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Abstract

The FOXP subfamily is probably the most extensively characterized subfamily of the forkhead superfamily, playing
important roles in development and homeostasis in vertebrates. Intrinsically disorder protein regions (IDRs) are pro-
tein segments that exhibit multiple physical interactions and play critical roles in various biological processes, includ-
ing regulation and signaling. IDRs in proteins may play an important role in the evolvability of genetic systems. In this
study, we analyzed 77 orthologous FOXP genes/proteins from Tetrapoda, regarding protein disorder content and
evolutionary rate. We also predicted the number and type of short linear motifs (SLIMs) in the IDRs. Similar levels of
protein disorder (approximately 70%) were found for FOXP1, FOXP2, and FOXP4. However, for FOXP3, which is
shorter in length and has a more specific function, the disordered content was lower (30%). Mammals showed higher
protein disorders for FOXP1 and FOXP4 than non-mammals. Specific analyses related to linear motifs in the four
genes showed also a clear differentiation between FOXPs in mammals and non-mammals. We predicted for the first
time the role of IDRs and SLIMs in the FOXP gene family associated with possible adaptive novelties within
Tetrapoda. For instance, we found gain and loss of important phosphorylation sites in the Homo sapiens FOXP2 IDR
regions, with possible implication for the evolution of human speech.
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Introduction

Members of the Forkhead box (FOX) gene super-

family have been widely associated with organismal devel-

opment and are identified by their evolutionary conserved

forkhead DNA-binding domain (Lam et al., 2013; Morris

and Fanucchi, 2016). The FOXP subfamily is probably the

most extensively characterized subfamily of the forkhead

superfamily. The four FOXP genes (FOXP1, FOXP2

FOXP3, and FOXP4) emerged by duplication events dur-

ing the origin of vertebrates (Santos et al., 2011; Song et al.,

2016). Since the duplication events, paralogues FOXP1,

FOXP2, and FOXP4 have played an important role in

brain, lung, heart, and jaw development in vertebrates,

while FOXP3 has been associated with the development

and homeostasis of the immune system, since it is described

as a master-regulator of CD4+ and CD25+ T-cells (Coffer

and Burgering, 2004; Akbar et al., 2007; Takahashi et al.,

2008; Benayoun et al., 2011; Andersen et al., 2012; Lam et

al., 2013; Cesario et al., 2016).

Undoubtedly, the most widely known member of the

FOXP subfamily is FOXP2, as it has attracted the attention

of the scientific community and the general media because

of its role in the evolution of speech and vocalization in

mammals (Zhang et al., 2002; Li et al., 2007), especially

because mutations in this gene promote severe impairment

of articulation and grammar in humans (Enard et al., 2002;

Schön et al., 2006; Enard, 2011; Bowers and Konopka,

2012). FOXP2 is expressed primarily in the brain, where it

plays an important role in synapse formation and cell adhe-

sion, as well as in the specification and differentiation of the

lung epithelium and gastrointestinal and cardiovascular tis-

sues (Song et al., 2013).

Evolutionary studies have been successively im-

proved by incorporating new methodological approaches.
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Analysis of intrinsically disordered regions (IDRs), which

is routinely used in medical and structural biology studies,

can also be applied in evolutionary studies because of the

possible role of IDRs in the evolvability (evolutionary ca-

pacity; Pigliucci, 2008; Xue et al., 2010b, 2013) of genetic

systems (Neduva and Russell, 2005). IDRs are protein seg-

ments rich in hydrophilic, polar, and charged amino acids

(glutamine, serine, glutamic acid, arginine, and lysine), as

well as glycine, proline, and alanine (Iakoucheva et al.,

2004; Liu et al., 2006). IDRs are prevalent in proteins that

exhibit multiple physical interactions and play critical roles

in various biological processes, including regulation and

signaling (Dunker et al., 2000; Nguyen Ba et al., 2012;

Forman-Kay and Mittag, 2013). The conformational flexi-

bility of IDRs facilitates exposure of specific residues for

modification and binding to other proteins and molecules

(Huang and Sarai, 2012; Liu and Huang, 2014). Thus, in-

trinsically disordered proteins (IDPs) are characterized by a

high IDR content and the absence of stable well-folded

three-dimensional structures in solutions (Forman-Kay and

Mittag, 2013).

Short linear motifs (SLIMs) are short stretches in pro-

tein sequences that mediate protein-protein interactions.

SLIMs are typically 2–10 amino acids long; however, only

two or three amino acids are essential for interaction with

other molecules. SLIMs are common elements in IDRs,

and they probably play a significant role in the functioning

of these disordered regions (Wagner and Lynch, 2008;

Huang and Sarai, 2012; Nguyen Ba et al., 2012; Forman-

Kay and Mittag, 2013; Liu and Huang, 2014). The presence

of a great number of these motifs in such regions probably

confers functional flexibility to this class of proteins

(Gould et al., 2010; Disfani et al., 2012; Dinkel et al., 2012,

2014). Furthermore, SLIMs are particularly evolvable be-

cause they are poorly conserved between lineages and can

appear and disappear through small changes (Wagner and

Lynch, 2008). Therefore, changes in SLIMs significantly

impact complex regulatory networks (Neduva and Russell,

2005). Thus, analysis of these changes enables the assess-

ment of their importance in the evolutionary trajectory of

animals.

In addition to the forkhead, leucine-zipper, and zinc-

finger domains, other molecular elements such as IDRs

may play crucial roles in the function of FOXP proteins.

However, these structures have not been studied exten-

sively. Thus, the present investigation aims to ask how

FOXPs structural forms changed throughout Tetrapoda

evolution regarding linear motifs composition and disor-

dered content. Furthermore, as FOXP3 is known to be the

only gene among the FOXP family playing a role in the im-

mune system, we investigated if a higher evolutionary rate

would be observed when compared with other FOXPs, and

if such a rate could be related with higher disordered con-

tent.

Material and Methods

Seventy-seven orthologues FOXP genes/proteins

from tetrapods (Table S1) were considered in the present

study. FOXP nucleotide sequences were retrieved from the

NCBI database using BLASTN with 20,000 Max target se-

quences. We also used the Ensembl genome database

(http://ensembl.org/) for sequence retrieval. The Neander-

thal exome (Castellano et al., 2014;

http://cdna.eva.mpg.de/) was consulted to verify possible

specific changes within the genus Homo. However, one

protein-coding gene may codify more than one isoform.

The presence of many isoforms in the FOX genes, caused

by alternative splicing, was handled conservatively by

choosing only isoforms that clearly resemble the canonical

form identified in humans by using UniProt

(http://www.uniprot.org/). Incomplete sequences were re-

moved from the analysis. Subsequently, the sequences

were aligned using the MAFFT algorithms (standard pat-

tern) implemented in the Guidance web server (http://guid-

ance.tau.ac.il/). The alignments are available in the

Supplementary Material. Phylogenetic trees were drawn

using FigTree1.4.2. (http://tree.bio.ed.ac.uk/software/fig-

tree/) according to the literature (Meredith et al., 2011;

Perelman et al., 2011; Song et al., 2012).

Importantly, while both FOXP2 and FOXP4 passed

through a standard NsSites test site analysis, for FOXP3

and FOXP1 we had to employ distinct data tests. Because

of the absence of several base pairs in Xenopus laevis

FOXP1, we excluded this species. For FOXP3, just the

mammalian sequences were used because reptilian and am-

phibian FOXP3 are shorter and very different, while in

birds, FOXP3 is completely absent (Andersen et al., 2012).

In addition, we removed from the analysis a residual

N-terminal part of FOXP3 present only in the mammals

Nomascus leucogenys Papio anubis, Chlorocebus sabaeus,

Callithrix jacchus, Cricetulus griseus, Panthera tigris,

Myotis brandtii, Pteropus alecto, Chrysochloris asiatica,

and Dasypus novemcinctus, as they do not align or resem-

ble other orthologous and known isoforms.

We predicted disordered regions by using the

PONDR-FIT metapredictor (Xue et al., 2010a). Addi-

tionally, the MobiDB server (Potenza et al., 2014) was con-

sulted to check consensus predictions for their disorder

content, as provided by a variety of disorder predictors.

SLIMs were predicted using the ELM webserver (Dinkel et

al., 2012, 2014) considering only the cell nucleus as the cell

compartment for biochemical interaction context of FOXP

proteins. Given that the linear motifs predicted by ELM can

present a high rate of false positives, we considered only

ELM in IDR regions and validated such predictions by ana-

lyzing the literature on the interactions between linear

motifs and their ligands with other transcription factors.

Therefore, we considered only linear motifs with con-

firmed experimental data and/or certainty for ELM reliabil-

ity annotation. All information regarding the linear motifs
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was retrieved from the ELM server and from the literature.

The ELM server classifies SLIMs into the following four

types: protease cleavage sites, protein motif interac-

tion/binding sites, posttranslational modification sites, and

subcellular targeting signals (Dinkel et al., 2012). Linear

motifs present in the forkhead, leucine-zipper, and

zinc-finger domains were not considered because they can

represent false positives. Statistical tests comparing sites

under purifying selection and/or positive selection within

and without disordered regions were performed using

WinPepi and SPSS 2.0.

To estimate the molecular evolutionary patterns of

FOXP1, FOXP2, FOXP3, and FOXP4, we applied phylog-

eny-based maximum likelihood analysis of � (non-synony-

mous/synonymous rate ratio or dN/dS) implemented in the

PAML 4.7 package (Yang, 2007). This approach allows the

� ratio to vary among sites while considering several dif-

ferent codon substitution models. A value of � < 1 indicates

potential negative selection, while � = 1 indicates neutral-

ity, and � > 1 indicates positive selection. For the NsSites

codon substitution model, likelihood ratio tests (LRT) were

performed between neutral models (M1a, nearly neutral,

M8a, Beta and � = 1) and models that allow positive selec-

tion and/or relaxation of functional constraints (M2a, posi-

tive selection and M8, Beta + Selection). Using log values

from models M1a, M2a, M8a, and M8, we applied an LRT

using HyPhy 2.2.0.

The Branch Site Model was also used to detect if dif-

ferent linear motif composition and disorder scores are re-

flected in different evolutionary rates among Tetrapoda.

The phylogeny was a priori divided into two clades, and a

LRT was used to evaluate divergences in selective pres-

sures between them, as indicated by different � ratios. We

employed the clade model type D that assumes two site

classes, which was compared with the neutral model M1a

by an LRT with two degrees of freedom.

A Bayes empirical Bayes (BEB) approach was con-

sidered using CODEML in PAML 4.7 to verify which sites

could be under neutral, purifying, or positive selection. The

phylogenetic trees used to construct the PAML 4.7 input

files were revised as described previously (Meredith et al.,

2011; Perelman et al., 2011; Song et al., 2012).

Results and Discussion

FOXP1, FOXP2, FOXP3 and FOXP4 structures and
their intrinsic protein disorder content

Our analyses revealed that the three paralogous pro-

teins with similar functions and tissue expression, FOXP1,

FOXP2, and FOXP4, had high and similar disorder con-

tents (~70%). In contrast, FOXP3, which plays a role in im-

mune system regulation, presented a lower disorder degree

(~30%) relative to its paralogs (Tables 1, S2-S5), according

to PONDR-FIT. The patterns of the disordered and ordered

regions, as well as the disorder proportion of orthologous

proteins, are relatively conserved among taxonomic groups

(Tables 1, S2-S5). However, mammals presented a higher

degree of protein disorder than all other organisms for

FOXP1 and FOXP4 (P < 0.001, Table 1). Particularly, am-

phibians presented a lower degree of disorder for FOXP2

(~64%, Tables 1 and S3.1) than the other classes (P < 0.01,

Table 1). These FOXP disorder prediction values are, in

general, higher than those obtained by other authors (An-

dersen et al., 2012), but they used just partial proteins and

fewer species. Importantly, it is worthy of note that the

larger mammalian sample compared to non-mammals may

have contributed to these statistical differences in the pro-

tein disorder content analysis.

Interestingly, our data reveals that mammals present

significantly higher FOXP1 and FOXP4 disorder degrees

than the other groups. This finding may be associated with

the more complex interaction networks present in mam-

mals, as already proposed for other genetic systems (Disfa-

ni et al., 2012), and to a positive correlation between the

number of binding partners and disorder scores (Dunker et

al., 2000). Thus, it is reasonable to speculate that mamma-

lian FOXP1 and FOXP4 present a larger number of binding

partners than the other orthologues investigated here.

FOXP1, FOXP2, FOXP3, and FOXP4 and their
interaction sites

Usually, intrinsically disordered proteins are en-

riched with SLIMs, which play crucial roles in their interac-

tion with other proteins (Tables S6.1-6.4). Here we will

briefly describe some selected representative results of the

SLIMs compositional analysis. For FOXP1, some of our

findings include a Polo-like kinase 1 (PLK) phosphoryl-

ation site at position 33 (MOD_PLK), which differentiates

Sauropsida (reptiles and birds) from mammals (Table 2).

PLK is involved in cell cycle events (Nakajima et al., 2003;

Murakami et al., 2010), suggesting some differences in the

FOXP1 phosphorylation pattern during the cell cycle be-

tween mammals and Sauropsida.

FOXP in Tetrapoda 183

Table 1 - Mean disorder proportion for FOXP proteins by class1.

Class FOXP2 FOXP4 FOXP1 FOXP32

Mammals 0.7011 0.7321 0.6915 0,3065

Birds 0.7039 0.6858 0.6782

Reptiles 0.6984 0.6827 0.6713

Amphibians 0.6305 0.7068 NA

1Mammals showed significant higher proportions than the other groups, as

assessed by the Kruskal-Wallis test, for FOXP1and FOXP4 (P < 0.001).

Additionally, according to the same test, amphibians presented a lower de-

gree of disorder for FOXP2 (P < 0.01).
2Only mammalian genes were used for the FOXP3 analysis.

NA: Not available. Since several base pairs in Xenopus laevis FOXP1 se-

quence are missing, we excluded it from the analysis.
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In the case of FOXP2 (Table 2), mammals have lost

one DOC_USP7_1 at position 314, which interacts with the

deubiquitinating enzyme USP7/HAUSP (herpes virus-

associated ubiquitin-specific protease) present in all

non-mammals, due to a serine to alanine change. Previous

studies have demonstrated that the interaction of USP7

with FOX members regulates oxidative stress responses

through ubiquitination (van der Horst et al., 2006). Thus,

the possible loss of DOC_USP7_1 in mammals could have

a functional implication related to response to oxidative

stress.

Two known non-synonymous substitutions between

humans (Homo sapiens and Neanderthals) and chimpan-

zees (FOXP2 Asn325Ser and Thr303Asn) deserve addi-

tional attention, since they were related to human speech

(Enard et al., 2002, Krause et al., 2007). One of them

(Asn325Ser) promotes the gain of two motifs,

MOD_CK1_1 and MOD_GSK3_1, in humans due to the

presence of a serine at aligned position 390 (Table 2). Both

motifs are promoters of phosphorylation by kinases. Inter-

estingly, carnivores also have a serine at this FOXP2

ortholog position (Zhang et al., 2002), leading to a conver-

gence event of the emergence of both MOD_CK1_1 and

MOD_GSK3_1 motifs observed in humans. Cooper (2006)

suggested that phosphorylation by kinase C in this FOXP2

region may be related to human behavioral traits such as

language. However, the other Homo-specific substitution at

aligned position 368 (Thr303Asn) led to the loss of a

phosphorylation site. Changes in phosphorylation patterns

can modulate the regulation of transcription factors and

their binding affinity to co-activators and DNA. These

changes can in turn alter gene expression, cell growth, and

differentiation (Iakoucheva et al., 2004). Thus, our results

have one very relevant implication: the loss of this phos-

phorylation site at position 368/303 can have been as im-

portant as the gain of the phosphorylation site at position

390/325 for the evolution of human speech. The phenotype

implication of the presence of these SLIMS in carnivores is

unknown.

For FOXP3, which was only investigated in mam-

mals (see Material and Methods section), a CK1 phos-

phorylation site (MOD_CK1_1) is predicted at position

194 (Table 3) for several mammal species, except New

World (NW) monkeys (Saimiri boliviensis and Callithrix

jacchus) and Tarsius syrichta. Interestingly, these primates

present four other linear motifs in this region:

MOD_GSK3_1, MOD_ProDkin_1, DEG_SCF_FBW7_1,

and DOC_WW_Pin1_4. Therefore, we identified the pres-

ence of the same SLIMs in two distinct branches of pri-

mates (New World monkeys and Tarsiidae) that live in

somewhat similar rainforest environments. As mentioned

before, FOXP3 is the only FOXP member playing a role in

the immune system, suggesting that at least one of these

motifs is associated with the immune response, indicating

adaptation through convergence or the maintenance of a

primate ancestral state.

Another interesting finding is the sharing of the linear

motif LIG_PTAP_UEV_1 between Neanderthals and mod-

ern humans due to the Gly175Ser (human position) muta-

tion (Table 4). It has also been suggested that linear motifs

mediate interactions between viruses with their hosts (Ha-

gai et al., 2014). In fact, LIG_PTAP_UEV_1 mediates the

binding of several cellular and viral proteins to the UEV do-

main of the class E vacuolar sorting protein Tsg101 (Göt-

tlinger et al., 1991), and it is essential for the efficient

egress of viral particles from many enveloped RNA viruses

(Bieniasz, 2006). Our results indicate that this motif may

have played an important role in Homo self-immune de-

fense during the Pleistocene.

Regarding FOXP4, a striking difference between

mammals and Sauropsida was also found (birds and rep-

tiles, Table 2). For instance, the loss of

LIG_CtBP_PxDLS_1 in mammals is due to the substitu-

tion of a leucine for proline at aligned position 408, proba-

bly after the divergence of Synapsida and Sauropsida.

Mendoza et al. (2015) showed that the presence of the CtBP

binding region in the bird Taeniopygia guttata has been as-

sociated with the potential FOXP4 regulation capacity.

This finding for CtBP interaction may be associated with an

enhanced potential for transcriptional repression of

FOXP4, known for FOXP1 and FOXP2 (Mendoza et al.,

2015). At aligned position 689, almost all non-mammals

present a motif that interacts with FHA (LIG_FHA_1 or

LIG_FHA_2), while mammals present a DOC_USP7_1

motif.

To better understand the role of SLIMs in evolution,

we additionally compared members within the FOXP fam-

ily to verify the number of unique linear motifs in each

paralog (Table 5). The number of predicted types of SLIMs

range from 28 (FOXP2) to 39 (FOXP4). Furthermore,

FOXP3 presents three unique motifs (DOC_PP2B_1,

TRG_NLS_MonoCore_2, and TRG_NLS_MonoExtN_4),

FOXP1 presents four (DEG_SCF_FBW7_2,

LIG_PCNA_PIPBox_1, LIG_WD40_WDR5_1, and

TRG_NES_CRM1_1), while FOXP2 presents no unique

SLIM. FOXP4 presents six motifs, among which three

(DOC_PP1_RVXF_1, LIG_BRCT_BRAC1_2, and

TRG_NLS_MonoExtC_3) are common to almost all spe-

cies investigated in the current study.

Molecular evolutionary patterns

Evolutionary tests for FOXP1, FOXP2, FOXP3 and

FOXP4 considering all the tetrapod species investigated in

this study indicated that the best log-likelihood model is

M1a, which assumes purifying selection and neutral � val-

ues. FOXP1, FOXP2 and FOXP4 present more than 95% of

the sites, with � = 0.03066, 0.01965 and 0.02778, respec-

tively (Table S7), indicating a strong role for purifying se-

lection. FOXP3 presents 10% of � values equal to 1, which
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Table 3 - FOXP3 Linear motifs changes in Mammals, as predicted by ELM.

Aligned Position 194

Nucleotide GTG- > ATG GTG- > ACA GTG- > TTG GTG- > GGG GTG- > GCA GTG- > GCG GTG- > ACG

Amino acid Val- > Met Val- > Thr Val- > Leu Val- > Gly Val- > Ala Val- > Ala Val- > Thr

Grantham Score 21 69 32 109 64 64 69

Homo sapiens 0o

Pan troglodytes 0o

Pan paniscus 0o

Gorilla gorilla 0o

Pongo abellii 0o

Pongo pygameus 0o

Hylobates lar 0o

Nomascus 0o

Macaca mulatta 1o

Papio anubis 1o

Chlorocebus sabaeus 1o

Saimiri boliviensis 1b e o q2 w

Callithrix jacchus 1b e o q2 w

Galeopterus variegatus 0o

Tarsius syrichta 1b e o q2 w

Tupaia chinensis 1m3 j o

Sorex araneus 1o

Mus musculus 1c

Cricetulus griseus 1c

Rattus norvegicus 1c

Octodon degus 1o

Oryctolagus cuniculus 1o

Ochotona princeps 1o

Physeter catodon 1o

Orcinus orca 1o

Camelus ferus 0o

Bos taurus 0o

Equus caballus 1o

Ailuropoda melanoleuca 0o

Felis catus 0o

Canis lupus familiaris 0

Vicugna pacos 0o

Panthera tigris 0o

Mustela putorius furo 0o

Odobenus rosmarus 0o

Leptonychotes weddellii 0o

Ceratotherium simum 1b e o q2 w

Eptesicus fuscus 0o

Myotis brandtii 0o

Pteropus alecto 1s

Condylura cristata 1o

Chrysochloris asiatica 1c

Erinaceus europaeus 1

Echinops telfairi 1b e o q2 w

Orycteropus afer afer 1b e o q2 w

Loxodonta africana 1f t v

Trichechus manatus 1e w

Dasypus novemcinctus 1o2 s

* indicates gap. Syn = synonymous change. Zero (0) indicates the amino acid present in the Homo sapiens reference sequence whereas 1 indicates a vari-

ant amino acid .Subscribed letters indicate the predicted presence of specific Eukaryotic Linear Motifs (see code shown in Table S9). The nature of modi-

fication is not representing an ancestry and descendant relationship. Grantham scores predicted as conservative (0-50) moderately conservative (51-100)

moderately radical (101-150) or radical (> 151).



indicates molecular neutral evolution and/or relaxation of

functional constraints.

Additionally, we used the results from the Bayes Em-

pirical Bayes (BEB) test to calculate the posterior probabil-

ities that each codon is under positive selection (Yang,

2007). The BEB values are only significant for M2 and M8

(that include such selection), therefore this last strategy was

only adopted to detect eventual functional sites. Such anal-

ysis showed four sites in mammals with � > 1 and probabil-

ity > 91%, but the p value was not significant (Table S7).

Regardless, it is important to highlight that one of the sites

inferred with � = 1.06 (probability = 98.9%) is located at

position 194 of FOXP3 (Table 3). This position presents

differences in SLIM prediction (MOD_GSK3_1,

MOD_ProDkin_1, MOD_CK1_1, DEG_SCF_FBW7_1,

and DOC_WW_Pin1_4) in Saimiri boliviensis, Callithrix

jacchus, and Tarsius syrichta when compared with the

other species. Saimiri boliviensis and Callithrix jacchus

probably share the same linear motifs because of their clear

and relatively recent common origin, but Tarsius syrichta,

which is phylogenetically more distant, may present them

because of convergent evolution (Tables S6.3 and 3).

MOD_ProdKin_1 is a post-translational modification site

phosphorylated by a MAP kinase, while

DEG_SCF_FBW7_1 is a degradation site mediated by an

important protein complex (Skp, Cullin, F-box containing

complex or SCF) that plays a role in checkpoints during the

cell cycle (Nguyen Ba et al., 2012). DOC_WW_Pin1_4 in-

teracts with the enzyme Pin1, whose function is also associ-

ated with the cell cycle, among others. Additionally, Pin1

regulates the immune response (Gavva et al., 1997; Wulf et

al., 2002; Wijchers et al., 2006; Saxena et al., 2010), which
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Table 4 - FOXP3-specific changes in primates.

Organisms Aligned position Human position AA Change Motifs1

Neanderthal and Humans 140 132 Pro- > Thr (+2) DEG_SCF_FBW7_1

183 175 Gly- > Ser (+) LIG_PTAP_UEV_1

Neanderthal 192 184 Ser- > Leu (-) MOD_CK1_1, (+) DOC_MAPK_1

Catarrhini 278 270 Pro- > Ser (+) MOD_GSK3_1

Haplorhini2 82 74 Val- > Leu (-) DOC_WW_Pin1_4, (-)MOD_ProDKin_1

97 89 Ser- > Leu

129 121 Arg- > His

132 124 Asp- > Glu

181 173 Ser- > Asn (-)DOC_WW_Pin1_4, (-) MOD_ProDKin_1

246 238 Val- > Met

262 254 Gly- > Ser

338 325 Phe- > Leu

424 411 Phe- > Leu

1+: change causes motif gain; -: change causes motif loss.
2Excluding Tarsius syrichta.

Table 5 - Number of shared and unique short linear motifs (SLIMs) among Tetrapoda FOXPs.

Protein Total type of

SLIMs

Number of unique

SLIMs

Total SLIMs in

Homo sapiens

Total SLIMs in Pan

sp.

Total SLMIs in

Serinus canaria1

Total of species

compared

FOXP1 34 42 132 132 135 50

FOXP2 28 0 143 142 140 54

FOXP3 32 33 69 62 - 57

FOXP4 39 64 142 143 160 65

1Bird, representing Sauropsida.
2DEG_SCF_FBW7_2, LIG_PCNA_PIPBox_1, LIG_WD40_WDR5_1, and TRG_NES_CRM1_1);
3 DOC_PP2B_1, TRG_NLS_MonoCore_2, and TRG_NLS_MonoExtN_4;
4 FOXP4 presents six motifs, among which three (DOC_PP1_RVXF_1, LIG_BRCT_BRAC1_2, and TRG_NLS_MonoExtC_3) are common to almost

all species investigated in the current study.



is a known function of FOXP3. Again, as we identified the

presence of the same SLIMs in two distinct primate

branches that live in similar environments (rainforest), this

allow us to infer that a simple neutral model is insufficient

to explain this scenario.

In the case of FOXP4 (Table S8), the Branch Site

model indicated that mammals have a � value 3.7 times

higher than non-mammals (0.66102 versus 0.18012), a re-

sult compatible with relaxation of evolutionary pressures.

This striking difference (p < 0.001) may be attributed to

certain changes, such as the absence of the interaction site

for CtBP (LIG_CtBP_PxDLS_1) in all mammals (except

Sus scrofa). Another structural/functional change that can

explain the distinct � values observed between mammals

and non-mammals is the presence of a glutamine-rich re-

gion in mammalian FOXP4, associated to its repression

ability.

Conclusion

Our study reveals some important general and more

specific findings. For instance, 70% of the disorder content

has been retained in FOXP1, FOXP2, and FOXP4

orthologs. Some of the results obtained can be associated

with taxa-specific conditions, while others may represent

molecular convergence. In fact, we found changes at

FOXP3 sites with possible functional implications in the

primate branch, including the genus Homo. Finally, the

FOXP1 and FOXP4 results show instigating differences

between mammals and non-mammals, suggesting their role

in the emergence of adaptive novelty within the taxon

Tetrapoda. Our results indicate that part of the FOXP evo-

lutionary “stability” over a long evolutionary period may

be attributed to the maintenance of a similar proportion of

disordered regions, but not to amino acid content or linear

motifs. Moreover, some of the changes can be interpreted

as indicating taxa-specific adaptations, since they are prob-

ably functional.
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