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ABSTRACT
Detecting anomalous application executions is a challenging prob-
lem, due to the diversity of anomalies that can occur, such as pro-
gramming bugs, silent data corruption, or even malicious code
corruption. Moreover, the similarity to a regular execution that can
occur in these cases, especially in silent data corruption, makes
distinction from normal executions difficult. In this paper, we de-
velop a mechanism that can detect such anomalous executions
based on changes in the memory access pattern of an application.
We analyze memory patterns using a two-level machine learning
approach. First, we classify the behavior of different memory ac-
cess periods within applications using Gaussian mixtures. Then,
based on these classifications, we construct matrix representations
of Markov chains to obtain information regarding the temporal
behavior of these memory accesses. Based on metrics of matrix
similarity, we can classify whether the application behaves as ex-
pected or anomalously. Using gradient boosting on the metrics of
matrix similarity, our technique correctly classifies more than 85%
of all executions, identifying instances of the same application and
different applications. We can also detect a range of faulty execu-
tions caused by benign or malicious permanent bit flips in the code
section.

CCS CONCEPTS
• Software and its engineering → Main memory; • Depend-
able and fault-tolerant systems and networks→Reliability;
• Information systems→ Clustering;
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1 INTRODUCTION
Anomalous behavior in program executions encompasses several
undesirable phenomena, such as programming bugs, exploits caused
by malicious corruption of program code, and silent data corruption
caused by single event upsets (SEUs) [14], e.g., bit flips caused by
radiation. Common solutions to these problems include tracking
system calls to limit the potential to do harm to the operating sys-
tem [16], and adding redundancy in the code or the hardware to
avoid silent data corruption [3, 15, 21]. In reading from and writing
to the memory, many programs produce a characteristic pattern [5],

which is likely to be disrupted in the case of an anomaly. There-
fore, analyzing and comparing the memory access pattern of an
application can potentially be used to detect anomalous executions.

Memory access patterns have been extensively studied in pre-
vious work. The possibilities of using them for performance im-
provements are varied, such as prefetching in hardware [13], Mi-
crosoft’s superfetch [22], predicting disk aggregations [2], among
others. However, none of these techniques have been used to detect
anomalous application behavior. The advantage of doing so is that,
by using an external observer, it is not subject to the same circum-
stances as the processor, which could be compromised. Therefore,
such a mechanism could act effectively as a watchdog for the pro-
cessor.

It is not possible to find an optimal solution to the problem of
detecting anomalous behavior during program execution, as it can
be reduced to the halting problem [23]. This work analyzes under
which circumstances it is possible to distinguish a normal execution
from a faulty one based only on the memory access patterns of the
application. To this end, we have analyzed different data sampling
methods, memory behavior classification methods, and metrics
based on these classifications. Based on the values of these metrics
obtained from several executions, we use gradient boosting [4]
to determine whether the program behaved normally or not. We
present a mechanism that uses the ensemble classifier obtained
with gradient boosting to decide whether a new execution of a
program is correct or anomalous.

The main contributions of this paper are the following:
Data pattern and metric analysis: Through the analysis of sev-
eral different memory aggregation patterns, we are able to create a
fingerprint of correct execution and derive metrics which can ex-
press a program variation by modeling its execution with a Markov
chain.
Highly accurate characterization: Using our mechanism with
gradient boosting, we correctly classify 88% of all miBench [7] exe-
cutions, with an average false-positive frequency of less than 13%.

The rest of this paper is organized as follows. The next section
provides an overview of the main issues regarding comparison
of memory access patterns. In Section 3 we describe our memory
access classification and the mechanism to detect anomalous execu-
tions. Our experimental methodology is described in Section 4. In
Section 5, we analyze and discuss our results. Related work is pre-
sented in Section 6. Our conclusions are summarized in Section 7.



2 MOTIVATION
In this section, we describe the problems we focus on. We first
provide a detailed description of the target problems: detection
of silent data corruption and benchmark identification. We then
describe how memory access patterns can be analyzed to address
these problems.

2.1 Background and Overview
A multitude of scenarios can occur when a computer program is
executed. The common and expected scenario is that the program
executes normally and generates the correct output. However, exe-
cution can terminate incorrectly for several reasons. Due to wrong
inputs or bugs in the software, the application might just crash.
Furthermore, malicious attacks may cause the program to behave in
an entirely unexpected and even malicious way, such as installing a
root kit and allowing undesired, privileged access to remote users.
Another incorrect and unexpected behavior may be the result of a
Single Event Upset (SEU) due to a particle hit or faulty hardware,
which can either have no effect, crash the program, or generate
wrong output, that is, silent data corruption [8]. Moreover, silent
data corruption can also be used for malicious attacks [20].

Therefore, we are interested in detecting silent data corruptions
and, more generally, program behavior that differs from the ex-
pected. As the processor is generally unable to detect abnormal
behavior of programs and might be compromised itself, we choose
to detect these by externally observing memory references. By do-
ing so, we allow other cores to determine whether the behavior is
normal, and may in the future allow off-chip co-processors (such as
a processor in a Hybrid Memory Cube [17]) to monitor and check
the correctness of a program’s execution.

Since memory references only allow indirect inferences regard-
ing the program behavior, it is necessary to classify observations of
memory accesses into patterns, for which several parameters need
to be defined. Such parameters are the number of accesses to be
aggregated, the classification method, the access types considered,
and what properties of memory accesses are used to compose an
observation. For prefetchers, few memory accesses are sufficient to
predict a pattern for a given program counter. However, when ob-
serving an entire program behavior, there are far too many patterns
in the entire sequence of memory accesses to be tracked in practice.
Thus we aggregate memory accesses into memory observation pe-
riods with a fixed number of accesses, in order to obtain an overall
picture of the execution patterns and filter out small memory ac-
cess deviations that may be the result of out-of-order execution,
multi-threading, and other issues. We show two empirically chosen
granularities out of a design space exploration which ranged from
aggregations of 128 accesses to aggregations of 32768 accesses; a
coarse granularity of 16384 memory accesses per observation, and a
fine granularity of 1024 memory accesses per observation, in order
to be able to capture small deviations such as silent data corruption.
Whenever a request is issued by the processor, we simply incre-
ment the corresponding access type counter and, if the address
references a page which was still not referenced in this period, we
increment the corresponding number of pages counter for that
access type. Once the number of accesses required to compose an
aggregation is counted, we compose a memory aggregation with

that information and reset the counters to begin tracking the next
memory period. Superscalar request reordering has a negligible
effect on our coarse-grained aggregations, as a possible reordering
of requests will only result in a small change in the composition of
a memory aggregation.

2.2 Problem Modeling: Composing
Observations

Aggregation of memory accesses results in information loss re-
garding the temporal order of these accesses, and their individual
characteristics. However, a period of memory accesses can be differ-
entiated by accesses’ type, for example, whether they are reads or
writes, whether they are accessing instructions or data; and by the
concentration of memory accesses, which we capture by observing
how many different pages were touched in a given time period.

In order to be agnostic to operating system memory allocation
(which might change for each execution), we do not use any direct
spatial information, such as addresses, but rather indirect metrics
such as the number of pages touched by each memory access type.
Finally, a fixed number of memory accesses might occur within a
different number of instructions. We therefore use the total number
of instructions that were executed in this period to capture the
proportion of memory accesses to instructions in the given obser-
vation, and to obtain an indirect metric to execution lenght of the
memory aggregation, as relying on number of cycles might intro-
duce undesirable noise due to different caching effects on the same
memory aggregation at different times of execution, e.g. sharing
cache with another thread that hit a memory-intensive phase.

We thus define the following features of each observation: num-
ber of reads, number of pages touched by reads, number of writes,
number of pages touched by writes, number of instruction reads,
and the total number of pages touched by instructions. A read
stream, for instance, would concentrate memory reads in a few se-
quential pages. Sparse matrix calculations using unoptimized data
structures would spread their accesses over several pages. Pointer-
based structures would likely spread their accesses depending on
operating system memory allocation.

2.3 Classification and Evaluation of Errors due
to Bit Flips

During execution of a program, there is a possibility of a fault in
several portions of the system. Memory caches are often protected
by error-correcting code (ECC), and can thus be considered safe [24].
Superscalar structures however can suffer from bit flips due to SEUs
and can potentially change the execution of the program.

Such a faulty execution may generate one of four cases:
• First, the execution may finish correctly if the bit flip did not

change anything relevant to the context, such as a register which
was soon updated with another value.

• Second, the executionmay finish incorrectly if the bit flip changed
the execution path and led the control flow astray, generating
silent data corruption and thus incorrect results. Only a few
programs have built-in checksums and error checks to detect
incorrect results for such cases.

• Third, the execution may not finish if the bit flip resulted in an
infinite loop by changing the execution path.
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• Fourth, and most likely, the execution may not finish if the bit
flip caused either an illegal instruction (thus raising an illegal
instruction exception as the processor hardware decode stage
detects an invalid opcode), or an illegal memory access, by lead-
ing the control flow to access an instruction or data address
outside of the allocated area (thus generating a segmentation
fault detected by the memory management unit and operating
system).
Of these four cases, we are particularly interested in the second

case, where a bit flip could be generated with malicious intent to
modify the control flow, or extract secret or proprietary data from
the executing program. To do so, we look specifically for faulty
executions that did not terminate abnormally, which means the
program neither crashed nor entered an infinite loop; and had a
final result, for the same input, that is different from the correct
execution. This is the most interesting case of a fault, as all other
faults eventually result in a crash, and are thus easier to detect.

To observe the effect of erroneous executions in the memory
trace, we used themiBench suite [7]. The inputs were obtained from
the work by Fursin et al. [5]. In order to identify such faults, we
exhaustively executed each benchmark with every possible bit of
the code section of each program flipped. Programs were compiled
dynamically, so bits in dynamically linked libraries were not flipped.
Silent data corruption faults represented on average 4% of all the
altered instructions in each benchmark. Once we knew which bit
flips would generate silent data corruption, we used Pin [12] to
instrument the benchmarks and collect the memory traces from
the regular executions and the faulty executions for a given input.

In Table 1 we show how expressive the memory accesses’ dif-
ference can be between a correct and a faulty execution. It shows
two executions of quicksort with the same input, where the first is
a correct execution and the second a faulty execution. Although
the number of memory accesses stays almost the same, the number
of pages touched per operation changes by about 10%, showing
that accesses concentrate in fewer pages. We can also see in Table 1
two executions of dijkstra, where the opposite happens: the faulty
execution dilutes the execution in more pages, even though it has
almost the same number of memory accesses as the first. In both
executions, there is less than 1% difference between the number
of instructions executed, which indicates the program had similar
running times and executed instructions, a case in which anomalies
are harder to detect.

Table 1: Metrics for a complete benchmark execution of the
quicksort and dijkstra applications.

quicksort dijkstra

Metric normal anomalous normal anomalous

# reads 34,163,994 37,714,422 31,009,923 30,991,253
# pages read 180,995 158,208 167,082 179,613

# writes 21,314,365 24,706,058 15,040,334 15,030,683
# pages written 67,880 58,277 73,456 85,977

# instructions 172,865,49 174,279,168 162,436,143 162,349,776
# inst. pages 121,890 125,854 64,364 64,303

3 DETECTING ANOMALOUS EXECUTIONS
WITH MACHINE LEARNING

In this section, we describe the machine learning solutions ap-
plied to the detection of anomalous program executions. We first
describe the application of Gaussian Mixture Models as a classifi-
cation method to cluster similar behaviors in distinct indices. We
also explain how using a Markov chain can generate metrics that
show whether a program is behaving anomalously. We then show
an example of an anomaly detection using these metrics.

3.1 Classifying the Memory Periods with a
Gaussian Mixture Model

The problem of classifying the memory access pattern for a pro-
gram can be divided into two problems. The first is identifying
specific patterns to fit each aggregation of memory accesses. The
second is identifying in which temporal order these patterns exhibit
themselves.

For the first issue, we use clustering methods to cluster observa-
tions of memory access periods into similar groups. We chose to use
a variation of the expectation-maximization algorithm, the Gauss-
ian Mixture Model (GMM) [19]. This algorithm is resilient against
specific structures for clusters, since it does not use the simple
euclidean distance like k-means, but rather a statistical distribu-
tion of behaviors and deviations is considered for the formation of
centroids.

K-means generates a hard classification, it only assigns a cluster
for each data point based on proximity to a centroid, that is, an
average point for several adjacent data points. This bias towards
distance and concentration of points tends tomake k-means clusters
spherical. Gaussian mixture models, on the other hand, yield soft
classifications, by assigning probabilities for each data point to
belong to any given cluster. Therefore we chose a soft classifier
instead of a hard classifier, reducing sensitivity of the approach as
memory behaviors won’t always be well-defined and might have
variances resulting from side-effects, e.g. out-of-order execution,
or data access variation due to structure, e.g. pointer-chasing with
varying number of different pages touched for what should be
described as the same behavior.

3.2 Learning the Sequential Pattern with
Markov Chains

The second issue, finding the temporal order in which patterns
occur, is more complex. As a single pattern of memory accesses
might identify functions that do different things, it can be followed
by different patterns, so there is no single order that happens in
a program and can thus be used to differentiate it from other pro-
grams. Rather, we can classify a time dependent probability that a
pattern is followed by any other pattern. Thus, we represent the
program behavior as a Markov chain [6].

A Markov process consists of states and transitions between
states. It is commonly represented as a directed graph, and we use
a matrix to represent it. Each edge (transition) has a probability,
which is the probability that the initial vertex (state) transitions to
the end vertex. The sum of probabilities of all outgoing edges of a
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vertex must be 1, representing every possible transition from that
state.

0.2 0.4 0.4

0.34 0.36 0.3

0.0 0.1 0.9

Figure 1: Matrix representation of Markov chain describing
pattern of transitions between behaviors.

In Figure 1, we show an example of how we use a Markov chain
to represent cluster transitions. Each one of the 3 clusters is a state
(vertex) in the Markov chain. Therefore we generate a 3x3 matrix,
where the i, j element of the matrix represents the probability that a
memory behavior in cluster i will be followed by memory behavior
in cluster j. In general, we first generate a Gaussian mixture model
for all memory periods observed in the execution of a program A
yieldingN clusters. Then, we produce aN×N matrixMC consisting
of the probabilities that any given memory pattern is followed
by any other. We count all transitions between these clusters, by
observing executions of program A with different inputs, and for
each cluster i, such that 1 ≤ i ≥ N , after the first cluster in temporal
order, we increment MC[i-1][i] by one. We also increment a counter
vector C, C[i-1], by one, indicating the number of transitions from
cluster i-1 to any other cluster. After accumulating all the transitions
from the execution, we divide all elements in row MC[j] by C[j],
thus obtaining the probabilities of each cluster-to-cluster transition.
In this way, it is possible to obtain a general representation of a
program’s memory access behavior over the course of its execution.

3.3 Detecting Anomalous Behavior
Given a trained Markov chain for a specific program, if the pro-
gram makes a transition from one pattern to another, and such a
transition was never seen in the training process, it is reasonable
to assume that this indicates anomalous behavior. Likewise, if a
program commonly makes transitions from pattern X to pattern Y,
but in a new execution it never performs such transitions, an anom-
aly might be happening. We have tested several metrics regarding
the Markov chain matrix representation and selected 4 significant
metrics to differentiate executions.

To confirm these intuitions and exemplify the mechanism at
work, we trained a Gaussian mixture model using 5 quicksort ex-
ecutions with different inputs. More details of the methodology

are provided in Section 4. In Figure 2, we show 4 metrics of the
Markov chain being analyzed for regular quicksort executions and
one execution with silent data corruption, generated by a bit flip.
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Figure 2: Four metrics to identify quicksort anomalous exe-
cutions, with each observation composed of 16384 memory
accesses and 20 different inputs.

The first metric is the total matrix variation, which is half the sum
of the absolute values of the differences between the probability in
each position of the trained Markov chain and the observed Markov
chain. This metric tells us by how much transition probabilities
differ from their expected values in the trained Markov chain. It
ranges from 0 (identical matrices) to 2 × N , where the difference
between the probabilities that compose each row sums to 2 for all
N rows. As an example of maximum variation in a row, given a
row with two positions where the trained Markov chain row shows
values of 0 and 1, and the observed Markov chain row shows values
of 1 and 0, the variation for that row will be |0 − 1| + |1 − 0| = 2. In
Figure 2, we can observe that the high variance in quicksort makes
it hard to tell it apart from the faulty execution.

The second metric is the ratio of unidentified transitions. We cal-
culate this metric by keeping track of transitions that were seen in
the trained Markov chain. Each transition in the observed Markov
chain that had 0 probability for the trained Markov chain incre-
ments an "unidentified transition counter", and thus the unidentified
ratio is equal to the "unidentified transition counter" divided by the
total number of observed transitions when generating the observed
Markov chain. As with any ratio, this value can range from 0%,
when no unidentified transitions were observed, to 100%, where
all transitions of the observed execution had zero probability in
the trained Markov chain. This metric can indicate when a pro-
gram is exhibiting a behavior unseen by the trained Markov chain.
In Figure 2, we observe low values for all executions of quicksort,
whereas the faulty execution of input 10 shows a high value, which
means it is exhibiting a different sequence of behaviors than those
expected for quicksort.

The third metric is the matrix rank difference. We calculate the
rank of the trained Markov chain and the rank of the observed
Markov chain and subtract one from the other, then return the
absolute value. The fourth metric is the matrix sparsity of the
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observed Markov chain. It is calculated as the total number of non-
zero elements in the matrix divided by the total number of elements
in the matrix. These two metrics are able to show when an observed
Markov chain focuses on specific and general behaviors due to
overfitting of the trained Markov chain’s centroids to behaviors
that are specific to the benchmark used for its training. A rank
difference of 99% indicates that while the trained Markov chain
is fully ranked, the observed Markov chain has 1% of its N rows
as an independent vector, which means only one row has non-
zero probabilities. As we have N rows and N columns, the rank
difference ranges from 0 for two matrices with the same rank, to
N-1, where one matrix has rank N and another matrix has rank
1, having a single transition with probability different from zero.
This is confirmed by the matrix sparsity, indicating that the faulty
execution with input 10 only exercised one general behavior, not
the specific and detailed ones that overfit the quicksort benchmark.
Matrix sparsity ranges from 1/ (N × N ) % to 100%.

3.4 Mechanism Organization
Once we have the model fit to a composition of observations from
multiple inputs to the same benchmark, we build a Markov chain
matrix by observing the sequence of all component indices in which
the memory periods in these training inputs were classified. We
then construct another Markov chain matrix by observing the se-
quence of all component indices in which the memory periods of a
new input were classified. This new input is the one for which we
want to define whether the program is behaving normally. We do
so by comparing the metrics previously mentioned and observing
whether there are outliers in these metrics which could indicate
anomalous behavior.

Collect observations
from memory periods
for the given inputs.

Offline

Train base Gaussian mix-
ture model (GMM) with
all the observations.

Generate base Markov
chain representing tran-
sitions between mem-
ory behavior indices in
GMM.

Collect observations
from memory periods
for observed execution.

Online

Classify observed execu-
tion using base GMM
to generate observed
indices.

Generate observed
Markov chain based on
observed indices.

Compare base Markov
chain and observed
Markov chain, and calcu-
late values of metrics.

Figure 3: Flowchart of our proposed technique.

In Figure 3 we show the flowchart of our technique. The leftmost
blocks describe the training stage; we first characterize the memory
periods of an application for several of its inputs. We use multiple
inputs here to account for the behavior variance between different
inputs. Once we have the memory access patterns for all these mem-
ory periods, we generate a clustering of the memory periods using

a Gaussian mixture model. Thus, we now have indices classifying
memory periods into specific patterns. With these indices alone,
we could already perform benchmark identification by observing
the proportion of periods attributed to each index in an execution,
although not quite accurately.

We then construct the base Markov chain, which represents
the probabilities of one index (that is, a memory period behavior)
being followed by another index, for all possible index pairs. We
use a N × N matrix to represent the Markov chain, where N is
the number of clusters in our model. Therefore, each row i of the
Markov chain represents one behavior cluster, and each column
k in this row corresponds to the cluster that was observed after
i. The element i,k is the probability of behavior represented by
index i being followed by behavior presented by k. Every time
we re-execute the program later on (after the training has been
completed) we build a second matrix, representing a Markov chain
with the classifications obtained by running the execution to be
tested for anomalies.

For illustrative purposes, in Figure 4, we compare the quick-
sort and susan execution metrics when each memory aggregation
consists of 1024 memory accesses. The base benchmark which we
assume to be executing is quicksort, that is, the Markov chain was
trained using quicksort executions. We can observe that rank and
matrix sparsity are distinctive metrics for different benchmarks,
clearly indicating that the behavior of susan is anomalous when
compared to the expected behavior from quicksort.

Since Gaussian mixture models are based on the expectation-
maximization algorithm, an iterative method, whose complexity
depends on convergence of the input and iteration threshold. Since
we allowed at most 100 clusters, and a default threshold of 100
iterations, the time complexity of finding the components in the
training phase is bound to 10000 × n, where n is the number of
memory aggregations, i.e. the total number of memory accesses
of the program divided by the granularity size. When creating
the target application’s Markov chain, each memory aggregation
must be classified, resulting in additional n steps for each memory
aggregation.

The amount of storage required by the matrices for 100 clusters is
160000 bytes when using double-precision floating point elements
to represent probabilities. Since we used full covariance matrices,
the Gaussian mixture model requires number of components × num-
ber of features × number of features, thus requiring 28800 bytes,
again assuming double-precision floating point. Therefore the total
storage complexity of our technique, with the chosen parameters,
is of 188000 bytes.

4 METHODOLOGY
The fundamental tool we used for this work is Pin [12] from Intel,
which can trace memory accesses from applications. To perform
machine learning, we used Sklearn’s Gaussian mixture model im-
plementation [18] and gradient boosting implementation [4].

We selected 7 benchmarks of miBench [7] for our experiments.
The benchmarks selected were quicksort, susan, patricia, dijkstra,
jpeg compression, raw audio compression and gsm encoding. We used
Fursin et al.’s [5] datasets to ensure each benchmark had varied
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Figure 4: Four metrics that can distinguish between quick-
sort and susan executions, with 10 different inputs each and
observations composed of 1024 memory accesses.

inputs which would express different behaviors. All programs were
compiled using gcc, dynamic linking, and the optimization flag -O3.

The memory traces were then processed and the memory ac-
cesses were aggregated into observations constituting six features.
The features are: 1) number of read accesses, 2) number of pages
touched by reads accesses, 3) number of write-allocate accesses,
4) number of pages touched by write-allocate accesses, 5) number
of instruction-read accesses and 6) number of pages touched by
instruction accesses.

Once we had processed traces with these observations, we used
Python and its numpy, math, and Sklearn libraries to construct a
Gaussian mixture model [19] using a full covariance matrix. The
ideal number of components should be different for every appli-
cation; however, since the gaussian mixture model is resilient to
overfitting, we empirically chose an arbitrary large number of com-
ponents, 100, to classify the observations such that the librarywould
not throw a memory crash exception due to large memory space
used by the algorithm. In our experiments, 120 components would
crash the model fitting process of the Sklearn mixture model with
specific inputs.

Construction and processing of Markov chains for the metrics
were performed using matrices. In the mechanism we assume a
base Markov chain and an application Markov chain. The metric
values of the base Markov chain for a given application are ob-
tained by training the gaussian mixture model with a number of
correct executions with random inputs from the selected dataset.
The difference between these values and the values obtained in the
Markov chain generated by the application being tested are used
to define whether the application’s behavior is considered normal.

5 EXPERIMENTS
This section presents the experimental evaluation of our proposed
mechanism. We start with the tests to identify a program, followed
by the fault identification.

5.1 Program Identification
We first tested the ability of our mechanism to identify the execut-
ing program. This can allow the detection of unknown programs

including malicious programs. Initially, we generated a Gaussian
mixture using the concatenation of 5 different inputs for each of
the 7 benchmarks. To distinguish among benchmarks, we executed
this concatenation to train the GMM to generate the Markov chain
metrics. The values obtained for the metrics in this Markov chain
will be referenced as base values, and the Gaussian mixture will
be referenced as base GMM. We then compared the same metrics
when generating a Markov chain running a different benchmark
under the base GMM. We were conservative in this test, only claim-
ing a difference between the programs if any of the metrics was
significantly different, using a threshold of 30% difference in the
value of each metric when compared to the maximum or minimum
value obtained for the training inputs in the original benchmarks.
We reached a 100% coverage with 0% false positives (comparing the
base metrics with executions using different inputs which were not
used for training). Thereby, we can reliably identify benchmarks
when we have access to the entire memory trace.

This is due to overfitting. There is a large probability that 100
centroids overfits the benchmark, and thus more centroids are being
used to express small deviations in some of the parameters. How-
ever, these small deviations are characteristic of the benchmark,
and deviations in other parameters will have their classification
concentrated in a smaller number of centroids. Since most classifi-
cations of the memory periods of the different benchmark are being
fit to few centroids of the base GMM, transitions are concentrated
in few positions of the test benchmark Markov chain. The matrix
sparsity (representing how many centroids were used) was able
to differentiate most of the benchmarks; the remaining differences
were covered by the other metrics.

5.2 Fault Identification
To observe how the memory access pattern changes for these cases,
we performed a sweep over all possible bit flips in the binaries of
each benchmark, generating all traces of silent errors for a single
data input. Since some benchmarks had far too many bit flips that
caused silent data corruption, we sampled one hundred different
errors for each benchmark. In Figure 5, we show a conservative
coverage of errors for each benchmark. For this coverage, we used
5 distinct metrics to differentiate faulty executions from normal
executions, adding matrix trace i.e., the sum of the matrix elements
along the diagonal, to the four metrics previously introduced. This
metric represents the tendency of a program to exhibit repetitive
behavior. If any of the 5 metrics was above or below a certain
threshold (in this case, 70% as is discussed below), i.e., if the value
of the metric in the observed Markov chain was larger than value
of metric × 1.7, we classified the execution as faulty. Each of the
metrics has a specific condition, e.g., it does not make sense to test
if the rank difference metric is lower than for the training inputs,
as it would mean the input being tested behaves even more closely
to the expected behavior given by the base GMM.

We can observe that the coverage of the technique is very de-
pendent of the benchmark. Even with a conservative threshold we
get false positives for some of cjpeg’s own inputs.

Since 70% is rather conservative, we also performed tests to ob-
tain the receiver operating characteristics (ROC) [10] curve, which
shows the trade-off between false positives and true positives for a
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each benchmark.

range of threshold values. In Figure 6, we show that it is possible to
obtain various trade-offs between true positives and false positives
using different thresholds for each benchmark. In this figure, the
70% threshold is shown in the 0.3 coordinate. The chosen threshold
of 0.53% means that if there is at least 47% difference for any metric,
we classify the execution as anomalous. Here we obtain a better
trade-off being more aggressive, as we allow a smaller deviation of
any metric to classify the execution as anomalous.
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Figure 6: Receiver Operating Characteristics. The curve de-
scribes how our mechanism behaves based on the threshold
used (from very conservative, 0, to very aggressive, 1).

Based on the results of Figure 6, we performed gradient boosting
using the 5 metrics as features of an execution, each execution being
one observation. We trained the gradient boosting with 70 correct
executions and 70 incorrect executions, by choosing 10 correct and
10 incorrect executions of the 7 benchmarks. Our tests with the
remaining inputs generate the coverage shown in Figure 7, which
shows that with the correct machine learning model for the five
metrics it is possible to achieve a higher fault coverage based on
memory accesses. We empirically reached these results after using
a gradient boosting with 200 estimators, 0.08 learning rate, 0.85 sub-
sampling for each individual learner, and a max depth of 7 for the

regression estimators. All other parameters’ values were Sklearn’s
library defaults. Here we correctly classify 88.46% of all incorrect
executions being tested as anomalous, while obtaining false posi-
tives in 9.87% of the correct executions being tested. Compared to
the fixed thresholds previously observed, where the best trade-off
offered 54% true positives and 11% false positives, we can see a
significant improvement in the quality of the classifier. Naturally, it
is possible to introduce bias in the gradient boosting to reduce the
false positive ratio. This can be done either through selection of the
training set or skeweing parameters. However, doing so resulted
in significant loss in true positive detection ratio when trying to
reduce false positive rates any further.
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Figure 7: Error coverage and false positives obtained for each
benchmark using a gradient boosting model.

6 RELATEDWORK
Research in the area is mostly focused either on detecting faults [3,
15, 21] or detecting malicious behavior [16]. The former focuses on
redundancy, whereas the latter commonly focuses on specific forms
of malicious attacks. These techniques can be seen as complemen-
tary to our proposal, as our technique covers a broader spectrum
of anomalies.

Work that is closer to our area includes Khanna et al. [9], where
the authors construct a hidden Markov model (HMM) to detect
system intrusions in ad hoc networks. They used given traces of
system calls, and network protocol activity to construct usage and
activity profiles. They performed 2 weeks of training. In the first
week, the system was profiled for normal activity. In the second
week, DARPA attacks [11] were mounted on the system. They were
able to obtain 90% true positive identification with less than 10%
false positive identifications for a given set of parameters for the
mechanism. In comparison, our work has a limited amount of input.
We only look at memory references, and thus our capability of
inference on benchmark behavior is constrained. Due to this, we
chose a regular Markov chain process and comparison of Markov
chains, although we could extend our research to use a hidden
Markov model and obtain predictions during execution.

Balakrishnan et al. [1] describe a tool to analyzememory accesses
in x86 static executables. This tool is able to create intermediate
representations of any program, similar to those that can be cre-
ated for programs written in a high-level language. They create a
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new technique, value-set analysis, to track the value of data objects
at each point of the program. Using this analysis, it is possible
to identify vulnerabilities like buffer overflow and self-modifying
code. Compared to our work, their work shows the variability and
relevance of memory accesses to the characteristic pattern of a
program. By identifying anomalous write positions and value sets,
they enable the capture of possible vulnerabilities before execution.
Our work performs post-execution analysis on the memory refer-
ence stream, but is more comprehensive, as any anomalous activity
(such as silent data corruption due to underfeeding voltage [20])
might be detected.

7 CONCLUSIONS
Our results show that the memory access stream can be used for
program identification, which can allow detecting unknown or
even malicious programs being executed. Furthermore, by applying
our mechanism to different benchmarks, we were able to demon-
strate, that under specific parameters’ values, our mechanism can
obtain good silent data corruption coverage for the considered
benchmarks. We have achieved over 88% error coverage, while gen-
erating less than 10% false positives, in all of our tests. To the best
of our knowledge, no technique can cover anomalies of multiple
types in an unified mechanism as it is possible in our research.

With the addition of logic in main memories [17] or the usage
of a companion core, an implementation of our mechanism would
allow an external observer to act as a watchdog for the system,
even if it was compromised due to silent error attacks. In future
work, we would like to investigate specific benchmark character-
istics that make faults hard to distinguish, and explore a physical
implementation of our idea in the hybrid memory cube.
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