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Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas,

first observed in early laboratory beam-plasma experiments as well as in rocket-borne active

experiments in space. However, their unequivocal presence was confirmed through computer

simulated experiments and subsequently theoretically explained. The peculiarity of harmonic

Langmuir waves is that while their existence requires nonlinear response, their excitation

mechanism and subsequent early time evolution are governed by essentially linear process. One of

the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process

over longer evolution time period. Another outstanding issue is that existing theories for these

modes are limited to one-dimensional space. The present paper carries out two dimensional

theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The

result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and

that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave

spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and

harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell

simulation method reported in the literature. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953898]

I. INTRODUCTION

In collisionless kinetic theory, plasmas are described by

Maxwell equations for the electric and magnetic fields and

Vlasov equations for the distribution functions of different spe-

cies of particles contained in the plasma. The Vlasov–Maxwell

system of equations is a complex system, frequently discussed

in the context of approximations, such as the linear and quasi-

linear approximations. Under the linear approximation, one

obtains dispersion relations which lead to the identification of

the modes of oscillation that are excited and propagate in the

plasma system. For instance, the linear dispersion relations

lead to the identification of high frequency electrostatic waves,

associated with electron oscillations, which are known as

Langmuir waves (L), and also to the identification of lower

frequency electrostatic oscillations in which both ions and

electrons participate, which are known as ion-acoustic waves

(S). For magnetized plasmas, the linear dispersion relations

also lead to a bewildering array of small-amplitude oscilla-

tions, one of the most well-known example being the low-

frequency electromagnetic oscillations, known as Alfv�en

wave, for instance.

In addition to information regarding the relationship

between wave number and real frequency, the linear disper-

sion relations also contain information on the imaginary

parts of the wave frequencies, which describe damping or

growth of waves due to resonance between waves and

particles. However, the linear approximation does not have

dynamical information concerning the time evolution, for

which one must go beyond linear theory, the lowest order

theory being the quasilinear theory. The next-order theory is

known as the weak turbulence theory (WT), developed in the

time period between late 1950s to early 1970s, in which im-

portant contributions were made by scientists of the former

Soviet Union.1–9 More recently, the formalism of the WT

theory was revisited ab initio,10 initially without considering

the effects of single-particle fluctuations, but later by incor-

porating these effects.11 The formalism was subsequently

extended to include the effects of electromagnetic oscilla-

tions.12,13 More recently, the electrostatic part of the renewed

formalism was further extended to incorporate effects due to

binary interactions of particles, leading to a collisional term

in the equations for the particle distributions, and to new

terms in the equations for the time evolution of wave ampli-

tudes, identified with the physical processes of collisional

damping, spontaneous emission of electrostatic waves by

binary particle interactions, and effects due to binary particle

interactions in the processes of wave scattering.14,15

The reformulation of the WT theory, which was pre-

sented in Ref. 10 included the presence of electrostatic waves

with frequency close to 2xpe, where xpe ¼ ð4pn̂e2=meÞ1=2
is

the plasma frequency of electrons, n̂ being the ambient

plasma density, and e and me being the unit electric charge

and electron mass, respectively. These waves were identified

as the harmonic of L waves, and the formalism led to a set of

coupled equations for description of the evolution of L waves,

fundamental and harmonic, S waves, and particles.10 The S
waves and L wave at the fundamental frequency are normal

modes of the plasma, predicted by linear dispersion relations,

but the harmonic of L wave is not a solution to the linear dis-

persion relation, but rather, its presence can be described only

if one includes nonlinear correction to the linear dispersion

relation. In subsequent papers, higher order electrostatic
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harmonics were also discussed.11,16–18 These theoretical

developments provided support to the recognized occurrence

of nxpe electrostatic perturbations as virtual modes excited in

weakly turbulent plasmas.

The excitations of such modes were first detected in

early laboratory beam-plasma experiments,19–23 and also in

space-borne rocket active experiment.24 However, the

above-referenced early works did not realize the peculiarity

of harmonic electrostatic modes. Instead, interpretations

tended to regard these excitations as related to customary

nonlinear phenomena such as wave trapping. The strange

behavior associated with the harmonic L modes did not fully

exhibit itself until the phenomenon was observed in com-

puter simulated experiments.25–31 Unlike typical nonlinear

phenomena, which do not manifest themselves unless the

wave amplitude that drives these phenomena exceeds certain

threshold, the electrostatic harmonics are excited very early

on during the beam-plasma instability process. In fact, the

growth rate of the n-th harmonic mode is higher than the fun-

damental L mode growth rate by roughly the multiple of n.

Subsequent time development and saturation are dictated by

essentially (quasi) linear theory. These behaviors are well

described by the theory that interpret these modes as solu-

tions to nonlinear dispersion relation, but their dynamics as

being governed by quasilinear theory.16–18

Space observations show that multiple harmonic elec-

tron plasma frequency fluctuations are often seen in the

Earth’s collisionless bow shock environment and even in

interplanetary type III radio burst source region.32–36 While

alternative interpretations for the occurrence of these emis-

sions are possible, more recent simulation studies confirm

the ubiquitous excitations of harmonic L mode during beam-

plasma instability process.37–39

A hitherto unanswered question concerning the possible

occurrence of both electrostatic and electromagnetic harmon-

ics was addressed in another paper,40 which lead to the con-

clusion that both modes are independent solutions.40 Indeed,

in related works in which two-dimensional (2D) electromag-

netic particle-in-cell simulation code was employed, Refs. 30

and 43 demonstrate that both electric and magnetic field fluc-

tuations are characterized by multiple harmonic spectra.

To the best of our knowledge, numerical analysis of the

generalized WT theory including the effect of electrostatic har-

monics have been made only in the context of one-dimensional

analysis (1D). The first published application that made use of

the formalism presented in Ref. 10 appeared in the year 2002,

with the discussion of the time evolution of beam-plasma insta-

bility, taking into account fundamental and harmonics L waves

and S waves, and by incorporating quasilinear effect of induced

emission and the nonlinear effects of three-wave decay and

scattering.41 Reference 41 did not take into account spontane-

ous effects, included in the general formalism after Ref. 11, but

only collective nonlinear effects. Shortly after Ref. 11, discrete-

particle effects were incorporated in Ref. 42, but the analysis

still pertained to 1D approximation.

On the other hand, a two-dimensional (2D) formulation

has been used by some of us for the analysis of different

aspects of the beam-plasma interaction, but always focusing

on the time evolution of the particle distribution functions

and of the amplitudes of normal modes predicted by linear

theory. We have started these 2D analysis in the year 2008,

discussing the evolution of the electrostatic modes,44,45 and

have continued with the subject along subsequent years. In

some of the more recent works, we have also considered

electromagnetic waves into the WT analysis, and discussed

the emission of electromagnetic waves by nonlinear proc-

esses, considering the paradigmatic case of the plasma emis-

sion,46,47 and also the possibility of emission without the

presence of a beam.48,49

The 2D analysis provides information and insights that

are not immediately available with 1D analysis. There are

certain features such as the time scales of different nonlinear

processes, which may be adequately addressed by 1D analy-

sis; other features such as the angular distribution of the

radiation by plasma emission, for instance, can be learned

only through a 2D formulation. Another example may be the

isotropization of L waves in 2D k space, which could not

have been predicted by 1D analysis.44,45,50

The purpose of the present paper is to perform 2D analy-

sis of the beam-plasma instability process including the non-

linear eigenmode, i.e., the first harmonic L mode, or 2xpe

electrostatic mode, for the first time. The present investigation

aims to address a specific issue related to the nonlinear 2xpe

electrostatic mode excitation, but the general 2D solution is

useful in and of itself. For instance, one may compare the

present theory with some simulation results already available

in the literature. Specifically, Ref. 43 contains Figures 3(b)

and 3(c) that show the 2D spectrum of fundamental and sec-

ond harmonic electric field fluctuation. Similar result is also

found in Ref. 30. The present 2D calculation can be directly

compared against such results. The specific issue that the pres-

ent paper aims to address concerns a theoretical conjecture

presented in Ref. 11, where it was speculated that the early

dynamical evolution of 2xpe mode should follow the dictates

of quasilinear theory, but for later times, nonlinear wave–par-

ticle interaction process, that is, induced scattering, should

dominate. The present analysis seeks to test this hypothesis.

In the present paper we present and briefly discuss the

basic equations of WT theory, which will be employed in

order to describe the time evolution of the particle distribu-

tions and electrostatic modes, including the harmonics of the

L waves, and obtain the 2D versions of these equations.

These 2D equations will therefore be utilized for numerical

analysis of the beam-plasma instability. For simplicity of

this first analysis, which includes the effect of L harmonics

in 2D, we restrict ourselves to a formulation that does not

consider electromagnetic effects, and also neglect the effects

of harmonics higher than n¼ 2.

The structure of the paper is as follows: In Sec. II we

briefly describe the theoretical formulation and the setup for

the numerical analysis. Section III presents the results of nu-

merical analysis. We summarize our findings in Sec. IV.

II. THEORETICAL FORMULATION AND NUMERICAL
SETUP

For the purpose of the present paper, we start from a

general self-consistent set of equations that include only the
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effect of electrostatic waves, as they have appeared in Ref.

13. We present here these equations using non-dimensional

variables, which are more suitable for numerical analysis

z � x
xpe

; s � txpe; q � kvte

xpe
; u � v

vte
;

where vte ¼ ð2Te=meÞ1=2
is electron thermal speed, Te being

the temperature defined in energy unit, and we also utilize

normalized distribution functions and wave spectra

Ua uð Þ ¼ v3
teFa vð Þ; Era

q ¼
2pð Þ2g

mev2
te

Ira
k

la
k

:

Moreover, we define some useful quantities

lL
q ¼ 1 ; lS

q ¼
q3

23=2

ffiffiffiffiffiffi
me

mi

r
1þ 3Ti

Te

� �1=2

;

k2
De ¼

Te

4pn̂e2
¼ v2

te

2x2
pe

; g ¼ 1

23=2 4pð Þ2 n̂ k3
De

:

In the above kDe ¼ ½Te=ð4pn̂e2Þ�1=2
is the Debye length

such that 1=ðn̂k3
DeÞ represents the plasma parameter.

The equation for the time evolution of the fundamental

L wave can be written in dimensionless form as follows:

@ErL
q

@s
¼ lL

q

p
q2

ð
dud rzL

q � q � u
� �

g Ue uð Þ þ rzL
q

� �
q � @Ue uð Þ

@u
ErL

q

� �( )
Lql

þ 2rlL
q zL

q

X
r0;r00¼61

ð
dq0

lL
q0 l

S
q�q0 q � q0ð Þ2

q2 q02 jq� q0j2
rzL

q Er0L
q0 Er00S

q�q0 � r0zL
q0 Er00S

q�q0þr00zL
q�q0 Er0L

q0

� �
ErL

q

h i8<
:
� d rzL

q � r0zL
q0 � r00zS

q�q0

� ��
LdLS

þ rzL
q

X
r0

ð
dq0
ð

du
lL

q lL
q0 q � q0ð Þ2

q2 q02
d rzL

q � r0zL
q0 � q� q0

� 	
� u

h i(

� g rzL
q Er0L

q0 � r0zL
q0 ErL

q

� �
Ue uð Þ þ Ui uð Þ½ �þme

mi
Er0L

q0 ErL
q q� q0
� 	

� @Ui uð Þ
@u


�
LsLL

:

"
(1)

The terms appearing in Eq. (1) can be described as fol-

lows. The first term on the right-hand side, enclosed within the

large curly brackets, is denoted by subscript Lql. It describes

the spontaneous emission and quasilinear (i.e., induced emis-

sion) effects for the L mode. The second term describes the

effects of three-wave decay involving L and S mode waves,

and is denoted as LdLS. The third term stands for the scattering

process involving L waves, and its designation is LsLL.

For S mode, the normalized dynamical equation is the

following:

@ErS
q

@s
¼ lS

q

p
q2

ð
dud rzS

q � q � u
� �

g Ue uð Þ þ Ui uð Þ½ � þ rzL
q

� �
q � @Ue uð Þ

@u
þme

mi
q � @Ui uð Þ

@u

� �
ErS

q

� 
� �
Sql

þ rzL
q

X
r0;r00

ð
dq0

lS
q lL

q0 l
L
q�q0 q0 � q� q0ð Þ½ �2

q2 q02 jq� q0j2
rzL

q Er0L
q0 Er00L

q�q0 � r0zL
q0 Er00L

q�q0þr00zL
q�q0 Er0L

q0

� �
ErS

q

h i8<
:
� d rzS

q � r0zL
q0 � r00zL

q�q0

� �)
SdLL

: (2)

The first term at the right-hand side of Eq. (2)

describes the spontaneous emission and quasilinear

effects, and is denoted as Sql. The second term

describes the three-wave decay process and is designated

by SdLL.

For the harmonics of L waves, the time evolution equa-

tion is as follows:11,42

@ELn
q

@s
¼

cLn
q þ �Ln

q

1þ gLn
q

ELn
q ; (3)

where

cLn
q ¼ n2 p

q2

ð
du zLn

q q � @U uð Þ
@u

d rzLn
q � q � u

� �
; (4)
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�Ln
q ¼ n3

ð
dq0

an
q;q0 l

L n�1ð Þ
q0 zLn

q � zL n�1ð Þ
q0

� �



� q� q0; zLn

q � zL n�1ð Þ
q0

� �


2
� EL n�1ð Þ

q0

ð
du

q� q0

jq� q0j2
� @Ue

@u

� d zLn
q � zL n�1ð Þ

q0 � q� q0
� 	

� u
h i

; (5)

gLn
q ¼

n3

p

ð
dq0 an

q;q0 l
0
q
L n�1ð Þ EL n�1ð Þ

q0

� Re ��2 q� q0; zLn
q � zL n�1ð Þ

q0

� �h i
: (6)

The equation for the evolution of nonlinear modes, Eq.

(3), contains terms associated to quasilinear (induced emis-

sion) and to nonlinear effects. The term with cLn
q represents

the quasilinear effect, and the term with �Ln
q represents the

effect of wave-particle scattering.11,42

For the evaluation of various objects defined in Eqs. (5)

and (6), we utilize

an
q;q0 ¼ fðn� 1Þq2½q0 � ðq� q0Þ� þ nq02½q � ðq� q0Þ�

þnðn� 1Þjq� q0j2ðq � q0Þg2

� ½n2ðn� 1Þ2qq0jq� q0j��2; (7)

j�ðq� q0; zLn
q � z

Lðn�1Þ
q0 Þj2 ¼ 4½ðzLn

q � z
Lðn�1Þ
q0 � zL1

q�q0 Þ
2

þpn6
q�q0 e

�2n2
q�q0 �; (8)

Re ��2 q� q0; zLn
q � zL n�1ð Þ

q0

� �
¼

zLn
q � zL n�1ð Þ

q0 � zL1
q�q0

� �2

j� q� q0; zLn
q � zL n�1ð Þ

q0

� �
j2
;

(9)

with

nq�q0 ¼
zL1

q�q0

jq� q0j :

In the limit jnq;q0 j � 1, Eqs. (8) and (9) are given,

respectively, by

j�ðq� q0; zLn
q � z

Lðn�1Þ
q0 Þj2 ’ 4ðzLn

q � z
Lðn�1Þ
q0 � zL1

q�q0 Þ
2; (10)

Re ��2 q� q0; zLn
q � zL n�1ð Þ

q0

� �
’ 1

4 zLn
q � zL n�1ð Þ

q0 � zL1
q�q0

� �2
;

(11)

and therefore Eqs. (5) and (6) are given by the approximated

expressions that appear as Equation (33) in Ref. 11 and

Equation (7) in Ref. 42.

The set of equations which has been obtained for the

amplitudes of electrostatics waves in an unmagnetized

plasma, comprising L, S, and harmonic modes, must be

solved along with the dynamical equations for the particle

distribution functions

@Ua uð Þ
@s

¼ e2
a

e2

m2
e

m2
a

X
r

X
a¼L;S

ð
dq

q

q
� @
@u

� �
la

qd rza
q � q � u� 	

� g
ma

me

rzL
q

q
Ua uð ÞþEra

q

q

q
� @Ua uð Þ

@u

 !
: (12)

In the above, a¼ e denote the electrons and a¼ i stands for

the ions. The dispersion relations for plasma normal modes L
and S in terms of non-dimensional variables are given by the

following expressions:

zL
q ¼ 1þ 3

2
q2

� �1=2

;

zS
q ¼

q A

1þ q2=2ð Þ1=2
; (13)

where

A ¼ 1ffiffiffi
2
p me

mi

� �1=2

1þ 3Ti

Te

� �1=2

:

For the harmonic waves, the dispersion relation may be writ-

ten as follows:11,16

zLn
q ¼ nþ en

q þ
3

4
q2 þ

3hn
q

en
q

k2
De

 !
; (14)

where

en
q ¼

1

8p
n2

n� 1ð Þ

ð
d3q0 an

q;q0 l
L n�1ð Þ
q0 EL n�1ð Þ

q0 :

Taking into account that lLn
q ¼ 1 for n ¼ 1; 2;…, and

that e1
q ¼ 0, the following form can be obtained:

en
q ¼

1

8p
n2

n� 1ð Þ

ð
d3q0 an

q;q0 E
L n�1ð Þ
q0 ; (15)

with the function hn
q given in the following form:

k2
Deh

n
q ¼

1

8p
n2

n� 1ð Þ

ð
d3q0 an

q;q0 E
L n�1ð Þ
q0

� q02 � q � q0
2

þ hn�1
k0 k2

De

en�1
k0

 !
: (16)

At this point, some qualitative comments can be made

about the time evolution of harmonic modes. For the initial

stages of the time evolution, when the wave intensity satis-

fies the condition ELðn�1Þ
q0 � ðzLn

q � z
Lðn�1Þ
q0 � zL1

q�q0 Þ
2
, the lin-

ear part of kinetic equation (6) must be dominant11

@ELn
q

@s
	 cLn

q ELn
q : (17)

For continued evolution, it was predicted in Ref. 11 that

the system would attain ELðn�1Þ
q0 � ðzLn

q � z
Lðn�1Þ
q0 � zL1

q�q0 Þ
2
,

so that jgLn
q j � 1, and that the effect of scattering would

become dominant, so that for late stages in the time
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evolution of the system the kinetic equation for harmonics

waves could be approximated as follows:

@ELn
q

@s


�Ln

q

gLn
q

ELn
q / p

ð
du

zLn
q � zL n�1ð Þ

q0

q� q0ð Þ2
q� q0
� 	

� @Ue

@u

� d zLn
q � zL n�1ð Þ

q0 � q� q0
� 	

� u
h i

Eq: (18)

The above conjecture is one of the questions that the

present paper seeks to address. In the equation for the parti-

cle distribution functions, the term with g describes the

effects of spontaneous fluctuations, and the term with the ve-

locity derivative describes the quasilinear diffusion process.

For more details on the derivation of the above equations,

the reader is referred to Refs. 13, 12, and 11.

III. NUMERICAL ANALYSIS

The objective of the present paper is to investigate the

initial configurations that are such that ions are considered

stationary, and electrons as well as the waves evolve in time.

The ion distribution in 2D velocity space in dimensionless

form is given by

Ui uð Þ ¼ 1

p
Te

Ti

mi

me
exp � mi

me

Te

Ti
u2

� �
: (19)

The initial electron distribution function is assumed to

be made of a Maxwellian background population and a

forward-propagating beam component, with number density

assigned by nf. In 2D and dimensionless variables the elec-

tron distribution is given as follows:

Ue u;0ð Þ ¼ 1

p
1� nf

n0

� �
exp �u2

? � uk �
v0

vte

� �2
" #

þ1

p
nf

n0

Te

Tf
exp �Te

Tf
u2
? þ uk �

vf

vtf

� �2
" #( )

: (20)

Here, vte ¼ ð2Te=meÞ1=2
and vtf ¼ ð2Tf=meÞ1=2

are the back-

ground and forward-beam thermal speeds, respectively, and

v0, vf are the drift velocities associated with the background

and the forward beam, respectively. The drift velocity for the

background v0 is chosen in such a way that it guarantees zero

net drift velocity for the total electron distribution, i.e.,

v0 ¼ �ðnf vf Þ=ðn0 � nf Þ.
The initial spectra of the normal modes are given by the

following expressions, obtained from the balance between

quasilinear and spontaneous effects, assuming the initial

plasmas at thermodynamic equilibrium

ErL
q 0ð Þ ¼ g

2 zL
q

� 	2
;

ErS
q 0ð Þ ¼ g

2zL
q zS

q

exp �f2
q

� �
þ q1=2 exp �q f2

q

� �
exp �f2

q

� �
þ Te=Tið Þ q1=2 exp �q f2

q

� � ;

f2
q ¼

zS
q

� �2

q2
; q ¼ mi

me

Te

Ti
: (21)

For the harmonic waves, the initial spectra can be estimated

using the following expression:11

ELn
q 0ð Þ ¼ n 9=4þ Cð Þ

n2 � 1ð ÞU2 � 3=2
� �2 þ C

ErL
q 0ð Þ; (22)

where C ¼ 4pU10e�2U2

, U ¼ V0=ve
th, with V0 being the beam

velocity. For the present analysis, we will include only the

effect of the harmonic n¼ 2, and we will use the notation N
to denote the harmonic waves.

The set of Equations (1)–(3) for the waves (L, S, and N)

and Eq. (12) for the electrons are solved in 2D wave number

space and 2D velocity space, by employing a splitting

method with fixed time step for the evolution of the distribu-

tion and a Runge–Kutta method with the same fixed time

step for the wave equations. The ion distribution is assumed

to be fixed along all the time evolution of the system.

For all the numerical examples to be discussed subse-

quently, we use the normalized time interval Ds ¼ 0:1. We

employ 51� 51 grids for q? and qk, with 0 < q? ¼ k?vte=

xp < 0:6, and 0 < qk ¼ kkvte=xp < 0:6. For the velocities,

we use a 51� 101 grid for the ðu?; ukÞ ¼ ðv?=vte; vk=vteÞ
space, covering the velocity range 0 < u? ¼ v?=vte < 12 and

�12 < uk ¼ vk=vte < 12. For subsequent numerical

solutions, we assume the plasma parameter given by ðn̂k3
DÞ
�1

¼ 5:0� 10�3, and assume that the beam velocity is

vf=vte ¼ 5:0, with beam temperature Tf=Te ¼ 1:0 and ratio of

electron and ion temperature Te=Ti ¼ 7:0.

Initially, we consider the case in which the relative den-

sity of the beam is nf=ne ¼ 2:0� 10�4. For this case, in

Figure 1 we present the normalized intensity of the spectrum

of L waves, as a function of the components of the normal-

ized wavenumber, q? ¼ k?vte=xp and qk ¼ kkvte=xp, in ver-

tical logarithmic scale, taking into account only spontaneous

and induced emission in Eq. (1). Figure 1(a) shows the spec-

trum at s¼ 500, Figure 1(b) the case of s ¼ 1000, Figure

1(c) the case of s ¼ 2000, and Figure 1(d) the case of

s ¼ 4000. The sequence of figures shows the growth of the

primary peak of Langmuir waves, at qk ’ 0:2, which is the

position of the wave-particle resonance with the beam par-

ticles. The peak starts to grow at early time and is seen to

grow between s¼ 500 and s ¼ 1000, and appears stabilized

after s ¼ 1000.

In Figure 2 we present the normalized intensity of the

spectrum of N waves, also as a function of the components

of the normalized wavenumber, q? and qk, in vertical loga-

rithmic scale. For the evolution of N waves as shown in

Figure 2, we have taken into account only the induced emis-

sion term, in Eq. (3). The spectrum of N wave at s¼ 500 is

shown in Figure 2(a), at s ¼ 1000 in Figure 2(b), at s ¼
2000 in Figure 2(c), and at s ¼ 4000 in Figure 2(d). The

sequence of figures shows the fast growth of the peak corre-

sponding to harmonic waves, at qk ’ 0:5, which is the posi-

tion of the wave-particle resonance between the harmonic

waves of frequency given by zN
q with the beam particles, and

also shows the decay of the initial spectrum in the region ad-

jacent to the peak, due to Landau damping. It is to be noted

that the region with qk < 0 remains unchanged, because we
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have not included in the theory the possibility of evolution of

backward propagating harmonic waves, based on the fact

that backward harmonic waves have not been seen in numer-

ical simulations,28,31 or at least the backward harmonic

waves are much more weaker in comparison with the for-

ward N waves.43 Since the N mode spectra for negative qk
do not change from their initial levels, we chose to plot the

results only over positive range, 0:2 < qk < 1. The peak

seems to attain maximum height between s ¼ 1000 and

2000, Figures 2(b) and 2(c), while the damping continues to

occur, with considerable evolution being noticeable between

Figures 2(c) and 2(d).

In Figures 3 and 4 we present results which are similar

to those presented in Figures 1 and 2, with the difference that

in the case of Figures 3 and 4 we add the effect of the scatter-

ing to the equations for wave evolution. The results are also

presented for the values of s¼ 500, 1000, 2000, and 4000,

corresponding to panels (a), (b), (c), and (d), respectively.

In Figure 3 we wee the evolution of L waves. Panel (a)

shows the spectrum at s¼ 500, with the primary peak of L

waves very well defined, similar to what was seen in Figure

1(a). At s ¼ 1000, Figure 3(b), one already notices the pres-

ence of backward propagating waves and formation of a

ring-like structure in wavenumber space, as already reported

previously, in studies that did not include the presence of

harmonic waves.45 These features become more conspicuous

along time evolution, and are seen fully developed at

s ¼ 4000, in panel (d) of Figure 3.

The evolution of the harmonic waves in the presence of

induced emission and scattering is seen in Figure 4. The four

FIG. 2. Normalized N wave intensity, vs q? ¼ k?vte=xp and qk ¼ kkvte=xp,

in vertical logarithmic scale, taking into account only induced emission in

the equation for N wave evolution. (a) s¼ 500; (b) s ¼ 1000; (c) s ¼ 2000;

and (d) s ¼ 4000. Input parameters are the same as in Figure 1.

FIG. 3. Normalized L wave intensity, vs q? ¼ k?vte=xp and qk ¼ kkvte=xp,

in vertical logarithmic scale, taking into account spontaneous and induced

emission and scattering in the equation for evolution of the L wave. (a)

s¼ 500; (b) s ¼ 1000; (c) s ¼ 2000; and (d) s ¼ 4000. Input parameters are

the same as in Figure 1.

FIG. 1. Normalized L wave intensity, vs q? ¼ k?vte=xp and qk ¼ kkvte=xp,

in vertical logarithmic scale, taking into account only spontaneous and

induced emission in the equation for L wave evolution. (a) s¼ 500; (b)

s ¼ 1000; (c) s ¼ 2000; and (d) s ¼ 4000. Input parameters are nf =ne

¼ 2:0� 10�4, vf =vte ¼ 5:0; Tf =Te ¼ 1:0; Te=Ti ¼ 7:0, and ðn̂k3
DÞ
�1

¼ 5:0� 10�3.
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panels of Figure 4 are very similar to the corresponding pan-

els of Figure 2, indicating that, for the case considered, the

scattering has not produced noticeable effects in the evolu-

tion of N waves, even after a time interval, from 0 to 4000,

in which significant effects due to scattering have been seen

in the spectrum of L waves.

In Figure 5 we show results obtained in a case with

higher beam density, by considering nf =ne ¼ 6:0� 10�4. In

Figure 5 top panel we show the spectrum of L waves at

s ¼ 4000, obtained by taking into account only spontaneous

and induced emission processes in Eq. (1). Despite the fact

that the time evolution of the primary peak of L waves is

faster in the case of higher beam density (not shown), the

comparison between Figure 5 (top) and Figure 1(d) shows

that the peaks obtained at s ¼ 4000 have similar heights.

The difference is that the peak is somewhat wider in the case

of higher beam density. The spectrum of L waves obtained at

s ¼ 4000, when scattering effects are also taken into account

in the evolution equation, is seen in Figure 5 (bottom panel).

The spectrum obtained is similar to that obtained in the case

of lower density beam, Figure 3(d), but in addition to wider

forward peak, the case of higher beam density features more

pronounced peak of backward waves and more pronounced

ring-like feature in wavenumber space.

The corresponding spectra obtained for N waves are

superposed in Figures 5 (top), without scattering, and 5 (bot-

tom), with scattering taken into account. As already noticed

in the case of lower density beam, the presence of scattering

has not produced significant effects on the time evolution of

the harmonic waves. Note that Fig. 5 (bottom) compares

quite reasonably with Figures 3(b) and 3(c) of Ref. 43, which

show the 2D spectrum of fundamental and second harmonic

electric field.

In Figure 6 we show the spectra of L and N waves as a

function of absolute value of the normalized wave number,

q, obtained after integration over the pitch-angle in wave-

number space. In all the four panels of Figure 6 one finds

plotted curves corresponding to s¼ 100, 200, 500, 1000,

2000, 3000, 4000, 5000, and 6000. The curve for s¼ 100 is

denoted in green, the curve for s ¼ 1000 is blue, the case of

s ¼ 3000 is depicted using magenta color, and s ¼ 6000

appears in red. The other lines corresponding to s¼ 200,

500, 2000, 4000, and 5000, are denoted in black.

FIG. 5. Contour plots for normalized wave intensities, vs q? ¼ k?vte=xp

and qk ¼ kkvte=xp, at s ¼ 4000. The beam density is such that

nf =ne ¼ 6:0� 10�4, and other parameters are as in Figure 1. (Top) L wave,

obtained taking into account only spontaneous and induced emission in the

equation for L wave evolution, and N wave, obtained taking into account

only the effect of induced emission in the equation for N wave evolution.

(Bottom) L wave, obtained taking into account spontaneous and induced

emission and wave scattering in the equation for L wave evolution, and N
wave, obtained taking into account induced emission and wave scattering in

the equation for N wave evolution.

FIG. 4. Normalized N wave intensity, vs q? ¼ k?vte=xp and qk ¼ kkvte=xp,

in vertical logarithmic scale, taking into account spontaneous and induced

emission and scattering in the equation for evolution of the N wave. (a)

s¼ 500; (b) s ¼ 1000; (c) s ¼ 2000; and (d) s ¼ 4000. Input parameters are

the same as in Figure 1.
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Figure 6(a) depicts results obtained for the case of

nf =ne ¼ 2:0� 10�4, by taking into account only spontane-

ous and induced emission processes in Eq. (1), and only

induced processes in Eq. (3). The peak in the spectrum of L
waves starts to grow in the region slightly above q¼ 0.2,

grows regularly until attaining maximum value near time

s ¼ 3000, and then starts a slow decrease, while under-

going a slight broadening process, as seen in Figure 1. The

peak of N waves appears as broad perturbation for s¼ 100,

but then grows around the value q ’ 0:65, attaining maxi-

mum value near s ¼ 4; 000, and then starting to decrease

very slowly. The maximum height attained by the peak in

N waves is seen to be about 1/20 of the maximum of the L
wave peak.

The results obtained for nf =ne ¼ 2:0� 10�4 when scat-

tering effects are also taken into account are seen in Fig.

6(b). The results obtained are very similar to those obtained

when the scattering effects were neglected, appearing in

panel (a). Particularly, the spectra of N waves can hardly be

distinguished, in the scale of the figure. In the case of L
waves, the ring-like structure formed in wavenumber space

by effect of scattering appears as an enhancement of the

FIG. 6. Normalized L and N wave intensities vs. q, in vertical logarithmic scale, for several values of s (100, 200, 500, 1000, 2000, 3000, 4000, 5000, and

6000). Green lines: s¼ 100; blue lines: s ¼ 1000; magenta lines: s ¼ 3000; and red lines: s ¼ 6000. The results corresponding to 200, 500, 2000, 4000, and

5000 are depicted by black lines. Except where explicitly indicated, the parameters are the same as in Figure 1. (a) Obtained taking into account only spontane-

ous and induced emission in the equation for L waves and induced emission in the equation for N waves. (b) Spontaneous and induced emission and wave scat-

tering in the equation for L waves, and induced emission and scattering in the equation for N waves. (c) Spontaneous and induced emission in the equation for

L waves and induced emission in the equation for N waves, with nf =n0 ¼ 6:0� 10�4. (d) Spontaneous and induced emission and wave scattering in the equa-

tion for L waves, and induced emission and scattering in the equation for N waves, with nf =n0 ¼ 6:0� 10�4. (e) Spontaneous and induced emission, wave scat-

tering, and three-wave decay, in the equation for L waves, and induced emission and scattering in the equation for N waves, with nf =n0 ¼ 2:0� 10�4. (f)

Spontaneous and induced emission, wave scattering, and three-wave decay, in the equation for L waves, and induced emission and scattering in the equation

for N waves, with nf =n0 ¼ 6:0� 10�4.
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spectrum in the region of q � 0:2, seen in Figure 6(b) and

not seen in Figure 6(a).

In Figures 6(c) and 6(d) we show results obtained con-

sidering the case of higher beam density, nf =ne ¼ 6:0
�10�4. The results appearing in Figure 6(c) were obtained

without taking into account scattering effects in the time

evolution of the waves, while those in Figure 6(d) were

obtained with scattering effects taken into account. The com-

parison between the results appearing in panels (c) and (d)

and those appearing in panels (a) and (b) show that the time

evolution is faster in the case of higher density beam, so that

the late evolution on the system accumulates considerable

difference between the two cases. Figure 6(c) shows that the

maximum in the L spectrum is attained for s near the value

s ¼ 1000, and that the peak in the spectrum decreases con-

siderably afterward, up the final time of s ¼ 6000 which has

been shown in the figure.

The comparison between Figures 6(c) and 6(d) show

that the presence of scattering caused considerable distortion

in the wave spectrum at later times, in addition to the pres-

ence of the ring-like structure which enhances the spectrum

in the region of small wavenumber. On the other hand,

Figures 6(c) and 6(d) show that the growth of N waves is

such that they attain maximum height for s between 2000

and 3000, before decreasing. It is interesting to point out

that, for s � 1000, the curves obtained for N waves without

taking into account the scattering and with scattering are ba-

sically the same. For s in the range 2000 � s � 5000, it is

seen from panels (c) and (d) of Figure 6 that the peak of N
waves obtained with scattering is slightly lower than the

peak obtained without including the effect of scattering.

However, for s ¼ 6000, it is seen that the peak obtained with

scattering, in Figure 6(d), is somewhat higher than the peak

appearing in Figure 6(c), obtained without scattering. This

feature has to be more carefully investigated, in order to see

if it is due to a real physical process, or if it is due to numeri-

cal instability appearing at late stages of the time evolution.

Figure 6 features two other panels, in which we present

results obtained from the numerical solution of the system of

coupled equations, including also effects of three-wave

decay in the equation for evolution of L and S waves. That

is, for the results shown in Figures 6(e) and 6(f), the evolu-

tion of L waves suffers the influence of spontaneous and

induced emission, three-wave decay and scattering, the evo-

lution of S waves suffers the influence of spontaneous and

induced emission and three-wave decay, and the evolution of

N waves occurs under the influence of induced emission and

scattering. Figure 6(e) shows the results obtained for L and N
waves, for several values of normalized s, considering the

case of nf =ne ¼ 2:0� 10�4. The comparison with the results

shown in Figure 6(b), obtained for the same parameters with-

out taking into account the effect of three-wave decay for L
and S waves, shows that the effect of the three-wave decay

term is barely noticeable in the integrated spectra of L waves.

In Figure 6(f) we show similar results, obtained for the case

nf =ne ¼ 6:0� 10�4. The comparison with Figure 6(d),

obtained for the same parameters, shows that the early time

evolution is quite similar in both cases, but for late time it is

quite noticeable in Figure 6(f) the enhancement of the L

spectrum which occurs in the case of addition of three-wave

decay and scattering effects.

Finally, in Figure 7 we present some results concerning

the time evolution of the coefficients associated to the time

evolution of the harmonic waves. We present these coeffi-

cients as a function of the absolute value of the normalized

wavenumber, after integration over the wave vector pitch

angle. The coefficient associated to wave damping or growth

by quasilinear processes will be denominated as cN
q , the coef-

ficient associated to scattering is �N
q , and the coefficient

which appears at the denominator of both the quasilinear and

the scattering term in Eq. (3) will be denoted by gN
q . In Fig. 7

these coefficients are depicted for several values of the nor-

malized time, s¼ 100, 200, 500, 1000, 2000, 3000, 4000,

5000, and 6000. We consider two cases of the beam relative

density, with other parameters as in Fig. 1.

Figure 7(a) shows cN
q vs. q, for the case

nf=ne ¼ 2:0� 10�4. The case of s¼ 100 is representative of

the early time of wave evolution. It is seen that for small q
there is negligible damping, due to resonance with the very

small population at the tail of the distribution. For 0:3 � q �
0:6 there is more significant damping, at the far extreme of

the beam, and for 0:6 � q � 0:9 the positive value of cN
q

indicates wave growth. For larger values of q, the damping

becomes again very significant, due to resonance with par-

ticles of the Maxwellian part of the distribution. Figure 7(a)

shows that along the time evolution the peak of wave growth

is displaced toward smaller values of q. Between s¼ 500

and s ¼ 1000 the wave growth starts to decrease, as indi-

cated by the lines blue and magenta, respectively. This is

due to formation of a plateau in the distribution function.

Shortly after that, the peak of harmonic starts to be reab-

sorbed by the particles, as indicated by the negative values

of c for all values of q, in the curves depicting the situation

at s ¼ 2000, and beyond. This is because the flat plateau is

seen in the 1D projection of the distribution function, along

parallel direction. In 2D space, there is always regions of

negative derivatives around the position of the beam in ve-

locity space, which dominate the evolution after the positive

derivatives in the region of the beam are flattened out.

In Figure 7(b) we have information about the time evo-

lution of cN
q vs. q, in the case of higher beam density,

nf=ne ¼ 6:0� 10�4. It is seen that qualitatively the results

are similar to those appearing in Figure 7(a), except that the

maximum growth or damping rates are larger, and the time

evolution is faster. The maximum growth coefficient is seen

to occur for s ’ 200 in Figure 7(b), with significant reduc-

tion of the growth already seen in the case of s¼ 500, as

depicted by the blue line.

The evolution of �N
q , the coefficient associated to scatter-

ing, is seen in Figures 7(c) and 7(d). It is seen that the scat-

tering coefficient is negative for all values of q, indicating

that the scattering effect contributes to deplete the peak of

harmonic waves, spreading the wave intensity. However, it

is seen that the effect is weak, as compared with the quasilin-

ear effect ðjgN
q =c

L
q j 	 10�2Þ. In the case of lower beam den-

sity, in Figure 7(c), it is seen that the maximum absolute

value of cN
a is attained for s ’ 3000, approximately the time

of the maximum of the spectrum of N waves, and that this
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maximum absolute value is smaller than the maximum abso-

lute value of cN
q at corresponding time. Similar comments

can be made about the results obtained in the case of higher

density beam, as depicted in Fig. 7(d).

The values of the coefficient gN
q , vs. q, for several values

of s, appear in Figures 7(e) and 7(f). For the case of

nf =ne ¼ 2:0� 10�4, seen in Figure 7(e), it is seen that the

quantity g features a peak which coincides with the location

of the peak of N waves in wavenumber space, and that the

maximum value is attained for s ’ 3000, about the time of

the maximum value of the wave spectra. For s � 500, it is

seen that the absolute value of gN
q is indeed very small, which,

together with the corresponding small value of j�N
q j, confirms

the conjecture presented in Eq. (17). However, Figure 7(e)

shows that the maximum value of gN
q never surpasses the

value 4:5� 10�3, which means that the numerical analysis

made in two dimensions has not confirmed the conjecture

made in Ref. 11 and presented in Eq. (18). Comments which

are qualitatively similar can be made for higher beam density,

except that the evolution is faster and the maximum attained

by cN
q is larger, being about 1:8� 10�2 in the case of

nf=ne ¼ 6:0� 10�4, shown in Figure 7(f).

Hence, we conclude that the main saturation mechanism

for the nonlinear eigenmode is the quasilinear process of pla-

teau formation in the electron distribution function, with the

consequent arrest of the weak-beam instability.

IV. SUMMARY

In the present paper we have presented results of numer-

ical analysis of the generalized weak turbulence theory in

two dimensional space, taking into account the normal

FIG. 7. Normalized coefficients associated to the time evolution of harmonic waves, as described by Eq. (3), vs. normalized wavenumber, for several values of s
(100, 200, 500, 1000, 2000, 3000, 4000, 5000, and 6000). (a) cN

q vs. q, nf =ne ¼ 2:0� 10�4; (b) cN
q vs. q, nf =ne ¼ 6:0� 10�4; (c) �N

q vs. q, nf =ne ¼ 2:0� 10�4;

(d) �N
q vs. q, nf =ne ¼ 6:0� 10�4; (e) gN

q vs. q, nf =ne ¼ 2:0� 10�4; and (f) gN
q vs. q, nf =ne ¼ 6:0� 10�4. Other parameters are as in Figure 1.
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electrostatic modes, which are Langmuir and ion-acoustic

waves, and also the occurrence of harmonic waves with fre-

quency which is about twice the frequency of fundamental

Langmuir waves. The wave equations were solved along

with the equation for time evolution of the electron distribu-

tion function, providing what is possibly the first examples

of self-consistent evolution of electrostatic waves, including

the harmonic of Langmuir waves, in more than one dimen-

sion. The equation which has been derived for the evolution

of harmonic waves contains the effect which is known as

induced emission and the nonlinear effect which is denomi-

nated as scattering, or nonlinear Landau damping. We have

also taken into account the mechanisms of scattering and

induced emission, along with the spontaneous emission

effect, in the equation for the evolution of fundamental

Langmuir waves, and the spontaneous and induced emission

effects in the equation for ion-acoustic waves, where the

scattering effect is regarded as negligible.

Reference 43 contains a Figure that shows the 2D spec-

trum of L and N modes, where while L mode and N mode

spectra are similar in overall shape, N mode spectra occupy a

broader range of k space. Such a feature has not been theoret-

ically explained. The results obtained show the growth of a

peak of harmonic electrostatic waves, with width in wave-

number which is comparable with the width of the primary

peak of Langmuir waves. Such a 2D spectral feature cannot

be discussed in the one-dimensional approximation, and is

consistent with results obtained with direct numerical simu-

lation result reported in Ref. 43.

The main purpose of the present investigation had been

to test the hypothesis put forth in Ref. 11, in which it was

speculated that early dynamical evolution of N mode should

follow quasilinear theory, but for later times, nonlinear

scattering should dominate. According to the present finding,

the effect of scattering has been seen to be very small in the

case of harmonic waves, whose evolution is dominated by

the induced emission effect. This finding contradicts the

speculation in Ref. 11.
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