
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ADMINISTRAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO
DOUTORADO EM ADMINISTRAÇÃO

Essays on Urban Bus Transport Optimization

Pablo Cristini Guedes

Porto Alegre, June 27, 2017.

Pablo Cristini Guedes

Essays on Urban Bus Transport Optimization

Dissertation for Doctoral degree in Business
Administration at the School of Administra-
tion of Federal University of Rio Grande do
Sul.

Supervisor: Denis Borenstein, PhD

Brazil

June 27, 2017

CIP - Catalogação na Publicação

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).

Guedes, Pablo
 Essays on Urban Bus Transport Optimization /
Pablo Guedes. -- 2017.
 86 f.

 Orientador: Denis Borenstein.

 Tese (Doutorado) -- Universidade Federal do Rio
Grande do Sul, Escola de Administração, Programa de
Pós-Graduação em Administração, Porto Alegre, BR-RS,
2017.

 1. Vehicle Scheduling. 2. Vehicle Rescheduling.
3. Urban Bus Transportation. I. Borenstein, Denis,
orient. II. Título.

Pablo Cristini Guedes

Essays on Urban Bus Transport Optimization

Dissertation for Doctoral degree in Business
Administration at the School of Administra-
tion of Federal University of Rio Grande do
Sul.

Denis Borenstein, PhD
Dissertation Advisor

Bruno de Athayde Prata, PhD
Committee Member

Tiago Pascoal Filomena, PhD
Committee Member

Michel José Anzanello, PhD
Committee Member

Brazil
June 27, 2017

"É preciso ter um caos dentro de si para dar à luz uma estrela cintilante."
— Nietzsche

Agradecimentos
Ainda não "me caiu a ficha" que estou finalizando essa etapa da minha vida.

Foram aproximadamente 5 anos e meio de mestrado e doutorado. Hoje mais cedo enquanto
nervoso estava para a minha defesa, minha amada esposa me perguntou por que eu tinha
escolhido fazer mestrado e doutorado? Eu sem pestanejar respondi: "Porque eu quero ser
professor". Essa profissão que nós não escolhemos, é ela que nos escolhe. Hoje após uma
longa jornada estou finalizando mais uma etapa da minha vida e tanto difícil quanto é a
caminhada, foi grande a ajuda que recebi de vocês e por isso gostaria de agradecer a todos.

Portanto agradeço, primeiramente, à minha amada esposa Marina Delanni Vitória
Guedes, pelos diversos dias difíceis que passaste me dando apoio e carinho, sempre com
muita compreensão e dedicação. Obrigado pelo auxílio, compreendendo a importância
dessa etapa nas nossas vidas e dando o suporte necessário.

Agradeço à minha família, especialmente aos meus pais e minha irmã, que sempre
me apoiaram e me deram suporte para conseguir chegar até aqui. Me deram valores,
educação (essa talvez com muito sacrifício) e me possibilitaram chegar nessa conquista.
Ela é parte de vocês. Saiba que eu sempre serei grato a vocês.

Quero um especial agradecimento ao meu orientador, padrinho de casamento e
amigo Professor Denis. Foste um orientador completo, me auxiliando no trabalho, mas me
ajudando a evoluir como ser humano. Foste um educador que não se limitou a me auxiliar
como orientador, mas me transformou como profissional. Muito obrigado!

Gostaria de agradecer a todos os meu amigos dessa jornada que consquistei. Não
irei nomeá-lo para não cometer injustiças. Me limito a dizer que foi essencial na minha
formação as constantes discussões, conversas e aprendizados que compartilhei com vocês
da 329.

Agradeço aos colegas de trabalho e artigos que compartilharam uma enorme parte
deste trabalho, sempre me auxiliando e ajudando a dismistificar os artigos.

Um agradecimento a todos os professores do PPGA de Pesquisa Operacional pelos
ensinamentos, em especial aos membros da banca Prof. Bruno Prata, Prof. Tiago Filomena,
Michel Anzanelllo pelas contribuições, comentários, elogios e por aceitar participar dessa
etapa comigo.

A Capes pela ajuda financeira, pois sem a bolsa este trabalho não chegaria a este
nível de excelência.

Enfim agradeço a todos que de alguma forma contribuiram para esse trabalho.
Um Abraço.

Abstract

In this dissetation we presented a three articles compilation in urban bus trans-
portation optimization. The main objective was to study and implement heuristic solutions
method based on Operations Research to optimizing offline and online vehicle (re)scheduling
problems considering multiple depots and heterogeneous fleet. In the first paper, a fast
heuristic approach to deal with the multiple depot vehicle scheduling problem was proposed.
We think the main contributions are the column generation framework for large instances
and the state-space reduction techniques for accelerating the solutions. In the second
paper, we added complexity when considering the heterogeneous fleet, denoted as "the
multiple-depot vehicle-type scheduling problem" (MDVTSP). Although the MDVTSP im-
portance and applicability, mathematical formulations and solution methods for it are still
relatively unexplored. We think the main contribution is the column generation framework
for instances with heterogeneous fleet since no other proposal in the literature has been
identified at moment by the authors. In the third part of this dissertation, however, we
focused on the real-time schedule recovery for the case of serious vehicle failures. Such vehi-
cle breakdowns require that the remaining passengers from the disabled vehicle, and those
expected to become part of the trip, to be picked up. In addition, since the disabled vehicle
may have future trips assigned to it, the given schedule may be deteriorated to the extent
where the fleet plan may need to be adjusted in real-time depending on the current state of
what is certainly a dynamic system. Usually, without the help of a rescheduling algorithm,
the dispatcher either cancels the trips that are initially scheduled to be implemented by the
disabled vehicle (when there are upcoming future trips planned that could soon serve the
expected demand for the canceled trips), or simply dispatches an available vehicle from a
depot. In both cases, there may be considerable delays introduced. This manual approach
may result in a poor solution. The implementation of new technologies (e.g., automatic
vehicle locators, the global positioning system, geographical information systems, and
wireless communication) in public transit systems makes it possible to implement real-time
vehicle rescheduling algorithms at low cost. The main contribution is the efficient approach
to rescheduling under a disruption. The approach with integrated state-space reduction,
initial solution, and column generation framework enable a really real-time action. In less
than five minutes rescheduling all trips remaining.

Keywords: Multiple Depot Vehicle Scheduling, Heterogeneous Fleet, Reschedul-
ing, Public Transport.

Resumo

Nesta tese, nós apresentamos uma compilação de três artigos de otimização
aplicados no contexto de transporte urbano de ônibus. O principal objetivo foi estudar
e implementar heurísticas com base em Pesquisa Operacional para otimizar problemas
de (re)escalonamento de veículos off-line e on-line considerando várias garagens e frota
heterogênea. No primeiro artigo, foi proposta uma abordagem heurística para o problema de
escalonamento de veículos múltiplas garagens. Acreditamos que as principais contribuições
são o método de geração de colunas para grandes instâncias e as técnicas de redução do
espaço de estados para acelerar as soluções. No segundo artigo, adicionamos complexidade
ao considerar a frota heterogênea, denotada como multiple depot vehicle type scheduling
problem (MDVTSP). Embora a importância e a aplicabilidade do MDVTSP, formulações
matemáticas e métodos de solução para isso ainda sejam relativamente inexplorados. A
principal contribuição desse trabalho foi o método de geração de colunas para o problema
com frota heterogênea, já que nenhuma outra proposta na literatura foi identificada
no momento pelos autores. Na terceira parte desta tese, no entanto, nos concentramos
no reescalonamento em tempo real para o caso de quebras definitivas de veículos. A
principal contribuição é a abordagem eficiente do reescalonamento sob uma quebra. A
abordagem com redução de espaço de estados, solução inicial e método de geração de
colunas possibilitou uma ação realmente em tempo real. Em menos de cinco minutos,
reescalonando todas as viagens restantes.

Palavras-chave: Escalonamento de veículos com múltiplas garagens, frota het-
erogênea, rescalonamento, transporte urbano.

Contents

Introduction . 11

I SIMPLE AND EFFICIENT HEURISTIC APPROACH
FOR THE MULTIPLE-DEPOT VEHICLE SCHEDUL-
ING PROBLEM 14

1 INTRODUCTION . 16

2 PROBLEM . 18

3 METHOD . 20
3.1 State Space Reduction . 20
3.1.1 k-SDVSP Based Selection Procedure (Selection R1) 21
3.1.2 Relaxed-MDVSP Selection Procedure (Selection R2) 21
3.2 Modified Truncated Column Generation 22

4 COMPUTATIONAL RESULTS . 25

5 CONCLUSION . 30

II COLUMN GENERATION BASED HEURISTIC FRAME-
WORK FOR THE MULTIPLE-DEPOT VEHICLE TYPE
SCHEDULING PROBLEM 31

1 INTRODUCTION . 33

2 LITERATURE REVIEW . 35

3 PROBLEM DEFINITION AND FORMULATION 37
3.1 Vehicle Scheduling Network . 37
3.2 Mathematical Formulation . 38

4 ALGORITHMS . 40
4.1 Truncated Column Generation . 40
4.1.1 Primal Problem . 40
4.1.2 Pricing Problem . 42
4.1.3 Modified Truncated Column Generation Algorithm 42

4.2 Accelerating Heuristic for Large-Scale Instances 44

5 COMPUTATIONAL EXPERIMENTS 47
5.1 Experiments Configuration . 47
5.2 Results . 49
5.3 Tests on a Real-World Instance . 51

6 CONCLUSIONS . 56

III A NOVEL EFFICIENT APPROACH FOR THE REAL-
TIME MULTI-DEPOT VEHICLE TYPE RESCHEDUL-
ING PROBLEM 57

1 INTRODUCTION . 59

2 LITERATURE REVIEW . 62

3 PROBLEM DESCRIPTION . 64

4 MODELING THE MDVTRSP . 67
4.1 Network Structures . 67
4.2 Vehicle Rescheduling Network . 68
4.3 Mathematical Formulation . 69

5 SOLVING THE PROBLEM . 71
5.1 Solution Approach . 71
5.2 Finding Itinerary Compatible Trips . 71
5.3 State Space Reduction . 71
5.4 Initial Solution for the CG . 73
5.5 Truncated Column Generation . 74
5.5.1 Primal Problem . 74
5.5.2 Pricing Problem . 76
5.5.3 Modified Truncated CG Algorithm . 76

6 COMPUTATIONAL EXPERIMENTS 78
6.1 Experimental Setup . 78
6.2 Results . 80

7 CONCLUSIONS . 84

Final Remarks . 85

BIBLIOGRAPHY . 87

12

Introduction

Literature refers to planning processes involving all decisions that precede an
operation as Transit Network Planning (TNP). Due to its complexity, TNP is often divided
into sub-steps (or subproblems) encompassing strategic decisions, operational decisions,
and all classes of decision in between: (i) Transit Network Design (TND); (ii) Transit
Network Timetabling (TNT); (iii) Vehicle Scheduling (VS); (iv) Crew Scheduling (DS); (v)
Driver Rostering (DR) and Real-time Control (RT). Figure 1 shows interrelations between
problems in TNP.

Figure 1 – Interaction between stages of the planning process.

The current dissertation focuses vehicle scheduling and rescheduling. This research
developed an online and offline scheduling. More specifically, this project aims to address
urban bus transportation problems through three subprojects that stand on their own,
but also complement each other to form a consistent, meaningful body of contributions
to the overarching urban transportation theme. These subprojects will be presented as
individual articles.

Efficiency in urban mobility is no longer a desirable feature in large cities, but
a true necessity. Uncontrolled urban sprawl leads to a series of transportation-related
problems (e.g., congestion in metropolitan and even in suburban areas, pollution, increases

Introduction 13

the number of accidents, disruptions like delays, vehicle breaks). Developing more efficient,
high-quality public transportation systems might be a sustainable, affordable alternative
to this situation. One approach to enhancing our transportation systems builds on the
optimization paradigm. However, optimization problems in public transportation of large
cities have proven to be of extreme complexity due to the number of daily trips and the
disruption possibilities (VISENTINI et al., 2014). For instance, according to Ibarra-Rojas
et al. (2015), Vehicle Scheduling Problem (VSP) determines the trips that are assigned to
each vehicle so that all trips can be carried out in accordance with the schedule and that
costs related to vehicle usage are minimized. Important elements in defining a VSP are:

• Number of depots vehicles may depart from. If there are multiple depots, it is
important to define whether a vehicle must return to the same depot it departed
from, or whether vehicles can share all depots.

• Number of types of fleet with specific capacities and operating costs.

• Resting points where vehicles may remain until the next trip (e.g. a street with low
vehicles flow, a parking lot, and so on). A depot may be used as a resting point but
a resting point does not necessarily require special infrastructure.

• Operating conditions, such as (i) inter-routing - i.e., a vehicle can be assigned to a
trip of a line followed by a trip to another line - and (ii) deadhead implementation -
i.e., empty vehicles traveling from a point to another, increasing the availability of
vehicles at certain points where there is a greater demand. These types of operation
may prevent under-usage of the fleet.

When vehicles can depart from different locations, we denoted the VSP as Multi-
Depot Vehicle Scheduling Problem (MDVSP). The MDVSP is a well-known NP-hard
problem (BERTOSSI; CARRARESI; GALLO, 1987). A fast heuristic approach to deal
with the problem was proposed. This approach builds on two stages. The first one uses
two-state space reduction procedures to reduce problem complexity. One of the procedures
builds on the solutions of a single-depot vehicle scheduling for each depot, whereas the
other uses the solution of a relaxed formulation of the MDVSP wherein a vehicle does
not have to finish the tasks sequence in the same depot where it started. Then, the
reduced problem is solved through a truncated column generation approach. The heuristic
approach was implemented in several variants, through different combinations of reduction
procedures, and tested on a series of benchmark problems provided by Pepin et al. (2009).
The heuristic variants found solutions with very narrow gaps (below 0.7%, on average) to
best-known solutions provided by Pepin et al. (2009), decreasing the required CPU time
by an overall average factor of 17 in comparison with reported results in the literature
(OTSUKI; AIHARA, 2014).

Introduction 14

In the second part of this disseratation, we added complexity when considering
the heterogeneous fleet, denoted as "the multiple-depot vehicle-type scheduling problem"
(MDVTSP). Although several mathematical formulations and solution methods have been
developed for the MDVSP, the MDVTSP is still relatively unexplored. Large instances of
the MDVTSP (involving thousands of trips and several depots and vehicle types) are still
difficult to solve in a reasonable time. We introduced a heuristic framework, combining
time-space network, truncated column generation (TCG) and state space reduction, to
solve large instances of the MDVTSP. Extensive testing was carried out using random
generated instances, in which a peak demand distribution was defined based on real-world
data from public transportation systems in Brazil. Furthermore, experiments were carried
out with a real instance from a Brazilian city. The framework has been implemented
in several algorithm variants, combining different developed preprocessing procedures,
such as state space reduction and initial solutions for the TCG. Computational results
showed that all developed algorithms obtained very good performances both in quality
and efficiency. The best solutions, considering simultaneously quality and efficiency, were
obtained in the heuristics involving state space reduction.

In the third part of this dissertation, however, we focused on the real-time
reschedule for the case of serious vehicle failures. Such vehicle breakdowns require that
the passengers from the disabled vehicle and those expected on the remaining part of the
trip be picked up. In addition, since the disabled vehicle may have future trips assigned to
it, the given schedule may be deteriorated to the extent where the fleet plan may need to
be adjusted in real-time depending on the current state of what is certainly a dynamic
system. Usually, without the help of a rescheduling algorithm, the dispatcher either cancels
the trips that are initially scheduled to be covered by the disabled vehicle (when there
are upcoming future trips planned that could soon serve the expected demand for the
canceled trips), or simply dispatches an available vehicle from a depot. In both cases,
there may be considerable delays introduced. This manual approach may result in a poor
solution. The implementation of new technologies (e.g., automatic vehicle locaters, the
global positioning system, geographical information systems, and wireless communication)
in public transit systems makes it possible to implement real-time vehicle rescheduling
algorithms at low cost.

Part I

Simple and efficient heuristic approach for the
multiple-depot vehicle scheduling problem

16

Abstract

In this paper, a fast heuristic approach is proposed for solving the multiple depot
vehicle scheduling problem (MDVSP), a well-known NP-hard problem. The heuristic is
based on a two stage procedure. The first one applies two state space reduction procedures
towards reducing the problem complexity. One procedure is based on the solutions of
the single-depot vehicle scheduling for each depot, while the other uses the solution of a
relaxed formulation of the MDVSP, in which a vehicle can finish its task sequence in a
different depot from where it started. Next, the reduced problem is solved by employing a
truncated column generation approach. The heuristic approach has been implemented in
several variants, through different combinations of the reduction procedures, and tested
on a series of benchmark problems provided by Pepin et al. (2009). The heuristic variants
found solutions with very narrow gaps (below 0.7%, on average) to best-known solutions
(PEPIN et al., 2009), decreasing the required CPU time by an overall average factor of 17
in comparison with reported results in the literature (OTSUKI; AIHARA, 2014).

Keywords: Heuristics, vehicle scheduling, multi-depots, column generation.

Note: This article has been published in the Optimization Letters. (GUEDES et
al., 2015)

17

1 Introduction

The multi-depot vehicle scheduling problem (MDVSP) is a classical problem in
operations research, arising in applications such as public transport systems, and appearing
as a subproblem in the more complex crew scheduling and management disruption problems
(HUISMAN; FRELING; WAGELMANS, 2005). The MDVSP has been shown by Bertossi,
Carraresi e Gallo (1987) to be a NP-hard problem.

Initially, the problem was solved using heuristic methods, given the complexity of
the problem and the computational power of the seventies and eighties (DESAULNIERS;
HICKMAN, 2007). Carpaneto et al. (1989) developed the first optimization method,
employing an “additive lower bounding" scheme. Bertossi, Carraresi e Gallo (1987) employed
Lagrangean relaxation, based on a multicommodity formulation. Column generation (CG)
was also used to solve the MDVSP (RIBEIRO; SOUMIS, 1994; HADJAR; MARCOTTE;
SOUMIS, 2006; OUKIL et al., 2007). Löbel (1998) combined Lagrangian relaxation and
CG to solve large instances based on data from three public transportation companies in
Germany. Kliewer, Mellouli e Suhl (2006) introduced a new vehicle scheduling network
called time-space network to solve the MDVSP. The use of this network led to a reduction
in the associated mathematical models, allowing the solution of large instances by direct
application of commercial integer programming solvers. Metaheuristics were also employed
to solve the MDVSP. Pepin et al. (2009) developed two metaheuristic algorithms based on
large neighborhood search (LNS) and tabu search, while Laurent e Hao (2009) presented
an iterated local search (ILS) heuristic. More recently, Otsuki e Aihara (2014) developed
a variable depth search framework which utilizes pruning and deepening techniques to
speedup the CPU time required to find a good solution.

Concerning the quality and efficiency of the solutions for the problem, Pepin et al.
(2009) analyzed the performance of five different approaches to solve the MDVSP, namely:
truncated branch-and-cut, Lagrangian relaxation, column generation, LNS, and tabu
search. The comparison showed that column generation is the best method when powerful
computational resources are available, while LNS is the best option in the presence of
limited resources (this result was recently ratified by Otsuki e Aihara (2014)). However,
the most important conclusion of Pepin et al. (2009)’s paper is the difficulty of these
heuristics to find good solution in a reasonable time for large instances. Given a time
limit of one hour, the methods could only find solution for instances up to 1500 tasks
and eight depots. Löbel (1998) and Kliewer, Mellouli e Suhl (2006) succeeded to solve
real-world public transit instances to optimality involving up to 20000 and 7000 tasks,
respectively. These instances, however, have a particular structure that ease their solution

Chapter 1. Introduction 18

process (PEPIN et al., 2009), being previously validated in practice.

This paper describes a simple and fast heuristic procedure to solve efficiently very
large instances of the MDVSP. The heuristics consist of two sequential steps. The first
step is based on a state space selection process intended to reduce the number of variables
in the problem. The second step employs a CG approach to solve the reduced problem to
find good solutions very quickly. The performance of variants of the proposed heuristics
were assessed on the set of testbed instances by Pepin et al. (2009). All variants found very
good solutions, with average gaps from the best-known solutions below 0.7 %, requiring,
on average, 18 times less CPU usage. The major contributions in this paper are as follows:
(i) the introduction of effective state space reduction techniques to decrease the problem
complexity; and (ii) the development of a heuristic approach, based on a truncated CG
approach, capable of solving very efficiently and effectively the MDVSP.

The document is organized as follows. In the next section, we present the problem
and the formulations related to our solution method. Section 3 describes the development
and the features of the heuristic procedure.The computational experiments and comparison
with previous results are presented in Section 4. Finally, Section 5 presents some final
remarks.

19

2 Problem

Before defining a formal mathematical formulation for the MDVSP, we introduce
some useful notation. We define the movement of empty vehicles as a deadheading trip.
We are given a set of N service trips, each trip i ∈ N starting at time sti and ending
at time eti, along with a set of K depots, in which vk vehicles are stationed. Let tij be
the deadheading transportation time between the ending point of trip i and the starting
point of trip j. An ordered pair of trips (i, j) is said to be compatible iff satisfies the
relation eti + tij ≤ stj. The MDVSP objective is to find the minimal cost fleet schedule
for executing all the service trips. A vehicle schedule is defined as a feasible sequence of
service trips to perform, using the same depot as the starting and ending point.

There are several existing mathematical formulations for this problem (PEPIN
et al., 2009). It is beyond the scope of this article to discuss them in detail. We briefly
present the set partitioning formulation, as introduced by Ribeiro e Soumis (1994). Define
the MDVSP network Gk = 〈V k, Ak〉 for each depot k ∈ K, where V k is the set of nodes,
and Ak denotes the set of arcs. Set V k = {o(k), d(k)} ∪N contains a node for each trip
i ∈ N and a pair of nodes, o(k) and d(k), representing the depot k as the initial and final
nodes of the allocated schedule of vehicle vk. Set Ak = {(o(k)×N) ∪ (N × d(k)) ∪ E} is
the set of deadheading trips, where (N × d(k)) is the set of pull-in arcs to depot k, and
E = {(i, j)|(i, j) is a compatible pair of trips, i, j ∈ N} , (o(k)×N) is the set of pull-out
arcs from depot k. Let cij be the cost of transversing arc (i, j) ∈ Ak, which is dependent
on traveling and waiting costs. A path from o(k) to d(k) represents a feasible scheduling
for a vehicle in depot k. The MDVSP network can be represented by its adjacency matrix
MDVSP|K|+|N |×|K|+|N |, with MDV SP [i][j] = cij if (i, j) ∈ Ak is a compatible pair of
trips, and MDV SP [i][j] = −1 otherwise.

Define Ωk as the set of all feasible set of paths in Gk, k ∈ K. Let p ∈ Ωk be a
feasible schedule with cost cp. For each path p ∈ Ωk, aip = 1 iff node i ∈ N is visited
in path p, aip = 0 otherwise. Using binary variable θp, with θp = 1 if schedule p is in
the solution, θp = 0 otherwise, the MDVSP can be formulated as a set partitioning type
problem as follows:

Chapter 2. Problem 20

min
∑
k∈K

∑
p∈Ωk

cpθp (2.1)

st∑
k∈K

∑
p∈Ωk

aipθp = 1 ∀i ∈ N (2.2)

∑
p∈Ωk

θp ≤ υk ∀k ∈ K (2.3)

θp ∈ {0, 1} ∀p ∈ Ωk, k ∈ K (2.4)

The objective function (2.1) seeks to minimize the total costs involved. Constraints
(2.2) assure that each trip i ∈ N is visited by only one schedule p ∈ Ωk, while constraints
(2.3) ensure that the capacity of each depot is respected. Constraints (2.4) define the
domain of the decision variable.

21

3 Method

The framework of the proposed heuristics can be described as follows:

Step 1: State space reduction of the problem by applying:

Step 1.1: k-Single Depot VSP (SDVSP), k = 1, . . . , K, based selection procedure
(Selection R1);

Step 1.2: Relaxed-MDVSP selection procedure (Selection R2);

Step 2: Solution of the reduced problem by employing a modified truncated CG procedure.

The method is basically a two-step approach. The first step is a state space
reduction method intended to reduce the set of variables to a smaller, but relevant, subset
of variables, decreasing the complexity of the instances. The second step solves the reduced
state space problem using an improved truncated column generation approach towards
accelerating the CG stabilization, including the use of an initialization procedure based on
the solutions of the |K|-SDVSPs.

3.1 State Space Reduction
In VSPs, it is natural that some trips are geographically more distant from others.

In addition to the geographical issue, there are also incompatibility issues. This means that
trips that are close geographically can be far apart due to the time in which they must
start, while others may be compatible in terms of timing, but geographically infeasible.
Several variables in the problem become too costly to be considered as viable alternatives
in an optimal or close to optimal solution, both due to distance or timing issues. As a
consequence, although the complete space is very large, the set of “relevant" variables
(with high chance of being in the final solution) is much smaller. In fact, very few variables
from the complete space state will be in the final solution. Rooted on this observation,
we developed two selection procedures, which main objective is to identify a smaller, but
representative, solution space state. Pull-in and pull-out arcs cannot be reduced, since this
led to the CG solution process to become unstable, not finding feasible solutions for some
problem instances. Next, the selection procedures developed are discussed in details.

Chapter 3. Method 22

3.1.1 k-SDVSP Based Selection Procedure (Selection R1)

The goal of this procedure is to identify “relevant" variables that are selected by
any solution of all |K|-SDVSPs. The reasoning behind this procedure is quite intuitive. If
a variable is not chosen as a solution considering |K|-SDVSPs, then it would have small
chance to be chosen as a candidate solution when considering the MDVSP. Based on this
reasoning, this selection procedure consists in efficiently solving |K| individual SDVSPs.
The arcs found in any of the solved SDVSPs configures the reduced connection graph,
represented by matrix MDVSPr, with a similar structure to matrix MDVSP, in which
MDV SPr[i][j] = MDV SP [i][j] if arc (i, j) is in the solution of any k-SDVSP, k ∈ K; and
MDV SPr[i][j] = −1, otherwise. Matrix V SPk is easily obtained from MDVSP by taking
into consideration only the pull-in and pull-out arcs to and from depot k, respectively. This
structure enables to solve each SDVSP as an assignment problem (AP) following Paixão e
Branco (1987). There are several specially designed algorithms to solve linear AP. Based
on results reported by Dell’Amico e Toth (2000), the algorithm LAPJV developed by
Jonker e Volgenant (1987) was employed to solve each SDVSP. Algorithm 4 outlines this
selection procedure. The LAPJV algorithm has a complexity of O(n2. log n). As Algorithm
4 is executed |K| times, the complexity of the selection procedure is O(|K|n2. log n).

Algorithm 1 k-SDVSP Based Selection Procedure
MDV SPr[i][j]←MDV SP [i][j], i = 1, . . . , |K|, j = 1, . . . , |K|+ |N |
MDV SPr[i][j]←MDV SP [i][j], i = |K|+ 1, . . . , |K|+ |N |, j = 1, . . . , |K|
for all k ∈ K do
Generate matrix SDVSPk from matrix MDVSP
Solution← LAPJV(SDVSPk)
if arc (i, j) ∈ Solution then
MDV SPr[i][j]←MDV SP [i][j]

end if
end for

3.1.2 Relaxed-MDVSP Selection Procedure (Selection R2)

This procedure uses the solution of a relaxed formulation of the MDVSP, relaxed-
MDVSP, as the selection criterion of the variables to be included in the reduced state
space. Basically, the Relaxed-MDVSP is a relaxation of the multicommodity formulation
of the MDVSP (Löbel, 1998), in which vehicles are allowed to end its sequence of trips
in different depots from where they started from. In order to present the formulation
of the Relaxed-MDVSP, it is necessary to define the associated underlying network. Let
G = 〈V,A〉 be a digraph, where V = 1, . . . , n is the vertex set containing a node for each
service trip i ∈ N , and A is the set of arcs representing the deadheading trips between
compatible service trips. Let G∗ = 〈V ∗, A∗〉 be the graph with nodes in V ∗ = V ∪ K,
and arcs in A∗ = A ∪ A1 ∪ A2, where A1 = {(i, j)|i ∈ K, j ∈ V } represents the set of

Chapter 3. Method 23

pull-out arcs from depots, and A2 = {(i, j)|i ∈ V, j ∈ K} the set of pull-in arcs to depots.
Introducing the decision variable xij, representing the flow in arc (i, j), the formulation
for the Relaxed-MDVSP is as follows:

min
∑

(i,j)∈A

cijxij

st ∑
j:(i,j)∈A∗

xij = 1 ∀i ∈ V (3.1)

∑
j:(k,j)∈A1

xkj ≤ vk ∀k ∈ K (3.2)

∑
i:(i,k)∈A2

xkj ≤ vk ∀k ∈ K (3.3)

∑
j:(j,i)∈A∗

xji −
∑

j:(i,j)∈A∗

xij = 0 ∀i ∈ V (3.4)

xij ≥ 0 ∀(i, j) ∈ A∗ (3.5)

The objective of this formulation is to minimize the total deadheading costs. Constraint
(3.1) ensure that each task is executed exactly once by a vehicle. Constraints (3.2) and
(3.3) limit the number of vehicles that can be used from each depot, while constraints
(3.4) are flow conservation constraints which define a multiple-path structure for each
depot. Constraint (3.5) defines the range of the decision variable. This problem can be
seen as a minimum cost flow problem. Since all capacities and demands are integral in the
Relaxed-MDVSP, the solution of this problem is composed of integer variables (WOLSEY,
1998).

The selection procedure based on the solution of the Relaxed-MDVSP is very
similar to Algorithm 4, in which the Relaxed Model is solved just once by a commercial
linear programming solver. If arc (i, j) is in the solution of the Relaxed-MDVSP then
MDV SPr[i][j] = MDV SP [i][j], MDV SPr[i][j] = −1 otherwise.

3.2 Modified Truncated Column Generation
Column generation is a well-known method to solve MDVSP (RIBEIRO; SOUMIS,

1994; OUKIL et al., 2007). As the number of paths is huge, they are generated dynamically
based on a Dantzig-Wolfe decomposition, in which the restricted master problem (RMP) is
a linear relaxation of model (2.1)-(2.4) and the subproblems are the shortest path problems
on the network Gk, k ∈ K. Dual variables πi and βk are associated with constrains (2.2)
and (2.3), respectively. At iteration t, the modified costs of arc (i, j) ∈ Ak is computed
by cij − πt

i , if i ∈ N , and cij − βt
i , if i = o(k). The RMP is solved for each iteration to a

subset of variables θp. The dual variables of the RMP are used in the subproblems to both

Chapter 3. Method 24

test the optimal solution (if the reduced costs of all variables are all non-negative) and to
generate new columns (paths found in the subproblems which reduced cost is negative).

Our CG approach toward solving the reduced MDVSP problem is based on the
truncated CG algorithm described in Pepin et al. (2009). The algorithm requires three
predefined parameters, namely Zmin, I, and Ωmin. The algorithm terminates early if the
optimal value of the RMP has not decreased by more than Zmin in the last I iterations.
Parameter Ωmin is a threshold value in the rounding of variables θp toward an integer
solution. However, we introduced some changes to this algorithm. The modified algorithm
uses two different (but similar) formulations to solve the reduced MDVSP problem. One
problem is the traditional RMP as presented by Ribeiro e Soumis (1994). The second
formulation, called the relaxed restricted master problem (RRMP), replace constraints
(2.2) by the following constraints:

∑
k∈K

∑
p∈Ωk aipθp ≥ 1 ∀i ∈ T (3.6)

keeping the same objective function and remaining constraints. These two problems have
different dual solutions. The rationale behind this change is to restrict the dual variables
in sign (LÜBBECKE; DESROSIERS, 2006). Let πi and π

′
i,∀i ∈ N be the dual variables

of constraints (2.2) and (3.6), respectively. In the standard CG procedure, the optimal
solution of the RMP is obtained when the reduced costs of the corresponding path variables
are non-negative. This cost is computed by the expression cij − πi at each iteration of the
method. Since πi can assume negative values given the equality in constraints (2.2), the
reduced cost may be positive for several iterations. As a consequence, the convergence of
the method can be rather slow, since the RMP objective function can decrease very slowly.
As π′i can only assume positive values, we expect that the reduced costs of paths p obtained
in the subproblems, cij −π

′
i, will be often disturbed when compared with the standard CG.

Better bounds are often found, since the dual solutions are more frequently changed. Since
the solution of the RRMP does not respect all constraints in the MDVSP, this model can
be used until the problem becomes "stagnated", e.g., when the subproblems were not able
to generate new columns, since all reduced costs are positive. At this stage, we change the
RRMP to the standard RMP. The solution process continues until an integer solution of
variables θp is found.

Another change introduced was in the way the columns are inserted in the master
problem. The algorithm described by (PEPIN et al., 2009) insert at most |K| columns
at each iteration of the CG procedure, depending on the sign of the reduced cost of each
k ∈ K subproblem. The master problem, with these new columns, is solved once at the
beginning of the next iteration of the CG procedure. Our approach uses the traditional
way of selecting columns to insert in the current master problem. However, it solves

Chapter 3. Method 25

the master problem right after a new column is inserted. During experimentation, we
noticed that the inclusion of several columns at each instance was generating many similar
columns, unnecessarily solving several subproblems. This problem was observed in several
CG applications (LÜBBECKE; DESROSIERS, 2006). Although this procedures solves
initially a higher number of master problems, the use of updated duals helps to stabilize
the CG, resulting in better convergence.

26

4 Computational Results

The performance of the heuristic approach was evaluated in a set of instances
available at the public site http://people.few.eur.nl/huisman/instances.htm, referred to as
Huisman’s website. The instances comprise problems sizes with 4 and 8 depots and 500,
1000, and 1500 trips, totaling 30 test problems. The number of depots (m), the number of
trips (n) and the instance id (s0, s1, s2, s3, and s4) are indicated in the name of the instance.
We have set the fixed costs of the depots pull-in and pull-out arcs high enough (a total of
10000) to allow the minimum cost flow problem determine the optimal number of vehicles
required for the whole journey, following Pepin et al. (2009). The proposed heuristics
were implemented in C++ and used CPLEX 12.5 to solve the linear programming models
involved in the CG and in selection R2. All experiments were performed on a computer
Intel Core I5-3210 processor running at 2.80 gigahertz under Linux kernel 3.12 (64 bits)
with 8 gigabytes of RAM.

CG requires an initial solution. Initially, we replicated the use of artificial variables
penalized by a big-M cost as defined in Pepin et al. (2009). However, we faced a solution
process that led to poor convergence and very high CPU times for all instances. CG
required excessive time to find solutions without artificial variables in the basic solution
of the RRMP. Although a good initial solution cannot guarantee a good convergence
process (LÜBBECKE; DESROSIERS, 2006), we decided to use the paths obtained by
Algorithm 4 as an initial set of columns to the RRMP, regardless of applying Selection R1.
Its primal optimal solution is used to compute an initial solution for the MDVSP, offering
an upper bound on the integer optimal value. Its dual solution provides a lower bound on
the RRMP.

The following notation is used to indicate the implemented algorithms: (i) MTCG
- the modified truncated column generation using the initialization routine (ii) R1 - state
space reduction of the problem by applying only selection R1; (iii) R2 - state space
reduction of the problem by applying only selection R2; (iv) R1+R2 - state space reduction
of the problem by applying selection R1 and R2. The last three algorithms are variants
of the developed heuristic and use MTCG to solve the reduced space state in the second
phase of the heuristic approach.

The settings of CG parameters were carried out during the experiments. The best
quality results were obtained with small values of Zmin and large values of I and Ωmin. The
best solutions were found with Zmin = 0. Concerning the number of minimum iterations,
MTCG obtained good solutions with I = 5. As we reduced the state space of an instance
to be solved by the CG procedure, it was necessary to increase the value of this parameter

Chapter 4. Computational Results 27

to I = 30, as a compensation factor. Regarding Ωmin, good solutions (in terms of quality
and efficiency) were obtained with this value either set to 0.8 or 0.9.

Table 1 presents a detailed comparison of the developed algorithms for the 30
instances in Huisman’s website, concerning solution quality. For each algorithm, Table 1
displays the optimal solution found and the solution gap (in %). The gaps were computed
using GAP = 100 ∗ (V−V B)

V B
, where V is the value computed by the evaluated method

and V B is the solution value informed in Huisman’s website. Average and maximum
gaps (in %) in relation to Huisman’s best available solutions (using CPLEX, truncated
branch-and-cut, or TCG) were also reported in this table. As all developed algorithm have
succeeded to find the same optimal number of vehicles as presented by Huisman’s website
for all instances, we decided to omit these values for economy’s sake. We refer to this
website for the obtained values.

MTCG obtained very similar results to the ones reported by Huisman’s site, with
gaps below 0.16% for all instances. These gaps could be decreased for some instances, if a
loss of efficiency is tolerated, since the solutions presented in Table 1 are good trade-off
values between running time and quality. Better quality solutions could be obtained
by increasing CG parameters I and Ωmin. In terms of efficiency, MTCG also presented
competitive values with the results reported by Pepin et al. (2009), on average reducing
the CPU times in around 32%. This reduction was expected, considering the use of
more modern computational resources. MTCG efficiency is justified by the different path
structures in the subproblems of the CG procedure, resulting from the introduced changes
described in Section 3.2. Given the obtained results, MTCG was considered a valid and
competitive CG implementation for the MDVSP.

Table 2 compares the optimality gap of our developed algorithms with the following
state-of-the-art solutions reported in the literature (PEPIN et al., 2009; LAURENT; HAO,
2009; OTSUKI; AIHARA, 2014) for each category instance: (i) Lagrange relaxation (LR);
(ii) Large neighborhood search combined with CG (LNS); (iii) Tabu search (TS); (iv)
Ejection chain based approach (EC); and (v) Variable depth search algorithm (VDS). The
optimality gaps were computed as follows:

Optimality GAP (in %) = 100 ∗ (V A− Vbest)
Vbest

where Vbest is the best known solution, and V A is the solution value obtained by the
algorithm being compared, say algorithm A. The values presented in this table refer to
the best solution found for each instance category.

Table 3 shows the average CPU time spent for each algorithm to find the best
solution values, comparing them with the CPU times reported by Pepin et al. (2009) and

Chapter 4. Computational Results 28

Table 1 – Solution quality comparison with Huisman’s results

Huisman MTCG Selection R1 Selection R2 Selection R1+R2

Instance Solution Solution Gap Solution Gap Solution Gap Solution Gap

m4n500s0 1289114 1289280 0.01 1297940 0.68 1300900 0.91 1296600 0.58
m4n500s1 1241618 1241970 0.03 1247940 0.51 1247170 0.45 1247960 0.51
m4n500s2 1283811 1284360 0.04 1292650 0.69 1298200 1.12 1291547 0.60
m4n500s3 1258634 1259290 0.05 1267820 0.73 1267260 0.69 1266780 0.65
m4n500s4 1317077 1317310 0.02 1323870 0.52 1325750 0.66 1322490 0.41
m4n1000s0 2516247 2516580 0.01 2539920 0.94 2539430 0.92 2534440 0.72
m4n1000s1 2413393 2414020 0.03 2436200 0.95 2443230 1.24 2427680 0.59
m4n1000s2 2452905 2454390 0.06 2467880 0.61 2463880 0.45 2461690 0.36
m4n1000s3 2490812 2491950 0.05 2506060 0.61 2507770 0.68 2503240 0.50
m4n1000s4 2519191 2523100 0.16 2525980 0.27 2524680 0.22 2524420 0.21
m4n1500s0 3830912 3832930 0.05 3855030 0.63 3861470 0.80 3853490 0.59
m4n1500s1 3559176 3560920 0.05 3571280 0.34 3570820 0.33 3570820 0.33
m4n1500s2 3649757 3650790 0.03 3676580 0.73 3669560 0.54 3662380 0.35
m4n1500s3 3406815 3408510 0.05 3436530 0.87 3428770 0.64 3435040 0.83
m4n1500s4 3567122 3567740 0.02 3591240 0.68 3588810 0.61 3589170 0.62
m8n500s0 1292411 1292590 0.01 1302270 0.76 1300370 0.62 1300810 0.65
m8n500s1 1276919 1277300 0.03 1285350 0.66 1284500 0.59 1284080 0.56
m8n500s2 1304251 1304530 0.02 1310880 0.51 1309920 0.43 1309930 0.44
m8n500s3 1277838 1278030 0.02 1286140 0.65 1284550 0.53 1284590 0.53
m8n500s4 1276010 1276210 0.02 1283890 0.62 1282690 0.52 1282760 0.53
m8n1000s0 2422112 2422410 0.01 2440000 0.74 2439170 0.70 2438330 0.67
m8n1000s1 2524293 2524640 0.01 2536730 0.49 2534950 0.42 2535240 0.43
m8n1000s2 2556313 2556320 0.00 2571010 0.57 2578960 0.89 2569170 0.50
m8n1000s3 2478393 2478390 0.00 2488730 0.42 2488060 0.39 2487920 0.38
m8n1000s4 2498388 2499840 0.06 2509520 0.45 2509960 0.46 2508890 0.42
m8n1500s0 3500160 3500580 0.01 3522880 0.65 3520360 0.58 3520520 0.58
m8n1500s1 3802650 3802480 0.00 3815900 0.35 3840640 1.00 3813860 0.29
m8n1500s2 3605094 3605680 0.02 3627980 0.63 3625970 0.58 3625950 0.58
m8n1500s3 3515802 3516100 0.01 3534960 0.54 3531310 0.44 3531480 0.45
m8n1500s4 3704953 3705220 0.01 3729960 0.67 3726310 0.58 3726490 0.58

Average 0.03 0.62 0.63 0.51
Maximum 0.16 0.95 1.24 0.83

Table 2 – Solution quality comparison of the developed algorithms with other methods

Optimality Gaps (%)

Category LR LNS TS EC VDS MTCG R1 R2 R1+R2

m4n500 3.12 2.18 10.92 1.85 1.29 0.01 0.51 0.45 0.41
m4n1000 3.88 1.41 8.31 1.22 1.05 0.01 0.27 0.45 0.21
m4n1500 5.54 2.05 10.78 1.86 1.40 0.02 0.34 0.33 0.33
m8n500 5.54 2.05 17.87 3.00 2.26 0.01 0.51 0.43 0.44

m8n1000 6.59 3.25 19.65 2.47 2.26 0.00 0.42 0.39 0.38
m8n1500 10.15 3.69 20.82 2.84 2.44 0.00 0.35 0.44 0.29

Chapter 4. Computational Results 29

Otsuki e Aihara (2014), called as VDS in the table. It is important to notice that this
efficiency comparison with the CPU times presented by Pepin et al. (2009) and Otsuki e
Aihara (2014) should be viewed with extreme cautions, since we performed the experiments
six years after the former research work, and using different experimental conditions of both
studies. Although we employed faster hardware and softwares, the direct implementation
of the truncated CG presented in Pepin et al. (2009), using C++ and CPLEX 12.5, took
excessive CPU time. In order to obtain comparable CPU usage we needed to implement
our MTCG with the initialization process described above. The CPU times reported by
Pepin et al. (2009) were obtained using GENCOL, a computer program specially designed
to solve a broad class of routing and scheduling problems. Such softwares employ special
routines to substantially reduce the CPU time to solve a problem. However, the majority
of these softwares are not of public domain, with a cost beyond the budget of the average
transport company in development countries. As a consequence, we would like to point out
that a precise comparison can only be carried out among our developed algorithms, having
the same data structure and the same CPLEX parametrization. Only rough comparisons
can be made using Pepin et al. (2009) and Otsuki e Aihara (2014)’s results.

Table 3 – Solution efficiency comparison of the developed algorithms with other methods

Average CPU Time (s)

Category Pepin et al.(2009) VDS MTCG R1 R2 R1+R2

m4n500 77 71 62 3 4 4
m4n1000 651 612 423 7 22 28
m4n1500 2203 2012 868 56 86 79
m8n500 119 109 175 6 13 8
m8n1000 857 787 1380 73 103 97
m8n1500 3085 2800 1813 182 208 199

Tables 1, 2, and 3 show that the variants of the developed heuristics, in general,
offer good quality solutions (some with very tight gaps) in comparison with other methods,
very efficiently. Table 2 shows that our developed algorithms present the best solution
quality among the compared methods, overcoming mathematical programming methods
such as LR, metaheuristic methods such as TNS and EC, and local search methods such
as LNS and VDS. As expected, the solution quality improved as the reduced state space
is enlarged by the combination of selection procedures. An opposite behavior is observed
concerning the efficiency of the solution, characterizing a trade-off between CPU time
and the optimal value of the objective function. Algorithms R1 and R2 presented similar
average solution gaps for the tested instances (around 0.62%). However, R2 presented a
slightly higher maximum gap. Variant R1+R2 obtained the best objective function values
among the reduction state space based algorithms, with average and maximum gaps of
0.51% and 0.83%, respectively. All three variants were extremely fast in comparison with
MTCG. R1 is roughly 21 times faster, on average, than MTCG; R2 is 13 time faster, on
average, than MTCG; while variant R1+R2 is 14 times faster, on average, than MTCG.

Chapter 4. Computational Results 30

Variants R1, R2, and R1+R2 were 21, 16, and 17 times quicker, on average, than the
CPU times reported by Pepin et al. (2009); and 19, 14, and 15 times quicker, on average,
when compared with Otsuki e Aihara (2014)’s CPU times. Moreover, this latter study
claimed that VDS shows the best short-term performance, since this method obtained a
good feasible solution in around 300s CPU time for category m4n1500. Variants R1, R2,
and R1+R2 obtained, for the same category, near best available solutions in one quarter
of this time, on average, making our developed heuristic framework a very competitive
short-term performance method for solving the MDVSP.

We could not define a pattern in the CPU times reduction based on our experiments.
For instance, variant R2 was on average quicker to solve instances with 4 depots, while
variant R1+R2 presented an opposite behavior. The best CPU times reductions were
obtained for instances with 4 depots and 1000 trips. Further experimentation will be
required to explain both behaviors.

Overall, the developed heuristic approach offered very competitive algorithms to
solve the MDVSP, specially variants R1 and R1+R2. Both variants obtained very good
solutions, with maximum gaps below 1% with very low CPU usage in comparison to
previous reported results (PEPIN et al., 2009; OTSUKI; AIHARA, 2014). Variant R1+R2
offered the best compromise solutions in terms of quality and efficiency. This variant
can be a good option in contexts and where solution quality is an important criterion.
However, variant R1 was a quite good surprise, finding best solution values with reasonable
average solution gaps (0.63%), but requiring the minimum CPU time of all variants. We
recommend its application in real-time transportation logistics environments, where the
MDVSP is solved several times as a subproblem, and solution quality is an important,
but no essential criterion. Variant R2 was clearly dominated by the remaining variants.
Nevertheless, the final selection among these three variants is case dependent, and it
will depend on further experimentation, with a special attention on the settings of CG
parameters.

31

5 Conclusion

In this paper, we presented a two-phase heuristic to solve the MDVSP. First, the
heuristics employs a combination of procedures to select, from the whole feasible solution
space, a good set of arcs to compose the solution of the problem. Each procedure is based
on the following selection criteria: (i) the set of paths found in the solution of |K|-SDVSPs;
and (ii) the set of paths found in the solution of a relaxed MDVSP formulation, where
the sequence of trips carried out by a vehicle can start and finish in different depots.
The selected set of arcs is then solved by using a modified truncated CG algorithm. The
developed approach led to very competitive method to solve the MDVSP.

Different combinations of the selection procedures were tested, resulting in three
different variants. On the one hand, variant R1 achieved narrow gaps to best-known
solutions (0.62% on average) with exceptional running times (roughly 34 times faster, on
average, than previous reported results). On the other hand, the variant R1+R2 offered
the best trade-off between solution quality and running times. It was, on average, 16 times
faster than previous reported results (PEPIN et al., 2009; OTSUKI; AIHARA, 2014),
obtaining solutions with an average gap of around 0.5%.

Future research is directed toward using the heuristic method to develop novel
approaches for solving both the real time vehicle recovery scheduling problem and the
integrated crew and VSP. In both problems, the MDVSP needs to be solved several times
as a subproblem. Moreover, we intend to alter the developed method to consider the
time-space network (KLIEWER; MELLOULI; SUHL, 2006) as the underlying vehicle
scheduling network.

Part II

Column generation based heuristic framework
for the multiple-depot vehicle type scheduling

problem

33

Abstract

The multiple-depot vehicle-type scheduling problem (MDVTSP) is an extension of
the classic multiple-depot vehicle scheduling problem (MDVSP), where heterogeneous fleet
is considered. Although several mathematical formulations and solution methods have been
developed for the MDVSP, the MDVTSP is still relatively unexplored. Large instances
of the MDVTSP (involving thousands of trips and several depots and vehicle types) are
still difficult to solve in a reasonable time. We introduce a heuristic framework, combining
time-space network, truncated column generation (TCG) and state space reduction, to
solve large instances of the MDVTSP. Extensive testing was carried out using random
generated instances, in which a peak demand distribution was defined based on real-world
data from public transportation systems in Brazil. Furthermore, experiments were carried
out with a real instance from a Brazilian city. The framework has been implemented in
several algorithm variants, combining different developed preprocessing procedures, such as
state space reduction and initial solutions for the TCG. Computational results show that
all developed algorithms obtained very good performances both in quality and efficiency.
The best solutions, considering simultaneously quality and efficiency, were obtained in the
heuristics involving state space reduction.

Keywords: bus scheduling, heterogeneous fleet, column generation, time-space
network, state space reduction.

Note: This article has been published in the Computers & Industrial Engineering.
(GUEDES; BORENSTEIN, 2015)

34

1 Introduction

The multiple depot vehicle-type scheduling problem (MDVTSP) consists in finding
the minimum cost assignment of a set of vehicles with different technical specifications
from several depots to a set of trips previously defined. The MDVTSP can be seen
as a generalization of the classic multiple-depot vehicle scheduling problem (MDVSP),
where heterogeneous fleet is considered. The MDVTSP arises in a wide array of practical
applications. Instances of MDVTSP occur in public transportation, maritime, rail, or air
transportion. Because of our initial motivation, which arose from bus scheduling, in this
paper special contextual reference is made to the MDVTSP in public transit systems,
where a bad scheduling planning results in the increase of operational and fixed costs.

Although the literature describes several different approaches to solve the MDVSP
(PEPIN et al., 2009), the MDVTSP has not received the same attention in the literature
than its counterpart (CEDER, 2011b). This is quite a surprise, since heterogeneous fleet
is a common characteristic in transit networks of most large size cities around the world
(ROMAN, 2012). Nevertheless, some solution methods were proposed in the literature to
solve the MDVTSP, mainly based on heuristics (HASSOLD; CEDER, 2014). However, due
to the huge size of the underlying vehicle scheduling network, they either solved limited
size problems requiring very large amount of CPU time, or mischaracterized the problem,
relaxing some of the related constraints. These limitations are restricting their application
to real world transportation systems. The goal of this research is to address this gap in
the literature.

This paper describes a heuristic framework based on column generation (CG) to
solve very large instances of the MDVTSP with a good compromise between efficiency
and quality of the solution. The whole heuristic framework consists of four sequential
steps. In the first step, the vehicle underlying network is generated both as a time space
network (TSN) and as a connection network. The second step is based on a state space
reduction process intended to reduce the number of variables in the problem. In the third
step, initial solutions for the next phase are generated, based on the developed reduction
process of the second phase. Finally, the fourth step employs a CG approach to solve the
original or the reduced problem to find near optimal solutions. Several algorithm variants
were tested, combining these steps in a plug-and-play approach. The performance of these
variants was assessed on randomly generated instances up to 3000 trips, 32 depots, and
8 vehicle types. Computational comparisons showed that some of the variants achieved
very good results, requiring very competitive CPU time, to solve all tested instances. The
developed algorithms constitute a viable alternative to solve efficiently the MDVTSP.

Chapter 1. Introduction 35

The contributions of this paper are as follows: (i) to introduce an efficient and
effective state space reduction technique to decrease the MDVTSP complexity; (iii) to
develop a costomized truncated CG approach towards solving the MDVTSP with efficency;
(iii) to develop an integrated heuristic framework, combining several modeling and solution
techniques, to accelerate the solution process; and (iv) to systematically analyze the
performance of the developed algorithms that compose the heuristic framework.

The paper is organized as follows. Section 2 reviews the literature on the MDVTSP.
Section 3 presents the develped mathematical formulation of the problem. The developed
branch and price framework for solving the problem is presented in Section 5. In Section
5.5, a reduced state space procedure is proposed to further reduce computation times.
Section 6 describes the computational experiments carried out to evaluate the performance
of the algorithms. Finally, a summary of the results, and areas of future research are
provided in Section 7.

36

2 Literature Review

The literature on MDVTSP is still scarce, possibly reflecting the difficulty of
solving the problem. In the MDVTSP, the number of possible vehicles routes, considering
different depots and vehicle types, results in a combinatorial complexity for the problem.
The MDVTSP was modeled and solved using similar methods than the ones developed for
the MDVSP. Gintner, Kliewer e Suhl (2005) and Kliewer, Mellouli e Suhl (2006) developed
heuristic methods to solve the MDVTSP, which main idea was initially to solve simplified
models for each depot, and then search for commons chains in the solutions. If a common
chain is included in a vehicle scheduling problem (SDVSP) solution, the authors classify
this as a stable chain and assume that may occur in the global optimal solution. The
stable chains were treated as the only trips, reducing the complexity of the MDVSP, in a
direct application of standard optimization software. However, significant simplifications
were made, mischaracterizing the problem as the classic MDVTSP, as follows: (i) one-
depot-per-route requirement was relaxed, allowing a vehicle to start and finish its sequence
of tasks in different depots; and (ii) each vehicle type was assigned to only one depot.
With these simplifications, the authors solved instances up to 7068 trips and 5 depots,
requiring 3 hours of CPU time. van den Heuvel, van den Akker e Niekerk (2008) extended
Gintner, Kliewer e Suhl (2005)’s formulation, explicitly adding the vehicle-type in the new
formulation. In addition, passenger demand was also considered. However, to obtain a
solution in a reasonable time, the authors considered only one depot and allowed more
than one vehicle of the same type to perform a trip.

Some authors used alternative approaches to model and solve the MDVTSP.
Laurent e Hao (2009) considered the heterogeneous fleet within the MDVSP, formulated
as a graph coloring problem. An iterative tabu search method was employed to minimize
the required number of vehicles. They tested the developed method in seven real instances
with eight vehicle types. Good results in terms of solution quality and low computational
times were obtained in the experiments. Oughalime et al. (2009) presented theoretical
efforts to perform the integration of vehicle scheduling with heterogeneous fleet and crew
scheduling. The authors proposed a sequential modeling that uses integer programming
to solve the vehicle scheduling problem and a goal programming model for the crew
scheduling. Although the research is constructed using a real example, no experiments
were presented to validate the proposed model. Ramos, Reis e Pedrosa (2011) modeled
the MDVTSP as an asymmetric traveling salesman problem (ATSP). They proposed an
ant colony heuristic method to solve the problem. However, as the ATSP is a well-known
NP-complete problem, the developed approach presented some difficulties in finding good
solutions in a reasonable time.

Chapter 2. Literature Review 37

Ceder (2011b) used an innovative approach to solve the integration of the vehicle
scheduling considering heterogeneous fleet, called Deficit-Function Theory (DFT). As
defined in (CEDER, 2011b), the DFT is a heuristic method that uses the deficient number
of vehicles in a particular terminal in a multi-terminal transport public system to solve the
problem. The MDVTSP is formulated as a minimum cost network flow and solved using a
heuristic procedure that allows flexible departure times of trips within a tolerance interval,
following rules expressed in the DFT. The method was used in two small examples. Ceder
(2011a) improved his heuristic framework, applying it to several sets of real data from the
transit system of Auckland, New Zealand. Recently, (HASSOLD; CEDER, 2014) proposed
a multi-objective model for the vehicle scheduling and timetabling generation integrated
problem. The model allowed to stipulate the use of a particular vehicle type for a trip or
to allow for a substitution either by a larger vehicle or a combination of smaller vehicles
with the same or higher total capacity. Moreover, a variant in the method made it possible
to construct sub-optimal timetables given a reduction in the vehicle scheduling cost. It
was demonstrated that a substitution of vehicles is beneficial and can lead to significant
cost reductions. However, the method can only be applied to individual bus lines, not
considering interconnected lines or a set of lines, and therefore with limited applicability
to the MDVTSP

Although the literature has interesting and useful ideas towards the modeling and
solution of the MDVTSP, most of the available algorithms are computationally intensive,
requiring thousands of CPU seconds to solve real-world scheduling instances, involving
thousands of trips, and dozens of vehicles and depots. Moreover, the quickest developed
approaches relax some of the MDVTSP constraints and requisites, making it easier to find
solutions. However, there is either limited notion of the quality of the obtained solutions,
or their behavior in practical applications in real situations. As a consequence, it is unclear
whether they can be directly applied to large instances of the classic MDVTSP problem.

38

3 Problem Definition and Formulation

The MDVTSP can be defined as follows. Given a set of vehicle types with
significantly different attributes; a set of depots with their vehicle type capacity; a set
of trips with fixed peak demand, and starting and ending times; given the travel times
between all pair of locations, find a feasible minimum-cost scheduling in which (i) each
vehicle performs a feasible sequence of trips, starting and ending in the same depot; (ii)
the peak demand of each trip is always attended by a vehicle; and (iii) the capacity of
each depot for each vehicle type is respected. Before defining a mathematical formulation
for the problem, we first introduce the vehicle scheduling network.

3.1 Vehicle Scheduling Network
In order to represent the scheduling underlying network, a time-space network

(TSN) structure was chosen rather than the more traditional connection network (RIBEIRO;
SOUMIS, 1994). On a TSN, the nodes represent a specific location in time and space, and
each arc corresponds to a transition in time and possibly space. TSN was first proposed
for routing problems in air scheduling (HANE et al., 1995), due to its ease in modeling
possible connections between flights. Kliewer, Mellouli e Suhl (2006) introduced TSN in
the context of vehicles scheduling problems.

The TSN formal definition needs some notation. We are given a set of ST service
trips. Let S be the set of terminals or stations; K be the set of depots and T the planning
time horizon. Each trip i ∈ ST starts at time sti ∈ T and in terminal ssi ∈ S, and ends
at time eti ∈ T and in terminal esi ∈ S. Let o(k) ∈ S and d(k) ∈ S denote the same
depot k ∈ K, where o(k) means the depot as a vehicle’ starting point, and d(k) as its
terminating point. Define N = {(l, t) | l ∈ S, t ∈ T} as the set of nodes in the TSN. Arcs
are defined formally as follows.

Let Ase = {(is, ie) ∈ N × N | is = (ssi, sti), ie = (esi, eti)} be the set of service
trips, in which vehicles are transporting passengers.

Let Await = {(ie, js) ∈ N × N | ie = (esi, eti), js = (ssj, stj), esi = ssj, stj > eti}
be the set of waiting trips, representing the transitions between the end of a trip i,
represented by node ie ∈ nN and the beginning of trip j, represented by node js ∈ N . A
vehicle assigned to a waiting trip is stopped in a terminal.

Let Adh = {(ie, js) ∈ N×N | ie = (esi, eti), js = (ssj, stj), esi 6= ssj, stj ≥ eti+γij}
be the set of deadheading arcs, where γij is the transportation time between the ending

Chapter 3. Problem Definition and Formulation 39

terminal of trip i and the starting terminal of trip j. Trips i and j are called a compatible
pair of trips, since the same vehicle can be assigned to both trips. A deadheading trip
is a movement of an empty vehicle to a destination without picking up or dropping off
passengers.

Let Apout = {(n1, is) ∈ {o(k)}×N |n1 = (o(k), t), is = (ssi, sti), k ∈ K} be the set
of pull-out arcs that represent the deadheading trips from depot to some terminal in order to
finish a sequence of service trips, while set Apin = {(ie, n2) ∈ N×{d(k)}|ie = (esi, eti), n2 =
(d(k), t), k ∈ K} denotes the set of pull-in arcs that represent the deadheading trips from
some terminal to depot, starting a sequence of service trips by a vehicle.

Let Ac = {(n1, n2) ∈ N × N |n1 = (o(k), t1), n2 = (d(k), t2), k ∈ K, t2 > t1} be
the set of circulation arcs, representing the flow from the last to the first depot node.
This arc is an artificial one, and serves the purpose of counting the number of performed
vehicles blocks.

The TSN can be defined as a directed graph (N,A), with nodes N as previously
defined, and arcs A = Ase∪Await∪Adh∪Apin∪Apout∪Ac. A vehicle route is a sequence of
trips in which all consecutive pairs of trips are compatible. It can be represented in a TSN as
a sequence of arcs a1, a2, . . . , an−1, an, ai ∈ A,∀i, in which a1 ∈ Apin, an−1 ∈ Apout, an ∈ Ac.
The main advantage of the TSN is to offer additional information in comparison with
the connection network that allows to reduce substantially the number of deadheading
arcs (STEINZEN et al., 2010). Kliewer, Mellouli e Suhl (2006) and van den Heuvel, van
den Akker e Niekerk (2008) developed specially design procedures to reduce the size of
the TSN, taking advantage of the explicit representation of time in this network. We
refer to these two papers for a detailed description of these efficient reduction processes.
If the problem contains m terminals and n trips, the number of deadheading arcs on a
TSN becomes O

(
mn

)
, in comparison to O

(
n2
)
of the connection network, with n >> m.

TSN is especially relevant when the number of terminals involved in the problem is low
compared to the number of trips.

3.2 Mathematical Formulation
Given a TSN, Gkf = (Nkf , Akf), for each depot k ∈ K and for each vehicle

type f ∈ F , the MDVTSP can be formulated as an integer linear programing model.
In the MDVTSP context, an arc in the deadheading set should respect not only time
compatibilities, but the capacity of a vehicle, e.g., the peak demand of trips i and j must be
smaller than the capacity of the vehicle assigned to perform both trips. We first introduce
the parameters. Let ckf

ij be the cost of a vehicle type f from depot k being assigned to arc
(i, j) ∈ Akf . Let di be the peak demand of trip i. Let qf be the capacity of vehicle f . Let
vk

f be the number of vehicles type f in depot k. We now introduce the decision variables.

Chapter 3. Problem Definition and Formulation 40

Let xkf
ij be a binary decision variable, with xkf

ij = 1 if a vehicle type f from depot k is
assigned to trip j directly after trip i, and xkf

ij = 0 otherwise. The MDVTSP is formulated
as follows:

min
∑
k∈K

∑
f∈F

∑
(i,j)∈Akf

cf
ijx

kf
ij (3.1)

s.t.∑
f∈F

∑
k∈K

∑
j∈(i,j)∈Akf

qfx
kf
ij ≥ di ∀i ∈ Akf

se (3.2)

∑
f∈F

∑
k∈K

∑
j∈(i,j)∈Akf

xkf
ij = 1 ∀i ∈ Akf

se (3.3)

∑
j:(o(k),j)∈Akf

xkf
i,j ≤ vk

f ∀k ∈ K, f ∈ F (3.4)

∑
j:(j,i)∈Akf

xkf
ji −

∑
j:(i,j)∈Akf

xkf
ij = 0 ∀i ∈ Lkf ,∀k ∈ K, f ∈ F (3.5)

xkf
ij ∈ {0, 1} ∀(i, j) ∈ Akf , k ∈ K, f ∈ F. (3.6)

where Lkf = {(l, t)|l ∈ S − {o(k)}, {d(k)}, t ∈ T}. Clearly, Lkf ⊂ Nkf .

The objective function (4.1) minimizes the total operational costs. Constraints
(4.2) ensure that the peak demand of every trip is respected. The constraints (4.3) ensure
that each trip is executed exactly once for a vehicle. Constraints (4.4) limit the number of
vehicles that can be used from every depot, while (4.5) are flow conservation constraints.
The domain of the decision variables is defined by constraints (4.6).

If we consider f = 1, and remove constraints (4.2), we obtain the classic multi-
commodity formulation of the MDVSP. Bertossi, Carraresi e Gallo (1987) proved that the
MDVSP is a NP-hard problem. Therefore, the MDVTSP is also NP-hard.

41

4 Algorithms

In this section, we propose CG based algorithms for solving the MDVTSP. Firstly,
we describe a branch-and-price framework, using a truncated CG algorithm. Next, we
introduce a state space reduction preprocessing routine designed to speedup the solution
process for medium- and large-sized instances.

4.1 Truncated Column Generation
In the MDVTSP, the number of possible vehicles routes, considering the different

depots and vehicle types, results in a very large number of variables and constraints. The
reformulation of the problem and the use of Dantzig-Wolfe decomposition can effectively
help in solving the MDVTSP with a good compromise between efficiency and solution
quality.

Rather than developing a method for generating a specialized CG algorithm based
on the TSN, we developed a procedure to convert a TSN into a connection network, taking
advantage of the CG approaches described in previous research works for the MDVSP
(RIBEIRO; SOUMIS, 1994; PEPIN et al., 2009). A connection network for the MDVTSP
is an acyclic digraph (V kf , Ekf), k ∈ K, f ∈ F with nodes V kf = {o(k), d(k)} ∪ ST , and
arcs Ekf = {Ef ∪ (o(k) × ST) ∪ (ST × d(k)}, where Ef = {(i, j)|stj ≥ eti + γij, qf ≥
di, qf ≥ dj, i, j ∈ ST} is the set of deadheading trips, (o(k) × ST) is the set of pull-out
arcs from depot k, and (ST × d(k)) is the set of pull-in arcs to depot k. Algorithm 2
describes the developed routine.

A connection network for the MDVTSP can be represented by its adjacent matrix
MDVTSPkf , a matrix of costs (n+m)× (n+m) where n is the number of trips and m is
the number of depots.MDV TSP kf [i][j] = ckf

ij , if (i, j) ∈ Ekf , andMDV TSP kf [i][j] = −1
otherwise.

4.1.1 Primal Problem

The MDVTSP can also be formulated as a set partitioning problem, based on the
formulation of (RIBEIRO; SOUMIS, 1994) for the MDVSP. Let Gkf = (V kf , Ekf) be a
connection network corresponding to a depot k ∈ K and a vehicle type f ∈ F . Let Ωkf be
the set of all possible paths carried out by vehicle f ∈ F from o(k) to d(k), k ∈ K. Let p
be a vehicle route or path in the vehicle scheduling network. Let cp the cost of executing
route p. Let aip = 1 if trip i ∈ V kf is covered by route p, and aip = 0 otherwise. Let binary

Chapter 4. Algorithms 42

Algorithm 2 TSN to connection network conversion routine
for all k ∈ K do

for all f ∈ F do
Set V kf ← ∅, Ekf ← ∅
for all ((ie, js) ∈ Akf

wait ∪A
kf
dh) do

V kf ← V kf ∪ {i} ∪ {j}
Ekf ← Ekf ∪ {(i, j)}

end for
for all ((n, is) ∈ Akf

pout|n = (o(k), t)) do
if (o(k) 6∈ V kf) then
V kf ← V k ∪ {o(k)}

end if
Ekf ← Ekf ∪ {(o(k), i)}

end for
for all ((ie, n) ∈ Akf

pin|n = (d(k), t)) do
if (d(k) 6∈ V kf) then
V kf ← V kf ∪ {d(k)}

end if
Ekf ← Ekf ∪ {(i, d(k)}

end for
end for

end for

variable θp be 1 if route p is selected in the solution, and θp = 0 otherwise. The path-based
formulation for the MDVTSP is as follows:

min
∑
f∈F

∑
k∈K

∑
p∈Ωkf

cpθp (4.1)

s.t.∑
f∈F

∑
k∈K

∑
p∈Ωkf

aipθp = 1, ∀i ∈ V kf (4.2)

∑
f∈F

∑
k∈K

∑
p∈Ωkf

qfaipθp ≥ di ∀i ∈ V kf (4.3)

∑
p∈Ωkf

θp ≤ vkf , ∀k ∈ K, ∀f ∈ F (4.4)

θp ∈ {0, 1}, ∀p ∈ Ωkf (4.5)

Objective function (5.1) aims to minimize the total operational costs. Constraints
(5.2) ensure that each trip is performed by exactly one vehicle. Constraint (5.3) guarantee
that the peak demand of each trip is satisfied, while constraints (5.4) assure that the depot
capacity for each vehicle type is respected.

The linear relaxation of model (4.1) – (4.6) is solved through column generation
by repeatedly solving (i) a restricted master problem (RMP) with a subset of columns
and (ii) a pricing subproblem to produce columns with negative reduced cost. Even if the
linear relaxation of the model is solved to optimality by CG, it is not guaranteed that the
resulting optimal solution is integral. We included one step for rounding the solution (the
algorithm is better explained at Section 5.5.3).

Chapter 4. Algorithms 43

4.1.2 Pricing Problem

Let dual variables π and σ correspond to constraints (4.3) and (4.4), respectively.
Based on these dual variables, we have the following pricing problem:

min − σkf +
∑

(i,j)∈Ekf

(cf
ij − πj)xkf

ij (4.6)

s.t.∑
k∈K

∑
f∈F

∑
j∈(i,j)∈Ekf

qfx
kf
ij ≥ di ∀i ∈ V kf (4.7)

∑
j:(j,i)∈Ekf

xkf
ji −

∑
j:(i,j)∈Ek

xkf
ij = 0 ∀i ∈ (V kf − {o(k), d(k)}),∀k ∈ K, f ∈ F (4.8)

xkf
ij ∈ {0, 1} ∀(i, j) ∈ Ekf , k ∈ K, f ∈ F (4.9)

The pricing problem consists of finding the shortest path from origin depot o(k)
to same destination depot d(k), where the peak demand of each trip cannot extrapolate
the capacity of vehicle f ∈ F , characterizing the pricing problem as a resource-constrained
shortest path problem (RCSP) due to constraints (4.7). The RCSP is a well-known NP-
hard problem (MEHLHORN; ZIEGELMANN, 2000; BEASLEY; CHRISTOFIDES, 1989).
Therefore, the pricing subproblem is also NP-hard, compromising the efficiency of the
decomposition. A possible solution is also relax constraints (4.2). Let dual variable γ
correspond to constraints (4.2). The new pricing problem can be formulated as follows:

min − σkf +
∑

(i,j)∈Akf

(cf
ij − πj − qfγj)xkf

ij (4.10)

s.t.

(5.7)− (5.8)

The resulting pricing consists of the shortest path problem from origin depot o(k)
to same destination depot d(k) for vehicle type f ∈ F , an easy problem to be solved.

4.1.3 Modified Truncated Column Generation Algorithm

The developed truncated CG with variable fixing was based in the algorithm
developed by (PEPIN et al., 2009). This algorithm requires three predefined parameters,
namely Zmin, I, and Ωmin. The algorithm terminates early if the optimal value of the
RMP has not decreased by more than Zmin in the last I iterations, in an attempt to avoid
the well-known tailing off effect (LÜBBECKE; DESROSIERS, 2006). Parameter Ωmin is
a threshold value in the rounding of variables θp. However, we introduced two changes

Chapter 4. Algorithms 44

Algorithm 3 Modified Truncated Column Generation

Step 1 (Initialization): Set parameters Zmin, Imin, Num_Stabilized and θmin. Set n ← 1, n0 ← 1 and
stabilized← 0. Add artificial variables δi in constraints (4.1) and (4.3) and with coefficients big-M.

Step 2 (Restricted Master Problem): Solve the RPM, obtaining a primal solution (θn, δn), and cost ZRMP
n .

Step 3 (Stabilization Test): If (stabilized > Num_Stabilized) then go to step 6; otherwise go to step 4.

Step 4 (Early Termination Test): If (n−n0 > Imin) and (ZRMP
n0 −ZRMP

n < Zmin) then go to step 6; otherwise
go to step 5.

Step 5 (Pricing Solution): For each k ∈ K and for each f ∈ F do

Step 5.1 Update the costs of arcs Akf using dual variables (πn, σn, γn). Solve a shortest path in graph Gkf

using the SLF algorithm (BERTSEKAS, 1993).

Step 5.2 If the subproblem presents a negative reduced cost then set Ωkf
n+1 ← Ωkf

n ∪ Skf
n , where Skf

n is
the solution of the subproblem, n ← n + 1. Solve the RPM with the updated set of columns. If
ZRMP

n−1 − ZRMP
n = 0 then stabilized← stabilized+ 1 else stabilized← 0. Go to step 3.

Step 6 (Master Problem Feasibility Test): If (δn 6= 0) STOP; else go to step 7.

Step 7 (Integrality): If (θn ∈ {0, 1}) then the solution was found. Return θn. Stop.

Step 8 (Variable Fixing): Perform a rounding of the no-integer variables in θn. If (θp,n ≥ θmin) set θp ← 1. If
no such variables exist set the highest value in θn as one. Set n← n+ 1 and n0 ← n. Go to Step 2.

to this algorithm based on initial experimentation, customizing it to the MDVTSP. We
introduced a fourth parameter, Num_Stabilized < I. This parameter is used to stop
generating columns when the objective function of the RPM remains unaltered in the last
Num_Stabilized iterations and perform rounding to perturb the solution. This change
was necessary, since an acceptable value of I was much higher (around 30) than the
obtained by Pepin et al. (2009) (around 5) for solving the MDVSP. The second change
was in the way the columns are inserted in the RMP. The algorithm described by (PEPIN
et al., 2009) inserts at most |K| columns at each iteration of the CG procedure, depending
on the sign of the reduced cost of each k ∈ K subproblem. The master problem, with these
new columns, is solved once at the beginning of the next iteration of the CG procedure.
Our approach uses the traditional way of selecting columns to insert in the current master
problem. However, it solves the master problem right after a new column is inserted. The
main rationale behind this idea is to select better columns to insert in the current master
problem each time a subproblem is solved, always using updated duals. Although this
procedures solves initially a higher number of master problems, the use of updated duals
accelerates the convergence of the CG procedure, avoiding the generation of many similar
columns.

The overall modified truncated CG with variable fixing approach is outlined as
follows.

Step 1 (Vehicle Scheduling Network): Generate the time-space network.

Chapter 4. Algorithms 45

Step 2 (TSN Reduction): Reduce the TSN by applying the reductions suggested by
Kliewer, Mellouli e Suhl (2006).

Step 3 (Network Concersion): Convert the time space network to a connection network,
using Algorithm 2.

Step 4 (Column Generation): Solve the problem using Algorithm 7

4.2 Accelerating Heuristic for Large-Scale Instances
The branch-and-price algorithm has been successful in obtaining good quality so-

lutions in many combinatorial optimization problems (BARNHART et al., 1998). However,
this approach still presents some difficulties in solving large instances. Moreover, CG has
often presented some difficulties in obtaining solutions with efficiency, even for medium size
instances, due to its well-know stabilization problems (OUKIL et al., 2007). A CG-based
heuristic is then developed in an attempt to increase simultaneously both shortcomings of
the branch and price framework. First we propose a state space reduction procedure to
decrease the required number of variable to be solved by the column generation algorithm.
Next, we propose a routine to offer better initial solutions than the traditional use of
big-M .

In vehicle scheduling problems, it is natural that several trips are very expensive to
be carried out, since trips that are close geographically can be far apart due to times in which
they must start, while others may be compatible in terms of timing, but geographically
infeasible. Several variables in the problem become too costly to be considered as viable
alternatives in an optimal or close to optimal solution, both due to distance or timing
issues. As a consequence, although the complete solution space is very large, the set of
variables with high chance of being in the final solution is much smaller. In fact, a large
number of variables has small chances of being considered as good options to be included
in the final solution. Based on this observation, we developed a procedure that reduce the
complete state space to a simpler, more manageable set, focusing attention on a selected
portion of the complete state space.

The goal of this procedure is to identify "relevant" variables that are selected
by any solution of all |F | × |K| SDVSPs. The reasoning behind this procedure is quite
intuitive. If a variable is not chosen as a solution considering |F | × |K| SDVSPs, then
it would have small chance to be chosen as a candidate solution when considering the
whole problem. This procedure consists in efficiently solving |F | × |K| individual SDVSPs.
The arcs found in any of the solved SDVSPs configures a reduced connection graph,
represented by matrix MDVTSPkf

r , with a similar structure to matrix MDV TSP kf ,
in which MDV TSP kf

r [i][j] = MDV TSP kf [i][j] if arc (i, j) is in the solution of any

Chapter 4. Algorithms 46

SDV SP kf , k ∈ K, f ∈ F ; and MDV TSP kf
r [i][j] = −1, otherwise. It should be noticed

that pull-in and pull-out arcs cannot be reduced by introducing further severe instabilities
in the CG solution process. Each SDVSP problem is structured by matrix VSPfk, easily
obtained from MDVTSPkf by taking into consideration only the pull-in and pull-out trips
to and from depot k, respectively, and vehicle type f . Each SDVSP can be modeled as an
assignment problem (AP) following Paixão e Branco (1987). There are several algorithms
specially designed to solve linear AP. Based on results reported by Dell’Amico e Toth
(2000), the algorithm LAPJV (JONKER; VOLGENANT, 1987) was employed to solve
each SDVSP. The selection procedure can be outlined as follows.

Algorithm 4 State space reduction procedure
MDV TSP kf

r [i][j]←MDV TSP kf [i][j], i = 1, . . . , |K|, j = 1, . . . , |N |+ |K|
MDV TSP kf

r [i][j]←MDV TSP kf [i][j], i = |K|+ 1, . . . , |N |+ |K|, j = 1, . . . , |K|
for all k ∈ K do

for all f ∈ F do
Generate matrix VSPkf from MDVTSPkf

Solution← LAPJV(V SPkf)
if arc (i, j) ∈ Solution then
MDV TSP kf

r [i][j]←MDV TSP kf [i][j]
end if

end for
end for

The LAPJV algorithm has a complexity of O(n2. log n). As algorithm 4 is executed
|F | × |K| times, the complexity of the selection procedure is O(|F | × |K|n2. log n), where
n = 2|K|.

Column generation requires an initial solution. Initially, we replicated the use of
artificial variable penalized by a big-M cost (see Algorithm 7) as defined in Pepin et al.
(2009). Although a good initial solution cannot guarantee a good convergence process
(LÜBBECKE; DESROSIERS, 2006), we decided to use the paths obtained by Algorithm
4 as an initial set of columns to the RMP. Its primal optimal solution is used to compute
an initial solution for the MDVTSP, offering an upper bound on the integer optimal value.
Its dual solution provides a lower bound on the RMP.

The overall CG-based heuristic framework for solving the MDVTSP is outlined
as follows. Steps 1, 2, and 3 are the same as the corresponding steps in the modified
truncated column generation with variable fixing approach.

Step 4 (State Space Reduction): Generate matrices MDVSPkf
r by applying Algo-

rithm 4.

Step 5 (Initial Solution): Save the solutions obtained in Step 4 in set S0.

Step 6 (Column Generation): Apply Algorithm 7 in the reduced matrices MDVSPkf
r ,

using S0 as the initial solution.

Chapter 4. Algorithms 47

Our preliminary experiments show that both generating an initial solution and
reducing the solution state space approach may be helpful for speeding up the CG in
vehicle scheduling problems.

48

5 Computational Experiments

The main objective of the computational experiments was to compare the per-
formance of the developed solution approaches, in terms of quality and efficiency of the
solution, using random generated instances.

The algorithms were implemented in C++. All experiments were carried out
in an Intel Xeon CPU E5-1603, 2.80 GHz, 16 GB de RAM. We used CPLEX 12.5 to
solve all mixed linear programming models. The following notation is used to indicate
the implemented algorithms: (i) MTCG: Modified truncated CG with variable fixing as
described in Section 5.5.3; (ii) IS: Same as MTCG using the initial solutions obtained using
Algorithm 4, but without state space reduction; (iii) SSR: Same as MTCG employing the
state space reduction procedure; and (iv) IS+SSR: The complete framework developed in
Section 5.3, using the state space reduction procedure and initial solutions for the CG.

5.1 Experiments Configuration
Although Carpaneto et al. (1989)’s random instance generation method has been

widely used in the MDVSP literature (RIBEIRO; SOUMIS, 1994; PEPIN et al., 2009),
there is no method for the generation of MDTVSP instances, considering both TSN and
demand. We had to develop our own method. Let ρ1, ρ2, . . . , ρ20 be the station nodes (i.e.
points where trips can start and finish) of a transit network. The stations were generated
as the nodes of a planar graph employing Dorogovtsev e Mendes (2002)’s algorithm. The
algorithm starts by creating a triangle, using three nodes and tree edges, and then add
one node at a time. Each time a node is added, an edge is chosen randomly and the
node is connected via two new edges to the two extremities of the chosen edge. The
process generates a power-low degree distribution, as nodes that have more edges have
more chances to be selected. The corresponding distance between relief points ρa and ρb,
d(ρa, ρb), were computed using Floyd-Warshal’s all-pair shortest path lengths algorithm.
To simulate the trips, we generated for each trip i, i = 1, . . . , n the starting and relief
points randomly selected from the station nodes. The starting time sti is a uniformly
random integer in interval (0,23). However, in order to represent a realistic frequency of
trips that takes into account the peak hours, a random process was included to define
if a trip will be in the timetabling. The frequency of trips is based on a curve obtained
by a weighted sum of three Gaussian distributions, with averages of 7, 12, and 18, and
standard deviations of 2, 1.5, and 3, respectively. These values were obtained based exiting
timetables of several cities in Brazil. Averages represent the peak hours. The weights of
each distribution are 4.5, 1, and 5, respectively, guaranteeing that the resulting curve,

Chapter 5. Computational Experiments 49

called as frequency trip (FT) function, has a total area equal to 1. Figure 2 exemplifies FT .
An additional uniformly integer in interval (0,1), u, is generated along with sti. Trip i is
included in the timetabling if u ≥ FT (sti). Since the ending time eti of trip i must include
a travel time between stations ρa and ρb, and a dwell time at vehicle stops, we generated
eti = (d(ρa, ρa) +Distmin) ∗ rnd(0, 150) ∗ 60, where Distmin = 180s, and rnd is a function
that generates uniformly random integer in interval (a, b). The demand of trip i,D(i), was
computed using D(i) = (rnd(0, Q) ∗ FT (sti)) +Dmin, where Q is the maximum vehicle
type capacity, and Dmin is a minimum demand value. In our experiments, Dmin = 20.
Table 4 presents the fixed costs and capacity of each vehicle type used in the experiments
based on information provided by the transit network company of São Paulo, Brazil.

Figure 2 – Frequency trip function

Vehicle Type Fixed Cost, FC (in $) Capacity

Microbus 148,517.54 21
Minibus 185,000.00 40
Classic 262,000.00 53

Standard 13 310,000.00 83
Standard 15 582,850.47 110

Articulated bus 628,844.20 120
Biarticulated I 799,164.00 140
Biarticulated II 921,518.00 190

Table 4 – Specification of each vehicle type

Travel costs cf
ij were defined based on the vehicle type, and included the travel

and waiting times. The vehicle type was considered using cost factors directly related with
the vehicle fixed cost and the number of types considered. Since the experiments involved
3, 5, and 8 vehicle types, the following cost factor vectors (αf |F |) were computed: [0.8, 1,
1.2], [0.4,0.7,0.8, 1, 1.2], and [0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5], respectively. The travel
costs were computed as follows:

• cf
ij = αf |F | ∗ (stj − eti) ∗ 8, for the deadheading trips between two compatible trips i
and j.

Chapter 5. Computational Experiments 50

• cf
ij = αf |F | ∗ (stj − eti) ∗ 4, for the waiting trips between two compatible trips i and j.

• cf
kj = αf |F | ∗ (5, 000 + d(o(k), ρj)), for the pull-out trips from depot k ∈ K.

• cf
jk = αf |F | ∗ (5, 000 + d(ρi, d(k)), for the pull-in trips to depot k ∈ K.

We have set the fixed costs of the depots pull-in and pull-out arcs high enough (a
total of 10,000) to allow the minimum cost flow problem determine the optimal number of
vehicles, following Pepin et al. (2009).

The settings of CG parameters, namely Zmin, I, and Ωmin, were carried out by
experimentation, using randomly generated instances consisting of 500 to 5000 trips, and
up to 128 depots. Different combinations of these three parameters (Zmin=0,100,10000;
I=2,5,10,50; and Ωmin in interval [0.7,0.9]) led to different solutions and CPU times. The
best quality solutions were obtained with small values of Zmin and large values of I and
Ωmin, but, in general, with low efficiency. The best solutions were found with Zmin = 0,
in which step 4 of algorithm 7 is not fired and the solution process is not terminated
prematurely. Concerning the number of minimum iterations, to increase I has, in general,
improved the quality of the solution. However, the solution efficiency was negatively
affected by the increase of I. Good compromised solutions, in terms of quality and CPU
times, were obtained with I = 5, Regarding Ωmin, our experiments were not conclusive in
terms of finding a clear correlation between this parameter and the solution quality. The
behavior of this parameter was instance dependent. Overall good solutions, in terms of
quality and efficiency, were obtained with this parameter set to 0.8.

For the comparison of the algorithms, random instances were generated with ST =
{500, 1000, 1500, 2000, 3000}, K = {4, 8, 16, 32}, and F = {3, 5, 8}. For each combination
of trips, depots, and vehicle types, five instances were generated, totaling 300 instances.
However, some of the instances with 3000 trips, 32 depots, and 8 vehicles were not solved
by CPLEX due to the excessive number of variables and constraints. For these instances,
results are not reported.

5.2 Results
Table 5 compares the performance of algorithms MTCG, IS+SPR, SPR, and IS

for five instances of each problem. The first three columns display the number of trips,
depots, and vehicle types, respectively. The next three columns show the average gap (in
%) from the best solutions obtained by MTCG, computed as follows GAP = 100× SA

SMT CG

,
where SMT CG is the average best solutions obtained by algorithm MTCG, and SA is the
average best solution obtained by the algorithm being compared, say algorithm A. The
last four columns show the average CPU times in seconds, excluding input and output

Chapter 5. Computational Experiments 51

time, for each algorithm. The tables show that algorithms IS+SPR, SPR, and IS, in
general, offer very good solution quality (some with negative gaps) very efficiently. For
some instances, the high number of possible routes and the use of artificial variables in
the MTCG solution process led to a slow convergence of the algorithm. The former issue
also caused an excessive rounding of the decision variables, setting a high number of θp to
1. As a consequence, constraints (4.3) make difficult the creation of new routes, stagnating
the solution around a not so good value. Based on the results reported in this table, it is
possible to state that the use of initial solution for the CG algorithm had a significant
effect in the efficiency of the algorithms, while the state space reduction had a major effect
in the quality of the solution.

Analyzing the solution quality, it is important to mention that all algorithms found
the minimum number of vehicles for all instances. Table 5 shows that algorithms IS+SSR,
SSR, and IS found better average solutions than MTCG for several instances. Algorithms
IS+SSR, SSR, and IS improved, on average, the best solution in comparison to MTCG in
around 50%, 40%, and 71%, respectively, of the tested instances. The algorithms improved
quite significantly the solution quality of some instances, obtaining minimum average gaps
of 9.63%, 6.54%, and 8.33%, respectively; while the maximum average gaps were 2.20%,
1.75%, and 5.35%, respectively. The improvements in the solution quality happened as
the number of trips and vehicles types increased. Worse solutions were obtained as the
number of depots increases. Algorithms IS+SSR and SSR obtained worse solutions for all
instances with 32 depots.

The average CPU time for all algorithms is highly dependent on the instance size,
being the number of trips the most influential parameter. Table 5 shows that either the
use of initial solutions for the truncated CG algorithm or the state space reduction led
to efficient algorithms. The use of these procedures decreased, in several instances, the
number of required iterations to find a good solution. Algorithm IS+SSR was the most
efficient algorithm for all instances, but one (500 trips, 32 depots, and 8 vehicle types). If
we compare with MTCG, algorithms IS+SSR, SSR, and IS reduced the average CPU times
in 63.2%, 18.6%, and 59%, on average. Table 6 presents the CPU time speedup factors
for algorithms IS+SSR, SSR, and IS, taking MTCG as the comparison basis. We can see
that when the number of trips becomes larger, the heuristics provided significant CPU
time reductions. However, CPU usage reduction decreased with the number of depots and
vehicles. From this table, it is possible to conclude that the benefits of the preprocessing
procedures is basically asymptotically dependent on the number of depots. The best
performance of algorithms IS+SSR and IS were obtained for instances with 3000 trips, 4
depots, and 3 vehicle types. The worse performance occurred in instances with 500 trips,
32 depots, and 4 vehicle types. Algorithm SSR did not obtain relevant gains in the CPU
speedup factor in comparison with IS+SSR and IS, being the less affected algorithm by the

Chapter 5. Computational Experiments 52

problem dimensions. Algorithms IS+SSR and IS increased significantly the convergence
process of the CG for up to 16 depots.

Table 7 shows that the CPU times obtained for solving the MDVTSP are quite
competitive with values reported to solve its counterpart MDVSP (OTSUKI; AIHARA,
2014; PEPIN et al., 2009), considering the same number of trips and depots. The competi-
tive CPU times were justified by the combination of TSN, state space reduction, truncated
CG, and special procedures for generating good initial solutions for the CG algorithm.
The CPU times decreased with the increase in the use of these approaches. In summary,
we can conclude that the developed algorithms are computationally efficient in solving the
MDVTSP.

Overall, our developed implementations were quite efficient. Algorithm IS+SSR
obtained the average best solutions of all tested algorithms, considering both quality
and efficiency. IS+SSR obtained better quality solutions with a speedup factor of 4.4, on
average, in comparison with algorithm MTCG, a more traditional CG implementation for
the MDVTSP. The simultaneous use of good initial solutions and state space reduction
significantly increased the convergence process of the CG method, decreasing or eliminating
the well-known tailing effect (LÜBBECKE; DESROSIERS, 2006). However, the final
selection among these three variants is case dependent, and it will depend on further
experimentation, with a special attention on the setting of CG parameters.

5.3 Tests on a Real-World Instance
We used data from a public transit company located in the city of Santa Maria, in

the south of Brazil, to evaluate our framework in a real-world instance. The transit system
is run by ATU, a consortium formed by five public transportation companies, namely
Viação Centro Oeste, Expresso Nossa Senhora das Dores, Expresso Medianeira, Gabardo
Transporte, and Salgado Filho Transporte. The data set provided by ATU are from the
area “Federal University of Santa Maria", comprising 20 different lines, 9 stations, and
529 daily trips, transporting on an average class day around 26.824 passengers, 25% of
the total number of passengers transported daily in Santa Maria. This area was selected
since the average peak demand of each trip was previously defined. This information is
quite difficult to obtain, since transport companies only register the paying passengers for
tariff definition. However, several passengers are exempt from charges due to Brazilian
legislation, such as elder people, police, postman, etc. Three of the analyzed lines area
are the busiest in the city. The area contains five depots, the garages of the companies in
the consortium. The involved distances, between the depots and stations, and among the
stations, were provided by ATU. The fleet is composed by three different vehicle types
as follows: type A, corresponding to an articulated bus, with capacity for 140 passengers;

Chapter 5. Computational Experiments 53

Table 5 – Comparison results

Solution Gaps CPU Time (s)
Trips Depots Vehicles IS+SSR SSR IS MTCG IS+SSR SSR IS
500 4 3 -2.74% -0.61% 2.49% 16.4 2.4 12.6 1.4
500 8 3 0.62% 0.88% 2.44% 21.2 3.8 15.4 4.2
500 16 3 0.30% 0.32% -0.02% 21.8 9.2 20.2 10.4
500 32 3 0.40% 0.41% -0.02% 25.0 20.4 26.0 21.8
1000 4 3 -2.43% -1.90% 3.37% 87.4 7.2 56.4 7.8
1000 8 3 -1.68% -1.18% - 99.4 21.2 68.0 26.4
1000 16 3 0.28% 0.30% -0.04% 98.2 43.4 90.2 48.2
1000 32 3 0.27% 0.27% -0.01% 134.4 80.0 130.4 97.2
1500 4 3 2.20% -1.58% 5.35% 332.6 26.4 179.8 26.6
1500 8 3 -0.60% 0.68% 2.64% 353.6 53.4 219.8 53.0
1500 16 3 0.45% 0.48% -0.02% 359.8 119.6 278.8 139.0
1500 32 3 0.61% 0.61% -0.01% 621.8 242.2 453.0 328.0
2000 4 3 1.37% -1.33% 4.71% 633.0 61.4 347.2 60.8
2000 8 3 -4.78% -2.76% 2.03% 693.2 114.6 445.4 102.4
2000 16 3 0.22% 0.24% -0.13% 716.0 241.8 593.2 301.8
2000 32 3 0.31% 0.32% - 871.4 491.2 887.6 581.6
3000 4 3 1.57% -1.56% 3.91% 2419.0 140.4 993.6 141.8
3000 8 3 -6.65% -3.82% -0.27% 2448.6 331.6 1243.8 288.8
3000 16 3 -1.31% -1.28% -1.79% 2550.2 715.6 1670.6 773.4
3000 32 3 0.40% 0.40% -0.01% 3436.6 1419.0 2494.6 1707.2
500 4 5 -4.98% 1.24% 1.51% 18.8 2.8 15.4 3.0
500 8 5 -1.59% 0.27% -1.98% 26.0 8.0 20.4 9.8
500 16 5 0.46% 0.51% -0.01% 27.8 15.4 33.4 16.2
500 32 5 0.53% 0.52% -0.01% 37.4 29.4 43.4 38.2
1000 4 5 -3.48% -0.34% 3.09% 107.6 16.0 69.4 13.8
1000 8 5 -4.67% -0.83% -3.64% 117.6 30.6 89.6 39.6
1000 16 5 0.26% 0.35% -0.01% 127.8 55.0 133.8 62.2
1000 32 5 0.30% 0.30% - 209.8 114.8 213.8 136.6
1500 4 5 -6.16% -2.90% -1.01% 353.2 33.8 215.0 37.8
1500 8 5 -2.80% 1.75% -1.07% 420.2 95.8 252.6 95.6
1500 16 5 0.44% 0.46% 0.14% 424.2 196.8 365.0 210.8
1500 32 5 0.61% 0.62% -0.01% 711.2 362.4 632.8 438.2
2000 4 5 -7.15% -3.32% -0.93% 704.6 80.8 433.6 77.2
2000 8 5 -3.30% 0.31% -2.29% 765.0 161.2 540.2 178.2
2000 16 5 -0.21% -0.47% -0.70% 909.8 345.0 688.0 432.2
2000 32 5 0.32% 0.33% - 978.0 643.6 1184.2 741.6
3000 4 5 -4.11% -1.62% 0.08% 2707.0 199.8 1174.2 211.0
3000 8 5 -8.64% -6.54% -5.22% 2346.8 417.6 1477.6 418.8
3000 16 5 0.58% 0.52% 0.32% 2932.4 1034.0 2015.2 1174.8
3000 32 5 -4.78% -4.78% -5.17% 3522.8 1997.2 3283.0 2055.8
500 4 8 -6.05% -1.15% -4.60% 19.6 5.2 19.4 4.8
500 8 8 -1.84% -0.80% -1.83% 32.4 10.4 28.8 14.0
500 16 8 0.13% 0.25% -0.16% 35.8 22.0 36.2 28.6
500 32 8 0.67% 0.67% 0.01% 60.6 65.4 62.8 67.0
1000 4 8 -8.78% 0.33% -5.17% 112.0 22.6 84.0 24.0
1000 8 8 -1.70% -0.19% -1.80% 144.4 58.2 119.4 69.4
1000 16 8 0.30% 0.67% 0.15% 168.2 90.6 192.8 102.8
1000 32 8 0.49% 0.51% -0.01% 240.8 210.4 276.2 222.4
1500 4 8 -6.59% 1.07% -0.54% 384.6 62.6 243.2 50.2
1500 8 8 -1.63% 1.26% -1.64% 443.4 155.6 324.4 143.2
1500 16 8 0.68% 0.79% -0.01% 503.8 252.0 544.0 317.4
1500 32 8 0.63% 0.63% - 822.0 509.8 857.2 669.6
2000 4 8 -4.65% -0.87% -1.46% 742.0 117.4 502.0 104.0
2000 8 8 -6.28% -3.53% -6.09% 847.0 305.4 661.4 243.6
2000 16 8 -0.04% 0.14% -0.52% 1006.8 593.2 1033.0 600.2
2000 32 8 0.36% 0.37% - 1342.6 1121.2 1620.4 1198.8
3000 4 8 -9.63% -2.37% -2.16% 2672.2 332.0 1395.6 289.6
3000 8 8 -8.33% -5.04% -8.33% 2713.6 817.8 1791.0 756.2
3000 16 8 0.61% 1.20% 0.35% 3271.2 1707.4 2706.0 1686.2

Chapter 5. Computational Experiments 54

Table 6 – Speedup factors

Trips Depots Vehicles IS+SSR SSR IS

500 4 3 6.83 1.30 11.71
500 8 3 5.58 1.38 5.05
500 16 3 2.37 1.08 2.10
500 32 3 1.23 0.96 1.15
1000 4 3 12.14 1.55 11.21
1000 8 3 4.69 1.46 3.77
1000 16 3 2.26 1.09 2.04
1000 32 3 1.68 1.03 1.38
1500 4 3 12.60 1.85 12.50
1500 8 3 6.62 1.61 6.67
1500 16 3 3.01 1.29 2.59
1500 32 3 2.57 1.37 1.90
2000 4 3 10.31 1.82 10.41
2000 8 3 6.05 1.56 6.77
2000 16 3 2.96 1.21 2.37
2000 32 3 1.77 0.98 1.50
3000 4 3 17.23 2.43 17.06
3000 8 3 7.38 1.97 8.48
3000 16 3 3.56 1.53 3.30
3000 32 3 2.42 1.38 2.01
500 4 5 6.71 1.22 6.27
500 8 5 3.25 1.27 2.65
500 16 5 1.81 0.83 1.72
500 32 5 1.27 0.86 0.98
1000 4 5 6.73 1.55 7.80
1000 8 5 3.84 1.31 2.97
1000 16 5 2.32 0.96 2.05
1000 32 5 1.83 0.98 1.54
1500 4 5 10.45 1.64 9.34
1500 8 5 4.39 1.66 4.40
1500 16 5 2.16 1.16 2.01
1500 32 5 1.96 1.12 1.62
2000 4 5 8.72 1.63 9.13
2000 8 5 4.75 1.42 4.29
2000 16 5 2.64 1.32 2.11
2000 32 5 1.52 0.83 1.32
3000 4 5 13.55 2.31 12.83
3000 8 5 5.62 1.59 5.60
3000 16 5 2.84 1.46 2.50
3000 32 5 1.76 1.07 1.71
500 4 8 3.77 1.01 4.08
500 8 8 3.12 1.13 2.31
500 16 8 1.63 0.99 1.25
500 32 8 0.93 0.96 0.90
1000 4 8 4.96 1.33 4.67
1000 8 8 2.48 1.21 2.08
1000 16 8 1.86 0.87 1.64
1000 32 8 1.14 0.87 1.08
1500 4 8 6.14 1.58 7.66
1500 8 8 2.85 1.37 3.10
1500 16 8 2.00 0.93 1.59
1500 32 8 1.61 0.96 1.23
2000 4 8 6.32 1.48 7.13
2000 8 8 2.77 1.28 3.48
2000 16 8 1.70 0.97 1.68
2000 32 8 1.20 0.83 1.12
3000 4 8 8.05 1.91 9.23
3000 8 8 3.32 1.52 3.59
3000 16 8 1.92 1.21 1.94

Chapter 5. Computational Experiments 55

Table 7 – Comparison of the proposed methods with other methods

Average CPU Times (s)
Trips Depots Pepin et al. (2009) Otsuki e Aihara (2014) MTCG IS+SSR SSR IS

500 4 77 74 18.3 3.5 15.8 3.1
1000 4 612 612 102.3 15.3 69.9 15.2
1500 4 2012 2012 356.8 40.9 212.7 38.2
500 8 119 109 26.5 7.4 21.5 9.3

1000 8 857 787 120.5 36.7 92.3 45.1
1500 8 3085 2800 405.7 101.6 265.6 97.3

type B, the most commonly used, with capacity for 95 passengers; and type C, a smaller
vehicle able to transport 84 passengers. Vehicle A is the most expensive bus to operate,
both in fixed and operational costs, being vehicle C the least expensive. Unfortunately,
several costs required by the framework needed to be estimated. ATU does not compute
several involved model parameters, such as waiting costs in stations and depots, and daily
fixed costs. Our estimations were based on information provided by ATU, but they are
not accurate.

Table 8 presents the results obtained by the four developed solution methods
for the real instance on an average class day. The manual method refers to the current
scheduling adopted by ATU. All methods used the same set of parameter values. It
should be noticed that the values presented in column Solution are estimated ones, due
to the inaccuracy of some parameters. As a consequence, only relative comparisons are
appropriate concerning the total costs obtained by each method. Based on the CPU times
presented in Table 8, it is possible to conclude that this instance is much more difficult
to be solved than the correspondent (with similar number of trips, depots, and vehicles)
random generated ones.

Table 8 – Computational results for the real instance

Method Solution Time # Vehicles

(sec.) A B C Total

Manual 1385484 — 5 45 4 58
MTCG 1043710 1429 6 10 33 49
IS+SSR 945538 26 5 11 31 47

SSR 876131 76 4 9 29 42
IS 1087780 22 10 17 19 46

Comparing only the heuristic methods, the best quality solution was obtained by
SSR, both in costs and in the number of vehicles. IS was the most efficient method, but
with the worst solution quality. MTCG obtained the second worst solution among the
heuristic approach, requiring excessive average CPU times in comparison with the other
optimization approaches. MTCG obtained a solution with excessive number of vehicles,
increasing the fixed costs. It seems that the MTG convergence problems, related in the
previous section, were aggravated in this real-world instance. IS+SSR obtained the best

Chapter 5. Computational Experiments 56

compromise solution, taking into consideration quality and efficiency. However, considering
that the MDVTSP is a typical planning problem, and the high efficiency of all heuristics
that employ an accelerating preprocessing routine (less than 1.5 minutes), we can consider
SSR as the best heuristic method for this instance. As a consequence, only SSR will be
used for further analysis.

All heuristic methods have outperformed the manual planning in terms of solution
quality. Total costs were reduced in around 31.75%, considering SSR as the best solution.
The heuristic approach has reduced the number of vehicles from 58 to 42 vehicles to
fulfill the 529 trips in the timetabling. The capability of the heuristic methods to assign
several trips to a single bus, from different lines, is a good explanation for this significant
reduction in the number of vehicles. With manual planning, a bus is usually designated
to only one line. Several of them stay idle during the day, waiting in the depot to leave
in rush hours (6:30–9:00, and 17:30-20:00). This practice in manual planning also leads
to longer distances traveled on deadheading trips, since a bus needs to travel back to
the depot, resulting also in unnecessary additional deadheading trips. The optimization
approaches are capable of assigning a bus from the starting point of the next compatible
trip, independently of lines, reducing the distances in deadheading trips. Moreover, as the
heuristic methods take in consideration peak demands per trip, they obtained a much more
economical distribution of vehicle types than the manual method. In order to avoid excess
of passengers in a trip, ATU prioritizes the use of vehicle type B. As peak demands of
trips out of the rush hours are lower than the capacity of vehicle C, the heuristic methods
focused on this vehicle type, restricting the use of more expensive buses to rush hours. It
is important to notice that the real savings might be smaller, since we are not considering
the crew scheduling in the obtained solutions by the optimization approaches. This is note
the case for the manual solution. The consortium is in the process of implementing some
results from the optimization methods.

57

6 Conclusions

This paper presents several column based algorithms to solve the MDVTSP.
To speed up the solution of very large instances, we developed a state space reduction
procedure that selects, from the whole feasible solution space, a good set of arcs, based
on the solution of |F | × |K| SDVSPs. The selected set of arcs is also used to generate
initial columns in the posterior application of a modified truncated column generation
algorithm. With the use of these preprocessing procedures, the MDVTSP can be solved
with efficiency and efficacy in comparison with a more traditional CG implementation.

From computational experiments performed on randomly generated data, it is
possible to observe that the algorithm that combines state space reduction and initial
solution obtained, on average, the best solutions, requiring the smallest CPU times,
overcoming all remaining algorithms for the set of analyzed instances. This implementation
is more efficient than the state-of-the-art in MDVTSP solution, considering the same
number of depots and trips. However, in a real case instance, the best solution was obtained
by the heuristic that uses only the state space reduction (SSR). Comparing with the
current manual scheduling used by the transport consortium, savings of around 31% and
35% were obtained in total costs and in the number of vehicles, respectively.

Future research is directed towards using the heuristic framework to develop
novel approaches for solving both the real time vehicle recovery scheduling problem and
the integrated crew and vehicle scheduling problem in transportation contexts where
heterogeneous fleet is an relevant characteristics. These two problems are very complex
ones, in which the MDVTSP needs to be solved several times as a subproblem.

Part III

A Novel Efficient Approach for the Real-Time
Multi-Depot Vehicle Type Rescheduling

Problem

59

Abstract

The multiple-depot vehicle type rescheduling problem (MDVTRSP) is a dynamic
extension of the classic multiple-depot vehicle scheduling problem (MDVSP), where
heterogeneous fleet is considered. The MDVTRSP consists of finding a new schedule given
that a serious disruption occurred in a previous scheduled trip, simultaneously minimizing
the transportation costs and the deviation from the original schedule. Although several
mathematical formulations and solution methods have been developed for the MDVSP,
the MDVTRSP is still unexplored. In this paper, we introduced a formulation for the
problem oriented to public transportation, based on certain assumptions, and developed a
heuristic solution method, employing time-space network, truncated column generation
(TCG), and preprocessing procedures. The solution method has been implemented in several
algorithm variants, combining different developed preprocessing procedures. Computational
experiments on randomly generated instances were performed to evaluate the performance
of the developed algorithms. The best solutions, considering simultaneously quality and
efficiency, were obtained in the heuristics involving state space reduction.

Keywords: vehicle rescheduling, heterogeneous fleet, multi-depot, column gen-
eration.

60

1 Introduction

Public transportation systems are susceptible to disruptions, such as vehicle
breakdowns and traffic accidents. For example, a regional bus transportation system
in Arizona has 37 fixed routes; with a fleet of 189 buses, that serve over one thousand
timetabled trips each weekday. In June 2005, the vehicles in the fleet traveled 622,198
miles. On the average, bus failures (e.g., engine problems, air conditioner malfunctions,
traffic accidents and tire-wheel issues) were reported approximately every 5,000 miles
resulting in over 100 repair calls for that month (Sun Tran, 2005). While minor vehicle
failures can be repaired quickly, serious failures require long repair times and in general
result in towing the disabled vehicle for lengthy repairs and long-term maintenance.

The focus of this paper is on the real-time schedule recovery for the case of
serious vehicle failures. Such vehicle breakdowns require that the passengers from the
disabled vehicle and those expected on the remaining part of the trip be picked up.
In addition, since the disabled vehicle may have future trips assigned to it, the given
schedule may be deteriorated to the extent where the fleet plan may need to be adjusted
in real-time depending on the current state of what is certainly a dynamic system. Usually,
without the help of a rescheduling algorithm, the dispatcher either cancels the trips that
are initially scheduled to be covered by the disabled vehicle (when there are upcoming
future trips planned that could soon serve the expected demand for the canceled trips),
or simply dispatches an available vehicle from a depot. In both cases, there may be
considerable delays introduced. This manual approach may result in a poor solution. The
implementation of new technologies (e.g., automatic vehicle locaters, the global positioning
system, geographical information systems, and wireless communication) in public transit
systems makes it possible to implement real-time vehicle rescheduling algorithms at low
cost.

In some sense, the vehicle rescheduling problem (VRSP) can be viewed as a
dynamic version of the classic vehicle scheduling problem (VSP) where assignments are
generated dynamically (LI; MIRCHANDANI; BORENSTEIN, 2007). Although the VSP
is a well-studied problem, dynamic versions present peculiarities and diversity of situations
that make the VRSP and its variant very difficult to model and solve. The rescheduling
problem must be solved in short computational times, so that the disruption is controlled
as soon as possible. Another issue on developing a new schedule is the associated crew
scheduling problem. If the new schedule is very different from the current one, then it
might be difficult to assign crews to trips with which they are familiar. Thus, having
minimal changes to the current schedule should be a consideration in rescheduling. Finally,

Chapter 1. Introduction 61

note that a vehicle breakdown could lead to delays of multiple transit trips. The current
trip that is directly affected by the breakdown is certainly delayed. Other trips may also
be delayed by the vehicle breakdown; a typical instance is when the next trip that the
disabled vehicle is scheduled to cover is far from the depot as well as from other currently
operating vehicles on the road. Normally, the nominal time describing a scheduled trip
includes some slack times to allow for small delays so that small variations in starting times
can be easily tolerated. However, large delays are usually not acceptable by both potential
passengers and transit system regulators. It is also worth mentioning that multiple vehicles
can break down simultaneously, for example under poor weather conditions; the developed
method should account for these extreme, but frequent, situations to be useful in real-world
applications.

Although there are some developed modeling tools to deal with the real-time
vehicle recovery problem (VISENTINI et al., 2014), the existing formulations do not
recognize important aspects related with the problem. Some of them limit the disruptions
only to delays, others apply algorithms and heuristics which performances are incompatible
with the dimensions of real-world problems (involving thousands of trips and vehicles),
while some neglects schedule disruption costs and impacts of excessive changes on the
off-line scheduling. Under these approaches, the vehicle rescheduling is only applied to
very limited real-world situations.

This paper proposes a formulation for the multi-depot vehicle type rescheduling
problem (MDVTRSP) and a heuristic framework for solving the problem, incorporating
truncated column generation (CG), and state space reduction techniques. We address
the real-time MDVTRSP not only with a focus on providing good plans for the transit
operator, in a very efficient way, but also simultaneously accounting for the passenger
demand and introducing minimum delay in the involved trips to be serviced. In our solution
method, we reschedule the whole disrupted transit network, considering the set of occurred
disruptions. The vehicle rescheduling network is rebuilt and resolved, allowing that all
no-initiated trips might be rescheduled to a new vehicle route. The heuristics includes the
consideration of schedule disruption costs, minimizes the number of changes in the initial
off-line scheduling, handles multiple trip disruptions, and deals with thousands of trips and
vehicles. The performance of the heuristic algorithm was assessed on randomly generated
instances up to 2500 trips, 8 depots, and 3 vehicle types. Computational comparisons
showed that the developed algorithm has a potential to be used in real-world applications,
giving the low required CPU times.

The contributions of this paper are as follows: (i) to introduce a formulation for the
MDVTRSP; (ii) to develop an integrated heuristic framework, combining several modeling
and solution techniques, offering very quick solutions for the problem; (iii) to analyze the
performance of the developed algorithm variants that compose the heuristic framework,

Chapter 1. Introduction 62

offering some guidance in which it is the best option for different circumstances; and (iv)
to take into account heterogeneous fleet, a common characteristic in transit networks of
most large size cities around the world (ROMAN, 2012), but neglected in the scheduling
literature (GUEDES; BORENSTEIN, 2015). To the best of our knowledge, the developed
approach is the only alternative to solve the real time MDVTRSP, without considering
strong assumptions such a depot per each vehicle type and son on.

The paper is organized as follows. Section 2 reviews the literature on the MD-
VTRSP. Section 3 introduces the problem, explicitly defining our assumptions to model
and solve it. The developed mathematical formulation of the problem in presented in
Section 4. The solution method is described in detail in Section 5. Section 6 describes
the computational experiments carried out to evaluate the performance of the developed
solution method. Finally, a summary of the results, and areas of future research are
provided in Section 7.

63

2 Literature Review

The interest in automatic recovery of public transportation systems has followed
the development of new information technologies (e.g., cellular phones, global positioning
system, geographical information systems). As real-time information is now available at
low-cost, transportation companies might react to unexpected events in real time, using
automatic recovery tools. Several algorithms were developed for disruption management
in airline (CLAUSEN et al., 2010) and railway (CACCHIANI et al., 2014) transportation.
In bus-based public transportation, because of the smaller costs involved, the disruption
management is still relatively unexplored (VISENTINI et al., 2014). Only very recently,
this problem has been receiving some attention in the literature. Huisman, Freling e
Wagelmans (2004) was one of the first research studies published in the subject, dealing
with robust vehicle scheduling problem, emphasizing delays in the network. Li, Mirchandani
e Borenstein (2007), Li, Mirchandani e Borenstein (2009) considered real-time recovery in
response to breakdowns in bus passenger transportation, defining the vehicle rescheduling
problem, in which vehicles were reassigned to trips. The developed approaches were
specially designed to the single-depot setting. Recently, Carosi et al. (2015) developed a
decision tool to handle delay and small disruptions, employing a tabu-search procedure for
the on-line vehicle scheduling and a CG approach for the consequential crew re-scheduling.
However, the tool was developed to be used in a single bus line, restricting the complexity
of the problem and its application for a complete transit system.

Some studies were developed to deal with VRSPs in the context of cargo trans-
portation (SPLIET; GABOR; DEKKER, 2014), and integrated rail and bus service
networks (JIN; TEO; ODONI, 2015). The former modeled the VRSP based on the ca-
pacitated vehicle routing problem. The latter study developed an optimization approach
that responds to urban transit rail networks by introducing smartly designed bus bridging
services. In a sense, both studies dealt with different problems than the one considered in
this research study, focusing on the real-time recovery of bus passenger systems.

Very few published research addresses the MDVTRSP. Dávid e Krész (2014) devel-
oped two search algorithms to solve the MDVTRSP. However, they simplified the problem
considering that vehicles can be classified into depots depending on two characteristics:
the vehicle type, and its starting location at the beginning of the day. Based on these
simplifications, they were able to solve a disruption in the transit system as a single-depot
problem, justifying the efficiency the developed approach. Zero gap solutions were obtained
in less than 0.05s for instances up to 800 trips. For large instances (around 2700 trips), so-
lutions were obtained in less than 15s. Unfortunately, the adopted simplifications are quite

Chapter 2. Literature Review 64

strong and do not reflect the reality of several real world problems, in which more than one
operator, with different vehicles in the same depot, serve a transit system. Yıldız (2011)
and Uçar, Birbil e Muter (2016) developed robust approaches for managing disruption
in the MDVRSP. They considered two disruptions types, namely trip delays and excess
of demand in some trips. The developed approach consisted of generating alternatives
solution by swapping two planned routes, and incorporate them in a two phase iterative
column-and-row generation strategy.

We can conclude that the work on MDVTRSP is rather limited, focusing either
on simplified problems or in robust scheduling. The modeling framework developed in
this study presents a different approach, focusing on real-time recovery by a complete
rescheduling, if necessary, of the transit network, considering the occurrence of a set of
disruptions. As a consequence, the MDVRTSP problem defined in this study is more
ambitious than the previous developed ones, because it simultaneously considers real-time,
an uncompromisable multi-depot setting and heterogeneous fleet.

65

3 Problem Description

The MDVTRSP can be defined as follows. Given a set of vehicle types with
significantly different attributes; a set of depots with their vehicle type capacity; a set of
disruptions characterized by a breakdown time and a breakdown local; a set of trips with
fixed peak demand, and starting and ending times; given the travel times between all pair
of locations, find a feasible minimum-cost scheduling in which (i) each vehicle performs a
feasible sequence of trips, starting and ending in the same depot; (ii) the peak demand
of each trip is always attended by a vehicle; and (iii) the capacity of each depot for each
vehicle type is respected. Before defining a mathematical formulation for the problem, we
first describe the problem, introducing its requisites and assumptions taken to solve the
problem.

For completeness’ sake, we first introduce some definitions and notation to describe
the MDVTRSP, following (LI; MIRCHANDANI; BORENSTEIN, 2007). We are given a
set of ST service trips. Let S be the set of terminals or stations; K be the set of depots;
F the set of vehicle types; and T the planning time horizon. Trip i ∈ ST can be defined
as a n-tuple (sti, eti, ssi, sei, ICi), where sti ∈ T and eti ∈ T are the starting and ending
times of trip i, respectively, ssi ∈ S and esi ∈ S are the starting and ending stations of
trip i, respectively, and ICi = {(j, β)} is the set of itinerary compatible trips j ∈ ST with
trip i from point β until the ending station of i, given that etj − eti ≤ t. The definition
of β depends on the Trips i and j are a compatible pair of trips if the same vehicle can
reach the starting point of trip j after it finishes trip i. A route is a sequence of trips in
which all consecutive pairs of trips in the sequence are compatible. To relate to a cut in a
graph, we refer to a disrupted trip due to a disabled vehicle, or a vehicle that is effectively
inoperable, as a cut trip. Breakdown point (BPi) is the point where trip i is disrupted in
time BTi. Current trip is the trip on which a vehicle is running. It includes both service,
waiting, and deadheading (movement of a vehicle to a destination without serving any
passenger) trips. The vehicle that serves the remaining passengers in the cut trip, referred
to as the backup vehicle in the sequel, can be identified from the trip just served, which
may be referred to as the backup trip.

A vehicle can suffer a breakdown in six different situations as follows:

1. while in a service trip;

2. while deadheading between two service trips;

3. while deadheading from a depot to a future service trip;

Chapter 3. Problem Description 66

4. while deadheading from a service trip to a depot;

5. while in a waiting trip in a terminal;

6. while in a waiting trip in a depot.

In the first case, the vehicle is serving passengers. The solution includes sending a backup
vehicle to the breakdown point, and from there completing the cut trip, serving the
passengers. We assume that an alternative backup vehicle should first complete its current
trip before being rescheduled. In all remaining cases, we do not need to pick up the
passengers in the disrupted vehicle since it is empty. The solution is to assign a backup
vehicle to the starting location of the next trip of the disrupted vehicle. For all considered
situations, it is very likely that the solution of the problem provides new routes (a
reassignment) for a subset of the pre-assigned vehicles. Also, we can expect some delays in
the cut trip in the first five situations.

From the viewpoint of the cut trip, the remaining trips can be divided into the
following categories: (i) finished trips; (ii) unfinished trips that have compatible itineraries
with the cut trip from the breakdown point; (iii) the remaining unfinished trips; (iv) and
trips which starting time is higher than the breakdown point (etj > BTi,∀j ∈ ST) . Trips
in situation (i), (ii), and (iii) cannot be rescheduled. Trips in (iv) constitute the set of
possible rescheduling trips. Alternative backup vehicles are the ones assigned to trips in
situation (ii) and (iv). Only vehicles in depot or serving itinerary compatible trips with
the disrupted one are possible alternative backup vehicles.

If a service trip is cut, a preference for backing up the disabled vehicle will be
given to a vehicle, if it exists, in a compatible itinerary trip with the disrupted one from
the breakdown point. A capacity problem might appear in this case. It is quite possible
that some passengers remain in the disabled vehicle that was servicing the cut trip. If the
number of passengers remaining on the cut trip is greater than the vacant capacity of the
backup vehicle, it is possible that more than one vehicle needs to be sent to the breakdown
point. The first vehicle to arrive at the breakdown point picks up some passengers, the
next vehicle picks up some more passengers, and so forth until all passengers from the
cut trip are served. An empty vehicle from the depot is only sent for capacity issues in
situation (i). In that case, we only send a backup vehicle with enough capacity to pick up
the passengers from the disabled vehicle. In addition to the capacity problem, we need to
consider time constraints related to the travel times of vehicles on current trips. It is not
possible to select a vehicle (or vehicles) from an itinerary compatible trip if it has already
passed the breakdown point when the disruption occurs or with a very high time interval
to reach the disrupted point.

Chapter 3. Problem Description 67

Vehicle rescheduling needs to be solved quickly, since disruption delays will have
a negative influence on system performance, since they simultaneously result in increasing
costs and deterioration of the level of service. Based on this undesirable snow ball effect,
the transit operator manages are, in general, willing to favor efficiency over optimal or close
to optimal solutions. Moreover, crew members should be notified as quickly as possible of a
new schedule. However, it is very difficult to define an upper bound for the time to obtain
a new schedule, since real-time operational is highly context dependent. Nevertheless,
computational time requirements may be somewhat mitigated by following a strategy
where vehicles currently serving regular trips can only change their routes after finishing
their current trips. Li e Head (2009) considered in a single depot context that vehicles
not assigned to service trips could be backup ones, defining them as pseudo-depots with
vehicle capacity equal to one. The resulting underlying network had a significantly increase
in the number of nodes and arcs. Unfortunately, in the multi-depot context, this realistic
assumption becomes very difficult to handle, since it would be necessary to create an
excessive number of pseudo-depots (stations) and their corresponding trips. Moreover,
we need to trace each vehicle in the network. Both issues make the problem extremely
difficult to solve even for small instances. Further, the rescheduling implementation would
become extremely complex for the human operators and crew involved, raising operational
risks probabilities. To keep the problem as simple as possible, allowing a reasonable target
time of rescheduling of no more than few minutes (even for large instances), we assume
the following in our MDVTRSP formulation:

• Scheduled trips, except of course the cut trip, cannot suffer delays;

• There are restrictions on the number of trips that may be reassigned;

• Only vehicles in the depot or in an itinerary compatible trip with the cut trip are
possible backup vehicle candidates.

• There are available technologies for communication between crew members and the
operation center of the public transportation operator.

68

4 Modeling the MDVTRSP

4.1 Network Structures
In this paper, we work with two different vehicle scheduling networks. For modeling

the problem, we employed the time-space network (TSN) as the underlying vehicle
rescheduling network. However, for solving the problem, we turn this network into a more
conventional connection network (CN). On the one hand, in a TSN, nodes represent a
specific location in time and space, and each arc corresponds to a transition in time and
possibly space. The advantage of this network is the On the other hand, a connection
network

A TSN can be defined as a directed graph TSN = (N,A) withN as the set of nodes
and A as the set of arcs. Each node n ∈ N represents a specific location at a certain time and
must be determined by reference to s ∈ S. Let o(k) ∈ S and d(k) ∈ S denote the same depot
k ∈ K, where o(k) means the depot as a vehicle’ starting point, and d(k) as its terminating
point. The complete set of stations is represented by CS = S ∪ {o(k), d(k)|k ∈ K}. The
set of nodes can be defined as N = {(l, t) | l ∈ CS, t ∈ T}. The set of arcs A, representing
trips, is divided into six subsets, A = Ase ∪ Await ∪ Adh ∪ Apin ∪ Apout ∪ Ac. Ase is the
set of service arcs, representing a vehicle carrying passengers. Each service arc is defined
based on a station and a departure time of a trip i, (ssi, sti), and a station and an
arrival time of the same trip i, (esi, tj). Await is the set of waiting arcs, representing
transitions which a vehicle is waiting at a station to carry out a new trip. Adh is the
set of deadheading arcs, representing empty (without passengers) movements of vehicles
between two compatible pair of trips. Apin is the set of pull-in arcs, expressing the arcs
from depot d to a station s ∈ S, while Apout is the set of pull-out arcs, expressing the arcs
from a station s ∈ S to a depot d. Ac is the set of circulation arcs, where each arc of this
set corresponds to the flow from the last to the first depot node. A circulation arc is an
artificial one, and serves the purpose of counting the number of performed vehicles blocks.
A vehicle route in a TSN is a sequence of n arcs (a1, a2, . . . , an−1, an), ai ∈ A,∀i, in which
a1 ∈ Apin, an−1 ∈ Apout, an ∈ Ac. A complete formal mathematical definition of a TSN can
be found in (GUEDES; BORENSTEIN, 2015).

When heterogeneous fleet and multi-depots are simultaneously considered, we
construct one network layer for each vehicle type and each depot. A TSN for the MDVTSP
is then defined as TSNkf = (Nkf , Akf), k ∈ K, f ∈ F . The networks overlay by vehicle
type and depot, enabling service trips to be in multiple layers.

A connection network for the MDVTSP is an acyclic digraph (V kf , Ekf), k ∈ K,

Chapter 4. Modeling the MDVTRSP 69

f ∈ F with nodes V kf = {o(k), d(k)}∪ST , and arcs Ekf = {Ef∪(o(k)×ST)∪(ST×d(k)},
where Ef = {(i, j)|stj ≥ eti + γij, qf ≥ di, qf ≥ dj, i, j ∈ ST} is the set of deadheading
trips, (o(k)× ST) is the set of pull-out arcs from depot k, and (ST × d(k)) is the set of
pull-in arcs to depot k. A connection network for the MDVTSP can be represented by
its adjacent matrix MDVTSPkf , a matrix of costs (n + m) × (n + m) where n is the
number of trips and m is the number of depots. MDV TSP kf [i][j] = ckf

ij , if (i, j) ∈ Ekf ,
and MDV TSP kf [i][j] = −1 otherwise.

On the one hand, the TSN offers space/time information that allows to reduce
substantially the number of deadheading arcs in comparison with the CN (STEINZEN et
al., 2010), reducing the size of the network. Taking advantage of the explicit representation
of time in this network, Kliewer, Mellouli e Suhl (2006) and van den Heuvel, van den Akker
e Niekerk (2008) developed specially design procedures to eliminate irrelevant deadheading
and waiting arcs from a TSN. The number of deadheading arcs on a TSN becomes O

(
mn

)
,

in comparison to O
(
n2
)
of the CN, where m is the number of terminals and n the number

of trips. As in general, n >> m, this is a considerable reduction for large instances of the
problem. We decided to use this advantage to represent and to formulate the problem,
employing a TSN as the underlying vehicle rescheduling network, following the strict
computational efficiency requisite of the MDVTRSP. On the other hand, the CN offers a
more convenient computational representational towards solving the MDVSP (RIBEIRO;
SOUMIS, 1994; GUEDES; BORENSTEIN, 2015). We applied he algorithm introduced in
(GUEDES; BORENSTEIN, 2015) to convert a TSN into a CN. This algorithm transforms
a TSN arc a ∈ Await ∪ Adh ∪ Apin ∪ Apout in nodes in the CN, representing the trips
involved in this arc, and deadheading arcs (including pull-in and pull-out arcs, when one
of the nodes is a depot) connecting the two associated nodes. Waiting arcs in the TSN
are represented as deadheading arcs in the CN. In this algorithm, only deadheading and
waiting arcs which its initial node represents the end of a service trip and its final node
is the starting node of a service trips are considered, further reducing the size of the CN
generated.

4.2 Vehicle Rescheduling Network
In this section, we define the vehicle rescheduling network given the disruption of

trip r in time BTr, local BPr, and estimated number of passengers PAXd. As previously
stated all trips j ∈ ST with starting time stj ≤ BTr cannot be rescheduled. Thus, the set
of services trips to be rescheduled can be defined as STR = {j ∈ ST |stj > BTr}. The new
rescheduling depends on the vehicle situations as aforementioned in section 3.

If a service trip is disrupted (condition 1), we need to send a back vehicle to
pick up the passengers. If there are no compatible itinerary trips capable of serving all

Chapter 4. Modeling the MDVTRSP 70

passengers, we need to include a new trip r in the set of service trips to be rescheduled,
starting in the breaking point BPr, and with a starting time str = BTd + δt, where δt is
an acceptable time for the backup vehicle arrive in the disruption point. The value of δt1

is the maximum delay of the cut trip. The ending point of trip r is the same of trip d, and
etr = etd + δt1. The set of rescheduling trips is defined as RT = STR ∪ {r}. A new station
is added to the set of stations, as it is considered as a starting local of a this new service
trip to be rescheduled. Let CSR = S ∪ {BPd, o(k), d(k)|k ∈ K} be the set of stations in
the rescheduling network.

If the disrupted vehicle is either in deadheading (including pull-in and pull-out
trips) or in a waiting trip, related to conditions 2 to 6 described in section 3, we need only
to check the next trip in the vehicle route. If the next planned scheduling trip j ∈ ST has a
stj < BTd + δt2, we altered the starting and ending times of this trip to stj = BTd + δ2 and
etj = BTd + δ2, respectively, and update set ST , accordingly. Otherwise, set ST remains
unchanged. We then define RT = STR and CSR = CS. δt2 is also the maximum delay
allowed for the cut trip. In general, δt2 ≤ δt1.

The rescheduling TSN can be defined as a directed graph TSNR = (NR, AR),
with nodes NR = {(l, t) | l ∈ CSR, t ∈ [BTd, T]}, and arcs AR = AR

se ∪AR
wait ∪AR

dh ∪AR
pin ∪

AR
pout∪AR

c . These sets can be formally defined as follows. Let AR
se = {((ssi, sti), (esi, eti)) ∈

NR × NR} be the set of service trips i ∈ RT that can be rescheduled. Let AR
wait =

{((esi, eti), (ssj, stj)) ∈∈ NR×NR|esi = ssj, stj > eti} be the set of waiting trips between
two trips i, j ∈ RT . Let AR

dh = {ie = (esi, eti), js = (ssj, stj) ∈ N × N | esi 6= ssj, stj ≥
eti + γij} be the set of deadheading arcs among service trips i, j ∈ RT , where station of
trip j. Sets AR

pout, AR
pin, and AR

c follows the aforementioned definition, properly considering
nodes in NR.

4.3 Mathematical Formulation
Given the TSNRkf = (NRkf , ARkf), ∀k ∈ K, ∀f ∈ F , the MDVTRSP can be

formulated as an integer linear programing model. In the MDVTRSP context, an arc in
the deadheading set should respect not only time compatibilities, but the capacity of a
vehicle, e.g., the peak demand of a trip must be smaller than the capacity of the vehicle
assigned to perform this trip. The main input of the MDVRSTP is the initial scheduling,
represented by TSNSkf = (NSkf , ASkf), k ∈ K, f ∈ F , where ASkf ⊂ Akf , that contains
only the selected vehicle routes in the off-line planning. Before stating a formal formulation
for the MDVTRSP, we first introduce some additional parameters. Let ckf

ij be the cost
of a vehicle type f from depot k being assigned to arc (i, j) ∈ ARkf . Let di be the peak
demand of trip i. Let qf be the capacity of vehicle f . Let vk

f be the number of vehicles
type f in depot k. Let pij be a penalty cost if a new deadheading arc aRkf

ij /∈ ASkf is
included in the rescheduling solution. We now introduce the decision variables. Let xkf

ij be

Chapter 4. Modeling the MDVTRSP 71

a binary decision variable, with xkf
ij = 1 if a vehicle type f from depot k is assigned to

trip j directly after trip i, and xkf
ij = 0 otherwise. The MDVTRSP can be formulated as

follows:

min
∑
k∈K

∑
f∈F

∑
(i,j)∈ASkf

cf
ijx

kf
ij

+
∑
k∈K

∑
f∈F

∑
(i,j)∈ARkf\ASkf

(cf
ij + pij)xkf

ij

(4.1)

s.t.∑
f∈F

∑
k∈K

∑
j∈(i,j)∈ARkf

qfx
kf
ij ≥ di ∀i ∈ ARkf

se (4.2)

∑
f∈F

∑
k∈K

∑
j∈(i,j)∈ARkf

xkf
ij = 1 ∀i ∈ ARkf

se (4.3)

∑
j:(o(k),j)∈ARkf

xkf
i,j ≤ v

k
f ∀k ∈ K, f ∈ F (4.4)

∑
j:(j,i)∈ARkf

xkf
ji −

∑
j:(i,j)∈ARkf

xkf
ij = 0 ∀i ∈ Lkf ,∀k ∈ K, f ∈ F (4.5)

xkf
ij = {0, 1} ∀(i, j) ∈ ARkf , k ∈ K, f ∈ F (4.6)

where Lkf = {(l, t)|l ∈ S, t ∈ T}. Clearly, Lkf ⊂ NRkf . The objective function (4.1) minimizes
simultaneously the total operational costs and changes in the off-line scheduling. Constraints
(4.2) guarantee that the peak demand of every service trip is respected. The constraints
(4.3) ensure that each service trip is executed exactly once for a vehicle. Constraints (4.4)
respect the number of vehicles of each type that can be used from every depot, while
(4.5) are flow conservation constraints. The domain of the decision variables is defined by
constraints (4.6).

Guedes e Borenstein (2015) showed that the MDVTSP is an NP-hard problem,
considering the off-line network TSNkf . In the worst case scenario, a disruption could
occur very early in the planning horizon, making the rescheduling network dimension
similar to the off-line network, e.g., the

∣∣∣ARkf
se

∣∣∣ u ∣∣∣Akf
se

∣∣∣. As a consequence, the MDVTRSP
is also an NP-hard problem.

72

5 Solving the problem

In this section, we propose a heuristic method to solve the problem, based on the
heuristic framework introduced by Guedes e Borenstein (2015) to solve the MDVTSP.

5.1 Solution Approach
The overall heuristic approach for the MDVTRSP is presented in Algorithm 5.

The solution method prioritizes efficiency over efficacy, following the problem requisites
previously discussed in section 3. The main contribution of the solution method is to carry
out very quickly a complete rescheduling of the transit system, given that a serious disrup-
tion occured. The method considers all no-initiated trips in the rescheduling, rebuilding
the underlying scheduling network, and solving it by integrating state space reduction
techniques and truncated CG. The state space reduction procedure aims to reduce the set
of variables to a smaller, but relevant, subset of variables, decreasing the complexity of the
instances. The CG approach solves the reduced state space problem using an improved
truncated approach towards accelerating the CG stabilization, including the use of an
initialization procedure based on the routes of both the planned scheduled and solution of
the state space selection procedure.

5.2 Finding Itinerary Compatible Trips
Algorithm 6 describes the developed procedure for finding a set of itinerary

compatible trips with the disrupted trip r, characterized by variables BPr, BTr, and
PAXr. The routine assumes that the vehicle crew members can exchange information
with the operation center of the public transport operator anytime, such as the current
number of passengers in the vehicle, and location. The function returns the set of itinerary
compatible trips that have available capacity to get all or some passengers of the cut trip.
If all passengers can be served by the vehicles assigned to itinerary compatible trips set
ICT , the value found = 1 is returned and no rescheduling is required.

5.3 State Space Reduction
Although the rescheduling network has been optimized in terms of eliminating

irrelevant deadheading and waiting arcs, the MDVTRSP is still very difficult to solve
efficiently for very large instances. Experiments conducted by Pepin et al. (2009) and
Otsuki e Aihara (2014) with the MDVSP showed that state-of-the-art algorithms required

Chapter 5. Solving the problem 73

Algorithm 5 Solution approach overview
Input: A cut trip r with a disruption time (BTr) and local (BPr). The planned schedule and estimates
of the peak demand of the service trips.
Output: A new rescheduling plan that simultaneously minimize the operational costs and changes in the
original plan.

Step 1 (Initialization): Set δt1 and δt2.

Step 2 (Compatible Itinerary Trips): Find backup vehicle(s) from itinerary compatible trips to r from
BPr using Algorithm 6. If (found = 1) then trips in set ICT can recover all passengers in the cut
trip. Stop. Otherwise go to Step 3.

Step 3 (Vehicle Rescheduling Network): Generate the rescheduling time-space network (RTSN),
considering a set of cut trips and the values of δt1 and δt2, based on the off-line timetabling and
peak demand of trips.

Step 4 (TSN Reduction): Reduce the RTSN by applying the reduction procedure suggested by Kliewer,
Mellouli e Suhl (2006).

Step 5 (Network Conversion): Convert the rescheduling time space network to a rescheduling connection
network (RCN), using the algorithm introduced by Guedes e Borenstein (2015).

Step 6 (State Space Reduction): Reduce the RCN to obtain a reduced rescheduling connection, by
applying the state space selection described in Section 5.3.

Step 7 (Initial Solution Generation for the CG): Set all paths obtained in the solution of the state
space selection procedure obtained in Step 5, and the paths in the off-line scheduling (ΩSkf) into a
set of initial columns.

Step 8 (Column Generation): Apply Algorithm 7 in the RCN, using the set of columns defined in Step
7 as initial solutions.

Algorithm 6 Procedure to find itinerary compatible trips
ICT ← ∅, found← 0, pax← PAXr, A← ∅
for all i ∈ ICr do

Obtain the position, the time to arrive to BPr (tir), and available capacity (capi) of each
vehicle assigned to i
if ((tir ≤ δt1) and (capj > 0) then
A← A ∪ {i}

end if
end for
if A 6= ∅ then

Sort trips in ICT in crescent order based on tir
j ← FIRST (ICT)
while ((pax ≤ 0) and (j 6= NULL)) do
pax← pax− capj

ICT ← ICT ∪ {j}
j ← NEXT (ICT)

end while
if pax ≤ 0 then
found← 1

end if
else

Stop
end if

Chapter 5. Solving the problem 74

around 780 and 2800 seconds to solve instances with 8 depots, and 1000 and 1500 trips,
respectively. These CPU times are incompatible with the rescheduling problem. In order to
speed up the solution process, we employ the state space selection procedure developed by
Guedes et al. (2015). The main objective of this procedure is to reduce the complete state
space to a simpler, more manageable representation by focusing attention on a selected
set of deadheading trips. The procedure further eliminates deadheading trips with very
small possibility of being selected in the final solution, decreasing the number of variable
to be solved by the CG algorithm.

In vehicle scheduling problems, it is natural that several deadheading trips are
very expensive to be carried out, since trips that are close geographically can be far apart
due to times in which they must start, while others may be compatible in terms of timing,
but geographically infeasible. Several deadheading trips become too costly to be considered
as viable alternatives in an optimal or close to optimal solution, both due to distance or
timing issues. As a consequence, although the complete solution space is very large, a small
number of variables xkf

ij has a high chance of being used in the final solution. The goal of
this procedure is to identify the set of relevant variables that are selected by any solution
of all |F |× |K| single-depot VSPs (SDVSPs). The reasoning behind this procedure is quite
intuitive. If a variable is not chosen as a solution considering |F | × |K| individual SDVSPs,
then it would have small chance to be chosen as a candidate solution when considering
the whole problem.

The procedure consists in efficiently solving |F |×|K| individual SDVSPs. The arcs
found in any of the solved SDVSPs configures a reduced connection graph, represented by
matrix RMDV TRSPRkf , with RMDV TSPRkf [i][j] = MDV TSPRkf [i][j] if arc (i, j) is
in the solution of any SDV SP kf , k ∈ K, f ∈ F ; and RMDV TSPRkf [i][j] = −1, otherwise.
It should be noted that pull-in and pull-out arcs cannot be reduced since they introduce
severe instabilities in the CG application. Each SDVSP problem is structured by matrix
V SPRfk, easily obtained from MDV TRSPRkf by taking into consideration only the
pull-in and pull-out trips to and from depot k, respectively, and vehicle type f . Each
SDVSP can be modeled as an assignment problem (AP) following Paixão e Branco (1987),
and solved using algorithm LAPJV (JONKER; VOLGENANT, 1987), a well praised
solution method for the AP (DELL’AMICO; TOTH, 2000).

5.4 Initial Solution for the CG
An initial solution is needed in CG. The use of artificial variables penalized by

a big-M cost is the usual approach (PEPIN et al., 2009). However, when applied to the
MDVTRSP in initial experiments, the CG was taking excessive CPU time to find a solution
where all artificial variables are zero. This was caused due to the well known heading-in

Chapter 5. Solving the problem 75

effect in CG of initially producing irrelevant columns (LÜBBECKE; DESROSIERS, 2006).
The literature describes several methods developed towards better initialization in CG
(VANDERBECK, 2005). However, since there is no guarantee that good initial solutions
will improve the convergence process, we decided to apply intuitive and almost free-CPU
time approaches.

Firstly, we considered all paths in the solution of the off-line scheduled as initial
solutions. Let ΩSkf be the set of off-line scheduled paths by vehicle f ∈ F from o(k)
to d(k), k ∈ K. If a path p ∈ ΩSkf , then the correspondent variable θp is set to one,
and included in the set of initial columns θinit. Initial experiments showed that some
improvements were obtained, but the heading-in effect was still present for some instances.

We decided then to incorporate an additional procedure, taking into advantage of
the several paths obtained by the state space selection procedure. We generate additional
initial solutions using the paths p obtained by the state space selection procedure described
above. If a path p is in the solution of any of the |F | × |K| solved SDVSPs, then this path
is inserted in ΩRed, and becomes an additional column in θinit.

Set θinit is then used to compute an initial solution for the restricted master
problem (RMP) in the CGM, offering an upper bound on the integer optimal value. Its
dual solution provides a lower bound on the RMP. Preliminary experiments show that
these two bounds are extremely helpful for speeding up the convergence process of the CG
with an average loss of around 5% in the value of the best solution obtained without using
this scheme. It seems that these two bounds create an effect that is similar to stabilization
processes described in Lübbecke e Desrosiers (2006), significantly smoothing the dual
variables convergence towards their optima. Although very simple in comparison with
previous developed approaches, it has the advantage of being simultaneously very effective
and efficient. When used in conjunction with the state space selection procedure, the
additional CPU time required to handle the initial set of columns is insignificant, being
suitable to be used in the real-time MDVTVRSP.

5.5 Truncated Column Generation
In this section, we propose a truncated CG algorithm for solving the MDVTRSP.

The approach developed in this paper is based on the algorithm presented in Guedes e
Borenstein (2015) for solving the MDVTSP.

5.5.1 Primal Problem
The MDVTRSP can also be formulated as a set partitioning problem, based on

the formulation of Ribeiro e Soumis (1994) for the MDVSP. Let GSkf = (V Skf , ESkf), k ∈

Chapter 5. Solving the problem 76

K, f ∈ F be the planned scheduling CN. Let GRkf = (V Rkf , ERkf), k ∈ K, f ∈ F be the
rescheduling CN obtained from TSNR. Let ΩRkf be the set of all possible rescheduling
paths by vehicle f ∈ F from o(k) to d(k), k ∈ K. Let p ∈ ΩRkf be a vehicle route or
path in the rescheduling network. Let P be a penalty cost if a new path p ∈ ΩRkf \ ΩSkf

is selected in the rescheduling. Let cp the cost of executing route p. Let aip = 1 if trip
i ∈ V Rkf is covered by route p, and aip = 0 otherwise. Let binary variable θp be 1 if route
p is selected in the solution, and θp = 0 otherwise. The path-based formulation for the
MDVTRSP is as follows:

min
∑
f∈F

∑
k∈K

∑
p∈ΩSkf

cpθp +
∑
f∈F

∑
k∈K

∑
p∈ΩRkf\ΩSkf

(cp + P)θp (5.1)

s.t.∑
f∈F

∑
k∈K

∑
p∈ΩRkf

aipθp = 1, ∀i ∈ V Rkf (5.2)

∑
f∈F

∑
k∈K

∑
p∈ΩRkf

qfaipθp ≥ di ∀i ∈ V Rkf (5.3)

∑
p∈ΩRkf

θp ≤ vkf , ∀k ∈ K,∀f ∈ F (5.4)

θp ∈ {0, 1} ∀p ∈ ΩRkf (5.5)

Objective function (5.1) aims to simultaneously minimize the total operational
costs and possible changes in the off-line planned paths. Constraints (5.2) ensure that
each trip is performed by exactly one vehicle. Constraint (5.3) guarantee that the peak
demand of each trip is satisfied, while constraints (5.4) assure that the depot capacity for
each vehicle type is respected.

The relaxation of model (4.1) – (4.6) constitutes the RMP of the CG approach. As
the number of paths in GRkf can still be huge, mainly if a disruption occurs in the beginning
of the planning horizon, the RMP is hard to solve. Let RGRkf = (V Rkf , RERkf), k ∈
K, f ∈ F be the reduced rescheduling CN obtained by using the selection state space
reduction process in network GRkf . Observe that only arcs are reduced, therefore the two
networks have the same set of nodes V Rkf . Let ΩRkf

r be the be the set of all possible
rescheduling paths in RGRkf . If we replace set ΩRkf by ΩRkf

r in the objective function
and in all constraints of the RMP, we obtain a new problem, called the reduced restricted
master problem (RRMP). In the RRMP, the number of possible paths is significantly
smaller than in the RMP, consequently reducing the number of variables θp. In order to
speed up the solution process, the MDVTRSP is solved by dynamically generating the
paths, based on a Dantzig-Wolfe decomposition, through CG by repeatedly solving (i) the
RRMP with a subset of columns and (ii) a pricing subproblem to produce columns with
negative reduced cost. Even if the RRMP is solved to optimality by the CG algorithm, it is
not guaranteed that the resulting optimal solution is integral. A simple rounding procedure
was included in the CG algorithm to provide integer solutions as better explained at

Chapter 5. Solving the problem 77

Section 5.5.3).

5.5.2 Pricing Problem
Let dual variables γ, π, and σ correspond to constraints (4.2), (4.3), and (4.4),

respectively. Considering these dual variables, we have the following pricing problem on
the reduced network RGRkf :

min − σkf +
∑

(i,j)∈RERkf

(cf
ij − πj − qfγi)xkf

ij (5.6)

s.t. ∑
j:(j,i)∈RERkf

xkf
ji −

∑
j:(i,j)∈RERkf

xkf
ij = 0 ∀i ∈WRkf ,∀k ∈ K, f ∈ F (5.7)

xkf
ij ∈ {0, 1} ∀(i, j) ∈ RERkf , k ∈ K, f ∈ F (5.8)

where WRkf = V Rkf \ {o(k), d(k)}.

The pricing problem consists of finding the shortest path from origin depot o(k)
to same destination depot d(k) in the RGRkf network. This problem can be easily solved
by a specialized algorithm.

5.5.3 Modified Truncated CG Algorithm

The developed truncated CG as based in the algorithm developed by Pepin et al.
(2009). This algorithm requires three predefined parameters, namely Zmin, I, and Ωmin.
The algorithm terminates early if the optimal value of the (R)RMP has not decreased by
more than Zmin in the last I iterations. Parameter Ωmin is a threshold value in the rounding
of variables θp. However, we introduced two changes to this algorithm based on Guedes
e Borenstein (2015), better customizing it to the MDVTRSP. We introduced a fourth
parameter, Num_Stabilized < I. This parameter is used to stop generating columns
when the objective function of the (R)RMP remains unaltered in the last Num_Stabilized
iterations. A rounding step is then carried out to perturb the solution, avoiding a stagnation
of the search process in the same point of the state space solution. This strategy is a good
way of reducing the tailing-off effect in the CG convergence for the MDVTRSP. The
second change was in the way the columns are inserted in the (R)RMP. Our approach uses
the traditional way of selecting columns to insert in the current master problem. However,
it solves the master problem right after a new column is inserted. The idea is to select
better columns by always using updated duals, avoiding the generation of many similar
columns. Algorithm 7 presents an outline of the developed modified truncated CG.

The use of initial solutions, the introduction of a reduced restricted master problem,
and the use of these two strategies to avoid the common problems in CG convergence,

Chapter 5. Solving the problem 78

Algorithm 7 Modified Truncated Column Generation for the MDVTRSP

Step 1 (Initialization): Set parameters Zmin, Imin, Num_Stabilized and θmin. Set n← 1, n0 ← 1 and
stabilized← 0.

Step 2 Initial Solution Set the initial set of columns θinit = {θp = 1,∀p ∈ ΩRkf
n }, where ΩRkf

n ←
ΩRed ∪ ΩSkf .

Step 3 (Reduced Restricted Master Problem): Solve the RRPM. If (n = 1) then use the set of
initial columns θinit. Otherwise, use the current set θn. Obtain a primal solution (θn, δn), and cost
ZRRMP

n .

Step 4 (Stabilization Test): If (stabilized > Num_Stabilized) then go to step 7; otherwise go to step
5.

Step 5 (Early Termination Test): If (n−n0 > Imin) and (ZRRMP
n0

−ZRRMP
n < Zmin) then go to step

7; otherwise go to step 6.

Step 6 (Pricing Solution): For each k ∈ K and for each f ∈ F do

Step 6.1 Update the costs of arcs ARkf using dual variables (πn, σn, γn). Solve a shortest path in
graph RGRkf using the SLF algorithm (BERTSEKAS, 1993).

Step 6.2 If the subproblem presents a negative reduced cost then set ΩRkf
n+1 ← ΩRkf

n ∪ SRkf
n , where

SRkf
n is the solution of the subproblem, n← n+ 1. Solve the RRPM with the updated set of

columns. If ZRRMP
n−1 − ZRRMP

n = 0 then stabilized← stabilized+ 1 else stabilized← 0. Go
to step 4.

Step 7 (Master Problem Feasibility Test): If (δn 6= 0) STOP; else go to step 8.

Step 8 (Integrality): If (θn ∈ {0, 1}) then the solution was found. Return θn. Stop.

Step 9 (Variable Fixing): Perform a rounding of the no-integer variables in θn. If (θp,n ≥ θmin) set
θp ← 1. If no such variables exist set the highest value in θn as one. Set n← n+ 1 and n0 ← n. Go
to Step 3.

has created a solution approach that is capable to solve the MDVTRSP up to few CPU
minutes even for large instances.

79

6 Computational Experiments

The main objective of the computational experiments was to evaluate the per-
formance of the developed solution approach, in terms of quality and efficiency of the
solution, using random generated instances, comparing some algorithm variants under
different parametrization.

6.1 Experimental Setup
Problem instances were generated as in Guedes e Borenstein (2015). First, stations

s1, s2, . . . , s20 were created as the nodes of a planar graph employing Dorogovtsev e Mendes
(2002)’s algorithm. Next, trips were generated. For each trip i, i = 1, . . . , n the starting
and relief stations were randomly selected. The starting time sti followed a uniformly
random integer in interval (0,23). However, as trips are not uniformly distributed during
the planning horizon, being more frequent in rush hours, we integrated a further random
process to include a trip in the timetabling. The frequency of trips (FT (sti)) was based
on a curve obtained by a weighted sum of three Gaussian distributions, with averages
of 7, 12, and 18, and standard deviations of 2, 1.5, and 3, respectively. These values
were obtained based on exiting timetables of several cities in Brazil. The average values
represent rush hours. The weights of each distribution were 4.5, 1, and 5, respectively,
guaranteeing that the resulting curve has a total area equal to 1. Along with sti, an
additional uniformly distributed variable, u(0, 1), was generated. Trip i is included in
the timetabling if u ≥ FT (sti). Since the ending time eti of trip i must include a
travel time between stations sa and sb, and a dwell time at vehicle stops, we generated
eti = (d(sa, sb) +Distmin) ∗ rnd(0, 150) ∗ 60, where Distmin = 180s, and rnd is a function
that generates uniformly random integer in interval (0,150). The demand of trip i,D(i),
was computed using D(i) = (rnd(0, Q)∗FT (sti))+Dmin, where Q is the maximum vehicle
type capacity, and Dmin is a minimum demand value. In our experiments, Dmin = 20.

Three different vehicles were considered in the experiments, with capacities 84
(type A), 9 (type B), and 190 (type C) passengers. Travel costs (including waiting costs)
cf

ij were defined based on the vehicle type, using cost factors directly related with the
vehicle fixed cost. Cost factors (αf) of 0.8, 1, 1.2 were computed for vehicle types A, B,
and C, respectively. The travel costs were computed as follows:

• cf
ij = αf ∗ (stj − eti) ∗ 8, for the deadheading trips between two compatible trips i
and j.

Chapter 6. Computational Experiments 80

• cf
ij = αf ∗ (stj − eti) ∗ 4, for the waiting trips between two compatible trips i and j.

• cf
kj = αf ∗ (5, 000 + d(o(k), sj)), for the pull-out trips from depot k ∈ K.

• cf
jk = αf ∗ (5, 000 + d(sj, d(k)), for the pull-in trips to depot k ∈ K.

For the comparison of the algorithms, random instances were generated with
ST = {500, 1000, 1500, 2000, 2500} and K = {4, 8}. For each combination of trips, depots,
and vehicle types, five instances were generated, totaling 200 instances. Given the random
nature of the instances, itinerary compatible trips were not considered in the experiments.
The solution process is better stressed when this issue is not taken into account.

To evaluate the performance of the developed approach, we first generated a
timetabling for each tested instance. Next, an MDVSTP problem was solved. Then, a
disruption was randomly introduced at around 6 a.m. in one of the trips scheduled to
start before this time. We assumed that trips are cut in a distance proportional to the
difference between its starting time and the disruption time. For instance, if a disruption
occurs in a trip with a duration of one hour after 15 minutes of its starting, the breakpoint
point is located at 1/4 of the starting station in the service arc representing this trip.

The following notation is used to indicate the compared algorithms: (i) MTCG:
Modified truncated CG with variable fixing, without considering initial solutions or state
space reduction. This variant do not consider Steps 6 and 7 of Algorithm 5; (ii) JVCG:
In this variant, Step 6 is carried out, but not Step 7, and the CG approach is run with
reduced matrix RMDV TRSP ; (iii) ISCG: Both Steps 6 and 7 are executed, but matrix
MDV TRSP is solved by the CG approach; and (iv) IJCG: The complete framework
presented in Algorithm 5, using the state space reduction procedure and the initial solutions
for the CG approach. The algorithms were implemented in C++. All experiments were
carried out in an Intel Xeon CPU E5-1603, 2.80 GHz, 16 GB de RAM. We employed
CPLEX 12.5 to solve all mixed linear programming models.

The settings of CG parameters, namely Zmin, I, and Ωmin, were carried out by
experimentation, using some of the instances generated for the computational experiments.
Different combinations of these three parameters led to distinct solutions and CPU times.
The best quality solutions were obtained with small values of Zmin and large values of I
and Ωmin, but, in general, with low efficiency. The best solutions were found with Zmin = 0.
On the one hand, the solution quality was improved with the increase of parameter I. On
the other hand, the solution efficiency was negatively affected by the increase of I. Good
compromised solutions, in terms of quality and CPU times, were obtained with I = 10.
Since our initial experiments were not conclusive in terms of finding a clear correlation
between this parameter and the solution quality, we set Ωmin = 0.5, a quite low value
comparing with the off-line scheduling, towards accelerating the solution process.

Chapter 6. Computational Experiments 81

6.2 Results
This section presents the obtained results from the experiments carried out,

analyzing the most important findings. Table 9 and 10 compare the performance of
algorithms MTCG, JVCG, ISCG, and IJCG for five instances of each problem, for values
of P equal to 1,000 and 100,000, respectively. The first two columns display the instance
dimensions, in terms of the number of trips and depots, respectively. The next column shows
the algorithm variant. The next four columns show the average CPU time, the average
gap (gap), the average speedup factor (Speedup), and the average changes (in percentage)
from the off-line scheduling (Exchanges). The average gap (Gap) and the speedup factor
were computed taken the MTCG as comparison basis. For instance, Gap = 100× SA

SMT CG

,
where SMT CG is the average best solutions obtained by algorithm MTCG, and SA is the
average best solution obtained by the algorithm being compared, say algorithm A. As
can we see the P = 100, 000 display smaller average changes and gaps albeit the speedup
decrease a little. For P = 100, 000 the gap, speedup factor and route change are 1.13%,
9.43, 44.24% for JVCG; 5.62%, 17.71, 54.28% for ISCG and 0.92%, 23.21, 45.44% for
IJCG, respectively. So from here the results will be with this parameter value.

As has been pointed out by the table 10, algorithms IJCG, JVCG, and ISCG, in
general, offer good solution quality (some with negative gaps) very efficiently. IJCG is
the better trade-off algorithm because the gap is under 2% almost all the time and the
speedup factor up to 9.5 (500 trips and 8 depots) until 51.90 (2500 trips and 4 depots)
and, in average, 23.21.

Based on the results reported by table 10, it is possible to state that the use of
state space reduction for the CG algorithm had a significant effect in the efficiency of the
algorithms, while the initial solution had a major effect in the quality of the solution.

Analyzing the solution quality, algorithms IJCG, JVCG, and ISCG, on average,
presents a gap around 2.56%. For IJCG the maximum gap was 2.23% and 0.92% in average.
The average CPU time for all algorithms is highly dependent on the instance size. Overall,
our developed implementations were quite efficient. Algorithm IJCG obtained in average
the best solutions of all tested algorithms, considering both quality and efficiency. IJCG
obtained better quality solutions with a speedup factor of 23.21, on average, in comparison
with algorithm MTCG, a more traditional CG implementation for the MDVTRSP. The
simultaneous use of good initial solutions and state space reduction significantly increased
the convergence process of the CG method, decreasing or eliminating the well-known
tailing effect (LÜBBECKE; DESROSIERS, 2006). Table 10 shows that either the use of
initial solutions for the truncated CG algorithm or the state space reduction led to efficient
algorithms. The use of these procedures decreased, in several instances, the number of
required iterations to find a good solution.

Chapter 6. Computational Experiments 82

Table 9 – Comparison results with P = 1000

N D Alg CPU(s) Gap Speedup Route Changes
500 4 MTCG 58.20 - - 75.43%
500 4 JVCG 8.00 10.16% 7.20 78.53%
500 4 ISCG 49.20 0.00% 1.17 75.74%
500 4 IJCG 3.80 8.78% 16.67 79.41%
500 8 MTCG 85.60 - - 77.62%
500 8 JVCG 13.00 9.49% 6.66 77.96%
500 8 ISCG 85.00 -0.73% 1.02 77.27%
500 8 IJCG 9.80 9.00% 9.15 79.61%
1000 4 MTCG 542.00 - - 73.41%
1000 4 JVCG 44.40 9.77% 13.13 78.20%
1000 4 ISCG 89.60 6.40% 25.36 83.21%
1000 4 IJCG 17.00 6.40% 36.83 83.02%
1000 8 MTCG 600.00 - - 74.49%
1000 8 JVCG 95.40 8.65% 6.31 76.37%
1000 8 ISCG 337.20 4.54% 5.02 76.15%
1000 8 IJCG 55.60 8.52% 11.17 76.51%
1500 4 MTCG 1699.40 - - 73.00%
1500 4 JVCG 163.80 8.78% 10.72 77.76%
1500 4 ISCG 38.40 10.76% 44.90 83.99%
1500 4 IJCG 49.00 8.78% 38.22 80.88%
1500 8 MTCG 2046.80 - - 80.60%
1500 8 JVCG 257.60 8.53% 8.07 83.11%
1500 8 ISCG 126.80 11.68% 16.24 85.13%
1500 8 IJCG 132.40 7.86% 15.85 83.03%
2000 4 MTCG 4312.00 - - 75.43%
2000 4 JVCG 311.40 8.92% 14.04 78.11%
2000 4 ISCG 68.00 9.83% 63.54 83.61%
2000 4 IJCG 60.40 9.51% 71.63 81.77%
2000 8 MTCG 4622.00 - - 73.90%
2000 8 JVCG 582.00 5.46% 7.99 77.53%
2000 8 ISCG 1383.80 5.40% 18.32 77.12%
2000 8 IJCG 253.20 5.84% 20.12 76.90%
2500 4 MTCG 8680.00 - - 71.14%
2500 4 JVCG 575.67 8.32% 15.25 76.50%
2500 4 ISCG 114.67 8.47% 76.15 80.92%
2500 4 IJCG 105.33 8.33% 83.82 80.23%
2500 8 MTCG 8637.00 - - 66.83%
2500 8 JVCG 923.40 7.69% 9.43 71.67%
2500 8 ISCG 807.40 10.90% 25.46 72.07%
2500 8 IJCG 291.40 8.60% 34.80 72.53%

Chapter 6. Computational Experiments 83

Table 10 – Comparison results with P = 100000

N D Alg CPU(s) Gap Speedup Route Changes
500 4 MTCG 53.00 - - 56.41%
500 4 JVCG 7.40 0.47% 7.20 49.31%
500 4 ISCG 46.40 -1.13% 1.13 57.67%
500 4 IJCG 3.80 -0.62% 14.52 50.15%
500 8 MTCG 81.00 - - 60.01%
500 8 JVCG 12.20 2.53% 6.68 53.23%
500 8 ISCG 86.00 0.37% 0.94 59.83%
500 8 IJCG 9.20 2.23% 9.51 53.70%
1000 4 MTCG 531.20 - - 54.79%
1000 4 JVCG 44.40 1.81% 12.41 45.44%
1000 4 ISCG 171.40 7.11% 16.04 60.41%
1000 4 IJCG 20.80 1.35% 25.84 48.12%
1000 8 MTCG 505.00 - - 45.89%
1000 8 JVCG 64.20 2.33% 7.91 39.83%
1000 8 ISCG 452.00 -0.42% 1.12 46.51%
1000 8 IJCG 43.40 2.05% 12.25 40.13%
1500 4 MTCG 1448.60 - - 48.49%
1500 4 JVCG 144.20 0.23% 10.14 40.82%
1500 4 ISCG 48.00 12.22% 30.67 56.02%
1500 4 IJCG 52.40 0.20% 29.19 41.95%
1500 8 MTCG 1656.40 - - 57.95%
1500 8 JVCG 230.80 0.85% 7.25 51.41%
1500 8 ISCG 683.40 2.55% 7.15 61.07%
1500 8 IJCG 109.40 0.69% 15.59 51.54%
2000 4 MTCG 3433.60 - - 53.02%
2000 4 JVCG 266.80 2.80% 13.03 43.74%
2000 4 ISCG 71.80 12.60% 48.89 59.66%
2000 4 IJCG 92.00 2.03% 39.27 46.19%
2000 8 MTCG 3434.80 - - 48.43%
2000 8 JVCG 417.00 0.30% 8.26 43.56%
2000 8 ISCG 1510.00 4.61% 4.00 47.09%
2000 8 IJCG 206.40 0.13% 17.21 43.82%
2500 4 MTCG 6934.67 - - 50.33%
2500 4 JVCG 549.00 0.26% 12.68 43.54%
2500 4 ISCG 129.67 9.70% 53.71 58.56%
2500 4 IJCG 139.33 1.78% 51.90 46.71%
2500 8 MTCG 5902.60 - - 36.92%
2500 8 JVCG 672.60 -0.22% 8.72 31.51%
2500 8 ISCG 731.20 8.58% 13.42 35.96%
2500 8 IJCG 351.40 -0.61% 16.82 32.13%

Chapter 6. Computational Experiments 84

Table 11 – Results with two simultaneous breaks

Gap SpeedUp Route Changes
JVCG 2.22% 8.69 26.91%
ISCG 4.06% 11.72 32.42%
IJCG 1.93% 17.77 27.27%

The results considering two simultaneous disruptions at around 6 a.m. can be
seen in table 11. Algorithm IJCG, in general, offer better solution quality (some with
negative gaps) very efficiently. IJCG is the better trade-off algorithm because the gap is,
in average, around 2% and the speedup factor almost 18 times faster than benchmark.
Algorithm ISCG was the most disturbed by the breaks demonstrated by high gap, low
speedup factor and the biggest percentage route exchanges.

85

7 Conclusions

In this paper, we presented a framework to solve the MDVTRSP in a fast approach.
This problem is important, as disruptions happen in the daily schedules of every company,
and the order of transportation should be restored as soon as possible. Such a problem
requires a real-time solution because the results must be processed by operators and
communicated to the bus drivers, which also takes time. As the size of the model is too
big to be solved in such short time, we proposed two-phase fast heuristic algorithms
to produce results in a couple of seconds. Our tests on randomly generated instances
showed that the framework gives an excellent trade-off solution. Because of their ability to
produce multiple good quality solutions in a short time, these algorithms seem suitable
for a decision support system that helps the operators of a transportation company in the
rescheduling process by giving them a possible solution for the problem.

To speed up the solution of very large instances, we developed a state space
reduction procedure that selects, from the whole feasible solution space, a good set of
arcs and uses it as an initial solution. With the use of these preprocessing procedures, the
MDVTRSP can be solved with efficiency and efficacy. To the best of our knowledge, no
other research has been successful in solving this problem in this manner.

The framework allows managers, after they detect schedule disruptions, to generate
a really fast rescheduling. A column generation framework with state space reduction
strategy was adopted. From computational experiments performed on randomly generated
data, it is possible to observe that the algorithm that combines state space reduction and
an initial solution obtained, on average, the best solutions, requiring the smallest CPU
times, overcoming all remaining algorithms for the set of analyzed instances. So IJCG was
the best trade-off procedure and this algorithm is our recommendation.

Future research is directed towards using the heuristic framework to develop
novel approaches for solving the integrated crew and vehicle rescheduling problem in
transportation contexts where the time and heterogeneous fleet is a relevant characteristic.

86

Final Remarks

This disseratation presented a three articles compilation in urban bus transporta-
tion optimization. The main objective was to study and implement heuristic solutions
method based on Operations Research to optimizing offline and online vehicle (re)scheduling
problems considering multiple depots and heterogeneous fleet.

In the first paper, a fast heuristic approach to deal with the multiple depot vehicle
scheduling problem was proposed. First, the heuristics employ a combination of procedures
to select, from the whole feasible solution space, a good set of arcs to compose the solution
of the problem. Each procedure is based on the following selection criteria: (i) the set of
paths found in the solution of |K|-SDVSPs; and (ii) the set of paths found in the solution
of a relaxed MDVSP formulation, where the sequence of trips carried out by a vehicle
can start and finish in different depots. The selected set of arcs is then solved by using
a modified truncated CG algorithm. The developed approach led to very competitive
method to solve the MDVSP.

Different combinations of the selection procedures were tested, resulting in three
different variants. On the one hand, variant R1 achieved narrow gaps to best-known
solutions (0.62% on average) with exceptional running times (roughly 34 times faster, on
average, than previously reported results). On the other hand, the variant R1+R2 offered
the best trade-off between solution quality and running times. It was, on average, 16
times faster than previously reported results Pepin et al. (2009), Otsuki e Aihara (2014),
obtaining solutions with an average gap of around 0.5%. We think the main contributions
are the column generation framework for large instances and the state-space reduction
techniques for accelerating the solutions.

In the second paper, we added complexity when considering the heterogeneous fleet,
denoted as "the multiple-depot vehicle-type scheduling problem" (MDVTSP). Although the
MDVTSP importance and applicability, mathematical formulations and solution methods
for it are still relatively unexplored. We introduced a new heuristic framework, combining
time-space network, truncated column generation (TCG) and state space reduction, to
solve large instances of the MDVTSP. With the use of these preprocessing procedures, the
MDVTSP can be solved with efficiency and efficacy in comparison with a more traditional
CG implementation.

From computational experiments performed on randomly generated data, it was
possible to observe that the algorithm that combines state space reduction and an initial
solution obtained, on average, the best solutions, requiring the smallest CPU times,

Introduction 87

overcoming all remaining algorithms for the set of analyzed instances. This implementation
is more efficient than the state-of-the-art in MDVTSP solution, considering the same
number of depots and trips. However, in a real case instance, the best solution was obtained
by the heuristic that uses only the state space reduction (SSR). Comparing with the
current manual scheduling used by the transport consortium, savings of around 31% and
35% were obtained in total costs and in the number of vehicles, respectively. We think the
main contribution is the column generation framework for instances with heterogeneous
fleet since no other proposal in the literature has been identified at moment by the authors.

In the third part of this dissertation, however, we focused on the real-time schedule
recovery for the case of serious vehicle failures. Such vehicle breakdowns require that the
remaining passengers from the disabled vehicle, and those expected to become part of
the trip, to be picked up. In addition, since the disabled vehicle may have future trips
assigned to it, the given schedule may be deteriorated to the extent where the fleet plan
may need to be adjusted in real-time depending on the current state of what is certainly a
dynamic system. Usually, without the help of a rescheduling algorithm, the dispatcher
either cancels the trips that are initially scheduled to be implemented by the disabled
vehicle (when there are upcoming future trips planned that could soon serve the expected
demand for the canceled trips), or simply dispatches an available vehicle from a depot.
In both cases, there may be considerable delays introduced. This manual approach may
result in a poor solution. The implementation of new technologies (e.g., automatic vehicle
locators, the global positioning system, geographical information systems, and wireless
communication) in public transit systems makes it possible to implement real-time vehicle
rescheduling algorithms at low cost.

The framework allows managers, after they detect schedule disruptions, to generate
a really fast rescheduling with, on average, around to 23 times faster than benchmarking
at a cost of around 2% in objetive function value. If it happens two simultaneous breaks
still around 18 times faster. The algorithm that combines state space reduction and an
initial solution obtained, on average, the best solutions, requiring the smallest CPU times,
overcoming all remaining algorithms for the set of analyzed instances. So IJCG was the
best trade-off procedure and this algorithm is our recommendation.

The main contribution is the efficient approach to rescheduling under a disruption.
The approach with integrated state-space reduction, initial solution, and column generation
framework enable a really real-time action. In less than five minutes rescheduling all trips
remaining.

88

Bibliography

BARNHART, C.; JOHNSON, E. L.; NEMHAUSER, G. L.; SAVELSBERGH, M. W. P.;
VANCE, P. H. Branch-and-price: column generation for solving huge integer programs.
Operations Research, v. 46, n. 3, p. 316–329, 1998.

BEASLEY, J. E.; CHRISTOFIDES, N. An algorithm for the resource constrained
shortest-path problem. Networks, v. 19, n. 4, p. 379–394, 1989.

BERTOSSI, A. A.; CARRARESI, P.; GALLO, G. On some matching problems arising in
vehicle scheduling models. Networks, v. 17, n. 3, p. 271–281, 1987.

BERTSEKAS, D. A simple and fast label correcting algorithm for shortest paths.
Networks, v. 23, p. 703–709, 1993.

CACCHIANI, V.; HUISMAN, D.; KIDD, M.; KROON, L.; TOTH, P.; VEELENTURF,
L.; WAGENAAR, J. An overview of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodological, v. 63, p. 15 – 37, 2014.
ISSN 0191-2615. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0191261514000198>.

CAROSI, S.; GUALANDI, S.; MALUCELLI, F.; TRESOLDI, E. Delay management in
public transportation: Service regularity issues and crew re-scheduling. Transportation
Research Procedia, v. 10, p. 483 – 492, 2015. ISSN 2352-1465. 18th Euro Working Group
on Transportation, EWGT 2015, 14-16 July 2015, Delft, The Netherlands. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S2352146515001891>.

CARPANETO, G.; DELL’AMICO, M.; FISCHETTI, M.; TOTH, P. A branch and bound
algorithm for the multiple depot vehicle scheduling problem. Networks, v. 19, n. 5, p.
531–548, 1989.

CEDER, A. A. Optimal multi-vehicle type transit timetabling and vehicle scheduling.
Procedia - Social and Behavioral Sciences, v. 20, n. 0, p. 19 – 30, 2011.

CEDER, A. A. Public-transport vehicle scheduling with multi vehicle type. Transportation
Research Part C: Emerging Technologies, v. 19, n. 3, p. 485 – 497, 2011.

CLAUSEN, J.; LARSEN, A.; LARSEN, J.; REZANOVA, N. J. Disruption management
in the airline industry-concepts, models and methods. Computers & Operations Research,
v. 37, n. 5, p. 809 – 821, 2010. Disruption Management.

DÁVID, B.; KRÉSZ, M. A model and fast heuristics for the multiple depot bus
rescheduling problem. In: 10th International Conference on the Practice and Theory of
Automated Timetabling (PATAT). [S.l.: s.n.], 2014.

DELL’AMICO, M.; TOTH, P. Algorithms and codes for dense assignment problems: the
state of the art. Discrete Applied Mathematics, v. 100, n. 1-2, p. 17–48, 2000.

DESAULNIERS, G.; HICKMAN, M. D. Public transit. In: BARNHART, C.; LAPORTE,
B. (Ed.). Handbooks in Operations Research and Management Science, Transportation.
[S.l.]: North-Holland, 2007. p. 69–127.

http://www.sciencedirect.com/science/article/pii/S0191261514000198
http://www.sciencedirect.com/science/article/pii/S0191261514000198
http://www.sciencedirect.com/science/article/pii/S2352146515001891

Bibliography 89

DOROGOVTSEV, S. N.; MENDES, J. F. F. Evolution of networks. Advanced Physics,
v. 51, p. 1079 – 1187, 2002.

GINTNER, V.; KLIEWER, N.; SUHL, L. Solving large multiple-depot multiple-
vehicle-type bus scheduling problems in practice. OR Spectrum, v. 27, p. 507–523,
2005.

GUEDES, P. C.; BORENSTEIN, D. Column generation based heuristic framework for
the multiple-depot vehicle type scheduling problem. Computers & Industrial Engineering,
Pergamon, v. 90, p. 361–370, 2015.

GUEDES, P. C.; LOPES, W. P.; ROHDE, L. R.; BORENSTEIN, D. Simple and efficient
heuristic approach for the multiple-depot vehicle scheduling problem. Optimization
Letters, v. 10, n. 7, p. 1449–1461, October 2015.

HADJAR, A.; MARCOTTE, O.; SOUMIS, F. A branch-and-cut algorithm for the
multiple depot vehicle scheduling problem. Operations Research, v. 54, n. 1, p. 130–149,
2006.

HANE, C. A.; BARNHART, C.; JOHNSON, E. L.; MARSTEN, R. E.; NEMHAUSER,
G. L.; SIGISMONDI, G. The fleet assignment problem: solving a large-scale integer
program. Math. Program., Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 70,
n. 2, p. 211–232, out. 1995.

HASSOLD, S.; CEDER, A. A. Public transport vehicle scheduling featuring multiple
vehicle types. Transportation Research Part B: Methodological, v. 67, n. 0, p. 129 – 143,
2014. ISSN 0191-2615.

HUISMAN, D.; FRELING, R.; WAGELMANS, A. P. M. A robust solution approach to
the dynamic vehicle scheduling problem. Transportation Science, v. 38, n. 4, p. 447–458,
2004.

HUISMAN, D.; FRELING, R.; WAGELMANS, A. P. M. Multiple-depot integrated
vehicle and crew scheduling. Transportation Science, v. 39, n. 4, p. 491–502, 2005.

IBARRA-ROJAS, O.; DELGADO, F.; GIESEN, R.; MUÑOZ, J. Planning, operation,
and control of bus transport systems: A literature review. Transportation Research Part
B: Methodological, v. 77, p. 38–75, 2015.

JIN, J. G.; TEO, K. M.; ODONI, A. R. Optimizing bus bridging services in response to
disruptions of urban transit rail networks. Transportation Science, INFORMS, v. 50, n. 3,
p. 790–804, 2015.

JONKER, R.; VOLGENANT, A. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing, Springer-Verlag, v. 38, n. 4, p. 325–340,
1987.

KLIEWER, N.; MELLOULI, T.; SUHL, L. A time-space network based exact optimization
model for multi-depot bus scheduling. European Journal of Operational Research, v. 175,
n. 3, p. 1616–1627, 2006.

LAURENT, B.; HAO, J.-K. Iterated local search for the multiple depot vehicle scheduling
problem. Computers & Industrial Engineering, v. 57, n. 1, p. 277–286, 2009.

Bibliography 90

LI, J. Q.; HEAD, K. L. Sustainability provisions in the bus scheduling problem.
Transportation Research Part D-Transport and Environment, v. 14, n. 1, p. 50–60, 2009.

LI, J.-Q.; MIRCHANDANI, P. B.; BORENSTEIN, D. Vehicle rescheduling problem:
model and algorithms. Networks, v. 50, n. 3, p. 211–229, 2007.

LI, J.-Q.; MIRCHANDANI, P. B.; BORENSTEIN, D. A vehicle rescheduling problem
with real-time vehicle reassignments and trip cancellations. Transportation Research Part
E-Logistics and Transportation Review, v. 45, n. 3, p. 419–433, 2009.

Löbel, A. Vehicle scheduling in public transit and Lagrangean pricing. Management
Science, v. 44, n. 12, p. 1637–1649, 1998.

LÜBBECKE, M. E.; DESROSIERS, J. Selected topics in column generation. Operations
Research, v. 53, n. 6, p. 1007–1023, 2006.

MEHLHORN, K.; ZIEGELMANN, M. Resource constrained shortest paths. In:
PATERSON, M. (Ed.). Algorithms - ESA 2000. [S.l.]: Springer Berlin Heidelberg, 2000,
(Lecture Notes in Computer Science, v. 1879). p. 326–337.

OTSUKI, T.; AIHARA, K. New variable depth local search for multiple depot vehicle
scheduling problems. Journal of Heuristics, p. 1–19, 2014.

OUGHALIME, A.; ISMAIL, W. R.; LIONG, C.-Y.; AYOB, M. B. Vehicle and driver
scheduling modelling: A case study in ukm. In: Proceedings of the 2nd Conference on
Data Mining and Optimization, DMO 2009, Universiti Kebangsaan Malaysia, 27-28
October 2009. [S.l.]: IEEE, 2009. p. 53–59.

OUKIL, A.; Ben Amor, H.; DESROSIERS, J.; El Gueddari, H. Stabilized column
generation for highly degenerate multiple-depot vehicle scheduling problems. Computers
and Operations Research, v. 34, p. 817–834, 2007.

PAIXÃO, J. M.; BRANCO, I. A quasi-assignment algorithm for bus scheduling. Networks,
v. 17, n. 3, p. 249–269, 1987.

PEPIN, A.; DESAULNIERS, G.; HERTZ, A.; HUISMAN, D. A comparison of five
heuristics for the multiple depot vehicle scheduling problem. Journal of Scheduling, v. 12,
n. 1, p. 17–30, 2009.

RAMOS, J. A.; REIS, L. P.; PEDROSA, D. Solving heterogeneous fleet multiple depot
vehicle scheduling problem as an asymmetric traveling salesman problem. In: EPIA. [S.l.:
s.n.], 2011. p. 98–109.

RIBEIRO, C. C.; SOUMIS, F. A column generation approach to the multiple-depot
vehicle scheduling problem. Operations Research, v. 42, n. 1, p. 41–52, 1994.

ROMAN, A. Top 100 bus fleet. Metro Magazine, p. 25–30, 2012.

SPLIET, R.; GABOR, A. F.; DEKKER, R. The vehicle rescheduling problem. Computers
& Operations Research, Elsevier, v. 43, p. 129–136, 2014.

STEINZEN, I.; GINTNER, V.; SUHL, L.; KLIEWER, N. A time-space network
approach for the integrated vehicle- and crew-scheduling problem with multiple depots.
Transportation Science, v. 44, n. 3, p. 367–382, 2010.

Bibliography 91

Sun Tran. Sun Tran Monthly Operations Report, June 2005.

UÇAR, E.; BIRBIL, Ş. İ.; MUTER, İ. Managing disruptions in the multi-depot vehicle
scheduling problem. Transportation Research Part B: Methodological, Elsevier, 2016.

van den HEUVEL, A. P. R. .; van den AKKER, J. M.; NIEKERK, M. E. van
K. Integrating timetabling and vehicle scheduling in public bus transportation. The
Netherlands, 2008. 17 p.

VANDERBECK, F. Implementing mixed integer column generation. In: DESAULNIERS,
G.; DESROSIERS, J.; SALOMON, M. (Ed.). Column generation. [S.l.]: Springer, 2005. p.
331–358.

VISENTINI, M. S.; BORENSTEIN, D.; LI, J.-Q.; MIRCHANDANI, P. B. Review
of real-time vehicle schedule recovery methods in transportation services. Jornal of
Scheduling, v. 17, n. 6, p. 541–567, Dec 2014.

WOLSEY, L. A. Integer Programming. Chichester, USA: Wiley, 1998.

YILDIZ, E. Multi-depot vehicle scheduling with disruptions. Dissertação (Mestrado) —
Sabanci University, Istanbul, Turkey, 2011.

	Title page
	Approval
	Contents
	Introduction
	Simple and efficient heuristic approach for the multiple-depot vehicle scheduling problem
	Introduction
	Problem
	Method
	State Space Reduction
	k-SDVSP Based Selection Procedure (Selection R1)
	Relaxed-MDVSP Selection Procedure (Selection R2)

	Modified Truncated Column Generation

	Computational Results
	Conclusion

	Column generation based heuristic framework for the multiple-depot vehicle type scheduling problem
	Introduction
	Literature Review
	Problem Definition and Formulation
	Vehicle Scheduling Network
	Mathematical Formulation

	Algorithms
	Truncated Column Generation
	Primal Problem
	Pricing Problem
	Modified Truncated Column Generation Algorithm

	Accelerating Heuristic for Large-Scale Instances

	Computational Experiments
	Experiments Configuration
	Results
	Tests on a Real-World Instance

	Conclusions

	A Novel Efficient Approach for the Real-Time Multi-Depot Vehicle Type Rescheduling Problem
	Introduction
	Literature Review
	Problem Description
	Modeling the MDVTRSP
	Network Structures
	Vehicle Rescheduling Network
	Mathematical Formulation

	Solving the problem
	Solution Approach
	Finding Itinerary Compatible Trips
	State Space Reduction
	Initial Solution for the CG
	Truncated Column Generation
	Primal Problem
	Pricing Problem
	Modified Truncated CG Algorithm

	Computational Experiments
	Experimental Setup
	Results

	Conclusions
	Final Remarks

	Bibliography

