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ABSTRACT

Modularity Density Maximization is a graph clustering problem which avoids the

resolution limit degeneracy of the Modularity Maximization problem. This thesis aims

at solving larger instances than current Modularity Density heuristics do, and show how

close the obtained solutions are to the expected clustering. Three main contributions

arise from this objective. The first one is about the theoretical contributions about

properties of Modularity Density based prioritizers. The second one is the development

of eight Modularity Density Maximization heuristics. Our heuristics are compared

with optimal results from the literature, and with GAOD, iMeme-Net, HAIN, BMD-λ

heuristics. Our results are also compared with CNM and Louvain which are heuristics

for Modularity Maximization that solve instances with thousands of nodes. The

tests were carried out by using graphs from the “Stanford Large Network Dataset

Collection”. The experiments have shown that our eight heuristics found solutions for

graphs with hundreds of thousands of nodes. Our results have also shown that five of

our heuristics surpassed the current state-of-the-art Modularity Density Maximization

heuristic solvers for large graphs. A third contribution is the proposal of six column

generation methods. These methods use exact and heuristic auxiliary solvers and an

initial variable generator. Comparisons among our proposed column generations and

state-of-the-art algorithms were also carried out. The results showed that: (i) two of our

methods surpassed the state-of-the-art algorithms in terms of time, and (ii) our methods

proved the optimal value for larger instances than current approaches can tackle. Our

results suggest clear improvements to the state-of-the-art results for the Modularity

Density Maximization problem.

Keywords: Clustering. modularity density maximization. heuristic search. multilevel

heuristics. local search. column generation.
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1 INTRODUCTION

Graph clustering identification has recently attracted interest from several areas

of Computer Science (CHAN; YEUNG, 2011; EATON; MANSBACH, 2012;

FORTUNATO; CASTELLANO, 2012; XIE; KELLEY; SZYMANSKI, 2013; TIAN

et al., 2014; BARCZ et al., 2015; PEI; CHAKRABORTY; SYCARA, 2015; SANKAR;

RAVINDRAN; SHIVASHANKAR, 2015). Identifying clusters in networks is a

relevant application in different fields, e.g.: (i) astronomy, for automatic stellar cluster

recognition (SCHMEJA, 2011); (ii) biology, for finding protein complexes (NEPUSZ;

YU; PACCANARO, 2012) and mapping metabolic reactions (GUIMERA; AMARAL,

2005); (iii) health sciences, to identify functional memory involved in olfactory

recognition (MEUNIER et al., 2014); (iv) social sciences, to recognize criminal

organizations (FERRARA et al., 2014; CALDERONI; BRUNETTO; PICCARDI,

2017).

An example of a recent motivation of such a problem can be seen in the clustering

solutions for three social graphs of Figure 1.1. The clusterings of the figure are found

from the Facebook profile of three different people called (a), (b), and (c). Each

connection is a friendship between two friends of the respective “owner” of such graph.

The clustering method did not request any other information than the graph, although it

discovered meaningful groups. For the graph in (a), cluster 1 has people who worked

with him in the past; cluster 2 is composed of people of (a)’s hometown; cluster 3 is

composed of people who currently works in with (a); clusters 4 and 5 have the relatives

of (a) and (a)’s fianceé. For the graph in (b), cluster 1 is composed of (b)’s family;

cluster 6 has relatives of (b)’s wife; clusters 2, 3, 4, and 5 are composed of teachers

and students of the Information Systems, Internet Systems, Computer Science, and

Mechanical Engineering courses respectively, that are placed where (b) is a teacher.

For the graph in (c), clusters 1 and 4 are composed of the family of (c)’s mother and

father respectively; co-workers are identified in cluster 2; people who lived in the (c)’s

hometown are in cluster 3; clusters 5 and 6 are composed of his colleagues when he
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studied in Biology and Computer Science courses respectively. These results could be

used for shopping recommendation and criminal investigations.

Figure 1.1: Three examples of clustering in social networks.
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Usually, clusters can be detected from graphs where nodes are entities in the real

world, and edges denote the relationship between two nodes. The methods used for

detection are typically applied to overlapping and non-overlapping clusters. In the first

group, a node can (possibly) belong to several clusters, whereas in the second, each

node belongs to a single cluster.

To detect non-overlapping clusters, some methods only use the graph topology.

The strength of relationships can be expressed as edge or arc weights. In these

methods, the modular property of a set of nodes is used to detect clusters. The modular

property of a set of nodes is characterized by a higher density of edges inside than

outside clusters (RADICCHI et al., 2004; FORTUNATO; CASTELLANO, 2012; XIE;

KELLEY; SZYMANSKI, 2013).

Modularity optimization has been first introduced by Newman and Girvan (2004)

and uses the modular feature to determine which nodes belong to each cluster.

A modularity solution is a partition of disjoint nodes that maximizes an objective

function which represents the difference between the internal and the expected cluster

connectivity.
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However, there are some degeneracies of Modularity Maximization reported in

the literature. The “resolution limit” has been proved by Fortunato and Barthélemy

(2007) in which cliques with a different number of nodes are merged into the

optimal solution, even if they are connected by a single edge. This behavior is a

degeneracy for Modularity Maximization because the modular property is violated

for optimal partitions. Two other degeneracies are reported by Good, Montjoye

and Clauset (2010): there is an exponential number of suboptimal solutions, and

the number of nodes has a positive correlation with the optimal modularity value.

Efforts to avoid these degeneracies are made by reformulating the objective function

of Modularity Maximization in, e.g. (MUFF; RAO; CAFLISCH, 2005; ARENAS;

FERNANDEZ; GOMEZ, 2008; LI et al., 2008; CAFIERI; HANSEN; LIBERTI,

2010; TRAAG; DOOREN; NESTEROV, 2011; GRANELL; GÓMEZ; ARENAS,

2012; CHAKRABORTY et al., 2013; CHEN; NGUYEN; SZYMANSKI, 2013; CHEN;

KUZMIN; SZYMANSKI, 2014).

One of these Modularity Maximization reformulations is known as Modularity

Density Maximization. The Modularity Density Maximization problem has been

introduced by Li et al. (2008). It has a new objective function which uses the number

of nodes of each cluster to normalize the objective value instead of the total number of

edges. The objective function maximizes the sum of all differences between the internal

and external connectivity of each cluster.

The exact solving of the Modularity Density Maximization is a binary nonlinear

problem (0–1 NLP) which makes use of conventional solvers difficulty. Li et al. (2008)

have presented exact binary non-linear (0-1 NLP) mathematical programming which

makes it difficult to use with common solvers. Karimi-Majd, Fathian and Amiri (2014)

have shown an improvement to the Li et al. (2008) model, where the parameter of the

number of clusters is not required. Costa (2015) has created four different mixed integer

linear models converted from the 0-1 NLP. Instances with at most 40 nodes have been

tested, and the results point to the difficulty in the exact solving.

Heuristics for Modularity Density Maximization have been reported in Liu and
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Zeng (2010), Gong et al. (2012), and Karimi-Majd, Fathian and Amiri (2014). Liu

and Zeng (2010) have presented the genetic algorithm GAOD, Gong et al. (2012) have

presented the memetic algorithm iMeme-Net, and Karimi-Majd, Fathian and Amiri

(2014) have created a hybrid artificial immune network heuristic HAIN. Karimi-Majd,

Fathian and Amiri (2014) have reported solutions for instances with at most 6,594

edges and compared the HAIN with GAOD and iMeme-Net. The HAIN method has

surpassed them by finding higher Modularity Density Maximization values in less

time (KARIMI-MAJD; FATHIAN; AMIRI, 2014). Costa et al. (2016) have presented

eight divisive heuristics for Modularity Density Maximization that have provided

solutions close to the optimal one. These divisive heuristics are based on mathematical

programming formulations. Izunaga, Matsui and Yamamoto (2016) have introduced

methods to obtain lower and upper bounds on the Modularity Density Maximization

objective value. As regards lower bounds, they have created a hybrid heuristic that

combines a spectral method and dynamic programming; for upper bounds, they have

used a variant of semidefinite programming called 0-1 SDP.

The current Modularity Density Maximization heuristics reported in the literature

are limited to solve instances of less than 5, 000 nodes in over 500 seconds. This time has

been obtained by HAIN. In contrast, there are heuristics for Modularity Maximization

that solve instances with more than 300, 000 nodes in less than 5 seconds (see Louvain

method in Section 2.1.1.2). Thus, we still lack a Modularity Density Maximization

heuristic that solves similar larger instances to enable the comparison among heuristics

that use Modularity Density Maximization and Modularity Maximization-based

functions for graphs with more than 5, 000 nodes.

Large graphs are the usual instances for clustering problems. For example, Clauset,

Newman and Moore (2004) have shown a clustering detection method in a graph with

hundreds of thousands of nodes obtained from items listed on the Amazon web site

in August 2003. Palla et al. (2005), have been described instances of protein-protein

interactions of the Saccharomyces cerevisiae fungus with more than 30, 000 nodes. In

the “Stanford Large Network Dataset Collection” (LESKOVEC; KREVL, 2014), there
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are several graphs obtained from social, web communities, communication, citation and

signed networks with over tens of thousands of nodes. These are some examples that

show the importance of clustering detection in large networks.

1.1 Objective

The main goal of this thesis is to solve larger instances than the current Modularity

Density Maximization heuristics are able to tackle, and analyze how close the obtained

solutions are to the expected clustering.

1.2 Method

The research of the thesis is mostly quantitative because it looks for heuristics for

Modularity Density Maximization. These heuristics were evaluated by considering the

runtime, the reached objective value, and ground truth analyses.

The research for new improved heuristics for Modularity Density Maximization was

divided into the following two main lines:

1. Constructive and multilevel heuristics: development of novel Modularity Density

Maximization heuristics inspired by CNM (CLAUSET; NEWMAN; MOORE,

2004), Louvain (BLONDEL et al., 2008), and multilevel methods (ROTTA;

NOACK, 2011) which are heuristics that find solutions for the Modularity

Maximization problem;

2. Column generation algorithms: development of heuristics based on relaxations

over exact mathematical models of Li et al. (2008), Karimi-Majd, Fathian and

Amiri (2014), and Costa (2015) by using column generation methods.

The results were compared with the existing literature data for exact and heuristic

methods for Modularity Density Maximization. The amortized complexity was

calculated for each novel heuristic.
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The resulting partitions of the experiments were used in ground truth experiments

with graph instances in which expected partitions are known. These experiments are

also used in Lancichinetti et al. (2011), Lancichinetti and Fortunato (2012), Pizzuti

(2012), Gong et al. (2012), Jiang and McQuay (2012), Chakraborty et al. (2013),

Meo et al. (2013), Xie, Kelley and Szymanski (2013), Darst, Nussinov and Fortunato

(2014), Meo et al. (2014), Hric, Darst and Fortunato (2014), Jarukasemratana and

Murata (2014), Jia et al. (2014), Karimi-Majd, Fathian and Amiri (2014), Meunier

et al. (2014), Park and Lee (2014), Sun (2014), Zhao et al. (2015). To measure the

closeness of the heuristic results to the expected partition, we used the “Matthews

Correlation Coefficient” (φ) that takes into account true and false positives, and true

and false negatives (MATTHEWS, 1975). These experiments enabled the verification

of the distance between heuristic results and expected partitions.

1.3 Contributions of this Research

The results of this research can be divided into three main contributions: (i) the

theoretical results over failures of the Modularity Density Maximization based function,

(ii) the eight new constructive and multilevel heuristics, and (iii) the six new column

generation algorithms.

Our theoretical results showed that the Modularity Density Maximization objective

function fails when it is used in some constructive heuristics. So, we present an

alternative prioritizer function that detects clusters with densely connected nodes. A

feature of this alternative function is also discussed for star-shaped clusters, suggesting

future researches in this direction.

In the context of heuristic contributions, some of the eight new constructive and

multilevel heuristics surpassed the objective function value reported by iMeme-Net,

HAIN, and BMD-λ for some real graphs. Ground truth experiments in artificial random

graphs were performed and suggest that some of our heuristics lead to better cluster

detection than CNM and Louvain which are known clustering heuristics used in large



19

graphs.

The algorithmic contributions are about six new column generation methods.

Comparisons of our proposed methods with state-of-the-art algorithms showed that: (i)

two of our methods surpass the exact state-of-the-art algorithms in terms of time, and

(ii) our methods provide optimal values for larger instances than current approaches can

tackle.

1.4 Contributions to the Literature

The following publications result from our research:

• SANTIAGO, R.; LAMB, L. C. Identifying Relationship Patterns Inside

Communities. International Joint Conference on Artificial Intelligence

School - Doctoral Consortium. 2014. (poster paper)

• SANTIAGO, R.; LAMB, L. C. On the Role of Degree Influence in

Suboptimal Modularity Maximization. In: Proceedings of IEEE Congress on

Evolutionary Computation. Vancouver: IEEE, 2016. p. 4618–4625. ISBN

978-1-5090-0622-9. (full paper)

• SANTIAGO, R.; LAMB, L. C. Efficient Stochastic Local Search for Modularity

Maximization. In: Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference Companion. Denver: ACM, 2016. p. 51–52. ISBN

9781450343237. (poster paper)

• SANTIAGO, R.; ZUNINO, W.; CONCATTO, F.; LAMB, L. C. A New Model

and Heuristic for Infection Minimization by Cutting Relationships. In: HIROSE,

A. et al. (Ed.). Lecture Notes in Computer Science. Kyoto: Springer

International Publishing, 2016. v. 9948, cap. Neural Inf, p. 500–508. ISBN

978-3-319-46671-2. (full paper)

• SANTIAGO, R.; LAMB, L. C. Efficient modularity density heuristics for large

graphs. European Journal of Operational Research, v. 258, n. 3, p. 844–865,
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May 2017. (full paper)

• SANTIAGO, R.; LAMB, L. C. Exact computational solution of Modularity

Density Maximization by effective column generation. Computers &

Operations Research, v. 86, n. 3, p. 18–29, October 2017. (full paper)

• SCHMITT R., RAMOS P.; SANTIAGO, R.; LAMB, L. C. Novel Clique

Enumeration Heuristic for Detecting Overlapping Clusters. In: IEEE Congress

on Evolutionary Computation. Donostia: IEEE, 2017. (full paper)

• CONCATTO, F.; ZUNINO, W.; GIANCOLI, L.; SANTIAGO, R.; LAMB, L.

C. Genetic Algorithm for Epidemic Mitigation by Removing Relationships. In:

Genetic and Evolutionary Computation Conference. Berlin: ACM, 2017. (full

paper)

• SANTIAGO, R.; LAMB, L. C. Efficient Quantitative Heuristics for Graph

Clustering. In: Genetic and Evolutionary Computation Conference

Companion. Berlin: ACM, 2017. (poster paper)

1.5 Contributions to Scientific Projects

The author of this thesis is the lead researcher at Laboratory of Applied Intelligence

(LIA, Laboratório de Inteligência Aplicada) of University of Vale do Itajaí. In the

following, we list the scientific projects developed at LIA that are motivated by our

preliminary results and were/are advised by the author of this thesis.

• MARINI, R. Variable Neighborhood Search for the Modularity Clustering

Problem, 2014 - 2015. Sponsored by the government of the state of Santa Catarina

through law 170;

• SANTOS, E. S. Ant Colony Optimization for the Modularity Clustering Problem,

2014 - 2015. Sponsored by the government of the state of Santa Catarina through

law 170;

• RESE, A. L. R. Particle Swarm Optimization for the Modularity Clustering
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Problem, 2014 - 2015. Computer Science undergraduate dissertation;

• MARINI, R. Iterated Local Search for the Modularity Clustering Problem, 2014

- 2015. Computer Science undergraduate dissertation;

• CÂNDIDO, G. Modularity for Overlapping Community Detection, 2015.

Computer Science undergraduate dissertation;

• RAMOS, P. Overlapping Community Detection by using the “Clique Percolation

Method”, 2015. Computer Science undergraduate dissertation;

• ZUNINO, W. Heuristic for Mitigation of the Contagious Spreading in Networks,

2015 - 2016. Sponsored by the government of the state of Santa Catarina through

law 170;

• SCHMITT, R. O. Clique Heuristic for the Overlapping Community Detection,

2015 - 2016. Sponsored by the government of the state of Santa Catarina through

law 170;

• BARAGATTI, M. V. Heuristic for the Maximization of the Contagious Spreading,

2015 - 2016. Computer Science undergraduate dissertation;

• MORAES, R. R. E. Column Generation Heuristic for the Community Detection,

2015 - 2016. Computer Science undergraduate dissertation;

• BRUZACA, M. M. A* Algorithm for the Modularity Density Problem, 2016.

Computer Science undergraduate dissertation;

• LOPES, M. E. P. Hybrid Local Search for the Signed Modularity Density

Problem, 2016. Computer Science undergraduate dissertation;

• IZIDORO, M. F. Parallel Heuristic for the Modularity Density Problem, 2016.

Computer Science undergraduate dissertation;

• SOUZA, M. L. Constructive Searches Analyses for the Community Detection,

2015 - 2017. Sponsored by the government of the state of Santa Catarina through

law 171;

• LUCHTENBERG, G. Column Generation Heuristic for the Community
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Detection, 2015 - 2017. Sponsored by the government of the state of Santa

Catarina through law 171;

• SCHMITT, R. O. Neural Network for the Overlapping Community Detection,

2016 - 2017. Sponsored by the government of the state of Santa Catarina through

law 170;

• GALVAGNO, I. Heuristic to Manage Resources in the Control of Aedes Aegypt,

2016 - 2017. Sponsored by the government of the state of Santa Catarina through

law 170;

• ARALDI, J. E. Bat Heuristic for the Modularity Density Problem, 2016 - 2017.

Computer Science undergraduate dissertation;

• PERUSSOLO, L. C. Competitive Contagious Spreading Analyses, 2016 - 2017.

Computer Science undergraduate dissertation;

• GIANCOLLI, L. A. Minimization of Contagious Spreading in Weighted and

Directed Networks, 2016 - 2017. Computer Science undergraduate dissertation;

• SCHMITT, R. O. Shiokawa-Fujiwara-Onizuka Heuristic Adaptation for Signed

Networks, 2016 - 2017. Sponsored by the government of the state of Santa

Catarina through law 170.

1.6 Organization

The remainder of this document is divided into seven coming chapters:

• Chapter 2 presents the background of Modularity Maximization and Modularity

Density Maximization problems;

• Chapter 3 shows the theoretical contributions of this work;

• Chapter 4 and 5 are about our heuristic and algorithm contributions respectively;

• Chapter 6 presents the ground truth analyses, comparing our heuristics and

the optimal solutions of Modularity Maximization and Modularity Density

Maximization;
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• Chapter 7 concludes the thesis and suggests further investigations.
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2 BACKGROUND

In this chapter, we review the literature related to the thesis research. The first

section is on the Modularity Maximization problem, its main properties and methods.

Although this problem is not listed in the thesis objectives, the Modularity Maximization

is important because it has degeneracies that inspired the development of the Modularity

Density Maximization problem which is related to our objectives. The second section

is about the Modularity Density Maximization problem, presenting basic concepts,

properties, and known methods to solve it.

2.1 Modularity Maximization

In 2004, Newman and Girvan proposed a function to evaluate partitions composed

of modular clusters (NEWMAN; GIRVAN, 2004). The work formalized the

Modularity Maximization problem and introduced two heuristics for this problem,

called “shortest-path betweenness” and “random walks”, based on earlier studies by

Newman (NEWMAN, 2003).

The objective function of this search problem has two main components. The first

one is a gain factor which is the total number of edges inside the cluster. The second

one is the penalty factor and is the sum of the probability of each pair of nodes from the

same cluster being connected. The two components are normalized by the total number

of edges of the graph. Thus, a Modularity Maximization method has to find the partition

which has the maximal difference between the number of edges inside of the clusters

and the expected number of edges.

The evaluation function was initially designed for undirected graph instances. The

graph G = (V,E) is the input of the problem, where V is the set of nodes, and E the set

of edges. The evaluation for undirected graphs can be seen in Equation (2.1), where di is

the degree of node i ∈ V . Equation (2.1) is the modularity function for a given partition

C. Partition C is a set of disjoint clusters. Versions of the Modularity Maximization
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objective function for weighted and directed graphs are reported in Newman (2004) and

Leicht and Newman (2008) respectively.

Q(C) =
1

2|E|
∑
c∈C

∑
i,j∈c

(
aij −

didj
2|E|

)
(2.1)

Modularity Maximization is a hard computational problem (BRANDES et al.,

2008). This feature has led the research for heuristic methods, as seen in Agarwal

and Kempe (2008), Aloise et al. (2013), Clauset, Newman and Moore (2004), Djidjev

and Onus (2013), Krzakala et al. (2013), Nascimento and Pitsoulis (2013), Newman

(2013), Pizzuti (2012), Rotta and Noack (2011). There are also efforts in the

field of mathematical programming to propose exact methods (ALOISE et al., 2010;

BRANDES et al., 2008; XU; TSOKA; PAPAGEORGIOU, 2007).

Some issues have been reported for Modularity Maximization. The “resolution

limit” in Modularity Maximization has been proved by Fortunato and Barthélemy

(2007). They found that Modularity Maximization may fail to identify clusters smaller

than a specific scale. For optimal solutions of Modularity Maximization, different

cliques may be merged into a single cluster, even if they are connected by a single

edge. So, important substructures can be missed into the optimal solution. This issue

can most likely occur with clusters which have less than
√

2m internal edges, where

m is the number of edges of the graph. This behavior is an issue in modularity-based

problems because the modular property is broken in optimal solutions. Two other issues

are reported by Good, Montjoye and Clauset (2010): there is an exponential number

of suboptimal solutions, and the number of nodes have a positive correlation with

optimal modularity value. The degeneration about the number of exponential solutions

is addressed by our results reported in Appendix A. Efforts to avoid the resolution

limit are made by reformulating the objective function of Modularity Maximization

(ARENAS; FERNANDEZ; GOMEZ, 2008; CAFIERI; HANSEN; LIBERTI, 2010;

CHAKRABORTY et al., 2013; CHEN; NGUYEN; SZYMANSKI, 2013; CHEN;

KUZMIN; SZYMANSKI, 2014; GRANELL; GÓMEZ; ARENAS, 2012; LI et al.,



26

2008; MUFF; RAO; CAFLISCH, 2005; TRAAG; DOOREN; NESTEROV, 2011).

The following subsection presents heuristics for Modularity Maximization. They

inspired some of the contributions reported in this thesis which are described in Chapter

4.

2.1.1 Heuristics for Modularity Maximization

As an NP-Hard problem, Modularity Maximization cannot solve large instances

in polynomial time. In this section, heuristics for large graphs are described for the

Modularity Maximization problem, which inspired the creation of our eight novel

heuristics presented in Chapter 4.

2.1.1.1 CNM

Clauset, Newman and Moore (2004) reported that a heuristic for Modularity

Maximization called CNM (or Fast Greedy) resulted in high modularity partitions for

graphs with over 400,000 nodes and 2,000,000 edges. CNM is a constructive heuristic,

where the set of data structures lead to fast results. Binary heaps are used to store the

highest option when the search is constructing the solution, applying the ∆Q function

(2.2), to identify the difference between the incumbent solution and the next movement.

The method has a time complexity of O(|E|d log |V |), where d is the depth of the

dendrogram. In recent years, a new version of heuristic replaced the binary with

Fibonacci heaps.

In this heuristic, the starting partition is composed of |V | singleton clusters, where

each node belongs to a cluster of size 1. The matrix ∆Qij is filled with the gain value

from merging each pair of i and j clusters, calculated by Function (2.2). Before the first

iteration could be performed, a total of |V | binary max heaps are created and assigned

to each line of the matrix ∆Qij , plus a heap, called H that stores the highest values of

each line heap. For each starting cluster, a data structure ai is defined with the value
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di/2m. For each iteration, the pair of clusters with the highest ∆Qij value is merged.

∆Q(i, j) =


1

2|E| −
diSdj
4|E|4 , if i and j are connected

0, otherwise
(2.2)

The following steps are performed during each iteration after the preparation of data

structures:

1. select the highest gain stored in the heap H , to decide the two clusters to be

merged;

2. update ∆Qij and ai;

3. go to step 1, until only one cluster remains.

The updates in the matrix are performed using rules for different merge

configurations. Clusters i and j are selected to be merged: (i) if a cluster k is connected

to both i and j, then

∆Q′jk = ∆Qik + ∆Qjk; (2.3)

(ii) if a cluster k is connected to i and is not connected to j, then

∆Q′jk = ∆Qik − 2ajak; (2.4)

and (iii) if a cluster k is connected to j and is not connected to i, then

∆Q′jk = ∆Qjk − 2aiak. (2.5)

2.1.1.2 Louvain Method

Blondel et al. (2008) created a local search heuristic to find modular clusters in

large graphs. The method is seen in Algorithm 1. Given a graph G = (V,E), the
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Algorithm 1: Louvain method (BLONDEL et al., 2008).
Input : G(V,E)

1 partition←
{
{v} : v ∈ V

}
2 best← partition
3 improvement← true
4 while improvement do
5 improvement← false

// level phase
6 repeat
7 moves← 0
8 foreach v ∈ V do
9 ∆Qv ← 0

10 cv ← ∅
11 foreach c ∈ CN(v) do
12 if ∆Qv < ∆Qcoarse(v, c) then
13 ∆Qv ←∆Qcoarse(v, c)
14 cv ← c

15 if cv 6= ∅ then
16 moves←moves+ 1
17 in partition, move node v to cluster cv

18 until moves = 0
// coarsening phase

19 if Q(best) < Q(partition) then
20 best← partition
21 improvement← true
22 clusters are coarsened as nodes in partition and graph G(V,E)

23 return best

heuristic starts with a partition composed of |V | singleton nodes. After that, iterations

are performed until no improvement in the current partition is found. Each iteration is

composed of the level and coarsening phases. The level phase executes a local search

that removes each node from its clusters and moves it to the cluster that maximizes

the Modularity Maximization objective function. This procedure is repeated until no

improvement is found. Then the coarsening phase changes the graph instance by

transforming the cluster in coarsened nodes. This procedure increases the internal

number of edges of each node, and the edges that connect each pair of coarsened nodes
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Figure 2.1: Louvain method executed on a graph with 16 nodes, which demanded three
iterations.
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Source: Adapted from Blondel et al. (2008).

are merged and their weights are summed. Then, a new iteration is made by applying

the level phase again. The Louvain method iterates until no improvement is found

for either of the two phases. Figure 2.1 shows three iterations of the execution of the

Louvain method over a graph with 16 nodes.

Blondel et al. (2008) show that the Louvain method surpasses the Q values (values

obtained through the objective function of the Modularity Maximization problem)

and is faster than CNM (CLAUSET; NEWMAN; MOORE, 2004), CNM adaptation

(WAKITA; TSURUMI, 2007), and the LP method (PONS; LATAPY, 2005). The
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tested instances are “Karate” with 34 nodes and 77 edges, “Arxiv” with 9,000 nodes

and 24,000 edges, “Internet” with 70,000 nodes and 351,000 edges, “Web nd.edu”

with 325,000 nodes and 1 million edges, “Phone” with 2.04 million nodes and 5.4

million edges, “Web uk-2015” with 39 million nodes and 783 million edges, and “Web

WebBase 2001” with 118 million nodes and 1 billion edges.

2.1.1.3 Multilevel Heuristics

Rotta and Noack (2011) reported experimental results over existing and new

coarsening and refinement methods. Their results support a new multilevel heuristic

which led to competitive results when compared to already known heuristics for

Modularity Maximization.

Coarsening are methods that merge a pair of clusters at each iteration by using a

priority criterion. They are divided into single or multi-step coarseners. A single-step

coarsener joins a pair of clusters at each iteration until the partitions become a single

cluster, or before it if a stopping criterion is met. An example of this kind of method

is CNM (CLAUSET; NEWMAN; MOORE, 2004). A multi-step coarsener method

iteratively merges l disjoint clusters with the highest priority criteria. Algorithm 2 shows

this method.

The refinement methods are heuristics which perform a local search by iteratively

moving the nodes from their current clusters to increase the Q value of the partition.

Rotta and Noack (2011), divided this kind of heuristic into three subtypes. The first

subtype is called the complete greedy refinement and performs the best node movement

at each iteration until there is no movement that improves the Q value. This method is

seen in Algorithm 3.

The second refinement method is called fast greedy, and it iterates to each node

v ∈ V and moves v to a cluster that increases the modularity value. Algorithm 4 shows

the fast greedy heuristic.

The third refinement heuristic is an adaptation of the Kerningan-Lin method
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Algorithm 2: Multi-step coarsener (ROTTA; NOACK, 2011).
Input : G(V,E), l

1 create a partition composed of the cluster set
{
{v} : v ∈ V

}
2 while ∃ cluster pair (C,D) where ∆Q(C,D) do
3 l← merge fraction ×

∣∣{(C,D) : ∆Q(C,D) > 0
}∣∣

4 mark all clusters as unmerged
5 for l most prioritized pairs (C,D) do
6 if C and D are marked as unmerged then
7 merge clusters C and D
8 mark clusters C and D as merged

Algorithm 3: Complete greedy (ROTTA; NOACK, 2011).
Input : G(V,E), partition

1 repeat
2 (v,D)← best node move
3 if ∆Qv→D > 0 then
4 move node v to cluster D

5 until ∆Qv→D ≤ 0

Algorithm 4: Fast greedy (ROTTA; NOACK, 2011).
Input : G(V,E), partition

1 repeat
2 foreach v ∈ V do
3 D ← best cluster for v
4 if ∆Qv→D > 0 then
5 move node v to cluster D

6 until no improvement is found
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(KERNIGHAN; LIN, 1970). It is similar to the fast greedy method, but it tries to escape

from a local optimum. At each iteration, the method performs the best node movements.

There is no requirement for modularity improvement. This heuristic method is seen in

Algorithm 5.

Algorithm 5: Adaptation of Kerninghan-Lin method (ROTTA; NOACK, 2011).
Input : G(V,E), partition

1 repeat
2 peak ← partition mark all nodes as moved
3 while unmoved nodes exist do
4 (v,D)← best move with v unmoved
5 move v to cluster D
6 mark v as moved
7 if Q(partition) > Q(peak) then
8 peak ← partition

9 if k has moved since the last peak then
10 break

11 partition← peak

12 until no improved partition found
13 return partition

Algorithm 6: Multilevel clustering (ROTTA; NOACK, 2011).
Input : G(V,E), coarsener, refiner
// coarsening phase

1 level[1]← G
2 for l← 1 to . . . do
3 level[l + 1]← coarsener(level[l])
4 if no clusters merged then
5 break

6 lmax ← l
// refinement phase

7 partition← nodes of the lmax
8 for l← lmax − 1 to 1 do
9 project partition from level[l + 1] to level[l]

10 partition← refiner(level[l], partition)

A multilevel heuristic that combines a single-step greedy coarsener with a fast
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greedy refiner led to the best results when efficiency is required. The best result without

scalable requirement is obtained by replacing the fast greedy with the Kernighan-Lin

adaptation presented in Algorithm 5 (ROTTA; NOACK, 2011).

2.2 Modularity Density Maximization

Motivated mainly by the resolution limit degeneracy of Modularity Maximization,

Li et al. (2008) created a search problem known as Modularity Density Maximization.

Its objective function uses the number of nodes of each cluster to normalize the objective

value instead of the total number of edges. The function maximizes the difference

between the number of internal and external edges of each cluster. The Modularity

Density Maximization function is given by Equation (2.6), whereEc is the set of internal

edges of cluster c, and Ec is the set of edges that connect an internal with an external

node.

D(C) =
∑
c∈C

(
2Ec − Ec
|c|

)
(2.6)

Costa (2015) simplified Equation (2.6) by replacing Ec with twice the number of

internal edges minus the total degree of nodes inside of the cluster c, resulting in

Equation (2.7).

D(C) =
∑
c∈C

(
2|Ec|+ 2|Ec| −

∑
v∈c dv

|c|

)
=
∑
c∈C

(
4|Ec| −

∑
v∈c dv

|c|

)
(2.7)

Function Dλ for quantified Modularity Density Maximization is shown in Equation

(2.8). This function is used to obtain the “ratio association” to find small clusters when

λ > 0.5, and the “ratio cut” to find large clusters when λ < 0.5. With λ = 0.5, the

function is equal to Equation (2.7). Li et al. (2008) suggested that this function can

be used to find the appropriate level of topological structure of graphs to find proper
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partitions.

Dλ(C) =
∑
c∈C

(
4λ|Ec| − (2− 2λ)

(∑
v∈c dv − 2|Ec|

)
|c|

)
(2.8)

Li et al. (2008) demonstrated that Modularity Density Maximization avoids

resolution limit and preserves modular property. They showed that Modularity Density

Maximization does not divide a clique into two parts. This proof is detailed in

subsection 2.2.1.1. The optimal partitions can identify modular clusters correctly with

different sizes. Experiments confirmed these properties by testing a linear integer exact

model to optimize the D value. Artificial graphs were created with already known

clusters, and they were submitted to the exact D solver, Girvan and Newman (2002)

algorithm and Newman (2006) spectral method. The D solver found better partitions

than the other two methods. The real graphs “Karate”, “Football” and “Journal Index”

were also submitted and showed that D maximization found precise partitions.

Other Objective Functions for Modularity Density Maximization

For weighted graph instances, an equation similar to Function (2.7) is also suggested

by Li et al. (2008). Let W (c, c) be the sum of all weights of edges from Ec and W (c, c)

be the sum of all edges from Ec. The Modularity Density Maximization objective

function for weighted graphs is seen in Equation (2.9).

Dw(C) =
∑
c∈C

(
2W (c, c)−W (c, c)

|c|

)
(2.9)

For signed graphs that represent positive and negative connections, Li, Liu and Liu

(2014) developed two evolutionary and two memetic algorithms. They extended the

original D value functions (Equations (2.8) and (2.9)). This function is in Equation

(2.10), where W+(c, c) is the sum of all positive weights of the edges which are inside

of the cluster c, W−(c, c) is the absolute value of the sum of all negative weights of

edges which are inside of the cluster c, W+(c, c) is the sum of all positive weights of

edges which connect the cluster c to the other cluster, W−(c, c) is the absolute value of
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the sum of all negative weights of edges which connect cluster c to another cluster.

D±λ (C) =
∑
c∈C

(
2λW+(c, c) + 2(1− λ)W+(c, c)

|c|

)

−
∑
c∈C

(
2(1− λ)W−(c, c) + 2λW−(c, c)

|c|

) (2.10)

The D optimization was adapted to bipartite graphs, as can be seen in Li et al. (2015).

There are two objective functions for bipartite graphs. The first is for an unweighted

bipartite graph G = (U, V,E), where U and V are disjoint set of nodes, u ∈ U , and

v ∈ V for all {u, v} ∈ E, EU,V is the set of edges between nodes U and V , Uc and Vc

are the set of nodes if the cluster c which belong to cluster U and V respectively, and

EUc,Vc is the set of edges between the nodes from Uc and Vc. This function can be seen

in Equation (2.11).

DB(C) =
1

|EU,V |
∑
c∈C

(
|EUc,Vc |2

|Uc| × |Vc|

)
(2.11)

The second function of Modularity Density Maximization for weighted bipartite

graph G = (U, V,E,W ), where U and V are the two disjoint sets of nodes, E is the

set of edges between U and V , and W : E → [0, 1] is the function which defines the

weight of each edge (LI et al., 2015). The Modularity Density Maximization function

for the weighted bipartite graph is in Equation (2.12). The value W (U, V ) is the sum of

all weights of the edges between U and V , Uc and Vc are the set of nodes which belong

to cluster c from U and V respectively, W (Uc, Vc) is the sum of all weights of the edges

between Uc and Vc.

DBw(C) =
1

W (U, V )

∑
c∈C

(
W (Uc, Vc)

2

|Uc| × |Vc|

)
(2.12)
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2.2.1 Theoretical Background

This section presents the theoretical properties of Modularity Density Maximization.

The resolution limit avoidance for cliques and indivisible clusters are described.

2.2.1.1 Resolution Limit Avoidance

This section shows that Modularity Density Maximization avoids the resolution

limit. Li et al. (2008) described three theorems based on the arguments of Fortunato

and Barthélemy (2007) to demonstrate that resolution limit degeneracy is avoided. The

first theorem explains that Modularity Density Maximization does not divide a clique

into two parts. The second one is about the solution of most modular networks, and the

third one is about how Modularity Density Maximization detects clusters of different

sizes. These three are explained below in the following theorems.

Theorem 1. Modularity Density Maximization does not divide a clique into two parts

(LI et al., 2008).

Proof. This proof is by contradiction. Suppose that P is a partition which divides a

clique into two parts. The first part is C1 and the second part is C2. They have n1 and

n2 nodes, respectively. The number of edges between them is n1 · n2. Where DP is

the Modularity Density Maximization of partition P , and DC is the Modularity Density

Maximization of a partition which does not divide the clique C1 ∪ C2. DP and DC

values can be seen in Equation (2.13).

DC = n1 + n2 + 1

DP =
n1(n1)− n1n2

n1

+
n2(n2 − 1)− n1n2

n2

= −2
(2.13)

Since DC > DP , Li et al. (2008) show that Modularity Density Maximization does

not divide a clique.
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Theorem 2. Modularity Density Maximization resolves most modular networks (LI et

al., 2008).

Proof. To prove this result, Li et al. (2008) used the graph G = (V,E) of the ring of m

cliques from Fortunato and Barthélemy (2007) which was used to show the resolution

limit for the Modularity Maximization problem. A similar graph can be seen in Figure

2.2. These cliques are called Km. Each clique Km has n > 3 nodes and (n2 − n)/2

edges. Suppose that there are m > 2 cliques, and the number of nodes of this graph is

|V | = nm and its number of edges is |E| = mn(n− 1)/2m.

Figure 2.2: A graph with six identical clusters connected by single links, composing a
ring network.

Km

Km

Km

Km

Km

Km

Source: Adapted from Fortunato and Barthélemy (2007).

Suppose that each cluster of the partition P is composed of one clique Km. The

modular clusters of this graph are the cliques. Each cluster of this partition P has

Dsingle value for the objective function of Modularity Density Maximization. Another

partition P ′ is composed of clusters where each one of them has k cliques. The value

of the Modularity Density Maximization for this partition is Dk. Equation (2.14) shows

the difference Dsingle − Dk. This difference is higher than zero, so partition P has a
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higher D value than P ′, proving that Modularity Density Maximization clusters do not

merge two or more cliques of a graph made up of a ring of them.

Dsingle −Dk = m

(
n− 1− 2

n

)
− m

k

kn(n− 1) + 2(k − 3)

kn

> m

[
(n− 1)− 3

n
− n− 1

2

]
> 0

(2.14)

Theorem 3. Modularity Density Maximization can detect clusters of different sizes (LI

et al., 2008).

Proof. This proof uses the graph in Figure 2.3, which is based on the schematic example

of Fortunato and Barthélemy (2007). Suppose a graph G = (V,E) composed of two

cliques Kp of size p and two cliques Km of size m, where 3 ≤ p ≤ m. Equation

(2.15) shows the difference between the D values of different partitions, whereDseparate

denotes the D value of the partition in which each cluster is a clique, Dmerge denotes

the D value of the partition that has two smaller cliques Kp merged into a single cluster.

The difference is larger than zero for p > 3. Hence Modularity Density Maximization

does not merge the cliques for a graph with the same structure of the graph G.

Dseparate −Dmerge =[
m(m− 1)− 1

m
+
m(m− 1)− 3

m
+ 2(p− 1)− 4

p

]
−
[
m(m− 1)− 1

m
+
m(m− 1)− 3

m
+ (p− 1)

]
= 2(p− 1)− 4

p
− (p− 1) > 0

(2.15)
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Figure 2.3: A graph with four cliques, where Km has m nodes, Kp has p nodes, and
p < m.

KmKm

Kp

Kp

Source: Adapted from Fortunato and Barthélemy (2007).

2.2.1.2 Indivisible Clusters

Wang et al. (2008) showed that a ring graph and an ad hoc graph composed of

indivisible clusters are not divided into optimal D partitions. The indivisible cluster is a

subgraph, where the number of inside edges is more than a half of the outside edges.

Consider a cluster N = (VN , EN) where VN is the set of nodes in N , and EN is the

set of edges in N . The cluster N is indivisible if |EN | ≥ F (|VN |) (Equation (2.16)),

where |VN | ≥ 4, and n = |VN |. Cluster N is also indivisible if |EN | ≥ (|VN |2 − 2|VN |)/2.

Figure 2.4 shows five different indivisible clusters.

F (n) =

C
2
n − n

2
, n ≥ 4, n is even

C2
n − n

2
+ 1, n ≥ 4, n is odd

(2.16)

Suppose the graphs of Figure 2.5. For these graphs suppose that Ns are indivisible

clusters where their elements are distributed uniformly, the N ′s are bipartitions of N ,

and N ′′s are composed of two adjacent N ′s from different N clusters. The number

of nodes of N ′ is equal to |N |/2. The edge set ι connects the two bipartite clusters

N ′ which are from the same N cluster, and the edge set ι′ connects the two adjacent
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Figure 2.4: Examples of modules that are indivisible clusters for optimal D partitions.
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Figure 2.5: Two graphs to support the explanation about indivisible clusters and optimal
D partitions.
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Source: Adapted from Wang et al. (2008).

N ′ clusters which are inside N ′′. The N clusters make up partition R which follows

the definitions of clusters from Radicchi et al. (2004), and N ′′ clusters compose the

recombined partition, R′.

For the ring graph in Figure 2.5 (a), Wang et al. (2008) showed the difference

between D values of R and R′ partitions. These values are called DR and DR′

respectively. Equation (2.17) shows that Modularity Density Maximization generates
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a higher value for partition R than partition R′ because ι < ι′.

DR −DR′ =
|E|
|N |
(
2|EN | − 2ι

)
− |E|
|N ′′|

(
4|EN ′′ |+ 2ι− 2ι′

)
=
|E|
|N |
(
4ι′ − 4ι

)
> 0

(2.17)

For the ad hoc graph in Figure 2.5 (b), Wang et al. (2008) showed that Modularity

Density Maximization evaluates with a higher D value for R than R′. Equation (2.18)

shows that DR is higher than DR′ .

DR −DR′ = |E|
[

2|EN | − (|E| − 1)

|N |
ι

]
− |E|
|N ′′|

[
2|EN ′′ | −

(
|E| − 5

)
ι− 4ι′

]
=
|E|
|N |

(4ι′ − 4ι) > 0

(2.18)

2.2.2 Degeneracies

This section presents two known degeneracies of the Modularity Density

Maximization problem. They are negative D for weighted networks and, the possibility

that some optimal partitions present nodes in non-adjacent clusters.

2.2.2.1 Negative Dw

Yang and Luo (2009) reported that Function (2.9) presents a degeneration in which

some clusters can obtain negative Dw. A negative cluster has internal weights smaller

than external weights. To overcome this degeneracy, they present the Normalized

Modularity Density Maximization (NMDw) function, presented here in Equation

(2.19), where W (c, C) is the total sum of edge weights which have any endpoint node
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in cluster c.

NMDw(C) =
∑
c∈C

(
2W (c, c)−W (c, c)

W (c, C)

)
(2.19)

Yang and Luo (2009) also show that NMDw can resolve the resolution limit by

using similar examples from Fortunato and Barthélemy (2007).

2.2.2.2 Cluster of Strangers

Costa (2014) and Costa (2015) found a degeneration in the Modularity Density

Maximization problem. The nodes of degree 1 can belong to a non-neighbor cluster

in the optimal partition.

The graph in Figure 2.6 shows this degeneracy. In this figure, the optimal solution

consists of nine clusters represented with nodes with nine different shapes. There is a

clique with three nodes connected to seven cliques with four nodes and one clique with

five nodes. The clique with five nodes is connected to node δ which has degree 1. The D

value obtained by considering that it is in the cluster of its neighbor’s clique is 22.083.

The optimal partition has D=22.1, where each clique belongs to its cluster, and node

δ is inside the cluster of the clique with three nodes. This happens on clusters where

the optimal value is negative, so by adding a node of degree 1 the denominator of the

function D is increased by one, resulting in a better D value.

2.2.3 Heuristics

This section presents three heuristics for the Modularity Density Maximization

problem. They are the genetic algorithm GAOD, the memetic algorithm iMeme-Net,

and the artificial immune network HAIN.
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Figure 2.6: A graph to support the explanation about one-degree node degeneration.

a

dc

b

e

hg

f i

kl

j m

po

n q

ts

r

u

wx

vα

λ β

δ

y z

ω ψ
ε

ζ

η θ

ι

Source: Adapted from Costa (2015).

2.2.3.1 Genetic Algorithm GAOD

Liu and Zeng (2010) created the GAOD genetic algorithm for Modularity Density

Maximization. The GAOD is showed in Algorithm 7. The inputs for GAOD are a graph

G = (V,E), the number of generations, the probability pc of the crossover operator, and

the probability pm of the mutation operator. Each chromosome has |V | genes, where

each gene represents a node in the graph G. The value assigned to each gene is a cluster

identifier.

Algorithm 7: GAOD (LIU; ZENG, 2010).
Input : G(V,E), generations, pc, pm

1 initialize pop
2 for g ← 1 to generations do
3 evaluate pop
4 selpop← selection(pop)
5 crosspop← crossover(selectpop, pc)
6 pop←mutation(crosspop, pm)

The crossover operator takes two chromosomes. The first one is the source
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chromosome and the second one is the destination. Multipoint genes are randomly

selected from the source and, their values replace the equivalent gene in the destination

chromosome.

The mutation operator changes the cluster identifier of the genes with probability pm.

The new identifier assigned is obtained from an adjacent cluster of the node represented

by the updated gene. Only chromosomes resulting from the crossover are mutated.

The results were reported for two benchmark graphs. The first was “Karate”, where

the GAOD reached D = 7.8451. The second was “Football”, where the maximal

D obtained was 43.3701. The experiments also confirmed that Modularity Density

Maximization avoids the resolution limit.

2.2.3.2 Memetic Algorithm iMeme-Net

Gong et al. (2012) developed a memetic algorithm called iMeme-Net to detect

clusters by using Modularity Density Maximization objective function. The iMeme-Net

uses Label Propagation and Elitist strategies.

Algorithm 8 shows iMeme-Net. The population is initialized by using the Label

Propagation presented in Algorithm 9. After that, all chromosomes are evaluated, and

the best individuals are kept. iMeme-Net repeats four operations. The first operation

mutates the population with pm probability, by changing the label identifier of a node to

one of its neighbor labels. This label assigns a cluster to the node. The second operation

is the intensification procedure of Simulated Annealing of Algorithm 10. It is applied

to the mutated population. The best resulting chromosomes are preserved at the fourth

step. Then the population is updated with intensified and elite chromosomes.

Algorithm 9 shows the Label Propagation method used to initialize the population.

Each chromosome is defined by labels assigned to each node of the graph. First, a

unique label is assigned to each node. Then the labels are updated by using Equation

(2.20). The function ω(n) is the set of neighbor nodes of n, and nl(j) is the label

of the cluster that j belongs to. This equation finds the most common label of the
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Algorithm 8: iMeme-Net (GONG et al., 2012).
Input : G(V,E), popsize, generations, pm, temperature

1 pop← PGLP (popsize)
2 pop← evaluateF itness(pop)
3 bestpop← keepBestIndividual(pop)
4 for g ← 1 to generations do
5 newpop← neighborBasedMutate(popsize)
6 temppop1← ISACLocalSearch(newpop)
7 temppop2← elitismPreservation(temppop1)
8 pop← UpdatePopulation(temppop1 & temppop2)

9 return bestDensityFound, partitions

neighborhood.

nl(n) = argmaxr
∑
j∈ω(n)

δ(l(j), r) (2.20)

Algorithm 9: PGLP for iMeme-Net (GONG et al., 2012).
Input : G(V,E), iterations, popsize

1 pop← createNewChromosomes(popsize)
2 for chromosome ∈ pop do
3 for j ← 1 to iterations do
4 for k ← 1 to |V | do
5 if node[k].neighbor.size > 1 then
6 for m← 1 to node[k].neighbor.size do
7 node[k].label← nl(k)

8 else
9 node[k].label← node[k].neighbor[1].label

10 return pop

Algorithm 10 is a Simulated Annealing local search metaheuristic. First, the

heuristic chooses a random chromosome Ω. Its set of neighbors Ω′ is found, and D

values of these neighbors are calculated using the fitness function. f is the fitness value

of Ω, and fcmax is the fitness value of the best neighbor of Ω. The current partition

chrom is replaced by the best neighbor if f < fcmax, or with probability e− |f − fcmax|/β.
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The constant β is equal to 0.16.

Algorithm 10: ISACLocalSearch for iMeme-Net (GONG et al., 2012).
Input : G(V,E), β, popsize, chromosomes

1 chrom← chromosomes[rand(popsize)]
2 Ω← decode(chrom)
3 Ω′← calculateNeighbors(Ω)
4 f ← fitness(Ω)
5 f ′s← fitness(Ω′)
6 fcmax←max(f ′s)
7 if f < fcmax then
8 chrom← chrom(Ω′cmax)

9 else
10 if rand(1) < exp(− |f − fcmax|/β) then
11 chrom← chrom(Ω′cmax)

Gong et al. (2012) fixed some parameters for the experiments with iMeme-Net.

The population size was 100 chromosomes, the number of generations was 5, and the

probability of mutation was 0.9. The experiments were carried out with the Modularity

Density Maximization ratio λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} of Equation

(2.8). The instances submitted to the tests were “Karate”, “Dolphins”, “Football”,

“Politics Books” (also known as “Polbooks”). With λ equal to 0.5, the iMeme-Net found

partitions for “Karate” with average D value equal to 7.845, for “Dolphins” 10.883, for

“Football” 29.321, and “Polbooks” 20.160.

2.2.3.3 Hybrid Artificial Immune Network HAIN

Karimi-Majd, Fathian and Amiri (2014) created an artificial immune network

heuristic called HAIN for the Modularity Density Maximization problem. The method

can be seen in Algorithm 11. The antigens and antibodies are represented as an array

with |V | elements, where each position is assigned to the cluster of the respective node.

The method starts creating antibodies and antigens using Algorithm 12. This

procedure creates a set of antibodies for each antigen. For each antibody, a random
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set of nodes and their neighbors receive the same cluster identifier. Then for each node,

the mode of the identifier of its neighbors is selected. Each set of antibodies is assigned

to an antigen that is the best element of the antibody set.

Algorithm 11: HAIN (KARIMI-MAJD; FATHIAN; AMIRI, 2014).
Input : Adjacent matrix of the graph G(V,E)

1 {antibodies, antigens} ← Algorithm 12
2 repeat
3 foreach A ∈ antibodies ∪ antigens do

// It calculates the D value of partition represented
by A

4 affinityCalculation(A)

5 foreach AG ∈ antigens do
6 newAntibodies←clonalSelectionAndExpansion(AG, antibodies of AG)
7 foreach AB ∈ newAntibodies do
8 affinityMaturation(AB)

9 metaDynamics

10 suppressDuplicates
11 assureDiversity
12 until population converges

After the generation of antibodies and their respective antigens, HAIN repeats the

following procedures until the generated partitions converge: (i) the affinity of all

antibodies and antigens is calculated; (ii) the clonal selection and expansion is executed

for each antibody; (iii) the affinity maturation procedure is executed for each new

antibody generated by the last clonal selection and expansion; (iv) the procedure of

“meta dynamics” is executed for each antigen; (v) the duplicates are suppressed; (vi) the

diversity is assured.

Clonal selection and expansion procedure clone each antibody by using its affinity

antigen, working as a parallel population-based metaheuristic. The procedure ranks the

antibodies and generates ci = bβ × NAB/ric identical antibodies, where β is a constant

and ri is the rank value of the respective antibody i. NAB is the number of antibodies.

Affinity maturation uses a local search to intensify the partitions of each new

antibody generated by clonal selection and expansion. This local search can be seen
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Algorithm 12: Antibody and Antigen Generator (KARIMI-MAJD; FATHIAN;
AMIRI, 2014).

Input : G(V,E), NAG, NAB , Cmax
1 antigens←generate a number of NAG empty antigens
2 foreach AG ∈ antigens do
3 antibodies←generate a number of NAB empty antibodies
4 foreach AB ∈ antibodies do
5 k ← 1
6 nodes← choose Cmax nodes at random
7 foreach node ∈ nodes do
8 AB[node]← k
9 foreach neighbor ∈ N(node) do

10 neighbor[neighbor]← k

11 k ← k + 1

12 foreach node ∈ nodes do
13 AB[node]← mode

(
N(i)

)
14 calculateAffinity(AB)

15 add antibodies to the AG pool
16 AG← select the best AB ∈ antibodies

in Algorithm 13. The procedure receives each new antibody and changes the cluster

assignment of a node. The procedure has a 50% chance of moving a node which has

the smallest contribution in the cluster internal degree, and a 50% chance of moving a

node which gives the largest contribution to an adjacent cluster. |Enew
v | is the number of

internal edges of CR connected to v, |Enew
v | is the number of outside edges of cluster

CR connected to v, Cv is the current cluster of v, |Cv| is the number of nodes inside the

cluster Cv, |Eold
v | is the number of edges of Cv connected to v, and |Eold

v | is the number

of outside edges of Cv connected to v.

The metaDynamics and suppressDuplicate are cleaning procedures. The first

procedure eliminates all antibodies, where the affinity of the respective antigen is lower

than the threshold. The second procedure removes duplicated antibodies.

The diversity component is applied to all antibodies. This method has two disjoint

procedures. With 50% probability, the largest cluster is split randomly by composing
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Algorithm 13: Antibody Maturation (KARIMI-MAJD; FATHIAN; AMIRI,
2014).

Input : antibody AB
1 r ← generate a random number using Uniform distribution
2 if r > 0.5 then
3 CR← choose a random cluster number from AB
4 CRf ← find a node that belongs to CR and minimizes the difference between the

internal and external cluster degree
5 CN ← find a new cluster for CRf which maximizes the difference between the

intenal and external cluster degree
6 assign cluster CN to node CRf

7 else
8 CR← choose a random cluster
9 CRnodes ← list of nodes which do not belong to CR

10 CRf ← argmaxv∈CRnodes

{
|Enewv |−|Enewv |
|CR|+1 − |E

old
v |−|Eoldv |
|Cv |

}
11 assign cluster CR to node CRf

two clusters with equal numbers of nodes. With the same chance, a random node is

chosen and assigned the most common cluster of its neighbors.

Karimi-Majd, Fathian and Amiri (2014) tested classic graphs, finding the best

D values: “Karate” has a D value of 3.995, “Dolphins” 6.0626, “Polbooks”

10.9576, “Football” 22.194, “Adjnoun” 3.8937, “Lesmis” 12.2737, “Celegans Neural”

10.1143, “Co-authorship” 386.9737, “Power grid” 212.5005. The time required for

“Karate”, “Polbooks”, and “Co-authorship” was 0.3328, 7.5623, and 493.0172 seconds

respectively.

2.2.4 Exact Algorithms

There are six exact algorithms for Modularity Density Maximization, and they are

all solved by mathematical integer programming solvers. The first two models are

non-linear integer programming, and the others are linear programming models. This

section describes these models.
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2.2.4.1 Non-Linear Mathematical Programming

The first Modularity Density Maximization exact algorithm was reported in Li et

al. (2008), and it was a non-linear mathematical programming model. The objective

function and the constraints can be seen in Equation (2.21) respectively. Value aij is the

sum of all edge weights between nodes i and j. The value k is the number of clusters

where the nodes could be assigned. The binary decision variables xil have values equal

to 1 if a node i is assigned to cluster l; otherwise their values are equal to 0. The first

constraint requires that the number of clusters used must be between 1 and |V |− 1. The

second constraint specifies that every node must be assigned to a single cluster.

maximize
k∑
l=1

∑|V |
i=1

∑|V |
j=1 aijxilxjl −

∑|V |
i=1

∑|V |
j=1 aijxil(1− xjl)∑|V |

i=1 xil
(2.21a)

subject to: 0 <

|V |∑
i=1

xil < |V | ∀l ∈ [k] (2.21b)

k∑
l=1

xil = 1, ∀i ∈ V (2.21c)

xil ∈ {0, 1},∀i ∈ V ∀l ∈ [k] (2.21d)

The second non-linear model was presented by Karimi-Majd, Fathian and Amiri

(2014). This model was based on the work of Li et al. (2008), but the number of clusters

is not required (k parameter). Karimi-Majd, Fathian and Amiri (2014) added an upper

bound to the number of clusters, called Cmax, which is equal to |V |/3, because no cluster

can have less than three nodes. In this model, some clusters could have zero nodes, and it

causes division by zero in the objective function. Therefore, a new objective function is

presented by Karimi-Majd, Fathian and Amiri (2014), where the denominator is added

to a variable bl ∈ {0, 1} for each cluster l. The value of bl is equal to 1 if the cluster l

has no node assigned to it, otherwise bl equals to 0. This objective function can be seen
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in Equation (2.22).

maximize
k∑
l=1

∑|V |
i=1

∑|V |
j=1 aijxilxjl −

∑|V |
i=1

∑|V |
j=1 aijxil(1− xjl)∑|V |

i=1 xil + bl
(2.22)

2.2.4.2 Linear Mathematical Programming

Costa (2015) presented four linear mathematical programming models for the

Modularity Density Maximization problem. The first two models are mixed

integer linear programming formulations; the other two models are based on

binary decompositions. The following section presents the four linear mathematical

programming exact models.

The first model is called MDL1 and is shown in Equation (2.23) below. It is

generated by reformulating the non-linear model of Li et al. (2008). It is presented in

Equation (2.21). The products of the binary variables xil are linearized by introducing

new variablesW using Fortet inequalities. TheseW variables are used in the constraints

(2.23d) and (2.23e). The variables s are defined to linearize the objective function by

using the McCormick inequalities. The s variable values are bound with the constraints

(2.23g) and (2.23h).

To remove the fraction part of the objective function, a new variable αl is added to

the model for each cluster in [k]. The variables αl are bound between Lα and Uα. The

lower bound Lα is − (dmax1 + dmax2 )/2, where dmax1 and dmax2 are the two highest degrees

of the instance. The value of Uα is defined by a non-linear maximization problem of

Equation (2.24).
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maximize
∑
l∈[k]

αl (2.23a)

subject to: 2 ≤
|V |∑
i=1

xil ≤ |V | − 2(k − 1),∀l ∈ [k] (2.23b)

k∑
l=1

xil = 1,∀i ∈ V (2.23c)

Wijl ≤ xil,∀{i, j} ∈ E,∀l ∈ [k] (2.23d)

Wijl ≤ xjl,∀{i, j} ∈ E,∀l ∈ [k] (2.23e)

4
∑
{i,j}∈E

Wijl −
∑
i∈V

dixil ≥
∑
i∈V

sil,∀l ∈ [k] (2.23f)

Lαxil ≤ sil ≤ Uαxil,∀i ∈ V, ∀l ∈ [k] (2.23g)

αl − Uα(1− xil) ≤ sil ≤ αl − Lα(1− xil), ∀i ∈ V, ∀l ∈ [k] (2.23h)

xil ∈ {0, 1},∀i ∈ V, ∀l ∈ [k] (2.23i)

Wijl ∈ R,∀{i, j} ∈ E,∀l ∈ [k] (2.23j)

sil ∈ R,∀i ∈ V, ∀l ∈ [k] (2.23k)

αl ∈ [Lα, Uα],∀l ∈ [k] (2.23l)

Uα = maximize
4
∑
{i,j}∈E xixj −

∑
i∈V dixi∑

i∈V xi
(2.24a)

subject to: 2 ≤
|V |∑
i=1

xi ≤ |V | − 2(k − 1) (2.24b)

xi ∈ [0, 1], ∀i ∈ V (2.24c)
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maximize
∑
l∈[k]

4βl − γl (2.25a)

subject to: 2 ≤
|V |∑
i=1

xil ≤ |V | − 2(k − 1),∀l ∈ [k] (2.25b)

k∑
l=1

xil = 1,∀i ∈ V (2.25c)

Wijl ≤ xil,∀{i, j} ∈ E,∀l ∈ [k] (2.25d)

Wijl ≤ xjl,∀{i, j} ∈ E,∀l ∈ [k] (2.25e)∑
{i,j}∈E

Wijl ≥
∑
i∈V

sil,∀l ∈ [k] (2.25f)

∑
i∈V

dixil ≤
∑
i∈V

Til,∀l ∈ [k] (2.25g)

Lβxil ≤ sil ≤ Uβxil,∀i ∈ V, ∀l ∈ [k] (2.25h)

βl − Uβ(1− xil) ≤ sil ≤ βl − Lβ(1− xil),∀i ∈ V, ∀l ∈ [k] (2.25i)

Lγxil ≤ Til ≤ Uγxil,∀i ∈ V, ∀l ∈ [k] (2.25j)

γl − Uγ(1− xil) ≤ Til ≤ γl − Lγ(1− xil),∀i ∈ V, ∀l ∈ [k] (2.25k)

xil ∈ {0, 1}, ∀i ∈ V, ∀l ∈ [k] (2.25l)

Wijl ∈ R,∀{i, j} ∈ E,∀l ∈ [k] (2.25m)

sil ∈ R, ∀i ∈ V, ∀l ∈ [k] (2.25n)

Til ∈ R, ∀i ∈ V, ∀l ∈ [k] (2.25o)

βl ∈ [Lβ, Uβ],∀l ∈ [k] (2.25p)

γl ∈ [Lγ, Uγ],∀l ∈ [k] (2.25q)
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Uβ = maximize

∑
{i,j}∈E xixj∑

i∈V xi
(2.26a)

subject to: 2 ≤
|V |∑
i=1

xi ≤ |V | − 2(k − 1) (2.26b)

xi ∈ [0, 1], ∀i ∈ V (2.26c)

The second linear model is called MDL2, as shown in Equation (2.25). It is an

alternative to MDL1. It divides the numerator of the non-linear model objective function

of Li et al. (2008) into two parts. These parts are linearized separately, resulting in the

objective function of Equation (2.25a). The variables s and T are added to the model

to linearize the first and second parts of the objective function. Each variable βl is

bound with [Lβ, Uβ], where Lβ = 0 and Uβ is defined by a non-linear maximization

problem in Equation (2.26). Each γl is bound with [Lγ, Uγ]. The value of Lγ is equal to
(dmin1 + dmin2 )/2, where dmin1 and dmin2 are the two lowest degrees of the instance. The

value of Uγ is equal to (dmax1 + dmax2 )/2.

The first linearization based on binary decomposition is called MDB1 and is shown

in Equation (2.27). MDB1 uses the model MDL1. The latter model was changed by

a binary decomposition to reduce the number of variables. In MDB1, Costa (2015)

replaced
∑

i∈V xil by
∑

h∈H 2hbhl, where H = {0, . . . , tD} and tD = dlog2(|V | −

2|C|+ 3)− 1e.

The second binary decomposition is called MDB2, as shown in Equation (2.28).

The MDB2 model was based on MDL2 which has the objective function split into two

parts.
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maximize
∑
l∈[k]

αl (2.27a)

subject to: 2 ≤
|V |∑
i=1

xil ≤ |V | − 2(k − 1),∀l ∈ [k] (2.27b)

k∑
l=1

xil = 1,∀i ∈ V (2.27c)

Wijl ≤ xil,∀{i, j} ∈ E,∀l ∈ [k] (2.27d)

Wijl ≤ xjl,∀{i, j} ∈ E,∀l ∈ [k] (2.27e)

4
∑
{i,j}∈E

Wijl −
∑
i∈V

dixil ≥
∑
h∈H

2hrhl,∀l ∈ [k] (2.27f)

∑
i∈V

xil =
∑
h∈H

2hbhl,∀l ∈ [k] (2.27g)

Lαbhl ≤ rhl ≤ Uαbhl,∀h ∈ H,∀l ∈ [k] (2.27h)

αl − Uα(1− bhl) ≤ rhl ≤ αl − Lα(1− bhl),∀h ∈ H,∀l ∈ [k] (2.27i)

xil ∈ {0, 1},∀i ∈ V, ∀l ∈ [k] (2.27j)

Wijl ∈ R,∀{i, j} ∈ E,∀l ∈ [k] (2.27k)

rhl ∈ R,∀h ∈ H,∀l ∈ [k] (2.27l)

bhl ∈ {0, 1},∀h ∈ H,∀l ∈ [k] (2.27m)

αl ∈ [Lα, Uα],∀l ∈ [k] (2.27n)
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maximize
∑
l∈[k]

4βl − γl (2.28a)

subject to: 2 ≤
|V |∑
i=1

xil ≤ |V | − 2(k − 1), ∀l ∈ [k] (2.28b)

k∑
l=1

xil = 1,∀i ∈ V (2.28c)

Wijl ≤ xil,∀{i, j} ∈ E,∀l ∈ [k] (2.28d)

Wijl ≤ xjl,∀{i, j} ∈ E,∀l ∈ [k] (2.28e)∑
{i,j}∈E

Wijl ≥
∑
h∈H

2hrhl,∀l ∈ [k] (2.28f)

∑
i∈V

dixil ≤
∑
h∈H

2hphl,∀l ∈ [k] (2.28g)

∑
i∈V

xil =
∑
h∈H

2hbhl,∀l ∈ [k] (2.28h)

Lβbhl ≤ rhl ≤ Uβbhl,∀h ∈ H,∀l ∈ [k] (2.28i)

βl − Uβ(1− bhl) ≤ rhl ≤ βl − Lβ(1− bhl),∀h ∈ H,∀l ∈ [k] (2.28j)

Lγbhl ≤ phl ≤ Uγbhl,∀h ∈ H,∀l ∈ [k] (2.28k)

γl − Uγ(1− bhl) ≤ phl ≤ γl − Lγ(1− bhl),∀h ∈ H,∀l ∈ [k] (2.28l)

xil ∈ {0, 1},∀i ∈ V, ∀l ∈ [k] (2.28m)

Wijl ∈ R, ∀{i, j} ∈ E,∀l ∈ [k] (2.28n)

bhl ∈ {0, 1},∀h ∈ H,∀l ∈ [k] (2.28o)

rhl ∈ R,∀h ∈ H,∀l ∈ [k] (2.28p)

phl ∈ R,∀h ∈ H,∀l ∈ [k] (2.28q)

βl ∈ [Lβ, Uβ],∀l ∈ [k] (2.28r)

γl ∈ [Lγ, Uγ],∀l ∈ [k] (2.28s)
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The main results of the linear models can be seen in Table 2.1. The table shows

the % gap to the optimal partition and the time required in seconds, where “t.l.” means

that the time goes beyond the limit of 2 hours. The best models are MDB1 and MDB2,

because they reduce the number of variables. The experiments were performed on a

PC with 4 Intel Xeon E5-4620 CPU at 2.20 GHz (8 cores each, Hyper-Threading and

Turbo Boost disabled), 128 GB RAM. For further investigations, Costa (2015) suggests

the usage of these models as a starting point to derive other heuristics, and to create a

Column Generation heuristic like in work reported by Aloise et al. (2010). The latter

idea was used in this thesis, and it is reported in Chapter 5.

Table 2.1: Time and gap results when using exact methods MDL1, MDL2, MDB1, and
MDB2.

Graph MDL1 MDL2 MDB1 MDB2
Name |V | |E| D∗ gap T(s) gap T(s) gap T(s) gap T(s)

Strike 24 38 8.86111 0 1 0 68 0 1 0 2
Galesburg F 31 63 8.28571 0 6 0 1905 0 3 0 2
Galesburg D 31 67 6.92692 0 13 14 t.l. 0 2 0 4
Karate 34 78 7.8451 0 7 19 t.l. 0 4 0 4
Korea 1 35 69 10.9667 69 t.l. 189 t.l. 0 8 0 19
Korea 2 35 84 11.143 116 t.l. 246 t.l. 0 15 0 36
Mexico 35 117 8.71806 10 t.l. 112 t.l. 0 58 0 12
Sawmill 36 62 8.62338 0 3744 93 t.l. 0 10 0 10
Dolphins small 40 70 13.0519 86 t.l. 296 t.l. 0 121 0 435
Journal index 40 189 17.8 50 t.l. 190 t.l. 0 67 0 228

Source: Adapted from Costa (2015).
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3 THEORETICAL CONTRIBUTIONS

This chapter presents proofs about Modularity Density Maximization failures when

it is used as a prioritizer in a constructive search. An alternative prioritizer based

on graph density is also presented, and its failure of detecting star-shaped modules is

discussed. These results were published in European Journal of Operational Research;

early in 2017. Theoretical contributions achieved in this research for the Modularity

Maximization problem are reported in Appendix A.

First, we show that function D is not good for a constructive search, and an

alternative priority function based on cluster density is presented. Some heuristics

created in this thesis use the alternative prioritizer during the constructive phase. We call

the heuristic searches which merge two disjoint clusters by using a priority criterion at

each iteration as coarsening mergers. Our new coarsening merger heuristic is presented

in Chapter 4.

Three lemmas and three theorems are presented in this chapter. The first three

lemmas and theorem present three different function D prioritizers, and they explain

the reason why function D is not good for a coarsening merger heuristic. The second

theorem shows that an alternative two-phase prioritizer does not merge some cliques.

The latter theorem shows that our “alternative prioritizer” fails to identify star-shaped

modules.

The following two functions are defined to support these lemmas and theorems.

Function Dcluster(c) measures the cluster c contribution to the total D value of a

partition.

Dcluster(c) =
4|Ec| −

∑
v∈c dv

|c|
(3.1)

The ∆D(c′, c′′) function is used to obtain the increased value when merging the

clusters c′ and c′′ where E{c′,c′′} is the set of edges which have an endpoint node in c′

and another in c′′. The values kc′ and kc′′ are the sum of all degrees from nodes of

clusters c′ and c′′ respectively. This delta function is used to avoid recalculations of the
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Modularity Density Maximization value for an entire partition.

∆D(c′, c′′) = −Dcluster(c
′)−Dcluster(c

′′)

+
4(|Ec′ |+ |Ec′′|+ |E{c′,c′′}|)− kc′ − kc′′

|c′|+ |c′′|
.

(3.2)

3.1 Function D Fails as Prioritizer

The following three lemmas and the theorem are used to prove that function D

cannot be used as a prioritizer for coarsening merger heuristics because it merges

cliques. This characteristic does not respect the modular property of graph clustering

problems. The modular property is an important constraint of graph clustering problems

as defined by Radicchi et al. (2004) and Newman and Girvan (2004).

Lemma 1. Coarsening merger heuristics can merge nodes from different cliques with

the same size by using ∆D function (Equation (3.2)) as prioritizer.

Proof. By contradiction, we suppose that all the coarsening merger heuristics that use

the ∆D function as prioritizer do not merge two modular clusters.

Suppose an undirected graph composed of cliques c1 and c2. These cliques have the

same number of nodes, where n = |c1| = |c2|. The two cliques are connected by an

edge e = {α, β}, where node α ∈ c1 and node β ∈ c2. These two cliques can be seen

in Figure 3.1. There are other nodes inside c1 and c2, but only α and β are featured to

better understand the explanation about the lemmas and theorems.

At the start of a coarsening merger heuristic, suppose that each node belongs to

a singleton cluster, so the starting number of clusters is equal to 2n. The heuristic

chooses the highest ∆D value to merge a pair of connected clusters. The options are:

(i) merge singleton clusters of two nodes which are inside one of the cliques c1 or

c2, where these nodes are different from α and β, generating the following value to
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Figure 3.1: Two cliques of equal size connected by a single edge.

α β

c1 c2

e

prioritize:

4− 2n+ 2

2
+ 2n− 2 = n+ 1; (3.3)

(ii) merge a singleton cluster of a node from c1 with the singleton cluster α, or merge a

singleton cluster of a node from c2 with the singleton cluster β, resulting in the priority

value:

4− 2n+ 1

2
+ 2n− 1 = n+

3

2
; (3.4)

(iii) merge singleton clusters of α and β, resulting in the priority value:

4− 2n

2
+ 2n = n+ 2. (3.5)

The highest gain is given by merging the singleton clusters of nodes α and β, proving

that coarsening merger heuristics can merge clusters with nodes from different cliques

when using ∆D function (Equation (3.2)).

Lemma 2. A coarsening merger heuristic can merge nodes from two cliques with

different sizes when using Dcluster function (Equation (3.1)) as prioritizer.

Proof. Suppose, by contradiction, that all coarsening merger heuristics do not merge
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nodes from cliques with different sizes when using Dcluster function (Equation (3.1)) as

prioritizer.

Let c1 and c2 be two cliques. Clique c1 has n1 nodes, and clique c2 has n2 nodes,

where n1 < n2. The cliques are connected by an edge e = {α, β}, where the endpoints

are α ∈ c1 and β ∈ c2. These cliques can be seen in Figure 3.2. There are other

nodes inside cliques c1 and c2, but only α, u, v, β, x and y are featured to support the

explanation about lemmas and theorems.

Figure 3.2: Cliques c1 and c2 with n1 and n2 nodes respectively, where n1 < n2.

α β

c1
c2

eu

v

x

y

By assuming the use of the same start partition from Lemma 1, a coarsening merger

heuristic will iteratively merge the singleton clusters from c1, until c1 is itself a cluster.

To understand this, suppose the following gain and penalty parts of Dcluster(c) function

(Equations (3.1) and (3.6)):

Dcluster(c) =
4|Ec|
|c|︸ ︷︷ ︸
gain

− kc
|c|︸︷︷︸

penalty

. (3.6)

From iteration 1 to n1 − 1, the merging will be made only with clusters which are

inside the clique c1, and the last node to be merged is α. This behavior happens because

the generated gain is greater than or equal to any other merge option, and the absolute

penalty part for merging subcliques of c1 will be lower than for merging singleton

clusters from c2. The average degree from any subset of c1 will be lower than any
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subset of nodes from c2.

At iteration n1, there is a cluster with all nodes of c1 and n2 singleton clusters

composed of nodes from c2. The total number of clusters is n2 + 1 at this iteration. By

supposing that a coarsening merger heuristic does not merge nodes from cliques with

different sizes when using the Dcluster function prioritizer, so no singleton cluster from

c2 should be merged to the c1 cluster. At this iteration, the merge options are:

(i) merge the cluster c1 with singleton cluster β, resulting in the priority value:

2n1(n1 − 1) + 4− n1(n1 − 1)− 1− n2

n1 + 1
; (3.7)

(ii) merge two singleton clusters from c2 which are not composed of the node β (for

example, merge singleton clusters x and y of Figure 3.2), resulting in the priority value:

4− 2n2 + 2

2
= −n2 + 3; (3.8)

(iii) merge the cluster {β}with another singleton cluster from c2, resulting in the priority

value:

4− 2n2 + 1

2
= −n2 +

5

2
. (3.9)

The priority value produced by the merging of clusters c1 and {β} is larger than any

other merge option. To show that, this priority value is simplified as follows:

2n1(n1 − 1) + 4− n1(n1 − 1)− 1− n2

n1 + 1
=

n2
1 − n1 + 3− n2

n1 + 1
>

(n1 + 1)(n1 − 2)− n2

n1 + 1
= n1 − 2− n2

n1 + 1
.

(3.10)

As n1 < n2, the lower bound ofDcluster function by merging cluster c1 and singleton
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{β} is larger than any other option at this iteration for all n ≥ 3, where 3 is the size of

the smallest possible clique, as below (this implies n1 = 3, n2 = 4):

n1 − 2− n2

n1 + 1
> −n2 + 3. (3.11)

This implies that the coarsening merger heuristic can merge nodes from cliques with

different sizes, proving the lemma by contradiction.

For the following lemma, we consider a prioritizer which uses two factors from

Equation (3.6). The first is the gain factor, and the second is the penalty factor. The best

merge option for the first factor has the highest value. The penalty factor is only used

if there is more than one highest merge option with the same priority value. For this

factor, the merge option with the lowest absolute value is chosen.

Lemma 3. A coarsening merger heuristic can merge nodes from two cliques with

different sizes when using the gain and penalty of Function (3.6) as two distinct factors

of prioritizer.

Proof. To prove this Lemma, similar arguments used in Lemma 2 are applied. The

following explanation uses the same cliques c1 and c2 from Figure 3.2, which are

connected by a single edge {α, β}, where α ∈ c1 and β ∈ c2.

Before the iteration n1, all nodes from c1 belong to the same cluster. This happens

because the highest priority values of the gain factor are about merging all subset nodes

of c1 until all nodes from this clique form a single cluster. At iteration n1, the gain factor

merges cluster c1 and the singleton cluster {β} because this option results in a higher

priority value than any other merge option between two singleton clusters from c2 as

can be seen in Equation (3.12), where w and z are two nodes of c2.

2n1(n1 − 1) + 4

n1 + 1︸ ︷︷ ︸
c1∪{β}

>
4

2︸︷︷︸
{w∈c2}∪{z∈c2}

. (3.12)
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By contradiction, we prove that a coarsening merger heuristic can merge nodes from

two cliques with different sizes when using the gain and penalty of Function (3.6) as two

separated factor prioritizers.

Theorem 4. A coarsening merger heuristic can merge cliques when using Modularity

Density Maximization D as prioritizer.

Proof. This theorem is proved by using Lemmas 1, 2, and 3. Lemma 1 shows that

cliques with the same size can be merged by the prioritizer ∆D, that is presented in

Equation (3.2). This prioritizer is often used to choose the movement that best generates

the higher improvement in the objective function. Lemma 2 shows that cliques with

different sizes can be merged when using the Function Dcluster (Equation (3.1)) as

prioritizer. This function is the objective function that measures the contribution of

a cluster for a partition. Finally, Lemma 3 shows that an extension of the D function

can merge cliques with different sizes. These lemmas show that Functions ∆D,Dcluster,

and Function (3.6) can merge cliques when they are used as prioritizers.

3.2 Alternative Prioritizer for D

As the Modularity Density Maximization objective Function D fails as a prioritizer

for coarsening merger heuristics, we have created a new prioritizer which uses a modular

property and a penalty factor. This prioritizer selects the resulting merge option that

maximizes Function (3.13) (gainD). When there are two or more equal maximal values,

the second factor is applied by selecting the merge option which minimizes Function

(3.14) (penaltyD). Here, this prioritizer is called “alternative density”.

gainD(c) =
|Ec|

(|c|2 − |c|)/2
. (3.13)
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penaltyD(c) =
kc
|c|
. (3.14)

Theorem 5. A coarsening merger heuristic does not merge nodes from different cliques

of Figure 3.1 and 3.2 when using “alternative density” as prioritizer.

Proof. The proof is divided into two parts. The first part shows that two cliques of

Figure 3.1 with equal size are not merged. The second part shows that two cliques

of Figure 3.2 with different sizes are not merged. For simplicity, let us consider that

the coarsening merger heuristic starts with a partition where each node belongs to a

singleton cluster.

To prove that two cliques of Figure 3.1 are not merged by a coarsening merger

heuristic which uses the “alternative density” prioritizer, we use the two cliques from

that figure. The cliques c1 and c2 have n nodes. The edge e = {α, β} connects the

cliques c1 and c2. As the first factor is the relative density of edges inside the clusters

to be merged, all merge options are the pairs of singleton nodes connected by an edge.

Because they have the same gainD value, the second factor is applied by selecting to

merge the singleton clusters which have the minimal average degree. They are the two

singleton clusters which do not contain the nodes α and β. In the next iterations, the

clusters that are inside of each clique are merged. At the final iterations, {α} merges

with c1\{α}, and {β} merges with c2\{β}, then the partition has two clusters c1 and

c2. The cliques of the same size are not merged when the coarsening merger uses the

“alternative density” as prioritizer.

The second part of the proof is about “alternative density” not merging two cliques

of Figure 3.2 that have different sizes. The cliques are c1 with n1 nodes and c2 with

n2 nodes, where n1 < n2. The cliques are connected by the edge e = {α, β}, where

α ∈ c1, and β ∈ c2. The initial iterations merge each pair of clusters inside c1\{α},

because they have full edges density and the average degree is smaller than the rest of

the merge options from c2. At iteration n1 − 1, the merging will be made between the

singleton cluster α and cluster c1\{α}. After, the merging of two clusters connected by
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e is not prioritized because the merging of c1 with any other cluster does not result in a

full density (first factor). So, each pair of clusters inside clique c2 is merged.

The two proof parts show that a coarsening merger heuristic that uses the “alternative

density” prioritizer does not merge the cliques of Figures 3.1 and 3.2.

3.3 Alternative Prioritizer and Star-shaped Modules

“Alternative density” does not merge cliques of Figures 3.1 and 3.2 as Theorem 5

shows. However, there is a counter-intuitive behavior. It merges nodes from different

star-shaped modules as prioritizer, as shown in Theorem 6. Star-shaped modules are

structures found in some real and artificial graphs (ZHANG; QIU; ZHANG, 2010).

Theorem 6. A coarsening merger heuristic merges nodes from different star-shaped

modules of Figure 3.3 when using “alternative density” as prioritizer.

Proof. By contradiction, suppose that “alternative density” does not merge nodes from

different star-shaped modules when it is used as prioritizer by a coarsening merger

heuristic. To support this theorem, we use Figure 3.3. In this figure, there are two

star-shaped modules c1 and c2 with n1 and n2 number of nodes respectively. Each one

of these modules is composed of n nodes, n − 1 edges, and n − 1 border nodes are

connected to a central node. The central nodes are called u and x in modules c1 and c2,

respectively. There is an edge e connecting the border nodes α of c1 and β of c2. The

other border nodes are called as v and y in the figure.

At the start of a coarsening merger heuristic, suppose that each node belongs to a

singleton cluster. As gainD (Function (3.13)) is equal for all the merge options, we

choose the merge option that leads to the minimal penaltyD value (Function (3.14)).

The priority values of the merge options available are:
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Figure 3.3: An undirected graph composed of two star-shaped modules c1 and c2 which
have n1 and n2 number of nodes, respectively.
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eu
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(i) merge the singleton clusters of nodes α and u in c1, resulting in the priority value:

n1 − 1 + 2

2
=
n1 + 1

2
; (3.15)

(ii) merge the singleton clusters of nodes β and x in c2, resulting in the priority value:

n2 − 1 + 2

2
=
n2 + 1

2
; (3.16)

(iii) merge the singleton clusters of nodes u and v in c1, resulting in the priority value:

n1 − 1 + 1

2
=
n1

2
; (3.17)

(iv) merge the singleton clusters of nodes x and y in c2, resulting in the priority value:

n2 − 1 + 1

2
=
n2

2
; (3.18)

(v) or merge the singleton clusters of nodes α and β, resulting in the priority value:

2 + 2

2
= 2. (3.19)

For n1, n2 > 4, the merge option with the minimal value is about to merge the

singleton clusters of nodes α and β that belong to different star-shaped modules. So,
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one proves by contradiction that “alternative density” merges nodes from different

star-shaped modules.
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4 CONTRIBUTIONS TO HEURISTICS

This chapter presents novel multilevel, constructive, and hybrid heuristics. The first

five heuristics are inspired by works reported in Clauset, Newman and Moore (2004),

Blondel et al. (2008), Rotta and Noack (2011). The eighth heuristic was developed by

mixing two of our scalable local search heuristics. Experiments designed to compare

the new with existing methods are reported at the end of this chapter. All our heuristics

do not have parameters that could require a hold-out set of the experiments. Additional

results are reported in the ground truth analyses of Chapter 6.

The results reported in this Chapter were published in European Journal of

Operational Research; in May 2017.

4.1 Constructive and Multilevel Heuristics

This section presents the algorithm design of new constructive and multilevel

heuristics for Modularity Density Maximization. It is divided into three categories that

are coarsening merger, moving node, and multilevel heuristics. They are inspired by

other Modularity Maximization heuristics which solved graphs with tens of thousands

of nodes. These results for Modularity Maximization heuristics are described in Clauset,

Newman and Moore (2004), Blondel et al. (2008), Rotta and Noack (2011). The

following three subsections present the categories and describe the design details of

each heuristic.

4.1.1 Coarsening Merger

The coarsening merger heuristic (CM) was inspired by CNM (CLAUSET;

NEWMAN; MOORE, 2004). Iteratively, this heuristic merges the pair of clusters which

has the highest priority value. At the end of |V |− 1 iterations, the partition is composed

of a single cluster with all nodes. This heuristic uses the “alternative density” prioritizer
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described in Chapter 3.

As proved by Theorem 4, Function D cannot be used in this kind of heuristic

because it can merge cliques. In contrast, the “alternative density” uses the edge density

(gainD, Equation (3.13)) and the degree proportion (penaltyD, Equation (3.14)). The

“alternative density” was selected because it does not merge cliques of Figures 3.1 and

3.2 as described in Theorem 5.

The coarsening merger heuristic is described in Algorithm 14. The main data

structure used by this heuristic is a Fibonacci heap that stores all options of each merge

between two clusters. A Fibonacci heap is used to recover quickly the merge option

which has the maximal priority value. In this heuristic, the Fibonacci heap uses as

prioritizer the “alternative density”, where the merge option that maximizes the value

of gain Equation (3.13) (gainD) is prioritized. This best merge option is obtained by

heap.top. When two or more merge options have the same gainD (Equation (3.13))

value, the one of them that has the minimal value of penaltyD (Equation (3.14)) is

chosen. When a merge option results in a cluster with no edge, its evaluation is done by

using only the penalty Equation (3.14) (penaltyD as prioritizer).

The heuristic starts with a partition composed of |V | singleton clusters, where each

node v ∈ V belongs to a cluster (line 1). Then a copy of that partition is called best

(line 2). The structure best is used to store the highestD value partition found during the

coarsening merger search. After that, the Fibonacci heap is initialized in the procedure

maxHeapFibonacci (line 3). After the heap is initialized, each merge option between

each pair of adjacent clusters is inserted into the heap with its prioritized value (lines 4 to

6). After that, the lists pairs and levels are initialized (lines 7 and 8). The list pairs stores

all pairs of clusters that are chosen to be merged, and the list levels stores all obtained

partitions. This storing happens in the order of the following loop iterations. These

data structures will be used in the multilevel density heuristics described in Section

4.1.3. After the initialization of partition, a loop is started that repeats |V | − 1 times

(lines 9 to 16). Each iteration starts requesting the best merge option, following the

“alternative density” criterion (line 10). The Fibonacci heap retrieves the best merge
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Algorithm 14: Coarsening merger heuristic.
Input : G(V,E)

1 partition←
{
{v} : ∀v ∈ V

}
2 best← partition
3 heap←maxHeapFibonacci()
4 foreach {u, v} ∈ E do
5 val←

(
gainD({u} ∪ {v}), penaltyD({u} ∪ {v})

)
6 heap.push

(
u, v, val

)
7 pairs← list()
8 levels← list()
9 for l← 1 to |V | − 1 do

10 {u, v} ← heap.top()
11 partition← partition.merge(u, v)
12 updateMerge(heap, u, v)
13 if D(best) < D(partition) then
14 best← partition

15 pairs.append({u, v})
16 levels.append(partition)

17 return (best, levels, pairs)

option in constant time, represented here as the pair of clusters u and v. Then the

clusters u and v are merged in the partition by the procedure partition.merge (line 11).

After that, the heap is updated, considering the new merged cluster. At this step, all

adjacent clusters are considered in the new option to merge with the new merged cluster.

Then the current partition is compared with the best one (lines 13 to 14). If the current

partition has a betterD value, the best partition is updated. After that, the pair of clusters

merged at the end of the list pairs is inserted, and the current partition is inserted at the

end of the list levels (lines 15 and 16). Finally, the partition with the best D value, and

the lists levels and pairs are returned (line 17).

Next, the merging method partition.merge(u,v) is described in detail. The merging

method receives two clusters u and v. The cluster with the greater number of nodes

remains, and the other is merged with the first. Let us call the first cluster as ca and

the second as cb. When they are merged, all nodes from cb are transferred to ca. The
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transferring of edges is made by verifying if the cluster ca already has an edge for the

same endpoint cluster. If there is such an edge, the weight of this edge is increased by

the same weight of the edge in cb. If there is no such edge, the edge is transferred from

cb to ca. This method is exemplified in Figure 4.1. The total complexity of the merging

is O(|cb|+ |Eca ||Ecb|), where Ec is the number of edges in cluster c.

Figure 4.1: Example of the CM heuristic execution.

cb cd

1u x

v z

1

1

11

ca cc

cd

2u x

v z1

11ca

cc
Iteration 0 Iteration 1

The procedure “updateMerge” updates the current partition merge options in the

heap. Considering cu,v the resulting cluster from the merging of clusters u and v, all

options to merge any other cluster with u or v in the heap are updated to cu,v. As the

Fibonacci Heap requires amortized constant time to update, then the expected number

of operations for “updateMerge” is O(|Ecu,v |).

4.1.2 Moving Nodes

In this work, moving node heuristics are local searches that try to move all nodes

from their clusters to others. We use two different moving node heuristics. The main

difference between them is at the end of the movement phase, where the resulting

clusters are coarsened or not. The coarsening phase happens after the most internal

loop of Algorithm 16 (lines 15 to 17). These methods are presented in Algorithms 15

and 16.
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To support the heuristic explanation, the following ∆ functions are presented. They

are used in the heuristics described in this section. The ∆Dnode(v, c) function is used to

identify the increase in the value from D when moving the node v from cv to cluster c.

Ev
c and Ev

cv are the sets of edges between the node v and nodes from clusters c and cv

respectively. Clusters c′ and c′v represent c and cv after the movement respectively.

Equations (4.1) and (4.2) show the simplification of Dcluster(c
′) − Dcluster(c) and

Dcluster(c
′
v) − Dcluster(cv) which are used to define ∆Dnode(v, c) function (Equation

(4.3)).

Dcluster(c
′)−Dcluster(c) =

4|Ec|+ 4|Ev
c | − kc − dv

|c|+ 1
+
−4|Ec|+ kc
|c|

=

|c|
(
4|Ec|+ 4|Ev

c | − kc − dv
)

|c|2 + |c|
+

(|c|+ 1)
(
− 4|Ec|+ kc

)
|c|2 + |c|

=

|c|
(
4|Ev

c | − dv
)
− 4|Ec|+ kc

|c|2 + |c|
.

(4.1)

Dcluster(c
′
v)−Dcluster(cv) =

4|Ecv | − 4|Ev
cv | − kcv + dv

|cv| − 1
+
−4|Ecv |+ kcv

|cv|
=

|cv|
(
4|Ecv | − 4|Ev

cv | − kcv + dv
)

|cv|2 − |cv|
+

(|cv| − 1)
(
− 4|Ecv |+ kcv

)
|cv|2 − |cv|

=

|cv|
(
− 4|Ev

cv |+ dv
)

+ 4|Ecv | − kcv
|cv|2 − |cv|

.

(4.2)
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∆Dnode(v, c) = Dcluster(c
′)−Dcluster(c)

+Dcluster(c
′
v)−Dcluster(cv)

=
|c|
(
4|Ev

c | − dv
)
− 4|Ec|+ kc

|c|2 + |c|

+
|cv|
(
− 4|Ev

cv |+ dv
)

+ 4|Ecv | − kcv
|cv|2 − |cv|

.

(4.3)

The ∆Dcoarse(s, c) function measures the increase of the D function by considering

that s is moved from cs to c, where s is a subcluster from cluster cs, and c is a cluster.

Es
c and Es

cs are the sets of edges between the subcluster s and nodes from clusters c and

cs respectively. Clusters c′ and c′s represent c and cs after the movement respectively.

Equations (4.4) and (4.5) show the simplification of Dcluster(c
′) − Dcluster(c) and

Dcluster(c
′
s) − Dcluster(cs) which are used to define ∆Dcoarse(s, c) function (Equation

(4.6)).

Dcluster(c
′)−Dcluster(c) =

4|Ec|+ 4|Es
c | − kc − ks

|c|+ |s|
+
−4|Ec|+ kc
|c|

=
|c|
(
4|Ec|+ 4|Es

c | − kc − ks
)

|c|2 + |c||s|
+

(|c|+ |s|)
(
− 4|Ec|+ kc

)
|c|2 + |c||s|

=
|c|
(
4|Es

c | − ks
)
− 4|Ec||s|+ kc|s|

|c|2 + |c||s|
.

(4.4)
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Dcluster(c
′
s)−Dcluster(cs) =

4|Ecs| − 4|Es
cs| − kcs + ks

|cs| − |s|
+
−4|Ecs|+ kcs

|cs|
=

|cs|
(
4|Ecs| − 4|Es

cs | − kcs + ks
)

|cs|2 − |cs||s|
+

(|cs| − |s|)
(
− 4|Ecs|+ kcs

)
|cs|2 − |cs||s|

=

|cs|
(
− 4|Es

cs|+ ks
)

+ 4|Ecs||s| − kcs|s|
|cs|2 − |cs||s|

.

(4.5)

∆Dcoarse(s, c) = Dcluster(c
′)−Dcluster(c)

+Dcluster(c
′
s)−Dcluster(cs)

=
|c|
(
4|Es

c | − ks
)
− 4|Ec||s|+ kc|s|

|c|2 + |c||s|

+
|cs|
(
− 4|Es

cs|+ ks
)

+ 4|Ecs ||s| − kcs|s|
|cs|2 − |cs||s|

.

(4.6)

4.1.2.1 Local Node Moving Heuristic

The first moving node heuristic presented in this thesis was inspired by the method

of Kernighan and Lin (1970). This heuristic is called “local node moving” (LNM) and

is seen in Algorithm 15. First, the heuristic starts copying the input partition to the

structure best that stores the best partition found during the heuristic execution (line

1). At the second step, a flag called improvement is set as true (line 2). Then the list

randomV receives all nodes in a random order (line 3). After that, an external loop

starts and is executed until the flag improvement is not true (lines 4 to 17). The first step

of each iteration of the external loop sets the flag improvement as false (line 5). Then

another loop is performed, and at each iteration, it treats a node from the random list

randomV (lines 6 to 14).
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At each iteration, the best gain to move a node to another cluster is stored (lines 13

to 14), and if the gain exists, v is moved to the cluster that provides the best gain. This

gain is computed by the function ∆Dnode(v, c) of Equation (4.3). The value of the best

gain is stored in the variable ∆Dv, and corresponding cluster cv, where v is the node

to be moved. This search for the best movement option is done in the internal loop of

lines 9 to 12. In this internal loop, one tries to move each node to its adjacent clusters,

which are given by the set CN(v). After the attempts to move all nodes, the current

partition is compared with the best one found during the search (lines 15 to 17). If the

current partition is now the best partition, the flag improvement is set as true, and a new

iteration is performed in the external loop. Finally, when the external loop stops, the

best partition is returned (line 18).

Each iteration is bound by O(|V ||E|) operations because all node movements are

tried, and the movement gain is evaluated for all neighborhood clusters. Each node

movement gain is calculated in constant time by storing the number of internal edges,

the nodes, and the total degree of nodes for each cluster. Equation (4.3) is used for the

gain evaluation.

Two versions of the “local node moving” are reported. We call LNM the version

where the initial partition is composed of singleton nodes (each node is alone in a

cluster). The version CM+LNM uses the initial partition generated by the heuristic

CM (Algorithm 14).

4.1.2.2 Move and Coarse Node Heuristic

At each iteration, the “move and coarse nodes” (MCN) heuristic tries to improve

the partition value by changing all nodes from their clusters. This phase is called “level

phase”. At the end of each iteration, each cluster is considered as a single node, and

a new iteration is done. This process repeats until no improvement is found. When

the nodes of a cluster are united, the graph is updated to consider these changes. This

heuristic was inspired by the Louvain method (BLONDEL et al., 2008).
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Algorithm 15: Local node moving.
Input : G(V,E), partition

1 best← partition
2 improvement← true
3 randomV ← random(V )
4 while improvement do
5 improvement← false
6 foreach v ∈ randomV do
7 ∆Dv ← 0
8 cv ← ∅
9 foreach c ∈ CN(v) do

10 if ∆Dv < ∆Dnode(v, c) then
11 ∆Dv ←∆Dnode(v, c)
12 cv ← c

13 if cv 6= ∅ then
14 in partition, move node v to cluster cv

15 if D(best) < D(partition) then
16 best← partition
17 improvement← true

18 return best

Algorithm 16 shows how this heuristic works. First, the input partition is copied to

the structure best that stores the best partition found by the heuristic (line 1). Then a flag

improvement is set to true (line 2). This flag is used as stop criterion to the external loop

that stops when no improvement is found (lines 3 to 21). After that, the list of nodes

randomV receives nodes from V in a random order (line 3). At each iteration of the

external loop, the level phase is started (lines 6 to 18), and then the coarsening phase is

done (lines 19 to 22).

The level phase performs a local search similar to LNM (Algorithm 15). A loop

repeats until no movement that improves the current partition is found. This movement

is counted by the variable moves. At each iteration of the loop between lines 8 and 17,

one tries to move each node v of the randomV to another adjacent cluster. The set of

adjacent clusters of v is represented by CN(v). If there is a movement to change v to a
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Algorithm 16: Move and coarse nodes.
Input : G(V,E), partition

1 best← partition
2 improvement← true
3 randomV ← random(V )
4 while improvement do
5 improvement← false

// level phase
6 repeat
7 moves← 0
8 foreach v ∈ randomV do
9 ∆Dv ← 0

10 cv ← ∅
11 foreach c ∈ CN(v) do
12 if ∆Dv < ∆Dcoarse(v, c) then
13 ∆Dv ←∆Dcoarse(v, c)
14 cv ← c

15 if cv 6= ∅ then
16 moves←moves+ 1
17 in partition, move node v to cluster cv

18 until moves = 0
// coarsening phase

19 if D(best) < D(partition) then
20 best← partition
21 improvement← true
22 clusters are coarsened as nodes in partition and graph G(V,E)

23 return best

cluster c that improves the D function, the change is done. Equation (4.6) (∆Dcoarse) is

used to calculate the gain of each movement. The level phase repeats until no movement

is done, and then the coarsening phase starts. If the current partition is better than the

best-stored partition, the best value is updated (line 20), the flag improvement is set as

true, and the coarsening process is made (line 22). The coarsening process updates

the graph instance by considering each cluster as a single node, rebuilding the graph

instance with meta-nodes. When no better solution is found, the heuristic returns the

best partition found and stops the search.
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The loop between lines 8 and 17 of the level phase requires O(|V ||E|) operations,

but the total time depends on the number of the best partitions found by the heuristic

and how many times the coarsening phase is run.

The coarsening phase unites the nodes from each cluster as a single node. At the

beginning of the level phase, the graph has singleton clusters where each cluster is a

node. At the level phase, these nodes are assigned to clusters that optimize the current

partition. When no more node movements are done, the level phase stops and the

coarsening phase is executed. Then the partition is used to identify the cluster of each

node. Mergings are done to unite all nodes from the same cluster. The upper bound

of operations is the number of coarsened nodes times the required operation by each

merging. The time for a merging is described in Section 4.1.1.

Figure 4.2 shows an example of MCN execution into two iterations. The first part

shows the original graph. At each one of the next two iterations, it is shown the end

of the level phases and the end of the coarsening phases. Before the first iteration, the

instance graph can be seen without identified clusters. In the first iteration, the end of

the level phase is shown, where each cluster is identified by a different shape, and the

end of the first coarsening phase, where each cluster is transformed into a meta-node

in the graph instance. In the second iteration, the two phases are performed using the

updated instance. The values assigned to the lines are the number of edges in that graph

region.

In this thesis, two versions of the “move and coarse nodes” are reported. We name

as MCN the version where the initial partition is composed of singleton nodes (each

node is alone in a cluster). The version CM+MCN uses the initial partition generated

by the heuristic CM (Algorithm 14).

4.1.3 Multilevel Heuristics

Our multilevel heuristics use levels and pairs from the heuristic CM (Algorithm 14)

to do exploitation. Each partition resulting of a merging from iterations of CM is called
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Figure 4.2: The example used to illustrate the MCN heuristic divided into two iterations.
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Source: Adapted from Blondel et al. (2008).

levels; the pairs of merged partitions are called pairs (see Section 4.1.1). We developed

two multilevel heuristics for the Modularity Density Maximization problem. These

heuristics and their two phases are described in Algorithm 17. They are constructive

and refinement phases. The reason to do that are the results reported in Rotta and Noack
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(2011) which reached high Modularity Maximization scored partitions.

Our two multilevel heuristics for Modularity Density Maximization use different

prioritizers during the refinement phase. These prioritizers are used to select the cluster

to which the node must be assigned. The heuristic called “multilevel density” (MD)

applies the MCN (Algorithm 16) that uses the Modularity Density Maximization delta

function ∆Dcoarse (Equation (4.6)). The other is called “multilevel density modularity”

(MDM) and uses the Louvain method which has as prioritizer the Function ∆Qcoarse

(Equation (4.7)). The ∆Qcoarse equation is based on the Modularity Maximization

problem, and it was used to test its behavior in multilevel methods for the Modularity

Density Maximization problem.

∆Qcoarse(s, c) =
|Es

c | − |Es
cs|

|E|
+

2ks(kcs − kc)− 2k2s
4|E|2

. (4.7)

Algorithm 17: Multilevel density.
Input : G(V,E)
// constructive phase

1 (best, levels, pairs)← execute Algorithm 14 (G)
2 numberLevels← |levels|
3 partition← levelsnumberLevels
// refinement phase

4 for l← numberLevels− 1 to 1 do
5 separate pairsl as two clusters in partition
6 partition← execute Algorithm 16 or
7 Louvain (G, partition)
8 if D(best) < D(partition) then
9 best← partition

10 return best

Our multilevel heuristics have a constructive phase that uses the Algorithm 14 (CM),

passing the graphG as a parameter (line 1). Then the best partition, the levels partitions,

and the list pairs is obtained. After that, the number of levels is stored in the variable
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Figure 4.3: An example of the multilevel density heuristic in a graph of six nodes.
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numberLevels (line 2). Then the last partition of CM is set as the current partition (line

3). After the constructive phase, the refinement phase is started by repeating the loop

between lines 4 and 8 for a number of times equal to numberLevels−1, decreasing the

variable l from numberLevels− 1 to 1. At each iteration, the two clusters of position l

of the list pairs are set in the current partition (line 5). Then the current partition is used
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as input to the heuristic of Algorithm 16 (MCN) for MD version, or Louvain method

(BLONDEL et al., 2008) for MDM version (line 6). After that, if the current partition

is better than the best-found partition, the best partition is updated (lines 8 and 9). After

the refinement phase, the best partition is returned, and the heuristic stops (line 10).

Figure 4.3 shows three steps of the multilevel density to understand better this

heuristic. A graph with six nodes is submitted to the constructive phase, and the current

partition is featured in each step (clusters are identified by dashed lines). The first one

shows the starting partition at the beginning of the execution of CM. The second step

shows the end of the constructive phase, where the best solution is on the left side, and

the list pairs is on the right side. In the third step, the start of the refinement phase

separates the merged clusters in the penultimate iterations during CM execution. After

that step, the MCN (for MD version) or Louvain method is applied (for MDM version)

on the current partition.

4.2 Hybrid Local Search

The HLSMD (Hybrid Local Search for Modularity Density) heuristic proposed in

this thesis is seen in Algorithm 18. It is made up of two local search phases. In the

first phase, the local search Move and Coarse Nodes (MCN) is applied. After that,

the second phase is executed, in which the second local search Local Node Moving

(LNM) is applied to the resulting partition from the MCN. The creation of HLSMD

was motivated by MCN failures when finding good partitions for some of the tested

instances, as is seen in Section 4.3.

This sequence was chosen because the MCN local search unites the nodes at each

iteration to move entire subsets of nodes in the following iterations from their clusters.

It is expected that LNM can improve the solution by changing clusters of each node for

the resulting partition from MCN.
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Algorithm 18: Hybrid local Search.
Input : G(V,E)

1 first←MCN(G)
2 second← LNM(G, first)
3 if D(first) > D(second) then
4 best← first

5 else
6 best← second

7 return best

4.3 Analysis of Results

In this section, we present methods and results of experiments performed with

real graphs. The main objective is to compare our eight methods (CM, LNM,

CM+LNM, MCN, CM+MCN, MD, MDM, HLSMD) among themselves and with

CNM (CLAUSET; NEWMAN; MOORE, 2004), Louvain (BLONDEL et al., 2008),

GAOD (LIU; ZENG, 2010), iMeme-Net (GONG et al., 2012), HAIN (KARIMI-MAJD;

FATHIAN; AMIRI, 2014), and BMD-λ (COSTA et al., 2016).

CNM and Louvain are heuristics that treat Modularity Maximization (NEWMAN;

GIRVAN, 2004). In essence, Modularity Maximization and Modularity Density

Maximization are about the same problem, but they have different objective functions.

Modularity Density Maximization was developed to avoid the resolution limit

(FORTUNATO; BARTHÉLEMY, 2007) that happens in Modularity Maximization.

We used the original versions of heuristics CNM and Louvain, so they applied

the Modularity Maximization objective value to evaluate their solutions. For our

comparisons, the Modularity Density Maximization objective function was calculated

for all CNM and Louvain resulted partitions. The aim of obtaining this value is knowing

if these methods or our heuristics lead to partitions with the highest Modularity Density

Maximization objective value. As CNM and Louvain are scalable to instances with

hundreds of thousands of nodes, we can compare results for the largest tested graphs.

The experiments were performed on a PC with an Intel Core i7 64 bits with 3.40GHz
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with 8192KB of cache memory and 8GB of RAM over Linux Ubuntu 14.04.1 LTS

operating system. Each experiment was done by using a single thread. The language

used was C++, with “GCC” compiler.

The presentation of results and the discussion are divided into three subsections: (i)

set-up of experiments; (ii) gap to the optimal D value analysis; (iii) time required and

amortized complexity analysis.

4.3.1 Set-up

The graphs tested are undirected and were selected from datasets of Batagelj and

Mrvar (2006) and Leskovec and Krevl (2014). The first was chosen because it has

popular graphs which are benchmarks for graph clustering problems, as can be seen in

Xu, Tsoka and Papageorgiou (2007), Brandes et al. (2008), Agarwal and Kempe (2008),

Liu and Zeng (2010), Aloise et al. (2013), Gong et al. (2012), Aloise et al. (2010),

Djidjev and Onus (2013), Krzakala et al. (2013), Nascimento and Pitsoulis (2013),

Newman (2013), Pizzuti (2012), Rotta and Noack (2011), Karimi-Majd, Fathian and

Amiri (2014), Costa (2015). The second was used because it is a dataset collection for

scalable heuristics (LESKOVEC; KREVL, 2014). This dataset collection has graphs

with thousands of nodes. In this latter source, we chose the undirected and unweighted

graphs with a limit of nodes equal to 500, 000. These graphs are representations of

social, communication, and shopping networks. Higgs are the only directed graphs

used in our experiments. They were chosen because of their number of nodes, which

are similar to our largest chosen graphs, so they are converted to undirected graphs to

complete our tests.

Table 4.1 shows details of the graphs used for the experiments. This table shows

the number of nodes and edges, the source where each graph was obtained, and the Id

column shows the identifier used as a graph reference for other tables in this document.

All graph instances of Table 4.1 were submitted to all the heuristics tested. The

heuristics were tested using 30 trials. In the tables of results, the bottom line named
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as “count” shows the number of the best results obtained by each heuristic.

Table 4.1: Real graph instances used in the experiments for our eight heuristics.

Id Dataset name Nodes Edges Source

1 Strike 24 38 (BATAGELJ; MRVAR, 2006)
2 Galesburg f 31 63 (BATAGELJ; MRVAR, 2006)
3 Galesburg d 31 67 (BATAGELJ; MRVAR, 2006)
4 Karate 34 78 (BATAGELJ; MRVAR, 2006)
5 Korea1 35 69 (BATAGELJ; MRVAR, 2006)
6 Korea2 35 84 (BATAGELJ; MRVAR, 2006)
7 Mexico 35 117 (BATAGELJ; MRVAR, 2006)
8 Sawmill 36 62 (BATAGELJ; MRVAR, 2006)
9 Dolphins 62 159 (BATAGELJ; MRVAR, 2006)
10 Lesmis 77 479 (BATAGELJ; MRVAR, 2006)
11 Polbooks 105 441 (BATAGELJ; MRVAR, 2006)
12 Adjnoun 112 425 (BATAGELJ; MRVAR, 2006)
13 Football 115 613 (BATAGELJ; MRVAR, 2006)
14 Jazz 198 2742 (BATAGELJ; MRVAR, 2006)
15 Celegansneural 297 3529 (BATAGELJ; MRVAR, 2006)
16 Celegans metabolic 453 2025 (BATAGELJ; MRVAR, 2006)
17 Email 1133 5451 (BATAGELJ; MRVAR, 2006)
18 Facebook combined 4039 88234 (LESKOVEC; KREVL, 2014)
19 Ca-grqc 5242 14496 (LESKOVEC; KREVL, 2014)
20 Ca-hepth 9877 25998 (LESKOVEC; KREVL, 2014)
21 Oregon1 010526 11174 23409 (LESKOVEC; KREVL, 2014)
22 Oregon2 010526 11461 32730 (LESKOVEC; KREVL, 2014)
23 Ca-hepph 12008 118521 (LESKOVEC; KREVL, 2014)
24 Ca-astroph 18772 198110 (LESKOVEC; KREVL, 2014)
25 Ca-condmat 23133 93497 (LESKOVEC; KREVL, 2014)
26 Email-enron 36692 183831 (LESKOVEC; KREVL, 2014)
27 Higgs-reply 38918 29895 (LESKOVEC; KREVL, 2014)
28 Brightkite edges 58228 214078 (LESKOVEC; KREVL, 2014)
29 Higgs-mention 116408 145774 (LESKOVEC; KREVL, 2014)
30 Gowalla edges 196591 950327 (LESKOVEC; KREVL, 2014)
31 Higgs-retweet 256491 327374 (LESKOVEC; KREVL, 2014)
32 Com-dblpgraph 317080 1049866 (LESKOVEC; KREVL, 2014)
33 Com-amazon 334863 925872 (LESKOVEC; KREVL, 2014)
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4.3.2 Gap to the Best-known on Real Graphs

Table 4.2 compares the best values obtained by the heuristics tested. Featured values

are the best-known D for each instance. The penultimate row shows the average gap

to the best-known D values. Column D* shows the optimal values reported by Costa

(2015).

The eight heuristics tested were compared with GAOD (LIU; ZENG, 2010),

iMeme-Net (GONG et al., 2012), and HAIN (KARIMI-MAJD; FATHIAN; AMIRI,

2014) results. The CNM (CLAUSET; NEWMAN; MOORE, 2004) and Louvain

(BLONDEL et al., 2008) found very different results when compared with

other heuristics. This happens with CNM on “Adjnoun”, “Celegansneural”,

“Ca-grqc”, “Ca-hepth”, “Ca-hepph”, “Ca-astroph”, “Ca-condmat”, “Higgs-reply”, and

“Higgs-mention”. Louvain failed on “Adjnoun”, “Celegansneural”, “Com-dblpgraph”,

and “Com-amazon”. When compared with CNM and Louvain, six of our novel

heuristics surpass most of the best D values obtained.

The lowest gap is reported for GAOD, but the only known results are for two

instances with 34 and 115 nodes. For most of the instances, the best results were

obtained by HLSMD which are far from the best-known solution an average of 13.67%,

considering the gap over the best partitions obtained by heuristics. This heuristic also

reached the best D values for twelve instances tested, and it found six of eight known

optimal partitions. When compared with iMeme-Net, and HAIN, the gap of HLSMD is

better.

Figure 4.4 shows the gap of the best-known values for each of our eight heuristics.

The size of each instance is represented as the product of the number of nodes and edges,

composing the axis “|V |·|E|”. A log scale is used in the |V |·|E| axis because of the high

concentration of small instances. For the instances which the optimal value is known, we

used the value obtained by Costa (2015), otherwise, the largest objective value obtained

by the nine tested heuristics and the reported values for GAOD, iMeme-Net, HAIN,

and BMD-λ in their papers. This figure shows that for all of our seven heuristics, the
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Figure 4.4: Average gap (red) and the best gap (blue) with the standard error obtained
to the best-known D value for each of our eight heuristics in the real graphs of Table
4.1.
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gap grows as the instance graph grows in the number of nodes and edges. CM+LNM,

CM+MCN, MD, MDM, and HLSMD presented the smallest gaps.

Table 4.3 compares the average D values among the heuristics tested. For

probabilistic heuristics, the standard error is shown at the side of the D values. The

best gap was obtained by MD, mainly for the largest instances. The smallest gaps were

obtained by MD, MDM, CM+LNM, and HLSMD heuristics in the ordering of the best

gaps. MD and CM+LNM obtained the best average D value for seven instances.

4.3.3 Temporal Analysis

To compare the time demanded by the eight heuristics tested, CNM, and Louvain,

Figures 4.5 and 4.6 plots the average time and the standard error on a log scale, to

show the relation between the size of instances and the required time for each heuristic.

Time thresholds are printed as dashed lines for a millisecond, a second, ten seconds, a

minute, ten minutes, an hour, and ten hours. These thresholds help to understand the

time required by the heuristics to find the solutions.

Table 4.4 compares the average time in seconds of our tested heuristics CM, LNM,

CM+LNM, MCN, CM+MCN, MD, MDM, HLSMD (reported in Sections 4.1 and 4.2).

They are also compared with CNM (CLAUSET; NEWMAN; MOORE, 2004) and

Louvain (BLONDEL et al., 2008) and the time reported for MDB2 (COSTA, 2015),

HAIN (KARIMI-MAJD; FATHIAN; AMIRI, 2014), and BMD-λ (COSTA et al., 2016).

For randomized heuristics, at the right-side of each time, there is the standard error. The

Id column specifies the instance. The best results are marked in bold. The values “<

0.001” are used for heuristics that required time less than 1 ms. The “-” values denote

that there is not known a time result about that running.

The fastest heuristics are Louvain, CM, LNM and MCN which required less than a

minute to execute the largest instances tested. For most of the instances, Louvain and

MCN required less than 16 seconds for the largest instances. HLSMD found partitions

to the largest instances in less than ten minutes. CNM and CM+LNM required about an
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Table 4.2: Table for the comparison of the best D values for real graphs.

MDB2 GAOD iMeme-Net HAIN BMD-λ CNM Louvain CM
Id |C| D* |C| D |C| D |C| D |C| D |C| D |C| D |C| D

1 4 8.861 - - - - - - 4 8.861 4 8.783 4 8.783 4 7.048
2 3 8.286 - - - - - - 3 8.286 4 7.350 4 7.833 3 8.201
3 3 6.927 - - - - - - 3 6.927 5 5.500 5 5.500 4 6.831
4 3 7.845 3 7.845 3 7.845 3 3.922 3 7.842 3 6.023 4 7.529 2 6.037
5 5 10.967 - - - - - - 5 10.967 5 8.917 9 8.917 10 9.809
6 5 11.143 - - - - - - 5 11.143 5 10.872 9 10.712 9 9.173
7 3 8.718 - - - - - - 2 8.558 3 7.895 3 8.562 2 8.399
8 4 8.623 - - - - - - 5 8.529 4 8.623 4 8.623 5 7.374
9 - - - - 4 10.883 5 6.063 5 12.125 4 7.818 5 10.456 4 10.590
10 - - - - - - 8 12.274 - - 5 2.877 5 6.966 1 12.636
11 - - - - 4 20.160 6 10.958 7 21.965 4 16.832 5 21.029 3 18.542
12 - - - - - - 2 3.894 - - 7 -5.996 6 1.563 1 7.589
13 - - 10 43.370 8 29.321 11 22.194 - - 7 33.135 9 42.023 10 36.379
14 - - - - - - - - - - 4 39.115 4 39.291 2 42.446
15 - - - - - - - - - - 226 -4932.870 6 -26.494 1 23.916
16 - - - - - - - - - - 10 14.621 10 16.445 1 8.940
17 - - - - - - - - - - 12 26.949 12 35.592 6 12.795
18 - - - - - - - - - - 15 439.467 16 560.469 28 452.254
19 - - - - - - - - - - 5057 -28395.500 395 847.234 757 1157.640
20 - - - - - - - - - - 9581 -51029.000 477 864.041 1084 1172.680
21 - - - - - - - - - - 37 57.046 37 64.520 26 15.319
22 - - - - - - - - - - 68 97.977 34 87.476 21 14.996
23 - - - - - - - - - - 11775 -236160.000 319 978.804 318 540.761
24 - - - - - - - - - - 18620 -395620.000 328 884.886 290 545.375
25 - - - - - - - - - - 22718 -185525.000 620 1278.840 1439 1812.920
26 - - - - - - - - - - 1612 2815.710 1270 2322.730 1066 1626.400
27 - - - - - - - - - - 30503 -33727.500 10699 13321.900 10787 13373.100
28 - - - - - - - - - - 1718 1900.830 820 1208.930 576 695.947
29 - - - - - - - - - - 109847 -261156.000 10661 21198.500 10865 21145.000
30 - - - - - - - - - - 2842 3260.440 768 1710.940 344 199.802
31 - - - - - - - - - - 14179 15900.900 13402 14900.000 13557 14838.400
32 - - - - - - - - - - 3204 8995.930 247 992.399 17899 19607.100
33 - - - - - - - - - - 1497 5969.950 262 1334.430 22598 34674.900

avg. gap (0.0±0.0%) (1.09±0.77%) (13.08±6.3%) (45.09±4.33%) (0.22±0.19%) (46.07±6.83%) (34.25±5.39%) (35.86±4.93%)

count 8 1 1 0 7 3 2 0

LNM CM+LNM MCN CM+MCN MD MDM HLSMD
Id |C| D |C| D |C| D |C| D |C| D |C| D |C| D

1 6 7.426 4 7.048 4 8.861 24 7.048 4 8.783 4 8.861 4 8.861
2 8 1.250 3 8.286 3 8.062 3 8.201 3 8.201 3 8.201 3 8.286
3 7 1.680 4 6.841 3 6.558 4 6.831 3 6.886 3 6.927 4 6.671
4 5 5.809 2 6.037 3 7.842 2 6.037 3 7.845 3 7.842 3 7.845
5 12 7.917 10 10.591 10 10.567 39 10.531 10 10.067 10 9.809 9 10.967
6 12 5.872 9 10.014 10 10.833 9 10.014 9 10.994 9 11.143 9 11.143
7 7 -0.313 2 8.558 3 8.449 2 8.409 2 8.523 3 8.718 3 8.718
8 9 4.733 5 8.302 5 8.290 5 8.302 5 8.509 4 8.623 5 8.509
9 12 2.287 4 10.590 5 11.359 4 10.590 5 11.103 5 11.367 5 11.785
10 6 8.766 1 12.636 2 14.103 1 12.636 3 15.359 3 15.606 3 13.742
11 16 -2.997 3 18.703 6 19.835 3 18.686 5 21.230 5 21.361 6 20.961
12 13 -12.379 1 7.589 2 7.651 1 7.589 1 7.589 1 7.589 2 7.651
13 18 -4.198 10 44.340 12 39.911 10 43.159 11 43.916 8 40.777 12 40.667
14 15 0.251 2 44.003 8 45.350 2 43.894 3 43.950 4 49.716 4 46.167
15 22 -138.564 1 23.916 1 23.916 1 23.916 1 27.525 1 23.916 1 23.916
16 95 -138.183 1 8.940 17 24.055 1 8.940 13 21.929 9 21.051 15 24.955
17 127 -113.095 6 24.100 30 9.754 6 21.666 29 24.769 9 31.695 32 25.920
18 268 189.912 28 740.964 82 828.171 28 593.088 55 795.756 14 542.925 72 875.074
19 1245 1015.850 756 1387.410 894 1409.860 752 1319.740 827 1320.530 757 1157.640 891 1406.250
20 2170 883.768 1084 1603.500 1339 1460.200 1053 1338.040 1083 1366.390 1084 1172.680 1325 1427.330
21 1044 -91.217 26 28.020 515 31.260 23 21.249 226 71.567 38 43.996 516 34.703
22 1005 -239.495 21 46.969 258 -16.814 19 24.472 36 40.542 26 55.708 392 -0.039
23 1736 1177.010 318 1207.220 795 2088.110 318 762.494 842 1075.600 163 744.382 826 2060.010
24 2372 -1421.990 290 545.375 948 1909.920 290 545.375 295 1163.310 180 793.657 805 2243.080
25 4550 -163.533 1439 3068.600 1940 2762.480 1425 2270.500 1529 2395.840 1439 1812.920 1967 2765.220
26 5224 -774.428 1066 1630.520 2177 3110.160 1066 1629.090 1631 1631.330 1066 1626.400 1943 3160.790
27 13383 15163.100 10787 13373.100 13109 15069.900 10787 13373.100 10787 13373.100 10787 13373.100 13091 15073.000
28 9105 -336.309 576 792.180 1785 159.920 576 720.195 576 695.947 597 724.354 1804 -14.606
29 23568 34504.800 10865 21145.000 19514 29583.600 10812 21143.400 12834 218910.000 2298 176674.000 19514 29576.400
30 28510 -5271.990 344 517.059 7168 3382.600 154 223.019 344 199.802 544 1248.120 9521 3226.380
31 32176 23830.200 13557 14841.500 29991 23918.400 13557 14839.600 24186 18497.800 13557 14838.400 29944 23937.700
32 62472 11627.100 17779 36070.200 26405 35352.700 17179 26600.600 20140 29195.800 17899 19607.100 25893 35428.100
33 70350 -11574.700 22074 49203.100 39204 47848.400 21756 45998.600 29602 49600.900 22598 34674.900 39191 47868.200

avg. gap (72.57±5.75%) (24.62±4.71%) (16.26±4.95%) (29.96±4.88%) (16.72±3.99%) (21.87±3.82%) (13.67±4.83%)

count 1 5 5 0 5 7 12
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Table 4.3: Table for the comparison of the average D values for real graphs.

CNM Louvain CM LNM CM+LNM
Id avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D

1 4.0 8.783 4.0±0.0 8.783±9.729 4.0 7.047 7.7±0.11 3.647±0.256 4.0±0.0 7.047±6.486
2 4.0 7.3 4.0±0.0 7.833±4.864 3.0 8.2 9.57±0.13 -2.496±0.397 3.0±0.0 8.285±6.486
3 5.0 5 5.0±0.0 5±0. 4.0 6.831 8.3±0.13 -0.974±0.299 4.0±0.0 6.84±3.243
4 3.0 6.022 4.0±0.0 7.529±6.486 2.0 6.036 6.8±0.19 .26±0.53 2.0±0.0 6.036±3.243
5 5.0 8.916 9.0±0.0 8.916±6.486 10.0 9.809 13.23±0.14 3.724±0.519 10.0±0.0 10.554±0.005
6 5.0 10.872 9.0±0.0 10.712±0. 9.0 9.173 13.13±0.14 3.047±0.576 9.0±0.0 10.014±6.486
7 3.0 7.894 3.0±0.0 8.561±6.486 2.0 8.398 8.27±0.17 -8.87±1.002 2.0±0.0 8.557±9.729
8 4.0 8.623 4.0±0.0 8.623±0. 5.0 7.373 10.33±0.12 2.586±0.394 5.0±0.0 7.908±0.062
9 4.0 7.817 5.0±0.0 10.455±3.243 4.0 10.59 14.03±0.21 -4.639±0.874 4.0±0.0 10.59±1.621
10 5.0 2.877 5.0±0.0 6.056±0.03 1.0 12.636 8.5±0.17 .791±0.689 1.0±0.0 12.636±6.486
11 4.0 16.832 5.0±0.0 21.029±1.297 3.0 18.542 20.27±0.29 -22.806±1.426 3.0±0.0 18.703±1.297
12 7.0 -5.996 6.0±0.0 1.563±1.621 1.0 7.589 16.8±0.28 -24.816±1.149 1.0±0.0 7.589±6.486
13 7.0 33.134 9.0±0.0 42.023±3.891 10.0 36.378 21.97±0.27 -52.907±3.335 10.0±0.0 44.34±0.
14 4.0 39.115 4.0±0.0 39.291±2.594 2.0 42.445 15.63±0.21 -23.687±2.591 2.0±0.0 44.002±3.891
15 226.0 -4932.8 6.0±0.0 -26.494±0. 1.0 23.915 25.33±0.39 -179.328±3.358 1.0±0.0 23.915±1.297
16 10.0 14.621 10.0±0.0 16.444±1.945 1.0 8.94 103.53±0.67 -169.749±2.973 1.0±0.0 8.94±6.486
17 12.0 26.94 12.0±0.0 32.591±0.146 6.0 12.794 134.97±0.74 -140.349±2.587 6.0±0.0 23.039±0.115
18 15.0 439.46 15.4±0.13 548.58±2.276 28.0 452.25 275.53±0.98 99.452±7.713 28.0±0.0 727.877±1.616
19 5057.0 -28395 391.43±0.15 829.852±0.751 757.0 1157.6 1255.37±1.24 941.533±8.522 756.0±0.0 1374.199±1.094
20 9581.0 -51029 476.43±0.25 855.205±1.286 1084.0 1172.6 2184.57±2.13 809.031±6.258 1084.0±0.0 1582.598±2.657
21 37.0 57.046 32.47±0.48 56.216±0.731 26.0 15.319 1068.87±2.31 -122.705±2.629 26.0±0.0 26.248±0.101
22 68.0 97.97 29.33±0.52 75.229±0.99 21.0 14.996 1028.97±2.45 -283.345±4.11 21.0±0.0 46.196±0.08
23 11775.0 -236160 315.07±0.49 947.558±3.214 318.0 540.76 1749.8±3.17 863.612±26.456 318.0±0.0 1197.8±0.979
24 18620.0 -395620 325.7±0.43 850.227±3.002 290.0 545.37 2392.83±2.82 -1704.12±27.789 290.0±0.0 545.37±0.
25 22718.0 -185525 619.67±0.35 1256.843±2.332 1439.0 1812.9 4593.9±3.46 -375.738±16.079 1439.0±0.0 3050.93±1.453
26 1612.0 2815.7 1244.4±3.04 2256.997±9.034 1066.0 1626 5273.37±4.65 -940.635±17.365 1066.0±0.0 1630.25±0.025
27 30503.0 -33727 10696.4±0.33 13316.503±0.656 10787.0 13373 13386.37±2.46 15140.0±2.057 10787.0±0.0 13373±9.963
28 1718.0 1900.8 738.33±5.24 1115.868±6.989 576.0 695.94 9135.4±5.88 -473.961±12.381 576.0±0.0 791.535±0.08
29 109847.0 -261156 10640.83±1.57 21147.2±4.042 10865.0 21145 23565.37±6.31 34401.086±8.728 10865.0±0.0 21145±0.
30 2842.0 3260.4 541.9±12.73 1254.862±26.641 344.0 199.8 28636.2±18.19 -5617.459±31.956 344.0±0.0 503.208±1.502
31 14179.0 15900 13376.43±2.47 14857.756±4.042 13557.0 14838 32131.73±7.33 23743.6±8.854 13557.0±0.0 14841.486±0.009
32 3204.0 8995.9 211.4±2.49 904.29±8.406 17899.0 19607 62660.7±17.51 10893.496±58.36 17779.17±0.26 35987.933±9.023
33 1497.0 5969.9 237.33±1.39 1214.9±6.948 22598.0 34674 70483.93±16.39 -12207.953±58.453 22075.07±0.34 49137.943±6.809

avg. gap (43.24±7.12%) (32.43±5.54%) (32.92±4.87%) (82.59±4.88%) (21.66±4.53%)

count 6 4 1 1 7

MCN CM+MCN MD MDM HLSMD
Id avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D avg. |C| avg. D

1 4.9±0.18 7.004±0.189 24.0±0.0 7.047±6.486 4.2±0.07 8.62±0.056 4.0±0.0 8.853±0.004 4.73±0.22 7.224±0.204
2 5.23±0.15 6.625±0.135 3.0±0.0 8.2±9.729 3.0±0.0 8.2±9.729 3.0±0.0 8.2±9.729 4.6±0.21 7.329±0.136
3 4.47±0.21 4.784±0.289 4.0±0.0 6.831±8.107 3.7±0.08 6.847±0.004 3.97±0.03 6.834±0.003 4.07±0.17 5.691±0.16
4 3.43±0.1 6.966±0.149 2.0±0.0 6.036±3.243 3.63±0.09 7.062±0.081 3.07±0.17 6.772±0.082 3.77±0.08 7.544±0.044
5 10.93±0.12 9.026±0.239 33.2±2.12 10.489±0.009 10.0±0.05 9.837±0.011 10.0±0.0 9.809±3.243 10.53±0.15 9.93±0.161
6 9.87±0.17 9.782±0.162 9.0±0.0 10.014±6.486 9.73±0.08 10.7±0.047 8.97±0.03 11.004±0.024 9.63±0.14 10.572±0.131
7 3.13±0.15 7.013±0.233 2.0±0.0 8.4076±0.0006 2.0±0.0 8.486±0.007 2.77±0.08 8.552±0.023 3.23±0.15 7.329±0.27
8 6.43±0.2 6.975±0.193 5.0±0.0 8.001±0.062 5.1±0.07 8.435±0.022 4.07±0.04 8.573±0.01 6.47±0.15 7.343±0.141
9 8.3±0.24 7.834±0.315 4.0±0.0 10.59±1.621 4.5±0.13 10.698±0.031 5.0±0.0 11.367±0. 7.87±0.21 8.476±0.306
10 3.4±0.33 11.045±0.606 1.0±0.0 12.636±6.486 2.07±0.19 13.668±0.137 3.6±0.12 13.618±0.136 3.83±0.24 11.072±0.603
11 8.43±0.31 15.861±0.506 3.0±0.0 18.686±1.297 4.93±0.15 20.584±0.073 4.3±0.08 20.606±0.07 7.27±0.27 17.25±0.445
12 3.13±0.27 5.856±0.423 1.0±0.0 7.589±6.486 1.0±0.0 7.589±6.486 1.0±0.0 7.589±6.486 4.33±0.33 4.701±0.65
13 13.1±0.12 32.427±0.874 10.0±0.0 43.093±0.006 11.47±0.1 42.034±0.161 9.27±0.14 39.735±0.21 13.0±0.09 34.014±0.815
14 9.33±0.31 30.392±1.314 2.0±0.0 43.893±3.891 2.97±0.03 43.899±0.049 2.73±0.09 46.35±0.476 7.77±0.22 31.902±1.274
15 2.2±0.18 17.7217±1.0003 1.0±0.0 23.915±1.297 1.0±0.0 26.073±0.176 1.0±0.0 23.915±1.297 2.17±0.2 18.563±0.988
16 14.4±0.84 14.006±1.052 1.0±0.0 8.94±6.486 15.37±0.56 18.31±0.41 7.97±0.14 17.607±0.288 13.9±0.72 14.501±1.277
17 47.1±1.56 -40.99±5.778 6.0±0.0 20.523±0.065 9.27±1.29 13.717±0.48 8.33±0.12 30.241±0.142 47.33±1.43 -36.977±5.263
18 83.73±1.53 766.273±5.01 28.0±0.0 588.346±0.362 62.7±1.07 748.014±6.54 15.17±0.47 505.525±3.648 82.1±1.38 811.953±8.026
19 891.93±1.86 1387.7±2.265 752.07±0.12 1309.04±1.503 824.47±1.76 1288.06±3.137 757.0±0.0 1157.6±8.302 889.4±2.35 1391.667±1.677
20 1313.8±2.52 1395.893±5.227 1058.7±0.44 1328.32±0.933 1076.4±2.16 1334.071±3.217 1084.0±0.0 1172.6±0. 1312.4±2.69 1392.319±3.482
21 525.37±3.17 10.448±2.183 23.0±0.0 20.969±0.025 164.4±18.09 48.344±2.185 45.57±1.35 41.706±0.255 521.93±2.75 10.101±2.196
22 242.03±5.55 -75.634±4.828 19.0±0.0 23.947±0.041 48.13±4.17 31.012±0.817 22.7±0.8 49.128±0.48 252.93±9.06 -70.522±5.101
23 611.5±31.64 1610.76±50.83 318.0±0.0 758.168±0.446 527.67±52.74 964.258±9.452 156.63±0.42 698.195±4.202 514.83±25.66 1629.4±30.373
24 856.3±19.18 1732.02±18.902 290.0±0.0 545.37±0. 404.57±14.47 987.852±13.413 177.2±0.35 767.055±2.352 848.4±15.91 1735.69±26.169
25 1946.93±5.43 2547.691±17.184 1424.53±0.33 2259.251±1.164 1503.57±3.52 2290.162±7.427 1439.0±0.0 1812.9±2.075 1953.9±5.08 2594.441±14.245
26 1646.43±71.82 2129.851±77.384 1066.0±0.0 1629.02±0.006 1085.48±19.14 1626.5±0.167 1066.0±0.0 1626±1.245 1832.03±101.87 2418.74±74.318
27 13126.77±3.12 15052.6±1.555 10787.0±0.0 13373±9.963 10787.0±0.0 13373±9.963 10787.0±0.0 13373±9.963 13119.03±3.64 15055.066±1.594
28 1848.77±17.68 -484.12±41.074 576.0±0.0 719.681±0.04 576.0±0.0 695.94±0. 585.83±1.71 701.768±1.494 1845.33±14.23 -526.119±38.053
29 19478.73±8.75 29451.313±11.372 10811.07±0.04 21142.853±0.027 11194.47±472.72 201597.133±2676.205 2209.93±45.03 176299.034±42.201 19472.4±7.72 29451.086±12.113
30 5079.97±400.18 1546.177±215.968 137659.43±16435.23 219.318±0.309 344.0±0.0 199.8±1.037 462.73±7.18 1064.142±13.586 5891.77±494.7 1975.081±215.401
31 29947.77±9.43 23844.486±7.381 13557.0±0.0 14839.566±0.008 19930.57±797.82 16673.353±289.928 13557.0±0.0 14838±7.585 29939.17±6.3 23842.763±9.858
32 26319.23±48.39 34911.956±35.934 17180.6±1.78 26550±4.112 19912.1±16.34 28898.173±30.404 17899.0±0.0 19607±1.992 26324.0±39.14 34908.0±34.789
33 39238.03±16.59 47573.886±19.908 21750.87±1.89 45937.763±5.837 29662.43±37.9 49287.083±25.03 22598.0±0.0 34674±2.656 39222.5±17.41 47623.1±27.278

avg. gap (28.56±5.22%) (27.16±4.75%) (17.68±4.14%) (20.36±3.75%) (25.62±5.36%)

count 1 1 7 5 5
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hour to execute the largest instances. MDM is only faster than MD.

Figure 4.5: Average runtime according to the number of nodes for each heuristic tested.
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Louvain and MCN required almost the same time. Our results clearly suggested

that our eight heuristics are faster than GAOD, iMeme-Net, and HAIN when compared

with the results reported in Karimi-Majd, Fathian and Amiri (2014), where the fastest

heuristic required 78 seconds for instances with less than 3,000 edges. The exact models

of Costa (2015) required more than a minute to find optimal partitions for instances

with 40 nodes, using a parallel architecture for its experiments. All our heuristics

found partitions in less than a second for instances with less than 5,000 nodes. MCN,

CM+MCN and HLSMD found solutions for graphs with at most 100,000 edges in less

than seven seconds.

To confirm the time results, amortized complexity analysis was carried out using

the linear regression model with the polynomial hypothesis to determine how many

operations are required, considering the number of nodes and edges of the instances

tested. Let n = |V | and m = |E|, then the amortized time complexity is shown below:

• CM: n0.78±0.09m0.62±0.11;
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Figure 4.6: Average runtime according to the number of edges for each heuristic tested.
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• LNM: n1.02±0.11m0.07±0.09;

• CM+LNM: n1.99±0.1m0.14±0.11;

• MCN: n0.19±0.05m1.23±0.06;

• CM+MCN: n0.41±0.07m1.04±0.07;

• MD: n1.92±0.09m0.14±0.1;

• MDM: n1.64±0.08m0.2±0.09;

• HLSMD: n1.22±0.07m0.31±0.08.

The time required by the LNM, CM+LNM, MD, MDN, and HLSMD heuristics

are strongly dependent on the number of nodes. MCN and CM+MCN are strongly

dependent on the number of edges. These results emphasize the sublinear time required

by CM for the largest instances tested.



Table 4.4: Average time in seconds of tested heuristics and results from literature for real graphs.

Id MDB2 HAIN BMD-λ CNM Louvain CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

1 2.3 - 2.3 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 .004±0.001 < 0.001 < 0.001 < 0.001
2 2.6 - 2.6 < 0.001 .0002±0.0002 < 0.001 < 0.001 < 0.001 < 0.001 .005±0.002 < 0.001 < 0.001 < 0.001
3 5.0 - 2.9 < 0.001 .0001±0.0001 < 0.001 < 0.001 < 0.001 < 0.001 .008±0.003 .0002±0.0002 < 0.001 < 0.001
4 4.7 .33 2.4 < 0.001 .002±0.001 < 0.001 .005±0.002 < 0.001 .0004±0.0004 < 0.001 < 0.001 .0004±0.0004 < 0.001
5 19.1 - 2.8 < 0.001 .0001±0.0001 < 0.001 3.33333±0.00003 < 0.001 < 0.001 .0013±0.0005 .0002±0.0002 < 0.001 < 0.001
6 36.3 - 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 .005±0.002 < 0.001 < 0.001 < 0.001
7 13.3 - 3.3 < 0.001 .001±0.001 < 0.001 .00013±0.00007 < 0.001 < 0.001 .008±0.003 .0003±0.0003 .0001±0.0001 < 0.001
8 10.7 - 1.8 < 0.001 3.33333±0.00003 < 0.001 < 0.001 3.33333±0.00003 < 0.001 .006±0.002 .003±0.001 .0005±0.0005 < 0.001
9 - - 17.6 < 0.001 < 0.001 < 0.001 .002±0.001 < 0.001 < 0.001 < 0.001 < 0.001 .00033±0.00008 < 0.001
10 - - - < 0.001 .001±0.001 < 0.001 .0012±0.0001 .00026±0.00008 .0008±0.0004 < 0.001 .0022±0.0002 .002±0.0004 < 0.001
11 - 7.56 72.4 < 0.001 .00033±0.00008 < 0.001 .0014±0.0001 < 0.001 < 0.001 .00106±0.00004 .00203±0.00003 .00203±0.00003 < 0.001
12 - - - < 0.001 < 0.001 3.33333 .007±0.002 < 0.001 < 0.001 .00103±0.00003 .00233±0.00008 .00213±0.00007 < 0.001
13 - - - < 0.001 < 0.001 .00013 .0025±0.0001 < 0.001 < 0.001 .006±0.001 < 0.001 .00306±0.00006 .00113±0.00006
14 - - - < 0.001 .004±0.0002 .00216 .0106±0.0005 .00506±0.00004 .0042±0.0001 .007±0.0005 .0125±0.0002 .011±0.0002 .0042±0.0001
15 - - - < 0.001 .0057±0.0002 .003 .015±0.0009 .00806±0.00004 .0052±0.0001 .019±0.003 .0211±0.0001 .0183±0.0002 .00603±0.00003
16 - - - < 0.001 .0045±0.0002 < 0.001 .0128±0.0007 < 0.001 .004±0.0001 .0093±0.0003 .0219±0.0001 .0133±0.0002 .005±0.0001
17 - - - .04 .0106±0.0004 .0098 .079±0.003 .049±0.001 .01±0.0002 .036±0.004 .131±0.002 .0482±0.0008 .0164±0.0001
18 - - - .58 .246±0.002 .1912 1.69±0.06 .73±0.01 .259±0.001 .74±0.02 1.77±0.04 1.006±0.009 .351±0.004
19 - - - .02 .0439±0.0006 .01913 .8±0.02 .485±0.009 .0425±0.0004 .101±0.007 4.45±0.09 .825±0.001 .124±0.002
20 - - - .04 .101±0.0008 .055 2.91±0.1 2.07±0.07 .0848±0.0005 .23±0.01 21.86±0.75 2.536±0.006 .397±0.007
21 - - - 1.4 .099±0.001 .3152 2.45±0.06 3.01±0.11 .09±0.0001 .74±0.02 5.14±0.08 2.692±0.008 .248±0.002
22 - - - 1.95 .138±0.001 .3448 3.34±0.1 4.43±0.08 .128±0.0003 .96±0.05 5.95±0.1 2.87±0.01 .258±0.006
23 - - - .31 .467±0.005 .383 6.79±0.2 6.49±0.08 .431±0.002 1.38±0.05 11.5±0.2 3.6±0.02 1.05±0.03
24 - - - .48 .98±0.01 1.027 20.34±0.7 5.393±0.001 .84±0.004 6.63±0.09 53.12±2.47 8.06±0.05 1.92±0.05
25 - - - .2 .467±0.007 .2743 18.33±0.6 12.06±0.31 .353±0.001 .94±0.02 264.37±12.96 13.15±0.04 1.62±0.04
26 - - - 50.91 .99±0.01 1.993 43.9±1.51 42.03±2.03 .92±0.01 11.76±0.13 117.52±4.21 22.35±0.1 3.66±0.1
27 - - - .08 .216±0.0008 .2785 20.33±0.62 11.0786±0.0008 .1981±0.0009 .76±0.02 171.24±5.4 31.47±0.39 4.78±0.11
28 - - - 98.65 1.39±0.01 2.211 107.07±2.94 125.9±2.67 1.285±0.004 6.58±0.14 1058±41.0 73.1±0.74 4.8±0.11
29 - - - 1.25 1.12±0.005 9.51 243.29±4.76 266.33±6.43 .866±0.001 24.35±0.21 1706.84±47.34 256.5±6.47 32.67±0.61
30 - - - 1469.9 9.64±0.08 27.953 2017.02±74.24 3033.73±126.56 13.77±0.12 79.98±0.42 15163.92±303.5 1794.43±65.17 65.63±3.49
31 - - - 716.21 3.03±0.01 30.01 2654.78±167.85 2009.44±40.7 2.4±0.005 77.33±0.52 7075.26±204.72 2631.89±76.81 129.34±3.36
32 - - - 2848.74 11.4±0.26 8.464 11228.06±576.36 2587.73±56.07 5.09±0.01 22.79±0.42 58088.12±282.65 7196.02±84.03 220.03±5.1
33 - - - 732.19 7.2±0.05 5.52 17056.63±403.22 3196.53±88.85 5.2±0.01 17.1±0.31 68860.14±667.5 7657.89±117.13 377.88±11.11

count 0 0 0 22 6 20 5 12 19 3 6 5 12
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4.4 Chapter Summary

We presented and analyzed efficient heuristics for Modularity Density Maximization

which solve instances with hundreds of thousands of nodes. Eight heuristics are

compared with GAOD (LIU; ZENG, 2010), iMeme-Net (GONG et al., 2012),

HAIN (KARIMI-MAJD; FATHIAN; AMIRI, 2014), and BMD-λ (COSTA et al.,

2016) Modularity Density Maximization heuristics and CNM (CLAUSET; NEWMAN;

MOORE, 2004) and Louvain (BLONDEL et al., 2008) Modularity Maximization

heuristics. Our eight heuristics were also compared with Costa (2015) exact results

to identify gaps in the optimal partitions. To show the scalability of our methods, they

were tested using real datasets from the “Stanford Large Network Dataset Collection”

(LESKOVEC; KREVL, 2014).

Our experiments suggest that six of our eight heuristics (CM+LNM, MCN,

CM+MCN, MD, MDM, and HLSMD) find solutions with higher D value than GAOD,

iMeme-Net, HAIN, and BMD-λ for some of the tested graphs (see Table 4.2). The

experiments also suggest that these six heuristics were more scalable than HAIN and

BMD-λ (Table 4.4).

With the selected dataset collections composed of real graphs, the fastest heuristics

are Louvain, CM, MCN, and CM+MCN requiring at most 1m30s to run the largest

tested instances. Louvain, CM, and MCN required at most 32 seconds.

Figure 4.7 can be used to compare results from the literature and tested heuristics.

The axis “Distance from the best time” shows the relative distance from the best time

obtained for each graph on a log scale, and the axis “Distance from the best D” is the

relative distance from the best D value obtained. The closer the heuristic is zero on both

axes, the better are the average time and D value.
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Figure 4.7: Distance from the best time and the best D value, considering results from
the literature and from our experiments.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance from the Best D

10-4

10-3

10-2

10-1

100

101

102

103

104

D
is

ta
n
ce

 f
ro

m
 t

h
e 

B
es

t 
T
im

e

MDB2
HAIN
BMD-λ

CNM
Louvain

CM
LNM
CM+LNM
MCN

CM+MCN
MD
MDM
HLSMD



97

5 ALGORITHMIC CONTRIBUTIONS

There are six exact known algorithms for Modularity Density Maximization. Li et

al. (2008) have presented an exact binary nonlinear mathematical program (0-1 NLP)

that is difficult to use with typical solvers. Karimi-Majd, Fathian and Amiri (2014)

have reported an improvement to the Li et al. (2008) model in which the parameter of

the number of clusters is no longer required. Costa (2015) has presented four different

mixed-integer linear models converted from the 0-1 NLP. Instances with at most 40

nodes have been tested, and the results have indicated the difficulty in solving it exactly.

In this context, we developed six column generation methods for Modularity Density

Maximization. They use the heuristic HLSMD described in Chapter 4 to generate the

initial solution considering results of Table 4.2. In the experimental analysis, our column

generations provided only integer solutions, so no other procedure (such as branch and

price) was needed. Our six column generation methods are compared to the best exact

models of Costa (2015). The obtained results suggest that two of our methods are

state-of-the-art for exact Modularity Density Maximization. They have solved instances

where the optimal solution had not previously been proved.

The remainder of this chapter is organized as follows. Section 5.1 explains how our

column generation methods work, and general details about them are specified. Section

5.2 describes our two heuristics for the auxiliary problem of our column generations.

Section 5.3 presents a detailed experimental analysis of the methods.

The results reported in this Chapter were published in the Computers & Operations

Research journal; in 2017.

5.1 On Column Generation for Modularity Density Maximization

It is well-known that column generation is a technique used to solve mathematical

linear programming problems with an exponential number of variables (ALOISE et al.,

2010; NASH, 2013). Thus, for these problems, it is impossible to generate and store all



98

variables, so the column generation can solve larger instances than other methods. The

technique is based on Dantzig-Wolfe decompositions (DANTZIG; WOLFE, 1960).

In column generation, the linear problem is called the Master Problem (MP). A

column generation starts by executing a Restricted Master Problem (RMP) that is a

version of the MP with a reduced number of variables. Iteratively, the method tries to

find a new variable that best optimizes the objective function for the MP by using a

mathematical programming problem known as the Auxiliary Problem (AP). When no

such variable is found, the procedure stops with the optimal solution for the MP. In this

procedure, each variable is a column for linear programming problems.

The MP used in our column generations for Modularity Density Maximization can

be seen in the linear problem of Equation (5.1) below. This problem was derived from

the Modularity Maximization MP of Aloise et al. (2010). Each cluster is a subset of

nodes, so there are |T | = 2|V | possible clusters, where T =
{

1, . . . , 2|V |
}

. The variables

zt are binary in the original MP, but they were relaxed to obtain the dual problem. If

zt = 0, the cluster t does not belong to the solution; when zt = 1, the cluster t belongs

to the solution. The value of ct is the contribution of cluster t to the objective function.

This value is defined in Equation (5.2). The value avt is a binary number. If avt = 1,

the node v ∈ V belongs to the cluster t, and when avt = 0, the node v does not belong

to this cluster. For all u, v ∈ V , the constant wuv = 1 if {u, v} ∈ E, and wuv = 0 if

{u, v} /∈ E. The constraint (5.1b) of the MP is required to define that each node belongs

to one cluster.

max
∑
t∈T

ctzt (5.1a)

subject to:
∑
t∈T

avtzt = 1,∀v ∈ V (5.1b)

zt ≥ 0,∀t ∈ T. (5.1c)
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ct =
4
∑

u,v∈V :u<v autavtwuv −
∑

v∈V dvavt∑
v∈V avt

. (5.2)

The dual problem is necessary to obtain a new variable which has reduced cost. The

dual problem of the linear model for Modularity Density Maximization (5.1) can be

seen in the linear model (5.3) below. There is a dual variable λv for each constraint in

the MP. For each variable in the MP, there is a constraint in the dual model.

min
∑
v∈V

λv (5.3a)

subject to:
∑
v∈V

avtλv ≥ ct,∀t ∈ T (5.3b)

λv ∈ R, ∀v ∈ V. (5.3c)

For the column generations reported in this thesis, we use two different auxiliary

problems. They are AP-I and AP-II which are mixed-integer nonlinear problems.

To define AP-I, the constraints of the dual values are used to identify the negative

reduced cost. The sequence of Derivation (5.4) leads to the definition of our first

auxiliary problem. Inequation (5.4a) is the constraint for a new variable zt of the

RMP. This constraint has the constant ct detailed in Inequation (5.4b). Inequation (5.4c)

composes the derivation below.
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∑
v∈V

avtλv ≥ ct (5.4a)

∑
v∈V

avtλv ≥
4
∑

u,v∈V :u<v autavtwuv −
∑

v∈V avtdv∑
j∈V ajt

(5.4b)

∑
j∈V

∑
v∈V

ajtavtλv − 4
∑

u,v∈V :u<v

autavtwuv

+
∑
v∈V

avtdv ≥ 0. (5.4c)

AP-I can be described by the nonlinear model (5.5) below. It is a minimization

problem, where the values of λv are given by the dual variables of a solved RMP. AP-I

finds the value of the binary variables av. If the value of av = 1, the node v belongs

to the new cluster of the new variable zt for the RMP. If av = 0, the node v does not

belong to the new cluster.

min
∑
j∈V

∑
v∈V

ajavλv − 4
∑

u,v∈V :u<v

auavwuv +
∑
v∈V

avdv

subject to: av ∈ {0, 1},∀v ∈ V.
(5.5)

AP-II is derived from the linearization of AP-I, and was inspired by the model of Xu,

Tsoka and Papageorgiou (2007) and the auxiliary problem of Aloise et al. (2010). AP-II

is an integer nonlinear model, where auav = xe for each e = {u, v} ∈ E. If xe = 1, the

nodes of edge e = {u, v} belong to the cluster; otherwise they do not belong to it. So,

the AP-II objective function is

min
∑
j∈V

∑
v∈V

ajavλv − 4
∑

e={u,v}∈E

xe +
∑
v∈V

avdv, (5.6)

adding the following constraints
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xe ≤ au, ∀{u, v} ∈ E (5.7a)

xe ≤ av, ∀{u, v} ∈ E (5.7b)

xe ∈ {0, 1}, ∀e ∈ E (5.7c)

av ∈ {0, 1}, ∀v ∈ V. (5.7d)

Algorithm 19 presents the general procedure of column generation used in our

experimental analyses. First, the initial variables are generated by 30 runs of the

heuristic HLSMD that is described in Section 4.2. The best solution obtained by

HLSMD is used to define the initial variables. After that, the RMP is created, and

the variables generated by HLSMD are inserted into it. After the creation of the RMP,

variables are generated iteratively until the optimal solution is found. At each iteration,

some of our column generations use a heuristic solver to find a variable instead of

using the exact auxiliary problem. They use the heuristics AP-LS or AP-ILS which

are described in Section 5.2. If no improved variable is found, one of the exact auxiliary

problem solvers is used. They are described by the nonlinear models (5.5) (AP-I) or

(5.7) (AP-II). The iterations are repeated until the exact auxiliary problem solvers cannot

find an improved variable for RMP.

5.2 Heuristics for the Auxiliary Problems

The MILP solver used in our experiments works with some types of nonlinear

problems (as quadratic), so it can be used to solve the auxiliary problems AP-I and

AP-II. This solution is hard in time, so it could require too much time to generate a new

variable. Thus, two heuristics for the auxiliary problem were created to generate new

variables for the RMP quickly. Here, we call them AP-LS (Auxiliary Problem Local

Seach) and AP-ILS (Auxiliary Problem Iterated Local Search).

To help the description of AP-LS and AP-ILS, some delta functions used in these
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Algorithm 19: Column Generation Procedure
Input : G(V,E)

1 for i← 1 to 30 do
2 {columns,D} ← HLSMD(G) // Algorithm 18

3 Create RMP from the linear model (5.1) with initialColumns
4 while solution is not optimal do
5 {z,D, λ} ← solve(RMP )
6 {newColumn, value} ← execute AP-LS or AP-ILS
7 if value = 0 then
8 {newColumn, value} ← execute model AP-I or AP-II
9 if value = 0 then

// optimal value for the MP
10 break

11 Add newColumn to RMP

12 return D

heuristics are explained below. These delta functions help the heuristics calculate the

objective value of each candidate solution quickly during the search. Equation (5.8)

divides the objective function of the model AP-I into three parts.

∑
j∈V

∑
v∈V

ajavλv︸ ︷︷ ︸
first

−4
∑

u<v:u,v∈V

auavwuv︸ ︷︷ ︸
second

+
∑
v∈V

avdv︸ ︷︷ ︸
third

. (5.8)

The simplification of the first part can be seen in Equations (5.9), (5.10), and (5.11).

Suppose that S is a set of nodes that belongs to the cluster solution, so the first part can

be rewritten as

∑
j∈V

∑
v∈V

ajavλv = |S|
∑
v∈S

λv. (5.9)

Suppose that k /∈ S is a candidate node that is trying to enter the cluster S while the

heuristic is searching for a neighbor of the current solution. Considering that node k
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will belong to S, the first part will be

(|S|+ 1)
∑
v∈S

λv + (|S|+ 1)λk. (5.10)

So, the gain in the first part of the objective function will generate a value equal to

∑
v∈S

λv +
(
|S|+ 1

)
λk, (5.11)

if k enters S.

The second part is simplified in Equation (5.12) below. Without the simplification,

all nodes of the graph are verified with each other, using Θ
(
|V |2−|V |

2

)
operations. The

simplified second part is used to count how many edges exist between the node k and

nodes of S.

−4
∑
v∈S

avwkv. (5.12)

The third part is the sum of all degrees of nodes that belong to the current solution.

The increase of the objective function of a node k joining the cluster is the degree of k.

The delta functions ∆Din(S, k) and ∆Dout(S
′, k) are presented in Equations (5.13)

and (5.14), respectively. They help the heuristics calculate quickly the objective value

of each candidate solution during the search. The function ∆Din(S, k) is used in the

heuristics to calculate the increase of the objective function when the node k enters the

cluster composed of nodes of S. The function ∆Dout(S
′, k) is used in heuristics to

calculate the increase of the objective function when the node k exits the current cluster

solution. Supposing that S is the current cluster solution, and k is exiting this cluster,

we assume that S ′ = S\{k}.

These two delta functions require Θ(|V |) operations to evaluate a candidate solution
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to compose a new variable for the column generation.

∆Din(S, k) =
∑
v∈S

λv +
(
|S|+ 1

)
λk − 4

∑
v∈S

avwkv + dk. (5.13)

∆Dout(S
′, k) = −∆Din(S ′, k). (5.14)

The solution representation used in AP-LS and AP-ILS is an array with |V | binary

values, where each value is related to a node of V . The value 1 means that a node

belongs to the cluster solution, and the value 0 means that a node does not belong to the

cluster solution.

The heuristic AP-LS is seen in Algorithm 20. This heuristic is a local search method,

and the neighborhood strategy changes one binary value at a time. The current solution

is called cluster in Algorithm 20. API-LS requires the graph and the values of dual

variables as parameters. The starting solution is generated by a random procedure.

Iteratively, a different sequence of nodes defines the order that the procedure may

change the values of the binary array. The heuristic stops when no improvement is

found after |V | iterations.

The AP-ILS is based on the Iterated Local Search metaheuristic over the heuristic

AP-LS. It can be seen in Algorithm 21. The difference between AP-LS and AP-ILS

is that the latter generates a perturbation in the current cluster solution when a local

optimum is found. The perturbation is done by the method shuffleCurrentSolution. The

parameter factor ∈ [0, 1] is the proportional number of nodes that will randomly join

or leave the current cluster solution when a local optimum is found. AP-ILS tries to

escape from |V | local optimum solutions.

5.3 Experimental Analysis and Results

In the following, we present the main results obtained by our column generation

methods. The experiments were carried out over ten classical instances used as
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Algorithm 20: AP-LS Heuristic
Input : G(V,E), λ ∈ R|V |

1 cluster← randomBinaryVector()
2 value← calculateObjectValue(λ)
3 noImprovement← 0
4 while noImprovement < |V | do
5 improved← false
6 randomNodes← randomOrder(V )
7 for v ∈ randomNodes do
8 S ← {u ∈ cluster : clusteru = 1}
9 if clusterv = 0 then

10 gain←∆Din(S, v)

11 else
12 gain←∆Dout(S, v)

13 if gain > 0 then
14 clusterv ← not clusterv
15 value← value+ gain
16 noImprovement← 0
17 improved← true

18 if not improved then
19 noImprovement← noImprovement+ 1

20 return {cluster, value}

benchmarks. The results are also compared with the state-of-the-art linear models of

Costa (2015).

This section is divided into two more subsections that show details of experiments

and the results over the time, the number of columns, and components effectiveness of

each column generation method.

5.3.1 Experimental Set-up

As our master problem is not exact for Modularity Density Maximization, it is

expected that after the execution, the variables lead to non-integer values. After the

column generation process, one could execute a branch and price method. However, in
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Algorithm 21: AP-ILS Heuristic
Input : G(V,E), λ ∈ R|V |, factor

1 cluster← randomBinaryVector()
2 value← calculateObjectValue(λ)
3 noImprovement← 0
4 while noImprovement < |V | do
5 improved← false
6 randomNodes← randomOrder(V )
7 for v ∈ randomNodes do
8 S ← {u ∈ cluster : clusteru = 1}
9 if clusterv = 0 then

10 gain←∆Din(S, v)

11 else
12 gain←∆Dout(S, v)

13 if gain > 0 then
14 clusterv ← not clusterv
15 value← value+ gain
16 improved← true

17 if not improved then
18 noImprovement← noImprovement+ 1
19 shuffleCurrentSolution(cluster, value, λ, factor)

20 return {cluster, value}

all experiments, this procedure was not necessary because integer solutions are obtained

at the end of the column generation. So, no other method was needed after the column

generation.

The experiments were run on a PC with an Intel Core i7 64 bits with 3.40GHz

with 8192KB of cache memory and 8GB of RAM over Linux Ubuntu 14.04.1 LTS

operating system. Each experiment was done by using a single thread. The language

used to program the column generations was C++, with “GCC” compiler. The solver

IBM ILOG CPLEX 12.6 (IBM, 2015) was used to solve the mathematical programming

model RMP and the exact auxiliary problems AP-I and AP-II.

The instances used for the experiments are retrieved from the Pajek datasets

(BATAGELJ; MRVAR, 2006). They are all undirected and unweighted graph instances.
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For comparison reasons, we used almost all instances of Costa (2015), except for

“Dolphins small” and “Journal index” because we cannot find them in the instance

repository. These graphs were selected because they were used in Costa (2015) and

Costa et al. (2016). The number of nodes, edges, and the optimal value of D∗ for each

instance can be seen in Table 5.1. Some of our column generations proved the optimal

D values for larger instances than the reported in the known literature. These instances

are marked in bold.

Table 5.1: Graph instances used in the experiments from the repository Batagelj and
Mrvar (2006).

Id Dataset name Nodes Edges D∗

1 Strike 24 38 8.8611
2 Galesburg f 31 63 8.2857
3 Galesburg d 31 67 6.9269
4 Karate 34 78 7.8451
5 Korea1 35 69 10.9667
6 Korea2 35 84 11.1430
7 Mexico 35 117 8.7181
8 Sawmill 36 62 8.6234
9 Dolphins 62 159 12.1252
10 Polbooks 105 441 21.9652

We have developed six variations of column generations; we named them CGI,

CGII, CGI+LS, CGII+LS, CGI+ILS, and CGII+ILS. All our column generation

versions use the HLSMD to generate initial variables. CGI and CGII are column

generation methods that do not use a heuristic to find a new variable. They only use

the exact auxiliary problems AP-I and AP-II to find new variables respectively. In

Tables 5.2, 5.4, 5.3, 5.5, and 5.6, they are referred as “(only CGI)” and “(only CGII)”

respectively. CGI+LS uses the heuristic AP-LS, and when no further improved variables

are found, AP-I is used. CGII+LS uses the same heuristic, but when no further improved

variables are found, it solves AP-II. CGI+ILS uses the heuristic AP-ILS, and AP-I

is applied when the heuristic does not find a new variable. CGII+ILS is almost like
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CGI+ILS, except that it uses AP-II instead of AP-I.

In the following tables, the column “Id” shows the identifier of the respective

instance of Table 5.1. At the side of each value, there is the standard error. The value

“t.l.” means that all results for that method and instance reached the ten-hour limit.

“-” means that there is no value known for that instance and method in the literature.

A total of 30 trials were executed, and they generated the results of these tables. Our

experiments ran on a single processor with a single thread.

The heuristic AP-ILS requires a parameter factor. This parameter defines the

proportion of nodes that are changed when a local optimum is found. We tested this

parameter with the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. When the

parameter factor was equal to 0.7, our column generation methods found the optimal

solution in less time than using all the other factors. Even with other values for the

factor parameter, our algorithms (CGI+ILS and CGII+ILS) required less time than

Costa (2015)’s methods.



Table 5.2: Average time in seconds to find the optimal solution for each column generation presented here.

Costa MDB CGI CGII
Id 1 2 (only CGI) +LS +ILS (only CGII) +LS +ILS

1 1.4 2.32 11.53±0.45 (30) 6.67±0.71 (30) 0.86±0.05 (30) 1.66±0.13 (30) 0.52±0.03 (29) 0.12±0.009 (30)
2 3.36 2.69 141.92±6.66 (30) 61.95±4.87 (30) 2.13±0.13 (30) 17.97±4.03 (30) 10.36±1.58 (29) 0.51±0.04 (30)
3 2.9 5.01 304.35±22.02 (30) 91.62±4.44 (30) 2.74±0.2 (30) 26.39±3.22 (27) 12.007±1.45 (27) 0.69±0.07 (30)
4 4.51 4.79 162.95±4.61 (30) 279.08±34.62 (30) 2.88±0.16 (30) 15.69±0.51 (30) 26.1±3.7 (20) 0.6±0.02 (30)
5 8.75 19.16 317.36±9.1 (30) 144.62±10.19 (30) 4.31±0.29 (30) 30.53±1.17 (30) 12.93±1.02 (29) 1.22±0.06 (30)
6 15.55 36.34 423.99±12.26 (30) 178.82±14.31 (30) 4.01±0.22 (30) 41.57±1.18 (30) 60.87±13.34 (25) 1.51±0.08 (30)
7 58.02 13.31 716.17±19.92 (30) 665.54±40.49 (30) 5.35±0.2 (30) 64.23±2.7 (30) 231.74±33.9 (13) 1.84±0.12 (30)
8 10.11 10.77 148.3±4.5 (30) 62.81±3.63 (30) 2.37±0.09 (30) 13.49±0.84 (30) 5.67±0.33 (29) 0.57±0.02 (30)
9 - - 24271.32±881.82 (23) 20701.42±1432.8 (13) 1000.95±362.03 (30) 5666.03±0.0 (1) t.l. 787.41±279.99 (28)
10 - - t.l. t.l. 1317.27±98.22 (20) t.l. t.l. 1327.52±156.74 (13)

Table 5.3: D value obtained by the heuristic for initial variables.

CGI CGII
(only CGI) +LS +ILS (only CGII) +LS +ILS

Id Init.D % D* Init.D % D* Init.D % D* Init.D % D* Init.D % D* Init.D % D*

1 8.12±0.18 8.39±2.01% 8.58±0.13 3.18±1.51% 8.67±0.12 2.17±1.36% 8.65±0.09 2.41±1.04% 8.76±0.07 1.09±0.82% 8.69±0.12 1.93±1.35%
2 8.13±0.05 1.88±0.57% 8.16±0.06 1.53±0.76% 7.59±0.16 8.38±1.99% 8.16±0.06 1.55±0.75% 8.05±0.08 2.83±0.92% 8.12±0.06 1.96±0.74%
3 6.56±0.12 5.33±1.81% 6.77±0.06 2.22±0.81% 6.72±0.07 3.02±1.08% 6.76±0.06 2.41±0.95% 6.84±0.02 1.2±0.25% 6.71±0.12 3.17±1.81%
4 7.84±0.0 0.0±0.0% 7.82±0.01 0.27±0.18% 7.83±0.002 0.13±0.12% 7.84±0.0 0.0±0.0% 7.83±0.01 0.19±0.19% 7.84±0.0 0.0±0.0%
5 10.57±0.0 3.65±0.0% 10.58±0.02 3.51±0.16% 10.59±0.01 3.44±0.13% 10.59±0.02 3.42±0.19% 10.59±0.01 3.42±0.13% 10.6±0.02 3.33±0.17%
6 10.99±0.0 1.34±0.0% 11.02±0.01 0.41±0.14% 11.08±0.01 0.53±0.12% 11.11±0.01 0.31±0.1% 11.08±0.01 0.59±0.13% 11.11±0.01 0.31±0.1%
7 8.72±0.0 0.0±0.0% 8.69±0.01 0.37±0.13% 8.7±0.009 0.18±0.1% 8.62±0.002 0.24±0.11% 8.72±0.0 0.0±0.0% 8.69±0.01 0.31±0.12%
8 8.33±0.06 3.37±0.68% 8.34±0.04 3.23±0.47% 8.29±0.06 3.83±0.73% 8.38±0.03 2.86±0.33% 8.36±0.04 3.02±0.49% 8.32±0.05 3.52±0.61%
9 11.78±0.0 2.81±0.0% 11.63±0.07 4.02±0.58% 11.34±0.1 6.51±0.84% 11.66±0.0 3.79±0.0% t.l. t.l. 11.42±0.11 5.8±0.89%
10 t.l. t.l. t.l. t.l. 21.53±0.05 1.99±0.23% t.l. t.l. t.l. t.l. 21.42±0.06 2.12±0.26%
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Table 5.4: The number of columns generated during the search for optimal solutions of
the tests that did not reach the ten-hour limit.

CGI CGII
Id (only CGI) +LS +ILS (only CGII) +LS +ILS
1 78.77±4.13 68.63±8.28 94.13±7.17 70.37±4.12 58.34±2.91 99.17±5.76
2 193.2±7.02 178.47±10.82 307.83±33.24 192.13±13.06 209.79±20.86 218.8±16.71
3 246.67±7.76 173.87±9.03 274.07±13.03 243.15±13.48 182.89±8.18 260.33±17.12
4 182.0±0.0 368.5±46.03 235.47±6.35 193.0±0.0 290.85±19.67 232.73±5.16
5 280.0±0.0 267.2±15.6 330.53±8.57 351.9±7.99 279.93±11.08 329.37±6.98
6 349.0±0.0 346.4±24.4 394.13±12.95 391.43±5.34 309.96±27.64 378.5±9.72
7 368.0±0.0 576.6±28.2 422.2±9.73 362.87±9.25 505.92±27.37 426.67±13.67
8 183.53±2.47 141.8±6.09 233.17±8.48 204.17±8.02 146.93±5.07 213.5±6.45
9 1979.0±0.0 19278.77±1573.41 6336.97±1084.06 1292.0±0.0 t.l. 5258.75±1129.4
10 t.l. t.l. 3633.6±166.03 t.l. t.l. 3736.85±153.09

Table 5.5: The percentage of columns generated during the search for optimal solutions
of the tests that did not reach the ten-hour limit.

CGI
(only CGI) +LS +ILS

Id Init. Exact Init. Exact Heur. Init. Exact Heur.

1 6.63±0.62% 93.37±0.62% 6.66±0.36% 23.22±1.26% 70.11±1.49% 4.66±0.24% 0.14±0.07% 95.19±0.25%
2 1.69±0.02% 98.31±0.02% 1.91±0.08% 27.11±0.97% 70.98±0.98% 1.52±0.09% 0.02±0.02% 98.46±0.09%
3 1.31±0.006% 98.69±0.006% 1.93±0.08% 33.61±0.92% 64.46±0.94% 1.28±0.04% 0.08±0.03% 98.63±0.05%
4 1.63±0.0% 98.37±0.0% 1.05±0.08% 33.93±1.16% 65.02±1.15% 1.3±0.03% 0.03±0.02% 98.67±0.04%
5 3.12±0.0% 96.87±0.0% 3.85±0.19% 24.13±0.59% 72.01±0.64% 2.93±0.07% 0.12±0.03% 96.95±0.09%
6 2.79±0.0% 97.21±0.0% 2.91±0.17% 23.48±0.77% 73.61±0.86% 2.34±0.07% 0.06±0.02% 97.6±0.08%
7 0.81±0.0% 99.19±0.0% 0.53±0.04% 31.9±0.81% 67.56±0.83% 0.62±0.02% 0.01±0.009% 99.29±0.02%
8 2.95±0.13% 97.04±0.13% 3.74±0.14% 28.28±0.86% 67.98±0.89% 2.33±0.14% 0.01±0.01% 97.66±0.14%
9 0.25±0.0% 99.75±0.0% 0.03±0.003% 5.48±0.69% 94.48±0.69% 0.25±0.04% 0.06±0.02% 99.62±0.05%
10 t.l. t.l. t.l. t.l. t.l. 0.2±0.01% 0.18±0.02% 99.62±0.03%

CGII
(only CGII) +LS +ILS

Id Init. Exact Init. Exact Heur. Init. Exact Heur.

1 5.86±0.26% 94.13±0.26% 6.97±0.32% 24.13±1.18% 68.82±1.37% 4.27±0.23% 0.13±0.06% 95.6±0.23%
2 1.71±0.05% 98.28±0.05% 1.74±0.07% 25.21±0.73% 73.04±0.73% 1.58±0.08% 0.03±0.02% 98.38±0.08%
3 1.42±0.05% 98.58±0.05% 1.83±0.02% 33.62±0.87% 64.55±0.84% 1.32±0.04% 0.09±0.04% 98.59±0.06%
4 1.54±0.0% 98.46±0.0% 1.15±0.09% 34.34±1.15% 64.51±1.15% 1.29±0.03% 0.04±0.02% 98.66±0.04%
5 2.62±0.08% 97.3±0.08% 3.54±0.14% 24.69±0.77% 71.77±0.82% 2.87±0.07% 0.21±0.04% 96.92±0.08%
6 2.28±0.03% 97.72±0.03% 3.2±0.19% 22.41±0.72% 74.38±0.74% 2.4±0.06% 0.08±0.02% 97.51±0.08%
7 0.81±0.03% 99.19±0.03% 0.62±0.04% 34.98±0.97% 64.39±0.96% 0.69±0.03% 0.03±0.01% 99.28±0.03%
8 2.63±0.09% 97.37±0.09% 3.66±0.16% 28.1±0.83% 68.24±0.88% 2.51±0.02% 0.08±0.03% 97.41±0.11%
9 0.38±0.0% 99.61±0.0% t.l. t.l. t.l. 0.28±0.04% 0.08±0.02% 99.64±0.05%
10 t.l. t.l. t.l. t.l. t.l. 0.19±0.01% 0.2±0.03% 99.6±0.04%



Table 5.6: The proportional time required during the search for optimal solutions of the tests that did not reach the ten-hour limit. Each
column generation version is divided into its components.

CGI
(only CGI) +LS +ILS

Id Init. RMP Exact Init. RMP Exact Heur. Init. RMP Exact Heur.

1 0.03±0.0006% 0.02±0.007% 99.88±0.007% 0.06±0.005% 0.12±0.02% 99.72±0.02% 0.02±0.001% 0.4±0.02% 1.24±0.22% 93.82±0.45% 4.53±0.32%
2 0.003±0.0001% 0.03±0.003% 99.96±0.003% 0.008±0.0006% 0.05±0.008% 99.94±0.008% 0.008±0.0003% 0.25±0.01% 3.33±0.52% 82.03±1.62% 14.39±1.2%
3 0.002±0.0% 0.03±0.0009% 99.97±0.0009% 0.005±0.0003% 0.03±0.002% 99.96±0.002% 0.005±0.0001% 0.19±0.009% 1.99±0.16% 87.02±0.73% 10.8±0.58%
4 0.003±0.0% 0.03±0.0008% 99.96±0.0008% 0.002±0.0003% 0.03±0.003% 99.97±0.003% 0.005±0.0003% 0.18±0.006% 1.33±0.06% 88.25±0.44% 10.24±0.39%
5 0.002±0.0% 0.04±0.0007% 99.96±0.0007% 0.005±0.0003% 0.03±0.001% 99.96±0.002% 0.007±0.0003% 0.15±0.009% 1.75±0.11% 84.4±0.94% 13.62±0.83%
6 0.001±0.0% 0.04±0.0007% 99.96±0.0007% 0.004±0.0003% 0.03±0.002% 99.95±0.002% 0.007±0.0003% 0.17±0.007% 2.42±0.18% 79.38±1.08% 17.95±0.82%
7 0.0009±0.0% 0.02±0.0004% 99.98±0.0004% 0.001±0.0% 0.02±0.0002% 99.97±0.001% 0.003±0.0001% 0.13±0.005% 2.34±0.13% 84.5±0.59% 13.02±0.47%
8 0.003±0.0% 0.03±0.001% 99.96±0.001% 0.002±0.0005% 0.03±0.002% 99.95±0.002% 0.008±0.0002% 0.24±0.009% 1.65±0.11% 85.18±0.67% 12.92±0.57%
9 <0.0001% 0.02±0.0004% 99.98±0.0004% <0.0001% 0.79±0.13% 99.12±0.13% 0.01±0.001% 0.02±0.003% 32.45±5.22% 42.76±5.41% 24.77±1.85%
10 t.l. t.l. t.l. t.l. t.l. t.l. t.l. 0.003±0.0002% 5.35±0.84% 81.24±1.66% 13.41±0.93%

CGII
(only CGII) +LS +ILS

Id Init. RMP Exact Init. RMP Exact Heur. Init. RMP Exact Heur.

1 0.22±0.009% 0.58±0.07% 99.2±0.07% 0.78±0.04% 1.17±0.07% 97.79±0.11% 0.26±0.01% 3.85±0.12% 11.16±0.96% 41.41±1.26% 43.57±1.29%
2 0.03±0.002% 0.2±0.006% 99.76±0.006% 0.08±0.008% 0.38±0.02% 99.45±0.03% 0.07±0.005% 1.25±0.05% 8.08±0.62% 40.46±1.56% 50.21±1.09%
3 0.02±0.001% 0.18±0.007% 99.79±0.008% 0.06±0.006% 0.22±0.02% 99.58±0.02% 0.06±0.004% 0.98±0.05% 8.94±0.62% 39.29±2.5% 50.79±2.02%
4 0.03±0.0007% 0.23±0.004% 99.74±0.003% 0.04±0.006% 0.25±0.02% 99.65±0.03% 0.06±0.006% 1.08±0.03% 7.82±0.17% 31.12±1.08% 59.9±0.98%
5 0.02±0.0009% 0.29±0.006% 99.69±0.006% 0.06±0.005% 0.4±0.02% 99.44±0.03% 0.09±0.006% 0.67±0.03% 7.42±0.24% 33.23±2.06% 58.59±1.84%
6 0.01±0.0005% 0.24±0.004% 99.74±0.004% 0.04±0.008% 0.19±0.02% 99.72±0.04% 0.04±0.007% 0.54±0.02% 7.41±0.28% 36.35±1.99% 55.62±1.75%
7 0.002±0.0004% 0.15±0.003% 99.84±0.003% 0.005±0.001% 0.08±0.009% 99.91±0.01% 0.01±0.002% 0.42±0.02% 8.78±0.41% 41.71±1.99% 49.002±1.67%
8 0.04±0.002% 0.26±0.006% 99.69±0.006% 0.12±0.008% 0.38±0.02% 99.38±0.03% 0.11±0.006% 1.22±0.04% 6.85±0.21% 34.38±1.35% 57.54±1.2%
9 0.0002±0.0% 0.03±0.0% 99.96±0.0% t.l. t.l. t.l. t.l. 0.02±0.004% 17.92±4.32% 62.98±4.05% 19.07±1.52%
10 t.l. t.l. t.l. t.l. t.l. t.l. t.l. 0.003±0.0004% 4.77±0.97% 80.87±2.86% 14.36±2.1%
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Figure 5.1: Average D value of five tests with the largest instances for each iteration.
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5.3.2 Analysis of results

This section analyzes the tables and a figure which are used to report experimental

results of our column generations. Table 5.2 shows the average elapsed time in seconds

for each column generation that found the optimal solution. At the side of each value,

there is its standard error. The number of tests that reached the optimal values before

ten-hour limit is presented in parentheses. For comparison, the column “Costa MDB”

shows the time reported in Costa (2015) for the best linear programming models for

Modularity Density Maximization problem in there. They are MDB1 and MDB2. The

experiments of Costa (2015) were performed on a PC with 4 Intel Xeon E5-4620 CPU

at 2.20 GHz (8 cores each, Hyper-Threading and Turbo Boost disabled), 128 GB RAM.

In Table 5.2, CGI-ILS and CGII+ILS obtained the best results. CGII+ILS was the

fastest for most of the tested instances that did not reach the time limit, but CGI-ILS

solved more trials. Only for 10 (“Polbooks”), it did not find the optimal solution

for some trials. The results suggest that the component AP-ILS accelerated the time

of column generation methods CGI and CGII. All column generations that used the

AP-ILS heuristic for the auxiliary problem improved on state-of-the-art time reported

in Costa (2015) for the exact solving of Modularity Density Maximization.

Table 5.4 shows the average number of columns and the standard error of its

trials. This information is important to understand which is the most effective variable

generator for each auxiliary model CGI and CGII. Although CGI+ILS and CGII+ILS

are the fastest methods, they generated the largest number of columns, so some of these

columns are unnecessary to find the optimal solution. For the instance 9 (“Dolphins”),

CGI+LS generated more than nine times the number of columns generated by CGI.

CGI+LS and CGII+LS found the optimal solution using less number of columns than

CGI+ILS and CGII+ILS in average.

To analyze the contribution of each one of the components of our column generation

versions, Tables 5.3, 5.5, and 5.6 show the quality of the initial solutions and the effort

for reaching the optimal value, the percentage of columns generated, and the percentage
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of time required by each component.

Table 5.3 shows the initial D value obtained by the heuristic HLSMD (Section 4.2)

and the distance to the optimal value (%D∗). The largest percentage is marked in bold

for each instance. This distance is calculated using

(D∗ −D) · 100

D∗
, (5.15)

where D is the value obtained by HLSMD, and D∗ is the optimal value. Even for the

largest tested instances, HLSMD found values close to the optimal value which helped

the column generation process. For some instances, the heuristic for initial variables

found the optimal values for all tests. For instances 1 (“Strike”), 2 (“Galesburg f”),

3 (“Galesburg d”), and 9 (“Dolphins”), HLSMD found the furthest solutions from the

optimal values, even when it is compared with the results of 10 (“Polbooks”) that is the

largest tested instance.

Table 5.5 shows the percentage of columns obtained by each component of the

tested column generations. AP-ILS was the component that generated more than 95% of

columns. The column generations with AP-ILS component used the auxiliary problems

to generate less than 0.25% of the columns, even for the largest instances. CGI-ILS and

CGII-ILS had a similar behavior when considering this proportion for each instance.

When using AP-LS in CGI-LS and CGII-LS, the exact auxiliary problem is often solved.

Comparing the results of this table with Table 5.4, the component AP-LS generated less

columns than AP-ILS, and the column generations that use AP-LS depended on more

of the exact problem (AP-I or AP-II) to find variables.

Table 5.6 shows the percentage of the time required by each component. Each

column generation version is divided into its components. The time required by the

heuristic for initial variables is labeled as “Init.”, the exact auxiliary problem is labeled

as “Exact”, and the heuristic for the auxiliary problem is identified as “Heur.”. The

largest values are featured for each column generation version. The CGI column

generations spent more time solving the exact auxiliary models. Except for CGI+ILS
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and CGII+ILS, the algorithms used more than 98% of the time to solve the exact

auxiliary problem. With component AP-ILS, the algorithms demanded less time as can

be seen in Table 5.2. When comparing CGI+ILS and CGII+ILS, the RMP demanded

more time for CGII+ILS, except for the two largest instances. For the methods CGI+ILS

and CGII+ILS and the instance 9 (“Dolphins”), the RMP demanded more time than for

other instances.

Comparing the results of Tables 5.5 and 5.6, CGI+LS and CGII+LS demanded

more than 99% of the time in the execution of the exact algorithm, and their heuristic

generated more than 64% of the columns, so the experiments suggested that the

component AP-LS is less effective than AP-ILS.

Figure 5.1 shows the average D value of five tests obtained by each iteration for

the largest tested instances. Some tests did not reach optimal solutions because of

our ten-hour limit, so some lines did not achieve the optimal value. The figure also

confirmed the analysis of Table 5.4, where CGI and CGII found the variables of optimal

solutions in the first iterations because they use the exact auxiliary problems. AP-ILS

found the best variables. For the auxiliary problem, the heuristic AP-ILS surpassed

the AP-LS results. It suggests that the AP-ILS helps to escape from local optimum

solutions.

We tested our methods with the “Adjnoun” (112 nodes and 425) and “Football”

(115 nodes and 613) instances from Batagelj and Mrvar (2006). They did not reach the

optimal value within a time limit of 100 hours.

5.4 Chapter Summary

Four of our column generation methods used heuristics for the auxiliary problem and

two of them obtained better, improved times over the results from Costa (2015). Using

a simple experimental set-up, our methods also proved that the results for the instances

9 (“Dolphins”) and 10 (“Polbooks”) found in Costa et al. (2016) are optimal for the first

time. These proofs are larger than the ones solved by the best models reported in Costa
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(2015). The column generations CGI+ILS and CGII+ILS obtained the best time results

when finding the optimal solution. For the tested instances, CGI+ILS did not reach

the ten-hour limit, except for instance 10 (“Polbooks”). The results obtained with both

CGI+ILS and CGII+ILS suggest that they are the state-of-the-art for exact solving of

the Modularity Density Maximization problem when comparing results of Costa (2015)

and our column generation methods.

Tables 5.5 and 5.6 show the importance of heuristic to find variables where AP-ILS

reduced the execution time of the exact auxiliary problems. Table 5.4 shows that

heuristics for auxiliary problems could be improved because the methods CGI and CGII

required less columns than AP-LS and AP-ILS for instance 9 (“Dolphins”). As CGI

and CGII use exact solvers for the auxiliary problem, this shows that a more effective

heuristic could converge to the optimal solution more quickly than the fastest method

used so far.
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6 GROUND TRUTH ANALYSES

This chapter presents results about ground truth analyses performed with our

heuristic and algorithms described in Chapters 4 and 5. These analyses aim to

compare the results of the methods and the expected clustering, so the quality of

different methods can be tested beyond the objective function. The chapter is divided

into three sections. The first section shows the results of our eight heuristics over

different λ parameters of the Modularity Density Maximization objective function when

solving artificial graphs, using the LFR benchmark of Lancichinetti, Fortunato and

Radicchi (2008). The second one also uses similar artificial graphs, but it is compared

exact solutions from Modularity Maximization and Modularity Density Maximization

solvers. We then summarize the results.

For the ground truth analyses, we used the “Matthews Correlation Coefficient” that

takes account of true positives (N11), true negatives (N00), false negatives (N10), and

false positives (N10) (MATTHEWS, 1975). The φ function is described in Equation

(6.1). The resulting values of the φ function are bound between [−1, 1]. The larger

the coefficient φ is, the stronger the correlation between the partition obtained by the

heuristic and the correct partition is.

φ =
N00N11 −N10N01√

(N11 +N01)(N11 +N10)(N00 +N01)(N00 +N10)
. (6.1)

Each N has the number of pairs of nodes, comparing the correct partitions and the

obtained by the tested methods. They are described as follow:

• N00: the number of pairs of nodes which are not in the same cluster in the correct

partition generated by LFR, and which are not in the same cluster in the obtained

partition by our tested method;

• N01: the number of pairs of nodes which are not in the same cluster in the correct

partition generated by LFR, but which are in the same cluster in the obtained

partition by our tested method;



118

• N10: the number of pairs of nodes which are in the same cluster in the correct

partition generated by LFR, but which are not in the same cluster in the obtained

partition by our tested method;

• N11: the number of pairs of nodes which are in the same cluster in the correct

partition generated by LFR, and which are in the same cluster in the obtained

partition by our tested method.

6.1 Heuristic Analysis

In this section, results of ground truth analyses of our tested heuristics on artificial

random graphs are reported. The tests were performed by using our eight heuristics,

and the heuristics CNM and Louvain for the Modularity Maximization problem. The

used random graph generator was LFR from Lancichinetti, Fortunato and Radicchi

(2008) because it creates benchmarks for cluster detection problems, where the clusters

are known, allowing that we can measure the quality of the tested heuristics to the

expected clustering. All our eight heuristics were tested by using the λ quantifier of the

Modularity Density Maximization objective function (Equation (2.8)).

All generated instances are undirected and unweighted. The graph instances are

described in Table 6.1. The given name, the mixing parameter (µ), the number of nodes

and edges are shown. The name is composed of the number of nodes followed by the

mixing parameter used during each graph generation. These graphs have 100, 000 nodes

and were generated in LFR with the parameters based on Nascimento and Pitsoulis

(2013):

• average degree (k) equal to 15;

• maximum degree (maxk) equal to 50;

• mixing parameter (µ), where µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8};

• minus exponent for the degree sequence (t1) equal to 2;

• minus exponent for the cluster size distribution (t2) equal to 1.
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The mixing parameter (µ) of LFR generator is the degree of overlapping among

clusters. We used eight parameters to generate problems with increasing difficulty for

detecting clusters. The higher the parameter is; the weaker the modular property of the

clusters get.

Table 6.1: Details of the random graphs generated by the LFR benchmark.

Dataset name µ Nodes Edges

100000-0.1 0.1 100000 765212
100000-0.2 0.2 100000 764900
100000-0.3 0.3 100000 766099
100000-0.4 0.4 100000 765240
100000-0.5 0.5 100000 767148
100000-0.6 0.6 100000 765365
100000-0.7 0.7 100000 764913
100000-0.8 0.8 100000 769003

Tables 6.2 shows the “Matthews Correlation Coefficient” (φ) for all tested heuristics

and quantitative factors λ. CNM and Louvain do not have λ factors because they are

Modularity Maximization heuristics. Each instance and heuristic was tested for five

trials. The best φ values are featured in bold.

In our experiments, CNM and Louvain were worse than our eight heuristics. CM and

LNM obtained φ > 0.8 only for instance µ = 1. CM+LNM presented high correlation

φ > 0.9 when using the λ = 0.8 for instances with µ ≤ 0.6. MCN obtained φ > 0.8

only for instances with µ ≤ 0.3. For the same instances, CM+MCN was better because

it reached φ > 0.9; for instances with µ > 0.3, it missed cluster structures in the graphs.

MD obtained φ > 0.8 only for instances with µ ∈ {0.1, 0.2}; MDM obtained similar

results only for instance with µ = 0.1. HLSMD reached φ > 0.9 for instances with

µ ≤ 0.3. To help the understanding of these results, the φ values are shown in Figure

6.1. They are concentrated for each instance, so it is possible to follow the increasing

difficulty of the µ parameter of the artificial graphs.

In Figure 6.2, plots are provided to understand the behavior of different parameters
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of instances (µ), the objective function (λ), and the correction (φ) for each graph.
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Figure 6.1: Graphical results of our ground truth tests with CNM, Louvain, and our
eight heuristics for each artificial instance.
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Figure 6.2: Graphical results of our ground truth tests for each one of our eight
heuristics.
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Table 6.2: Comparisons among φ values obtained by the tested heuristics in the ground truth analyses.

µ CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.1 .274 .362 0.1 .0 .749 .0 .916 .99 .0 .126 .99
0.2 .802 .784 .939 .928 .99 .844 .802 .99
0.3 .831 .826 .973 .937 .99 .877 .831 .99
0.4 .835 .838 .978 .944 .989 .883 .835 .99
0.5 .839 .839 .984 .941 .986 .89 .839 .99
0.6 .839 .81 .982 .929 .976 .89 .839 .99
0.7 .838 .75 .979 .91 .964 .86 .838 .99
0.8 .83 .653 .965 .889 .954 .857 .83 .99
0.9 .74 .504 .822 .847 .945 .858 .74 .99

0.2 .096 .324 0.1 .0 .477 .0 .825 .985 .0 .0 .985
0.2 .0 .562 .0 .854 .985 .0 .127 .985
0.3 .567 .64 .763 .87 .984 .811 .567 .985
0.4 .725 .721 .973 .883 .984 .842 .725 .985
0.5 .73 .763 .981 .886 .983 .839 .73 .984
0.6 .732 .754 .981 .873 .975 .828 .732 .984
0.7 .73 .703 .975 .848 .958 .812 .73 .984
0.8 .725 .602 .962 .812 .937 .787 .725 .985
0.9 .613 .461 .721 .761 .916 .779 .613 .985

0.3 .056 .288 0.1 .0 .196 .0 .703 .972 .0 .0 .973
0.2 .0 .267 .0 .748 .972 .0 .0 .973
0.3 .0 .376 .0 .785 .972 .0 .128 .972
0.4 .0 .528 .0 .804 .972 .764 .128 .972
0.5 .628 .625 .97 .826 .972 .798 .628 .972
0.6 .636 .675 .978 .826 .969 .795 .636 .972
0.7 .636 .646 .973 .798 .96 .772 .636 .972
0.8 .625 .547 .944 .756 .933 .744 .625 .972
0.9 .511 .417 .617 .717 .897 .714 .511 .972

0.4 .042 .255 0.1 .0 .068 .0 .543 .0 .0 .0 .0
0.2 .0 .093 .0 .598 .0 .0 .0 .0
0.3 .0 .135 .0 .656 .0 .0 .0 .0
0.4 .0 .212 .0 .709 .0 .0 .13 .0
0.5 .0 .346 .0 .728 .0 .024 .13 .0
0.6 .536 .532 .972 .766 .0 .732 .536 .0
0.7 .542 .575 .978 .75 .0 .728 .542 .0
0.8 .534 .495 .955 .704 .0 .698 .534 .0
0.9 .425 .372 .555 .644 .0 .651 .425 .0

µ CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.5 .032 .221 0.1 .0 .02 .0 .217 .0 .0 .0 .0
0.2 .0 .031 .0 .368 .0 .0 .0 .0
0.3 .0 .045 .0 .502 .0 .0 .0 .0
0.4 .0 .063 .0 .569 .0 .0 .0 .0
0.5 .0 .102 .0 .608 .0 .0 .129 .0
0.6 .0 .2 .0 .664 .0 .002 .128 .0
0.7 .429 .438 .972 .691 .0 .632 .429 .0
0.8 .438 .449 .915 .647 .0 .638 .438 .0
0.9 .369 .332 .532 .561 .0 .588 .369 .0

0.6 .022 .183 0.1 .0 .003 .0 .0 .0 .0 .0 .0
0.2 .0 .006 .0 .0 .0 .0 .0 .0
0.3 .0 .011 .0 .004 .0 .0 .0 .0
0.4 .0 .018 .0 .324 .0 .0 .0 .0
0.5 .0 .027 .0 .444 .0 .0 .0 .0
0.6 .0 .043 .0 .504 .0 .0 .116 .0
0.7 .0 .093 .0 .56 .0 .001 .118 .0
0.8 .279 .317 .925 .554 .0 .497 .279 .0
0.9 .259 .283 .438 .45 .0 .499 .259 .0

0.7 .009 .129 0.1 .0 .001 .0 .0 .0 .0 .0 .0
0.2 .0 .001 .0 .0 .0 .0 .0 .0
0.3 .0 .001 .0 .0 .0 .0 .0 .0
0.4 .0 .003 .0 .0 .0 .0 .0 .0
0.5 .0 .006 .0 .0 .0 .0 .0 .0
0.6 .0 .012 .0 .198 .0 .0 .0 .0
0.7 .0 .02 .0 .264 .0 .0 .0 .0
0.8 .0 .05 .0 .319 .0 .0002 .034 .0
0.9 .165 .215 .386 .282 .0 .296 .165 .0

0.8 .002 .009 0.1 .0 .0002 .0 .0 .0 .0 .0 .0
0.2 .0 .0003 .0 .0 .0 .0 .0 .0
0.3 .0 .0004 .0 .0 .0 .0 .0 .0
0.4 .0 .0006 .0 .0 .0 .0 .0 .0
0.5 .0 .001 .0 .00001 .0 .0 .0 .0
0.6 .0 .002 .0 .0 .0 .0 .0 .0
0.7 .0 .004 .0 .017 .0 .0 .0 .0
0.8 .0 .009 .0 .043 .0 .00005 .005 .0
0.9 .052 .056 .032 .067 .0 .055 .043 .0
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6.2 Algorithm Analysis

This section describes the ground truth analyses developed to compare exact

solutions of Modularity Maximization and Modularity Density Maximization. The

algorithm used for the latter problem was CGI+ILS (see Chapter 5). It was chosen

because it is the fastest column generation that found optimal solutions most of the

time. For the Modularity Maximization problem, we used the algorithm of Brandes et

al. (2008).

We generated artificial graphs with 30, 40, 50, and 60 nodes by using the LFR

(LANCICHINETTI; FORTUNATO; RADICCHI, 2008). Details about these graphs

can be seen in Table 6.3. The parameters used are:

• average degree (k) equal to 3;

• maximum degree (maxk) equal to 8;

• mixing parameter (µ), where µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8};

• minimum number of nodes in each cluster (minc) equal to 5;

• maximum number of nodes in each cluster (maxc) equal to 15.

Tables 6.4, 6.5, 6.6 and 6.7 show the φ values obtained for Modularity Maximization

and Modularity Density Maximization algorithm and heuristics (our eight heuristics of

Chapter 4, CNM, and Louvain) for graphs with 30, 40, 50, and 60 nodes respectively.

The value “-” means that the algorithm reached the ten-hour limit of execution. In our

experiments, for instances with µ ≤ 0.3 obtained the best φ values. For instances with

µ > 0.3 the values are distant from 1, so the correlation is weak. Considering values

with φ ≥ 0.8, Modularity Density Maximization obtained the best results. Modularity

Maximization obtained solutions with φ > 0.8 for instances with 40 and 60 nodes with

µ ≤ 0.3. Our eight heuristics obtained φ > 0.8 for instances with more than 30 nodes

and µ ≤ 0.2.

A visual comparison between Modularity Maximization and Modularity Density

Maximization algorithms is seen in Figure 6.3.
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Table 6.3: Details of the small random graphs generated by using the LFR benchmark.

Dataset name µ Nodes Edges

30-01 0.1 30 54
30-02 0.2 30 49
30-03 0.3 30 49
30-04 0.4 30 62
30-05 0.5 30 41
30-06 0.6 30 53
30-07 0.7 30 53
30-08 0.8 30 51
40-01 0.1 40 84
40-02 0.2 40 92
40-03 0.3 40 87
40-04 0.4 40 87
40-05 0.5 40 88
40-06 0.6 40 89
40-07 0.7 40 81
40-08 0.8 40 96
50-01 0.1 50 397
50-02 0.2 50 394
50-03 0.3 50 399
50-04 0.4 50 397
50-05 0.5 50 400
50-06 0.6 50 399
50-07 0.7 50 398
50-08 0.8 50 400
60-01 0.1 60 132
60-02 0.2 60 124
60-03 0.3 60 131
60-04 0.4 60 129
60-05 0.5 60 119
60-06 0.6 60 143
60-07 0.7 60 128
60-08 0.8 60 131
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Figure 6.3: Graphical results of our ground truth tests over Modularity Maximization
and Modularity Density Maximization algorithms by using instances with 30, 40, 50,
and 60 nodes.
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6.3 Chapter Summary

Our experiments showed two main results. The first one shows that our heuristics

performed a better search for solutions with clustering closer to the expected partition

than CNM and Louvain do. The second one is about the results over exact methods for

30, 40, 50, and 60 nodes, where Modularity Density Maximization algorithms presented

better results than Modularity Maximization in most of the tests.

The λ parameter of the Modularity Density Maximization objective function helped

the heuristics to find better solutions for different difficulties of the µ value. Identifying
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the best λ parameter is an important factor when working with Modularity Density

Maximization algorithms and heuristics.
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Table 6.4: Comparisons among φ values obtained in the ground truth analyses among
the exact algorithms, CNM, Louvain, and our eight heuristics for graphs with 30 nodes.

Algorithms Heuristics
µ Brandes et al. (2008) λ CGI+ILS CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.1 .808 0.1 - .792 .9 0.1 - .453 .632 .816 .899 .0 .55 .899
0.2 - 0.2 .55 .51 .632 .825 .899 .0 .55 .899
0.3 - 0.3 .55 .588 .632 .814 .9 .0 .899 .9
0.4 - 0.4 .792 .484 .9 .789 .9 .0 .899 .9
0.5 .9 0.5 .792 .434 .9 .761 .744 .0 .899 .9
0.6 .747 0.6 .656 .416 .747 .608 .792 .0 .685 .9
0.7 .585 0.7 .578 .388 .585 .586 .792 .0 .578 .9
0.8 .474 0.8 .589 .381 .507 .534 .792 .0 .589 .9
0.9 - 0.9 .45 .385 .393 .376 .792 .0 .45 .9

0.2 .491 0.1 - .407 .406 0.1 .547 .301 .0 .486 .547 .0 .0 .489
0.2 - 0.2 .0 .337 .0 .388 .518 .0 .0 .518
0.3 .524 0.3 .23 .329 .226 .464 .484 .0 .23 .45
0.4 - 0.4 .419 .298 .45 .349 .45 .0 .385 .45
0.5 .491 0.5 .419 .267 .45 .379 .489 .0 .421 .417
0.6 .455 0.6 .422 .257 .492 .315 .417 .0 .404 .417
0.7 .41 0.7 .411 .242 .369 .344 .415 .0 .408 .417
0.8 - 0.8 .264 .246 .216 .294 .417 .0 .264 .434
0.9 .258 0.9 .264 .243 .216 .254 .434 .0 .264 .417

0.3 .095 0.1 - .19 .195 0.1 .33 .203 .0 .33 .196 .0 .0 .233
0.2 - 0.2 .0 .228 .0 .35 .196 .0 .0 .233
0.3 .304 0.3 .126 .233 .126 .287 .196 .0 .126 .238
0.4 - 0.4 .126 .252 .165 .327 .212 .0 .126 .233
0.5 .205 0.5 .197 .241 .227 .268 .212 .0 .154 .238
0.6 .353 0.6 .197 .2 .227 .25 .221 .0 .165 .244
0.7 .264 0.7 .137 .222 .135 .3 .235 .0 .137 .248
0.8 .272 0.8 .091 .229 .071 .381 .227 .0 .091 .252
0.9 - 0.9 .124 .196 .133 .257 .248 .0 .124 .252

0.4 .291 0.1 - .121 .307 0.1 .0 .207 .0 .209 .005 .0 .0 .017
0.2 - 0.2 .0 .282 .0 .251 -0.006 .0 .0 .005
0.3 .0 0.3 .0 .326 .0 .205 .005 .0 .0 .017
0.4 - 0.4 .0 .292 .0 .185 .005 .0 .0 .017
0.5 .171 0.5 .088 .273 .017 .062 .005 .0 .088 .017
0.6 - 0.6 .284 .224 .264 .194 .005 .0 .279 .017
0.7 - 0.7 .36 .196 .212 .161 .017 .0 .32 .017
0.8 .222 0.8 .34 .184 .142 .309 .005 .0 .34 .015
0.9 .284 0.9 .322 .176 .33 .265 .017 .0 .322 .0005

0.5 .026 0.1 - .026 -0.004 0.1 -0.016 -0.016 .0 -0.023 -0.003 .0 .0 -0.0002
0.2 - 0.2 .0 -0.005 .0 .017 -0.008 .0 .0 -0.008
0.3 .004 0.3 -0.041 -0.009 -0.035 .01 -0.008 .0 -0.041 -0.0002
0.4 - 0.4 .018 .016 -0.014 .01 -0.008 .0 -0.012 -0.0002
0.5 -0.025 0.5 -0.012 .029 -0.024 .006 -0.015 .0 .015 -0.01
0.6 - 0.6 -0.012 .047 -0.024 .006 -0.02 .0 -0.007 -0.02
0.7 -0.008 0.7 -0.014 .061 -0.008 .016 -0.036 .0 -0.014 -0.027
0.8 -0.024 0.8 -0.014 .061 -0.008 .03 -0.045 .0 -0.014 -0.036
0.9 -0.043 0.9 -0.017 .059 -0.038 .051 -0.036 .0 -0.017 -0.036

0.6 .041 0.1 - -0.0007 .01 0.1 .033 .011 .0 .033 -0.036 .0 .0 -0.036
0.2 - 0.2 .0 .022 .0 .034 -0.036 .0 .0 -0.036
0.3 .0 0.3 .0 -0.007 .0 .011 -0.036 .0 .0 -0.036
0.4 - 0.4 .0 .002 .0 .017 -0.036 .0 .0 -0.036
0.5 -0.008 0.5 -0.04 .011 -0.036 .092 -0.036 .0 -0.04 -0.036
0.6 -0.002 0.6 .009 -0.001 .007 .031 -0.036 .0 .009 -0.036
0.7 .033 0.7 .037 -0.01 .021 .036 -0.036 .0 .017 -0.036
0.8 - 0.8 -0.017 -0.013 -0.017 .021 -0.014 .0 -0.017 -0.014
0.9 .007 0.9 -0.022 -0.022 -0.044 .004 -0.014 .0 -0.022 -0.014

0.7 -0.059 0.1 - -0.059 -0.055 0.1 .0 -0.052 .0 -0.033 -0.042 .0 .0 -0.039
0.2 - 0.2 .0 -0.058 .0 -0.031 -0.039 .0 .0 -0.039
0.3 -0.029 0.3 .0 -0.045 .0 -0.036 -0.061 .0 .0 -0.039
0.4 - 0.4 -0.033 -0.049 -0.033 -0.05 -0.056 .0 -0.033 -0.056
0.5 -0.055 0.5 -0.049 -0.058 -0.056 -0.046 -0.056 .0 -0.055 -0.056
0.6 - 0.6 -0.063 -0.07 -0.071 -0.054 -0.061 .0 -0.056 -0.061
0.7 -0.071 0.7 -0.069 -0.065 -0.077 -0.064 -0.055 .0 -0.069 -0.055
0.8 - 0.8 -0.075 -0.081 -0.079 -0.09 -0.058 .0 -0.075 -0.055
0.9 -0.04 0.9 -0.09 -0.092 -0.087 -0.078 -0.059 .0 -0.09 -0.055

0.8 .003 0.1 - -0.043 -0.02 0.1 - -0.045 .0 -0.028 -0.022 .0 .0 -0.022
0.2 - 0.2 .0 -0.043 .0 -0.02 -0.022 .0 .0 -0.022
0.3 -0.019 0.3 .0 -0.046 .0 -0.033 -0.022 .0 .0 -0.018
0.4 - 0.4 -0.014 -0.036 -0.03 -0.031 -0.022 .0 -0.014 -0.018
0.5 -0.028 0.5 -0.014 -0.041 -0.026 -0.058 -0.026 .0 -0.016 -0.018
0.6 -0.066 0.6 -0.038 -0.06 -0.015 -0.02 -0.03 .0 -0.032 -0.03
0.7 -0.039 0.7 -0.06 -0.058 -0.046 -0.031 -0.034 .0 -0.021 -0.034
0.8 -0.033 0.8 -0.06 -0.031 -0.046 -0.056 -0.034 .0 -0.06 -0.034
0.9 -0.064 0.9 -0.044 -0.036 -0.046 -0.047 -0.029 .0 -0.044 -0.034
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Table 6.5: Comparisons among φ values obtained in the ground truth analyses among
the exact algorithms, CNM, Louvain, and our eight heuristics for graphs with 40 nodes.

Algorithms Heuristics
µ Brandes et al. (2008) λ CGI+ILS CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.1 .465 0.1 - .438 .467 0.1 - .274 .0 .602 1.0 .0 .0 1.0
0.2 - 0.2 .0 .253 .0 .553 .478 .0 .0 .478
0.3 1.0 0.3 .0 .255 .0 .649 .478 .0 .0 .478
0.4 - 0.4 .344 .244 .478 .566 .478 .0 .496 .478
0.5 .612 0.5 .344 .208 .478 .484 .478 .0 .519 .478
0.6 .475 0.6 .232 .209 .348 .435 .478 .0 .543 .478
0.7 - 0.7 .202 .205 .233 .305 .478 .0 .519 .478
0.8 .279 0.8 .209 .204 .255 .29 .478 .0 .209 .478
0.9 .22 0.9 .19 .208 .207 .198 .478 .0 .19 .478

0.2 .79 0.1 .0 .785 1 0.1 - .484 .0 .756 1.0 .0 .0 1.0
0.2 - 0.2 .0 .511 .0 .777 1.0 .0 .0 1.0
0.3 - 0.3 .463 .505 .588 .764 1.0 .0 1.0 1.0
0.4 - 0.4 .669 .481 .747 .684 1.0 .0 1.0 1.0
0.5 1.0 0.5 .822 .464 1.0 .824 1.0 .0 1.0 1.0
0.6 .854 0.6 .707 .43 .774 .722 1.0 .0 1.0 1.0
0.7 .758 0.7 .707 .419 .774 .672 1.0 .0 1.0 1.0
0.8 .531 0.8 .629 .395 .681 .67 1.0 .0 .629 1.0
0.9 .463 0.9 .507 .376 .473 .38 1.0 .0 .507 1.0

0.3 .532 0.1 .0 .469 .465 0.1 .0 .336 .0 .347 .401 .0 .0 .401
0.2 - 0.2 .0 .411 .0 .324 .401 .0 .0 .401
0.3 .0 0.3 .0 .301 .0 .45 .401 .0 .0 .401
0.4 - 0.4 .285 .309 .401 .399 .401 .0 .285 .401
0.5 .726 0.5 .285 .264 .401 .371 .401 .0 .596 .401
0.6 .825 0.6 .38 .274 .604 .568 .401 .0 .632 .401
0.7 .488 0.7 .386 .273 .507 .342 .401 .0 .528 .401
0.8 - 0.8 .386 .259 .503 .349 .401 .0 .613 .401
0.9 - 0.9 .241 .24 .29 .28 .401 .0 .241 .401

0.4 .366 0.1 .0 .318 .422 0.1 .0 .276 .0 .404 .212 .0 .0 .212
0.2 - 0.2 .0 .222 .0 .444 .212 .0 .0 .212
0.3 - 0.3 .0 .277 .0 .375 .192 .0 .0 .204
0.4 - 0.4 .0 .257 .0 .45 .204 .0 .0 .216
0.5 .464 0.5 .142 .276 .204 .265 .216 .0 .165 .204
0.6 - 0.6 .377 .266 .462 .465 .216 .0 .382 .192
0.7 .54 0.7 .394 .234 .373 .366 .207 .0 .391 .207
0.8 - 0.8 .352 .238 .409 .32 .207 .0 .352 .207
0.9 - 0.9 .251 .263 .269 .282 .207 .0 .251 .207

0.5 .14 0.1 .0 .089 .259 0.1 .278 .121 .0 .073 .278 .0 .0 .278
0.2 - 0.2 .0 .122 .0 .125 .278 .0 .0 .278
0.3 .0 0.3 .0 .107 .0 .18 .278 .0 .0 .278
0.4 - 0.4 .0 .114 .0 .136 .278 .0 .188 .278
0.5 .192 0.5 .188 .108 .201 .131 .201 .0 .188 .201
0.6 - 0.6 .109 .127 .157 .173 .201 .0 .082 .201
0.7 - 0.7 .109 .16 .154 .1 .201 .0 .131 .201
0.8 .264 0.8 .114 .134 .174 .128 .201 .0 .114 .201
0.9 .164 0.9 .093 .179 .102 .128 .195 .0 .093 .201

0.6 .034 0.1 .0 .036 .036 0.1 .0 .015 .0 .034 .002 .0 .0 .002
0.2 - 0.2 .0 .017 .0 .016 .002 .0 .0 .002
0.3 - 0.3 .0 .051 .0 .035 .03 .0 .0 .032
0.4 - 0.4 .0 .023 .0 .023 .036 .0 .0 .036
0.5 .013 0.5 .033 .04 .054 .043 .05 .0 .033 .046
0.6 .07 0.6 .021 .045 .024 .034 .046 .0 .037 .043
0.7 -0.012 0.7 .042 .047 .045 .033 .046 .0 .03 .046
0.8 -0.007 0.8 .074 .059 .045 .038 .05 .0 .074 .046
0.9 .057 0.9 .043 .062 .043 .031 .043 .0 .043 .046

0.7 .015 0.1 .0 .104 .014 0.1 .0 .021 .0 .044 .018 .0 .0 .018
0.2 - 0.2 .0 .047 .0 .048 .018 .0 .0 .018
0.3 .0 0.3 .0 .027 .0 .064 .018 .0 .0 .018
0.4 - 0.4 .0 .029 .0 .031 .018 .0 .0 .018
0.5 .113 0.5 .056 .025 .018 .059 .018 .0 .107 .018
0.6 .09 0.6 .056 .028 .018 .069 .018 .0 .107 .018
0.7 - 0.7 .041 .016 .014 .061 .018 .0 .094 .018
0.8 .034 0.8 .048 .005 .026 .05 .018 .0 .048 .018
0.9 - 0.9 .039 .021 .024 .009 .018 .0 .039 .018

0.8 -0.001 0.1 .0 .005 .074 0.1 - .037 .0 -0.00005 .0 .0 .0 .0
0.2 - 0.2 .0 .044 .0 .004 .0 .0 .0 .0
0.3 .0 0.3 .0 .054 .0 .02 .0 .0 .0 .0
0.4 - 0.4 .0 .041 .0 .002 .0 .0 .0 .0
0.5 -0.024 0.5 .0 .052 .0 .036 .0 .0 .0 .0
0.6 .01 0.6 -0.016 .036 -0.025 .01 .0 .0 .061 .0
0.7 - 0.7 -0.012 .048 -0.03 .02 .0 .0 .059 .0
0.8 .032 0.8 .003 .024 .014 .022 .0 .0 .044 .0
0.9 .055 0.9 .046 .037 .035 .074 .0 .0 .046 .0
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Table 6.6: Comparisons among φ values obtained in the ground truth analyses among
the exact algorithms, CNM, Louvain, and our eight heuristics for graphs with 50 nodes.

Algorithms Heuristics
µ Brandes et al. (2008) λ CGI+ILS CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.1 .687 0.1 - 1 1 0.1 - .198 .0 .89 1.0 .0 .0 1.0
0.2 - 0.2 1.0 .235 1.0 .905 1.0 .0 1.0 1.0
0.3 - 0.3 1.0 .189 1.0 .89 1.0 .0 1.0 1.0
0.4 - 0.4 1.0 .235 1.0 .889 1.0 .0 1.0 1.0
0.5 1.0 0.5 1.0 .178 1.0 .905 1.0 .0 1.0 1.0
0.6 1.0 0.6 1.0 .178 1.0 .89 1.0 .0 1.0 1.0
0.7 1.0 0.7 1.0 .178 1.0 .889 1.0 .0 1.0 1.0
0.8 .682 0.8 1.0 .185 1.0 .874 1.0 .0 1.0 1.0
0.9 .422 0.9 .693 .178 .698 .569 1.0 .0 .693 1.0

0.2 1 0.1 .0 1 1 0.1 - .196 .0 .723 .0 .0 .0 .0
0.2 - 0.2 .0 .204 .0 .905 .0 .0 .0 .0
0.3 .0 0.3 .0 .214 .0 .861 .0 .0 .0 .0
0.4 - 0.4 .0 .202 .0 .722 .0 .0 1.0 .0
0.5 1.0 0.5 .0 .205 .0 .905 .0 .0 1.0 .0
0.6 1.0 0.6 .699 .205 1.0 .861 .0 .0 1.0 .0
0.7 1.0 0.7 .699 .207 1.0 .673 .0 .0 1.0 .0
0.8 - 0.8 .699 .209 1.0 .875 .0 .0 1.0 .0
0.9 - 0.9 .364 .205 .414 .51 .0 .0 1.0 .0

0.3 .0 0.1 .0 1 1 0.1 - .097 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 .13 .0 .0 .0 .0 .0 .0
0.3 .0 0.3 .0 .108 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 .13 .0 .235 .0 .0 .0 .0
0.5 .0 0.5 .0 .107 .0 .235 .0 .0 .0 .0
0.6 1.0 0.6 .0 .116 .0 .235 .0 .0 .0 .0
0.7 1.0 0.7 .0 .107 .0 .235 .0 .0 .257 .0
0.8 .757 0.8 .02 .088 .624 .336 .0 .0 .495 .0
0.9 .439 0.9 .138 .107 .347 .275 .0 .0 .478 .0

0.4 .0 0.1 .0 .13 .043 0.1 .0 .04 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 .08 .0 .0 .0 .0 .0 .0
0.3 .0 0.3 .0 .05 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 .077 .0 .0 .0 .0 .0 .0
0.5 .0 0.5 .0 .046 .0 .0 .0 .0 .0 .0
0.6 .0 0.6 .0 .05 .0 .0 .0 .0 .0 .0
0.7 .0 0.7 .0 .046 .0 .0 .0 .0 .0 .0
0.8 .03 0.8 .0 .05 .0 .0 .0 .0 .045 .0
0.9 .165 0.9 .021 .046 .095 .058 .0 .0 .045 .0

0.5 - 0.1 .0 .025 -0.027 0.1 - -0.0007 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 -0.005 .0 .0 .0 .0 .0 .0
0.3 .0 0.3 .0 -0.038 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 -0.005 .0 .0 .0 .0 .0 .0
0.5 .0 0.5 .0 -0.029 .0 .0 .0 .0 .0 .0
0.6 .0 0.6 .0 -0.035 .0 .0 .0 .0 .0 .0
0.7 .0 0.7 .0 -0.029 .0 .0 .0 .0 .0 .0
0.8 -0.008 0.8 -0.011 -0.033 -0.018 .0 .0 .0 -0.014 .0
0.9 .004 0.9 -0.036 -0.029 -0.028 -0.017 .0 .0 -0.023 .0

0.6 .0 0.1 .0 -0.027 -0.026 0.1 .0 -0.027 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 -0.035 .0 .0 .0 .0 .0 .0
0.3 .0 0.3 .0 -0.035 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 -0.035 .0 .0 .0 .0 .0 .0
0.5 .0 0.5 .0 -0.031 .0 .0 .0 .0 .0 .0
0.6 .0 0.6 .0 -0.041 .0 .0 .0 .0 .0 .0
0.7 .0 0.7 .0 -0.031 .0 .0 .0 .0 .0 .0
0.8 -0.017 0.8 -0.017 -0.034 -0.018 .0 .0 .0 -0.016 .0
0.9 -0.042 0.9 -0.016 -0.031 -0.027 -0.024 .0 .0 -0.019 .0

0.7 .0 0.1 .0 -0.017 -0.031 0.1 .0 -0.064 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 -0.057 .0 .0 .0 .0 .0 .0
0.3 .0 0.3 .0 -0.058 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 -0.05 .0 .0 .0 .0 .0 .0
0.5 .0 0.5 .0 -0.056 .0 .0 .0 .0 .0 .0
0.6 .0 0.6 .0 -0.049 .0 .0 .0 .0 .0 .0
0.7 - 0.7 .0 -0.056 .0 -0.005 .0 .0 .0 .0
0.8 -0.022 0.8 -0.017 -0.057 -0.013 .0 .0 .0 -0.025 .0
0.9 -0.041 0.9 -0.041 -0.056 -0.032 -0.027 .0 .0 -0.031 .0

0.8 .0 0.1 .0 -0.032 -0.03 0.1 .0 -0.068 .0 .0 .0 .0 .0 .0
0.2 - 0.2 .0 -0.066 .0 .0 .0 .0 .0 .0
0.3 - 0.3 .0 -0.066 .0 .0 .0 .0 .0 .0
0.4 - 0.4 .0 -0.066 .0 .0 .0 .0 .0 .0
0.5 .0 0.5 .0 -0.069 .0 .0 .0 .0 .0 .0
0.6 .0 0.6 .0 -0.067 .0 .0 .0 .0 .0 .0
0.7 .0 0.7 .0 -0.069 .0 .0 .0 .0 .0 .0
0.8 -0.029 0.8 .0 -0.066 .0 .0 .0 .0 -0.014 .0
0.9 -0.044 0.9 -0.034 -0.069 -0.042 -0.032 .0 .0 -0.028 .0
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Table 6.7: Comparisons among φ values obtained in the ground truth analyses among
the exact algorithms, CNM, Louvain, and our eight heuristics for graphs with 60 nodes.

Algorithms Heuristics
µ Brandes et al. (2008) λ CGI+ILS CNM Louvain λ CM LNM CM+LNM MCN CM+MCN MD MDM HLSMD

0.1 1 0.1 .571 .966 1 0.1 - .562 .458 .848 .811 .0 .458 .811
0.2 - 0.2 .728 .54 .827 .868 .811 .0 .861 .811
0.3 1.0 0.3 .728 .529 .827 .84 .811 .0 .895 .811
0.4 - 0.4 .728 .508 .827 .847 .811 .0 .942 .811
0.5 .939 0.5 .729 .487 .811 .859 .811 .0 .894 .811
0.6 - 0.6 .729 .44 .811 .791 .811 .0 .931 .811
0.7 .664 0.7 .604 .434 .668 .735 .811 .0 .604 .811
0.8 .642 0.8 .564 .428 .642 .721 .811 .0 .564 .811
0.9 .508 0.9 .553 .434 .586 .4 .79 .0 .553 .811

0.2 1 0.1 - .593 .911 0.1 - .487 .0 .495 .514 .0 .0 .49
0.2 - 0.2 .0 .426 .0 .603 .481 .0 .0 .591
0.3 .712 0.3 .375 .399 .427 .632 .474 .0 .751 .594
0.4 - 0.4 .383 .404 .518 .669 .465 .0 .731 .681
0.5 .824 0.5 .421 .386 .681 .576 .465 .0 .748 .686
0.6 .769 0.6 .501 .38 .763 .608 .465 .0 .693 .742
0.7 .635 0.7 .466 .37 .659 .572 .47 .0 .523 .808
0.8 - 0.8 .44 .36 .518 .584 .465 .0 .44 .801
0.9 .417 0.9 .328 .353 .35 .357 .475 .0 .328 .801

0.3 .957 0.1 - .4 .716 0.1 - .504 .0 .456 .586 .0 .0 .553
0.2 - 0.2 .0 .473 .0 .509 .619 .0 .0 .601
0.3 - 0.3 .0 .447 .0 .509 .619 .0 .0 .601
0.4 - 0.4 .21 .485 .341 .579 .619 .0 .553 .619
0.5 .929 0.5 .378 .442 .582 .543 .638 .0 .499 .619
0.6 .929 0.6 .378 .434 .582 .488 .619 .0 .435 .601
0.7 - 0.7 .357 .421 .455 .559 .601 .0 .357 .601
0.8 .525 0.8 .407 .407 .533 .468 .619 .0 .407 .584
0.9 .43 0.9 .331 .397 .369 .384 .601 .0 .331 .616

0.4 .0 0.1 .0 .259 .425 0.1 - .226 .0 .234 .0 .0 .0 .0
0.2 - 0.2 .0 .221 .0 .207 .0 .0 .0 .0
0.3 .0 0.3 .0 .241 .0 .173 .0 .0 .0 .0
0.4 - 0.4 .0 .207 .0 .206 .0 .0 .0 .0
0.5 .279 0.5 .0 .234 .0 .225 .0 .0 .161 .0
0.6 - 0.6 .148 .243 .214 .255 .0 .0 .18 .0
0.7 .357 0.7 .148 .244 .196 .23 .0 .0 .148 .0
0.8 - 0.8 .177 .227 .273 .276 .0 .0 .173 .0
0.9 - 0.9 .18 .218 .209 .225 .0 .0 .18 .0

0.5 .125 0.1 .0 .08 .078 0.1 .0 .097 .0 .121 .069 .0 .0 .068
0.2 - 0.2 .0 .092 .0 .115 .07 .0 .0 .07
0.3 .12 0.3 .0 .054 .0 .075 .07 .0 .0 .07
0.4 - 0.4 .071 .08 .05 .105 .07 .0 .081 .07
0.5 .12 0.5 .09 .096 .064 .11 .063 .0 .136 .069
0.6 .14 0.6 .125 .092 .149 .114 .074 .0 .13 .074
0.7 - 0.7 .153 .094 .125 .134 .07 .0 .141 .07
0.8 - 0.8 .149 .092 .138 .097 .07 .0 .149 .07
0.9 .055 0.9 .166 .088 .154 .106 .066 .0 .166 .066

0.6 .0 0.1 .0 .085 .169 0.1 .0 .097 .0 .091 .001 .0 .0 .001
0.2 - 0.2 .0 .095 .0 .063 .001 .0 .0 .001
0.3 - 0.3 .0 .067 .0 .092 .001 .0 .0 .001
0.4 - 0.4 .0 .065 .0 .086 .001 .0 .0 .001
0.5 .112 0.5 -0.003 .092 .001 .081 .001 .0 -0.003 .001
0.6 .109 0.6 .087 .093 .047 .124 .003 .0 .087 .005
0.7 - 0.7 .098 .117 .095 .1 .005 .0 .088 .005
0.8 .188 0.8 .116 .126 .143 .123 .005 .0 .116 .007
0.9 .205 0.9 .127 .133 .1 .138 .007 .0 .127 .011

0.7 .0 0.1 - .048 .053 0.1 .043 .035 .0 .012 .062 .0 .0 .043
0.2 - 0.2 .0 .053 .0 .024 .066 .0 .0 .058
0.3 - 0.3 .0 .034 .0 .048 .066 .0 .0 .071
0.4 - 0.4 .0 .043 .0 .037 .071 .0 .0 .071
0.5 .018 0.5 .03 .047 .071 .016 .071 .0 .028 .071
0.6 - 0.6 .026 .037 .033 .029 .071 .0 .031 .071
0.7 .031 0.7 .034 .047 .031 .025 .071 .0 .034 .071
0.8 - 0.8 .023 .038 .034 .042 .071 .0 .023 .071
0.9 - 0.9 .04 .038 .04 .053 .071 .0 .04 .071

0.8 .0 0.1 .0 .02 .039 0.1 - .015 .0 -0.005 -0.007 .0 .0 -0.006
0.2 - 0.2 .0 .009 .0 -0.008 -0.006 .0 .0 -0.007
0.3 - 0.3 .0 -0.001 .0 -0.01 -0.004 .0 .0 .001
0.4 - 0.4 .0 -0.001 .0 .007 -0.001 .0 .0 .005
0.5 .023 0.5 -0.031 -0.008 .011 -0.011 -0.004 .0 .011 .006
0.6 .021 0.6 -0.027 -0.011 .028 .014 -0.003 .0 .001 .008
0.7 - 0.7 -0.022 -0.012 -0.011 -0.004 -0.006 .0 -0.022 .007
0.8 - 0.8 .002 -0.015 -0.013 .001 -0.006 .0 .002 .017
0.9 - 0.9 .012 -0.016 .002 -0.008 -0.012 .0 .012 .002
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7 CONCLUSIONS AND FUTURE WORK

In this work, we proposed heuristic searches which solve larger instances than the

current Modularity Density Maximization heuristics do, and showed how close the

obtained solutions are to the expected clustering results. As main contributions, we

list the theoretical results about the prioritizers for constructive searches, the creation

of eight new heuristics for Modularity Density Maximization that solve instances with

hundreds of thousands of nodes, and the column generation algorithms.

The theoretical contributions helped in understanding which prioritizers can be used

in constructive heuristics. We showed that Modularity Density Maximization fails as

a prioritizer, so an alternative prioritizer was suggested. It was based on the density

of edges inside each cluster to preserve the modular property. We showed that this

alternative prioritizer does not merge some types of adjacent cliques. We also proved

that this prioritizer presents problems when detecting star-shaped modules. These

results helped the development of our eight heuristics.

Our eight new heuristics for Modularity Density Maximization are CM, LNM,

CM+LNM, MCN, CM+MCN, MD, MDM, and HLSMD. The heuristics which found

the lowest gap for average and the best D value were CM+LNM, MD, MDM, and

HLSMD. The fastest heuristics are CM, LNM, MCN, and CM+MCN. HLSMD reached

the best partitions for the largest graphs tested in at most 10 minutes. Except for

CM, all our heuristics surpass the other Modularity Density Maximization heuristic

solvers found in the literature for some instances. Our ground truth analyses showed

that CM+LNM was the only tested heuristic that maintained high-quality solutions for

instances with difficulty parameter µ < 7. It means that even the instance with 60% of

the edges mixed with nodes of different modules, CM+LNM led to good solutions.

CM+MCN and HLSMD showed high quality for instances with µ ≤ 3. Hence,

the results suggest that CM+LNM, CM+MCN and HLSMD are the state-of-the-art

heuristics for Modularity Density Maximization.

We developed six column generation methods that used our HLSMD heuristic.
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Two of them surpassed the exact algorithm results from the literature: CGI+ILS and

CGII+ILS. They use an Iterated Local Search to find good columns faster than the exact

auxiliary algorithm.

With the aim of understanding the differences between Modularity Maximization

and Modularity Density Maximization optimal results, our ground truth analyses tested

their exact methods. The optimal solutions proved to be far from the expected

partition for instances with µ > 3. The results also suggest that Modularity Density

Maximization is better than Modularity Maximization.

The ground truth analyses also reinforced the idea that the λ parameter is an

important factor for Modularity Density Maximization heuristics. The results of those

analyses showed that some λ values are good for an instance and worse for others when

using the same heuristic.

Another result of this thesis is an answer to the problem related to the exponential

number of suboptimal partitions for Modularity Maximization (GOOD; MONTJOYE;

CLAUSET, 2010). This is detailed in A.

We conclude that the reached results are relevant, and they suggest improvements

to the state-of-the-art for the Modularity Density Maximization problem. Our

contributions are relevant computational methods for a number of problems in several

science areas.

7.1 Future Works

In this section, we present future works related to this thesis.

7.1.1 Alternative Prioritizer and Star-shaped Modules

As it is shown in Section 3.3, our alternative prioritizer can fail to detect star-shaped

modules. This behavior is a problem because this kind of module is expected to be

seen as a cluster. In this structure, a central node is connected to other nodes which
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had degree 1, so all other nodes are dependent on this central node. In a social network

context, this could mean that an important person is followed by other people who do

not know each other. This cluster could represent a cluster of fans of an important

person. As further work, we suggest the investigation of combined or new prioritizers

that can be used fix this problem.

7.1.2 Signed Modularity Density Maximization

Signed networks can represent positive and negative relationships between nodes

of a network. In the context of Modularity Density Maximization, some methods are

discussed in Li, Liu and Liu (2014), but the results are about graphs with at most

1, 800 nodes. The methods of Li, Liu and Liu (2014) do not work with directed and

weighted networks. The weight and direction can be used to represent more details

about the relationships like how much a person hates or loves another one as can be

seen in Slovene Parliamentary Parties Network (KROPIVNIK; MRVAR, 1996). As

future research, we suggested that new methods can be applied to signed, directed and

weighted networks with more than 100, 000 nodes. We started a research on this line,

but the graphs used in the experiments are unweighted and undirected.

7.1.3 Parallel Constructive and Multilevel Heuristics

Some of our eight heuristics of Section 4 can be converted into parallel heuristics

for improving scability. So, they can be tested to understand the best number of threads

and computers to solve specific sizes of graphs. The heuristics could divide the search

space among the threads and processors to accelerate or improve the search for better

solutions as proposed in Costa et al. (2016).
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7.1.4 Ground Truth Analyses for Different Graph Clustering Functions

As described in Introduction (Chapter 1) and Background (Chapter 2) chapters,

there are several methods for graph clustering inspired on the Modularity optimization.

It is important to understand what prioritizer or objective function can lead to the

best solutions. For graph clustering problems, ground truth comparisons among

heuristic and exact methods can help to understand the best method to use. In

this thesis and our paper (SANTIAGO; LAMB, 2017), we compare heuristics for

Modularity Maximization and Modularity Density Maximization that solved instances

with hundreds of thousands of nodes. The results suggest that the heuristics based on

Modularity Density Maximization have the best results.
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A SUBOPTIMAL PARTITIONS FOR MODULARITY MAXIMIZATION

This section describes our contribution to explain why Modularity Maximization

has an exponential number of high-quality solutions. This behavior was first reported

in Good, Montjoye and Clauset (2010). The demonstrations made here are marginal

contributions to the main line of this work. These results were presented at the IEEE

Congress on Evolutionary Computation of 2016.

Figure A.1: The landscape of several searches in “Football”.
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Figure A.1 represents the partitions collected in all of 30 restarts for each

neighborhood in the “Football” instance. Observing the figure, the plateaus occupy

a significant part of the explored area. This behavior is also reported in (EATON;

MANSBACH, 2012; CAFIERI; HANSEN; LIBERTI, 2010; GOOD; MONTJOYE;

CLAUSET, 2010; DARST; NUSSINOV; FORTUNATO, 2014). The data plotted to

analyze the optimization landscape are collected from the Tabu Search stochastic local

search. α.|V | value gives the iterations that a feature remains in the tabu list, where α

is randomly selected from the interval between 0.1 and 0.9. The data were collected at

each 100 iterations, with stop criteria of 10, 000 iterations, 1, 000 iterations without

partition improvement, or when the execution reaches the best-known partition. A

restart is made for each replication. The 1-neighborhood strategy was used. To plot

the optimization landscape and to show the degeneracy graphically, we used a method
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to compute the distance between two partitions and to depict each partition in the

two-dimensional space by multidimensional scaling. The distance metric used was

function Variation of Information (VI).

In the solution space for Modularity Maximization, a partition C can be represented

as a set of disjoint clusters made up of nodes. The contribution of each node w in cluster

c, for modularity function, can be seen in Equation (A.1). We divide Equation (A.1) into

gain and penalty components.

q(w, c) =
∑

u∈c\{w}

(
auw
|E|

)
︸ ︷︷ ︸

gain

−
∑

u∈c\{w}

(
dudw
2|E|2

)
− d2w

4|E|2︸ ︷︷ ︸
penalty

(A.1)

The gain is the total positive contribution to the objective value. The gain factor

represents the adjacency proportion from w connected to other nodes in cluster c. As

the referred problem is a maximization, the larger the gain, the larger the solution value.

The penalty factor is an equation that leads to the decreasing of the modularity value. It

is a representation of an expected number of edges connected from w to any other node

from cluster c.

A question to be answered is what feature of instance exploration can lead to more

gain than penalty? The answer is seen in Proposition 1 here.

Proposition 1. To obtain significant gain, a node must be in a partition where its

internal cluster degree (dcw) is proportionally larger than the value of its expected edges

in cluster c times the total number of edges.

Proof. To prove this proposition, we assume that the gain value is significantly larger

than that of the penalty, using Equation (A.1). Then we simplified the inequations in the

sequence A.2 and A.3.

As dcw is the degree of nodew inside cluster c. Inequation (A.4) shows that to change

the partition to a higher objective value, the value of dcw must be larger than all degrees
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from u ∈ c\{w} multiplied by dw and divided by four times the total number of edges.

∑
u∈c\{w}

(
auw
)

|E|
�
∑

u∈c\{w}
(
dudw

)
2|E|2

+
d2w

4|E|2
(A.2)

∑
u∈c\{w}

(
auw
)
�

2
∑

u∈c\{w}
(
dudw

)
+ d2w

4|E| (A.3)

dcw �
2
∑

u∈c\{w}
(
dudw

)
+ d2w

4|E|
(A.4)

Using Proposition 1, we claim that in every instance with a non-uniform degree

distribution (like scale-free networks), the number of nodes of a specified low degree

dictates the number of solutions in the plateau of suboptimal modularity. This is

proved in Proposition 2. This proposition implies that the number of partitions is also

exponential.

Proposition 2. Nodes of low degree determine the number of partitions with suboptimal

modularity.

Proof. For Proposition 2, low degree nodes are formally defined. A low degree node is

one which has a proportionally large distance from the highest degree in the graph. At

this point, defining this proportion is necessary to understand Proposition 2.

Let the set Vlow be made up of nodes of low degree that give a total gain of at most

αQmax. We define Vlow = {w ∈ V : dw ≤ x}, where x is the upper bound for all w

degrees, such that inequation (A.5) is always true. Suppose that Qmax is the optimal Q
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value.

∑
w∈Vlow

gain(w, cw) ≤ αQmax (A.5)

The degree of nodes has a positive correlation with the gain and penalty provided

by the node itself for a solution value; then low degree nodes lead to small changes in

modularity. If these changes are performed over the solution with Qmax, then we have

suboptimal partitions given by changing low degree nodes.

Parameter α ∈ [0, 1] is the influence on modularity value. We want to find a degree

x as upper bound, where α is small, to give a lower bound of how much partitions with

suboptimal modularity at least (1− α)Qmax can exist.

In inequation (A.6), the gain function is unveiled for simplification purposes.

∑
w∈Vlow

∑
u∈cw\{w}

(
auw
|E|

)
≤ αQmax (A.6)

Considering that
(∑

u∈cw\{w} auw
)
≤ dw, then we can assume that this substitution

is the maximum gain possible for node w, where all its neighbors are inside the same

cluster, as defined in inequation (A.7).

∑
w∈Vlow

(
dw
|E|

)
≤ αQmax (A.7)

Assuming that all nodes in Vlow have at most a degree value x, we have inequation

(A.8) and simplified inequation (A.9).

∑
w∈Vlow

(
x

|E|

)
≤ αQmax (A.8)
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|Vlow|x ≤ αQmax|E| (A.9)

Inequation (A.9) defines αQmax|E| as being upper bound to the summation of all

degrees of nodes that belong to Vlow to determine what nodes have almost no influence

on the modularity value.

For the sake of clarity, we apply inequation (A.9) in the “Adjnoun” instance.

Assuming suboptimal partitions with a modularity of at least (0.9) × Qmax, we must

define parameter α=0.1. As this instance has |E| = 425 and Qmax = 0.313367 (ALOISE

et al., 2013), we have |Vlow|x ≤ 13.3180975. In this example, we could compose Vlow

with a group of nodes where the sum of all degrees is at most 13. All partitions generated

by changing clusters of w ∈ Vlow will have a modularity value between (0.9) × Qmax

and Qmax, so all these solutions will be suboptimal partitions.

By contradiction, we prove this proposition using set Vlow and the degree upper

bound on x. We will assume that the number of suboptimal solutions with a modularity

value of at least (1− α)Qmax is not exponential. The number of possible partitions for

an instance graph G(V,E) is Bn, where n = |V |. Let l = |Vlow|, the total number of

partitions without Vlow nodes isBn−l. Then the number of possible partitions by varying
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the clusters of Vlow nodes is Bn −Bn−l.

Bn −Bn−l =

n−1∑
i=0

[(
n− 1

i

)
Bi

]
−

n−l−1∑
i=0

[(
n− l − 1

i

)
Bi

]
=

n−l−1∑
i=0

[(
n− l − 1

i

)
Bi

]
+

n−1∑
i=n−l

[(
n− 1

i

)
Bi

]

−
n−l−1∑
i=0

[(
n− l − 1

i

)
Bi

]

≥
n−1∑
i=n−l

[(
n− 1

i

)
Bi

]
(A.10)

In equation list A.10 above, we have a simplification sequence resulting in a

lower bound for the number of partitions that influence Vlow; these solutions provide

suboptimal modularity scoring. Clearly, the resulting lower bound is exponential,

contradicting the assumption that the number of nodes of low degree does not determine

the number of solutions with suboptimal modularity.

Figure A.2 shows the difference between the total number of partitions and the

partitions with suboptimal solutions for instances with at most ten nodes. It is also

assumed that |Vlow| = 0.1|V |. One can see in this figure that there is a large number of

suboptimal solutions, even if only 10% of nodes have small degree value.

A.1 Experimental Analysis

In order to validate Proposition 1 experimentally, we tested the same stochastic

local search Tabu Search from Section A, mapping each iteration to classical instances

described in Table A.1.
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Figure A.2: Comparison between the total number of partitions and the partitions (blue)
with suboptimal modularity value (red) for instances with at most ten nodes. The axis
“#partitions” is in log scale.
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The results are summarized in Figures A.3, A.4, A.5, A.6 and A.7, where the

vertical axis ∆Q represents the modularity value difference between the last and the

current partition at each iteration, and the horizontal axis “Internal Degree Difference”

represents the difference between inside cluster degree of the last and the current

partition. The colors represent the ∆Q modularity improvement (green denotes large

improvements, red denotes small improvements). We can see that, the larger the value

of the degree, the larger the modularity value of partitions.

Figure A.3: Degree difference in modularity gain in “Adjnoun”.
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Figure A.4: Internal cluster degree and modularity gain in “Dolphins”.

Figure A.5: Internal cluster degree and modularity gain in “Football”.

Another feature that can be observed in the figures is the concentration of partitions.

Small ∆Q is associated with a high number of partitions. This behavior happens due to

the small number of highest degree nodes. This observation agrees with Proposition 2.

The line “r” in the figures represents the linear approximation error. Table 4.1 shows

the correlation between modularity value and inside cluster degree (Pearson/Spearman)

for each classical instance. The large amount of small ∆Q in partition space influences

the reading, but a positive correlation is also found.
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Figure A.6: Internal cluster degree and modularity gain in “Karate”.

Figure A.7: Internal cluster degree and modularity gain in “Polbooks”.

A.2 On the Role of Influences

In order to show how the information provided by Proposition 1 and Proposition 2

could be used to locate higher modularity partitions, we changed two heuristics. The

first is a Tabu Search and the second, the Louvain method (BLONDEL et al., 2008) that

are scalable for instances with thousands of nodes. They have been changed to consider

the degree influence. The following results show that the new versions obtained an

improvement.
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Table A.1: Classical Instances and Experimental Results

Graph Nodes Edges Q∗ Correlation (Pearson/Spearman)
Adjnoun 112 425 .313 .656 / .609
Dolphins 62 159 .529 .779 / .796
Football 115 613 .605 .872 / .859
Karate 34 78 .420 .689 / .672
Polbooks 105 441 .527 .591 / .606

A.2.1 Adapted Tabu Search

The same Tabu Search from Section A is used on classical (see Table A.1) and

random instances. The stop criteria is 10, 000 iterations or 1, 000 iterations without

improvement from the current partition, and the number of replications was 30 (restarts).

The random instances are artificially created with a fixed number of clusters

ρ ∈ {2, 4, 10, 20} and number of nodes n ∈ {100, 200, 300, 400, 500}. Each

cluster has n/ρ nodes that are randomly connected, with internal edge density of

80%. The frequency of edges connecting two nodes from different clusters are β ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The total number of random instances is 320.

Two experiments have been carried out over the described scenario: (i) using a

randomly generated initial partition for each start, also denoted as “without advantage”

or “non-adv”, and (ii) using as initial partition the one generated by Algorithm 22, which

uses information advantages given by the propositions, also labelled as advantage or

“adv”. The “non-adv” initial partition algorithm is a constructive stochastic method.

The partition S is empty at the beginning, and a list l is created with all nodes. At each

iteration, a random node is removed from l and inserted into partial solution S with all

its neighbors. These neighbors are also removed from l. This procedure is repeated until

all nodes from the graph are in S.

Algorithm 22 starts splitting the sorted nodes by decreasing degree order into the

lists leaders and followers. The leaders list is composed of highest degree nodes and
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followers is composed of the remaining nodes. This is made to assign nodes with a

small degree to the nodes in the leaders list (lines 5 to 10). The remaining nodes from

followers are chosen by their highest degree rank, and their clusters are composed of

their adjacencies (lines 11 to 16).

Algorithm 22: Initial partition generator “adv” algorithm.
Input : G(V,E), S all nodes from V sorted by decreasing degree
// leaders and followers keep S order

1 x̄←
∑

v∈V

(
dv
|V |

)
2 leaders← [v ∈ S|dv ≥ x̄]
3 followers← V \leaders
4 Partition← ∅
5 foreach l ∈ leaders do
6 cluster← {l}
7 foreach u ∈ N(l) ∩ followers do
8 cluster← cluster ∪ {u}
9 followers← followers\{u}

10 Partition← Partition ∪ {cluster}

11 foreach f ∈ followers do
12 cluster← {f}
13 foreach u ∈ N(f) ∩ followers do
14 cluster← cluster ∪ {u}
15 followers← followers\{u}
16 Partition← Partition ∪ {cluster}

17 return Partition

The modularity value of the results was tested using the following two hypotheses:

• HTS
0 : the modularity value computed by using the initial partition from “adv”

(Algorithm 22) is equal to the obtained value by the random initial partition

algorithm “non-adv”;

• HTS
1 : the modularity value computed by using the initial partition from “adv”

(Algorithm 22) is better than the obtained value by random initial partition

algorithm “non-adv”.
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We have used the Wilcoxon Signed Rank hypothesis test on modularity scoring

results, paired test using HTS
1 as the alternative. With very high significance the null

hypothesis (HTS
0 ) is rejected, and HTS

1 is maintained. For the experiments, we show

that Propositions 1 and 2 can be used in MM heuristics to locate suboptimal partitions,

by spending more time exploring the high scoring plateau. The p-value obtained was

less than 3.15× 10−5.

A.2.2 Adapted Louvain Heuristic

In this subsection, we report the experiments with the adapted version of Louvain

method that was first introduced in (BLONDEL et al., 2008). We selected this heuristic

because it is scalable for instances with thousands of nodes.

The adapted version of the Louvain method is presented in Algorithm 23, and it is

very similar to the Louvain method. It also has two phases, where the first phase will

take the instance and try to move the nodes from its cluster to another that leads to an

improvement in the modularity value. When no improvement is found, the second phase

melts each cluster as a single meta-node, thus changing the instance.

The difference between our adapted and the original version of the Louvain method

is in the first phase. Instead of passing to the second phase after no improvement is

found, our adapted version order the nodes by the number of no internal edges. This

order is described in Algorithm 24. Our idea is first to move nodes which have the

largest number of adjacencies outside of their clusters. Only after no improvement is

found in this extension of the first phase that the second phase is run.

In the experiments, the original and adapted version have been run 30 times (number

of replications). The best partitions achieved were collected and used for comparison

purposes. The instances used in the experiments can be seen in Table 4.1. They

are classical instances of (BATAGELJ; MRVAR, 2006) and undirected, unweighted

instances of the “Stanford Large Network Dataset Collection” (LESKOVEC; KREVL,

2014).
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Algorithm 23: Adapted Louvain Method.
Input : G(V,E), partition

1 best← partition
2 improvement← true
3 while improvement do
4 improvement← false

// begin of first phase
5 for i← 1 to 2 do
6 if i = 1 then
7 orderedV ← randomOrder(V )

8 else
9 orderedV ← notIntDegreeOrder(G, best)

10 repeat
11 moves← 0
12 foreach v ∈ orderedV do
13 ∆Qv ← 0
14 cv ← ∅
15 foreach c ∈ CN(v) do
16 if ∆Qv < ∆Q(v, c) then
17 ∆Qv ←∆Q(v, c)
18 cv ← c

19 if cv 6= ∅ then
20 moves←moves+ 1
21 in partition, move node v to cluster cv

22 until moves = 0

// begin of second phase
23 if Q(best) < Q(partition) then
24 best← partition
25 improvement← true
26 clusters are coarsened as nodes in partition and graph G(V,E)

27 return best
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Algorithm 24: Algorithm notIntDegreeOrder.
Input : G(V,E), partition

1 temp← list()
2 foreach v ∈ V do
3 ni← dv − dcv
4 temp← temp ∪ {(v, ni)}
5 order temp by descending of ni
6 ordered← list()
7 foreach (v, ni) ∈ temp do
8 ordered← ordered ∪ {v}

9 return ordered

The best modularity value found in experiments for each instance was tested using

the following two hypotheses:

• HLA
0 : the best modularity value resulting from the adapted Louvain method is

equal to the best-obtained value by the original Louvain method;

• HLA
1 : the best modularity value resulted from the adapted Louvain method is

better than the best-obtained value by the original Louvain method.

The hypothesis test used was the same of described in the previous subsection. With

very high significance the null hypothesis (HLA
0 ) is rejected, and HLA

1 is maintained.

The p-value obtained was less than 0.002.

A.3 Chapter Summary

We illustrated experimental tests that confirmed our analytical results. The

experiments have corroborated the importance of the highest degree nodes on the

modularity value and also illustrated the small impact of small degree nodes w.r.t.

the objective value of a partition. The work reported in this thesis leads to future

developments in algorithms and heuristics for MM optimization problems and methods,

by providing ideas that contribute toward the fast convergence of solutions, in particular

in the region of suboptimal partitions.
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B RESUMO

“Modularity Density Maximization” é um problema de particionamento de grafos

que evita a resolução limite do problema denominado “Modularity Maximization”.

A tese apresentada neste documento tem como objetivo resolver instâncias maiores

que as heurísticas para Modularity Density Maximization e demonstrar a proximidade

das soluções obtidas em relação às esperadas. A primeira contribuição é sobre

as funções de prioridade para heurísticas deste problema. A segunda é a criação

de oito heuristicas para Modularity Density Maximization. Nossas heurísticas são

comparadas com os resultados ótimos da literatura, e as heurísticas denominadas

GAOD, iMeme-Net, HAIN, e BMD-λ. Os resultados também foram comparados com

CNM e Louvain que são heurísticas para a Modularity Maximization que podem

resolver instâncias com milhares de vérticas. Os testes foram realizados usando grafos

da “Stanford Large Network Dataset Collection”, e os experimentos demonstraram que

nossas oito heurísticas encontraram soluções para grafos com centenas the milhares

de vértices. Os resultados demonstram que cinco de nossas heurísticas melhoraram o

estado-da-arte de heurísticas para a Modularity Density Maximization. Nossos seis

geradores de colunas são a terceira contribuição. Estes métodos usam algoritmos ou

heurísticas como resolvedores de problema auxiliar. Comparações entre as gerações de

colunas propostas e os algoritmos do estado-da-arte foram realizadas. Os resultados

demonstraram que (i) dois de nossos métodos melhoraram o estado-da-arte sobre

algoritmos em termos de tempo, e (ii) nossos geradores de colunas provam o valor

ótimo para instâncias maiores que os resolvedores atuais conseguem. Conclui-se

que os resultados são relevantes, e eles sugerem avanços no estado-da-arte para o

problema da Modularity Density Maximization.

Palavras-chave: Maximização de modularidade por densidade. particionamento.

busca heurística. heurísticas multinível. busca local. geração de colunas.
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