculate the
“Blacklist and Whitelist Support” operationalization’s score.
This operationalization contributes positively to two leaf-
softgoals (Detection and Prevention). Therefore, we have as
the result from Equation 1, the score of 0.85, which means a
positive contribution to the system. The steps are shown below.

OPscore = (0.8× 0.8) + (0.3× 0.7)

= 0.64 + 0.21

= 0.85

The next step proposed by Affleck and Krishna [22] is the
selection of operationalizations based on the scores previously
calculated. However, in our approach, this step occurs when a
network operator inserts a VNF or middlebox in the system.
The operator must select which operations the VNF is capable
of performing (e.g., identify which flows are harmful or detect
attacks). Considering the SIG in Figure 2, if a network operator
specifies that a VNF does not store logs on a centralized
server (Logging [Middlebox]), the impactLSG×OP of that
operationalization is going to be zero. Consequently, the
OPscore is going to be also zero (OPscore = 0.5 × 0) and
score of the leaf-softgoal will decrease.

To calculate leaf-softgoal scores, we employ the same
equation as Affleck and Krishna [22]. The only difference
is that we consider all operationalizations and not only the
accepted ones. Equation 2 shows that the LSGscore is the sum
of the impact (even zero impact) of every operationalization
that contributes to the leaf-softgoal. This score is limited to
[−1.0, 1.0] by max and min functions, where -1.0 means that
the softgoal was not satisficed and 1.0 means that the softgoal
was 100% satisficed. Below Equation 2 is depicted the steps
for the calculation of the Detection[Middlebox] score.

LSGscore = max(min(
∑

OP

impactLSG×OP , 1),−1) (2)

LSGscore = max(min(0.8 + 0.2 + 0.8, 1),−1)
= max(min(1.8, 1),−1)
= 1

Once the operationalizations and leaf-softgoals scores are
computed, the initial softgoal (Security[Middlebox]) score can

78

be calculated. This score ultimately represents how much
(percentage) the softgoal has been satisficed. To simplify
our system, we only address AND (∧) contributions from
the initial softgoal towards leaf-softgoals. Thus, Equation 3
considers the sum of leaf-softgoal scores divided by the
number of children of that softgoal, so every leaf-softgoal
contributes with a percentage of its score to satisfice the initial
softgoal.

SGscore = max(min(

∑
LSG LSGscore

SGnumChilds
, 1),−1) (3)

Finally, as our intention is not to calculate how secure
a middlebox is, but rather how much security a middlebox
can provide to a specific flow passing through it, this score
of 0.825 (calculated below) means that the middlebox or
VNF can provide 82.5% of security. This value is relative
to the SIG that was modeled by network operators and may
vary from organization to organization. Therefore, as now
we have a numerical value for the security softgoal of the
VNF, we can use this value to cluster the available VNFs
into groups with different levels of security. It is important
that network operators, administrators and, business partners
discuss and model this SIG exhaustively so that the defined
weights can faithfully reflect the domain. This is due to the
weights influence in future service chaining decisions.

SGscore =
0.5 + 1 + 1 + 0.8

4
= 0.825

D. Refinement of Intents and Clustering of VNFs
INSpIRE needs to posses knowledge about the environ-

ment to properly refine intents. Therefore, a network oper-
ator has to insert the middleboxes or VNFs present in the
infrastructure into a database for later selection. This insertion
process consists of uploading in the system a descriptor
(vnfd in the case of a VNF), filling in information about the
middlebox (e.g., IP address, switch port, and type of network
function), and selecting the operations performed by this
network function. These operations are the operationalizations
defined in the SIG and are necessary for the calculation of
softgoals. Once this data is informed, INSpIRE computes
the softgoal score of the target VNF using the Equations in
Section III-C and stores it.

The refinement process is depicted in Figure 3 and includes
elements such as a traffic classifier and a service chaining
identifier. The former translates part of the intent into traffic
objects (e.g., traffic type, source, and destination) that will
be used for posterior traffic steering and matching by an
external component (illustrated by a dashed line box). The
latter retrieves the context (security) and level (high) of the
written intent and forwards this context to the component
responsible for constructing the related chaining. The Service
Chain Graph Builder component retrieves the VNFs that were
inserted by the network operator and cluster the VNFs in
different sets of VNFs with similar softgoals scores.

Fig. 3: INSpIRE Intent Refinement Flow

1) Clustering: To cluster the VNFs in sets with similar
scores, we employ the k-means clustering algorithm [23]. This
algorithm was proposed to classify n values into a defined k
number of clusters sharing similar scores. In our case, we set
k = 3, representing the levels of the contexts supported by
the CNL (low, medium, and high), and n is the number of
available VNFs. The dimensionality (i.e., number of features)
of the plot depends on the number of softgoals specified in the
intent. For example, one can write an intent addressing more
than one softgoal, e.g., “FTP traffic from teachers to teachers
have medium security, detection, and log support”. Thus,
the resulting graph (Figure 4) will have three axes (security,
detection, and log support) and so forth for more softgoals.

2) VNF Selection: After the k-means algorithm is executed,
and the estimation of the clusters is completed, we must select
the VNFs that will compose the service chain. To select from
which cluster we will retrieve the VNFs, we leverage the
level of the context that was defined by the network operator
in the intent. In the past intent example, one defined as the
level being “medium”, therefore, we only select the VNFs
that are inside the middle cluster, represented as squares in
Figure 4. We select x random VNFs from the cluster, where
x = 3 in a first moment. However, this number can be
adjusted if the network operator desires. To attempt to utilize
the full capacity of the VNFs in the infrastructure and not to
impact on the overall chaining performance, we employed a
selection algorithm. This algorithm prioritizes the selection of
VNFs that are already deployed and are not under CPU stress
(V NFCPUload ≤ α, where α = 0.8, defined by empirical

79

observation but customizable). If all the deployed VNFs are
under CPU stress, then the algorithm selects the undeployed
VNFs and the NFV orchestrator takes care of the placement
of those VNFs. Bear in mind that is not the scope of this work
the placement of VNFs.

Security

0
2

4
6

8
10

Log Support

0

2

4

6

8
10

D
e

te
ct

io
n

0

2

4

6

8

10

Low
Medium
High

Fig. 4: VNF Clustering Example

3) VNF Dependency Ordering: Many VNFs often depend
on other deployment units (i.e., virtual machines) to be de-
ployed/initiated before an orchestrator can deploy them. The
information about this dependency is stored, accordingly to the
ETSI NFV-MANO [13], in the element dependency inside
the vnfd of the VNF. Therefore, if a VNF is selected and is
not deployed, INSpIRE attempts to resolve this dependency
by searching for a VNFD Virtual Deployment Unit vnfd:vdu
that fulfills this dependency. First, it seeks if one of the
selected VNFs produced by the selection procedure contains
the vnfd:vdu specified in the dependency element. If there
is no match, then it searches all the deployed VNFs for a
match and then informs the orchestrator to address this issue.
Note that this dependency process relates to the deployment
and placement of VNFs, and thus we do not delve into details.

Moreover, when designing service chains, it is important
to consider the logical order of the network functions. This
ordering process is not a trivial process, mainly because of the
hidden and subjective dependencies across the many network
functions. For example, there is no explicit definition that
a firewall must come first in the chaining order and then
be followed by a DPI. This ordering is based on empirical
observation and the logic behind the operations performed
by the functions. It is illogical to put a DPI in front of a
firewall, because the DPI will have to inspect every single
incoming packet, causing performance degradation. Whereas
if the firewall is set in front of the DPI, then the firewall will
only forward filtered packets, reducing the number of packets
to be processed by the DPI, and thus, not impacting on the
overall service chain performance.

To address this ordering issue, we propose to include
in the VNF Descriptor two new elements: vnf type and

preference list. The former describes what is the type
of the VNF, e.g., DPI, IPS, Firewall, Video-cache, NAT, and so
on. The latter describes the list of VNF ordering preferences.
For example, a DPI, in theory, is more complex than a firewall.
Therefore, the DPI has a preference to be included after the
firewall in the chain, i.e., the flow will pass through the firewall
first, then go through the DPI. If there is no preference, the
order is not important for the VNF. This preference will be
specified in the element preference list with a list of
types. Thus, we utilize this preference list to order the chain.
The network operator can re-order the service chain after the
chain is saved into the database. If a loop is encountered in the
chain, the network operator is notified to address this issue.

E. Case Study

Let us describe the interaction of users with INSpIRE.
This interaction is composed of three distinct stages: (i) SIG
modeling, (ii) VNF insertion, and (iii) intent creation.

In a first moment, without the intervention of INSpIRE,
network operators along with business partners assemble a
team to identify the non-functional requirements (initial soft-
goal and leaf-softgoals) that are important for the proper
operation of the enterprise. If the enterprise is concerned about
the privacy of their data, the team identifies the initial softgoal
as Privacy and two requirements (leaf-softgoals) that must
contribute to it, such as Encryption, and Traffic Anonymization.
These requirements are satisficed by the operationalizations,
which must also be identified and outlined by the team, either
by reviewing the common functions realized by middleboxes
or by empirical knowledge. In the privacy context, the team
outlines functions such as Tor-based anonymizer, SSL traffic
encryptor, and SHA-1 encryptor. Next, the team attributes the
weights of all leaf-softgoals and the impact of each opera-
tionalizations in these leaf-softgoals. The attributed impacts
of the mentioned operationalizations are described in Table
II. As the team identified two leaf-softgoals they attributed
equal weights to both of them, e.g., 0.5.

TABLE II: Impact of Operationalizations towards Leaf-
Softgoals

Operationalization Contribution Leaf-softgoal Impact
Tor-based anonymizer MAKE Traffic Anonymization 1
SSL traffic encryptor HELP Encryption 0.7

SHA-1 encryptor HELP Encryption 0.5

The modeled SIG can be represented in YAML (YAML
Ain’t Markup Language), XML (eXtensible Markup Lan-
guage), or JSON format and then imported to INSpIRE as
well as exported from it for posterior edition. An example
of exported SIG in YAML format is depicted in Figure 5.
We adopted the YAML format due to its readability. In the
YAML file, nodes of the SIG are described after the node:
tag (line 27) in the node:{atributes:value} format.
For example, the node Traffic Anonymization (line 36) is rep-
resented as Traffic Anonymization:{lsg: true,
w: 0.5}, which means it is a leaf-softgoal (lsg: true)

80

with a weight of 0.5 (w: 0.5). Edges are described after the
adj: tag (line 2) in the sourceNode: format. New lines
with indentation describe the destination nodes and attributes
in the destinationNode:{attribute:value} for-
mat. For example, there is an edge from node SSL Traffic
Encryptor: (line 15) to node Encryption: {impact:
0.7} (line 16), meaning that the node SSL Traffic Encryptor
impacts on 70% to satisfice the node Encryption.

Fig. 5: Example of a SIG in YAML Format

After the SIG is modeled and imported to INSpIRE, the
network operator can start to add the VNFs and middle-
boxes that are available in the infrastructure. To perform this
addition, he/she utilizes a Graphical User Interface (GUI)
provided by INSpIRE, which contains a form with the
necessary fields to be filled by the network operator with
information about the middlebox. Such fields include IP
address, switch port, type of network function, VNFD file
(VNF only), description and name. Within this GUI, a list of
operationalizations in a tree view format, separated by leaf-
softgoal and softgoal, is presented for the network operator
to select the functions that the VNF support. For example,
if the VNF is a firewall, the network operator will select
operations such as Blacklist and Whitelist Support and Alert
Support and submit the form. The operationalizations list is
composed of nodes of the SIG and may change if the SIG is
altered. Once the form is submitted, INSpIRE automatically

calculates the scores following the equations described in
Section III-C and stores the scores in a database along with
the information about the middlebox previously informed.
One example of entry in the scores database is the tuple
<vnfId,[Security:0.825,...,Detection:1]>.

Next step is to write intents. This process in based on
previously work [12], where we have defined a controlled
language for the writing of high-level policies. We utilize
this language for the composition of intents in INSpIRE.
The intents that are going be written in INSpIRE are in
the format “trafficType from source to destination
have contextLevel contextsList”. For example, let
us assume that a board of directors described an SLA speci-
fying that all email traffic from the Finance Department must
have high security and privacy. Therefore, a network operator
would translate this SLA into two intents: (i) “SMTP traffic
from finance department to * (any) have high security and
privacy”, and (ii) “IMAP traffic from finance department to
* have high security and privacy”. Then, INSpIRE refines
these two intents (one at a time) into objects to be used
for traffic classification and service chain construction pur-
poses. As INSpIRE only address service chain construction,
the refined elements utilized are: contextLevel: high
and contextList:[security,privacy]. Therefore,
INSpIRE retrieves all the entries of the score database in
order to utilize these scores to cluster the VNFs. In the
example above, the cluster will have two dimensions (security
and privacy) and INSpIRE will plot every VNF based on its
score of these two softgoals.

Once the entries are plotted, INSpIRE discover the three
clusters and retrieves only the entries that belong to the context
level defined in the intent, e.g., (high). Next, INSpIRE orders
the retrieved VNFs following the process described in Section
III-D3 and informs the traffic steering element of the service
chain related to the traffic classification objects and the intent.
Finally, packets originated from IPs in the 192.168.1.5\24
range (i.e., finance department) and classified as STMP (port
25) are steered through the chain related to these objects.

IV. EVALUATION

As INSpIRE is composed of different stages, such as
clustering and NFR scores calculation, we performed a series
of scalability simulations for these stages. The simulations
were designed to stress the components (isolated) in order
to discover the behavior of INSpIRE in different types of
scenarios, varying from small (a couple of elements) to huge
scenarios (thousand of elements). The tests were performed in
a Dell XPS 8900 with an Intel Core i7-6700 CPU at 4GHz
processor and 16GiB of RAM. The algorithms, equations, and
simulations were implemented in Python utilizing well-know
graph (NetworkX [24]) and clustering (SciPy [25]) libraries.

A. Score Calculation Evaluation

To evaluate this component, we simulated different SIGs
with the number of leaf-softgoals and operationalizations
varying from 2 to 64 in a logarithmic scale. For example, we

81

created a SIG with 2 leaf-softgoals with 2 operationalizations
each, then a SIG with the same number of leaf-softgoals (2) but
with 4 operationalizations each and so son until we reached a
SIG with 64 leaf-softgoals with 64 operationalizations each.
Due to the simplicity of the equation to calculate the score of
the initial-softgoals, which is only a division, the number of
initial-softgoals in the experiments was fixed to 1.

For every SIG configuration, we ran the calculations of the
scores 30 times. The results of this simulation are depicted
in Figure 6. The error bars expose the standard deviation.
The x-axis characterizes the number of leaf-softgoals and the
different lines characterize the number of operationalizations
of each leaf-softgoal. The time to calculate all the equations
(in seconds) related to softgoals scores, leaf-softgoals scores
and operationalizations scores are depicted in the y-axis in
a logarithmic scale. As we can notice, the execution time
increases as we increase the number of operationalizations
for each leaf-softgoal. This execution time stays below 1
second until the number of leaf-softgoals reaches 64 and the
number of operationalizations attached to them reaches 64
as well. With this SIG configuration, the time to calculate
the scores of the total amount of nodes (64 × 64 = 4096)
reaches approximately 3 seconds. In INSpIRE, we consider
an acceptable execution time of less than 1 second. Therefore,
the number of nodes in a SIG scale up to 2048 nodes without
affecting the overall INSpIRE performance.

Fig. 6: Time to calculate the scores in different SIGs

B. Clustering Evaluation

This component of INSpIRE is implemented utilizing the
k-means algorithm. The simulations were ran 30 times to pro-
vide enough significance level. We simulated different types
of environments varying the number of elements (n) to be
clustered and the number of dimensions of the elements. The
number of dimensions represented the number of requirements
specified in the intent and the number of elements represented
the number of VNFs and middleboxes in the database. The
score of each requirement was randomly attributed varying
from 0 to 1. The number of clusters (k) for the algorithm to

estimate was set to 3. Figure 7 exposes the Execution Time
(in seconds) for each set of VNFs varying the number of
Dimensions. The number of VNFs varied from 10 VNFs up to
1 million VNFs, and the number of dimensions ranged from 1
to 16. We notice that the k-means execution time is relatively
insignificant up to 10.000 VNFs with 16 dimensions. Even for
a million of VNFs with four (4) dimensions (square dashed
line) the algorithm took 5 seconds to execute. Therefore,
INSpIRE can cluster up to 10000 (ten thousand) VNFs and
middleboxes with 16 dimensions in less than 1 second.

Fig. 7: Time to discover 3 clusters in different scenarios

V. CONCLUSION AND FUTURE WORK

In this paper, we presented INSpIRE. INSpIRE is an
IBN solution that refines intents into service chains of VNFs
by employing a technique based on Softgoal Interdependency
Graphs (SIGs) and clustering. INSpIRE is able to automat-
ically calculate and attribute scores for the non-functional
requirements of a VNF. Also, it utilizes these scores to cluster
and select the appropriate VNFs to fulfill a defined intent. In
addition, we proposed the insertion of two elements in the
descriptor of VNFs specified in the ETSI NFV MANO. These
elements aid INSpIRE to order the VNFs in the service chain
based on the VNF’s ordering preferences. Thus, INSpIRE
provides an approach to solve the refinement of intents into
service chains issue.

We provided a case study and simulations of the components
of INSpIRE to validate its feasibility. The case study details
the interaction of users (stakeholders and network operators)
with the different stages of INSpIRE (SIG modeling, in-
sertion of VNFs, intent writing, and refinement). The imple-
mented simulations of the components showed that INSpIRE
is able to work in small scenarios (hundred of VNFs and SIGs
with 128 nodes) and large scenarios (ten thousands of VNFs
and SIGs with 2048 nodes) as well.

To extend INSpIRE, future work proposals include: (i)
integrate INSpIRE with a consolidated NFV framework, (ii)
model a complete SIG to represent other non-functional re-
quirements such as Integrity and Availability, and (iii) conduct
a qualitative evaluation of INSpIRE.

82

REFERENCES

[1] D. C. Verma, Principles of Computer Systems and Network Manage-
ment, 1st ed. Springer Publishing Company, Incorporated, 2009.

[2] J. D. Case, M. Fedor, M. L. Schoffstall, and J. R. Davin, “Simple Net-
work Management Protocol (SNMP),” Internet Requests for Comments,
RFC Editor, STD 15, May 1990.

[3] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[4] D. C. Verma, “Simplifying Network Administration Using Policy-based
Management,” Netwrk. Mag. of Global Internetwkg., vol. 16, no. 2, pp.
20–26, Mar. 2002.

[5] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter,
S. Jiang, and L. Ciavaglia, “Autonomic Networking: Definitions and
Design Goals,” RFC 7575 (Informational), 2015.

[6] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[7] “Network Functions Virtualisation (NFV),” White Paper, European
Telecommunications Standards Institute (ETSI), october 2014.

[8] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” RFC 7498 (Informational), Internet Engineering Task Force,
2015.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[10] J. D. Moffett and M. S. Sloman, “Policy Hierarchies for Distributed
Systems Management,” IEEE Journal on Selected Areas in Communi-
cations, vol. 11, no. 9, pp. 1404–1414, Dec 1993.

[11] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy Refine-
ment: Decomposition and Operationalization for Dynamic Domains,”
in Network and Service Management (CNSM), 2011 7th International
Conference on, Oct 2011, pp. 1–9.

[12] E. J. Scheid, C. C. Machado, R. L. dos Santos, A. E. Schaeffer-Filho,
and L. Z. Granville, “Policy-based dynamic service chaining in Network
Functions Virtualization,” in 2016 IEEE Symposium on Computers and
Communication (ISCC), June 2016, pp. 340–345.

[13] European Telecommunications Standards Institute (ETSI), “ETSI
Group Specification Network Functions Virtualisation (NFV);
Management and Orchestration,” 2014, deliverable 1.1.1. Available
from http://www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/001/01.
01.01 60/gs NFV-MAN001v010101p.pdf [accessed 17 Dez 2015].

[14] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A Goal-
based Approach to Policy Refinement,” in Proceedings of the Fifth

IEEE International Workshop on Policies for Distributed Systems and
Networks, ser. POLICY ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 229–.

[15] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A Functional Solution for Goal-Oriented Policy Refinement,” in Poli-
cies for Distributed Systems and Networks, 2006. Policy 2006. Seventh
IEEE International Workshop on. IEEE, 2006, pp. 133–144.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy
Specification Language,” in Proceedings of the International Workshop
on Policies for Distributed Systems and Networks, ser. POLICY ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 18–38.

[17] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Language,”
in Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP ’11. New York, NY, USA: ACM,
2011, pp. 279–291.

[18] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-
Filho, “An EC-based Formalism for Policy Refinement in Software-
Defined Networking,” in 2015 IEEE Symposium on Computers and
Communication (ISCC), July 2015, pp. 496–501.

[19] L. Chung and J. C. Prado Leite, “Conceptual Modeling: Foundations
and Applications,” A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S.
Yu, Eds. Springer-Verlag, 2009, ch. On Non-Functional Requirements
in Software Engineering, pp. 363–379.

[20] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, 1st ed. Springer Publishing
Company, Incorporated, 2000.

[21] K. A. Scarfone and P. M. Mell, “SP 800-94. Guide to Intrusion Detection
and Prevention Systems (IDPS),” Gaithersburg, MD, United States, Tech.
Rep., 2007.

[22] A. Affleck and A. Krishna, “Supporting Quantitative Reasoning of Non-
functional Requirements: A Process-oriented Approach,” in Proceedings
of the International Conference on Software and System Process, ser.
ICSSP ’12, 2012, pp. 88–92.

[23] J. Macqueen, “Some Methods for Classification and Analysis of Multi-
variate Observations,” in In 5-th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

[24] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proceedings
of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[25] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

83

	Acknowledgments
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Software-Defined Networks (SDN)
	2.2 Network Functions Virtualization (NFV)
	2.3 Traffic Steering and Service Chaining
	2.4 Policy-Based Network Management (PBNM)
	2.4.1 Policy Refinement

	2.5 Intent-based Networking (IBN)

	3 Related Work
	3.1 Network Functions Virtualization
	3.2 SDN-based Traffic Steering and Service Chaining
	3.3 Policy-Based Network Management
	3.3.1 Policy Refinement

	3.4 Intent-Based Networking
	3.5 Discussion of Related Work

	4 Integrated NFV-baSed Intent Refinement Environment
	4.1 Integrated NFV-baSed Intent Refinement Environment Overview
	4.1.1 Main Components

	4.2 Controlled Natural Language (CNL)
	4.3 Intent Translation
	4.3.1 Intent Validation
	4.3.2 Conflict Detection

	4.4 INSpIRE Prototype GUI Implementation

	5 Refinement Technique
	5.1 Non-Functional Requirements Framework
	5.2 Softgoal Interdependency Graphs (SIGs)
	5.3 Quantitative Calculation of NFR
	5.4 Intent Refinement
	5.4.1 Clustering
	5.4.2 VNF Selection
	5.4.3 VNF Dependency Ordering

	6 Prototype and Evaluation
	6.1 INSpIRE Prototype Case Study
	6.1.1 SIG Modeling
	6.1.2 VNF Insertion
	6.1.3 Intent Authoring

	6.2 Intent Refinenemt Case Studies
	6.2.1 Case Study 1 - Generic Academic Network
	6.2.2 Case Study 2 - Common Company Network
	6.2.3 Case Study 3 - VNF Service Chain as a Service (VNF-SCaaS)

	6.3 Evaluation
	6.3.1 Clustering Evaluation
	6.3.2 Score Calculation Evaluation

	7 Concluding Remarks
	7.1 Summary of Contributions
	7.2 Final Remarks and Future Work

	References
	AppendixA Published Paper – ISCC 2016
	AppendixB Published Paper – IM 2017

