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Mecanismos de Escalonamento para Controladores de Memoéria DRAM

RESUMO

Ao longo das tultimas décadas, a disparidade de desempenho entre o processador € memo-
ria tem crescido cada vez mais, uma questdo comumente conhecida como Memory Wall
(WULF; MCKEE, 1995). Tendo em vista que Memoria Dindminca de Acesso Randémico
(DRAM) € a forma mais comum de memdria em sistemas computacionais, intensas pes-
quisas tém sido feitas para melhorar seu desempenho e eficiéncia energética. Entretanto,
a exploracdo do espago de projeto de DRAM vem com problemas. Apesar de simula-
dores de memoria cycle-accurate poderem simular timings de maneira muito precisa, a
simulac@o pode se tornar extremamente lenta. Movendo-se para um mais alto nivel de
abstracdo, através do método de prototipacao virtual, a simulaciao pode ser acelerada com
erros despreziveis. Como o controlador de memoria DRAM € um bloco critico para o
desempenho global do sistema de memoria, ele € integrado no mesmo chip dos multiplos
nucleos de CPU os quais demandam accesso a memoria principal off-chip. Portanto, neste
trabalho, escalonadores do controlador de DRAM foram modelados com SystemC/TLM
2.0 (IEEE Computer Society, 2012) no DRAMSys (JUNG M.; WEIS; WEHN, 2015),
um framework flexivel de exploracdo do espago de projeto do subsistema da DRAM. A
reestruturagcdo do DRAMSys utilizando SystemC/TLM 2.0 foi a principal contribui¢ao
técnica deste trabalho. Em seguida, o controlador foi simulado com diferentes mecanis-
mos de escalonamento com o objetivo de melhor compreender os gargalos do sistema de
memoria e de investigar qual escalonador fornece o melhor compromisso entre caracte-

risticas como largura de banda, thread-fairness e consumo de energia.

Palavras-chave: DRAM, Prototipacao Virtual, Controlador de Memoria, Escalonamento.



ABSTRACT

Over the last decades, the performance disparity between processor and memory has
steadily grown in computer systems, an issue commonly known as Memory Wall (WULF;
MCKEE, 1995). Since Dynamic Random-Access Memory (DRAM) is the most common
type of main memory in computer systems, intense research efforts have been made to
improve its performance and energy efficiency. However, DRAM design space explo-
ration comes with problems. Although cycle-accurate memory simulators can simulate
timings in a very precise manner, the simulation can become extremely slow. By moving
to a higher abstraction level, through the virtual prototyping method, simulation speedup
can be achieved with negligible losses in accuracy. Seeing that the DRAM memory con-
troller is a key block for the overall memory system performance, it is integrated onto the
same chip of the multiple CPU cores that require access to the off-chip main memory.
Therefore, in this work, schedulers of the DRAM controller were modeled with System-
C/TLM 2.0 (IEEE Computer Society, 2012) in DRAMSys JUNG M.; WEIS; WEHN,
2015), a flexible DRAM subsystem design space exploration framework. The DRAMSys
restructuring was the main technical contribution of this work. Then, the controller was
simulated with different scheduling mechanisms in order to better understand the mem-
ory system bottlenecks and to investigate which scheduler provides the best compromise

between characteristics, such as bandwidth, thread-fairness and energy consumption.

Keywords: DRAM. Virtual Prototyping. Memory Controller. Scheduling.
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1 INTRODUCTION

Nowadays, in times of ever-increasing number of processors in computer systems,
the main memory plays an important role, since the CPU directly interacts with it. The
advancement of the silicon technology has provided large improvements in circuits den-
sity which are visible both in processors and memories. However, over the last decades,
the performance disparity between them has steadily grown, an issue commonly known
as Memory Wall (WULF; MCKEE, 1995). Hence, it is increasingly crucial to develop
new ideas and concepts in memory design.

The Dynamic Random-access Memory (DRAM) has been widely used in com-
puter systems for many years, due to its low-cost, simple structure and scalability. As the
memory system becomes one of the bottlenecks of the overall system, several mechanisms
were proposed with the purpose of enhancing its effectiveness. However, DRAM design
space exploration comes with problems. Implementing hardware prototypes is expensive
and time-consuming and, in spite of the timing precision, cycle-accurate simulations can
become extremely slow. Thus, the virtual prototyping method emerged as a novel way of
conducting research on computer systems. By modeling systems at a higher abstraction
level, this method speeds up the simulation with negligible losses, which allows a fast
exploration of various design choices for the lower level implementation.

The DRAM controller, which schedules the memory requests and manages the
flow of data going to and from memory, is a key block to be explored with the purpose
of developing new concepts for DRAMs. It may aim at one of many goals, for example,
maximizing throughput, minimizing latency or maximizing fairness. As the number of
processor increases, the number of accesses to the memory also increases. Thus, the
challenge is to design an effective controller, whose scheduling technique handles various
memory accesses from different sources fairly and optimally.

In this work, schedulers of the memory controller were modeled with System-
C/TLM 2.0 (IEEE Computer Society, 2012) in DRAMSys (JUNG M.; WEIS; WEHN,
2015), a flexible DRAM subsystem design space exploration framework. The DRAM
controller was then simulated with different scheduling techniques to better understand

the memory system bottlenecks and to investigate which scheduler is the most efficient.



13
2 VIRTUAL PROTOTYPING - SYSTEMC AND TLM 2.0

Hardware manufacturers today are under pressure to reduce time-to-market (TTM)
and optimize products. In the standard project flow of developing computer systems, the
software development just starts when the hardware is already manufactured and ready
for use. The product will be available for the market after integrating the software with
the hardware. However, this method is expensive and time-consuming, because the initial
physical prototype is highly unlikely to meet expectations and, therefore, engineers usu-
ally have to re-design the initial concept multiple times. Hence, virtual prototyping was
established as an alternative method in the process of computer systems development:
software prototypes of hardware are used to predict performance prior to constructing real
prototypes. In other words, the development of the hardware and software is conducted
concurrently, shortening the time-to-market and simplifying the development cycle. Fig-
ure 2.1 gives a brief preview of the difference between the standard and the prototyped

project flows.

Figure 2.1: Standard vs. Prototyped Project Flow (SMART, 2013)
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2.1 SystemC

Hardware description languages like Verilog and VHDL allow a register-transfer
level (RTL) modeling and cycle-accurate simulation of computer systems and is used
to design integrated circuits. However, the modeling and cycle-accurate simulation of a
whole system can become very slow, and the abstraction level provided by RTL modeling
might be over-detailed, depending on the primary goals of the project. By using SystemC,
a system design language that has evolved in response to a pervasive need for a language
that improves overall productivity for designers of electronic systems (BLACK; DONO-
VAN., 2004), simulation speedup and system modeling at a higher level of abstraction
can be achieved.

SystemC is a language built in standard C++ by extending the language with a set
of class libraries created for design and verification (ACCELLERA, 2013). It provides
the facilities to simulate processes and events in C++ through hardware-oriented features,
such as notion of time, concurrency, and hardware data types. By providing such at-
tributes, SystemC 1is able to help engineers design both hardware and software together
and, thus, is an ideal tool for the virtual prototyping efforts described previously. SystemC
is described and documented in (IEEE Computer Society, 2012).

Figure 2.2 shows the SystemC core facilities, which includes a simulation ker-
nel and modules. The simulation kernel provides the notion of simulation time to the
execution of a C++ program and events that can be triggered at specific times or under
certain conditions so that hardware modules sensitive to signals such as a system clock
signal can be modeled. A module can have several concurrent processes, which may be
active or suspended (waiting for an event). The inter-module communication is done via
channels and ports and, in contrast to VHDL, modules can also interchange complex data

structures in addition to bit vectors.
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Figure 2.2: SysctemC Core Facilities
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22TLM 2.0

Transaction Level Modelling 2.0 (TLM 2.0) is an extension to SystemC, defining a
communication base protocol and interfaces in order to achieve maximum interoperability
among hardware models. In other words, TLM-2.0 compliant SystemC modules can
easily be connected to and interact with each other. The TLM 2.0 is particularly well-
suited for memory-mapped bus modeling (IEEE Computer Society, 2012).

The communication between modules is based on a generic communication ob-
ject, the generic payload, which is passed for each transaction. The payload is always
passed by reference, i. e., once created in the memory, it does not have to be copied to
be modified. An initiator is a module which starts a transaction by sending a request to
a target. A target is a module which responds to a transaction initiated by another mod-
ule by processing the request, possibly modifying the communication object and sending
back a response. A transaction is finished when an initiator receives a response. The same
module can be both initiator and target and, between initiator and target, there can be in-
terconnected modules which manipulate and dispatch requests. For interoperability, via
TLM sockets, which define communication interface methods, modules communicate us-
ing function calls. A custom payload extension, an arbitrarily complex data structure, can
be attached to the generic payload. Since this feature destroys interoperability, it should
just be used for the intra-communication of components. Seeing that a function call may
model a complete bus cycle, the simulation time is speeded up. Figure 2.3 shows the basic

features of the TLM 2.0.
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Figure 2.3: Basic TLM 2.0 Features
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2.3 Coding Styles

For the inter-communication of modules, TLM 2.0 considers models which can be
separated into two coding styles regarding the timing detail: the loosely-timed (LT) and
the approximately-timed (AT) coding styles.

The LT coding style has a loose dependency between timing and data and does not
depend on the advancement of the time to be able to produce a response, decreasing the
time accuracy. A transaction timing is just defined by a start and an end of the request, for
instance, a memory request modeled with the elapsing time, where the initiator has to wait
for the target response before sending the next request. Due to the limited dependencies
and minimal context switches, this coding style runs faster simulations, and thus, it is
particularly useful for doing software development on virtual platforms.

The AT coding style has a much stronger dependency between timing and data
and depends on internal/external events firing and time advancing before they can pro-

vide a response. Different from the LT coding style, resource contention and arbitra-
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tion can be easily modeled with this style. In order to achieve the required accuracy to
model hardware components such as a memory controller properly, a transaction is split
into multiple phases. The TLM 2.0 base protocol comprises four phases: BEGIN_REQ,
END_REQ, BEGIN_RESP and END_RESP. The initiator is allowed to start a new trans-
action, i.e., to send a new BEGIN_REQ), after receiving the END_REQ of the previous
transaction. Likewise, the target is allowed to send a new BEGIN_RESP after receiving
the END_RESP of the prior transaction. However, the initiator can start the next trans-
action before receiving the BEGIN_RESP of the previous transaction. Therefore, several
transactions can be in the system at the same time. Figure 2.4 shows the TLM 2.0 base
protocol behavior. Special cases such as early completion are not considered in the dia-
gram. For more details refer to (IEEE Computer Society, 2012). Since a request and its
processing data can be separated, pipelining and out-of-order execution can be modeled.
As long as the base protocol rules are respected, it is possible to extend the base protocol
by defining custom phases. As the payload extensions, custom phases conflict with the

interoperability efforts and, hence, it should just be used for the intra-communication of

components.
Figure 2.4: TLM 2.0 Base Protocol (DOULQOS, 2013)
Initiator Target
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3 DRAM BASICS

DRAMs (Dynamic Random-Access Memory) belong to the class of volatile mem-
ories, which require power to maintain the stored information and are based on a capacitor,
which stores a single bit of data. The two states of the capacitor, charged and discharged,
represent the two values of a bit, 0 and 1. The DRAM cell consists of just one transistor
and one capacitor. Figure 3.1 shows the One-Transistor One-Capacitor (1T1C) DRAM
cell. It is a dynamic memory, i. e., the information stored in a cell eventually fades.
Since the information (charge) leaks from/into the capacitor due to the imperfection of
the components, in order to retain the stored data, the DRAM cells should be periodically
refreshed, as opposed to the SRAM (Static Random-Access Memory) cells. The time a
cell can hold information is called retention time. Because of the regenerative feedback
present in SRAM memory cells and due to the refresh requirement of DRAMs, SRAMs
are much faster than DRAMs. However, the structural simplicity of DRAMs allows reach-
ing higher densities and lower cost per bit. A DRAM Memory System is composed of
memory modules, the memory bus, and the memory controller. The predominant type
of memory module is the dual in-line memory module (DIMM), which comprises a se-
ries of DRAM chips and it is designed for personal computers, workstations, and servers.
The memory bus includes the address, data, and control buses. Hence, DRAMs are very
common in current computer systems. For an in-depth explanation of memories refer to

(JACOB B.; WANG, 2008).

Figure 3.1: 1'T1C DRAM Cell
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Bit Line
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3.1 Structure

The hierarchical structure of DRAMs has basically been the same since the first
generations. The set of minimum requirements for each DRAM technology, e.g., timing
constraints and communication interfaces, is regulated by the Joint Electron Device Engi-
neering Council (JEDEC) (JEDEC, 1958), a trade organization and standardization body.
Since internals are specified by each DRAM manufacturer, the JEDEC standards allow
interoperability between components from diverse manufacturers.

The DRAM cells are arranged in a grid-like pattern, an array, in which they are ac-
cessed via word lines and bit lines. Memory arrays are organized into rows and columns.
At each column, all cells are connected to the same bit line and at each row, also called
page, all cells are connected to the same word line. Thereby, at every intersection of a
row and a column, a cell is connected to a word line and a bit line. A set of memory
arrays comprises a bank, whose number of cell arrays is also called the data width of the
DRAM. Each bank has a row buffer, which can hold exactly one page and is physically
an array of sense amplifiers acting as buffers (JACOB B.; WANG, 2008). A DRAM chip
consists of multiple independently operating banks and is described as xN, being N the

number of output pins. Figure 3.2 shows the basic organization of a DRAM.

Figure 3.2: Basic Structure of a DRAM
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3.2 Operations

When a request enters the DRAM system, its address is used to determine which
bank, row and column are accessed. The operation to be performed depends on the cur-
rent state of the row buffer. If the row buffer is loaded with a different row than the
requested row, the bit lines have to be precharged to a reference voltage to begin the ac-
tivity of the sense amplifiers and get the data from the target row cells. This operation
is called precharge, and it sets the bank to a precharged state. If the row buffer has the
content of the target row, also known as a row hit, or the bank is already in the precharged
state, this operation is not necessary. A request which does not result in a row hit is called
a row miss. If the bank is initially in the precharged state, through the sense amplifiers
activity, the target row is accessed and loaded into the row buffer. This activity is called
activate, and it sets the bank to an active state. While the bank is in the active state, read or
write commands can be performed. By selecting the memory cells according to the target
column, data are read or written. Hence, a row-hit request can omit the precharge and
activate operations and directly perform the requested operation. A row-miss request that
requires an activate command is also known as a row conflict. Figure 3.3 shows the state
diagram of the operations described above. Seeing that activate and precharge operations
consume time and energy, it is desirable to avoid row misses whenever possible. Thus,
modern DRAMs can operate in bursts with the purpose of enhancing the bandwidth, i.
e., more than one column is read/written after the execution of a command. The num-
ber of accessed columns is called burst length, and this effectively reduces latency when

accessing consecutive memory locations.

Figure 3.3: Basic DRAM Bank Operations
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As mentioned before, a refresh operation is needed because DRAMs are dynamic
memories. The refresh operation, which rewrites the data into the memory cells, is done
by activating and precharging a row. Every time a refresh operation is required, the
DRAM system has to firstly precharge all active banks and, once all banks are precharged,
perform the refresh command. The refresh rate of a DRAM depends on the technology
and also on the temperature of the memory.

Since energy efficiency has increasingly been a key goal of the electronics indus-
try, there are also commands capable of saving energy in the DRAM system. When it is
in an idle state, in other words, when there are no requests, the following commands are
ready to be performed: Power-Down Activate (PDNA), Power-Down Precharge (PDNP)
and Self-Refresh (SREF) (JUNG M.; WEIS; WEHN, 2015). The PDNA can be executed
if one or more banks are still in active mode and it sets the DRAM to the power-down ac-
tive state. The PDNP can be performed if all banks are precharged and it sets the DRAM
to the power-down precharged state. In power-down active and precharged states, explicit
refreshes need to be issued. The SREF can be executed if all banks are precharged and
it sets the DRAM to the self-refresh mode. Since internal refreshes are executed during
this state, it is the most energy saving state. However, a long wake-up time is required
to return to a nonidle state. In current DRAM systems, these operations work at the chip

level, so all banks on a chip enter and exit a power-down mode at the same time.

3.3 Memory Controller

The memory controller can be a separate chip or integrated into another chip, such
as being placed on the same die or as integrated part of a microprocessor. Since today’s
memory controllers are integrated into a System On Chip (SoC) which comprises multi-
ples cores, the DRAM controller communicates internally with the CPU and externally

via the memory bus with the memory modules. Figure 3.4 illustrates this scenario.
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Figure 3.4: DRAM Memory System
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The DRAM controller is responsible for issuing requests, which includes refresh
and power-down commands, to a DRAM module, in such a way that resources and tim-
ing constraints are met and the performance is maximized. It is also the module which
connects the memory modules to other components. Thus, it is the brain of the memory
system, and through many mechanisms, it is possible to optimize many aspects of the
system. For example, by maximizing the number of row hits and exploiting the bank par-
allelism, the system throughput is increased, and the access latency is minimized. In order
to achieve improvements like the described above, the scheduler in the memory controller,
which manages the requests and decides the next one to be issued, have to be properly
designed. Hence, the scheduler is a key mechanism for enhancements in the DRAM sys-
tem. Seeing that there are other mechanisms besides the scheduler to be exploited, the

design space exploration of DRAM systems is noticeably huge.
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4 DRAMSYS

DRAMSys is a DRAM subsystem design space exploration framework (JUNG
M.; WEIS; WEHN, 2015) which supports a wide range of standard and emerging DRAM
subsystems, e. g., DDR3, DDR4, LPDDR3, Wide I/O and Hybrid Memory Cube (HMC).
Hence, it consists of flexible and extensible models that are designed in a modular fash-
ion and reflect the DRAM functionality, power, temperature and retention time errors. It
provides several analysis tools that assist the designer in order to enable him to optimize
the DRAM subsystem concerning the controller architecture, power, and thermal man-
agement as well as device selection and channel configuration for a specific application.

The framework is implemented in C++ using SystemC/TLM 2.0, which provides
simulation speedup, interoperability and easy integration of other TLM components. In
order to achieve enough accuracy to reflect realistic behaviors, i. e., negligible losses in
accuracy compared to an RTL simulation (JUNG M.; WEIS; WEHN, 2015), all connec-
tions are implemented in the TLM 2.0 AT coding style, except the connection between
controller and channel, which is implemented in DRAM-AT (JUNG et al., 2013), an ex-
tended TLM 2.0 protocol with DRAM specific phases. Figure 4.1 shows the base archi-
tecture of DRAMSys. The modules communicate with each other using TLM 2.0 sock-
ets, the arbiter can be connected to multiple channels, which are basically independent
DRAM systems, and generally, an arbitrary number of initiators and DRAM channels
can be instantiated. The tool can be used in professional virtual platforms environments
like Synopsys Platform Architect (Synopsys Inc., 2015) or as a standalone simulator with
native SystemC/TLM 2.0.

Figure 4.1: Base Architecture of DRAMSys (JUNG M.; WEIS; WEHN, 2015)
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4.1 Initiator

The Initiator can be any TLM 2.0 compliant module such as trace players or even
complete CPU models like gem5 (BINKERT et al., 2011). A trace player sends memory
requests to the DRAM system by processing trace files. The native trace file of DRAM-
Sys describes each transaction with one line, in which three separated columns represent
the initial clock cycle of the transaction, the requested operation (read or write) and the
address to be accessed. In order to facilitate efficient analysis and explorations, the frame-
work supports trace files from other simulation such as gem5 (BINKERT et al., 2011) and
Simplescalar (BURGER; AUSTIN, 1997). To achieve faster simulations, it is also pos-
sible to replay pre-recorded transaction traces with elastic trace players (KOGEL, 2010)
(JAGTAP et al.,, 2016). By instantiating multiple initiators, the memory usage of multi-

core systems can be simulated as well.

4.2 Arbiter

The Arbiter is a front-end module of DRAMSys, which is responsible for for-
warding requests from an initiator to a memory channel and responses from a channel
to an initiator. Once a transaction enters the system, it is stored in a buffer according to
its initiator. A transaction remains in a buffer until the target initiator or channel is free,
and the arbiter selects it as the next one to be sent. Since the speed and the number of
initiators and channels might be different, the arbiter has to manage transactions in such
a way that they are stalled as minimum as possible. Hence, it is essential to model the

arbiter correctly to get realistic results.

4.3 Address Mapping

The front-end module of DRAMSys arbitrates the several inputs to the memory
subsystems and maps transactions to the different channels by a defined address mapping.
The Bank-Row-Column (BRC) and the interleaved Row-Bank-Column (RBC), as shown
in figure 4.2, are the most common addressing schemes. The second one, also called Page
Mode or Bank Interleaving (JACOB B.; WANG, 2008), brings the upper bank bits of

the address down between the row and the column bit to ensure a better bank utilization.



25

Besides, there are also sophisticated mapping schemes such as the Permutation-Based
Page Interleaving Technique (ZHANG et al., 2000), in which accesses to different rows
in the same bank are transformed into accesses to different banks by XORing the bank
bits with selected row bits. Therefore, the address mapping has a great impact on the

performance of a memory system.

Figure 4.2: Bank-Row-Column and Row-Bank-Column Address Mappings (JUNG,
2017)
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4.4 Channel Controller - Controller Core and Scheduler

In DRAMSYys, the channel controller is the module which issues requests to the
memory module and responses to the arbiter. It acts as a TLM 2.0 wrapper which im-
plements the TLM 2.0 base protocol at the target side, for the communication with the
arbiter, and the DRAM-AT protocol, mentioned previously, for the communication with
its associated DRAM module at the initiator side. In a similar way to the arbiter, the
transactions are also stored in buffers. A request is issued after being scheduled by the
controller scheduler and processed by the controller core. The scheduler is the module
that manages the issue order of the requests for the purpose of achieving better perfor-
mance. DRAMSys supports state-of-the-art scheduling techniques, such as FR-FCFS
(First Ready - First Come First Served) (RIXNER et al., 2000) , PAR-BS (Parallelism-
aware Batch Scheduling) (MUTLU; MOSCIBRODA., 2008) and SMS (Staged Memory
Scheduling) (AUSAVARUNGNIRUN et al., 2012). The controller core is in charge of
transforming scheduled read and write requests into a sequence of necessary commands

and determining when the execution of these commands have to start according to the cur-
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rent state and timing constraints of the target DRAM module. Besides, it is the module
which issues refreshes, when it is required and can issue power down commands depend-
ing on the current state of the memory. After the execution of all requested commands, the
memory module sends a response to the channel controller, which sends it to the arbiter

and, that way, a transaction is finished.

4.5 TLM Recorder and Trace Analyzer

The TLM Recorder is the component which uses the SQLite Database Engine
(SQLITE., 2000) to record memory traces into one or more database files, according
to the number of memory channels, during a simulation in DRAMSys. By monitoring
the communication between the components, it stores much information, such as TLM
phases, requested addresses, operations and timings, which comprises a file. The recorded
data can be visualized in the trace analyzer tool, which is implemented in C++ and Python
and provides a graphic view of transactions and mechanisms for analysis and verification.
These mechanisms include extraction of metrics, such as average latency and bandwidth,
evaluation tests, like verification of timing constraints, and plots generation. It allows a
quick navigation through the memory traces, and it is also useful for debugging purposes.

Figure 4.3 shows the DRAMSys trace analyzer and some of its features.

Figure 4.3: DRAMSys Trace Analyzer JUNG M.; WEIS; WEHN, 2015)
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4.6 DRAMPower

Since DRAMs contribute significantly to the power consumption of today’s sys-
tems, the need for an accurate power modeling is visible. In DRAMSys, this is possible
through DRAMPower (CHANDRASEKAR et al., 2012), a power and energy estimation
tool. This tool was modified to be used as a library, which was integrated into DRAMSys
(JUNG M.; WEIS; WEHN, 2015). Therefore, it enables an online energy consumption

calculation during a simulation.
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5 COMPARISON OF SCHEDULING MECHANISMS

In recent years, due to multi-core environments and the continuous demands of
memory, the scheduling mechanism of the DRAM controller has become increasingly
important. When multiple cores share the same memory system, new aspects such as
thread-fairness have to be considered. As pointed out in (MUTLU; MOSCIBRODA.,
2008), in a multi-core scenario high memory throughput (number of served memory re-
quests per second) cannot equal high performance of the overall system. Therefore, dif-
ferent memory scheduling techniques have been proposed to increase the overall system
performance, 1. e., to optimally achieve several goals, such as maximizing row-buffer
hit rates, bank-level parallelism and fairness. The schedulers FR-FCFS (RIXNER et al.,
2000), PAR-BS (MUTLU; MOSCIBRODA., 2008) and SMS (AUSAVARUNGNIRUN
et al., 2012) nicely reflect the crescent complexity of proposed memory schedulers over
the last decades. Hence, it is very important to compare the effects of these schedul-
ing techniques on the DRAM memory system and identify whether the complexity of a
mechanism is directly related to its efficiency.

In this work, the aforesaid scheduling mechanisms, proposed by other authors,
were implemented in the DRAMSys framework. Afterward, this work presents results

obtained through simulations with multi-core CPU models in the framework.

5.1 FR-FCFS

The First Ready - First Come First Served (FR-FCFS) is the memory scheduling
mechanism proposed in (RIXNER et al., 2000) in which out-of-order DRAM operations
are executed to enhance the performance of the overall system. This approach is the most
common online DRAM scheduler and exploits row-buffer locality through two distinctive
reordering mechanisms, conservative and aggressive reordering.

In conservative reordering, the first-ready reference is scheduled. If there are many
pending references, the oldest one is chosen. This mechanism uses bank-first scheme in
which accesses to different banks are prioritized over same bank accesses. If a bank
is performing a precharge or an activate command, accesses from different banks can
be performed. Hence, bank parallelism and concurrency are exploited, i.e., throughput
is increased. However, when the oldest pending reference targets a different row than

the active one in a particular bank, it would be precharged even if this bank would still
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have row-hit references. Thus, a potential performance gain would be lost. On the other
hand, the aggressive reordering would avoid this scenario because it takes the performance
enhancement into consideration. It focuses on memory bandwidth optimization by further
reordering references in such a way that maximizes the row-buffer hit ratio.

The FR-FCEFS policy, as presented in (RIXNER et al., 2000), has three priority
rules:

1 - Ready-First: prioritizes ready commands over unready ones.

2 - Column-First: prioritizes column accesses, i.e., read and write commands,
over row accesses, i.e., activate and precharge commands. This policy maximizes the
row-buffer hit rate.

3 - Oldest-First: prioritizes commands from older requests over those from more
recent ones.

FR-FCFS aims to minimize the average service latency of requests and maximize
the data throughput. For single-threaded systems, this scheduling mechanism provides the
best average performance (MUTLU; MOSCIBRODA., 2008). Nevertheless, when multi-
ple threads share the DRAM system, the command prioritization policy employed by the
FR-FCEFS can be unfair to different threads. This can be illustrated when imagining a sce-
nario in which a thread generates accesses to a random address, while another thread acts
as a stream. The streaming thread would keep generating a lot of row hits, and it would
be served almost exclusively, whilst the other would be stalled for almost all the time.
Besides, the oldest-policy implicitly gives higher priority to threads which generate mem-
ory requests at a faster rate than others, i.e., requests from less memory-intensive threads
are not served until all earlier arriving requests from memory-intensive ones are served.
Hence, FR-FCES is thread-unware and, even though it maximizes memory throughput,

threads running together on the same chip can experience different memory performance.

5.2 PAR-BS

The Parallelism-Aware Batch Scheduling (PAR-BS) is a thread-aware scheduler
proposed in (MUTLU; MOSCIBRODA., 2008) that tries to establish high performance
of the overall system by forming batches of execution, in which each thread has a limited
number of requests per bank and a rank according to its workload. It consists of two
components: request batching and parallelism-aware within-batch scheduling.

The idea of batching is to consecutively group outstanding requests in the memory
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request buffer into units called batches. The maximum number of requests per bank for
each thread in a batch is defined by the scheduler parameter Marking-Cap. Once all
requests of a batch are serviced, i.e., when the batch is finished, a new batch is formed
consisting of requests in the memory request buffer that were not included in the last batch
(MUTLU; MOSCIBRODA., 2008).

The formation of batches allows for the flexibility to re-order requests within a
batch in order to exploit row-buffer locality and bank parallelism without significantly
disturbing thread-fairness. The first one is important because if a row-hit rate is main-
tained within a batch, bank accesses incur smaller latencies on average, which increases
the throughput of the system. The second one is also important because scheduling mul-
tiples requests from a thread to different banks in parallel effectively reduces that thread’s
experienced stall-time (MUTLU; MOSCIBRODA., 2008). Hence, the parallelism-aware
within-batch scheduling uses the following prioritization rules:

1 - Within-batch requests: within-batch requests are prioritized over the others.

2 - Row-hit-first: Row-hit requests are prioritized over row-miss requests.

3 - Higher-rank-first: Requests from threads with higher rank are prioritized over
requests from lower-ranked threads.

4 - Oldest-first: Older requests are prioritized over younger requests.

By prioritizing requests belonging to the current batch, the scheduler prevents re-
quest starvation and enforces a fair progress across all threads. When a bank is free for
requests and there is no request left in the batch for that bank, a request which does not
belong to the current batch is serviced, so that neither bandwidth is wasted nor unnec-
essary requests are delayed. Within a batch, row-hit requests are prioritized in order to
increase row-buffer locality. Since a thread ranking remains the same while a batch is
processed, different threads are prioritized in the same order across all banks and thus,
each thread’s requests are more likely to be serviced in parallel by all banks. Besides,
seeing that non-intensive threads are usually ranked higher than intensive ones, PAR-BS
ensures that non-intensive threads make fast progress and are not delayed unnecessarily
long (MUTLU; MOSCIBRODA., 2008). Finally, all else being equal, an older request is
prioritized with the purpose of minimizing the average service latency of requests. Fig-
ure 5.1 shows data extracted from a DRAMSys simulation using the PAR-BS scheduler,
where each request has a specific color according to its batch, with the exception of the
gray ones, which do not belong to any batch. Therefore, in contrast to FR-FCFS, which

might sacrifice thread-fairness in lieu of maximizing memory throughput, the PAR-BS
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tries to maximize both of them simultaneously.

Figure 5.1: PAR-BS Request Batching
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5.3 SMS

The Staged Memory Scheduling (SMS) is an application-aware scheduler pro-
posed in (AUSAVARUNGNIRUN et al., 2012) that decouples memory controller tasks in
three structures, which together try to improve the overall system performance and fair-
ness, especially in integrated CPU-GPU systems. Therefore, the SMS composes three
separate stages: batch formation, batch scheduler and DRAM command scheduler.

The goal of the first stage of the scheduler, the batch formation, is to combine in-
dividual requests from the same application based on the row-buffer locality, i.e., requests
that access the same row. It consists of several First In First Out (FIFO) structures, one per
source, €. g., a CPU or a GPU. Each request is initially inserted into its respective FIFO
upon arrival at the memory controller. A batch is simply one or more memory requests
from the same source that access the same DRAM row. Hence, except perhaps for the
first one, the requests within a batch would be row-buffer hits if scheduled consecutively.
A batch is deemed ready or complete when an incoming request accesses a different row,
when the oldest request in the batch has exceeded a threshold age, or when the FIFO is full
(AUSAVARUNGNIRUN et al., 2012). The threshold age of an application is determined
by the dynamic parameter Miss per Thousand Cycles (MPKC), which changes over the
application execution. The lower the memory intensity of an application the lower is its
threshold age. Only ready batches are considered by the second stage of the SMS, the
batch scheduler.
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The second stage, the batch scheduler, deals directly with batches and therefore
does not need to worry about scheduling to optimize for row-buffer locality. Instead, it
focuses on higher-level policies regarding inter-application interference and fairness. The
goal of this stage is to prioritize batches from applications that are latency critical, while
making sure that bandwidth-intensive applications such as the GPU still make reasonable
progress (AUSAVARUNGNIRUN et al., 2012). It schedules the batches using either a
Shortest Job First or a round-robin policy. By using the SJF policy, the scheduler chooses
the oldest ready batch from the source with the fewest total in-flight memory requests
across all the three stages of the SMS. By using the round-robin policy, it simply picks
the next ready batch in a round-robin manner across the source FIFOs. The first one
reduces the average requests service latency, which tends to favor the latency-sensitive
applications, while the second one ensures that high memory-intensity applications re-
ceive adequate service (AUSAVARUNGNIRUN et al., 2012). The configurable parameter
Shortest-Job-First Probability defines how often the SJF policy is used, i.e., how frequent
non-intensive applications are prioritized over intensive ones. After picking a batch, the
batch scheduler forwards the requests from the selected batch to the final stage of the
SMS. It simply dequeues the requests one at a time until all requests of the batch have
been removed from the source FIFO. It then selects the next batch to be forwarded.

The third and final stage of the SMS, the DRAM command scheduler (DCS),
handles low-level DRAM commands, e.g., activate and precharge, and consists of one
FIFO queue per DRAM bank. After dequeuing a request from a batch, the batch scheduler
moves it to one of these queues. Row-buffer locality within a batch is preserved into
a DCS FIFO because batches are moved one batch at a time. Moreover, seeing that
previous stages have already made application-aware scheduling decisions, at this point,
the scheduler simply services the requests in the order they arrived. Figure 5.2 shows the

three stages of the SMS.
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Figure 5.2: Organization of the SMS (AUSAVARUNGNIRUN et al., 2012)
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Different from the previous schedulers, SMS considers heterogeneous systems
and uses additional structures and separate stages. Like the PAR-BS, it also tries to de-
liver high throughput and fairness simultaneously. However, due to its own arbitration
mechanism and more complex design, it tries to better identify and exploit the different

characteristics of applications.

5.4 DRAMSys Restructuring

A multi-threaded simulation is fundamental for simulating DRAM schedulers since
one of the goals of a scheduler can be maximizing the thread-fairness. Although DRAM-
Sys supported multi-threaded simulation, in order to perform realistic simulations, it was
required to modify some of its components such as models which did not reflect the real
hardware behavior suitably. In other words, the main modules, arbiter, controller, and
trace analyzer had to be restructured. Once restructured, DRAMSys satisfied the require-
ments to be the main environment of this work.

The restructuring of the arbiter and the controller, performed in this work, com-
prised the implementation of size-limited buffers, additional inter- and intra-communication
delays, a new TLM 2.0 communication protocol between the two components and a new
arbitration scheme. The implementation of size-limited buffers includes the definition
of a size limit for every buffer of the arbiter and controller and a backpressure mech-
anism. The implementation of new inter- and intra- communication delays consists of
the buffer delay, the delay for putting data into a buffer; the arbitration delay, the time

spent by the arbiter to perform the arbitration scheme once; the control delay, the time
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spent by the controller for timing verification and for splitting a new request into one or
more commands; and the physical interface delay, the delay for translating digital data
into an analog DRAM command. The new TLM 2.0 communication protocol allows a
simultaneous dispatch of requests to the same channel controller, which enables the new
arbitration scheme, which uses the oldest-first policy, to select requests from all the input

buffers and send them to the controller at once. Figure 5.3 presents these changes.

Figure 5.3: New Architecture of DRAMSys
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With the purpose of exploiting the aforementioned modifications, changes in the
database schema, and consequently, in the TLM Recorder were required. The new database
schema and TLM Recorder allow a whole multi-threaded simulation to be recorded in just
one database file, in contrast to the previous version which recorded one file per channel.
That way, the trace analyzer provides a complete view of the simulation, including trans-
actions between initiators and the arbiter, instead of only those between controller and
arbiter. Figure 5.4 shows the new trace analyzer and some of its new features. This re-
structuring does not just increase the simulation and analysis potential of the tool but also

its debugging capabilities.
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Figure 5.4: New Trace Analyzer of DRAMSys
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5.5 Elastic Traces

In addition to a multi-threaded simulation environment, it is essential that the ini-
tiator modules in DRAMSys mimic the execution of out-of-order processors, issuing re-
quests according to some aspects that might delay or create dependencies between re-
quests. These aspects are tied to the memory system performance and must be taken
into account. Detailed execution-driven CPU models offer high accuracy but at the cost
of simulation speed. Therefore, for the purpose of alleviating this problem, trace-driven
simulation is widely adopted. However, in absolute time traces such as the native traces
of DRAMSys, memory access timestamps are inferred offline, ignoring part of these as-
pects, which may lead to incorrect results. Hence, elastic traces (JAGTAP et al., 2016)
were used in this work.

Elastic traces accurately capture memory dependencies by instrumenting a de-
tailed out-of-order execution-driven CPU model. During the run time of a detailed out-
of-order pipeline in the simulation tool gem5 (BINKERT et al., 2011), the elastic trace
is formed by tracking instruction dependencies and their relative delays inside the pro-
cessor pipeline, and thus they do not rely on offline analysis of timestamps. Besides, it
also records effects of branch misprediction, which have a non-negligible impact on the

memory system (JAGTAP et al., 2016). The execution of instructions is modeled as a
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directed acyclic graph where instructions are nodes and dependencies are edges. Seeing
that processor resources, such as the Issue Queue and the Reorder Buffer, affect the sys-
tem performance, they are also taken into consideration. Thus, data dependencies such as
read-after-write ones, order dependencies for loads and stores and speculative and wrong
path loads are captured. After the elastic traces generation, the elastic trace player, im-
plemented in the simulator gem3, enables playing them back by connecting it to different
memory system models. The player respects the recorded dependencies and adapts its
execution time to memory-system changes, as the actual CPU would do. Figure 5.5 illus-

trates the trace capture and replay methodology.

Figure 5.5: Trace Capture from a detailed execution-driven CPU and Replay for Memory-
system exploration. (JAGTAP et al., 2016)
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The elastic traces are application- and microarchitecture-specific but memory-
system independent and achieve faster simulation speed than detailed out-of-order execution-
driven processor models with negligible errors. Since the elastic trace player is integrated
with a SystemC TLM 2.0 interface, elastic traces can be replayed in DRAMSys. There-
fore, elastic traces enable accurate memory-system exploration, and consequently a realist

analysis of memory scheduling mechanisms in the framework.
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5.6 Experiments

The scheduling mechanisms were evaluated using the DRAMSys and elastic traces.
The traces modeled multi-core CPUs, including per-core L1 and shared L2 caches. Each
elastic trace modeled one core executing a single thread. The parameters for the CPUs
are shown in table 5.1.

Table 5.1: CPU parameters
Instruction Set Architecture | ARMv7-A

Cores 1-8
Core clock frequency 4 GHz
L2 Cache 2MB

16-way associative
12-cycle latency
L1-I Cache 32 KB

2-way associative
I-cycle latency

L1-D Cache 32 KB

2-way associative

2-cycle latency

Issue width 8
Pipeline stages 8
Physical INT/FP registers 128/192
IQ entries 32

LSQ entries 16 each
ROB entries 40

The parameters for the memory system modeled in DRAMSys are presented in
table 5.2. Although the DDR4 standard is coming now slowly into the market, the DDR3-
1600 (Micron Technology Inc., 2006) standard keeps being widely used in computer sys-
tems and, as mentioned previously, the RBC is one of the most common address map-
pings used nowadays. Scheduler-specific parameters and the size of the arbiter and con-
troller buffers were defined based on (AUSAVARUNGNIRUN et al., 2012) and (MUTLU;
MOSCIBRODA., 2008).

The experiments of this work used elastic traces simulating the execution of the
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Table 5.2: DRAM parameters, VDD = 1.5V and f = 800 MHz (Micron Technology Inc.,

2006
Dl){AM Chip Micron DDR3-1600 || Timing | [clk] || Current | [mA/channel]
Number of Channels 1 trRRD 5 Ippo 70.00
Number of Ranks 1 trcD 10 Ippon 45.00
Number of Banks 8 trr 10 Ippsn 45.00
DRAM Row-buffer Size 1 KB twr, 8 Ippar 140.00
DRAM Controller Clock Rate 1 GHz twTr 6 Ippaw 145.00
Input Buffer Size 8 trp 10 Ipps 170.00
Olltpllt Buffer Size 8 tras 28 IDDQP 12.00
Scheduling Buffer Size 16 twr 12 Ippap 30.00
Address Mapping RBC trrc 59 Ipps 8.00
Marking-Cap (PAR-BS) 5 txp 6
Per-Source Queue Size (SMS) 8 tekE 3
Per-Bank Queue Size (SMS) 16 txsp 96
SJF Probability (SMS) 0.8 tCKESR 4
tro 38

stream and random applications presented in (MOSCIBRODA; MUTLU, 2007). Each

elastic trace simulates around 500 thousand read and write requests. The stream trace

accesses each memory column several times in a row and thus has high row-buffer hit

ratio and low bank-parallelism, and the random trace issues memory accesses randomly

and hence has low row-buffer hit ratio and high bank-parallelism. The figures 5.6 and

5.7 illustrate the behavior of the stream and random traces respectively. Since they have

opposite characteristics, simulations with them enabled a suitable investigation regarding

the thread-fairness. To analyze the overall system performance, bandwidth utilization

ratio, which is directly related to the throughput, energy consumption and the number of

accesses per activate command were also measured.

The fairness was measured based on the unfairness metric used in (AUSAVARUNG-

NIRUN et al., 2012), which uses the slowdown of CPU cores sharing the same DRAM

system. The slowdown of a core is the number of instructions per clock (IPC) it issues

when running together with other cores divided by the number of IPC it issues when

running alone on the same system:

I Pcalone

Slowdown; =

Core;

IPOshared :

Core;

(5.1

Hence, the fairness ratio is the the minimum slowdown over all the cores divided by the
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Figure 5.6: Stream Trace
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Figure 5.7: Random Trace
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maximum slowdown over all cores:

n;Slowdown;
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The bandwidth utilization ratio and the number of accesses per activate command were
measured through the DRAMSys trace analyzer, and the energy consumption was mea-
sured using the DRAMPower energy estimation.

In addition to the scheduling mechanisms described previously, the First In First
Out (FIFO) technique, also known as First Come First Served (FCFS), was also simulated.
This mechanism just services the memory requests exactly in the order they arrived in the
memory controller. Since it is no scheduler at all, it was used as the baseline of the
experiments for accurately perceiving the effectiveness of schedulers.

Based on the behavior of the stream and random traces, a set of combinations
of these traces modeling 2, 4 and 8-core systems was replayed in DRAMSys. These
combinations exploited scenarios, in which the memory system is led to service requests
according to the characteristics of the majority or half of the cores. Table 5.3 presents the

setup of the experiments.
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5.7 Results

Table 5.3: Setup of the Experiments

Experiment | Number of Cores | Number of Traces
Stream | Random

1 2 1 1

2 4 1 3

3 1

2 2

3 8 1 7

7 1

4 4

Initially, the efficiency of the schedulers and the baseline in experiment 1 are com-

pared. Its results are shown in figure 5.8(a). As expected, even for 2-core systems, the

baseline produced the worst results. Seeing that PAR-BS and SMS are more appropri-

ate for systems with many cores, it was expected that their performance would not be as

good as that of the FR-FCFS in this experiment. Even though the FR-FCFS provided the

highest fairness, it is possible to observe that it slowed both applications down by 18%

Figure 5.8: Results of Experiment 1
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on average while PAR-BS and SMS slowed just the stream trace down by around 20%.
The thread-aware schedulers prioritized row-miss requests from the random trace over
row-hit requests from the stream trace sometimes while the FR-FCFS always prioritized
the row-hits, stalling the random trace more. On the other hand, due to the size-limited
buffers of the memory controller, the FR-FCFS was led to service at least one row-miss
request every time a buffer was full of requests from the random trace, which kept the
scheduler from being unfair even with a high bandwidth. The bandwidth utilization was
almost the same regardless of the technique applied, due to the small number of cores.
Since the FR-FCEFS is well suited to achieve the maximum possible number of row-buffer
hits and consequently the maximum possible number of accesses per activate command,
it was expected that it would consume less energy than the others. It is important to notice
that the other mechanisms still consumed less energy than the baseline. In order to present
the effect of the address mapping, experiment 1 was repeated using the BRC addressing
scheme. The results of this experiment are shown in figure 5.8(b). It is noticeable a big in-
crease in the slowdown and energy consumption, besides a big decrease in the bandwidth
in comparison to the results using the RBC scheme. Therefore, regardless of the sched-
uler, a bad address mapping will give bad results, and the better the addressing scheme,
the better a scheduler can perform.

Figures 5.9 and 5.10 show the results of experiments 2 and 3 respectively. Re-
markable differences can be noted, mainly regarding the fairness. When the majority
of the cores were stream traces, the thread-aware schedulers delivered a higher average
bandwidth than the FR-FCFS, because the single random trace was stalled and its simple
scheduling scheme ended up not being clever enough to exploit bank-level parallelism.
In the other cases, since there was more than one random trace, bank-level parallelism
could be easier explored, and thus the schedulers produced similar bandwidth utilization
ratios, with differences less than 5% on average. On the other hand, FR-FCFS provided
the highest fairness. In experiment 2, the FR-FCFS kept stalling the random traces more
and the stream ones less than the thread-aware schedulers did, but, unlike in experiment 1,
it also presented an average slowdown less than those presented by the other mechanisms.
In experiment 3, when the majority of the cores were random traces, the fairness ratios
produced by the schedulers were similar. In view of the huge number of row misses, even
the FR-FCFES was not able to avoid slowing the single stream trace down overly. In the
other cases, it delivered the highest fairness, as in the 4-core simulations. However, in

all cases, it slowed the stream traces down more than the random ones, which resulted
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in lower fairness rates than those presented in experiment 2, indicating that the higher

the number of cores, the less the FR-FCEFS is able to be fair. Moreover, the SMS stalled

the stream and random traces more than the PAR-BS did, and, therefore, it produced

lower fairness ratios. Although the fairness ratios presented by the baseline were similar

to those presented by the thread-aware schedulers, it is fundamental to observe that the

baseline slowed all cores down much more than the others did. Therefore, a high fair-

ness ratio does not always entail an efficient scheme. Even for 4- and 8-core systems, the

FR-FCFS scheduler kept being the most energy-efficient due to its simple prioritization

scheme which optimizes the row-buffer hit ratio.

Figure 5.9: Results of Experiment 2
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Figure 5.10: Results of Experiment 3
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The results of the experiments evinced the importance of the scheduling mech-

anisms, which can improve not only the throughput but also the energy efficiency and

thread-fairness of the DRAM memory system. Although the FR-FCFS does not aim at

maximizing fairness, it presented an automatic fair scheduling, and, owing to its simple

prioritization scheme, it was the most energy-efficient scheduler. The PAR-BS proved to

be efficient as well because it demonstrated a good trade-off between bandwidth and en-

ergy consumption in the experiments, in which it delivered the highest average bandwidth

and presented an average energy consumption less than 10% greater than that presented

by the FR-FCFS. As expected, the SMS provided a reasonable high but not the highest
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to their batches. Although these figures show data extracted from a simulation using the
PAR-BS, simulations using other techniques repeated the data bus scenario. In the first
figure, it is possible to observe multiple gaps between the data on the data bus. Seeing
that reads were not always prioritized over writes, these gaps were formed due to frequent
read-write switches, and thus bandwidth may have been wasted. Moreover, the figures
show why the thread-fairness provided by the PAR-BS in the experiments was not as high
as expected. Because of read-write switches, a PAR-BS batch took longer to be serviced
and then many times the scheduler ended up servicing requests which do not belong to any
batch. Therefore, since the batch boundary and the thread-ranking were often ignored, its
thread-aware scheduling scheme was ruined. Hence, a scheduling mechanism should also
manage the order of execution of read and write commands in such a way that read-write

switches were minimized.
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6 CONCLUSIONS AND FUTURE WORK

In this work, DRAM design space was exploited using virtual prototyping with
SystemC/TLM 2.0. The benefits of this method allowed the implementation of several
DRAM scheduling mechanisms and a realistic modeling and fast simulation of the DRAM
memory system. Despite simulating multi-core systems, the results of the experiments
showed that FR-FCEFES is the most efficient scheduler, owing to its simple prioritization
policy combined with other DRAM controller mechanisms. However, since the experi-
ments comprised just applications with particular characteristics and some memory sys-
tem mechanisms still can be better modeled, this does not imply that this scheduler is
necessarily the best option among the schedulers studied. As shown in (JUNG, 2017),
there are other aspects to be explored on DRAMs, such as the refresh retention time, ther-
mal behavior, bank-wise power-down modes and advanced addressing schemes, which
can contribute to the efficiency of the scheduling mechanisms and even to the design of
new ones. Hence, the next step is the modeling of an efficient scheme, which prioritizes
reads over writes being aware of data hazards and groups the execution of these com-
mands in such a way that read-write switches are minimized and bandwidth is minimally
wasted. As mentioned in (MUTLU; MOSCIBRODA., 2008), read requests must be pri-
oritized because they can directly block forward progress in processing cores and are
therefore more performance critical. Furthermore, experiments using applications with
different memory-intensity levels would better exploit the application awareness of the
SMS and the thread-ranking of PAR-BS, which would culminate in a refined analysis
of the thread-fairness provided by the different schedulers. Therefore, the research on

scheduling mechanisms for DRAMs must go forward.
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