
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

THIAGO BELL FELIX DE OLIVEIRA

Applying Bandit Algorithms to the Route
Choice Problem

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Ana L. C. Bazzan
Coadvisor: Prof. Dr. Bruno Castro da Silva

Porto Alegre
July 2017

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pro-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“We are a way for the cosmos to know itself.”

— CARL SAGAN

ACKNOWLEDGMENTS

I would like to thank my advisors for their feedback and contributions that helped

in the development of this work. Specially Prof. Dr. Ana Bazzan for the two years of

mentorship I had the privilege of having during my bachelor studies. I am also grateful for

my colleagues Gabriel de Oliveira Ramos, Jorge Aching Samatelo, Mariana Mendoza and

Ricardo Grunitzki for their support during this time, and Arthur Zachow who contributed

to the traffic assignment framework used for this work.

The virtue of my education was no less than the result of the effort of my family

to provide me with it even if times were not opportune. The support of friends and family

during my studies were outstandingly important and it is something which I’m thankful

for.

Acknowledgments are also owed to the European Commission and the Technical

University of Munich for, respectively, granting me a scholarship for exchange studies and

receiving me as a student, and to the CNPq science promotion agency for two year-long

undergraduate research scholarships.

ABSTRACT

Traffic infrastructure in major cities must be able to handle increasing demand. Building

this infrastructure is expensive and not something that is done in a short time frame.

Bottlenecks in the network and potential improvements must be identified for further

planning and expansion. However, changes to the network are not always beneficial as

shown by the Braess paradox. Therefore, it is ever more important to be able to understand

the demand of its users and how it affects the network, and predict the effect changes in

the network will cause.

Traffic demand is normally defined in origin destination studies but this information is

incomplete. It shows only the endpoints of trips but not the routes they take. To understand

how each link in the network is used, a route allocation must be calculated.

The problem of allocation of routes to trips is called the traffic assignment problem. We

compare the performance of selected bandit algorithms with that of Q-learning in the

context of the traffic assignment problem in a multi-agent reinforcement learning sce-

nario. Specifically, non-stationary bandit algorithms were the main focus due to the non-

stationarity of the problem. These algorithms were evaluated in their ability to provide

traffic allocations that minimize the average travel time on a traffic network. Through

experimentation, we found that bandit algorithms show potential. However, they did not

perform better than Q-learning. Further study is required to better ascertain their capabil-

ities for the problem.

Keywords: Reinforcement learning. Q-learning. bandit algorithms. traffic assignment.

route choice.

Aplicando Algoritmos de Bandits ao Route Choice Problem

RESUMO

Infraestrutura de tráfego em grandes cidades deve ser capaz de lidar com demanda cres-

cente. Construção de infraestrutura tem altos custos e requer longo tempo de construção.

Gargalos e melhorias em potencial em redes de tráfego devem ser identificados para pla-

nejamento e expansão. No entanto, mudanças na rede não são sempre benéficas como

mostrado pelo paradoxo de Braess. Portanto, é cada vez mais importante entender a de-

manda dos usuários e como ela afeta a rede, e prever os efeitos que mudanças na rede vão

causar.

Demanda de tráfego é normalmente definida em estudos de origem e destino mas essa

informação é incompleta. Ela mostra apenas o inicio e fim de cada viagem mas não as

rotas seguidas. para compreender como cada aresta na rede é usada uma alocação de rotas

deve ser calculada.

O problema de alocação de rotas a viagens é chamado de Traffic Assignment Problem.

Nós comparamos a performance de algoritmos de bandits selecionados com aquela do

Q-learning no contexto do Traffic Assignment Problem em um cenário multi-agente com

aprendizagem por reforço. Especificamente, algoritmos de bandits não estacionários fo-

ram o principal foco devido a não-estacionaridade do problema. Esse algoritmos foram

avaliados nas suas habilidades de prover alocações de tráfego que minimizem o tempo mé-

dio de viagem. Através de experimentação, foi descoberto que os algoritmos de bandits

mostram potencial. No entanto, eles não tem performance melhor que a do Q-learning.

Mais estudos são necessários para melhor determinar as capacidades desses algoritmos

para o problema.

Palavras-chave: Aprendizagem por reforço,Q-learning, algoritmos de bandits,traffic as-

signment, route choice.

LIST OF FIGURES

Figure 2.1 The OW network. ..14

Figure 3.1 Example of a section of a network ..22

Figure 4.1 Average Travel time on OW with Rexp3, ε = 0.01 and varying epoch
intervals...29

Figure 5.1 Average Travel time on OW with Q-learning with varying alphas and
decays. Error bars represent standard deviation. ..31

Figure 5.2 Average Travel time on OW with UCB1...32
Figure 5.3 Average Travel time on OW with Discounted UCB......................................32
Figure 5.4 Average Travel time on OW with Sliding Window UCB with gamma =

0.99 and varying window size...33
Figure 5.5 Average Travel time on OW with Thompson Sampling................................33
Figure 5.6 Average Travel time on OW with Rexp3 and Rexp3MA33
Figure 5.7 Average Travel time on OW with all algorithms ...34
Figure 5.8 Average Travel time on Sioux Falls with Q-learning35
Figure 5.9 Average Travel time on Sioux Falls with UCB1 ...36
Figure 5.10 Average Travel time on Sioux Falls with Discounted UCB and Sequen-

tial Initialization ..36
Figure 5.11 Average Travel time on Sioux Falls with Sliding Window UCB using

γ = 0.99 and Sequential Initialization..36
Figure 5.12 Average Travel time on Sioux Falls with Thompson Sampling37
Figure 5.13 Average Travel time on Sioux Falls with Rexp3 and Rexp3MA.................37
Figure 5.14 Average Travel time on Sioux Falls with Rexp3 and Q-learning37
Figure 5.15 Average Travel time on Sioux Falls with all algorithms..............................38

LIST OF TABLES

Table 2.1 OD pairs of the OW network...14
Table 2.2 Example of Q-table ...16

Table 5.1 100th episode average travel time for both networks and all algorithms........39
Table 5.2 User equilibrium, system optimum and MSA results for both networks........39
Table 5.3 Approximate run times for 100 episodes ..40
Table 5.4 Means and padding function values of agent in the Sioux Falls network40

LIST OF ABBREVIATIONS AND ACRONYMS

TAP Traffic Assignment Problem

UCB Upper Confidence Bounds

MSA Method of Successive Averages

SF Sioux Falls network

CONTENTS

1 INTRODUCTION...11
2 THEORETICAL BACKGROUND...13
2.1 Traffic Networks..13
2.2 Reinforcement Learning and Bandit Algorithms ..15
2.2.1 The Upper Confidence Bounds (UCB1) Algorithms...17
2.2.2 Thompson Sampling ..18
2.2.3 The Rexp3 Algorithm ..18
3 RELATED WORK ...20
3.1 Traffic Assignment Problem ..20
3.1.1 All or Nothing Assignment..20
3.1.2 Stochastic Methods ..20
3.1.3 Congested Assignment...21
3.1.4 TAPAS..22
3.2 Route Choice..22
3.2.1 Multi-agent Reinforcement Learning-based Assignment......................................23
3.2.2 Genetic Algorithms Based Assignment ...23
4 PROPOSAL...24
4.1 Non-stationarity in the Route Choice Problem ..24
4.2 Bandits Algorithms Used..24
4.2.1 UCB1 ...25
4.2.2 Discounted UCB ..26
4.2.3 Sliding Window UCB ..27
4.2.4 Thompson Sampling ..27
4.2.5 Rexp3 ...28
5 EXPERIMENTAL RESULTS ...30
5.1 Experiment Methodology...30
5.2 Comparison of the Initialization Order of UCB ..30
5.3 Experiments with the OW network...31
5.4 Experiments with the Sioux Falls Network ..35
5.5 Comparison of Results..39
5.6 The Qualities and Shortfalls of Bandits Algorithms..40
6 CONCLUSION ...42
REFERENCES...43

11

1 INTRODUCTION

With rising urbanization and the growth of cities to the order of several million in-

habitants, road networks suffer from significant pressure. The cost associated with build-

ing road infrastructure makes their adequate planning very important. It is a waste of

taxpayer money to build infrastructure where it is not needed. Furthermore, changes in

the road infrastructure can make what is currently a congested area even worse. An ex-

ample is building a road which then depicts symptoms of the Braess Paradox (BRAESS,

1968).

Planners must understand how the network is used to know what to build and

where to do it. They use surveys to obtain data such as the origin and destinations of trips

inside the system (e.g. a person lives in the neighborhood A and commutes to work every

day in the neighborhood B). This data, however, is not complete. It says nothing about

which route the users take to work but its endpoints.

The traffic assignment problem deals with allocating trips to routes on a network

seeking to minimize a cost defined by the instance of the problem (normally travel time

is used). It is useful in two cases. The first would be a solution to the problem mentioned

above: A realistic allocation could serve as a form of study for planners looking for

potential improvements on the network. Another use case is to allocate trips in the real

world in a scenario of automated vehicles, for example.

Traditional methods of solving the TAP can be very efficient and solve large in-

stances. The TAP treats traffic allocation from the perspective of a traffic manager trying

to understand a network. Its algorithms, therefore, are mostly centralized. The same prob-

lem, however, can be seen from the perspective of the driver where they have to choose

a route. Notice that with this variant, the problem becomes distributed. Each driver must

allocate its route instead of a central authority. We call this the route choice problem.

We use reinforcement learning in a distributed multi-agent formulation to solve

the route choice problem. On previous work such as (STEFANELLO; SILVA; BAZZAN,

2016), Q-learning is the reinforcement learning algorithm of choice. However, this al-

gorithm is stateful while the route choice problem is stateless. We study how stateless

bandit algorithms compare with Q-learning for the problem and how they deal with its

non-stationarity.

This work is organized as follows Chapter 2 presents some important information

about the TAP and learning methods used. Chapter 3 presents related work; Chapter 4 our

12

proposal for this problem; Chapter 5 experimental results and Chapter 6 the conclusion.

13

2 THEORETICAL BACKGROUND

Traffic Networks

A road network can be modeled as a graph G(V, L) where V is the set of vertices

and L the set of links. The vertices represent points on the network, and links, the roads

between those points. In real world networks, every road has a capacity (i.e. a maximum

flow of vehicles that can cross it simultaneously). If too many vehicles are on that road,

the more congested it is and the longer it will take to cross it according to the cost-flow

relationship as described on (ORTÚZAR; WILLUMSEN, 2011). Road models can have

costs that represent different information according to the interest of its designer. For

example, they can represent the fuel cost of using it or, usually, the travel time between

its endpoints.

When using travel time as the cost metric, it can be a fixed value, or it can vary.

The advantage of using the latter is the possibility to model congestion. The more vehicles

there are on the link, the costlier it will be to cross it. A common example is the volume-

delay function. It has a constant component which represents the time to traverse the

link under free flow conditions, (i.e. no congestion), and a variable component dependent

on the flow. This last component models the delay on the travel time caused by how

congested the link is. An example function is shown on Equation 2.1. ta is the free flow

travel time on link a and the factor 0.1 is the increase in travel time caused by each trip

allocated to the edge a.

ca(flow) = ta + 0.1 ∗ flow (2.1)

A route on the network is a series of links connecting an origin and a destination.

This route has a cost defined as the sum of the costs of each individual links. Traffic

planners study the demand of traffic networks through origin-destination surveys. They

identify the major demands of a transportation network and represent this information

with origin - destination (OD) pairs and their respective demand values. These values

specify how many trips are made between each of the origin-destination pairs on the

network. Planners use this information for insight into how the road system is used and

how to improve it. Figure 2.1 shows the OW network from (ORTÚZAR; WILLUMSEN,

2011). Table 2.1 shows the OD pairs of the network and their associated demand values

in the number of trips. We consider the number of trips going through a link as its flow

14

and use it for calculating its cost with a function such as that of Equation 2.1.

Figure 2.1: The OW network.
Origin nodes shown in light blue; destination ones in dark blue.

A

B

C F I L

D G J

E H K M

7

5

15

11

11

11

9

7

9

7

13

3

13

3

7

7

9

9

9

9

12

12

2

2

Table 2.1: OD pairs of the OW network

origin destination number of trips

A L 600
A M 400
B L 300
B M 400

However, OD pairs are not enough to accurately understand the network and its

use. Traffic assignment algorithms allocate trips to routes on the network. If the cost of

the links on the network varies according to the flow, then, assigning trips to routes is

not enough. Congestion and its effects on the cost of travel must be taken into account.

(WARDROP, 1952) defines what is known as Wardrop’s first equilibrium. It states that the

distribution of trips across the network reaches equilibrium when no vehicle can change

its route and decrease its travel time. It is also known as user equilibrium. It assumes

that users are rational and seek to minimize their own travel cost. In this way, users are

selfish in that they do not care about their impact on other user’s travel time. Reaching

the user equilibrium does not guarantee that the average travel cost of the network is

the minimum. In contrast to that is social equilibrium also known as system optimum

or Wardrop’s second equilibrium, defined by the same author, where no change in the

route of any trip can decrease the average travel time of the network. This is seen as a

more egalitarian allocation because it seeks what is best for society and not any specific

individual. However, in this scenario, some users may be negatively impacted compared

to the user equilibrium because individual travel times are not taken into account, only

the average of all users. In this way, a user may be allocated to a route which is not the

best for him but improves the system. One example could be a user being forced to take

15

a detour to avoid roads that are critical to others which is an allocation that is less likely

to function in real world conditions because drivers may not adhere to the route assigned

to them and take a shorter one in detriment of the system. As such, the user equilibrium

model is the one that is closer to the real world since drivers seek to minimize their travel

time.

Reinforcement Learning and Bandit Algorithms

Reinforcement Learning is a branch of machine learning that deals with learning

in a way inspired by our own. The learning agent is not taught what is correct or not, or

what it should or should not do. It receives no form of structured knowledge. It must then

learn to explore and make choices based exclusively on feedback from the environment,

the only form of information it receives. If its choice was a good one, it receives a better

reward. If not, a worse one. It is important to notice that there are no absolute references to

determine if that reward is good or not. It must be compared with other rewards received.

An agent has no way of knowing when it reached an optimal reward only considering its

value. Therefore, it must explore different alternatives it does not yet know. However, it

must also exploit the knowledge it has learned. If it only exploits, it will never learn new

information and if it only explores it will learn new information but will never use it.

Q-learning is a reinforcement learning algorithm based on Markov decision pro-

cesses. In it, a player is in a specific state and must choose one out of a set of available

actions to play. When it plays, it will receive a reward and may change state. The ob-

jective is to maximize the reward received. The rewards are specific for each action state

pair. Q-learning estimates the utility of playing each pair (i.e. the usefulness of the reward

it is expected to learn). The algorithm stores this information in a table called the Q-table

which it uses to track these utility values. Each cell in this table is called a Q-value. For a

player with two states and two actions, Table 2.2 shows an example. For state A action 2

has a larger expected utility while for B it is action 1.

The algorithm is iterative and updates the Q-table as the simulation progresses.

Normally, the Q-values are initialized with random values or are all equal to the same

value (e.g. zero). The Q-table is updated according to Equation 2.2 where rt is the reward

for the action at taken at state st on time step t. α is the learning rate which measures

the importance given to new information, and γ is the discount factor which is the weight

given to the estimate of future rewards to be obtained following this state-action pair. The

16

algorithm must use the information in the Q-table for exploitation. For exploration, a

heuristic is the ε − greedy strategy where the player will explore a random action with

probability ε and the one with the maximum Q-value with probability 1 − ε. At every

iteration of the algorithm, ε is decayed with a ε decay value. Algorithm 1 shows Q-

learning with a ε− greedy strategy.

Q-learning can also be used in a single state or stateless manner. In this case, there

is a single state, and every action will lead to a transition from and to it. The Q-table is

then a list of the Q-values of every action.

Table 2.2: Example of Q-table with two actions and two states.

state action

1 2
A 10 20
B 8 5

Q(st, at)← Q(st, at) + αt(rt + γmax
a
Q(st+1, a)−Q(st, at)) (2.2)

Algorithm 1: Q-learning Algorithm

1 Q[|states|][|actions|];

2 st = state at time step t;

3 foreach t < NUM_EPISODES do

4 if random(0, 1) < ε then

5 at = choose action randomly;

6 else

7 at = argmaxa=1..kQ(st, a);

8 end

9 r, st+1 = play(st, at);

10 Q(st, at)← Q(st, at) + αt(r + γmaxaQ(st+1, a)−Q(st, at));

11 t++;

12 ε = ε× ε decay;

13 end

The Bandit class of algorithms was created to solve the several variations of the

multi-armed bandit problem. It describes a scenario where a player can choose from a

set of slot machines’ arms to play with. Each arm has a different reward distribution.

17

The player must then learn which machine to play to maximize its received reward. In

comparison to the Q-learning algorithm and the Markov decision process it is based on,

the problem of the multi-armed bandit is stateless.

As mentioned previously, bandit algorithms must maximize their profit when play-

ing arms with different reward distributions. Several algorithms have been proposed for

this problem. (KULESHOV; PRECUP, 2010) describes some of them. Bandit algorithms

are known for their applications on online advertising (CHAPELLE; LI, 2011). Their

use in clinical trials was one of the original ideas behind the development of these algo-

rithms. However, this real world application has not been widely studied (KULESHOV;

PRECUP, 2010).

Classical bandits algorithms include UCB (Upper Confidence Bound) which ex-

plores each arm initially and later chooses which arm to play based on previous rewards,

and Thompson Sampling that approximates each machine’s reward distribution using one

of its own, with parameters calculated from the rewards obtained from that arm on previ-

ous plays.

In the multi-armed non stationary bandit problem, the reward distribution of each

machine changes through time. For the example of online advertising, the changing trends

in society and individuals mean that there are no guarantees that what someone finds

interesting today will remain so in times to come. Therefore, these algorithms must adapt

to these changes. This is a problem for reinforcement learning algorithms because they

must not only be able to learn information but also to forget them when they are no longer

useful.

Algorithms that solve the stationary multi-armed bandit problem may not be able

to handle the changes in rewards effectively and relearn the task. For this reason, some

non-stationary algorithms were proposed.(GARIVIER; MOULINES, 2011) studies two

modified versions of the UCB algorithm called discounted UCB and sliding-window UCB

designed to deal with non-stationarity. (GUR; ZEEVI; BESBES, 2014) presents a modi-

fied algorithm called Rexp3 for the nonstationary multi armed bandit inspired by a soft-

max action selection.

The Upper Confidence Bounds (UCB1) Algorithms

The UCB1 algorithm is proposed as being optimistic in the face of uncertainty as

described in (KULESHOV; PRECUP, 2010). The algorithm selects arms that maximize

18

the upper bound on the rewards on each of them. This bound is calculated using the mean

of past rewards and also a padding function that quantifies how unknown the reward

distribution of that arm is. An arm that is played very often will have a smaller padding

value than that of one played only once. The padding function would allow the agent

to select less known options even though its rewards until now were not the best. One

interesting aspect of this algorithm is that its regret is bounded. Regret is the difference

between the cumulative rewards of always playing the best arms and the plays executed by

the algorithm. A more detailed description of this algorithm can be found on (GARIVIER;

MOULINES, 2011)

The UCB1 algorithm, however, was not designed to handle a nonstationary envi-

ronment. Once each arm has been played a reasonable number of times, it will consider

its arms as well-known even if its reward distributions have changed. Two nonstationary

bandit algorithms are presented by (GARIVIER; MOULINES, 2011). The first is a dis-

counted version of UCB1 (Discounted UCB) which weights the average of rewards based

on their novelty: newer observations have larger weights. The authors propose a variation

of this algorithm called Sliding Window UCB where the same discount is applied but only

the last τ observations are considered.

Thompson Sampling

Thompson Sampling models each arm as a distribution with parameters taken from

past observations (e.g. a normal distribution with mean and standard deviation calculated

from the rewards). Its action choice is then probabilistic (CHAPELLE; LI, 2011). A

random value is drawn from each arms respective distributions. The arm with the largest

corresponding value is selected. For a normal distribution, the higher the average reward

of an arm, the higher the values drawn will tend to be. Similarly, the smaller the standard

deviation, the more certain and predictable will the same values will be.

The Rexp3 Algorithm

The Rexp3 algorithm is proposed in (GUR; ZEEVI; BESBES, 2014). It is an

algorithm that explores with some probability ε and takes the action with the maximum

expected reward otherwise. To deal with non-stationarity, the algorithm forgets everything

19

it has learned previously and starts from the beginning at periods in time called epochs at

predefined intervals.

20

3 RELATED WORK

Traffic Assignment Problem

The traffic assignment problem is a well-studied topic. Several algorithms were

proposed to solve it. Some of them are very efficient. Normally, it is solved using assign-

ment algorithms which try to allocate trips to routes in a centralized fashion as described

in (ORTÚZAR; WILLUMSEN, 2011). We describe some of them. Most of them are

described in the previously referenced work.

All or Nothing Assignment

This method does not consider congestion nor does it varies the cost of links based

on their flow meaning that they are fixed. All trips are allocated to their respective shortest

route. This assignment can easily congest the network excessively and is, therefore, not

very useful in regards to optimization.

Stochastic Methods

In the All or Nothing assignment, all trips of an OD pair follow one single route

which they all see as best. However, using a single route for an OD pair is not very

realistic, nor efficient. Finding alternative routes is a challenge that stochastic methods

seek to solve

In real world conditions, the perception of what is a good route varies from driver

to driver, affecting their decisions. In simulation based stochastic methods, the cost of

each link is determined by a random variable drawn from a distribution (e.g. normal) with

the mean being the cost value determined in the network’s definition. This represents the

different perceptions that each driver has. The trips are then allocated into routes using

All or Nothing assignment but considering the cost as seen by each driver. This method

presents an improvement to the All or Nothing assignment due to the variability of routes.

However, it still does not consider congestion.

Proportional stochastic methods work by going backward from the destination

node to the origin. At each node, it splits the flow of trips into every inbound link which

21

has as a source a node closer to the origin node than the current one. The proportion of

flow directed into each link is defined through a splitting factor which is determined by

the implementation and varies.

Congested Assignment

The previous methods did not take into account possible congestions on the net-

work and their effect on the cost of choosing a certain route. They only considered fixed

costs on links such as travel time under free flow causing the cost of traversing a link not

to be dependent on the amount of traffic. However, on real scenarios, the amount of traf-

fic on the link of a network affects the time needed to cross per the cost-flow relationship

mentioned in the previous chapter and illustrated on (ORTÚZAR; WILLUMSEN, 2011).

The All or Nothing Assignment method allocates all the trips of each OD pair

one after the other not worrying about congestion. The Incremental Assignment method

splits the trips into groups. Before each group is allocated, the link costs on the net-

work are updated based on previous allocations following a cost function designed to

take into account the flow of vehicles. Then, the group is allocated based on the shortest

paths calculated with the updated values. This is repeated until all groups were added.

This method, while it does not allow the deallocation of trips, allocates trips gradually

observing the effects on the network. The way trips are split into groups is defined by

the implementation and there are no guarantees that the result will converge to the user’s

equilibrium.

A major problem of the previous methods is that it is not possible to deallocate

trips to decrease congestion. The Method of Successive Averages (MSA) is an iterative

algorithm where the allocation of all trips is updated at each iteration. At each step, the

costs of all links are calculated according to the current flows and a new All or Nothing

assignment is calculated. Its result updates the previous flow value according to the equa-

tion 3.1. Where n is the current iteration, F n
l the flow on link l and Gl the flow on link l

determined by the All or Nothing algorithm at the current iteration. φ is the weight given

to new information. Each implementation of the algorithm may use a different value for

it. With φ = 1/n, the algorithm converges to the Wardrop’s first equilibrium (SHEFFI,

1985).

F n
l = (1− φ)F n−1

l + φ Gl (3.1)

22

TAPAS

Normally, allocation algorithms seeking the user’s equilibrium provide consistent

link flow values (i.e. the flow passing through each link). To properly understand the

demand for the network it is necessary to know which routes are taken by each vehicle

and not only the level of flow on each link. However, algorithms do not usually provide

this information.

In the case of a network where trips of OD pairs are split and then merged back

again as shown in Figure 3.1, the traffic passing through link a is split between links

b and c, and back into link d. If there are trips from more than one OD pair crossing

this links, how can we distribute them between b and c realistically? There are many

different solutions (infinite if you consider flow a real number). Having many different

possibilities to choose from is not very tractable, so the algorithm should be consistent

on which it chooses. (BAR-GERA, 2010) proposes the TAPAS algorithm which seeks

to split trips with equal proportions: in the example of Figure 3.1, two-thirds of the trips

of each OD pair going through link c and the rest through b. The algorithm seeks to

provide good solutions to the Wardrop’s Equilibrium and to the route flows. It allocates

the flows of vehicles from every OD pair into routes and associated flows following the

equal proportions rule mentioned above.

Figure 3.1: Example of a section of a network.
Values accompanying each link represent their flow.

a, 300

b, 100

c, 200

d, 300

Route Choice

As mentioned earlier, route choice is similar to the TAP but focus on the drivers

and their decisions. Algorithms for the TAP are mostly centralized while route choice

allows for the use of decentralized algorithms. This problem can be modeled as a multi-

agent system where each agent is a vehicle and it must choose which route to follow.

23

Multi-agent Reinforcement Learning-based Assignment

A decentralized approach to the Route Choice method with multi-agent reinforce-

ment learning uses Q-Learning for each agent on the network such as those of (STE-

FANELLO; SILVA; BAZZAN, 2016). A major difference from centralized methods for

the TAP is that they consider the k shortest routes for each OD pair in the network using

the k shortest path algorithm by (YEN, 1971).

The problem is modeled in a multi-agent scenario where each vehicle is an agent.

Each agent, then, is a stateless Q-learning instance which must choose between the k

routes generated. The reward it receives is its own travel time. Thus, the system’s goal

is the User Equilibrium. It is important to notice that, here, the allocation of trips to pre

determined routes that is optimized and not to links.

This method has some limitations regarding the non-stationarity of the environ-

ment. The assignment of trips to routes changes at each iteration as does the flow on

links and their respective costs. These changes affect the costs of the links and effec-

tively changes the problem: what an agent learned some iterations before may be useless

because the environment changed.

Genetic Algorithms Based Assignment

A proposal to approximate the System Optimum is that of (BAZZAN; CAGARA;

SCHEUERMANN, 2014). The authors propose the use of a centralized genetic algorithm

where each individual is a complete allocation of all trips to routes to minimize the average

travel time of the network.

An expansion of this work combining multi-agent reinforcement learning and ge-

netic algorithms is presented in (BAZZAN; CHIRA, 2015). In this work, the worst in-

dividual in the population of the genetic algorithm is replaced by a solution from the Q-

Learning algorithm. While seeking a System Optimum, the algorithm uses solutions from

the Q-learning algorithm which represents what drivers would like to do individually.

24

4 PROPOSAL

We consider the Route Choice Problem in a multi-agent reinforcement learning

scenario where each trip in the network (or vehicle) is represented as an agent. These

agents learn and act through the use of a reinforcement learning algorithm. Q-learning

has been successfully applied to the route choice problem with good results (RAMOS;

SILVA; BAZZAN, 2017). However, Q-learning is stateful while our problem is often

modeled as stateless. That is, the agents are always in a single state for the whole duration

of the simulation.

Bandit algorithms seem adequate for the problem at least in a modeling perspective

since they are simpler than Q-learning and provide for the action selection capability that

is needed. This work seeks to evaluate the performance of different Bandits algorithms

when applied to the Route Choice Problem and how they compare to Q-learning.

Non-stationarity in the Route Choice Problem

Problems such as route choice are heavily nonstationary. Since agents must share

scarce resources, (i.e. the road network), the route taken by one agent can easily affect

the travel time of the others. Imagine an agent that must take a specific highway to fulfill

its trip independent of which route it may take. If other agents can avoid this highway,

congestion on this link will decrease and so will the travel time of the first agent. Notice

how the travel time of the first can change as a function of the other agents’ actions. Each

agent must adapt to a changing environment. This causes non-stationarity. A greater chal-

lenge, in this case, is that what changes is not the environment itself but the other agents.

As was mentioned on section 3.2.1, the nonstationarity of route choice is a challenge to

the multi-agent reinforcement learning approach. To solve this problem efficiently, the

learning algorithm must be able to deal with this sort of agent-caused non-stationarity

instead of those caused by outside elements.

Bandits Algorithms Used

The route choice problem was modeled with bandits algorithms by representing

each of the available routes of each agent as an arm. The agent must learn to choose

25

which route to take. It is important to notice that it is not common to see Bandit algo-

rithms applied in a multi-agent system. The algorithms used are described in the following

sections.

UCB1

Traditional UCB1 algorithm. It needs to be initialized to an initial knowledge of

each of the available routes (arms). Normally, the algorithm tries each one of its arms

sequentially. The problem with using this method on a multi-agent system is that all

agents will be doing the same: They will all try arm number 1 simultaneously then number

2 and so on. Since it is a problem with non-stationarity caused by other agents actions,

this initial exploration may provide unrealistic rewards since agents of each OD pair will

always be concentrated on the same route.

Because of the problem caused by the order of initialization, we tested two variants

of this algorithm (as well as Discounted UCB and Sliding Window UCB): One where the

initialization is done sequentially and another where it is done randomly.

The action selection of the UCB1 algorithm considers the average mean of past

observations as well as a padding function with value inversely proportional to the cer-

tainty the algorithm has of its knowledge of each arm. If an arm was played several times,

then the mean of past rewards is considered accurate and the padding function value is

small. If it has been played only a few times, the accuracy of using the mean value as

an estimate for the arms reward distribution is low, and the latter may be better than the

former. Algorithm 2 shows the pseudo-code for UCB1.

26

Algorithm 2: UCB1
Result: Arm to play

1 foreach episode < NUM_EPISODES do
2 if episode < K then
3 if init == sequential then
4 it = t;
5 else
6 it = choose randomly arm not yet played;
7 end
8 nit = 1

9 else
10 foreach k in K do
11 paddingk =

√
ξ lnt
nk

;

12 end
13 it = argmaxi=1..k µi + paddingi;
14 end
15 reward = play(it);
16 µi =

µi∗nit+reward
nit+1

;

17 nit = nit + 1;
18 end

Discounted UCB

This is a variation of the previous algorithm where old observations are discounted

based on decay values. With this modification, the algorithms then gives greater weight to

more recent observations when calculating the mean reward of each arm. The algorithm is

initialized in the same way as UCB1. The algorithm is presented below as in (GARIVIER;

MOULINES, 2011). γ is the discount factor and B is an upper bound on rewards.

27

Algorithm 3: Discounted UCB1
Result: Arm to play

1 rewards = array of rewards;
2 episode = 0;
3 while episode < NUM_EPISODES do
4 if episode < K then
5 if init == sequential then
6 i = t;
7 else
8 i = choose randomly arm not yet played;
9 end

10 else
11 N = array of size |K|;
12 M = array of size |K|;
13 padding = array of size |K|;
14 foreach k in K do
15 foreach j in 1..episode do
16 if arm k was played at time step j then
17 N [k] = N [k] + γepisode−j;
18 M [k] =M [k] + γepisode−j ∗ rewards[j];
19 end
20 end
21 M [k] =M [k]/N [k];

22 padding[k] = 2B
√

ξln(sum(N))
N [k]

;

23 end
24 i = argmaxa=1..k M [a] + padding[a];
25 end
26 episode = episode +1;
27 rewards[episode] = play(i);
28 end

Sliding Window UCB

The sliding window UCB builds upon the Discounted UCB. Its only difference is

that it considers at most the τ last observations. Creating a window with maximum width

τ that moves across time. It is also defined in (GARIVIER; MOULINES, 2011).

Thompson Sampling

An optimization was done to our implementation of Thompson Sampling where

the parameters for every distribution used by the algorithm to draw samples is updated

28

only at the end of predefined intervals. In this way, the algorithm avoids having to recal-

culate them at every iteration.
Algorithm 4: Thompson Sampling

Result: Arm to play

1 foreach episode < NUM_EPISODES do

2 if episode < K*2 then

3 it = episode mod K

4 else

5 foreach k in K do

6 averagek = average(past_rewards(k));

7 std_devk = standard_dev(past_rewards(k));

8 distributionk = normal(average_k, std_dev_k);

9 end

10 it = argmaxk=1..K draw(distributionk)

11 end

12 end

Rexp3

The problem with applying this algorithm to a multi-agent learning scenario is that

when all agents forget simultaneously, all knowledge about the solution to the problem is

lost. This can be seen on Figure 4.1. Notice the periodicity on the plotted lines denoting

different frequencies of forgetfulness. When the agents forget, the travel time jumps

upwards.

This algorithm was designed to deal with a different type of non-stationarity: the

one caused by the environment. One example would be if the layout of the network

changed or the online advertising selection that was mentioned earlier. For this reason,

we attempted modifying this algorithm. Instead of all agents simultaneously forgetting at

each epoch, there is a probability of an agent forgetting at any given time. This probability

is decayed with a decay rate as the simulation progresses. We call it Rexp3MA. This

modification provided only marginal improvement at best in relation to the original. To

be able to compare these two algorithms, all simulations with Rexp3 did not include

29

epochs with the exception of that of Figure 4.1.
Algorithm 5: Rexp3 (without forgetting epochs)

Result: Arm to play

1 foreach k in K do

2 wk = 1;

3 end

4 foreach episode < NUM_EPISODES do

5 foreach k in K do

6 //p is a probability distribution;

7 pk = (1− ε) wk∑K
i=1 wi

+ ε
K

;

8 end

9 it = draw from distribution p;

10 reward = get_reward(it);

11 foreach k in K do

12 if k == it then

13 x = reward;

14 else

15 x = 0;

16 end

17 wk = wke
εx
K ;

18 end

19 end

Figure 4.1: Average Travel time on OW with Rexp3, ε = 0.01 and varying epoch intervals

0 20 40 60 80 100
74

76

78

80

82

84

episode

av
er

ag
e

tr
av

el
tim

e

10
20
50

30

5 EXPERIMENTAL RESULTS

The algorithms mentioned in Chapter 4 were tested in two traffic networks: The

OW network from (ORTÚZAR; WILLUMSEN, 2011) and Sioux Falls from the Bar-Gera

repository 1.

Experiment Methodology

All algorithms were compared using the average travel time of all agents or trips.

The reward given to each agent at every episode is the negative of the travel time at that

moment of the route chosen. The cost functions of each of the networks tested were

those in their definitions. Both these network files can be found in <https://github.com/

maslab-ufrgs/network-files>. The experiments require a parameter k to determine the

number of possible routes for each OD pair. Therefore, each agent will have k actions

to choose from corresponding to each route. The results shown for all algorithms with

random components are the averages of 30 runs. Due to long running times for the Sioux

Falls network, each agent represents 100 trips in the simulation. Therefore, the choice of

every agent is replicated 100 times to correspond to the demand on the network. Since

the Sioux Falls network has a demand of 360600 trips, decreasing the number of trips by

a factor of 100 makes the network demand more similar in size to that of the OW.

Comparison of the Initialization Order of UCB

As mentioned in Subsection 4.2.1, the order of initialization of the UCB algo-

rithms can have consequences in a multi-agent environment. To ascertain which variation

would fare better, they were tested with both networks in consideration. For the OW

network, random initialization provided better results than sequential. However, for the

Sioux Falls network, the opposite is true. Figures 5.2 and 5.9 show the comparisons for

both networks. Every experiment result presented involving UCB1, Discounted UCB and

Sliding Window UCB were executed with the best strategy for each network.

1Transportation Networks for Research. <https://github.com/bstabler/TransportationNetworks>

https://github.com/maslab-ufrgs/network-files
https://github.com/maslab-ufrgs/network-files
https://github.com/bstabler/TransportationNetworks

31

Experiments with the OW network

The OW network is presented by (ORTÚZAR; WILLUMSEN, 2011). It is a quite

simple network with few nodes and only four OD pairs. A visualization is shown in

Figure 2.1. We benchmark our results with the Q-learning algorithm. To do so, we first

simulated with Q-learning to obtain parameters at which good results are found. Some of

them are presented in Figure 5.1 all of which had an initial ε value of 1. The best average

travel time with Q-learning was 67.19 time units with k = 8 routes.

Figure 5.1: Average Travel time on OW with Q-learning with varying alphas and decays.
Error bars represent standard deviation.

20 40 60 80 100

70

75

80

85

episode

av
er

ag
e

tr
av

el
tim

e

α = 0.5, ε decay = 0.95
α = 0.8, ε decay = 0.95
α = 0.9, ε decay = 0.9
α = 0.9, ε decay = 0.95

For the UCB1 algorithm, reasonable results were obtained though not close to the

ones with Q-learning. The non-stationary variants had better results. The average travel

times with the Discounted UCB were good and the Sliding Window UCB was slightly

behind it. Figures 5.2, 5.3 and 5.4 show the average travel times for these algorithms.

Figure 5.5 shows the travel times for the Thompson Sampling across time for the

OW network. Thompson Sampling did not have as good results, but it was not far behind.

The steps on its plot show the episodes where the parameters of the distributions are

updated. Increasing the frequency of such updates provided no improvement to the end

result and increased run time.

The Rexp3 and Rexp3MA algorithms had the worst results of all algorithms tested.

Figure 5.6 shows these results. For Rexp3, we set the epoch interval to be larger than the

number of episodes to prevent the effects it causes as shown in Subsection 4.2.5. Even

though they explore significantly more than the other bandit algorithms, they couldn’t

provide good results and the rate at which they decreased their average travel time was

32

quite slow when compared to the others. Furthermore, Rexp3MA showed no significant

advantage over Rexp3 with similar parameters.

Figure 5.7 shows how all algorithms compare. For the OW network, some bandit

algorithms had reasonable results. Though they did not outperform Q-learning, some of

them were able to match it. Nonetheless, the OW network is quite simple and may not be

very challenging for these algorithms.

Figure 5.2: Average Travel time on OW with UCB1.
The two lines show the different initialization methods

20 40 60 80 100

70

80

90

100

110

episode

av
er

ag
e

tr
av

el
tim

e

random
sequential

Figure 5.3: Average Travel time on OW with Discounted UCB

20 40 60 80 100

70

75

80

85

90

episode

av
er

ag
e

tr
av

el
tim

e

γ = 0.8
γ = 0.9
γ = 0.95
γ = 0.99

33

Figure 5.4: Average Travel time on OW with Sliding Window UCB with gamma = 0.99
and varying window size

20 40 60 80 100

70

75

80

85

90

episode

av
er

ag
e

tr
av

el
tim

e

τ = 10
τ = 20
τ = 50

Figure 5.5: Average Travel time on OW with Thompson Sampling

20 40 60 80 100

70

80

90

100

110

episode

av
er

ag
e

tr
av

el
tim

e

Figure 5.6: Average Travel time on OW with Rexp3 and Rexp3MA.
The Rexp3MA series has additional parameters: pf = 0.002 and γ = 0.9

20 40 60 80 100

76

78

80

82

84

86

episode

av
er

ag
e

tr
av

el
tim

e

Rexp3 ε = 0.01
Rexp3 ε = 0.1
Rexp3MA ε = 0.01

34

Figure 5.7: Average Travel time on OW with all algorithms

20 40 60 80 100

70

80

90

100

episode

av
er

ag
e

tr
av

el
tim

e

Q-learning
UCB1
Discounted UCB
Sliding Window UCB
Rexp3
Rexp3MA
Thompson

35

Experiments with the Sioux Falls Network

The Sioux Falls network is much larger. It has 528 OD pairs with a total 360600

trips. It is, therefore, much more complex than the OW network and a greater challenge.

With this network, the bandit algorithms had a much worse performance when compared

to Q-learning than in the previous. Q-learning had a minimum average travel time of

22.26 time units with k = 4 routes. Figure 5.8 shows some of the parameter combi-

nations for the Q-learning algorithm with the best results. Discounted UCB and Sliding

Window UCB demonstrated no advantage over UCB1. Rexp3 and Rexp3MA had the best

performances excluding Q-learning. These results were in great contradiction with their

previous results with the OW network. The results of these two algorithms change quite

slowly. We show on Figure 5.14 how Rexp3 approaches the result of Q-learning over a

longer period of time. Rexp3 and Rexp3MA had no significant difference in their results

with similar parameters.

Figure 5.8: Average Travel time on Sioux Falls with Q-learning

20 40 60 80 100
20

40

60

80

100

episode

av
er

ag
e

tr
av

el
tim

e

α = 0.9, ε decay = 0.9
α = 0.9, ε decay = 0.95

36

Figure 5.9: Average Travel time on Sioux Falls with UCB1.
The two lines show the different initialization methods

20 40 60 80 100
20

40

60

80

100

120

140

episode

av
er

ag
e

tr
av

el
tim

e

random
sequential

Figure 5.10: Average Travel time on Sioux Falls with Discounted UCB and Sequential
Initialization

20 40 60 80 100
20

40

60

80

100

120

140

episode

av
er

ag
e

tr
av

el
tim

e

γ = 0.8
γ = 0.9
γ = 0.95
γ = 0.99

Figure 5.11: Average Travel time on Sioux Falls with Sliding Window UCB using γ =
0.99 and Sequential Initialization

20 40 60 80 100
20

40

60

80

100

120

140

episode

av
er

ag
e

tr
av

el
tim

e

τ = 20
τ = 50

37

Figure 5.12: Average Travel time on Sioux Falls with Thompson Sampling

20 40 60 80 100
20

40

60

80

episode

av
er

ag
e

tr
av

el
tim

e

Figure 5.13: Average Travel time on Sioux Falls with Rexp3 and Rexp3MA.
The Rexp3MA series has additional parameters: pf = 0.001 and γ = 0.9.

20 40 60 80 100
20

40

60

80

episode

av
er

ag
e

tr
av

el
tim

e

Rexp3 ε = 0.1
Rexp3 ε = 0.01
Rexp3MA ε = 0.01

Figure 5.14: Average Travel time on Sioux Falls with Rexp3 and Q-learning over 300
episodes.

50 100 150 200 250 300
20

40

60

80

episode

av
er

ag
e

tr
av

el
tim

e

QL α = 0.9, ε decay = 0.9
Rexp3 ε = 0.1
Rexp3 ε = 0.01

38

Figure 5.15: Average Travel time on Sioux Falls with all algorithms

20 40 60 80 100
20

40

60

80

episode

av
er

ag
e

tr
av

el
tim

e

Q-learning
UCB1
Discounted UCB
Sliding Window UCB
Rexp3
Thompson

39

Comparison of Results

We show in Table 5.1 the average travel times for both networks with the differ-

ent algorithms. In Table 5.2, we include results for these networks with the method of

successive averages (MSA), the user equilibrium and system optimum. Table 5.3 shows

approximate run times measured using an i5-2540M processor with 6 GiB of RAM and

Debian 8.

Table 5.1: 100th episode average travel time for both networks and all algorithms

algorithm OW Sioux Falls

avg std. dev. avg std. dev.

Q-learning 67.19 0.04 22.26 0.16

UCB1 Random 68.53 0.24 52.88 1.02

UCB1 Sequential 83.82 - 34.64 -

Discounted UCB Random 67.83 0.59 35.97 1.42

Discounted UCB Sequential 78.24 - 29.19 -

Sliding Window UCB Random 68.21 1.31 43.57 3.81

Sliding Window UCB Sequential 72.76 - 34.59 -

Thompson Sampling 70.95 0.09 33.99 0.29

Rexp3 76.37 0.54 25.71 0.37

Rexp3MA 76.26 0.28 29.55 0.52

Table 5.2: User equilibrium, system optimum and MSA results for both networks

OW SF

MSA 67.46 20.78
UE 67 20.76
SO 66.92 19.95

40

Table 5.3: Approximate run times for 100 episodes

algorithm run time (s)
OW SF

Q-learning 1.93 5.74
UCB1 2.6 7
Discounted UCB 10.16 23.21
Sliding Window UCB 5.72 13.6
Thompson Sampling 7.4 13.12
Rexp3 21.47 45.93
Rexp3MA 20.92 44.26

The Qualities and Shortfalls of Bandits Algorithms

We noticed a significant shortfall of the UCB algorithm and its padding function.

In the domain of the route choice problem, reward values can fluctuate significantly. With

networks such as Sioux Falls, it varies by orders of magnitudes. The problem is that the

padding function does not scale in the same manner. The ξ parameter serves to scale this

function value but it is constant and of little use when rewards values change in the way

they do. The consequence of this is that the padding function value is basically ignored.

Table 5.4 shows an example of the mean of each route and the padding function value for

one agent.

Table 5.4: Means and padding function values of agent in the Sioux Falls network

route mean padding function value

1 -6.00 0.38
2 -52.26 2.86
3 -352.46 2.86
4 -273.59 2.86

In this case, the first route is always taken. None of the padding function values

of the other routes can make the algorithm choose them and experiment with them. If

the agents do not experiment, they do not discover better route allocations. Notice how

on Figures 5.2 and 5.9 the average travel time remains constant after the algorithm’s

initialization. Agents would concentrate on a route and would experiment the others

when their observations were discarded or discounted but then return to their previous

setup. Three of the four routes on Table 5.4 have the same padding function values.

For this to happen, they must have been played an equal number of times. The non-

41

stationary variants (Discounted UCB and Sliding Window UCB) had similar problems.

Furthermore, the results of these algorithms when randomly initialized tended to vary

more between runs than the other algorithms tested as is shown in Table 5.2. There would

be some actions that were barely explored and when their respective observations expired,

many agents would attempt it again at the same time causing the jump in average travel

times seen in Figures 5.3, 5.4, 5.10 and 5.11. Applying these algorithms in a multi agent

scenario is not straightforward. Agents coordinate their actions by always exploring at the

same time and very often choosing the same actions as each other. Interestingly, the low

exploration of these algorithms seem graver than the stationarity of the UCB1 algorithm

in itself because they were never capable of exploring enough to have learned significant

knowledge at any given time for that knowledge to be no longer valid.

Thompson Sampling, although having a random component, has similar problems

with exploration as UCB. After the initial exploration, it remains mostly static. Explo-

ration in later episodes is significantly restricted. With the OW network, the performance

was better than with Sioux Falls (probably because the first is simpler). In fact, even

with the first network, it explored poorly. Of all agents, all of them had routes that were

only tried after the initialization phase. In most cases, the agent effectively restricts their

plays to two or fewer routes. This is not completely unexpected. This algorithm was not

designed with non-stationarity in mind. If it forms an opinion on a route too soon, as is

the case, it will never be able to approach optimality since the reward value of a route

depends on what the other agents are attempting and can vary sharply.

Rexp3 is at the same time a good and bad algorithm. It explores significantly

more than the others and, more importantly, thanks to its stochastic nature, the agents

are independent when exploring. There is little use for exploration if all agents decide to

explore at the same time the same routes. However, the Rexp3’s simultaneous forgetting

event cannot be used for the route choice problem in the way it is intended and the algo-

rithm can be slow to converge. Rexp3MA did not produce significant improvements to

the average travel time in relation to Rexp3. The performance of the two algorithms with

the Sioux Falls network was surprising after the poor performance with the OW. Though

both had the closest results to the one of Q-learning, they were still underperformers. The

greater ability for exploration in relation to the other algorithms was probably the reason

for its better performance with the larger network. For the OW, although it explored, it

was not able to produce good results.

42

6 CONCLUSION

The traffic assignment problem is that of allocating trips in a traffic network. We

call the route choice problem its variant where drivers choose the routes they will follow

instead of a centralized system.

The route choice problem has been modeled as a multi-agent reinforcement learn-

ing problem. This work studies the applicability of Bandit algorithms to it. More specifi-

cally, we compare the results presented by these algorithms to Q-learning which has been

used previously with good results.

The UCB family of bandit algorithms demonstrated severe difficulty for effective

exploration in this problem. It is mainly attributed to its deterministic behavior that when

used in a multi-agent scenario, restricts the ability of the algorithm to provide good solu-

tions.

Rexp3 without forgetting, while not having good results in the OW network, was

the second best in the Sioux Falls only over-performed by Q-learning. Its approach to the

reinforcement learning is closer to that of Q-learning than to UCB1 using a probabilistic

random exploration instead of deterministic behavior that when synchronized among all

agents have negative consequences.

While some of the bandit algorithms studied showed some interesting potential,

they did not provide better solutions than Q-learning. However, work is needed to better

ascertain the applicability of these algorithms to the problem.

Further work on this topic is needed in the study of additional bandit algorithms

and, possibly, the proposal of newer ones better capable of handling the route choice

problem or modifications to those existing. Another line of work could be the way the

reward is calculated for each agent which could affect the results of the algorithms.

43

REFERENCES

BAR-GERA, H. Traffic assignment by paired alternative segments. Transportation
Research Part B: Methodological, v. 44, n. 8-9, p. 1022–1046, sep 2010. ISSN
01912615.

BAZZAN, A. L. C.; CAGARA, D.; SCHEUERMANN, B. An evolutionary
approach to traffic assignment. In: 2014 IEEE Symposium on Computational
Intelligence in Vehicles and Transportation Systems (CIVTS). IEEE, 2014.
(SSCI), p. 43–50. ISBN 978-1-4799-4498-9. Available from Internet: <http:
//dx.doi.org/10.1109/CIVTS.2014.7009476>.

BAZZAN, A. L. C.; CHIRA, C. Hybrid evolutionary and reinforcement learning
approach to accelerate traffic assignment (extended abstract). In: BORDINI, R. et al.
(Ed.). Proceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2015). IFAAMAS, 2015. p. 1723–1724. Available from
Internet: <http://www.aamas2015.com/en/AAMAS_2015_USB/aamas/p1723.pdf>.

BRAESS, D. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,
v. 12, p. 258, 1968.

CHAPELLE, O.; LI, L. An Empirical Evaluation of Thompson Sampling.
Advances in Neural Information Processing Systems, p. 2249—-2257, 2011.
Available from Internet: <http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/
An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf>.

GARIVIER, A.; MOULINES, E. On upper-confidence bound policies for switching
bandit problems. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6925 LNAI,
n. 1985, p. 174–188, 2011. ISSN 03029743.

GUR, Y.; ZEEVI, A.; BESBES, O. Stochastic Multi-Armed-Bandit Problem with
Non-stationary Rewards. Advances in Neural Information Processing Systems 27, p.
199–207, 2014. ISSN 10495258. Available from Internet: <http://papers.nips.cc/paper/
5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf>.

KULESHOV, V.; PRECUP, D. Algorithms for the multi-armed bandit problem.
Journal of Machine Learning, v. 1, p. 1–32, 2010. Available from Internet:
<http://www.cs.mcgill.ca/{~}vkules/bandits.p>.

ORTÚZAR, J. d. D.; WILLUMSEN, L. G. Modelling transport. 4. ed. Chichester, UK:
John Wiley & Sons, 2011.

RAMOS, G. de. O.; SILVA, B. C. da; BAZZAN, A. L. C. Learning to minimise
regret in route choice. In: DAS, S. et al. (Ed.). Proc. of the 16th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2017). São Paulo: IFAAMAS, 2017. p. 846–855. Available from Internet:
<http://ifaamas.org/Proceedings/aamas2017/pdfs/p846.pdf>.

SHEFFI, Y. Urban transportation networks. Englewood Cliffs, NJ: Prentice-Hall,
1985.

http://dx.doi.org/10.1109/CIVTS.2014.7009476
http://dx.doi.org/10.1109/CIVTS.2014.7009476
http://www.aamas2015.com/en/AAMAS_2015_USB/aamas/p1723.pdf
http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf
http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://www.cs.mcgill.ca/{~}vkules/bandits.p
http://ifaamas.org/Proceedings/aamas2017/pdfs/p846.pdf

44

STEFANELLO, F.; SILVA, B. C. da; BAZZAN, A. L. C. Using topological statistics to
bias and accelerate route choice: preliminary findings in synthetic and real-world road
networks. In: Proceedings of Ninth International Workshop on Agents in Traffic
and Transportation. New York, USA: [s.n.], 2016. p. 1–8. Available from Internet:
<http://ceur-ws.org/Vol-1678/paper11.pdf>.

WARDROP, J. G. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, Part II, v. 1, n. 36, p. 325–362, 1952.

YEN, J. Y. Finding the k shortest loopless paths in a network. Management Science,
v. 17, n. 11, p. 712–716, 1971. Available from Internet: <http://pubsonline.informs.org/
doi/abs/10.1287/mnsc.17.11.712>.

http://ceur-ws.org/Vol-1678/paper11.pdf
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.712
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.712

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Theoretical Background
	2.1 Traffic Networks
	2.2 Reinforcement Learning and Bandit Algorithms
	2.2.1 The Upper Confidence Bounds (UCB1) Algorithms
	2.2.2 Thompson Sampling
	2.2.3 The Rexp3 Algorithm

	3 Related Work
	3.1 Traffic Assignment Problem
	3.1.1 All or Nothing Assignment
	3.1.2 Stochastic Methods
	3.1.3 Congested Assignment
	3.1.4 TAPAS

	3.2 Route Choice
	3.2.1 Multi-agent Reinforcement Learning-based Assignment
	3.2.2 Genetic Algorithms Based Assignment

	4 Proposal
	4.1 Non-stationarity in the Route Choice Problem
	4.2 Bandits Algorithms Used
	4.2.1 UCB1
	4.2.2 Discounted UCB
	4.2.3 Sliding Window UCB
	4.2.4 Thompson Sampling
	4.2.5 Rexp3

	5 Experimental Results
	5.1 Experiment Methodology
	5.2 Comparison of the Initialization Order of UCB
	5.3 Experiments with the OW network
	5.4 Experiments with the Sioux Falls Network
	5.5 Comparison of Results
	5.6 The Qualities and Shortfalls of Bandits Algorithms

	6 Conclusion
	References

