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Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
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Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and
tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics
define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as
td/d+2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments
deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from
collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and
cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account
finite-size corrections. The results are compared with active matter model simulations and experiments available
in the literature. To investigate the role played by different mechanisms we considered different hypotheses
describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find
that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that
(i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is
greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster
diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only
on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active
matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed
certainly have deep implications in biological evolution as a selection mechanism.
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I. INTRODUCTION

In typical cell sorting experiments [1,2], a cell aggregate is
formed with two different cell types, in different proportions.
Usually endodermal cells are the minority type, while the
majority is made of ectodermal cells. The experiments proceed
as endodermal cells spontaneously migrate and segregate
forming multiple clusters that diffuse and grow by merging
with other clusters of their kind. The final configuration
is a roughly round endodermal aggregate surrounded by
ectodermal cells [1–4].

Usually the monitored quantities are the time to segregate
and some characterization of the final pattern, i.e., some
measure that tells whether the segregation is complete or not
and/or whether the ectodermal cells completely involve the
endodermal ones [3,5].

There are different hypotheses regarding the possible
mechanisms to explain this spontaneous segregation. It could
be explained by assuming that cells differently attach to
each other depending on their type, a theory known as
differential adhesion hypothesis (DAH) [4], developed by
Steinberg in 1963 and inspired by immiscible fluids behavior.
Recently this hypothesis has been generalized to include cell
cortex tension [6,7]. Another possibility considers that the
cells capabilities of compressing and squeezing between its
neighbors have different intensities depending on the cell type.
This is the differential surface contraction hypothesis (DSCH),
enunciated by Harris in 1976 [8] and further developed
by Brodland [9]. By this hypothesis, cell sorting is driven
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by cell surfaces differential contraction, depending on the
cell neighborhood. Yet another explanation was proposed by
Jones et al. [3], by assuming that differences in the cell
motility, together with cell recognition ability, would drive
cell segregation. This last hypothesis is known as “different
velocities hypothesis” (DVH). Typically, the experimental
measures that support either of these models consider the
final configuration, where the endodermal cells cluster is
surrounded by ectodermal cells. These measures, however, are
incapable to decide whether one or all of these mechanisms is
behind cell segregation nor give information on time scales.

In dilute systems the mechanisms for cluster growth are
clusters diffusion and cluster merging when they collide. If
merging is faster than diffusion, we can assume that diffusion
defines cluster growth time scales. Furthermore, in case cluster
diffusion is normal with its diffusion constant scaling with
the inverse of the mass, we expect that the average cluster
mass grows as td/(d+2) [10,11]. Consequently, explanations
for deviations from this theoretical prediction should be based
on cluster diffusion properties.

More recent experiments on cell segregation monitored
the evolution of both endodermal cell cluster size and dif-
fusion through the ectodermal cells environment [12–14]. In
particular, experiments by Méhes et al., using a two-point
correlation method, measured cluster size during segregation
and verified that collective migration accelerates segregation
rates. Since the cell-cell interaction hypotheses described
above (DAH, DVH, DSCH) affect merging mechanisms and
not diffusion exponents, it is not surprising that none of those
hypotheses could account for the fast time scales as observed
in Ref. [14]. What suggests, together with simulations of
Refs. [15–17], that cell sorting cannot be explained based
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on single-cell properties only, but rather depends on the
interaction with neighboring cells, emerging as a collective
phenomenon.

However, the specific mechanism by which collective
behavior enhances cell segregation remains elusive. It turns
out that simulations of interactive elements come in handy
to discriminate the effects of different ingredients in cell
sorting evolution. Cell sorting may be simulated by passive
particles using the Glazier-Graner-Hogeweg (GGH) [18],
by active matter models using the Vicsek model [19] or
yet considering mixtures of both kinds of particles [20,21].
These models allow to consider several cell segregation
mechanisms, such as DAH [6,15,18,22] and DVH [16,23].
Among these, active matter models provide a better control
on the collective behavior properties, yielding similar power
laws for cluster interface evolution when considering DAH or
DVH [15,16]. This suggests that the mechanisms underlying
both hypotheses have similar effects on cluster diffusion and
direction persistence. On the other hand, this result should be
further verified by comparing with a theoretical inference for
a finite-size effect: experiments of cell sorting involve finite
numbers of cells (up to order 105) and cells have finite sizes. So,
deviations from the behavior of a system of infinite number of
infinitesimal cells should be expected to affect cluster growth.
Consequently, theoretical approaches should explicitly include
finite-size effects.

Here we report active matter simulation results and propose
an equation for the growth of a mean endodermal cell
cluster that diffuses through ectodermal cells. The general
idea is to test whether the collective properties could be
responsible for the observed endodermal cluster-size evolution
by altering cluster diffusion properties. In order to justify
the diffusive approach used for the evolution equation, we
simulate the dynamics of single clusters and determine
the limits within which their movement can be considered
diffusive. Also, we obtain a general dependency of the
cluster diffusion coefficient with its mass. We validate these
results by simulating cell sorting using the differential ad-
hesion and velocity hypotheses in active matter models, and
show that, depending only on collective parameters values,
both hypotheses present similar exponents for cluster-size
evolution.

Based on our simulation results we introduce an analytic
approach for the growth of endoderm cells cluster, which al-
lows us to explicitly consider finite-size effects. This approach
is valid in the dilute limit, that is when the time for a cluster of
endoderm cells to diffuse between collisions is much longer
than its rounding time. Finally, we present the analytic solu-
tions for the equation and compare with the simulation results.
The quality of the fits allows us to conclude that cell sorting
can be approached as a cluster-cluster fusion problem [10].
Furthermore, after discounting finite-size effects, segregation
experiments as described above are useful to evince the
collective roots and properties of the system as, for example,
the effective capability of the cells to follow their neighbors.

Section II explains the models used in the simulations and
shows the results for single-cluster diffusion and segregation.
Section III describes the mean-cluster approach and compares
its solution with the simulations. In Sec. IV we discuss the
results and conclude.

II. SIMULATIONS

In this section we initially present the cell-sorting simu-
lations alternatively assuming two mechanisms: cell adhesion
differences and cell velocity differences. In the final subsection
we detail single-cluster diffusion and its dependence on the
number of particles.

The simulations are performed using an active matter model
running in GPU cards. Each cell is represented by a self-
propelled particle (SPP) with constant speed such that the
evolution of the ith particle position �xi is given by

�xi(t + �t) = �xi(t) + �vi(t)�t, (1)

where �vi is the particle’s velocity [24]. The particle’s direction
at t = t + �t is

θi(t + �t) = arg

⎧⎨
⎩

∑
j∈Vi

[
α′ �vj (t)

v0
+ βij

�fij (t)

]
+ η�ui(t)

⎫⎬
⎭.

(2)

In Eq. (2), parameter α′ regulates the tendency of cells to
follow the velocity direction of their neighbors; we call the
normalized value α′/v0 simply as α. Vi comprises those cells
that interact with cell i; βij is the intensity of the force between
cells; �fij expresses the dependence of the force on the distance
between cells i and j shown in Eq. (3) below; �ui is a unitary
vector that, together with the fixed intensity η, represents a
directional noise acting on the system.

The force �fij consists of a hard-core repulsion for distances
between particles i and j smaller than a radius rc added to
a harmonic-like interaction around the equilibrium radius re,
ranging from rc up to a maximum r0:

fij =
⎧⎨
⎩

∞ if rij � rc,

1 − rij

re
if rc < rij < r0,

0 if rij � r0.

(3)

Consequently, all particles laying within a radius r0 from
particle i comprise its neighborhood Vi .

In what follows, we express all distances in units of re, with
r0 = 1.32 re, chosen to guarantee that each particle has six
neighbors on average. The other parameters are rc = 0.50 re

and v0 = 0.0175 re/�t . Particles should not have very large
speeds, in order to guarantee that the distance covered in one
time step is much less than the core radius, rc, ensuring that
particles do not pass through each other. The largest speed
used in simulations is 4v0 [15,16,24]. Also, the core forces are
large and repulsive with values at least 1000 times larger than
the remaining ones.

The simulations consider two types of particles, 1 (typically
endodermal) and 2 (typically ectodermal), with speed and
adhesion intensities for each particle depending on its type.
We denote particle types by super-indexes and particle labels
by subindexes. DAH [15] supposes differential adhesion so we
keep the same speed for both cell types, that is, v1=v2=v0,
while we assumed type-dependent adhesion values: β11 =
0.45 and β22 = 0.225 to account for adhesion between same
type cells while β21 = β12 = 0.24 for intertype interactions,
assumed to be symmetric. Similarly, DVH [16] assumes
different velocities and hence we consider type-dependent
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FIG. 1. Snapshots for a DVH simulation, the cyan (or lighter
shade) cells are the faster ones. (1) Random initial state; (2)
t = 104�t ; (3) t = 105�t , clusters become visible; (4) t = 107�t ;
(5) t = 108�t , one large cluster, yet not spherical; (6) Final state
with t = 3 × 108�t , just one large circular cluster and some isolated
endoderm cells.

speeds, that is, v1 = v0 and v2 = 4v0, while the adhesion is
type-independent: β11 = β12 = β21 = β22 = 0.55. All simu-
lations are performed in a two-dimensional space, with up
to N = 8000 particles (N = 6400 only in the α = 0 DAH
case). The proportion of endoderm to ectoderm particles is
1:3, which avoids initial percolation of particles of type 1,
endodermal cells.

A. Cell sorting simulations

Cell-sorting simulations begin with cells of both types
randomly placed in a circle of radius ∼Rc located on a square
domain of size L and larger than the surface occupied by cells:
L2 � Nπr2

e ≡ πR2
c . Figures 1 and 2 show typical snapshots

of the segregation evolution presenting successive increase
in the sizes of type 1 particle clusters, for DVH and DAH,
respectively.

We measured the average cluster size, m, using a cluster
counting algorithm (detailed in the Appendix) and disregard-
ing small clusters (less than 5 cells). Similar procedure is used
by Méhes et al. [14] in their experiments. Figure 3 shows
the mean-cluster evolution for typical samples of DVH and
DAH for α = 0, that is, in the absence collective motion terms
in Eq. (2). The DAH curve shown in Fig. 3 corresponds to
a simulation with N = 6400 particles while the DVH curve
corresponds to N = 8000. In both cases the proportion of

FIG. 2. Snapshots for a DAH simulation, the cyan (or lighter
shade) cells are the less adhesive ones. (1) Random initial state; (2) t =
105�t , clusters become visible; (3) t = 107�t ; (4) t = 108�t , there
is only a single cluster, yet not spherical, and some loose endoderm
cells.

type 1 particles (endoderm) to type 2 particles (ectoderm) is
1:3. This means that the clusters of endoderm cells saturate
around 1500 particles. The initial average cluster size is
determined by the random configuration at t = 0. The dashed
lines are meant to evince the slope λ = 1

2 , which indicates the
power-law trend after the initial transient and before the final
saturation regimes. At long times the number of clusters is
small and fusion events are rare, and that is what causes the
discrete steps in m(t) for t � 107.

B. Diffusion of single clusters

To evince the relation between collective motion and cluster
diffusion, we simulate the diffusion of a single cluster of

102 103 104 105 106 107 108

t

101

102

103

m

DVH
DAH

FIG. 3. Mean-cluster evolution for typical samples of DVH
(black circle) and DAH (red square). Dashed lines, both with slope
λ = 1

2 , indicate the tendency after an initial transitory and before final
saturation.
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FIG. 4. Black lines show the trajectory of a single cluster of size
10 and α = 0 during 107�t .

particles and explore the relation between its mass and the
alignment parameter α. Figure 4 shows the trajectory of the
center of mass of a single cluster with 10 particles and null
alignment term (α = 0).

The cluster diffusion is characterized by the mean-square
displacement curve, obtained by first considering the position
of the center of mass at time t and its position at time t + T ,
where T is a time window, ranging from zero to the duration
of the simulation. Then the square displacement is calculated
for every time t and their average is calculated for each fixed
time window T . The result is a set of values representing
the mean-square displacement, 〈�r2〉, as a function of time
window T .

Figure 5 shows plots of mean-square displacements 〈�r2〉
for α = 0, 5, 10, 15 considering in each graph clusters of
different sizes. In all cases we find normal diffusion after
a small transitory. That is, the square displacement grows
linearly with T . We obtain the diffusion coefficient, D, by
finding the intercept of the asymptotic fit function at T = 1

1 102 104 10610-7
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10-1

101

103

<Δ
r2 >

1 102 104 10610-7
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10-1
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1 102 104 106

T
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10-5

10-3

10-1
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10-7
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10-3
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101

103

m=1
m=10
m=100
m=1000

(a) (b)

(c) (d)

FIG. 5. Mean-square displacement 〈�r2〉 of single clusters of size
m = 1, 10, 100, 1000 for different values of alignment parameter:
(a) α = 0 (no alignment); (b) α = 5; (c) α = 10; (d) α = 15 (close
to the transition to collective behavior).

0 5 10 15
α

-1

-0.5

0

ν

FIG. 6. Dependence of the diffusion mass exponent ν with the
alignment term α. With no alignment (α = 0) we have the normal
decay ν = −1. Near the transition for the collective movement (α =
15) we find ν ∼ 0, meaning that clusters of all sizes move with the
same diffusion constant.

for the different cluster mass values. For α = 0 [Fig. 5(a)] we
find that D is inversely proportional to the cluster mass, as
expected,

D(m) ∝ mν, (4)

and ν ∼ −1 for α = 0.
As the alignment term increases [Figs. 5(b)–5(d)] devi-

ations from normal diffusion are observed for small time
windows T . However, the asymptotic behavior for large T is
normal in all cases studied in this work (Fig. 5). As previously,
parameter ν can be determined using Eq. (4), but now with
values different from −1.

As shown in Fig. 6, the dependence of the diffusion
coefficient with cluster mass changes as α increases. The
exponent goes from ν ∼ −1 for α = 0 to ν ∼ 0 when α = 15.
The deviations from the linear regime at short time windows
can be better seen in Fig. 5(d): they are associated with
a ballistic regime [25] with a corresponding characteristic
persistence length of the cluster displacement. The largest
persistence length found happens at α = 15 and for cluster
sizes of 1000 particles. As can be seen in Fig. 5(d), this length
is of the order of 0.1re, much less than the characteristic size
(re) of a single particle. This means we can neglect the ballistic
regime in the analytic approach developed in the next section.

III. MEAN-CLUSTER MODEL

Snapshots of cell-sorting experiments [14] and simula-
tions [15,16] show that the growth of clustered structures
happens through fusion of diffusing clusters with similar
sizes, suggesting a scaling state as predicted by Kolb [10].
This regime holds far from the finite-size limits and at low
concentration of endoderm cells. Considering only irreversible
fusion the growth rate of an average cluster with m cells can
be described by

dm

dt
= m

τ (m)
, (5)

where τ is a characteristic time for a cluster of endoderm
cells (from now on, clusters, for simplicity) to diffuse and
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merge to another one. As showed in the previous section, we
may consider normal diffusion for clusters even for α = 15,
close to the transition to collective behavior [24]. So we may
consider the characteristic time for cluster fusion as depending
on the square of the average distance between clusters, L, and
on the diffusion constant D, that is, τ ∝ L2/D.

In systems with constant number of particles of each type,
with global density ρ and volume V , the typical distance
between clusters of size m is L = (m/ρ)1/d , where d is the
system dimension. Here, as in Ref. [10], we use D proportional
to some power of the average cluster mass, D ∝ mν [Eq. (4)].
In the case of normal diffusion and particles with no alignment
term, ν = −1 [26]. However, as shown in the previous section,
nontrivial ν values are found in systems with α �= 0: although
diffusion is normal.

Using this, we find τ = am
2−dν

d ρ− 2
d , with a being a constant

that includes the collision geometry terms, assumed to be time
independent since (i) the number of cells is conserved and
(ii) the cluster radius and the average distances between
clusters are in direct proportion, so the angular fraction
occupied by neighboring clusters on a spherical shell around a
cluster is also conserved. Injecting this into Eq. (5) and solving
for m we obtain

m(t) = 2−dν

√(
a′t + m

2−dν
d

0

)d
. (6)

Here a′ ≡ ( 2−dν
d

)a. For a′t � m0, we reobtain Kolb’s re-
sults [10] for nonfractal clusters:

m(t) ∼ td/(2−dν) ≡ tλ. (7)

Note that the power-law exponent depends only on the system
dimension and on the exponent, ν, relating diffusion and
cluster mass. The solution in Eq. (6) does not consider upper or
lower limits for cluster size, and we refer to it as the unbounded
solution, since m could vary from zero to infinity. However,
we remark that it depends on the initial cluster mass m0 that
cannot be set to zero.

Now we focus on how the finite-size limitations change the
evolution of the average cluster size. These are included by
considering two limits for the average cluster size:

(i) a minimum cluster size, c, below which clusters do not
grow;

(ii) a maximum cluster size, b, due to the finite number of
cells.

This is included in Eq. (5) as follows:

dm

dt
= m − c

τ (m)

(
1 − m

b

)
. (8)

We refer to Eq. (8) as the mean-cluster approach (MCA). A
general implicit solution for this is reported in the Appendix,
the particular cases, (ν = −1, ν = 0), for which the solutions
may be expressed as regular geometrical functions, are also
shown in the Appendix.

The fixed point in Eq. (8) at m = c is unstable since dm/dt

is negative for m < c and positive for m > c. To avoid a trivial
solution, the initial condition m0 > c must hold. Solutions for
the mean-cluster evolution are shown in Fig. 7, together with
the solutions for the unbounded case given by Eq. (6). Note that
(a) when c = 0 there is a time lag to enter the scaling regime,

100 102 104 106 108

t
100

102

104

106

m
ν=−1 (d=2) unbounded
ν=−1 (d=2)
ν=−1 (d=3) unbounded
ν=−1 (d=3)
ν= 0  (d=2)
ν= 0  (d=3)

FIG. 7. Average cluster-size solution in d dimensions, for finite
and unbounded systems, varying ν. At long times unbounded systems
converge to a power law. When in scaling regime the system with
ν = −1 has exponent λ = 1/2 (λ = 3/5) in 2D (3D) and with
ν = 0 the exponents are λ = 1 (λ = 3/2). In all plots a = 1, b =
104, c = 1.9 and m0 = 2. The inset details the effect of the minimum
cluster for ν = −1. Legends are the same as in the main graph.

related to the finite initial cluster size m0; (b) when c � m0 the
time lag is longer but after it the slope is steeper than for the
solution with c = 0 (inset in Fig. 7); (c) depending on these
limits, the region where the slopes of bounded and unbounded
cases coincide may be limited to a few time decades. In this
figure, it comprises around four decades when ν = −1 and two
decades when ν = 0; (d) for ν = −1, the case with the same
exponent of normal diffusion of particles without alignment
term, the unbounded solution asymptotically converges to a
power law with exponent λ = 1

2 (λ = 3/5) in 2D (3D); (e) for ν

= 0 the exponents for the unbounded case are λ = 1 (λ = 3/2).
We compare the analytic model with simulations averaging

over four samples for each set of parameters. In the simulations
we use 2000 endoderm particles; this way we fix the correspon-
dent parameter b = 2000. The average initial cluster size, m0,
is directly measured for each sample using a cluster counting
algorithm (see Appendix and Ref. [27]). The final time is
around tf ∼ 108. However, at these long times there are too few
clusters to obtain reliable averages and we stop the simulations
with less than five clusters. While b and m0 are fixed by initial
conditions, a and c are obtained by minimizing square devia-
tions. The last parameter, ν, was taken from the single clusters
diffusion simulations previously discussed (see Fig. 6).

The violet triangles pointing left in Fig. 8 refer to DVH sim-
ulations data taken from Ref. [16], while other symbols refer
to newly simulated data assuming DAH. The corresponding α

values used in the simulations are also indicated in the legend
box. As shown previously (see Fig. 6) each α value may be
mapped to a single ν value. The MCA solution [Eq. (A2)] uses
this ν value to fit the data with a and c left as free parameters.
The fitting values are shown in Table I. These solutions are
shown by the continuous lines in Fig. 8. To highlight the
scaling properties seen in Eq. (6) we used reduced units t∗ = at

and m∗ = m/m0. Note the strong dependence of the average
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100 101 102 103 104 105

t*

100

101

m
*

DVH α=0
DAH α=0
DAH α=10
DAH α=14
DAH α=15

FIG. 8. Evolution of the average cluster size, both time and m are
given in reduced units, t∗ = at and m∗ = m/m0. Each point results
from an averaging over four runs. Lines indicate fits using MCA.
Each ν value used in the fit is related to a specific value of α as shown
in Fig. 6. The dashed lines are power laws to guide the eyes with
exponent λ = 0.5 (violet) and λ = 1.0 (black).

cluster growth with α: segregation times may vary in more than
two decades. The dashed lines in the figure represent two limits
of Eq. (7): λ = 1/2 (violet) and λ = 1 (black), corresponding,
respectively, to the diffusion exponents ν = −1 and ν = 0.
The quality of these fits indicate that MCA correctly explains
the evolution of cell segregation for both DVH and DAH.

IV. DISCUSSION AND CONCLUSION

Using simulations and a mean-cluster approach we showed
that in two dimensions the exponent λ associated to the growth
of the average cluster mass, m, may exceed the expected
classical value 1/2 (or 3/5 in three dimensions) [11,28,29],
depending on the intensity of the collective dynamics. These
results are in agreement with the experimental works by
Méhes and collaborators, which reported values up λ ∼ 1.48
for the cluster mass growth exponent in a mixture of fish
keratocytes [14].

Previous simulation works [15,16] measured a different
parameter (γ ), related to the interface between tissues, and
reported that it decreases in time with exponent ∼ − 0.2.
In two dimensions these different measures are related by
m ∝ γ −2, resulting in an equivalent value of λ ∼ 2/5 for
these simulations. The discrepancy can be explained if we
consider that in the latter the small clusters are neglected, a

TABLE I. Fitted values for the free MCA parameters a and c for
different values of the alignment parameter α. Left column indicates
the cell-sorting mechanism.

α a c

DVH 0.0 9.5 ×10−3 11.5
DAH 0.0 1.0 ×10−2 0.7
DAH 10.0 7.0 ×10−4 3.3
DAH 14.0 2.8 ×10−4 0.0
DAH 15.0 3.4 ×10−4 9.5

procedure also adopted in the experiment reported in Ref. [14].
In the case with no alignment (α = 0), simulations both with
DAH and DVH find the same exponent λ ∼ 1/2. When close
to the the transition to collective behavior of the Vicsek
model the exponent is λ = 1 (Fig. 6), a region not explored
in Refs. [15,16]. Mones and collaborators [17] obtained
further results by simulating segregation in self-propelled
particle systems. In agreement with our results, they showed
that cluster growth exponents may largely deviate from the
classical expected value of the Cahn-Hilliard equation [30]
when velocity alignment is present.

The single cluster simulations showed that the ballistic
regime, responsible for the migration persistence, exists only
for short displacements. The largest ballistic displacements
are shown by large clusters in systems close to the transition
to collective behavior, extending for less than a particle
diameter. In the diffusive regime that follows, we find a
one to one correspondence between the alignment term, α,
and the exponent, ν, relating cluster diffusion constant and
cluster mass as D ∝ mν(α). This property explains the faster
segregation rates: for large alignment tendency, as the clusters
grow their diffusion coefficient is not reduced as much as
expected for clusters formed by nonactive particles.

In the mean-cluster approach, this relation establishes a
direct connection between the exponent (λ) of the cluster-size
evolution and the alignment parameter: in the scaling regime
the alignment α is the single parameter determining cluster
growth exponent. That is, MCA provides a theoretical predic-
tion for the possible cluster growth exponents independently
of the details of physical mechanisms (DVH, DAH, or others):
the only necessary hypotheses for dilute systems are cluster
irreversible fusion and diffusion.

The finite size of cells and minimal cluster sizes are
responsible for the deviation from the power-law growth and
their inclusion in the MCA evolution equation helps to find
the correct rescaling of time and cluster mass. With this,
simulation data in DAH and DVH become well described for
time intervals varying from three to five decades, including
both initial growth and power-law regimes.

The MCA fit of the simulation allows us to see the
phenomena and the previous simulations [14,15,17] from
another point of view, suggesting that the cell tendency to
follow the neighborhood induces collective movement and
greatly enhances cell segregation [17]. For ν = 0, MCA yields
λ = 1 in 2D, which is in agreement with the linear trend
experimentally found by Méhes et al. [14]. It also confirms
the simulation results by Kabla [23], which stressed that
the maximum segregation efficiency happens close to the
streaming transition.

Experiments measuring either the relation of cluster diffu-
sion constant and cluster mass, or simply cluster growth in
systems with diluted endoderm cells, would be welcomed to
confirm the basic scaling hypothesis underlying cluster growth
and its dependence with collective motion.
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APPENDIX

1. Solution of the mean-cluster equation

A general implicit solution for Eq. (8) is written as t = G(m) − G(m0), where G(x) is

G(x) = bdx2/d−ν

a(c − b)(νd − 2)

{(
b

x − b
+ 1

)ν−2/d

2

F1[ν − 2/d,ν − 2/d; ν − 2/d + 1; −b/(x − b)]

−
(

x

x − c

)ν−2/d

2F1[ν − 2/d,ν − 2/d; ν − 2/d + 1; −c/(x − c)]

}
, (A1)

and 2F1 is the Gauss hypergeometric series [31].
The solutions for the unbounded case are analytic and present explicit expressions as shown in the main article. Here we

present the transcendental expressions derived from the hypergeometric equations solving Eq. (7), which includes both lower
and upper bounds for two and three dimensions. For each dimension two values of exponent ν were considered, namely, ν =
−1, 0. The first value represents the case of normal diffusion and the other is the case where the diffusion is independent of the
cluster mass.

Solutions in two dimensions for ν = −1:

G(m) = b

a(b − c)

{
− 1

2

[
2bm + m2 + 2b2 ln(|b − m|)

]
+ 1

2

[
m2 + 2c2 ln(|m − c|)

]}
. (A2)

Solution in two dimensions for ν = 0:

G(m) = 1

a(b − c)
[−b2 ln(|b − m|) + bc ln(|m − c|)]. (A3)

Solution in three dimensions for ν = −1:

G(m) = b

2a(b − c)

{
b5/3 ln(b2/3 + b1/3m1/3 + m2/3) − 2b5/3 ln(b1/3 − m1/3) − 2

√
3b5/3

[
arctg

( 2m1/3

b1/3 + 1√
3

)]
− 3b(m2/3)

− c5/3 ln(c2/3 + c1/3m1/3 + m2/3) + 2c5/3 ln(c1/3 − m1/3) + 2
√

3c5/3

[
arctg

( 2m1/3

c1/3 + 1√
3

)]
+ 3cm2/3

}
. (A4)

Three-dimensional solution for ν = 0:

G(m) = 1

2a(b − c)

[
(b1/3 ln(b2/3 + 3

√
bm + m2/3) + 2b ln(b1/3 − m1/3)

c2/3
+ 2b1/3 ln(b1/3 − m1/3)

+ 2
√

3b1/3tan−1

(
2 3
√

m + 3
√

b√
3 3
√

b

)
− b ln(c2/3 + 3

√
cm + m2/3) + 2b ln(c1/3 − m1/3)

c2/3
+ 2

√
3b1/3tan−1

(
2 3
√

m + 3
√

c√
3 3
√

c

)]
.

In the limits of b → ∞ and c → 0 all these solutions
converge to Eq. (6) of the main paper. The correct results
are attained in two dimensions under expansion of the
logarithmic functions up to second order. In three dimensions
the arc tangent and the logarithm must be expanded to fifth
order.

The hypergeometric function is defined as

2F1[k1,k2; l1; z] =
∞∑
i=0

(k1)i(k2)izk

(l1)i
, (A5)

with the condition

|z| < 1,

and also

(q)n =
{

1 n = 0
q(q + 1) . . . (q + n − 1) n > 0.

(A6)

2. Cluster-counting algorithm

We define a cluster as the set of particles of a given
kind where each one has at least one neighbor of this same
kind at maximal distance r0. We start labeling all particles
from 1 to N and defining an adjacency matrix (AM) [32].
This is an N × N matrix A whose generic element Aij is
1 if the distance between particles with labels i and j are
smaller than r0, else Aij is zero. The algorithm proceeds as
follows [27]:

(1) Loop over line 1 of AM until A1j = 1 is found at
column j .

(2) All elements of line j are added to line 1.
(3) First element of line j is set to −1.
(4) Repeat the first and second steps until the last

column.
(5) Find the next line with a non-negative first element, say

line i.
(6) Repeat steps 1 to 5 for line i.
(7) Repeat until the end of lines.
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The number of clusters can be found in the resulting matrix
counting the number lines starting with nonnegative values.

The number of particles on each cluster is found by simply
adding the values of these nonnegative lines.
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