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The interplay between quantum fluctuations and disorder is investigated in a quantum spin-glass model, in the
presence of a uniform transverse field �, as well as of a longitudinal random field hi , which follows a Gaussian
distribution characterized by a width proportional to �. The interactions are infinite-ranged, and the model is
studied through the replica formalism, within a one-step replica-symmetry-breaking procedure; in addition, the
dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the applied fields is analyzed. This study is
motivated by experimental investigations on the LiHoxY1−xF4 compound, where the application of a transverse
magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic
susceptibility χ3, which have led to a considerable experimental and theoretical debate. We have analyzed two
physically distinct situations, namely, � and � considered as independent, as well as these two quantities related,
as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature Tf ,
with such phase being characterized by a nontrivial ergodicity breaking; moreover, Tf decreases by increasing �

towards a quantum critical point at zero temperature. The situation where � and � are related [� ≡ �(�)] appears
to reproduce better the experimental observations on the LiHoxY1−xF4 compound, with the theoretical results
coinciding qualitatively with measurements of the nonlinear susceptibility χ3. In this later case, by increasing
� gradually, χ3 becomes progressively rounded, presenting a maximum at a temperature T ∗ (T ∗ > Tf ), with
both the amplitude of the maximum and the value of T ∗ decreasing gradually. Moreover, we also show that the
random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside
the paramagnetic phase, leading to two regimes delimited by the temperature T ∗, one for Tf < T < T ∗, and
another one for T > T ∗. It is argued that the conventional paramagnetic state corresponds to T > T ∗, whereas
the temperature region Tf < T < T ∗ may be characterized by a rather unusual dynamics, possibly including
Griffiths singularities.
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I. INTRODUCTION

Nature is quantum in its essence, although classical theories
may be employed under certain conditions. In statistical
mechanics, the temperature range becomes crucial for the use
of classical or quantum approaches. Typical examples appear
in magnetism, where the use of classical models is justified
when the temperature ranges are high enough, when compared
to some reference temperature. In many magnetic systems, the
quantum effects become relevant, and should be taken into
account, like those within the realm of quantum magnetism
[1].

In what concerns spin glasses (SGs), models based on
Ising variables have been able to describe fairly well, at least
qualitatively, a wide variety of experimental behavior, even for
sufficiently low temperatures [2–5]. Some of these results have
been obtained at mean-field level, based on the infinite-range-
interaction Sherrington-Kirkpatrick (SK) model [6], either by
means of the replica-symmetric (RS), or replica-symmetry-
breaking (RSB), solutions [7]. Although this may seem
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paradoxical, due to the fact that Ising SG Hamiltonians are
not formulated in terms of quantum operators, it is understood
since their binary variables capture an essential ingredient of
many physical systems, for which strong anisotropy fields are
present, leading to two significant states associated with the
spin operators. However, in some compounds, the quantum
fluctuations controlled by a given parameter (e.g., magnetic
field, and/or doping) depress the transition temperature Tf ,
changing radically the physical properties of the system [8]. In
some cases, a field transverse to such spin operators appears to
be relevant, and so, the simpler Ising SG Hamiltonian should
be replaced by a quantum type of Hamiltonian.

The Ising dipolar-coupled ferromagnet LiHoF4 is a well
known system in which quantum fluctuations become impor-
tant by applying a transverse magnetic field Ht , which induces
quantum tunneling through the barrier separating the two
degenerate ground states of Ho3+ ions [9]. Moreover, disorder
can be introduced, by replacing the magnetic Ho3+ ions by
nonmagnetic Y3+ ones. Therefore the resulting LiHoxY1−xF4

compound is considered as an ideal ground for investigating
the interplay between quantum fluctuations and disorder in
Ising spins systems [10–12].
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In these physical systems, coefficients of the expansion of
the magnetization m, in powers of a small external longitudinal
field Hl , are quantities of great interest [2,3,13],

m = χ1Hl − χ3H
3
l − χ5H

5
l − · · · , (1)

corresponding to the linear susceptibility,

χ1 = ∂m

∂Hl

∣∣∣∣
Hl→0

, (2)

and nonlinear susceptibilities,

χ3 = − 1

3!

∂3m

∂H 3
l

∣∣∣∣
Hl→0

; χ5 = − 1

5!

∂5m

∂H 5
l

∣∣∣∣
Hl→0

. (3)

Since measurements of χ5 (and higher-order susceptibilities)
may become a hard task, very frequently in the literature one
refers to χ3 as the nonlinear susceptibility. Moreover, χ3 is
directly related to the SG susceptibility [2,3],

χ3 = β2

(
χSG − 2

3

)
, (4)

with the latter representing an important theoretical tool, being
defined as

χSG = β

N

∑
i,j

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]av, (5)

where 〈..〉 and [..]av denote, respectively, thermal averages and
an average over the disorder.

In fact, the interplay between quantum fluctuations and
disorder stands for the physical origin of the intriguing behav-
ior found in the magnetic susceptibility χ3 of LiHoxY1−xF4,
which has been the object of a considerable experimental and
theoretical debate. In the absence of Ht , the LiHo0.167Y0.833F4

compound displays a sharp peak in χ3 at the temperature
Tf , which resembles a conventional second-order SG phase
transition [14]. Surprisingly, the sharp peak of χ3 becomes
increasingly rounded when the transverse field Ht is applied
and enhanced, so that the resulting smooth curve presents
a maximum located at a temperature T ∗, with T ∗ > Tf .
Such behavior was initially interpreted as a changing in the
nature of the transition, from second order at Tf to first
order at T ∗ [14,15]. More recently, Jönsson and collaborators
[16] investigated the behavior of χ3 for dopings x = 0.165
and 0.0045, obtaining the same roundings of the peak in
both cases; these authors understood this behavior as an
evidence of absence of a SG phase transition of any nature.
In contrast, Ancona-Torres and collaborators [17] performed
measurements for doping x = 0.167, not only of χ3, but also
of χ5, as well as of the ac susceptibility, reasserting T ∗ as the
SG critical temperature.

On the theoretical side, the debate on this particular issue
has also been intense (see, for instance, Refs. [18,19]). The
suggestion that an effective longitudinal random field (RF)
hi can be induced from the interplay of a transverse applied
field Ht , with the off-diagonal terms of the dipolar interactions
in LiHoxY1−xF4, represents a very interesting hint to clarify
these controversies concerning the meaning of T ∗ [20–24].
According to the droplet picture for SGs, the rounded behavior

of χ3 in the presence of the field-induced RF hi is interpreted
as a suppression of the SG transition [20,21], similar to what
a uniform field does in that picture [25,26]. On the other hand,
Tabei and collaborators [22] working within Parisi’s mean-
field theory [7], using an effective Hamiltonian defined in
terms of the field-induced RF hi and a transverse field � [where
� = �(Ht ) represents some monotonically increasing function
of Ht ], reproduced quite well the experimental behavior of
χ3, with an increasingly rounded peak at T ∗ when Ht is
enhanced.

It should be remarked that the results described above are
based on a particular approach of the quantum SK model
proposed by Kim and collaborators [27]. In this approach,
the SK model is analyzed in the presence of a transverse
field �, within the static approximation. Mostly important,
a region inside the SG phase was found where the RS
approximation is stable. Actually, the RSB solution exists
only for sufficiently low values of �, at temperatures lower
than the SG transition temperature. The main consequence of
this scenario is that the sharp peak of χ3, which signals the SG
phase transition temperature, does not coincide with the onset
of RSB. Nevertheless, this result is also highly controversial,
since other works indicate precisely the opposite, i.e., the RS
approximation is unstable throughout the whole SG phase
(see, for instance, Refs. [28,29]) except, possibly, at the
zero-temperature Quantum Critical Point (QCP) [30]. Conse-
quently, when � enhances, the RSB transition temperature Tf

decreases, so that, for finite temperatures, the critical behavior
appears in χ3 as

χ3 ∝ [(� − �f (T ))/�f (T )]−δ′
, (6)

where �f (T ) denotes the critical value of � for a given
temperature, from which its corresponding value at the zero-
temperature QCP is obtained as limT →0 �f (T ) = �0

c .
In the classical case, it is well known that χSG is inversely

proportional to the Almeida-Thouless eigenvalue λAT, the so-
called replicon [2,31]. Therefore the diverging behavior of χ3

at the SG transition,

χ3 ∝ [(T − Tf )/Tf ]−γ , (7)

is a direct consequence of λAT = 0 at Tf , occurring together
with the onset of RSB. Similarly, in the quantum case, one
expects that the divergence of χ3 at �f (T ) should coincide
with the onset of RSB.

Indeed, the presence of a RF can produce deep changes in
the scenario described previously. For instance, in the classical
SK model [6], the RF induces the RS order parameter q, which
becomes finite at any temperature [32,33]. As a consequence,
q versus temperature presents a smooth behavior, being no
more appropriate for identifying a SG transition in the SK
model. Nevertheless, such a transition may still be related with
the onset of RSB, signaled by λAT = 0 [34]. In spite of this,
the derivative of q with respect to the temperature increases
as one approaches Tf from above; such an increase is the
ultimate responsible for the rounded maximum in χ3 at the
temperature T ∗, which does not coincide with the SG transition
temperature Tf (T ∗ > Tf ). In fact, the maximum value of χ3

at T ∗ reflects the effects of the RF inside the paramagnetic
phase, instead of the nontrivial ergodicity breaking of the SG
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phase transition [35]. Therefore one can raise the question
of whether such scenario for χ3, found in the classical SK
model, is robust in the corresponding quantum model, when
the transverse field is considered, i.e., � 	= 0, and no longer in-
dependent from the RF, as proposed by Tabei and collaborators
[22].

The purpose of the present work is to study the susceptibility
χ3, using the so-called fermionic Ising SG model in the
presence of a longitudinal RF hi and a transverse field
�. In this model, the spin operators are written in terms
of fermionic occupation and destruction operators [36,37],
whereas the spin-spin couplings {Jij } and random fields {hi}
follow Gaussian distributions. The grand-canonical potential is
obtained in the functional integral formalism, and the disorder
is treated using the replica method; moreover, the SG order
parameters are obtained in the static approximation [38,41]
and investigated within the one-step RSB scheme [7]. It should
be remarked that the fermionic Ising SG model is defined on
the Fock space, where there are four possible states per site:
one state with no fermions, two states with a single fermion,
and one state with two fermions, leading to two nonmagnetic
states. In particular, one can consider two cases: the 4S model
that allows the four possible states per site and the 2S model,
which restricts the spin operators to act on a space where
the nonmagnetic states are forbidden. In the present work,
we will consider the later model, by imposing a restriction
to remove the contribution of these nonmagnetic states, i.e.,
taking into account only the sites occupied by one fermion in
the partition-function trace [39,40].

In order to deal appropriately with the experimental
behavior of χ3 in the LiHoxY1−xF4 compound, we focus
our calculations on the 2S model by proposing a relationship
between � (the width of the distribution of random fields
hi) and �, following the approach introduced by Tabei
and collaborators [22]. The main characteristic observed
experimentally in χ3 concerns the peak for small Ht (classical
limit) being replaced by a rounded maximum which becomes
increasingly rounded for large Ht (quantum limit). Besides
the progressive smearing of χ3, the amplitude of its maximum
also decreases as Ht increases. Therefore the effects of the RF
triggered by Ht , as suggested by Tabei and collaborators [22],
should provoke simultaneously both effects, i.e., the smearing
of the peak and the decrease of the maximum amplitude value
of χ3. For the present fermionic Ising SG model, we have tested
a relationship involving � and �, particularly in the powerlike
form, �/J ∝ (�/J )B

′
, where J represents the width of the

Gaussian distribution for the couplings {Jij }. Considering
the interval for the exponent, 1.8 < B ′ < 2.5, we have been
able to obtain χ3 as a function of temperature and � resembling
qualitatively the experimental behavior for χ3 described above.
As already mentioned, the transverse field � used in the
effective model to describe LiHoxY1−xF4 is expected to be
related to the experimental applied field Ht [11,12]; in fact, at
least for low Ht , � ∝ H 2

t (see, e.g., Ref. [10]).
The paper is structured as follows. In Sec. II, we define

the model and find its grand-canonical potential within the
one-step RSB scheme; in Sec. III, we present a detailed
discussion of the order parameters, the susceptibility χ3, and
some phase diagrams. Finally, the last section is reserved to
conclusions.

II. MODEL

The model is defined by the Hamiltonian

H = −
∑
(i,j )

Jij Ŝ
z
i Ŝ

z
j −

N∑
i=1

hiŜ
z
i − 2�

N∑
i=1

Ŝx
i , (8)

where the summation
∑

(i,j ) applies to all distinct pairs of spin
operators, whereas the couplings {Jij } and magnetic fields
{hi} are quenched random variables, following independent
Gaussian distributions:

P (Jij ) =
(

N

32πJ 2

)1/2

exp

[
− N

32J 2
(Jij − J0/N )2

]
, (9)

and

P (hi) =
(

1

32π�2

)1/2

exp

(
− 1

32�2
h2

i

)
. (10)

In order to obtain susceptibilities [cf. Eqs. (2) and (3)], one
introduces a longitudinal uniform field Hl , by adding an extra
term −∑N

i=1 HlŜ
z
i in the Hamiltonian above. Moreover, the

spin operators in Eq. (8) are defined as

Ŝz
i = 1

2
[n̂i↑ − n̂i↓]; Ŝx

i = 1

2
[ĉ†i↑ĉi↓ + ĉ

†
i↓ĉi↑], (11)

where n̂i↑ = ĉ
†
i↑ĉi↑ and n̂i↓ = ĉ

†
i↓ĉi↓, with ĉ

†
i↑ denoting a

creation operator for a fermion with spin up at site i, ĉi↓ an
annihilation operator for a fermion with spin down at site i,
and so on. In this fermionic problem, the partition function is
expressed by using the Lagrangian path integral formalism in
terms of anticommuting Grassmann fields (φ and φ∗) [37]. The
restriction in the 2S model is imposed by means of a Kronecker
delta function, in such a way to take into account only those
sites occupied by one fermion (ni↑ + ni↓ = 1) in the partition
function [39,40]. Therefore adopting an integral representation
for this delta function, one can express the partition function
for both 2S and 4S models in the following form:

Z{y} = e
s−2

2 Nβμ

∫
D(φ∗φ)

∏
j

1

2π

∫ 2π

0
dxj e−yj eA{y}, (12)

where

A{y} =
∫ β

0
dτ

⎡
⎣∑

j,σ

φ∗
jσ (τ )

(
∂

∂τ
+ yj

β

)
φjσ (τ )

− H (φ∗
jσ (τ ),φjσ (τ ))

⎤
⎦. (13)

In the equations above, β = 1/T (T being the temperature),
yj = ixj for the 2S model, or yj = βμ for the 4S model, s =
2,4 denotes the number of states per site allowed in each model,
respectively, and μ is the chemical potential. Moreover, φjσ

and φ∗
jσ represent Grassmann fields at site j and spin state σ ,

whereas H (φ∗
jσ (τ ),φjσ (τ )) stands for an effective Hamiltonian

at a given value of the integration variable τ .
Now, we use the replica method, so that standard procedures

lead to the grand-canonical potential per particle [25],

β� = − 1

N
〈〈ln Z{y}〉〉J,h = − 1

N
lim

n−→0

〈〈Z{y}n〉〉J,h − 1

n
,

(14)
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where 〈〈..〉〉J,h denote averages over the quenched random
variables. The replicated partition function 〈〈Z{y}n〉〉J,h be-
comes

〈〈Z{y}n〉〉J,h = e
s−2

2 NβμN
∫ ∞

−∞

∏
(α,γ )

dqαγ

∫ ∞

−∞

n∏
α=1

dqαα

×
∫ ∞

−∞

n∏
α=1

dmα exp[Nβ�n(qαγ ,qαα,mα)],

(15)

where α (α = 1,2, · · · ,n) stands for a replica index, (α,γ ) de-
notes distinct pairs of replicas, and N = (βJ

√
N/2π )n(n+1)/2.

Assuming the static approximation [38,41], one obtains

β�n(qαγ ,qαα,mα)

= −β2J 2
∑
(α,γ )

q2
αγ − β2J 2

2

∑
α

q2
αα

−βJ0

2

∑
α

m2
α + ln �{y}, (16)

and the Fourier representation may be used to express

�{y} =
∏
α

1

2π

∫ 2π

0
dxαe−yα

∫
D[φ∗

α,φα] exp(Heff). (17)

Above, one has an “effective Hamiltonian” in replica space,

Heff =
∑

α

Aα
0� + 4

[
β2�2

2

∑
α,γ

Sz
αSz

γ + βJ0

2

∑
α

mαSz
α

+β2J 2

(∑
α

qααSz
αSz

α + 2
∑
(α,γ )

qαγ Sz
αSz

γ

)]
, (18)

with

Aα
0� =

∑
ω

ϕ†
α
(ω)(iω + yα + β�σx)ϕ

α
(ω),

Sz
α = 1

2

∑
ω

ϕ
α
(ω)σ zϕ

α
(ω), (19)

where the Matsubara’s frequencies are ω = ±π, ± 3π, . . . ,
σx and σ z denote the Pauli matrices, and ϕ†

α
(ω) =

(φ∗
↑α(ω) φ∗

↓α(ω)).
Moreover, the functional integrals over qαγ , qαα and mα

in Eq. (15) have been evaluated through the steepest-descent
method, yielding

mα = 〈Sα〉; qαγ = 〈Sz
αSz

γ 〉; qαα = 〈(Sz
α)2〉, (20)

with 〈..〉 representing a thermal average over the effective
Hamiltonian of Eq. (18).

Herein, the problem will be analyzed within one-step RSB
Parisi’s scheme [7], in which qαα = p, and the replica matrix
elements are parametrized as

qαγ =
{
q1 if I (α/a) = I (γ /a)
q0 if I (α/a) 	= I (γ /a)

, (21)

where I (x) gives the smallest integer greater than, or equal
to x.

The parametrization given by Eq. (21) allows to perform
the sums over replica indexes and then, the quadratic terms
in Eq. (18) can be linearized through the introduction of
new auxiliary fields. From this point, the integrals over the
Grassmann variables in Eq. (17) can be performed and the
sum over Matsubara’s frequencies can be obtained, like in
Ref. [40]. Therefore the resulting grand-canonical potential is
obtained from Eq. (14),

β� = (βJ )2

2
[(x − 1)q2

1 − xq2
0 + p2] + βJ0

2
m2 − ln 2

− (s − 2)

2
βμ − 1

x

∫
Dz ln

{ ∫
Dv[K(z,v)]x

}
, (22)

where

K(z,v) = (s − 2)

2
cosh(βμ) +

∫
Dξ cosh[

√
�(z,v,ξ )],

�(z,v,ξ ) = [βh(z,v,ξ )]2 + (β�)2,

h(z,v,ξ ) = βJ [
√

2q0 + (�/J )2 z +
√

2(q1 − q0) v

+
√

2(p − q1) ξ ], (23)

and Dx ≡ dxe−x2/2/
√

2π (x = z,v or ξ ).
The parameters q0, q1, x, p, and m are obtained through

extremization of the grand-canonical potential in Eq. (22), and
results for 2S and 4S models are obtained by considering s = 2
and 4, respectively. Moreover, the RS solution is recovered for
q0 = q1 = q, and x = 0. In this way, the linear susceptibility
of Eq. (2) becomes χ1 = β[p − q1 + x(q1 − q0)] [7].

As usual, the RSB parameters, the magnetization m, and the
quadrupolar parameter p, form a set of coupled equations, to
be solved simultaneously. Particularly, the parameter p is quite
dependent on �, and in fact, for the 2S model, p → 1 only
as � → 0; it should be mentioned that p plays an important
role in the nonlinear susceptibility χ3. This aspect represents
a crucial difference of the present investigation with respect to
previous one, by Kim and collaborators (cf. Ref. [27]), where
the parameters q1, q0, and x (or even q in the RS solution) do
not depend on p. In the present work, for the above one-step
RSB solution, χ3 will be obtained by numerical derivatives;
for the RS solution, an analytical form for χ3 is presented
in Appendix. As mentioned before, in order to deal with the
LiHoxY1−xF4 compound, we will restrict ourselves to the 2S

model, considering J0 = 0.

III. RESULTS

Hence, considering the 2S model, in this section we analyze
the behavior of the nonlinear susceptibility χ3, either by
varying the temperature (for fixed typical values of �/J

and �/J ), or by considering joint variations in some of
these parameters. Since χ3 is directly related with the order
parameters that appear in the thermodynamic potential of
Eq. (22), we first discuss the SG order parameters q1 and
q0, as well as the quadrupolar parameter p. Moreover, the
onset of RSB is signalled by δ = q1 − q0 > 0, which locates
the freezing temperature Tf ; it should be mentioned that for
� = 0 and � = 0, one has that Tf = √

2J .
In Fig. 1, we exhibit the one-step RSB parameter δ ≡

q1 − q0 versus the dimensionless temperature T/J , for typical
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FIG. 1. The one-step RSB parameter δ ≡ q1 − q0 is presented vs
the dimensionless temperature T/J , for � = 0 and typical values
of �/J (a), as well as for � = 0 and typical values �/J (b).
The parameters q1, q0, and p are also exhibited vs temperature in
the respective insets; one notices that the quadrupolar parameter p

becomes relevant only in the cases � > 0, for which it decreases
by lowering the temperature. Due to the usual numerical difficulties,
the low-temperature results [typically (T/J ) < 0.05)] correspond to
smooth extrapolations from higher-temperature data.

choices of �/J and �/J . The corresponding parameters q1,
q0, and p are also presented versus T/J in the respective insets.
From Fig. 1(a), one notices that the freezing temperature gets
lowered for increasing values of the transverse field �, up
to the zero-temperature QCP located at �0

c = 2
√

2J (� = 0)
[40]; a similar effect is verified in Fig. 1(b) by increasing
the width of the distribution of random fields � (� = 0). In
the Hamiltonian of Eq. (8), one sees that the limit � = 0
corresponds to a simple, diagonalizable, quantum Ising SG
model, where only the spin components Ŝz

i are present, leading
to a trivial quadrupolar parameter p = 1 (for all temperatures),
as shown in the inset of Fig. 1(a). This particular case, for which
the SG parameters are exhibited in Fig. 1(b), yields results
qualitatively similar to those found in the previous study of
the classical SK model in the presence of a Gaussian random
field, carried in Ref. [35]. One notices that for (�/J ) > 0 the
RS order parameter q = q0 = q1 is induced [cf. the inset of

Fig. 1(b)], presenting a smooth behavior versus temperature;
consequently, the freezing temperature Tf can only be found
by means of the RSB scheme, with the SG transition coinciding
with the onset of the parameter δ. However, for � > 0, the
spin components Ŝx

i become important, so that one expects a
nontrivial behavior for the quadrupolar parameter p; indeed,
p should decrease for increasing values of � (at a fixed
temperature), whereas for a fixed �, it decreases by lowering
the temperature, as shown in the inset of Fig. 1(a).

In the present problem, clear phase transitions may be
verified only for � = 0, like those exhibited in Fig. 2. From the
χ3 plots of Fig. 2(a) one confirms two important features shown
in Fig. 1(a), concerning the behavior of the order parameters
q0, q1, and δ. (i) The freezing temperature Tf , signaled by
the divergence of χ3 in Fig. 2(a), coincides with the onset
of RSB indicated by the parameter δ of Fig. 1(a). (ii) The
temperature Tf is lowered by increasing values of �/J . The
critical exponents associated with the divergences of χ3 may
be obtained by log-log plots, as shown in the insets of Fig. 2.
In the inset of Fig. 2(a) we have verified that the behavior
of Eq. (7) (represented by the dashed-dotted line) fits well
the region 0.001 < (T − Tf )/Tf < 0.1, with the same critical
exponent, γ = 1, for both values �/J = 0.0 (full line) and
�/J = 1.0 (dotted line), suggesting that the transverse field �

should not change the universality class of the exponent γ . It
is important to mention that this estimate coincides with the
well-known value found for the SK model [2]. In Fig. 2(b), one
sees divergences of χ3 at given values of � [defined as �f (T ) in
Eq. (6)], for two typical fixed temperatures; like in Fig. 2(a),
these divergences coincide with the onset of RSB indicated
by the parameter δ. One notices that, as one approaches zero
temperature [cf., e.g., the case (T/J ) = 0.2], the divergence at
�f (T ) approaches the one that occurs at the QCP, �0

c = 2
√

2J

[30]. In the inset of Fig. 2(b), the critical behavior described by
Eq. (6) (represented by the dashed-dotted line) was fulfilled in
both cases, showing a good agreement in the region 0.001 <

(� − �f (T ))/�f (T ) < 0.1, with the same exponent δ′ = 1
for the two values of temperatures investigated, (T/J ) = 0.2
(full line) and (T/J ) = 1.0 (dashed line). Hence, similarly
to the results of Fig. 2(a) concerning the critical exponent γ

of Eq. (7), the present estimates of δ′ suggest that the tem-
perature should not change the universality class of this later
exponent.

In agreement with the previous study of the SK model in
the presence of a Gaussian random field [35], the smoothening
of χ3 is verified in Fig. 3 for the cases (�/J ) > 0. For
instance, Fig. 3(a) displays χ3 versus T/J , for increasing
values of �/J , in the case � = 0, showing that the divergent
peak of the nonlinear susceptibility is replaced by a broad
maximum at a temperature T ∗. One observes that such a peak
becomes smoother, decreasing its height for increasing values
of �/J . Particularly, in the inset of Fig. 3(a) one sees that the
temperature range 0.001 < (T − T ∗)/T ∗ < 0.1 no longer can
be fitted by Eq. (7) with the critical exponent γ = 1.0, in the
cases (�/J ) > 0. In a similar way, Fig. 3(b) shows χ3 versus
�/J , for (T/J ) = 1.0, considering the same values for �/J

of Fig. 3(a); again, the peak of nonlinear susceptibility gets
flattened due to the presence of an applied random field, now
displaying a maximum at �∗. Consequently, in such cases
the region 0.001 < (� − �∗)/�∗ < 0.1 cannot be fitted by
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FIG. 2. Plots of the dimensionless nonlinear susceptibility [computed from Eq. (3)] are exhibited for � = 0: (a) J 3χ3 vs T/J for two
different values of �/J ; (b) J 3χ3 vs �/J for two different temperatures. In all cases, one notices sharp divergences of χ3, signaling evident
phase transitions. The corresponding critical exponents are estimated through log-log plots (shown in the respective insets), where in each case,
the fitting proposal is represented by a dashed-dotted line (see text).

Eq. (6) with a critical exponent δ′ = 1.0, as shown in the inset
of Fig. 3(b).

In Fig. 4, we represent the dimensionless nonlinear sus-
ceptibility χ3 versus �/J , for typical fixed temperatures,
in two cases: (a) �/J and �/J as independent quantities
[Fig. 4(a)] and (b) imposing a relation involving � and
� [Fig. 4(b)]. In Fig. 4(a), we consider a fixed value for
the width of the Gaussian random fields [(�/J ) = 0.25],
showing that the sharp SG transitions occurring for � = 0,
signaled by divergences of χ3 at the corresponding critical
values �f (T ) [according to Eq. (6) and shown by arrows in
some curves], change into smooth curves with maxima at
�∗(T ), shifted to higher values of �, i.e., �∗(T ) > �f (T ).
Following the proposal of Ref. [22], for dealing properly
with the experimental behavior of χ3 in the LiHoxY1−xF4

compound, we analyzed the present system by imposing a

relation involving � and �, i.e., � ≡ �(�). According to
the experimental investigations of Ref. [14], such a relation
should satisfy certain requirements, e.g., � should increase
monotonically with �, and one should get � = 0 for � = 0.
The simplest proposal obeying these conditions comes to be
a power function, (�/J ) = A(�/J )B , where A and B are
fitting parameters. Herein, these parameters were computed by
adjusting our results to those of the experiments of Ref. [14],
leading to the optimal values A = 0.02 and B = 2. In Fig. 4(b),
we exhibit the dimensionless nonlinear susceptibility, versus
�/J , for typical fixed temperatures, by considering this
particular relation involving � and �. In all cases, the maxima
[located at �∗(T )] appear shifted with respect to the onset of
RSB [located at �f (T )] towards higher values of the transverse
field, i.e., �∗(T ) > �f (T ). The most important novelty of
Fig. 4(b) [to be contrasted with the results of Fig. 4(a)],
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FIG. 3. The behavior of the dimensionless nonlinear susceptibility (in two typical cases exhibited in Fig. 2) is presented for increasing
values of �/J : (a) J 3χ3 vs T/J , for (�/J ) = 0.0; (b) J 3χ3 vs �/J , for (T/J ) = 1.0. In each case, one notices a rounded peak for (�/J ) > 0,
with its maximum value located at a temperature T ∗ (a), or at a transverse field �∗ (b), such that its height decreases for increasing values of
�/J . The log-log plots in the respective insets show that the divergences of Eq. (7), leading to the exponent γ [inset of (a)], or in Eq. (6),
leading to the exponent δ′ [inset of (b)], are fulfilled only for (�/J ) = 0.
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FIG. 4. (a) The dimensionless nonlinear susceptibility is represented vs �/J , for typical fixed temperatures and a nonzero width for the
random fields [(�/J ) = 0.25]. The divergences that occur for � = 0 at �f (T ) [following Eq. (6)], signalled by arrows in some cases, get
smoothened due to the random fields, so that their corresponding maxima [located at �∗(T )] are shifted towards higher values of the transverse
field, i.e., �∗(T ) > �f (T ). (b) The behavior of the dimensionless nonlinear susceptibility is shown versus �/J , for typical fixed temperatures,
by considering a particular relation involving � and � [(�/J ) = 0.02(�/J )2]; the inset represents an amplification of the region for higher
values of �/J . In all cases, the maxima [located at �∗(T )] appear shifted with respect to the onset of RSB [located at �f (T ), signalled by
arrows in some cases] towards higher values of the transverse field, i.e., �∗(T ) > �f (T ).

concerns the fact that the amplitude of the maximum of χ3

decreases for increasing values of �/J , and consequently, for
decreasing temperatures.

Recent studies in the compound LiHoxY1−xF4 suggested
that the transverse field � introduced in the Hamiltonian
of Eq. (8) should be related to the experimental applied
field in a real system, Ht [11,12]; in fact, at least for
low Ht , � ∝ H 2

t (see, e.g., Ref. [10]). Hence, considering
a new dimensionless variable, Ht (Ht ≡ √

�/J ), we have
verified that the same qualitative behavior shown in both
Figs. 4(a) and 4(b) occur in representations of the dimen-
sionless nonlinear susceptibility χ3 versus Ht . Consequently,
Fig. 4(b) preserves the agreement with experimental obser-
vations, showing that besides the progressive smearing of
χ3, the amplitude of its maximum also decreases as the real
field Ht increases, as suggested by Tabei and collaborators
[22].

In Appendix, we have calculated χ3 analytically, within the
RS approximation, for both � > 0 [cf. Eqs. (A1) and (A2)]
and � = 0 [cf. Eq. (A13)]. In these calculations, an important
quantity emerged, given in Eq. (A2) for � > 0, as

q2 = 2(βJ )2I0(�)

b
; b = 1 − 2(βJ )2I0(�). (24)

Notice that the denominator b may become zero, leading
to a divergence in the nonlinear susceptibility; it should be
mentioned that q2 is the only quantity appearing in χ3 [either
in Eq. (A1), or in Eq. (A13)], which may present a divergence
at finite temperatures. Moreover, one can show that for � = 0,
the so-called “dangerous” eigenvalue [31] in Eq. (A10) is equal
to the denominator of q2, i.e., λAT = 1 − 2(βJ )2I0(�), even for
� > 0. The mechanism behind the flattening of the χ3 peak
at T ∗ is illustrated in Fig. 5, where we plot the quantity b of
Eq. (24), λAT, and χ3, versus the dimensionless temperature,
for typical choices of �/J and �/J . Results for � and �

independent are presented in Fig. 5(a); the full lines [cases

(�/J ) = 0.0] show that the quantities b and λAT become zero
together, being associated with the divergence of χ3 [according
to Eq. (7)], signaling the SG phase-transition temperature
Tf . However, the results for (�/J ) = 0.1 show that such a
small value for the width of the RFs distribution yields b > 0,
which presents a smooth minimum around a temperature T ∗,
being directly associated with the rounding behavior of χ3; on
the other hand, one has λAT = 0 at a temperature Tf , with
Tf < T ∗. In Fig. 5(b), we present the denominator b and
λAT, for the cases where � and � are independent (dashed
lines), and where these quantities are related through the power
law (�/J ) = 0.02(�/J )2. In this later case, since one has
(�/J ) > 0 for any (�/J ) > 0, the denominator b will always
display a minimum value around a temperature T ∗, higher
than Tf . Particularly, by means of this relation, higher values
of � imply on higher values of �, increasing the values of b

at the minima, resulting in a decrease in the amplitude of the
maxima of χ3.

In Fig. 6, we present phase diagrams T/J versus �/J

showing a decrease in the temperature Tf for increasing
values of � (full lines). These lines delimit the SG phase and
were identified with the onset of RSB, by setting λAT = 0;
throughout the whole SG phases ones has λAT < 0. The
temperature T ∗ (dashed lines), associated with the maximum
of the nonlinear susceptibility χ3, signals a crossover between
two regions of the paramagnetic phase (PM1 and PM2), as
will be discussed next. The phase diagram shown in Fig. 6(a)
corresponds to a fixed value of � [(�/J ) = 0.25], and was
obtained by considering � and � as independent quantities.
In this case, one notices that the two lines (full and dashed
lines) remain essentially parallel to one another, up to zero
temperature, where the full line reaches a QCP, which appears
to be shifted towards lower values of �, when compared with
the QCP for � = 0, �0

c = 2
√

2J ≈ 2.828J [40]. The case
shown in Fig. 6(b) corresponds to � and � following the
relation (�/J ) = 0.02(�/J )2 (see inset), so that for � = 0,
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FIG. 5. The softening of the nonlinear susceptibility is illustrated by means of the denominator of q2, i.e., q2 ∝ b−1, b = 1 − 2(βJ )2I0(�)
[cf. Eq. (24)], which appears in the expression of χ3 calculated in Appendix, within the RS approximation. The Almeida-Thouless eigenvalue
λAT, associated with the onset of RSB and defining the SG critical temperature Tf is also shown, for comparison. (a) Results for (�/J ) = 1.0
are exhibited for two typical values of �/J , namely, (�/J ) = 0.0 and (�/J ) = 0.1, in the case where � and � are independent; similar
results are presented in the inset for (�/J ) = 0. The full lines represent the cases (�/J ) = 0.0, showing that λAT and the denominator b

coincide, becoming zero at the temperature Tf . The cases (�/J ) = 0.1 show that b is always positive, presenting a smooth minimum
around a temperature T ∗, leading to the rounding of χ3, whereas λAT becomes zero at a lower temperature Tf . (b) Results for (�/J ) = 1.0
and (�/J ) = 0.1 are shown, by comparing the case where these two quantities are considered as independent (dashed lines), with the one
where they follow the relation proposed in in in Fig. 4(b) [(�/J ) = 0.02(�/J )2] (dotted lines). In all cases, the arrows locate the freezing
temperature Tf .

one has � = 0, giving T ∗ = Tf . By increasing values of �, the
width of RFs also increases, leading to a rounded peak in the
nonlinear susceptibility, yielding T ∗ > Tf , and consequently,
the region PM1 emerges. Due to the joint increase of both �

and �, as shown in the inset, the region PM1 gets enlarged up to
zero temperature, where one gets a QCP, shifted towards lower
values of � as compared with the QCP for � = 0, similarly to
the one occurring in Fig. 6(a).

It should be emphasized that the temperature T ∗ plays a role
different from Tf , in the sense that it does not correspond to a
phase transition, but rather to a crossover between two distinct
regions of the paramagnetic phase. The previous analysis of
the SK model in the presence of a Gaussian random field
Ref. [35], which should correspond herein to the region of high
temperatures and low � (i.e., the classical regime), has also
found a temperature T ∗, associated with the rounded maximum
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of χ3, with T ∗ > Tf . In this case, T ∗ was interpreted as an
effect of the RFs acting inside the paramagnetic phase, instead
of some type of nontrivial ergodicity breaking. Herein, we
claim that the temperature T ∗, although it may be also affected
by the transverse field �, should be interpreted in a similar
manner. Hence, along the line signaled by Tf , the growth of
� produces an enhancement of quantum fluctuations, which
become increasingly dominant as compared with thermal
fluctuations, driving the nontrivial ergodicity breaking of the
SG phase transition to a QCP. For temperatures in the region
Tf < T < T ∗, the enhancement of quantum fluctuations by
� along with the spin fluctuations due to the RFs inside
the paramagnetic phase create two distinct scenarios, more
precisely concerning the PM1 region, as discussed next.
(a) For fixed � [e.g., Fig. 6(a)], one has � and � independent,
so that the smearing of the nonlinear susceptibility is caused
only by the RFs, leading to the effect that the full and dashed
lines remain essentially parallel to one another, up to zero
temperature. (b) The phase diagram of Fig. 6(b), for which
� and � are related through the parabolic behavior shown in
the inset, the appearance of T ∗ occurs for � > 0 (i.e., � > 0).
Hence the region PM1 starts very narrow for low �, and gets
enlarged for increasing values of �, showing that the rounding
of χ3 is dominated by the enhancement of the RFs, leading
to spins fluctuations due to the RFs inside the paramagnetic
phase.

IV. CONCLUSIONS

We have investigated a quantum spin-glass model in the
presence of a uniform transverse field �, as well as of a
longitudinal random field hi , the later following a Gaussian
distribution characterized by a width proportional to �. The
model was considered in the limit of infinite-range interactions
and studied through the replica formalism, within a one-step
replica-symmetry-breaking procedure. The spin-glass critical
frontier, signaled by the temperature Tf , was identified with
the onset of replica-symmetry breaking, calculated through
the Almeida-Thouless eigenvalue (replicon) λAT, i.e., by
setting λAT = 0. In this approach, the whole spin-glass phase
becomes characterized by λAT < 0, and consequently, it was
treated through replica-symmetry breaking. Such analysis was
motivated by experimental investigations on the LiHoxY1−xF4

compound. In this system, the application of a transverse
magnetic field yields rather intriguing effects, particularly
related to the behavior of the nonlinear magnetic susceptibility
χ3, which have led to a considerable experimental and
theoretical debate.

We have analyzed two physically distinct situations,
namely, � and � considered as independent, as well as
these two quantities related, as proposed recently by some
authors (see, e.g., Ref. [22]). In both cases, we have found a
spin-glass critical frontier, given by Tf ≡ Tf (�,�), with such
phase being characterized by a nontrivial ergodicity breaking.
In the first case, for � fixed, we have found that Tf (�,�)
decreases by increasing � towards a quantum critical point
at zero temperature, whereas in the second, we have found
a similar behavior for this critical frontier, with � changing
according to variations in �. In this later case, we have taken
into account previous experimental investigations [14], which

suggest that a relation of the type � ≡ �(�) should satisfy
certain requirements, e.g., � should increase monotonically
with �, and one should get � = 0 for � = 0. Although
such a relation may not be unique, the simplest proposal
following such conditions appears to be a power function,
(�/J ) = A(�/J )B . In the present work, the parameters A

and B were computed by adjusting our results to those of the
experiments of Ref. [14], leading to the the optimal values
A = 0.02 and B = 2.

We have shown that the present approach, considering
the relation (�/J ) = 0.02(�/J )2, was able to reproduce
adequately the experimental observations on the LiHoxY1−xF4

compound, with theoretical results coinciding qualitatively
with measurements of the nonlinear susceptibility χ3. As a
consequence, by increasing � gradually, our results indicate
that χ3 becomes progressively rounded, presenting a maximum
at a temperature T ∗ (T ∗ > Tf ); moreover, both amplitude of
the maximum and the value of T ∗ diminish, by enhancing �.

From the analysis where � and � are considered as
independent, we have concluded that the random field is
the main responsible for the smearing of the nonlinear
susceptibility. Hence the random field acts significantly inside
the paramagnetic phase, leading to two regimes delimited by
the temperature T ∗, one for Tf < T < T ∗ (called herein as
PM1), and another one for T > T ∗ (denominated as PM2).
In the paramagnetic regime for T > T ∗ one should have
weak correlations and consequently, the usual paramagnetic
type of behavior. However, close to T ∗, and particularly
for temperatures in the range Tf < T < T ∗, one expects a
rather nontrivial behavior in real systems, as happens with
experiments in the compound LiHoxY1−xF4, resulting in
very controversial interpretations [11,16,17,20–24]. Hence, as
already argued in the analysis of the SK model in the presence
of the Gaussian random field [35], the line PM1-PM2 may not
characterize a real phase transition, in the sense of a diverging
χ3, but the region PM1 should be certainly characterized by
a rather nontrivial dynamics. As one possibility, one should
have a growth of free-energy barriers in this region, leading
to a slow dynamics, whereas only below Tf the nontrivial
ergodicity breaking appears, typical of RSB in SG systems.
Also, one could have Griffiths singularities along PM1, which
are found currently in disordered magnetic systems, like
site-diluted ferromagnets [42], ferromagnet in a random field
[43], classical Ising spin glasses [44], and also claimed to
occur in quantum spin glasses [45–47]. Whether such curious
properties may appear throughout the region PM1 in the
present problem, represents a matter for further investigation.
In fact, recent experiments in the above compound for x =
0.045 strongly suggest this picture [48]: these authors claim
an “unreachable” transition due to an ultra-slow dynamics
(of the order 107 times slower than the ones of conventional
spin-glass materials) and argue that such a dynamics should
be caused by a Griffiths phase between the paramagnetic and
spin-glass phases.

Next, we discuss some contributions of the present work, as
compared to previous theoretical approaches in this problem.
(i) The analysis of Ref. [27] did not take into account the
random field, which in our view, represents a key ingredient for
an appropriate description of the properties of LiHoxY1−xF4.
Moreover, as it was shown herein, the RSB SG parameters,
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together with the magnetization m, and the quadrupolar
parameter p, all form a set of coupled equations, to be solved
simultaneously. The approach of Ref. [27] considered p as
independent from the remaining parameters; this could be
directly related with the curious result concerning a part of the
SG phase characterized by stability of the replica-symmetric
solution, along which these authors find the rounded maximum
of χ3. (ii) The study of Ref. [22] has considered an effective
Hamiltonian characterized by an extra two-body interacting
term (as compared with the Hamiltonian used herein), coupling
spin operators in the x and z directions. Moreover, these
authors have suggested a relation � ≡ �(�), which due to
the Hamiltonian employed, turned out to be slightly different
from ours, e.g., (�/J ) = A(�/J )B , with an exponent B < 1.
The results obtained herein for the nonlinear susceptibility
χ3 corroborate those of Ref. [22]; however, we understand
that the present analysis, characterized by a single two-body
interacting term, −∑

(i,j ) Jij Ŝ
z
i Ŝ

z
j , leads to a much simpler

analysis to the problem, when compared to the one carried in
this previous work.

To conclude, we have considered a model able to reproduce
theoretically many properties observed in experiments on the
LiHoxY1−xF4 compound, particularly those related to the
nonlinear susceptibility χ3. The present theoretical proposal
appears to be simpler than previous ones, and consequently, its
results should be easier to compare with further experimental
investigations. Obviously, the observation of a clear spin-glass
state, characterized by a nontrivial ergodicity breaking at a
temperature Tf (below the temperature T ∗ where one observes
rounded effects on the nonlinear susceptibility) represents a
challenge for experiments.
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APPENDIX: NONLINEAR SUSCEPTIBILITY
IN THE RS SOLUTION

In this appendix, we obtain the nonlinear susceptibility
χ3 analytically for the 2S model, within the RS solution.
Although in the RS solution, these results allow us to analyze
in detail how the RFs and the transverse field � affect the
nonlinear susceptibility. Particularly, one has that the nonlinear
susceptibility of Eq. (3) becomes

χ3 = − 1

3!

∂3m

∂H 3
l

∣∣∣∣
Hl→0

= β3

3
[1 + 3q2 + 2(βJ )2V3]

−V2

2 − 2(βJ )2V3
, (A1)

where

q2 = 2(βJ )2I0(�)

1 − 2(βJ )2I0(�)
, (A2)

with the following definitions:

I0(�) = V3 − V2

2
+ 2(βJ )2 V2V1

2 − 2(βJ )2V3
, (A3)

V1 =
∫

Dz

[
C3C1

K2
− C2(C1)2

K3

]
, (A4)

V2 =
∫

Dz

[
C4

K
− 4

C3C1

K2
− 3

(
C2

K

)2

+ 12
C2(C1)2

K3
− 6

(
C1

K

)4]
, (A5)

V3 =
∫

Dz

[
C4

K
− 2

C3C1

K2
−

(
C2

K

)2

+ 2
C2(C1)2

K3

]
. (A6)

In the equations above, one has that

Cn =
∫

Dξ
∂nf (h)

∂hn
; K =

∫
Dξ f [h(z,ξ ),�], (A7)

with

f [h(z,ξ ),�] = cosh
√

h2(z,ξ ) + (β�)2, (A8)

and

h(z,ξ ) = βJ [
√

2q + (�/J )2z +
√

2(p − q)ξ ]. (A9)

In addition, the limit of stability of the RS solution is delimited
by λAT > 0 [31], which may be expressed in terms of the above
quantities as

λAT = 1 − 2(βJ )2
∫

Dz

[
C2

K
−

(
C1

K

)2]2

. (A10)

The particular case � = 0 gives

h0(z) = βJ (
√

2q + (�/J )2z, (A11)

as well as V1 = V3 = 0, whereas

V2 = −2
∫

Dz[sech4h0(z) − 2 tanh2 h0(z)sech2h0(z)].

(A12)

As a result, χ3 becomes

χ3 = β3

3
[1 + 3q2]I0(0) (A13)

where q2 = [2(βJ )2I0(0)]/[1 − 2(βJ )2I0(0)] and

I0(0) =
∫

Dz[sech4h0(z) − 2 tanh2 h0(z)sech2h0(z)].

(A14)

In this case, χ3 coincides with the one found in Ref. [35].
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and F. D. Nobre, Phys. Rev. B 93, 224206 (2016).
[36] A. Theumann and M. V. Gusmão, Phys. Lett. A 105, 311 (1984).
[37] R. Oppermann and A. Muller-Groeling, Nuclear Phys. B 401,

507 (1993).
[38] A. J. Bray and M. A. Moore, J. of Phys. C: Sol. State 13, L655

(1980).
[39] W. Wiethege and D. Sherrington, J. Phys. C 19, 6983 (1986).
[40] F. M. Zimmer and S. G. Magalhaes, Phys. Rev. B 74, 012202

(2006).
[41] D. Thihumalai, Q. Li, and T. R. Kirkpatrick, J. Phys. A 22, 3339

(1989).
[42] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
[43] V. Dotsenko, J. Stat. Phys. 122, 197 (2006); J. Phys. A: Math

Gen. 27, 3397 (1994).
[44] M. Randeria, J. P. Sethna, and R. G. Palmer, Phys. Rev. Lett. 54,

1321 (1985).
[45] M. Guo, R. N. Bhatt, and D. A. Huse, Phys. Rev. B 54, 3336

(1996).
[46] H. Rieger and A. P. Young, Phys. Rev. B 54, 3328 (1996).
[47] A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).
[48] A. Biltmo and P. Henelius, Nat. Commun. 3, 857 (2012).

064201-11

https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/5/047
https://doi.org/10.1088/0305-4470/13/5/047
https://doi.org/10.1088/0305-4470/13/5/047
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1103/PhysRevLett.67.2076
https://doi.org/10.1103/PhysRevLett.67.2076
https://doi.org/10.1103/PhysRevLett.67.2076
https://doi.org/10.1103/PhysRevLett.67.2076
https://doi.org/10.1088/1742-6596/320/1/012001
https://doi.org/10.1088/1742-6596/320/1/012001
https://doi.org/10.1088/1742-6596/320/1/012001
https://doi.org/10.1088/1742-6596/320/1/012001
https://doi.org/10.1103/PhysRevB.85.184415
https://doi.org/10.1103/PhysRevB.85.184415
https://doi.org/10.1103/PhysRevB.85.184415
https://doi.org/10.1103/PhysRevB.85.184415
https://doi.org/10.1016/0038-1098(77)91439-9
https://doi.org/10.1016/0038-1098(77)91439-9
https://doi.org/10.1016/0038-1098(77)91439-9
https://doi.org/10.1016/0038-1098(77)91439-9
https://doi.org/10.1103/PhysRevLett.71.1919
https://doi.org/10.1103/PhysRevLett.71.1919
https://doi.org/10.1103/PhysRevLett.71.1919
https://doi.org/10.1103/PhysRevLett.71.1919
https://doi.org/10.1103/PhysRevB.64.014403
https://doi.org/10.1103/PhysRevB.64.014403
https://doi.org/10.1103/PhysRevB.64.014403
https://doi.org/10.1103/PhysRevB.64.014403
https://doi.org/10.1103/PhysRevLett.98.256403
https://doi.org/10.1103/PhysRevLett.98.256403
https://doi.org/10.1103/PhysRevLett.98.256403
https://doi.org/10.1103/PhysRevLett.98.256403
https://doi.org/10.1103/PhysRevLett.101.057201
https://doi.org/10.1103/PhysRevLett.101.057201
https://doi.org/10.1103/PhysRevLett.101.057201
https://doi.org/10.1103/PhysRevLett.101.057201
https://doi.org/10.1103/PhysRevB.82.144436
https://doi.org/10.1103/PhysRevB.82.144436
https://doi.org/10.1103/PhysRevB.82.144436
https://doi.org/10.1103/PhysRevB.82.144436
https://doi.org/10.1103/PhysRevB.91.094406
https://doi.org/10.1103/PhysRevB.91.094406
https://doi.org/10.1103/PhysRevB.91.094406
https://doi.org/10.1103/PhysRevB.91.094406
https://doi.org/10.1103/PhysRevLett.97.137204
https://doi.org/10.1103/PhysRevLett.97.137204
https://doi.org/10.1103/PhysRevLett.97.137204
https://doi.org/10.1103/PhysRevLett.97.137204
https://doi.org/10.1103/PhysRevLett.95.267208
https://doi.org/10.1103/PhysRevLett.95.267208
https://doi.org/10.1103/PhysRevLett.95.267208
https://doi.org/10.1103/PhysRevLett.95.267208
https://doi.org/10.1103/PhysRevLett.97.237203
https://doi.org/10.1103/PhysRevLett.97.237203
https://doi.org/10.1103/PhysRevLett.97.237203
https://doi.org/10.1103/PhysRevLett.97.237203
https://doi.org/10.1103/PhysRevB.77.014432
https://doi.org/10.1103/PhysRevB.77.014432
https://doi.org/10.1103/PhysRevB.77.014432
https://doi.org/10.1103/PhysRevB.77.014432
https://doi.org/10.1088/0034-4885/78/5/052501
https://doi.org/10.1088/0034-4885/78/5/052501
https://doi.org/10.1088/0034-4885/78/5/052501
https://doi.org/10.1088/0034-4885/78/5/052501
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevLett.93.207203
https://doi.org/10.1103/PhysRevLett.93.207203
https://doi.org/10.1103/PhysRevLett.93.207203
https://doi.org/10.1103/PhysRevLett.93.207203
https://doi.org/10.1103/PhysRevB.66.054432
https://doi.org/10.1103/PhysRevB.66.054432
https://doi.org/10.1103/PhysRevB.66.054432
https://doi.org/10.1103/PhysRevB.66.054432
https://doi.org/10.1103/PhysRevLett.64.2467
https://doi.org/10.1103/PhysRevLett.64.2467
https://doi.org/10.1103/PhysRevLett.64.2467
https://doi.org/10.1103/PhysRevLett.64.2467
https://doi.org/10.1103/PhysRevLett.70.3147
https://doi.org/10.1103/PhysRevLett.70.3147
https://doi.org/10.1103/PhysRevLett.70.3147
https://doi.org/10.1103/PhysRevLett.70.3147
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1103/PhysRevB.15.1519
https://doi.org/10.1103/PhysRevB.15.1519
https://doi.org/10.1103/PhysRevB.15.1519
https://doi.org/10.1103/PhysRevB.15.1519
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevB.50.6151
https://doi.org/10.1103/PhysRevB.50.6151
https://doi.org/10.1103/PhysRevB.50.6151
https://doi.org/10.1103/PhysRevB.50.6151
https://doi.org/10.1103/PhysRevB.93.224206
https://doi.org/10.1103/PhysRevB.93.224206
https://doi.org/10.1103/PhysRevB.93.224206
https://doi.org/10.1103/PhysRevB.93.224206
https://doi.org/10.1016/0375-9601(84)91005-3
https://doi.org/10.1016/0375-9601(84)91005-3
https://doi.org/10.1016/0375-9601(84)91005-3
https://doi.org/10.1016/0375-9601(84)91005-3
https://doi.org/10.1016/0550-3213(93)90312-D
https://doi.org/10.1016/0550-3213(93)90312-D
https://doi.org/10.1016/0550-3213(93)90312-D
https://doi.org/10.1016/0550-3213(93)90312-D
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1088/0022-3719/19/35/012
https://doi.org/10.1088/0022-3719/19/35/012
https://doi.org/10.1088/0022-3719/19/35/012
https://doi.org/10.1088/0022-3719/19/35/012
https://doi.org/10.1103/PhysRevB.74.012202
https://doi.org/10.1103/PhysRevB.74.012202
https://doi.org/10.1103/PhysRevB.74.012202
https://doi.org/10.1103/PhysRevB.74.012202
https://doi.org/10.1088/0305-4470/22/16/023
https://doi.org/10.1088/0305-4470/22/16/023
https://doi.org/10.1088/0305-4470/22/16/023
https://doi.org/10.1088/0305-4470/22/16/023
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1007/s10955-005-8079-6
https://doi.org/10.1007/s10955-005-8079-6
https://doi.org/10.1007/s10955-005-8079-6
https://doi.org/10.1007/s10955-005-8079-6
https://doi.org/10.1088/0305-4470/27/10/015
https://doi.org/10.1088/0305-4470/27/10/015
https://doi.org/10.1088/0305-4470/27/10/015
https://doi.org/10.1088/0305-4470/27/10/015
https://doi.org/10.1103/PhysRevLett.54.1321
https://doi.org/10.1103/PhysRevLett.54.1321
https://doi.org/10.1103/PhysRevLett.54.1321
https://doi.org/10.1103/PhysRevLett.54.1321
https://doi.org/10.1103/PhysRevB.54.3336
https://doi.org/10.1103/PhysRevB.54.3336
https://doi.org/10.1103/PhysRevB.54.3336
https://doi.org/10.1103/PhysRevB.54.3336
https://doi.org/10.1103/PhysRevB.54.3328
https://doi.org/10.1103/PhysRevB.54.3328
https://doi.org/10.1103/PhysRevB.54.3328
https://doi.org/10.1103/PhysRevB.54.3328
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1038/ncomms1857
https://doi.org/10.1038/ncomms1857
https://doi.org/10.1038/ncomms1857
https://doi.org/10.1038/ncomms1857



