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Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies

with little star formation, gas and stars are counter-rotating, demonstrating the importance of

external gas acquisition in these galaxies. However, systematic studies of such phenomena in

blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in

driving evolution of blue galaxies. Here, based on new measurements with integral field

spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-

rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-

rotators show younger stellar populations and more intense, ongoing star formation than their

outer parts, indicating ongoing growth of the central regions. The result offers observational

evidence that the acquisition of external gas in blue galaxies is possible; the interaction with

pre-existing gas funnels the gas into nuclear regions (o1 kpc) to form new stars.
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I
n the framework of hierarchical structure formation, a galaxy
grows from primordial density fluctuations and its subsequent
evolution is shaped by a series of external and internal

processes. Galaxies with gas and stars counter-rotating are the key
demonstrations for the regulation by external processes1,2.
External processes, for example major mergers, minor mergers
or gas accretion, could bring gas which is counter-rotating with
pre-existing stars into the galaxies. On the other hand, the gas
produced by internal processes such as stellar evolution would
conserve the angular momentum of stars and be co-rotating with
pre-existing stars.

Phenomenon of gas and star counter-rotating is now known to
be ubiquitous in elliptical and lenticular galaxies. Still, the
incidence of gas-star counter-rotators in blue star forming
galaxies is largely unknown. Since the early discoveries of
individual cases3, systematic studies with long-slit spectroscopy
have reported a fraction as high as 25% (refs 4–6) in early type
galaxies, which decreased to a value of 10–15% with integral-field
spectroscopy7–9. While a few individual cases of blue counter-
rotators are found10–13, existing statistical studies of blue galaxies
failed to identify any blue counter-rotators due to limited sample
size6,14 and instrumentation (for example, the limited ability of
long-slit spectroscopy to effectively identify the pattern of the
star-gas counter-rotating out of complicated kinematics,
particularly in barred spirals15).

To place much stronger constraints on the incidence of blue
counter-rotators, and to understand the influence of gas accretion
on the evolution of blue star forming galaxies, in this work we
study a sample of galaxies observed with fibre-optic integral-field
units (IFU) in the first year of the survey: Mapping Nearby
Galaxies at Apache Point Observatory (MaNGA)16, finding B2%
blue star-forming galaxies have counter-rotating gas. The central
regions of blue counter-rotators show younger stellar populations
and more intense, ongoing star formation than their outer-skirts,
indicating that these galaxies accrete abundant external gas, the
interaction with pre-existing gas triggers the gas into central
regions and form new stars.

Results
Sample selection. We analyse gas and stellar kinematic maps of a
representative sample of 1,351 nearby galaxies with stellar masses
above 109 solar mass from MaNGA. Figure 1 shows an example
of a counter-rotating blue star forming galaxy. The Sloan Digital
Sky Survey (SDSS) false-colour image is at left, while the kine-
matics based on spectroscopic IFU data for stars and gas are

mapped in the second and third columns (velocities and velocity
dispersions, respectively). To quantify the kinematic misalign-
ment between stars and gas, we measured the difference in the
kinematic position angle (PA) between ionized gas and stars as
DPA¼ |PA*�PAgas|, where PA* is the PA of stars and PAgas is the
PA of ionized gas. The kinematic PA is measured based on
established methods17, defined as the counter-clockwise angle
between north and a line that bisects the velocity field of gas or
stars, measured on the receding side. The solid lines in Fig. 1
show the best fit position angle and the two dashed lines show the
±1s error. The last two columns show the rotation velocity and
velocity dispersion along the major axis.

We matched the MaNGA sample with the literature catalo-
gue18 to obtain the global star formation rate (SFR) and stellar
mass (M*) for 1,220 out of 1,351 galaxies. With these two
quantities we classify the sample into blue star-forming galaxies,
red quiescent galaxies with little star formation and green-valley
galaxies between these two extremes (Fig. 2a), as summarized in
Table 1. For simplicity, we refer to these three classes as blue, red
and green galaxies henceforth. Figure 2b shows the distributions
of DPA for these different types of galaxies with nebular emission
(required to measure the gas kinematics). Both green (green
histogram) and red (red histogram) galaxies have a distribution of
the DPA, with the three local peaks at DPA¼ 0�, 90� and 150�,
while blue galaxies (blue histogram) present a bimodal
distribution (the lack of a third peak at 90� being consistent
with small number statistics). The grey histogram is for the whole
population—the combination of blue, red and green. In total
there are 43 counter-rotators, that is, galaxies with DPA4150�.
Considering the completeness correction of the MaNGA sample,
the fraction of the counter rotators in blue galaxies is 2% (9 out of
489), while the fractions in red and green galaxies are 10% (16 out
of 164) and 6% (18 out of 280), respectively. Our fraction of
counter-rotators in the red galaxies is consistent with previous
studies4,5,7–9,19. Thanks to the unbiased MaNGA galaxy sample
with respect to morphology, inclination, colour and so on, we can
study the incidence as well as the properties of blue counter-
rotators for the first time. The above fractions could be lower
limits, since for face-on galaxies, it is not possible to measure
rotation.

Properties of blue star-forming counter-rotators. Among nine
blue counter-rotators, six of them have strong positive gradients
in the 4,000 Å break (D4000), as shown in Fig. 3, while the
remaining show small D4000 across the whole galaxy body,
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Figure 1 | An example of a blue star-forming counter-rotating galaxy. The left panel shows the SDSS g, r, i—band image, the projected velocity fields of

stars (top) and gas (bottom) are shown in the second column, while the third column shows the velocity dispersion maps of stars and gas. The projected

velocity and velocity dispersion along major axis (black solid line in the second column) are shown in the last two columns. Dashed black lines represent
±1s uncertainties in the major-axis position angle.
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indicating young stellar populations existing in the central
regions. The map of the Ha flux further shows ongoing star
formation in the central region. We checked the emission line
ratio diagnostic20 to assure that the Ha radiation is dominated by
star formation instead of active galactic nuclei (AGN; Fig. 5). In
contrast to the blue counter-rotators, all the green and red
counter-rotators have negative D4000 gradients with older stellar
populations in the central regions. Although the Ha flux also
peaks at the center for the green and red counter rotators, it is
primarily contributed by the AGN based on the emission-line
diagnostic20.

To further quantify the importance of the ongoing star
formation in growing the central region, we introduce the star
formation activity parameter21 as aSF¼ 1/(sSFR� (tH(z)� 1 Gyr)),
where tH(z) is the Hubble time at the redshift of the galaxy, and
1 Gyr is subtracted to account for the fact that star formation
mainly occurred after reionization. If a galaxy’s current SFR is
equal to its past average (M*/((tH(z)� 1 Gyr)) then aSF¼ 1; values
less than one indicate that the current SFR is higher than the past
average. As shown in Fig. 4, all nine galaxies present a steep rising
aSF with increasing distances from the galaxy center. The grey
shaded regions show the ±1s range of aSF for the central 1 kpc of
local star forming galaxies with DPAo30�. Grey lines mark the
median value of B0.75. Focusing on the central 1 kpc, we find six
of the blue counter rotators have aSF about one order of magnitude

smaller than the average value (the grey line), indicating fast
growth of the central components of these galaxies.

Both the D4000 and star formation activity parameter aSF

suggest significant ongoing growth of the central region (o1 kpc)
of these blue counter-rotators by star formation. For nine blue
counter-rotators, we fit the r-band surface brightness profiles
(Figs 6 and 7) and found that five of them already have
photometric bulge-like components (above an exponential disk-
like component). In addition, the SDSS images show no signs of
strong galaxy interactions or major merging, indicating accretion
of gas from intergalactic medium or dwarfs (minor mergers) as
the origin of the counter-rotating gas. This is also consistent with
their environments, as both the neighbour number (N) and the
tidal strength parameter22 (Qlss) indicate that the blue counter
rotators tend to be located in more isolated environments.
By matching our galaxies with the MPA-JHU catalogue
(http://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/oh.html), we
obtained the metallicity for eight blue counter-rotators. Four of
them follow the stellar mass versus metallicity relation of the
general population23, while another four lie 0.2–0.3 dex above the
stellar-mass versus metallicity relation.

Discussion
We suggest the following scenario to explain the above
observational facts: (i) The progenitor accretes counter-rotating
gas from a gas-rich dwarf or cosmic web. (ii) Redistribution of
angular momentum occurs from gas–gas collisions between
the pre-existing and the accreted gas largely accelerates gas
inflow, leading to a fast centrally-concentrated star formation.
(iii) Higher metallicity is a puzzle, one possibility is due to the
enrichment from star formation. In a closed-box model24,
the metallicity will mainly depend on the gas mass fraction
fgas (�Mgas/(MgasþMstars)), so the abundances get elevated
instantaneously as a large fraction of the available gas turns
into stars. The low D4000 at the center is a hint that such stars
exist. However, we keep in mind that the ‘external’ gas likely had
low metallicity and the closed-box model is a strong assumption,
future simulations are necessary in helping us to understand the
gas enrich process.

Though the amount of pre-existing and accreted gas in the
nine galaxies is uncertain, collision between pre-existing and
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Figure 2 | SFRs versus stellar masses and DPA distribution. (a) SFRs versus stellar mass. Contours show the SDSS DR7 sample, while the red dots are

MaNGA galaxies. The blue dots are the counter-rotators with DPA4150�. The two dashed lines separate the galaxies into blue star-formers, green valley

and red quiescent galaxies. The black dashed line is adopted from Fig. 11 of ref. 18 as an approximation of the boundary (at the 1s level in scatter) of the

star-forming main sequence. The green solid line with log sSFR (�SFR/M*) B� 15 remarks red galaxies, in which the SFR can be neglected. The region

between the black and green dashed lines is referred as the green valley. Although galaxies in the green valley have low SFR, they are clearly distinguished

from red galaxies. We do not use the colour-magnitude diagram to separate blue from green and red galaxies since the colours are strongly effected by dust

extinction. (b) DPA distribution for MaNGA galaxies with nebular emission. The grey histogram is for the whole sample, red for the red quiescent galaxies.

Table 1 | Classification of the MaNGA sample.

Type Number (number with EML) Misalignment Counter-
rotators

(DPA430�) (DPA4150�)

Blue 489 (489) 10 9
Green 377 (280) 26 18
Red 354 (164) 30 16
Total 1220 (933) 66 43

This table gives the number of galaxies in each catagory. blue: blue star forming galaxies; green:
green valley; red: red quiescent galaxies. Misalignment and counter-roators are classified by DPA
given in the table. EML means galaxies with emission lines; the number of galaxies with line
emission is in parenthesis.
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accreted gas is unavoidable, leading to redistribution of angular
momentum and dissipation of kinetic energy. The impact on both
the morphology and dynamics of the inner parts of the galaxy
may thus be associated with the observed slight increase of the gas
velocity dispersion. We find the typical gas velocity dispersion
(40–60 km s� 1) in the disk region of these nine galaxies is about
20 km s� 1 larger than a control sample of star-forming galaxies

with aligned gas and stellar kinematics (DPAo30�), closely
matched in SFR, M* and redshift. The typical errors of gas
velocity dispersion is about 10 km s� 1.

In summary, redistribution of angular momentum through the
collisions between accreted and pre-existing gas is thus an
efficient way for gas to migrate to the centre, indicating that
accretion of counter-rotating gas into disk galaxies is an effective
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Figure 3 | The D4000 and Ha flux maps for nine star-forming counter rotators. The MaNGA-ID for each galaxy is shown in the D4000 map. The Ha flux

is in the unit of 10� 17 erg s� 1 cm� 2.
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way to grow the central region. This mechanism may be more
effective in growing the central component of galaxies at zB1–2
where external gas acquisition is more frequent25,26.

Methods
Observations and data reduction. The data used in this work comes from the
ongoing MaNGA survey16,27–29 using the SDSS 2.5-in telescope30 and Baryon
oscillation spectroscopic survey spectrographs31. As one of three programs
comprising the SDSS-IV, MaNGA is obtaining spatially resolved spectroscopy for
about 10,000 nearby galaxies with log M�=M� � 9, and a median redshift of
zE0.04. The r-band signal-to-noise ratio (S/N) in the outskirts of MaNGA galaxies
is 4–8 Å� 1, and the wavelength coverage is 3,600� 10,300 Å. MaNGA’s effective
spatial and spectral resolution is 200.4 (Full Width at Half Maximum, FWHM) and
sB60 km s� 1, respectively. The MaNGA sample and data products used here were
drawn from the internal MaNGA Product Launch-4 (MPL-4), which includes
E1,400 galaxies observed through July 2015 (the first year of the survey).

The MaNGA data analysis pipeline, which uses pPXF32 and the MIUSCAT
stellar library33, fits the stellar continuum in each spaxel and produces estimates of
the stellar kinematics. Ionized gas kinematics, vgas and sgas, as well as the flux were
estimated by fitting a single Gaussian to the emission lines after stellar continuum
subtraction. The observables used in this work, that is, vgas and sgas, D4000,
emission line flux, are from data analysis pipeline.

Redshift distributions of the samples. In Fig. 5, we show the redshift distribu-
tions of the whole MaNGA sample (black histogram), the blue (blue histogram),
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red (red histogram) and green (green histogram) subsamples, as well as the nine
blue counter rotators (cyan histogram).

Sample completeness correction. An issue with every data set is the selection of
weights to correct for missing galaxies. The MaNGA target sample is selected to lie
within a redshift range, zminozozmax, that depends on absolute i—band magni-
tude in the case of the Primary and Secondary samples, and absolute i—band
magnitude and NUV—r colour in the case of the colour-enhanced (CE) sample.
zmin and zmax are chosen to yield both the same number density of galaxies and
angular size distributions, matched to the IFU sizes, at all absolute i—band mag-
nitudes (or magnitudes and colours for the CE sample). This results in lower, and
narrower, redshift ranges for less luminous galaxies and higher and wider redshift
ranges for more luminous galaxies.

At a given Mi (or Mi and NUV—r colour for the CE sample) the sample is
effectively volume limited in that all galaxies within zmin(Mi)ozozmax(Mi) are
targeted irrespective of their other properties. However, that volume varies with
Mi. Therefore in any analysis of the properties of MaNGA galaxies as a function of
anything other than Mi we must correct for this varying selection volume, Vs(Mi)—
the volume with zmin(Mi)oz ozmax(Mi). The simplest approach is just to correct
the galaxies back to a volume-limited sample by applying a weight (W) to each
galaxy in any calculation such that W¼Vr/Vs, where Vr is an arbitrary reference

volume. Since the zmin and zmax for each MaNGA galaxy are provided in the
MaNGA sample catalogue (Wake et al., in preparation), we can easily estimate the
fraction of galaxies with decoupled gas and star kinematics in a complete sample by
applying this volume correction.

Global SFR and M*. Combining SDSS and wide-field infrared survey explorer
photometry for the full SDSS spectroscopic galaxy sample, the spectral energy
distributions that cover l¼ 0.4–22 mm has been created for a sample of 858,365
present-epoch galaxies18. Using MAGPHYS34, they then model both the attenuated
stellar spectral energy distributions and the dust emission at 12 and 22 mm,
producing new calibrations for monochromatic mid-IR SFR proxies, as well as M*.

Spatially resolved SFR and M*. Principal component analysis (PCA) is a standard
multivariate analysis technique, designed to identify correlations in large data sets.
Using PCA, a new method35 has been generated to estimate stellar masses, mean
stellar ages, star formation histories, dust extinctions and stellar velocity
dispersions for galaxies from Baryon oscillation spectroscopic survey . To obtain
these results, we use the stellar population synthesis models of BC03 (ref. 36) to
generate a library of model spectra with a broad range of star formation histories,
metallicities, dust extinctions and stellar velocity dispersions. The PCA is run on
this library to identify its principal components (PC) over a certain rest-frame
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Figure 7 | Properties of the blue counter rotators. Same as Fig. 6, but with more objects.
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wavelength range 3,700� 5,500 Å. We then project both the model spectra and the
observed spectra onto the first seven PCs to get the coefficients of the PCs, which
represents the strength of each PC presented in the model or observed spectra. We
derive statistical estimates of various physical parameters by comparing the
projection coefficients of the observed galaxy to those of the models as follows. The
w2 goodness of fit of each model determines the weight Bexp(� w2/2) to be
assigned to the physical parameters of that model, when building the probability
distributions of the parameters of the given galaxy. The probability density
function of a given physical parameter is thus obtained from the distribution of the
weights of all models in the library. We characterize the probability density
function using the median and the 16–84% range (equivalent to ±1s range for
Gaussian distributions). In this work, we directly apply this PCA method to the
MaNGA data to get the stellar mass for each spaxel.

The SFR for each spaxel is derived from the dereddened Ha luminosity (LHa) as
SFR (M� yr� 1)¼ 7.9� 10� 42 LHa(erg s� 1). We use Balmer decreasement for
dust extinction correction.

Environment. We characterize the environment with two parameters, the neigh-
bour number (N) and the tidal strength parameter Qlss. The neighbour number is
defined as the count of galaxies brighter than � 19.5 mag in r-band absolute
magnitude within a fixed volume of 1 Mpc in projected radius and 500 km s� 1 in
redshift to the primary galaxy. Given the neighbour number is independent of the
stellar mass and cannot account for the interaction a galaxy suffering from its
satellites, we also use the tidal strength parameter Qlss to depict the effect of total
interaction strength produced by all the neighbours within the fixed volume22,37;
the higher the parameter, the stronger the interaction. The parameter Qlss is
defined as

Qlss � log
X

i

Mi

Mp

Dp

di

� �3
" #

ð1Þ

where Mi and Mp are the stellar masses of the ith neighbour and the primary galaxy.
di is the projected distance from the primary galaxy to the ith satellite and Dp is the
estimated diameter of the central galaxy22. Both the number of neighbours and Qlss

are drawn from the catalogue generated by Argudo-Fernández et al.

Surface brightness profile. We fit the surface brightness profiles of the nine blue
counter rotators with three different models: (1) single Sersic; (2) double Sersic;
(3) Sersic bulgeþ exponential disk. The best fitting results are shown in Figs 6 and
7.

Data availability. The data supporting the findings of this study are avail-
able through SDSS Data Release Thirteen which can be downloaded from
http://www.sdss.org/dr13/manga/.
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