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ABSTRACT

Monitoring natural environments and their changes over time requires the analysis of a

large amount of image data, often collected by orbital remote sensing platforms. However,

variations in the observed signals due to changing atmospheric conditions often result in

a data distribution shift for different dates and locations making it difficult to discriminate

between various classes in a dataset built from several images. This work introduces a

novel supervised classification framework, called Classify-Normalize-Classify (CNC), to

alleviate this data shift issue. The proposed scheme uses a two classifier approach. The

first classifier is trained on non-normalized top-of-the-atmosphere reflectance samples to

discriminate between pixels belonging to a class of interest (COI) and pixels from other

categories (e.g. forest vs. non-forest). At test time, the estimated COI’s multivariate

median signal, derived from the first classifier segmentation, is subtracted from the image

and thus anchoring the data distribution from different images to the same reference.

Then, a second classifier, pre-trained to minimize the classification error on COI median

centered samples, is applied to the median-normalized test image to produce the final

binary segmentation.

The proposed methodology was tested to detect deforestation using bitemporal Landsat 8

OLI images over the Amazon rainforest. Experiments using top-of-the-atmosphere multi-

spectral reflectance images showed that the deforestation was mapped by the CNC frame-

work more accurately as compared to running a single classifier on surface reflectance

images provided by the United States Geological Survey (USGS). Accuracies from the

proposed framework also compared favorably with the benchmark masks of the PRODES

program.

Keywords: Image normalization. Radiometric correction. Pixel classification. Forest

Segmentation. Deforestation detection. Supervised learning.



Classifica-Normaliza-Classifica: Uma Nova Abordagem para Classificar Pixels de

Floresta em Imagens de Sensoriamento Remoto

RESUMO

O monitoramento do meio ambiente e suas mudanças requer a análise de uma grade quan-

tidade de imagens muitas vezes coletadas por satélites. No entanto, variações nos sinais

devido a mudanças nas condições atmosféricas frequentemente resultam num desloca-

mento da distribuição dos dados para diferentes locais e datas. Isso torna difícil a distin-

ção dentre as várias classes de uma base de dados construída a partir de várias imagens.

Neste trabalho introduzimos uma nova abordagem de classificação supervisionada, cha-

mada Classifica-Normaliza-Classifica (CNC), para amenizar o problema de deslocamento

dos dados. A proposta é implementada usando dois classificadores. O primeiro é treinado

em imagens não normalizadas de refletância de topo de atmosfera para distinguir dentre

pixels de uma classe de interesse (CDI) e pixels de outras categorias (e.g. floresta ver-

sus não-floresta). Dada uma nova imagem de teste, o primeiro classificador gera uma

segmentação das regiões da CDI e então um vetor mediano é calculado para os valores

espectrais dessas áreas. Então, esse vetor é subtraído de cada pixel da imagem e portanto

fixa a distribuição de dados de diferentes imagens num mesmo referencial. Finalmente, o

segundo classificador, que é treinado para minimizar o erro de classificação em imagens

já centralizadas pela mediana, é aplicado na imagem de teste normalizada no segundo

passo para produzir a segmentação binária final.

A metodologia proposta foi testada para detectar desflorestamento em pares de imagens

co-registradas da Landsat 8 OLI sobre a floresta Amazônica. Experimentos usando ima-

gens multiespectrais de refletância de topo de atmosfera mostraram que a CNC obteve

maior acurácia na detecção de desflorestamento do que classificadores aplicados em ima-

gens de refletância de superfície fornecidas pelo United States Geological Survey. As

acurácias do método proposto também se mostraram superiores às obtidas pelas máscaras

de desflorestamento do programa PRODES.

Palavras-chave: Normalização de imagens, Correção radiométrica, Classificação de pi-

xels, Segmentação de floresta, Detecção de desflorestamento, Aprendizado supervisio-

nado.
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1 INTRODUCTION

Designing robust classification methods when the underlying statistics of the classes

of interest vary in space and time is a challenging task. In remote sensing applications,

this issue may arise, for instance, due to local variations in atmospheric conditions and

seasonal changes in illumination. Often, these shifts negatively affect classification accu-

racies, especially when the user wants to learn a model in a specific training set and apply

it to new scenes acquired at different locations and dates. We propose to handle this issue

with the proposed Classify-Normalize-Classify (CNC) framework.

We aim to create a framework that alleviates the data distribution shift between

images within the training and test set, and also across them. As a working hypothesis,

we assume that by compensating for a spectral shift within the training and test images,

the data will become more easily separable, and the learned model will generalize better

to the test set.

A partial solution to the above-mentioned data shift problem could be prepro-

cessing the input images using atmospheric correction algorithms such as the MOD-

TRAN (BERK; BERNSTEIN; ROBERTSON, 1987; TARDY et al., 2016) or the 6S

codes (VERMOTE et al., 1997) that in principle can remove undesired effects in the

observed radiance signals captured by orbital sensors in the visible and infrared electro-

magnetic spectrum, therefore making a pretrained classification model applicable to other

atmospherically corrected images. However, detailed information about the atmosphere

conditions is needed as input to those algorithms at each pixel location, but often they are

unavailable or are not known precisely (SONG et al., 2001). Another possible solution is

the dark object subtraction approach (JR, 1988), which may be less demanding regarding

the input parameters. However, this method is not as accurate as more complex methods

such as the 6S codes (NAZEER; NICHOL; YUNG, 2014).

Relative normalization of overlapping images based on the selection of fixed land-

mark points in multitemporal acquisitions is an alternative to aligning spectral obser-

vations to a common reference, facilitating classification and change detection in re-

mote sensing (SCHOTT; SALVAGGIO; VOLCHOK, 1988; BAO et al., 2012; CANTY;

NIELSEN, 2008). For instance, the multivariate alteration detection (MAD) transforma-

tion (CANTY; NIELSEN, 2008) can automatically find normalization targets, also known

as pseudo-invariant features (PIFs), but these can only be applied to a set of images that

intersect geographically. A significant challenge remains when the labeled training set
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and unlabeled test images do not overlap spatially.

Recently, transfer learning methods (PAN; YANG, 2010) are emerging as an alter-

native to tackle the problem of training a supervised model in a given data and testing it

in other data cubes from different acquisitions. Manifold alignment (HAM; LEE; SAUL,

2005) is a promising strategy currently being investigated in the remote sensing literature.

Despite promising at dealing with the shifting classes distribution problem, often these

methods need at least a few labeled samples in the target domain, thus making them not

fully automatic at test time (TUIA et al., 2014; TUIA; CAMPS-VALLS, 2016). There

are also techniques which do not need labeled examples in the target domain, but they

do not accept multiple sources domains to be simultaneously aligned (TUIA et al., 2013;

MATASCI et al., 2015).

Differently from current relative normalization methods, here we propose the CNC

framework which can handle multiple domains and for each one it translates the me-

dian vector of a class of interest (COI) to the origin and therefore it is independent of

a reference image. It is also fully automatic at test time and allows several possibly

non-overlapping images to be put in a common spectral reference using a data-driven

approach. The CNC requires labeled samples only at the initial training phase.

The CNC has three steps. The first one consists in applying to the input image

a binary classifier f1 trained on unnormalized images to discriminate between a class of

interest (COI) and all the remaining pixels of the image (non-COI). This produces an

initial rough COI segmentation. Then, the multivariate median spectral signal of the COI

segmented region is computed and subtracted from all the input image pixels values. Now

that the input image is normalized (shifted), a second classifier f2, previously trained on

COI median centered images, is applied to the input pixels to produce the final refined

segmentation. The median is used instead of the mean because the former is more robust

to outliers than the later (see Section 4.1 for more information).

The first two steps (Classify-Normalize) of the CNC framework can be seen as an

approximate relative radiometric normalization. It is relative because the values do not

correspond to absolute reflectance values, and is an approximation because the proposed

model only accounts for a possible rigid translation and does not take into consideration

an eventual deformation of the classes distributions.

We evaluate the framework in the context of automatic pixel-wise deforestation

detection as this task can be reduced to classifying forest/non-forest pixels in two co-

registered images, and then finding the difference between their resulting binary masks.
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This technique is known in the literature as post-classification comparison (SINGH, 1989).

We focus on Landsat 8 OLI images (ROY et al., 2014) acquired over the Amazon rain-

forest. As our experiments will show, segmenting an unnormalized image, with a single

classifier, into forest/non-forest categories is not as effective as when classifying with the

complete CNC pipeline. Although a single classifier may only provide a rough forest

segmentation, it is sufficient to estimate the forest median multispectral signal accurately.

Figure 1.1 illustrates the problem of shifting distributions in the context of forest/non-

forest classification. As can be seen from the figure, the plots regarding unnormalized

pixels have a large shift of the classes clusters from one image to the other, and this

causes points from different categories to mix together when combining the points from

different images. On the other hand, the normalized pixels points in the right-column

plots in Figure 1.1 lead to a more modest distribution shift from one image to the other,

and therefore the combined plots in the last row can be more easily divided between forest

and non-forest categories.

It is important to note that the aim of this work is not to present a complete chain

for deforestation detection as in Hansen et al. (2013), Hansen et al. (2016). Instead, we

evaluate in which circumstances the CNC framework performs well and how it compares

to other methods in similar settings. This means that, for instance, we do not include an

automatic method for cloud screening, and we use pairs of images for detecting changes

through the post-classification comparison strategy, instead of classifying the stacked im-

ages directly, using object-based classification (BLASCHKE, 2010; WANG; JENSEN;

IM, 2010) or using a time-series approach. The proposed scheme can be combined with

other methods (e.g. in ensembles or with additional preprocessing procedures) to produce

a final change detection product.
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Figure 1.1: The left column sub-figures places the forest (in red) and non-forest (in blue)
pixels of two real Landsat 8 OLI images in the spectral space, where the horizontal axis
represents the top-of-atmosphere reflectance for the band SWIR 1 and the vertical axis the
reflectance in band SWIR 2. In the right column the pixels of each image were normalized
to have its forest median translated to the origin. The plots in the first row regard image
A, the plots in the second row come from image B, and the bottom row show plots that
are the fusion of the two plots above it.

(a) Plot of unnormalized pixels of image A. (b) Plot of normalized pixels of image A.

(c) Plot of unnormalized pixels of image B. (d) Plot of normalized pixels of image B.

(e) Plot of unnormalized coming from both
images.

(f) Plot of normalized coming from both
images.
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1.1 Goals of this Thesis

The main goals of this work are:

• To develop a fully automatic deforestation detection method that can generalize

well to new images not seen in the training stage and possibly acquired at different

atmospheric conditions.

• To describe the proposed CNC framework and evaluate which of its various possible

configurations works well in detecting tropical deforestation using Landsat 8 OLI

images.

• To compare the CNC framework with other competitive methods on the task of

deforestation detection.

1.2 Comparative Review of the State of the Art

To evaluate the usefulness of the proposed CNC framework, we will compare

it with other techniques on the task of deforestation detection. As the CNC does not

specify which classifiers it should use in the first and third step, in Section 5.3.1 we will

search for a suitable combination of classifiers f1 and f2 for the deforestation detection

task and select three CNC configurations to be compared with the other methods. The

following classifiers were tried as candidates for f1 and f2: CNN, LDA, QDA, KNN,

MLP, Random Forest, and SVM. Each of those methods can receive as an input just the

pixel being classified or also a context window centered on it. For the contextual methods

we optionally also extract GLCM features (HARALICK; SHANMUGAM; DINSTEIN,

1973).

We will then compare the three selected CNC instances applied to TOA reflectance

images against classifiers applied to images transformed to surface reflectance with the

Landsat 8 OLI atmospheric correction algorithm (LaSRC) (VERMOTE et al., 2016). This

is a natural comparison as one of the main goals of the CNC is to work well in new im-

ages with possibly different atmospheric conditions and the surface reflectance images

provided by USGS is currently the standard option for trying to achieve this goal while

using Landsat 8 images. Also, the first two steps of the CNC (Classify-Normalize) can

be considered an approximate relative radiometric normalization as mentioned earlier. So

indirectly, we will be comparing the normalization of the first two phases of CNC against
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the correction performed by the LaSRC algorithm. All classifiers, context sizes, and fea-

tures that were tried as f1 and f2 of the CNC will also be applied to surface reflectance

images so that the chosen CNC instances can be compared with the classifiers that ob-

tained best results on images corrected with the LaSRC 1. Also, as a weaker baseline,

we will compare the best CNC instances against classifiers applied to non-atmospheric-

corrected TOA reflectance images.

We will also compare the deforestation maps generated by the CNC instances with

those of the PRODES program (SHIMABUKURO et al., 2012). PRODES is a project

from the Brazilian government for monitoring deforestation in the Amazon forest. Ev-

ery year they produce deforestation maps using a semi-automatic method that involves

automatic segmentation and manual annotations by a human photo interpreter.

1.3 Contributions of this Thesis

The main contributions of this thesis are:

• The development of the novel supervised classification framework CNC which is

fully automatic at test time and generalize well for unseen images acquired at dif-

ferent atmospheric conditions.

• Evaluation of what configurations of the CNC framework works well in the defor-

estation detection task.

• Assessment of how well standard classifiers performs on the deforestation detection

task when directly applied to surface or TOA reflectance images.

• Creation of a new forest classification and deforestation detection dataset with

ground truth annotations.

• Determination of the PRODES masks accuracies for three investigated regions by

using the exhaustive deforestation ground truth annotations created by the author.

1In this thesis, when we say “surface reflectance images” we always mean images that were corrected
with the Landsat 8 atmospheric correction algorithm (LaSRC).
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1.4 Summary of the Main Conclusions

We anticipate here the main findings and insights obtained after performing the

experiments:

• Non-contextual classifiers perform better than the contextual classifiers on the de-

forestation detection task.

• The best CNC instances applied to non-atmospheric-corrected images maps defor-

estation with higher accuracy than the best classifiers applied to images atmospher-

ically corrected with the LaSRC algorithm.

• The deforestation maps generated by the best CNC instances are more accurate than

the ones produced by the PRODES program.

• Standard classifiers applied to surface reflectance images perform better than stan-

dard classifiers applied to TOA reflectance images.

1.5 Thesis Structure

The remaining of this work is organized as follows. Chapter 2 review some fun-

damental concepts in supervised learning and remote sensing that will be useful in later

chapters. Chapter 3 review relevant literature related to deforestation detection, and im-

age normalization/correction. Chapter 4 describes the proposed CNC framework in detail.

The dataset, experimental setup, and results are presented in Chapter 5. Chapter 6 presents

a general discussion, future work, and conclusion. In Appendix A, we show more detailed

evaluation metrics for every method, input normalization, and tested region. In Appendix

B, preliminary experiments using alternative normalization options are shown.
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2 FUNDAMENTALS REVIEW

In this chapter, we will review some fundamental concepts in supervised learning

and remote sensing that will be useful in later chapters.

2.1 Supervised Learning

Supervised Learning is a subfield of Machine Learning where we are given a train-

ing set of example-label pairs {x(i), y(i) | i = 1 . . . n} and then we try to learn a function

f that aims to map the examples x(i) to their correct labels y(i) even for new examples

that are not present in the training set. If the labels y(i) are continuous values, we call

that a regression problem, and if the labels represent discrete classes it is known as a

classification problem, and in this context, f is called a classifier. In this work, we will

only be concerned with the later, although in the future work section we mention how the

framework proposed in this thesis could be extended to handle regression problems.

The example x(i) is represented by a vector of real values that correspond to fea-

tures of the object being classified. Sometimes it may be useful to transform the vector

x(i) to a new feature space where the transformed vectors z(i) of examples from different

classes may be more easily distinguishable than they would be in its original represen-

tation. These transformations sometimes can be hand-engineered by researchers, as is

the case for the GLCM descriptors (HARALICK; SHANMUGAM; DINSTEIN, 1973),

and sometimes they can be learned automatically from the data itself, as it happens inside

the neural networks based methods. To better understand what a classifier is trying to

accomplish Figure 2.1a illustrates a set of training examples where the vectors x(i) have

two dimensions. We also show in the figure a line representing the decision boundary

found by two hypothetical linear classifiers. Classifier A finds a tilted line as a solution

and classifier B finds a vertical line. Figure 2.1b, in addition to the training points, also

shows the test points. While both classifiers solutions make zero mistakes in the training

set, the classifier A makes two mistakes in the test set, while classifier B still makes no

error. In this case, we say the classifier B generalized better than the classifier A.

In the following subsections, we will describe briefly each classifier that will be

used in this thesis. As in this thesis we just approach binary classification problems, we

will describe all classifiers supposing there are just to classes of interest.
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Figure 2.1: Supervised classification illustration: (a) Training set of 2D samples for two
classes (circles and stars). The tilted line represents the decision boundary of an hypo-
thetical linear classifier A and the vertical line correspond to another classifier B; (b) The
training samples (in red) and test samples (in blue) are combined in the same image.

x1

x2

(a) Training samples
x1

x2

(b) Training and test samples

2.1.1 Linear Discriminant Analysis (LDA)

The LDA classifier assumes that the training data is generated by a Gaussian pro-

cess where a sample x(i) from class y(i) is sampled with probability:

p(x(i), y(i); π, µ0, µ1,Σ0,Σ1) = N (µ0,Σ0)(1− π) +N (µ1,Σ1)π, (2.1)

where π is the probability of selecting the Gaussian for class 1, and N (µk,Σk) is the

Gaussian for class k with mean µk and covariance matrix Σk. In LDA we also make

an additional assumption that both covariances matrix are equal. We then try to find

the parameters (π, µ0, µ1,Σ) that will maximize the probability that the training data was

generated by the described Gaussian process. Once we find the parameters we can classify

a new example x(j) by checking whether the following ratio is greater or less than 1:

p(y = 1|x(j))

p(y = 0|x(j))
=

p(x(j)|y = 1)π

p(x(j)|y = 0)(1− π)
=

N (µ1,Σ)π

N (µ0,Σ)(1− π)
(2.2)

The decision boundary for the above rule will be linear on the vector x(j).

2.1.2 Quadratic Discriminant Analysis (QDA)

The QDA classifier is similar to the LDA, but it does not make the assumption that

the covariances matrices of each class are equal. The decision boundary dividing the two

classes of interest, in this case, will be described by a quadratic curve.
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2.1.3 Support Vector Machine (SVM)

There are many variants of SVM classifiers. We will start by explaining the sim-

plest one which is the hard-margin LinearSVM (VAPNIK; LERNER, 1963). In this case,

the method will try to find a separating hyperplane that is as far as possible from the near-

est example of either class. This is equivalent to first finding two parallel hyperplanes that

separate the two classes and are as far as possible from each other, and then outputting a

third parallel hyperplane that is halfway from the other two. The examples that touch the

first two hyperplanes are called support vectors.

In the hard-margin case, the two classes need to be linearly separable, and if it is

not, the optimization method will fail. The soft-margin SVM (CORTES; VAPNIK, 1995)

was created to work with data that cannot be separated by a hyperplane by introducing a

hyperparameter C that controls the trade off between the width of the margin and amount

of margin’s violation in the optimization problem. In this thesis, we always use the soft-

margin version of SVM.

In addition to the LinearSVM, there also exist versions that can find non-linear

boundaries. This can be done efficiently due to the kernel trick (BOSER; GUYON; VAP-

NIK, 1992) where the dot product performed inside the SVM can be replaced by a ker-

nel function K(., .) that receives two vectors as input. Depending on the choice of the

function it can implicitly represent the dot product of two vectors in a higher or infinite

dimensional space. In this thesis, we use the Radial Basis Function (RBF) kernel which

has the following formula:

K(x,x′) = exp(−‖x− x′‖
2σ2

), (2.3)

where σ is a hyperparameter.

The most common algorithm to find the SVM solution for a given training set is the

sequential minimal optimization (PLATT, 1998), but this algorithm does not scale well to

many samples. For big datasets, one can instead use Stochastic Gradient Descent (SGD)

to minimize the hinge loss what will lead to the same solution as the other algorithm, but

it only works for the LinearSVM.
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2.1.4 K-Nearest Neighbors (KNN)

At test time, the KNN classifier will simply assign the most common label among

the K training samples that are nearest to the test example x(i) being classified. The naive

implementation of KNN does not need training phase, but the method at test time can be

made faster by building a data structure at training time that offers a fast way to find the

nearest neighbors, such as kd-tree or ball-tree.

2.1.5 Random Forest (RF)

Random Forest is an ensemble learning method where several decision trees are

trained, and then a new test example is classified by assigning to it the most common pre-

diction of the decision trees. Each tree is trained on a random sample (with replacement)

of the training set. This ensembling procedure decreases the chance of overfitting and

increases the model’s generalizability. Also, in each tree node only a random subset of

the features are considered for finding the best split, and also the trees are grown to largest

extent possible (BREIMAN, 2001).

2.1.6 Deep Neural Network (DNN)

DNNs are Artificial Neural Networks (ANN) which have multiple hidden layers

of non-linear functions. In this thesis, we use two types of DNNs: Multi-layer Perceptron

(MLP), and Convolutional Neural Network (CNN). The MLP utilized in this thesis can

also be considered a DNN because it has four hidden layers. All neural networks need to

minimize a loss function, and in this thesis, we will use the cross-entropy loss.

The MLP is the most common type of feedforward neural network where all the

neurons of a given layer is fully-connected to all neurons of the following layer. It will try

to find a mapping y = f(x;W) that is parameterized by the set of weight matrices and

bias vectors W = {(Wl,bl)|1 ≤ l ≤ L}, whereL is the number of layers. For every layer

l in {1 ≤ l ≤ L− 1} its output will be hl = σ(Wl>hl−1 +bl), where σ is a element-wise

non-linear differentiable activation function, Wl
i,j is the weight of the edge connecting

the neuron i from layer l − 1 to neuron j from layer l, and h0 equals the input x of the

MLP. For the final layer l = L the output will be y = hL = softmax(WL>hL−1 + bL),
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where softmax(z)j = ezj/(
∑m

k=1 e
zk) for j in 1 . . .m, where m is the size of vector z.

The MLP will learn by changing its weights in the direction that decreases most the cross

entropy loss. This is generally accomplished by using stochastic gradient descent (SGD)

and by calculating the gradients using the backpropagation algorithm (LINNAINMAA,

1976; WERBOS, 1981; RUMELHART; HINTON; WILLIAMS, 1988).

The success of Convolutional Neural Networks (CNNs) in recent years is one

of the main reasons the term Deep Learning became popular. Despite being created in

1998 (LECUN et al., 1998) it only became popular in 2012 when it won the Imagenet

image classification competition (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). As

in the MLP, a typical CNN will also use a softmax function in its last layer and the cross-

entropy loss. For now on we will use the terms layer and block interchangeably. We

will also limit the description of the CNN for the case of 3-dimensional input (e.g., an

image). The first layers of the CNNs consist of convolutional and pooling blocks. The

last layers may consist of fully-connected blocks. The convolutional block of layer l

has a set of weight filters {Fl
c | 1 ≤ c ≤ nl

f}, where Fl
c is a tensor (multidimensional

array), with dimensions (hlf×wl
f×dl−1), that is convolved with the layer’s input Hl−1, with

dimensions (hl−1
i ×wl−1

i ×dl−1). Notice that both the depth of the filter and input tensor are

the same as the convolution is only performed along the spatial dimensions. The output

of the convolutional layer will be another tensor where its channel c will be the matrix

Hl
:,:,c = Fl

c ∗ Hl−1, where the symbol ∗ is the convolution operator. The number of

channels of the output tensor is equal to the number of filters of the given layer. The

convolutions may also be strided what means that the filter center is placed after every s

pixels during the convolution (i.e., there is a gap of s− 1 pixels between two convolution

window centers). After the convolutional layer, an element-wise non-linear activation

function is applied to the tensor. Typically a rectified linear unit (NAIR; HINTON, 2010)

activation function is used.

The pooling layer objective is to reduce the spatial size of the tensors being pro-

cessed by the layers1. For instance, a pooling layer with a window size of 2×2 and stride

s = 2 will produce a new tensor with half of its previous size. This is done by taking

the maximum (or the average depending on the pooling type) value of every 2×2 non-

overlapping window2. The pooling operation is done independently for each channel of

the input tensor.

1Another way of decreasing the spatial size of the tensors is to use convolutions with strides greater than
one.

2It could be overlapping if window size was 3×3 and the stride was equal to 2, for instance.
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A typical CNN architecture starts with a convolutional layer, followed by an acti-

vation function, and these two are repeated until we decide to place the first pooling layer.

Then we repeat the previous pattern. When the spatial size of the tensors become small

enough, we then flatten it in a vector and then proceed with 0 or more fully-connected

layers, before the final softmax layer. A possible CNN architecture might be: INPUT-

>CONV->ACT->CONV->ACT->POOL->CONV->ACT->CONV->ACT->POOL->FC->FC-

>SOFTMAX->OUTPUT, where ACT stands for activation function, FC for Fully Con-

nected layer, and the other names are self-explanatory. As all the blocks used in the CNN

is differentiable, then the backpropagation algorithm can be applied to it.

2.2 Remote Sensing

One of the definitions of remote sensing is “the measurement of object properties

on the earth’s surface using data acquired from aircraft and satellites” (SCHOWENGERDT,

2006). In this thesis, the object property we are interested is whether it belongs to the trop-

ical forest class or not. We will also use Landsat images which are acquired by sensors

on board of satellites.

The Landsat project is a joint initiative between the United States Geological Sur-

vey (USGS) and NASA that collects space-based moderate-resolution land multispectral

images. Landsat 8 is the name of the latest satellite launched by the project, and it car-

ries two sensors: the Operational Land Imager (OLI), and the Thermal Infrared Sensor

(TIRS). In this thesis, we will use just the data obtained by the OLI sensor, which fo-

cuses on collecting radiation reflected on the ground that originates from the sun3. This

sensor has eight 30 m resolution bands where each one captures energy at a different in-

terval from the electromagnetic spectrum. It also has one broad band at 15 m resolution

that captures energy within a larger interval in the spectrum. We will only use the 30 m

resolution bands in this thesis4.

In the next paragraphs, we want to define two physical quantities that will useful

in this thesis, namely the surface reflectance, and the top-of-atmosphere reflectance.

However, first, we will need to understand what is spectral radiance and how the sensor

3Other possibilities could be thermal radiation emitted from the earth’s surface or a laser beam originat-
ing from the satellite that is reflected on the earth’s surface.

4Even though we use the 30 m resolution bands, we evaluate the produced deforestation maps at the
resolution of 60 m by ignoring deforestation blobs smaller than 60×60 meters. More information can be
seen in Section 5.2.7.
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can capture that quantity. In Figure 2.2 is shown an illustration of a simple hypothetical

remote sensor that produces an image with just one pixel and has only one band capturing

energy between the wavelengths λa and λb (λa < λb). We also suppose the detector plane is

parallel to the earth’s surface, and that the Ground-projected Instantaneous Field of View

(GIFOV) terrain is horizontally flat. The physical quantity that the detector will directly

measure is the amount of electromagnetic energy in the specified wavelength range that hit

the detector area during the interval of time τ that the sensor’s shutter remained opened.

Supposing for the moment that we do not have an atmosphere, then the amount of energy

captured by the sensor is also equal to the energy of solar radiation that hit the GIFOV

region and was reflected within the specified spectral range in the direction of the sensor’s

aperture. Notice that a ray from the sun being reflected outside of the GIFOV area and

then hitting the lens will be mapped to a region outside of the detector and thus its energy

will not be accumulated.

Although the sensor measures electromagnetic energy, it is useful to convert it

to spectral radiance. The spectral radiance L(x,ω, λ) for position x, direction ω, and

wavelength λ is the amount of electromagnetic energy per unit time that goes through an

infinitesimal area dA, centered at x and perpendicular to the direction ω, in the directions

contained in an infinitesimal solid angle dΩ around the direction ω, and with wavelength

from a infinitesimal interval dλ centered at λ, divided by dA, dΩ, and dλ. The spectral

radiance units are watt per steradian per square meter per micrometer (W/(sr ·m2 ·µm)).

It is useful to convert energy to spectral radiance because we then can compare measure-

ments made by different sensors on board different satellites when everything else is held

constant. On our hypothetical satellite we can convert the accumulated energy during

time τ to spectral radiance by dividing it by τ , (λb− λa), detector area (Ad), and the solid

angle Ωgv at the sensor aperture subtended by the GIFOV area. This approximation can be

considered a proper derivative to the extent that the energy density does not change much

within each interval. For instance, supposing the surface material on the GIFOV region is

homogeneous, as the perpendicular distance H from the sensor to earth’s surface is much

greater than the GIFOV size, then the energy density coming from different directions

within Ωgv will be very similar since the distance from the sensor to any point in the GI-

FOV won’t change much. Also, any point in GIFOV reflects the sunlight uniformly in all

directions as we assume a Lambertian surface. If the GIFOV contains different materials,

then the fraction of sunlight reflected may change with position, so the energy density

received in each direction within Ωgv may also vary. In this case, the previous spectral
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Figure 2.2: Sensor receiving light from the sun that is reflected on the earth’s surface.
The sensor, which is hypothetical, produces images with only one pixel and has only one
band. θ is the angle of incidence. H is the height of the sensor from the earth’s surface.
The yellow lines represent the sun rays. GIFOV area is a square region corresponding
to the Ground-projected Instantaneousness Field of View. The detector is a square red
region inside the sensor that captures light coming from the GIFOV, and it represents a
single pixel.

GIFOV Area

H

SensorDetector

Aperture Area

θ

Sun Rays
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radiance can be considered an average among all direction in Ωgv. If the sensor’s band

wavelength range [λa, λb] is not small enough, then we can also say that we measure the

average spectral radiance over this interval.

Now let us try to relate the incoming average spectral radiance at the sensor with

the spectral radiance leaving the earth’s surface still supposing no atmosphere. The total

energy K received at the sensor in time τ is:

K =

∫
Aa

∫
Ωgv

(λb − λa)τLa(xa,ω, λm)(ω · n)dΩdA

= (λb − λa)τ
∫
Aa

∫
Ωgv

La(xa,ω, λm)(ω · na)dΩdA,

whereAa is the aperture area, Ωgv are the directions pointing to the GIFOV, na is a normal

vector to the aperture’s plane, (ω · na) equals the cosine of the angle between these two

vectors, and La(xa,ω, λm) is the spectral radiance at the aperture’s position xa, direction

ω, and wavelength λm = (λa + λb)/2. As the distance from the sensor to earth is much

greater than the aperture size then we can say that the spectral radiance won’t change

much for different aperture positions xa, so we can pull La out of the area integration,

and also because the solid angle Ωgv is very small, then (ω · na) can be replace by one:

K = (λb − λa)τ(

∫
Aa

dA)

∫
Ωgv

La(xa,ω, λm)dΩ

K = (λb − λa)τAa

∫
Ωgv

La(ω, λm)dΩ (2.4)

Now it can be shown that by the spectral radiance invariance property that La(ω, λm) =

Les(xes(ω),−ω, λm)(−ω · nes), where Les is the spectral radiance leaving the earth’s

surface at point xes(ω), which is the intersection of the line leaving the sensor’s aperture

at direction ω with the earth’s surface plane, and nes is a vector normal to the earth’s

surface. Again, (−ω · nes) will always be very near one, so we can say that La(ω, λm) =

Les(xes(ω),−ω, λm). As xes is a function of ω, we simplify the formula to La(ω, λm) =

Les(−ω, λm). By substituting La by Les in Equation 2.4, dividing both sides by the solid

angle, and moving the multiplication constants to the left part of the equation, we get:

L̄a =
K

(λb − λa)τAaΩgv

=

∫
Ωgv

Les(−ω, λm)dΩ

Ωgv

= L̄es (2.5)

So we can say that the sensor is indirectly measuring the average surface spectral radiance

of the GIFOV area.
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Now let us write the surface spectral radiance in terms of surface reflectance. The

surface reflectance is the fraction of the electromagnetic power that is reflected at the

earth’s surface. This quantity is a property of the material at the surface, and thus it is a

useful measure in remote sensing applications where we want to classify each pixel. More

precisely the surface reflectance ρ(x, y, λ) at position (x, y) and wavelength λ is defined

as ρ(x, y, λ) = Les(x, y, λ)π/E(x, y, λ), where E(x, y, λ) is the spectral solar irradiance

at the earth’s surface position (x, y). Spectral irradiance has the same units of spectral

flux density (W/(m2 · µm)). Supposing E(x, y, λ) is constant over the GIFOV (what is

a good approximation), and if we know E(x, y, λ) value then the satellite sensor can also

measure the average surface reflectance indirectly in the GIFOV region, and therefore the

“average” material of this region, supposing no atmosphere.

Let us now add the atmosphere in our model and try to derive the total at aper-

ture spectral radiance Lt
a in terms of other basic physical quantities. For simplicity let

us suppose that the surface reflectance is constant in the whole GIFOV, and when we

refer to a quantity in the earth’s surface, we always mean a position inside the GIFOV.

In the following derivations, we avoid the λ notation also for simplicity, but the reader

should have in mind that all quantities depended on the wavelength. The total at aperture

spectral radiance Lt
a can be decomposed into three terms: Lt

a = Lusr
a + Ldsr

a + Lup
a ,

where Lusr
a correspond to the unscattered/unabsorbed surface-reflected radiation, Ldsr

a

is the down-scattered surface-reflected skylight, and Lup
a is the up-scattered path radi-

ance (SCHOWENGERDT, 2006).

Let us begin deriving a formula to the unscattered/unabsorbed surface-reflected

spectral radiance Lusr
a . This radiance at the aperture is the remaining radiance of the

upwelling radiance at earth’s surface, derived from unscattered/unabsorbed reflected sun

light, Lusr
es that was not absorbed or scattered by the atmosphere in the path from the earth

to the sensor (view path). The ratio Lusr
a /Lusr

es is a characteristic of the atmosphere along

the view path and we give to it the name of view path transmittance τv(λ). Then, Lusr
a =

τvL
usr
es . Lusr

es can be written in terms of the unscattered/unabsorbed downwelling solar

irradiance at earth’s surface Eu
es, so the previous formula becomes Lusr

a = τv(ρ/π)Eu
es,

where ρ is the surface reflectance. The Eu
es can be written in terms of the solar spectral

irradiance Etoa on the top of the earth’s atmosphere as Eu
es = τsEtoacos(θ), where τs is

the atmosphere transmittance along the solar path, and θ is the incident angle (i.e., angle

between the earth’s surface normal vector and a vector pointing to the sun). Etoa is a well

known quantity and varies with distance from the earth to the sun during the year. The
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final formula for Lusr
a is then:

Lusr
a = τv

ρ

π
τsEtoacos(θ) (2.6)

The formula for the down-scattered surface-reflected skylight Ldsr
a is:

Ldsr
a = τv

ρ

π
Esky

es , (2.7)

where Esky
es is the irradiance at the surface due to skylight, which can be measured with

ground-based instruments (SCHOWENGERDT, 2006). Skylight are the sun rays that are

scattered on the atmosphere particles in the direction of the earth’s surface.

The up-scattered path radiance Lup
a is the radiation that gets scattered upward in

the direction of the sensor. This quantity can vary with position in the earth’s surface and

with view angle. For the field of a view of a single detector (or pixel), it can be assumed

constant.

The final formula for the total at aperture spectral radiance Lt
a can be written as:

Lt
a = Lusr

a + Ldsr
a + Lup

a

Lt
a = τv

ρ

π
τsEtoacos(θ) + τv

ρ

π
Esky

es + Lup
a

Lt
a =

ρ

π
τv(τsEtoacos(θ) + Esky

es ) + Lup
a (2.8)

The Equation 2.8 shows that the total at sensor radiance can be transformed to surface re-

flectance by subtracting a bias component, and by dividing by a multiplicative component.

It is important to note that even if we know precisely quantities necessary for calculating

the surface reflectance, it can still be challenging to classify pixels to their correct classes

because of the natural variability of some materials, and due to a possible coarse spectral

quantization performed by sensor’s hardware (SCHOWENGERDT, 2006).

The top-of-atmosphere (TOA) reflectance ρtoa is the ratio of the total at-sensor

radiance Lt
a to the solar spectral irradiance Etoa on the top of the earth’s atmosphere

corrected by the angle of solar light incidence, and multiplied by π. The formula is given

below:

ρtoa =
Lt
aπ

Etoacos(θ)
(2.9)

The TOA reflectance for the same position and atmospheric conditions is invariant to

the time of the year, and sun angle. Surface reflectance is better than TOA reflectance
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because the earlier is additionally invariant to atmospheric conditions, but the later is

easier to obtain.
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3 RELATED WORK

This chapter will review the relevant literature to this thesis. As this work is mainly

about image normalization/correction, and deforestation detection, we will divide this

chapter into two section covering each of these topics.

3.1 Image Correction and Normalization

One of the main challenges in achieving a high classification accuracy in remote

sensing images is anchoring images from different dates and locations to the same refer-

ence. What we mean by that is that if two materials are identical and are placed in differ-

ent places on the earth’s surface, and images are taken from it from satellites for different

dates, then their pixels for the two different images corresponding to the same material

should have identical spectral values. If we can devise a normalization that achieves that,

posterior classification would be significantly easier. In this section, we review correc-

tion/normalization methods that can be considered as alternatives to the first two stages

(Classify-Normalize) of the CNC framework. We divide this section into two subsections.

In subsection 3.1.1, we review atmospheric corrections procedures that try to estimate the

absolute surface reflectance values for all pixels (see Section 2.2 for the definition of sur-

face reflectance). Subsection 3.1.2, review methods that normalize the images to make

it easy to compare data from different dates and locations, but does not output values in

surface reflectance units.

3.1.1 Absolute Radiometric Correction

The most traditional methods for obtaining the surface reflectance from the at-

sensor radiance are based on rigorous radiation transfer models and require auxiliary data,

often achieved by in-situ measurements, to acquire several atmospheric parameters for the

model, such as average atmospheric pressure, integrated water vapor and ozone content,

and aerosol characteristics. Examples of these models are the 6S code (Second Simulation

of the Satellite Signal in the Solar Spectrum) (VERMOTE et al., 1997), and the MOD-

TRAN code (MODerate resolution atmospheric TRANsmission) (BERK; BERNSTEIN;

ROBERTSON, 1987). Other simpler methods such as the Dark Object Subtraction (DOS)
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normalization requires just information derived from the image itself to obtain the abso-

lute surface reflectance values (JR, 1988; JR, 1989; JR, 1996).

The United States Geological Survey (USGS) provides surface reflectance Landsat

8 OLI images which are generated by using the algorithm LaSRC1 from Vermote et al.

(2016), which is based on a refined version of the 6SV code that takes advantage of the

narrow OLI spectral bands. The 6SV code (KOTCHENOVA et al., 2006) is a vectorial

version of the 6S code. In the experiments chapter, we compare the utility of the LaSRC

correction versus the normalization provided by the first two stages of the CNC framework

in the deforestation detection context.

Dark Object Subtraction (DOS) is a popular option for atmospherically correcting

the images when the atmospheric parameters needed in the more complex models (e.g.,

6S, MODTRAN) are not available. DOS is a strictly image-based atmospheric correction

technique that supposes that if some dark objects in the scene have pixel values greater

than zero, then this is due to the up-scattered path radiance Lup
a . So the simplest form

of DOS just subtracts the minimum value of a given band of a scene from all the pixels.

There exist several updated DOS versions that improve over the basic technique (JR,

1988; JR, 1989; JR, 1996; SONG et al., 2001). They differ from each other on the

simplifying assumptions they make on Equation 2.8 from Section 2.2. If we isolate the

surface reflectance ρ from Equation 2.8 we get:

ρ =
π(Lt

a − Lup
a )

τv(τsEtoacos(θ) + Esky
es )

, (3.1)

where the parameters that are estimated differently in each DOS version are the view path

transmittance τv, the solar path transmittance τs, and the irradiance at the earth’s surface

due to skylight Esky
es . The DOS1 assumes both transmittance to be unit, and Esky

es to be

zero (JR, 1989). DOS2 approximate τs by cos(θ) for the bands 1-4 of Landsat TM sensor,

and unity for bands 5 and 7 (JR, 1996; SONG et al., 2001). For more complex versions

of DOS we refer the reader to Song et al. (2001). Although the DOS method can be

useful when atmospheric informations are not available, if instead these parameters can

be obtained, then the 6S code is preferred as it produce more precise results (NAZEER;

NICHOL; YUNG, 2014).

1In this thesis, we refer to the Landsat 8 surface reflectance algorithm as LaSRC (Landsat Surface
Reflectance Code) because it is the name used in the online product guide: <https://landsat.usgs.gov/sites/
default/files/documents/provisional_lasrc_product_guide.pdf>.

https://landsat.usgs.gov/sites/default/files/documents/provisional_lasrc_product_guide.pdf
https://landsat.usgs.gov/sites/default/files/documents/provisional_lasrc_product_guide.pdf
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3.1.2 Relative Radiometric Normalization

In this section, we cover relative radiometric normalization (RRN) techniques that

try to put two or more images in a common spectral reference but do not aim necessarily

to obtain the absolute surface reflectance values as output. Most RRN methods require

a reference image to which the other images will be normalized. On the other hand, the

proposed CNC framework does not require choosing a reference image, as the median

forest vector of all images will be translated to zero.

Many popular RRN methods are based on pseudo-invariant features (PIFs) which

correspond to objects which are known to not change its surface reflectance throughout

the year (SCHOTT; SALVAGGIO; VOLCHOK, 1988). If the same PIF objects can be

found in two images, then one of the images can be normalized to the other’s spectral

reference by linear regression, for instance. The problem now is finding the PIFs ob-

jects in an automatic way. The iteratively re-weighted multivariate alteration detection

(IR-MAD) transformation can find PIF regions automatically in the difference between

two co-registered images (CANTY; NIELSEN, 2008). However, the requirement for the

images to overlap geographically is problematic when we want, for instance, to train a

classifier in a set of spatially disjoint images, and then apply the trained model to another

set of non-overlapping images.

RRN methods can also be viewed as a subcategory of domain adaptation methods

where the data distributions are adapted instead of the models themselves. Domain adap-

tation is a subfield of machine learning that tries to tackle the problem of learning from

a source domain and then adapting the learned model to the target domain or aligning

the target domain data to the source’s data. Tuia, Persello and Bruzzone (2016) made

a table listing several domain data adaptation methods and their characteristic which we

reproduce in Table 3.1 with the addition of the CNC framework. The column “Labels

in S” indicates methods which can leverage the information given by the labels in the

source domain during adaptation to the target domain. The “No Labels in T” column

refers to semi-supervised or unsupervised methods which do not need labels in the target

domain. Multi-source methods allow the alignment of more than two domains simul-

taneously. The “Unpaired” column indicates if the method requires images of different

domains to overlap geographically. The ability of a method adapting between domains

from spaces with different dimensionality is indicated on column “Multi-D”. Finally, the

column “Nonlinear” refers to the methods that perform a nonlinear transformation during
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the data adaptation.

As can be seen from the table only the CNC framework has the four first columns

checked. It is important for a method to have the multi-source property, since aligning

multiple source domains may allow the classifier to find a more discriminative decision

rule for the training set, and also for the target domains in the test set. Excluding the CNC,

there are only four multi-source methods in Table 3.1, but they either need labels on the

target domain, or they require overlapping source and target images. The description of

each of the methods in Table 3.1 is beyond the scope of this thesis, and the interested

readers are referred to Tuia, Persello and Bruzzone (2016) for a complete review.

Table 3.1: Domain data adaptation methods characteristics comparison. This table is
a slightly modified version from the one in Tuia, Persello and Bruzzone (2016). For
instance, we correct the characteristics of the MA method (YANG; CRAWFORD, 2016)
which in Tuia, Persello and Bruzzone (2016) wrongly stated that it was multi-source and
that it was linear.

Method Labels in S No Labels in T Multi-Source Unpaired Multi-D Nonlinear
PCA × X × X × ×
KPCA (NIELSEN; CANTY, 2009) × X × X × X
(SS)TCA (MATASCI et al., 2015) ×X X × X × X
MAD (CANTY; NIELSEN, 2008) ×X ×X X × X ×
KCCA (VOLPI; CAMPS-VALLS; TUIA, 2015) ×X ×X X × X X
MA (YANG; CRAWFORD, 2016) X X × X X X
KMA (TUIA; CAMPS-VALLS, 2016) X × X X X X
SSMA (TUIA et al., 2014) X × X X X ×
GM (TUIA et al., 2013) × X × X × ×
Proposed CNC framework X X X X × ×

Source: Modified from Tuia, Persello and Bruzzone (2016) to include the CNC framework, and with correction for wrong markings

in the MA method.

It is also worth mentioning that the normalization performed in the first two steps

(Classify-Normalize) of the CNC is similar to the one in Hansen et al. (2008) where

the median spectral signal of regions of interest (forest in this context) was also used

to normalize the images before further analysis, but it relied on an auxiliary preexisting

MODIS-based land cover product to determine forest regions. On the other hand, our

framework does not depend on auxiliary data, as it can automatically find forest regions,

and this is important as not always those might be available. Although subtracting the

forest median vector from all pixels was previously already known to be a good normal-

ization strategy, we are the first to propose and show, to the best of our knowledge, that

the forest median vector can be estimated with enough precision (to produce a proper

normalization) by classifiers trained and tested on unnormalized images, and thus making

the procedure fully automatic at inference time.
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3.2 Deforestation Detection

The most famous works involving deforestation detection in the literature use a

methodology that is not fully automatic. They also focus more on the quantification of

deforestation in a given region than the method itself. Examples of works that focus on

the quantification of deforestation in a particular area and period are Potapov et al. (2012),

Hansen et al. (2013), Grinand et al. (2013), and Kim et al. (2014). It is also very rare to

compare methods in the deforestation detection literature making it challenging to know

which method is the best in some sense.

One of the most famous deforestation detection work is that of Hansen et al.

(2013). It mapped forest cover change in the whole world for each year between 2000 and

2012 at 30 m resolution. Forest was defined as any vegetation taller than 5 m in height.

Its results can be interactively visualized online2. In that work, they use a bagged deci-

sion tree (LOH, 2011) to try to relate percent tree cover, forest loss, and forest gain with

custom-made spectral features derived from a time-series. The method requires observa-

tions from over three dates to classify a single pixel. This contrasts with the methodology

we adopt in this thesis where we require just two images to verify the changes between

them. Bitemporal change detection is useful for alert systems which cannot afford to

wait to collect enough samples to increase its certainty. Also, Hansen et al. (2013) uses

auxiliary data from MODIS to perform the atmospheric correction, while our framework

require just the input Landsat images at inference time. It is hard to reproduce the work

of Hansen et al. (2013) since they did not make publicly available their training set and

ground truth labels3. Its global loss between 2000 and 2012 producer’s and user’s accu-

racy measured from 1500 samples were 87.8% and 87%, respectively. It is important to

note that since the period is long, the deforestation polygons will be larger and easier to

detect than those from this thesis experiments which use periods of about one year.

More recently, Hansen et al. (2016) focused on the problem of detecting deforesta-

tion in a shorter period. The aim was to develop a system for forest disturbance alerts. As

in Hansen et al. (2013), this work also uses MODIS as auxiliary data for normalizing the

Landsat images. Its user’s and producer’s accuracy measured from 1294 samples were,

respectively, 86.5% and 67%. It is important to note that this system produced deforesta-

tion maps at a resolution of 30 m, while our proposed method results were evaluated at

2<https://earthenginepartners.appspot.com/science-2013-global-forest>
3Nonetheless, they provide loss, gain, forest cover percentage images predicted by their trained model.

https://earthenginepartners.appspot.com/science-2013-global-forest
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60 m resolution, despite the input images having 30 m resolution (see Section 5.2.7).

The Project for Monitoring Deforestation in the Legal Amazon by Satellite (PRODES)

is a program of Brazil’s National Institute for Space Research (INPE). The program quan-

tifies and maps the deforestation in the Brazilian Amazon annually. To that end, it uses

a semi-automatic approach that involves visual interpretation of Landsat images with the

help of algorithms such as linear mixture model, segmentation, and unsupervised clus-

tering (SHIMABUKURO et al., 1998; HANSEN; LOVELAND, 2012). Although the

resolution of the deforestation polygons created by PRODES are of 60 m, the final prod-

uct only considers polygons with area greater than 5.76 ha (57,600 m2) (MALDONADO

et al., 2007)4. Deforestation maps produced by the method proposed in this thesis will be

compared with those of PRODES for the same start and end image acquisition dates.

It is also worth mentioning the adaptive semi-supervised method of Zanotta et

al. (2015) that was also applied to detecting deforestation on the Amazon rain forest,

and does not need auxiliary data, and neither visual interpretation by an analyst. The

method was shown to be more accurate than PRODES on the evaluated regions. Their

method requires ground truth annotations of changes of interest just in the first pair of

images in a time-series. Then it adapts the decision rule, learned on the source pair,

based on 3D change vector analysis (CVA) to the upcoming images target pairs from

the time-series. In this way, the method can, for instance, avoid an explicit radiometric

correction as a preprocessing step, since the adaptation phase can change the decision

rule to also ignore changes due to different atmospheric conditions in the new pair of

images in relation to the previous. Although promising, this approach differs from the

objectives in this thesis since we are interested in bitemporal change detection, and we

do not expect to have a time-series available. Although time-series can give additional

information and confidence in a prediction, it is worth limiting our research to just the

bitemporal setting, since in this way we can investigate what are its limits and because we

can always include or adapt a bitemporal method to a time-series procedure. This can be

done through ensembling for instance.

4In practice this means that the polygons contours will be precise within the 60 m range and that all
polygons with area greater than 5.76 ha will be deleted from the final deforestation map.



37

4 PROPOSED CLASSIFY-NORMALIZE-CLASSIFY FRAMEWORK

In this chapter, we explain in detail the CNC framework. Section 4.1 will formu-

late the problem, and describe the CNC in mathematical terms. The algorithmic descrip-

tion in the context of forest classification will be made in Section 4.2.

4.1 Problem Formulation

Let Xd be a dataset of pixel-label pairs (x
(i)
d , y

(i)
d ), where x

(i)
d is a vector with a

value for each channel of pixel i and y
(i)
d is a label that equals 1 when the pixel belongs

to the class of interest (COI) and 0 otherwise (let us call the class with label 0 as NCOI).

The subscript d indicates from which domain the data is sampled. Let P 1
d be the COI

distribution for domain d and P 0
d be the NCOI distribution, and Pd be the two combined

distribution (x(i)
d ∼ Pd). From one domain to another the classes distribution may suffer

a shift. Now let X be the union of all domains datasets (X =
⋃nd

d=1 Xd), where nd is

the number of different domains. Even if within the same domain the two classes were

well separated, now in the union of the domains the distribution of different classes might

become mixed, because of the data shift between domains, and thus making it difficult to

discriminate between the classes.

The first two phases of the CNC framework (Classify-Normalize) will try to make

a rigid translation of the distribution Pd such that the median vector m1
d of P 1

d is moved to

the origin, for every domain d. The median vector is obtained by calculating the median

value of {x(i)
d (c) | y(i)

d = 1} for each channel c. The translation can then be accom-

plished by subtracting, for every domain d, the median vector m1
d from all pixels x

(i)
d

of Xd, and thus obtaining a new dataset X∗d containing median centered pixels. Let us

denote the union of these shifted datasets as X∗ =
⋃nd

d=1 X∗d. Our assumption is that the

discrimination of the two classes of interest in the new dataset X∗ is easier than in X.

Now suppose we have a training set Xtrain =
⋃ntrain

d=1 Xd for which we know the

true labels y(i)
d and an unlabeled test set Xtest =

⋃nd

d=ntrain+1 Xd that needs to be classi-

fied. The CNC framework proposes the following in the training phase. First we train a

supervised classifier f1 on Xtrain. Then we build a COI median centered dataset X∗train by

using the true labels. Finally, we train a supervised classifier f2 on X∗train.

On the testing phase, we first apply the trained f1 on the Xtest pixels to obtain the

estimated labels ŷ(i)
d . Then for each domain d belonging to the test set, we calculate the
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estimated median m̂1
d(c) on the set {x(i)

d (c) | ŷ(i)
d = 1} for each channel c. Next, for

each test domain d we subtract m̂1
d from all pixels in Xd and then make the union of all

of those to obtain the normalized test set X∗test. Finally, we apply the trained f2 classifier

to the normalized pixels in X∗test to obtain the final improved estimated labels ŷ∗(i)d .

We decided to use just the median, and not the mean and standard deviation, for

instance, to normalize the images because we conjecture that these other statistics will

be more sensitive to errors in the first classifier segmentation. Furthermore, preliminary

experiments shown on Appendix B where we normalized the images by subtracting the

estimated COI mean and optionally also dividing by the estimated COI standard deviation,

showed no improvement over just using the median.

4.2 CNC in the Context of Forest Classification

This section presents the CNC framework in the context of forest classification

where each tile of an image represents a new domain d.

In the training stage, the first classifier is trained on top-of-atmosphere (TOA)

reflectance image tiles and the second classifier is trained on tiles normalized with for-

est medians obtained from manually annotated forest regions. These forest annotations

consist of sparse rectangles demarcated inside forest regions. Note that the manual anno-

tation is only needed in the training phase, as in the testing phase, the forest regions are

estimated with the first classifier. This makes the method fully automatic at test time after

the initial offline training using a fixed set of tiles. Also note that differently than other

solutions in the literature (SCHOTT; SALVAGGIO; VOLCHOK, 1988; BAO et al., 2012;

CANTY; NIELSEN, 2008), the training tiles do not need to overlap with the test tiles ge-

ographically. The classifiers can be either non-contextual or contextual. In the later case,

a window centered at each annotated pixel will be used as a training sample. The training

phase is summarized in the Algorithm 1, and illustrated in the flowchart of Figure 4.1.

At testing time, the proposed CNC framework has three steps. First, a forest classi-

fier f1 is applied to every pixel (or to every overlapping window with a size corresponding

to the classifier’s context) of the input TOA reflectance tile to obtain an initial forest seg-

mentation. Optionally, the forest mask produced by f1 may also be eroded to reduce false

positives at the expense of increasing false negative forest predictions, which is not very

problematic because those are less likely to affect the estimated median1. Then, we com-

1Supposing that the erosion process of removing predicted forest pixels from the initial mask is unbiased.
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pute the median multispectral vector for the estimated forest areas and subtract this vector

from all pixels in the tile to translate the new forest median spectral vector to the origin.

Finally, a second forest classifier f2 is applied to every pixel (or overlapping window) of

the normalized tile to produce the final forest segmentation mask that, as our experiments

will show, is more precise than the first one. It is important to observe that the erosion

operation may only be applied to the f1 predicted mask if the number of remaining forest

pixels is not less than a given threshold (th = 1000 pixels in our experiments) to prevent

an inaccurate median estimate2. The test phase is also summarized in the Algorithm 2,

and illustrated in the flowchart of Figure 4.2. The procedure to generate deforestation

maps with the CNC framework trained for forest classification will be detailed in Section

5.2.6.

2As our test tiles had some large forest regions, the threshold was never violated in the experiments.
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Figure 4.1: Flowchart for the training phase of the proposed CNC framework in the con-
text of forest classification.
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Algorithm 1 CNC Training.

Require: Unnormalized TOA reflectance training tiles Ti
u, with i varying between 1 and

nt; ground truth images for each of the nt tiles with the value 1 for forest pixels, 0 for
non-forest pixels, and -1 for non-annotated pixels; and untrained classifiers f1 and f2.

1: Extract all pixels (or overlapping windows) with label different than -1 from all tiles
Ti

u and build the unnormalized dataset Xtrain of pixel-label (or window-label) pairs
(x(k), y(k)).

2: Train f1 on Xtrain.
3: for i from 1 to nt do . Normalize each tile.
4: Take the median of all the pixels spectral vector for which y(k)

i = 1 to obtain the
forest median vector m̂i

f . . medians are calculated independently for each channel.
5: Subtract m̂i

f from each pixel (or window) x(k)
i to obtain the normalized samples

x
∗(k)
i .

6: end for
7: Build a new dataset X∗train containing all normalized samples x∗(k)

i from all tiles.
8: Train f2 on X∗train.
9: return f1 and f2.
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Figure 4.2: Flowchart for the inference phase of the proposed CNC framework in the
context of forest classification.
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Algorithm 2 CNC Inference.
Require: An unnormalized TOA reflectance tile image Tu; trained classifiers f1 and f2;

and size ke of the erosion kernel.
1: Apply f1 for every pixel (or overlapping window) of Tu to obtain a first forest seg-

mentation mask F 1.
2: if ke > 0 then
3: F 1 ← APPLYEROSION(F 1, ke).
4: end if
5: Calculate the median forest vector m̂f by using all pixel spectral vectors of Tu be-

longing to forest regions as indicated by F 1.
6: Subtract m̂f from all pixel spectral vectors of Tu to obtain an normalized image Tn.
7: Apply f2 for every pixel (or overlapping window) of Tn to obtain the final forest

segmentation mask F 2.
8: return F 2.
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5 EXPERIMENTS

This chapter will cover the experiments which evaluate the performance of se-

lected CNC instances on four regions over the Amazon forest. It also will compare its

results with those of other baselines. Information about the tested regions and the dataset

creation is covered in Section 5.1. Details about the experiment’s methodology such as

classifiers setup and the chosen evaluation metrics are shown in Section 5.2. Finally,

Section 5.3 show the results of each experiment.

5.1 Study Area and Data

The data used in the experiments were 30 m resolution1 top-of-atmosphere (TOA)

and surface reflectance Landsat 8 OLI images (ROY et al., 2014) collected over the Brazil-

ian Amazon Forest. The images were split into three disjoint sets, used for training, val-

idation, and test as detailed in Table 5.1. Each set consists of four pairs of co-registered

tiles extracted from distinct Landsat scenes (i.e. different Landsat path-rows). The loca-

tion and spatial size of the test tiles were constrained to areas where existed very high-

resolution images on Google Earth to facilitate ground truth annotation. Three of those

four regions were also selected for dates that coincided with those of the Landsat images

used in the PRODES product. All tiles were annotated non-exhaustively with forest/non-

forest labels as in the example shown in Fig 5.1. The test tiles, in addition to hav-

ing non-exhaustive forest/non-forest annotations, were also annotated exhaustively with

deforestation/non-deforestation labels. An example is shown in Figure 5.4c, where white

pixels correspond to deforested regions, and black pixels correspond to non-deforested

areas. Therefore, the classifiers were trained and validated on the task of forest/non-forest

classification and were tested both on the forest/non-forest discrimination task and on

the deforestation detection objective through the post-classification comparison strategy.

Eventual areas affected by clouds and its shadows were manually annotated and ignored

during evaluation. The framework is tested using only one tile per Landsat scene due

to the difficulty of annotating the deforestation ground truth exhaustively for the entire

Landsat2.

1Despite the input images having 30 m resolution, all generated forest loss masks were evaluated at
60 m resolution by ignoring deforestation blobs smaller than 60×60 meters (see Section 5.2.7).

2All tiles used in our experiments are smaller than 1000×1000 pixels. For comparison, a typical Landsat
image has dimensions of about 7750×7750 pixels.
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Figure 5.1: An example of a training tile with forest/non-forest annotations. The green
rectangles (brighter in greyscale) are forest regions, the red ones (darker in greyscale)
are non-forest areas, and the rest is not annotated and its pixels are not included in the
forest/non-forest classification datasets.

There are two training datasets: a large and a small one. The large one consists of

the annotated pixels from all training tiles, and the small one is a subset of the former with

a subsampling factor of 16 (382,212 and 23,892 samples, respectively). There is only one

validation dataset, which has size 68,948, which is a subset of all annotated pixels in the

validation tiles with a subsampling factor of 8. The test dataset for the forest/non-forest

classification task consists of all the 155,452 annotated pixels for this objective. On the

other hand, the test deforestation detection dataset consists of all co-registered pairs of

pixels from all test tiles. In an attempt to remove extreme values, all pixels were saturated

in the 1st (pb1st) and 99th (pb99th) percentiles for each band b values from the training

set. This clipping was done for all datasets using the same threshold values found in the

training set.

The Landsat imagery was downloaded from the USGS repository both in radi-

ance units (and then converted to TOA reflectance), and in surface reflectance3. Follow-

ing Hansen et al. (2016) strategy, we used four bands from the Landsat 8 OLI sensor: red

(0.64− 0.67 µm), near infrared (0.85− 0.88 µm), shortwave infrared 1 (1.57− 1.65 µm),

and shortwave infrared 2 (2.11− 2.29 µm).

In addition to the spectral datasets (where each example consists of only the spec-

tral information of a single pixel), we also created additional ones for spectral-spatial

3The App version of the surface reflectance images was “LaSRC_0.8.0”. In addition to Vermote et
al. (2016), more information about the surface reflectance Landsat 8 OLI product can be found in <https:
//landsat.usgs.gov/sites/default/files/documents/provisional_lasrc_product_guide_ee.pdf>.

https://landsat.usgs.gov/sites/default/files/documents/provisional_lasrc_product_guide_ee.pdf
https://landsat.usgs.gov/sites/default/files/documents/provisional_lasrc_product_guide_ee.pdf
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analysis, where window patches of size 3×3, 5×5, and 9×9 centered in each of the se-

lected pixels were extracted and then flattened in a vector.

Table 5.1: Training, validation, and test tiles details. The cities are the nearest ones to the
tiles centers. Tile centers are given by the row and column in the parent Landsat image.
Tile sizes are given in number of pixels. Tiles from different dates of the same scene
correspond to identical regions on the ground, but their centers in pixel coordinates differ
from each other because their parent Landsats are misaligned.

Phase Path-Row City Date Center Size

Train 225-67 Santa Cruz do Xingu 2014-05-09 4663, 1168 872×583
Train 225-67 Santa Cruz do Xingu 2015-07-15 4663, 1238 872×583
Train 227-67 Alta Floresta 2013-05-20 4202, 1577 867×577
Train 227-67 Alta Floresta 2013-07-07 4422, 1507 867×577
Train 228-63 Itaituba 2013-06-12 4773, 4847 873×548
Train 228-63 Itaituba 2014-08-18 4993, 4867 873×548
Train 229-67 Nova Bandeirantes 2015-06-09 4357, 2721 865×585
Train 229-67 Nova Bandeirantes 2015-08-12 4367, 2651 865×585
Val 2-67 Rio Branco 2015-06-19 5722, 2918 876×584
Val 2-67 Rio Branco 2015-08-06 5722, 2848 876×584
Val 226-65 Novo Progresso 2013-06-14 1117, 4954 396×1198
Val 226-65 Novo Progresso 2015-07-22 1347, 5014 396×1198
Val 227-69 Lucas do Rio Verde 2013-05-04 1856, 4810 873×583
Val 227-69 Lucas do Rio Verde 2014-08-11 2076, 4920 873×583
Val 231-67 Theobroma 2014-10-10 3900, 1275 873×580
Val 231-67 Theobroma 2015-07-25 3900, 1295 873×580
Test 1-67 Placido de Castro 2013-07-08 4304, 2442 317×196
Test 1-67 Placido de Castro 2014-08-12 4304, 2462 317×196
Test 2-66 Porto Acre 2013-07-15 7349, 5260 274×655
Test 2-66 Porto Acre 2014-08-19 7349, 5290 274×655
Test 5-65 Cruzeiro do Sul 2013-09-22 5592, 1977 908×228
Test 5-65 Cruzeiro do Sul 2014-06-21 5592, 1987 908×228
Test 231-68 Seringueiras 2013-08-04 5107, 987 837×727
Test 231-68 Seringueiras 2015-06-23 5107, 987 837×727

5.2 Experimental Setup

5.2.1 Classification Methods

The following classifiers were tested: Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA), LinearSVM, LinearSVM-SGD, RBF-SVM, K-Nearest Neigh-

bors (KNN), Random Forest (RF), Multi-layer Perceptron (MLP), and Convolutional

Neural Networks (CNN). Most classifiers were trained exclusively either on the small

or the large training set. Only LDA and QDA were evaluated for both training set sizes.

We will hereafter call the LDA classifier trained on the small dataset as LDAsmall and

the big one as LDAbig, and likewise for QDA. We made two training sets because some

classifiers take too long to train on the large dataset, such as LinearSVM, RBF-SVM,

Random Forest, and KNN. LinearSVM-SGD is trained with Stochastic Gradient Descent

(instead of using sequential minimal optimization (PLATT, 1998) to solve the dual prob-
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lem), so it can be trained on the big training set very quickly. As the MLP and CNN

have deep architectures, they require more data to learn successfully. Therefore, both are

only trained on the large dataset. Details about the architecture of the neural network

methods are provided separately in Section 5.2.5. All experiments were coded in Python

2.7 (ROSSUM, 1995), the NumPy array package (WALT; COLBERT; VAROQUAUX,

2011) and the scikit-image library (WALT et al., 2014) was used to manipulate the data,

the Keras library (CHOLLET, 2015) with TensorFlow backend (ABADI et al., 2015) was

used to define and run the neural networks methods, and the scikit-learn library (PE-

DREGOSA et al., 2011) was used to run the other classifiers.

All classifiers, except KNN and CNN, when using the TOA reflectance values as

input, are evaluated for the window context sizes 1×1, 3×3, 5×5, and 9×9. The KNN

run on input sizes of 1×1 and 3×3 because bigger contexts cause it to be very slow on

inference time. The CNN is run just for input sizes 5×5 and 9×9 because its filter size is

3×3, so it only makes sense to be convolved on input sizes larger than that. Hereafter, we

will refer to the method ClassifierName with context size S×S as ClassifierNameS.

Every method trained on the small dataset (LinearSVM, RBF-SVM, Random For-

est, KNN, LDAsmall, and QDAsmall) are alternatively also trained with gray-level co-

occurrence matrix (GLCM) based features (HARALICK; SHANMUGAM; DINSTEIN,

1973) and a few additional statistics described in Section 5.2.2. Results for these methods

will have a “-GLCM” appended to the name of the classifiers.

5.2.2 GLCM-Based Texture Features

The gray-level co-occurrence matrix was calculated for a single displacement vec-

tor (d, θ) (d = 1 and θ = 0 in our experiments). Similar to the procedure in Dube

and Mutanga (2015), the following features are extracted from the GLCM matrix: an-

gular second moment, contrast, correlation, dissimilarity, entropy, homogeneity, standard

deviation, and mean. Additionally, the mean, standard deviation, and data range (max-

min) from the raw input window values are also calculated and appended to the GLCM

descriptors. All features were extracted independently for each image band and then con-

catenated together. Before being fed to the GLCM algorithm, the sample values are first

quantized into 64 levels between the global minimum and maximum in the training set.

The GLCM matrix was calculated using the corresponding function from the scikit-image

library (WALT et al., 2014).
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5.2.3 Feature Standardization

The last preprocessing step for all classifiers (using GLCM descriptors or not) is to

standardize the input features by subtracting it from the training mean and dividing by the

training standard deviation. That means the data is mean centered and scaled to have unit

variance4. This standardization is always done, even if the input images had already been

normalized or radiometrically corrected because it facilitates the optimization of some of

the used learning algorithms.

5.2.4 Hyperparameter Settings

Hyperparameters were set by optimizing the accuracy scores on the validation set.

The values tested were:

• SVMs: the kernel width in the radial basis function (RBF) kernel was set to 1/nc,

where nc is the number of input features, and the cost parameter C was found by

choosing among {10i | −5 ≤ i ≤ 12}, the best parameter 10i∗ and then further

refining it in a smaller range {j × 10i∗ | 1 ≤ j ≤ 9} ∪ {j × 10i∗−1 | 2 ≤ j ≤ 9}.

• Random Forest: we used 500 estimators and the number of features (ns) to be

considered in each tree node split was searched in the neighborhood of nmid =

b√ninc, where nin is the input data dimensionality. In addition to nmid, we also

tested 10 equally spaced integers between 1 and nmid − 1, and 5 equally spaced

integers between nmid + 1 and b1.5× nmidc.

• KNN: The number of neighbors K varied between 1 and 15.

• MLP and CNN: These were run for 15 epochs and the model from the epoch that

achieved the best validation score was chosen.

The LDA and QDA do not have hyperparameters.

4Do not confuse this normalization with the forest median centering normalization used by the CNC
framework. The first uses statistics from all pixels from all tiles in the training set. The later uses only
statistics from the forest pixels independently for each tile.
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5.2.5 Neural-Network Based Methods

The MLP architecture consisted of 4 fully-connected (also known as dense) layers

with 400 neurons and a two-neuron dense layer with a softmax on top as output. The

first 3 dense layers were followed by a Batch Normalization layer (IOFFE; SZEGEDY,

2015), a Rectified Linear Unit (NAIR; HINTON, 2010) activation function, and a Dropout

layer (SRIVASTAVA et al., 2014) with p = 0.5. The forth dense layer was followed by

the same ones as before, except the Dropout. We used mini-batch gradient descent with

momentum to minimize the cross-entropy loss. The following training parameters were

also used: mini-batch size (128), initial learning rate (0.01), and momentum (0.9). The

learning rate was decayed by 10−6 after each update. The normalized initialization of

Glorot and Bengio (2010) was employed.

The CNN architecture for input size 9×9 has three Conv blocks with eight filters

each, followed by a max pooling layer with pool size 2×2, and then more three Conv

blocks with 16 filters each followed by another 2×2 max pooling layer. The CNN for input

size 5×5 is similar to the previous one, but it just goes up to the first max pooling layer.

The Conv blocks consist of a convolutional layer with kernel size 3×3 (and padding to

preserve spatial dimensions) followed by a Rectified Linear Unit (NAIR; HINTON, 2010)

activation function. After the last max pooling layer, the activations are fully connected

to two output neurons with a Softmax layer on top. We used mini-batch gradient descent

with Nesterov momentum to minimize the cross-entropy loss, which was regularized with

L2 weight decay equal to 10−3. The rest of the parameters are identical to the MLP ones.

5.2.6 Deforestation Detection With Post-Classification Comparison

Let us call the CNC pipeline, trained with classifiers f1 and f2, as fcnc. Then, the

deforestation detection with the post-classification comparison (PCC) strategy proceeds

as follows. Given two co-registered unnormalized tiles T1
u and T2

u from two Landsat

scenes acquired at consecutive times t1 and t2, we aim to estimate the final binary image

D̂ indicating whether a forest loss happened in each pixel location. First we apply fcnc to

the two tiles and obtain the forest mask F i = fcnc(T
i
u) for each tile Ti

u. Then we build

the final binary deforestation mask D̂ by setting to 1 all pixels that were marked as forest

in F 1 and as non-forest in F 2, and 0 otherwise.
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5.2.7 Accuracy Metrics

The validation and test forest/non-forest classification score is the harmonic mean

between the sensitivity = Tp/(Tp + Fn) and specificity = Tn/(Tn + Fp), where Tp

refers to the number of true positives, Tn the number of true negatives, Fp the number of

false positives, and Fn the number of false negatives. This is computed for each tile, and

then the minimum harmonic mean among all tiles is selected. In other words, we aim to

maximize the harmonic mean for the worst performing tile.

Before computing the deforestation test scores, loss areas smaller the 2×2 (60m×60m)

are removed from both the predicted and ground truth loss masks by applying a binary

opening morphological operation with a structuring element of size 2×2. The objective is

to reduce small false positive loss areas caused by slight misregistration between the two

images (TOWNSHEND et al., 1992).

The overall deforestation test score is calculated by computing the geometric

mean between the deforestation F1-Score (2× (precision× sensitivity)/(precision +

sensitivity)) of each tile, where precision = TP/(TP+FP ), sensitivity = TP/(TP+

FN), TP are the number of true positives, FP false positives, and FN the false nega-

tives5. That is, the overall F1-Score is equal to (
∏nt

t=1 f1(t))
1
nt , where f1(t) is the F1-

Score for tile t and nt is the number of test tiles. Two types of deforestation F1-Scores are

calculated: one is area based, and the other is alert based. In the area based score, the

precision is the fraction of the number of predicted deforested pixels that were correctly

classified and the sensitivity is the fraction of the number of true deforestation pixels

that were correctly classified. On the other hand, in the alert based score, the precision

is the fraction of the number of predicted deforested polygons which have at least 10%

overlap with the true deforested areas and the sensitivity is the fraction of the number of

true deforested polygons overlapping at least 10% with the areas predicted by the method

under evaluation. The alert based score is of interest for assessing deforestation alerts. In

this case, detecting if a region suffered deforestation is prioritized over having the exact

extent of the loss.

5Precision is also known in the remote sensing literature as the user’s accuracy for the positive class and
sensitivity is also know as the producer’s accuracy for the positive class.
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5.3 Results

5.3.1 Best CNC Instances for Deforestation Detection

The CNC framework does not specify which classifiers f1 and f2 one should use.

In this section, we perform several experiments to find good choices for both classifiers

concerning deforestation detection accuracy.

We begin by finding the best classifier f2 among those listed in Section 5.2.1. As

f2 needs to be trained and tested on forest median centered TOA reflectance images, we

first isolate the effect of f1 by normalizing all tile images from the training, validation,

and test set with the ground truth forest median. Then we train all classifiers on the

training set, fine-tune its hyperparameters on the validation set, and evaluate the fine-

tuned model’s accuracy on the test set. The forest/non-forest classification scores for this

experiment are shown in Table 5.2 and the deforestation detection results are presented in

Table 5.3. By comparing Tables 5.2 and 5.3 we can observe that the bigger context helps

in the forest/non-forest classification task but harms the deforestation detection results.

The reason for this is discussed in Section 5.3.2.

The results shown in Table 5.3 indicate that the best classifier f2 regarding the

overall area and alert deforestation F1-Score was the LinearSVM1, with 68.02% and

74.75%, respectively. The first column of Table 5.4 shows the LinearSVM1 results for

each tested region. On the other hand, the best f2 classifiers, regarding forest/non-forest

classification score, are the RBF-SVM and the MLP both with context size of 9 and with

score of 99.91%, as shown in Table 5.2.

In the sequence, we search for the best classifier f1 among the same candidates

used previously for f2, but now we train and test the classifiers on unnormalized TOA

reflectance images. Here we aim to find the classifier that leads to the estimated forest

medians closest to the ground truth ones. Experimentally, we noticed that by morphologi-

cally eroding the f1 predicted forest masks we almost always obtained estimated medians

closer to the true ones (Figure 5.2). The erosion kernels tested had a square shape with

sides varying among 0 (meaning no erosion) and odd integers between 3 and 17 pixels

wide. The Euclidean distance was used to measure the dissimilarity between the ground

truth median and the estimated median. For each combination of classifiers and erosion

kernels, we calculated the distance for each validation tile and selected the combination

that minimized the distance for the tile that had the worst result.



50

Table 5.2: Overall test tiles forest/non-forest classification scores (defined in Sec-
tion 5.2.7) for classifiers trained and tested on TOA reflectance images that were nor-
malized using the ground truth forest medians.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 93.71% 93.84% 94.28% 94.2%
LDAbig 93.72% 93.78% 94.24% 94.69%

QDAsmall 95.41% 95.77% 97.64% 98.94%
QDAbig 95.42% 95.9% 97.6% 98.97%

LinearSVM 99.58% 99.79% 99.84% 99.82%
LinearSGD-SVM 99.48% 99.58% 99.56% 99.75%

RBF-SVM 99.28% 99.48% 99.73% 99.91%
RandomForest 98.49% 99.18% 99.24% 99.39%

KNN 98.77% 99.5% - -
MLP 99.63% 99.73% 99.78% 99.91%
CNN - - 99.69% 99.76%

LDAsmall-GLCM - 97.64% 98.99% 98.46%
QDAsmall-GLCM - 89.8% 65.04% 14.87%
LinearSVM-GLCM - 98.82% 99.61% 99.43%
RBF-SVM-GLCM - 99.0% 99.35% 99.41%

RandomForest-GLCM - 97.96% 98.07% 96.42%
KNN-GLCM - 98.39% - -

Figure 5.2 shows that the erosion operation improved the similarity between the

predicted and true medians for almost all methods. The best combination was the RBF-

SVM-GLCM with context size equal to 9 and erosion kernel size equal to 7. The worst tile

for this combination had a distance of 0.003314. The best combination without GLCM

features was the Random Forest with context size equal to 9 and erosion kernel size equal

to 5, yielding a distance of 0.005461. The LDAsmall3 comes as the second best method

without GLCM features with a distance of 0.007210.

Now let us define three CNC instances where all will have the best deforestation

detection f2 found previously (LinearSVM1), but the first classifier f1 will vary between

the three methods mentioned in the last paragraph. We will denote them by f rbf -glcm9
cnc ,

f rf9
cnc , and f lda-small3

cnc , where the superscript refers to f1’s classifier name and its context

size.

By running these three CNC instances on the TOA reflectance unnormalized datasets,

we obtain the accuracies shown in columns 2-4 of Table 5.4, for both the forest/non-forest

classification task and for the deforestation detection objective, which are just slightly

lower than the respective ones obtained by centering the data to the true forest medians

(see the first column of Table 5.4). This indicates that the classifier f1 can in practice be

used to estimate forest medians in unseen images. Individual results for each tested region

and classifier are shown in the appendix.

The deforestation masks produced by the f rbf -glcm9
cnc can be seen on Figs. 5.4f, 5.5c, 5.6b,
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Table 5.3: Overall test tiles deforestation detection F1-Scores for classifiers trained and
tested on TOA reflectance images that were normalized using the ground truth forest
medians. Each table cell shows F1-Scores in the format a/b, where ‘a’ is the area based
score and ‘b’ is the alert based score as defined in Section 5.2.7. The best area and alert
F1-Scores are highlighted in bold.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 27.68%/30.33% 23.44%/28.21% 16.82%/21.77% 9.72%/13.44%
LDAbig 27.51%/30.39% 23.68%/30.0% 17.38%/21.65% 10.57%/14.98%

QDAsmall 47.22%/49.49% 31.38%/29.99% 23.49%/26.72% 13.82%/16.72%
QDAbig 47.19%/49.65% 31.48%/30.34% 23.47%/26.05% 13.98%/15.97%

LinearSVM 68.02%/74.75% 53.73%/61.25% 41.14%/46.4% 28.09%/31.16%
LinearSGD-SVM 65.45%/72.95% 49.73%/58.4% 42.54%/49.88% 29.31%/33.22%

RBF-SVM 55.73%/61.38% 46.35%/50.63% 37.65%/44.29% 24.93%/27.64%
RandomForest 57.43%/60.87% 46.7%/50.54% 37.78%/42.57% 25.9%/29.65%

KNN 54.5%/58.91% 45.7%/47.53% - -
MLP 59.56%/63.45% 46.47%/55.59% 37.51%/44.1% 27.12%/32.64%
CNN - - 39.97%/48.75% 28.04%/32.62%

LDAsmall-GLCM - 35.03%/33.48% 34.05%/33.13% 23.84%/22.1%
QDAsmall-GLCM - 24.13%/22.27% 9.63%/11.25% 2.8%/4.87%
LinearSVM-GLCM - 45.37%/48.05% 34.56%/37.6% 19.89%/22.12%
RBF-SVM-GLCM - 44.92%/52.59% 30.42%/38.61% 20.13%/21.19%

RandomForest-GLCM - 42.32%/47.03% 31.89%/35.77% 18.2%/20.81%
KNN-GLCM - 42.51%/47.14% - -

Figure 5.2: Euclidean distance from the predicted forest median to the actual median for
each classifier and window context size. Markers are shown for both the distance for the
optimal erosion kernel size and for no erosion. Next to the best erosion markers the kernel
size is also shown.
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and 5.7b. To appreciate visually the main CNC steps, Figure 5.3 shows the forest segmen-

tation masks for the Placido de Castro region using f lda-small3
cnc as an example.

Table 5.4: Detailed results for selected methods. The first row (Overall Forest Classi-
fication Score) shows the overall scores for the forest/non-forest classification task as
defined in Section 5.2.7. The remaining rows show deforestation detection scores in the
format a/b, where ‘a’ is the area based score and ‘b’ is the alert based score. The last
row (Overall Deforestation F1-Score) shows the geometric mean of the four tile’s defor-
estation F1-Score. All values are percentages. Column 1: Show results for the classifier
with best deforestation F1-Score (LinearSVM1) that was trained and tested on TOA re-
flectance images that were normalized using the ground truth forest medians. Columns
2-4: Show results for the three CNC instances defined in Section 5.3.1 applied to TOA
reflectance images. Column 5: Show results for the classifier with best deforestation
F1-Score (RBF-SVM1) that was trained and tested on TOA reflectance images (See Sec-
tion 5.3.2). Column 6: Show results for the classifier with best deforestation F1-Score
(LinearSGD-SVM1) that was trained and tested on surface reflectance images (See Sec-
tion 5.3.3). The number following the classifier’s name indicates the size of the used
context.

Method LinearSVM1 f rbf -glcm9
cnc f rf9

cnc f lda-small3
cnc RBF-SVM1 LinearSGD-SVM1

Input Normalization/Correction GT Median TOA TOA TOA TOA Surf. Reflec.
Overall Forest Class. Score 99.58 99.62 99.44 99.57 98.02 96.66

Cruzeiro do Sul User’s 76.76/75.61 76.04/73.81 75.95/73.81 75.49/72.09 67.27/91.30 72.07/96.15
Producer’s 66.49/83.78 66.89/83.78 67.43/83.78 67.43/83.78 35.00/54.05 47.43/67.57
F1-Score 71.25/79.49 71.17/78.48 71.44/78.48 71.23/77.50 46.04/67.91 57.21/79.37

Placido de Castro User’s 76.16/73.13 75.16/72.46 74.08/69.01 75.22/72.06 41.23/30.11 58.42/49.21
Producer’s 59.13/79.31 59.71/79.31 59.32/79.31 59.32/79.31 64.13/81.03 59.32/84.48
F1-Score 66.57/76.10 66.55/75.73 65.88/73.80 66.33/75.51 50.19/43.91 58.87/62.19

Porto Acre User’s 59.22/56.86 58.11/54.27 55.34/50.87 57.56/53.29 20.23/14.65 21.69/15.45
Producer’s 65.41/77.57 66.73/80.37 69.46/82.24 67.91/80.37 73.32/86.92 77.22/85.98
F1-Score 62.16/65.62 62.12/64.79 61.60/62.86 62.31/64.09 31.72/25.07 33.87/26.20

Seringueiras User’s 89.71/92.58 89.39/91.56 89.64/92.47 89.69/92.80 91.74/95.39 92.47/95.19
Producer’s 60.94/68.40 61.18/69.70 61.22/70.56 60.92/70.13 49.57/60.17 50.76/58.44
F1-Score 72.58/78.67 72.65/79.15 72.75/80.04 72.56/79.89 64.37/73.80 65.54/72.42

Overall Deforest. F1-Score 68.02/74.75 68.00/74.30 67.77/73.47 67.98/73.98 46.60/48.46 52.29/55.32

5.3.2 Single Step Methods on Unnormalized TOA Reflectance Images

Tables 5.5 and 5.6 show results for classifiers trained and tested on unnormalized

TOA reflectance images. Note that using spatial context helps on the forest classification

task, however, it harms deforestation detection accuracies. This happens because the

forest/non-forest classification dataset pixels were taken from rectangular regions (see

Figure 5.1 for an example) that often were not drawn very close to the forest boundaries

(forest to non-forest transition contours). On the other hand, in the deforestation detection

dataset, all pixels from the tiles were used, including those in or near the forest boundaries.

We conjecture that contextual methods are not reliable when not all of its input context

pixels belong to the same class and thus they do not work well near boundaries. As
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Figure 5.3: Forest segmentation for each of the f lda-small3
cnc steps: (a) Placido de Castro

region acquired 2014-08-12; (b–d) The regions in red represent the forest segmentation,
and the blue rectangle is an ignored area due to a cloud.

(a) Tile RGB (b) f∗1 prediction (c) f∗1 11×11 erosion (d) f∗2 prediction

the forest/non-forest dataset has few boundary pixels, the contextual methods performed

better than the non-contextual ones, because the former can take into account contextual

or textural cues. On the deforestation dataset, the non-contextual classifiers performed

better because their precision on the boundaries overcompensates the lack of contextual

information.

The classifier in Table 5.6 that obtained the best overall area deforestation F1-

Score (46.6%) was the RBF-SVM1. We show more detailed evaluation metrics for this

method in column 5 of Table 5.4. As can be seen in this table, any of the best CNC

instances (f rbf -glcm9
cnc , f rf9

cnc , and f lda-small3
cnc ) outperform the RBF-SVM1 applied to unnor-

malized TOA reflectance images on all regions and metrics except in some of the defor-

estation user’s and producer’s accuracies6. However, it is important to note that it is easy

to achieve a very high producer’s accuracy in detriment of a very low user’s accuracy

and vice-versa. The real challenge is to keep both measures high, and this is what the

F1-Score captures. It is also interesting to mention that even though the f2 classifier from

the best CNC instances was chosen to maximize the deforestation detection score, its test

forest/non-forest classification accuracies were also higher than those of all the others

methods in Table 5.5. Thus, these results support our claim in Chapter 1 that the final

segmentation of the CNC framework is more accurate than the one of a single classifier

applied to unnormalized images.

For illustrative purposes, we show the deforestation masks produced by the RBF-

SVM1 in Figs. 5.4d, 5.6g, and 5.7g. Individual results for each tested region and classifier

6These terms are also know as precision and sensitivity.
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applied to unnormalized TOA reflectance images are shown in the appendix.

Table 5.5: Overall test tiles forest/non-forest classification scores (defined in Sec-
tion 5.2.7) for classifiers trained and tested on non-atmospherically-corrected TOA re-
flectance images.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 91.27% 93.25% 93.34% 90.82%
LDAbig 91.36% 93.37% 93.56% 91.55%

QDAsmall 89.12% 92.68% 96.26% 98.19%
QDAbig 89.37% 92.68% 96.26% 97.98%

LinearSVM 96.11% 95.94% 96.02% 98.96%
LinearSGD-SVM 96.09% 95.77% 91.84% 96.37%

RBF-SVM 98.02% 99.01% 99.10% 98.85%
RandomForest 92.43% 93.61% 94.19% 94.91%

KNN 96.72% 98.76% - -
MLP 96.87% 97.82% 98.26% 98.44%
CNN - - 99.17% 98.60%

LDAsmall-GLCM - 94.63% 97.55% 99.28%
QDAsmall-GLCM - 94.35% 92.47% 90.57%
LinearSVM-GLCM - 95.90% 98.02% 98.93%
RBF-SVM-GLCM - 94.16% 96.63% 98.55%

RandomForest-GLCM - 94.92% 95.69% 95.38%
KNN-GLCM - 95.38% - -

Table 5.6: Overall test tiles deforestation detection F1-Scores for classifiers trained and
tested on non-atmospherically-corrected TOA reflectance images. Each table cell shows
F1-Scores in the format a/b, where ‘a’ is the area based score and ‘b’ is the alert based
score as defined in Section 5.2.7. The best area and alert F1-Scores are highlighted in
bold.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 25.09%/32.19% 20.68%/28.71% 13.96%/19.8% 8.11%/9.4%
LDAbig 24.58%/31.67% 20.1%/27.86% 14.27%/21.16% 8.23%/12.28%

QDAsmall 34.69%/34.85% 26.25%/25.54% 21.13%/24.5% 13.35%/16.15%
QDAbig 34.8%/35.35% 26.34%/25.7% 20.99%/24.08% 13.55%/15.94%

LinearSVM 44.32%/48.72% 35.7%/41.67% 20.66%/21.01% 14.07%/17.01%
LinearSGD-SVM 44.39%/48.89% 34.8%/40.62% 22.11%/32.19% 18.16%/22.6%

RBF-SVM 46.6%/48.46% 40.27%/44.52% 32.66%/40.59% 20.09%/23.62%
RandomForest 37.96%/36.7% 28.69%/30.47% 22.9%/25.74% 15.35%/18.46%

KNN 45.62%/44.96% 36.34%/39.08% - -
MLP 43.75%/44.97% 34.42%/38.15% 26.55%/28.64% 18.69%/21.98%
CNN - - 30.69%/34.97% 14.21%/14.33%

LDAsmall-GLCM - 30.31%/33.16% 32.0%/32.9% 23.78%/22.62%
QDAsmall-GLCM - 25.42%/24.39% 15.22%/16.85% 6.32%/5.73%
LinearSVM-GLCM - 37.37%/39.75% 30.47%/34.08% 18.95%/22.51%
RBF-SVM-GLCM - 29.81%/29.73% 22.7%/26.41% 16.01%/19.0%

RandomForest-GLCM - 30.95%/33.46% 24.91%/27.41% 13.39%/14.81%
KNN-GLCM - 36.97%/40.93% - -
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5.3.3 Single Step Methods on Surface Reflectance Images

In this section, we train and test all the classifiers configurations described in Sec-

tion 5.2.1 on the surface reflectance images provided by USGS (VERMOTE et al., 2016).

The results for all classifiers are shown in Tables 5.7 and 5.8. The same comments about

contextual versus non-contextual methods said in the previous section are also true for this

section’s results. As can be seen by comparing the Tables 5.4, 5.7, and 5.8, any of the best

CNC instances (f rbf -glcm9
cnc , f rf9

cnc , and f lda-small3
cnc ) outperforms all the other classifiers on

forest/non-forest classification scores and deforestation F1-Scores. The only exception

was in the Cruzeiro do Sul region where the alert F1-Score for the LinearSGD-SVM1

classifier (79.37%) was higher than the one from the best CNC instance (78.48%). How-

ever, in the same region, the CNC instance with worst area based F1-Score (71.17%) was

better than the LinearSGD-SVM1 with 57.21% area F1-Score. The LinearSGD-SVM1

accuracies for each region can be seen in the last column of Table 5.4. Individual results

for each tested region and classifier applied to surface reflectance images are shown in the

appendix.

The deforestation masks produced by the best classifier in Table 5.8 (LinearSGD-

SVM1) applied to surface reflectance test tiles can be seen on Figs. 5.4e, 5.5g, 5.6h,

and 5.7h. We can see on Figure 5.7h that the surface reflectance tiles in the Porto Acre

region, induced an erroneous elongated change region which is not present on the masks

from the methods that were applied to TOA reflectance images. This mistake was due to

an artifact introduced by the surface reflectance Landsat 8 algorithm in one of the tiles.

5.3.4 CNC versus PRODES

Here we compare the deforestation masks produced by the f rbf -glcm9
cnc CNC in-

stance with those of the PRODES product (SHIMABUKURO et al., 2012). Differently

from the experiments done in previous sections, the Seringueiras region is excluded from

the comparisons because no PRODES masks correspond to its acquisition dates. Fur-

thermore, here we ignore deforestation segments (polygons) with an area smaller than 64

pixels (5.76 ha), both on the ground truth and CNC predicted masks, to be consistent with

the PRODES product which follows this procedure (MALDONADO et al., 2007).

Sometimes excluding a segment may be unfair with one or both of the methods

being compared since, for instance, a polygon with 70 pixels from the PRODES mask
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Table 5.7: Overall test tiles forest/non-forest classification scores (defined in Sec-
tion 5.2.7) for classifiers trained and tested on the Landsat 8 OLI surface reflectance
images provided by USGS.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 90.58% 92.53% 92.71% 90.25%
LDAbig 90.56% 92.55% 92.97% 91.13%

QDAsmall 84.26% 91.60% 96.06% 98.84%
QDAbig 84.64% 91.57% 96.06% 98.87%

LinearSVM 96.52% 98.21% 98.89% 97.33%
LinearSGD-SVM 96.66% 98.74% 99.06% 99.19%

RBF-SVM 97.50% 99.08% 99.25% 99.22%
RandomForest 90.09% 92.09% 91.86% 92.25%

KNN 96.31% 99.19% - -
MLP 96.90% 98.90% 99.18% 99.18%
CNN - - 98.76% 98.47%

LDAsmall-GLCM - 95.30% 97.92% 99.17%
QDAsmall-GLCM - 92.58% 89.38% 83.33%
LinearSVM-GLCM - 98.08% 98.79% 99.05%
RBF-SVM-GLCM - 96.99% 98.76% 98.79%

RandomForest-GLCM - 94.62% 95.58% 95.58%
KNN-GLCM - 96.89% - -

might overlap with two polygons of 35 pixels on the ground truth mask. So the last two

segments would be excluded, and the PRODES mask accuracy would decrease. To avoid

those situations, we give an advantage to the PRODES product by excluding all polygons

on the ground truth smaller than 64 pixels, except those where its area overlaps at least

10% with one or more polygons on PRODES. We also do not exclude segments, from

the CNC predicted mask, with at least 10% of its area overlapped with the previously

excepted ground truth polygons. There could still be segments, smaller than 64 pixels,

which were excluded from the CNC mask and overlapped with bigger polygons on the

ground truth that were not excluded. This would also unfairly negatively affect the accu-

racy of the CNC method. So we also excluded objects from the ground truth that had an

overlap of at least 10% with others on the CNC mask before performing the exclusions

but no longer had after it with the exception of segments that would negatively affect the

PRODES results if excluded. The inverse procedure is also done, that is, we excluded seg-

ments from the CNC mask that had an overlap of at least 10% with others on the ground

truth mask before the exclusions, but no longer overlapped after it.

The results for the experiments are shown in Table 5.9 and the resulting masks are

shown in the rightmost column of Figs. 5.5, 5.6, and 5.7, where the ground truth and CNC

predicted masks with polygons smaller than 64 pixels removed are referred as “filtered”,

and as “original” otherwise. As can be seen on the figures, many small segments were

excluded in order to make a fair comparison with PRODES. Table 5.9 shows that the
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Table 5.8: Overall test tiles deforestation detection F1-Scores for classifiers trained and
tested on the Landsat 8 OLI surface reflectance images provided by USGS. Each table cell
shows F1-Scores in the format a/b, where ‘a’ is the area based score and ‘b’ is the alert
based score as defined in Section 5.2.7. The best area and alert F1-Scores are highlighted
in bold.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 24.52%/32.89% 20.42%/28.32% 13.79%/21.33% 7.96%/8.81%
LDAbig 24.43%/32.37% 19.72%/27.15% 13.84%/21.96% 7.82%/10.8%

QDAsmall 35.01%/35.29% 26.36%/26.6% 20.99%/25.35% 13.09%/16.03%
QDAbig 35.02%/35.0% 26.44%/26.5% 21.08%/24.68% 13.24%/16.28%

LinearSVM 51.27%/54.75% 41.19%/44.99% 30.63%/35.19% 16.12%/15.97%
LinearSGD-SVM 52.29%/55.32% 42.63%/46.5% 32.03%/37.4% 18.52%/20.25%

RBF-SVM 51.18%/55.29% 44.29%/47.62% 35.52%/42.33% 21.74%/26.83%
RandomForest 41.9%/40.97% 32.42%/33.83% 26.76%/30.13% 17.79%/17.75%

KNN 49.64%/53.11% 40.86%/43.96% - -
MLP 51.17%/55.81% 42.0%/45.32% 30.71%/35.12% 19.13%/20.85%
CNN - - 30.07%/34.28% 17.11%/18.93%

LDAsmall-GLCM - 30.36%/31.69% 29.88%/30.29% 23.24%/24.32%
QDAsmall-GLCM - 25.39%/24.84% 13.93%/15.7% 5.39%/5.48%
LinearSVM-GLCM - 41.14%/45.43% 31.42%/35.55% 18.63%/22.06%
RBF-SVM-GLCM - 34.87%/36.27% 26.72%/29.72% 16.09%/18.72%

RandomForest-GLCM - 32.73%/37.03% 25.12%/26.8% 14.02%/16.43%
KNN-GLCM - 38.47%/43.29% - -

CNC method is more accurate, reaching a higher overall F1-Score, both in the area based

(90.14% vs 33.49%) and alert based versions (94.10% vs 76.31%, see Section 5.2.7 for

the scores definitions).

In the Cruzeiro do Sul region, both methods achieved a 100% alert score because

both approaches detected the only deforestation spot in the ground truth mask (Figure 5.5)

and no false positives. Regarding the area based score, the CNC method outperformed

PRODES, achieving a F1-Score of 95.12% versus 49.52% for the PRODES product (Ta-

ble 5.9).

In the Placido de Castro tile, there were two deforestation polygons in the ground

truth mask, a small and a large one (Figure 5.6). The PRODES product detected the

smaller one, while the CNC method detected both of them.

Figure 5.7 shows that both methods produced masks that were visually similar to

the ground truth in the Porto Acre region. The PRODES product was better than the CNC

regarding alert producer’s accuracy but worse concerning alert user’s accuracy. The CNC

method was once again more accurate regarding the area based scores (Table 5.9).

We also ran this section’s experiments for the f rf9
cnc and f lda-small3

cnc CNC instances

and the overall alert F1-Score for those were identical to the f rbf -glcm9
cnc one. On the other

hand, the area F1-Scores for f rf9
cnc (90.22%) and f lda-small3

cnc (90.18%) were slightly higher

than the one of f rbf -glcm9
cnc (90.14%).
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Table 5.9: Comparisons between the deforestation masks produced by f rbf -glcm9
cnc and

PRODES. For the results in this table, polygons smaller than 64 pixels were ignored
on the CNC masks and the ground truth masks, as described in Section 5.3.4. The defor-
ested area is shown in number of pixels. The user’s accuracy, producer’s accuracy, and
F1-Score results are shown in the format a/b, where ‘a’ is the area based score and ‘b’ is
the alert based score as defined in Section 5.2.7.

Method Ground Truth f rbf -glcm9
cnc PRODES

Cruzeiro do Sul Defo. Area 41 41 64
# Polygons 1 1 1

User’s - 95.12%/100.00% 40.62%/100.00%
Producer’s - 95.12%/100.00% 63.41%/100.00%
F1-Score - 95.12%/100.00% 49.52%/100.00%

Placido de Castro Defo. Area 263 286 32
# Polygons 2 2 1

User’s - 87.06%/100.00% 65.62%/100.00%
Producer’s - 94.68%/100.00% 7.98%/50.00%
F1-Score - 90.71%/100.00% 14.24%/66.67%

Porto Acre Defo. Area 650 503 985
# Polygons 8 5 8

User’s - 90.46%/100.00% 48.02%/62.50%
Producer’s - 70.00%/62.50% 72.77%/100.00%
F1-Score - 78.92%/76.92% 57.86%/76.92%

Total Defo. Area 954 830 1081
# Polygons 11 8 10

Geometric Mean of F1-Scores - 87.98%/91.63% 34.42%/80.04%
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Figure 5.4: Deforestation masks for the Seringueiras region. The deforestation F1-Score,
user’s accuracy, and producer’s accuracy are shown for each predicted mask. The scores
on the left of ‘/’ are area based and on the right are alert based (see Section 5.2.7 for the
scores definitions). Here we do not show masks with polygons smaller than 64 pixels
removed because the Seringueiras region is not compared with PRODES.

(a) RGB (2013-08-04) (b) RGB (2015-06-23) (c) Ground Truth Original

(d) TOA RBF-SVM1
F1-Score: 64.37/73.80

User: 91.74/95.39 | Prod.:
49.57/60.17

(e) Surface Ref. SGD-SVM1
F1-Score: 65.54/72.42

User: 92.47/95.19 | Prod.:
50.76/58.44

(f) f rbf -glcm9
cnc Original

F1-Score: 72.65/79.15
User: 89.39/91.56 | Prod.:

61.18/69.70
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Figure 5.5: Deforestation masks for the Cruzeiro do Sul region. Masks for the PRODES
comparisons are shown in the right column, where the polygons smaller than 64 pixels
are removed. The left column shows masks without removing those small regions. The
deforestation F1-Score, user’s accuracy, and producer’s accuracy are presented for each
predicted mask. The scores on the left of ‘/’ are area based and on the right are alert based
(see Section 5.2.7 for the scores definitions).

(a) RGB (2013-09-22) (b) RGB (2014-06-21)

(c) f rbf -glcm9
cnc Original

F1-Score: 71.17/78.48
User: 76.04/73.81 | Prod.: 66.89/83.78

(d) f rbf -glcm9
cnc Filtered

F1-Score: 95.12/100.00
User: 95.12/100.00 | Prod.: 95.12/100.00

(e) Ground Truth Original (f) Ground Truth Filtered

(g) Surface Ref. SGD-SVM1
F1-Score: 57.21/79.37

User: 72.07/96.15 | Prod.: 47.43/67.57

(h) PRODES
F1-Score: 49.52/100.00

User: 40.62/100.00 | Prod.: 63.41/100.00
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Figure 5.6: Deforestation masks for the Placido de Castro region. Masks for the PRODES
comparisons are shown in the rightmost column, where the polygons smaller than 64
pixels are removed. The center and left columns show masks without removing those
small regions. The deforestation F1-Score, user’s accuracy, and producer’s accuracy are
presented for each predicted mask. The scores on the left of ‘/’ are area based and on the
right are alert based (see Section 5.2.7 for the scores definitions).

(a) RGB (2013-07-08) (b) f rbf -glcm9
cnc Original

F1-Score: 66.55/75.73
User: 75.16/72.46 | Prod.:

59.71/79.31

(c) f rbf -glcm9
cnc Filtered

F1-Score: 90.71/100.00
User: 87.06/100.00 | Prod.:

94.68/100.00

(d) RGB (2014-08-12) (e) Ground Truth Original (f) Ground Truth Filtered

(g) TOA RBF-SVM1
F1-Score: 50.19/43.91

User: 41.23/30.11 | Prod.:
64.13/81.03

(h) Surface Ref. SGD-SVM1
F1-Score: 58.87/62.19

User: 58.42/49.21 | Prod.:
59.32/84.48

(i) PRODES
F1-Score: 14.24/66.67

User: 65.62/100.00 | Prod.:
7.98/50.00
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Figure 5.7: Deforestation masks for the Porto Acre region. Masks for the PRODES com-
parisons are shown in the rightmost column, where the polygons smaller than 64 pixels
are removed. The center and left columns show masks without removing those small re-
gions. The deforestation F1-Score, user’s accuracy, and producer’s accuracy are presented
for each predicted mask. The scores on the left of ‘/’ are area based and on the right are
alert based (see Section 5.2.7 for the scores definitions).

(a) RGB (2013-07-15) (b) f rbf -glcm9
cnc Original

F1-Score: 62.12/64.79
User: 58.11/54.27 | Prod.:

66.73/80.37

(c) f rbf -glcm9
cnc Filtered

F1-Score: 78.92/76.92
User: 90.46/100.00 | Prod.:

70.00/62.50

(d) RGB (2014-08-19) (e) Ground Truth Original (f) Ground Truth Filtered

(g) TOA RBF-SVM1
F1-Score: 31.72/25.07

User: 20.23/14.65 | Prod.:
73.32/86.92

(h) Surface Ref. SGD-SVM1
F1-Score: 33.87/26.20

User: 21.69/15.45 | Prod.:
77.22/85.98

(i) PRODES
F1-Score: 57.86/76.92

User: 48.02/62.50 | Prod.:
72.77/100.00
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6 DISCUSSION AND CONCLUSION

6.1 Discussion of the Advantages and Limitations of the Proposed Approach

Our experiments suggest that the CNC framework applied to Landsat 8 TOA re-

flectance images is capable of:

1. Producing better tropical rainforest segmentation and deforestation maps than any

of the tested classifiers applied to TOA reflectance images.

2. Generating superior tropical rainforest segmentation and deforestation maps than

any of tested classifiers applied to surface reflectance images.

3. Yielding better deforestation detection maps than PRODES in the three studied

regions.

Evidence for the superior CNC tropical rainforest segmentation quality is demon-

strated directly through its forest/non-forest classification results and indirectly by its

deforestation detection scores (see Table 5.4). For purposes of tropical rainforest clas-

sification, the normalization provided by the first two CNC steps (Classify-Normalize)

proved to be a competitive alternative to the surface reflectance (SR) Landsat 8 OLI prod-

uct (VERMOTE et al., 2016) provided by USGS.

It is also important to mention that even though the methods applied to Landsat

8 SR obtained inferior results compared to the CNC framework, the earlier, nonetheless,

achieved higher overall deforestation F1-Score than the methods applied to unnormalized

TOA reflectance images (see Table 5.6 and 5.8). This shows that the Landsat 8 SR algo-

rithm also performs an image normalization that is useful for machine learning methods.

The experiments presented in Section 5.3.4, in addition to indicating the CNC

prominence in deforestation detection, also showed that by ignoring polygons smaller

than 64 pixels the CNC framework accuracy increased in all three analyzed regions,

but the ordering of the scores between the regions remained the same. That is, the

f rbf -glcm9
cnc CNC instance area/alert F1-Score went from 62.12%/64.79% (including small

polygons) to 78.92%/76.92% (excluding small polygons) in the Porto Acre region, from

66.55%/75.73% to 90.71%/100.00% in the Placido de Castro tile, and from 71.17%/78.48%

to 95.12%/100.00% in the Cruzeiro do Sul site. The regions were listed in ascending order

of scores.
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This work also showed that the erosion trick improves the similarity between the

estimated forest median and the actual median for all classifiers, except the RandomForest-

GLCM, as indicated by Fig 5.2. We defined and evaluated three instances of the CNC

framework: f rbf -glcm9
cnc , f rf9

cnc , and f lda-small3
cnc . We can observe in Table 5.4 that the scores

are very similar for the three instances and that all of them perform better than the com-

peting approaches, except in the Cruzeiro do Sul region where the LinearSGD-SVM1,

trained and tested on surface reflectance images, has a slightly higher alert F1-Score than

the best CNC instance (but lower area F1-Score). The fact of the three instances having

similar results is important since the GLCM features used on the f rbf -glcm9
cnc CNC instance

take very long to calculate compared to the running time of the other instances, which

do not need to compute any descriptors. So we recommend using either the f rf9
cnc or the

f lda-small3
cnc instances since they are much faster than the f rbf -glcm9

cnc and also achieves good

accuracies.

6.1.1 Analyzing Errors on the CNC Deforestation Detection Masks

Some of the errors on the forest loss masks are because we apply the opening

operation to the predicted masks and the ground truth masks so that it deletes regions

smaller than 2×2. So some small polygon may be removed from the ground truth mask,

but its corresponding polygon in the predicted mask is not deleted because it was slightly

bigger. The opposite situation can also happen, that is, a small polygon may be removed

from the predicted mask, but its ground truth equivalent is not deleted. Even though

applying the opening operation may sometimes cause those problems, we still employ it

because otherwise the amount of false positive polygons, smaller than 2×2, would be very

high.

Another source of errors we could see in the predicted masks are some false nega-

tives that are produced when the forest is not completely removed from one date to another

(clear-cut). This may happen due to selectively logging or wildfire. When this happens,

the classifier will label the regions as forest for both dates, and thus the post-classification

comparison approach will output that no change occurred in the area. A possible solution

to remedy this type of errors is to use a regressor, instead of a classifier, as f2 to try to

estimate the forest coverage percentage for a given pixel for both dates. Then the proce-

dure will yield a forest loss when the difference of forest coverage between the two dates

is above a certain threshold. A second possible solution would be to stack both images
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and use loss/non-loss labels directly as classification targets. The drawback of the first

approach is that the ground truth regression real values will be more costly to obtain than

hard labels. The downside of the second solution is that it will require a larger training

dataset to keep the data density in the feature space constant since the dimensionality of

the stacked training samples will double in size.

6.1.2 Processing Time

In this subsection, we discuss the processing time of the f lda-small3
cnc model which

shows a good speed versus accuracy trade-off. The size of the trained model is 74.2 kB

and it took 5 minutes to classify all pixels1 into forest/non-forest labels of a Landsat of size

7741×7581 pixels2 on an Intel Core i5-3337U 1.80GHz×4 processor laptop (using only

one core) with 6 GB of RAM and running Ubuntu 14.04 LTS. All code was written in

Python 2.7 (ROSSUM, 1995). By extrapolating the previous running time, it would take

approximately 16 hours to segment forest regions in the whole Amazon Basin, which has

an area of 6,200,000 km2 (MARENGO et al., 2012), and about 16 days to segment the

whole earth’s land area (148,326,000 km2) using the specified Laptop. It would take twice

as much time to produce deforestation maps, as the model would need to be applied for

two different periods.

6.2 Conclusion

In this work, we presented the Classify-Normalize-Classify framework for classi-

fying images pixel-wise even when the distribution of the target classes shifts from one

image to another. We showed experimentally that although a class of interest (COI) seg-

mentation obtained by a classifier using unnormalized images can be unsatisfactory as

a final product, the segmentation results can be useful to calculate a COI median signal

with enough accuracy to perform an image normalization that facilitates the discrimina-

tion between the COI and non-COI classes.

The CNC method was evaluated on the task of deforestation detection using Land-

sat 8 OLI images over the Brazilian Amazon rainforest. To accomplish this task we used

1All pixels in the Landsat image were processed including those located inside the no-data regions
(black pixels). We could make it faster by avoiding processing those regions.

2The valid region of the image corresponds to an area of 185 km×180 km.
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the CNC framework (with the COI as forest) to segment a pair of co-registered images

for two distinct dates, and then used the post-classification comparison strategy to ob-

tain the predicted deforestation mask. The obtained results were compared with those

achieved by classifiers trained and tested on the Landsat 8 surface reflectance images

downloaded from USGS Earth Explorer, where the CNC approach performed better than

other comparative schemes applied to surface reflectance images on all tested regions,

regarding area F1-Score. The proposed framework generated deforestation masks were

also compared with those of PRODES, and again the CNC results were more accurate in

all evaluated regions.
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6.3 Future Work

In domains where the input images can be very large such as in remote sensing,

the classes distributions may shift within different parts of the same image. Therefore, di-

viding the input images into several tiles is recommended to reduce the internal dispersion

of the classes, and then the CNC framework needs to be applied independently to each

one. In future work, we intend to explore possible strategies to classify a whole Landsat.

The simplest implementation of this would be to partition the entire image into equally

sized non-overlapping tiles. More complex approaches could also be devised such as

using half-overlapping tiles and then averaging the result of the first two steps (Classify-

Normalize) in the intersected regions, or we could interpolate the estimated COI median

signals from the center of each tile to the other positions. There is also several options

for dealing with the scenario where the first classifier of the framework does not find any

COI pixels (or find very few pixels such that the estimated median would likely be a bad

estimate of the true median) in a given tile. One approach to solving that problem would

be to interpolate between the median values of the nearest tiles with sufficient predicted

COI pixels.

Another idea we would like to explore in the future is to use a regressor in the place

of the second classifier in the CNC framework, and then try to estimate forest coverage

fraction for each pixel instead of the binary categories forest/non-forest. We then would

subtract the fraction for two different dates of a given pixel, and in this way, we could

estimate how much coverage was lost in a given pixel between two dates. However, this

exploration would require datasets with forest cover fraction ground truths.
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APPENDIX A — TABLES WITH DETAILED DEFORESTATION SCORES

In this appendix we show three tables that indicate the deforestation detection F1-

Score, user’s accuracy, and producer’s accuracy for each of the four tested regions for

classifiers applied to each of the following three types of image data: top-of-atmosphere

(TOA) reflectance Landsat 8 OLI images normalized with the ground truth forest me-

dian vector (Table A.1), unnormalized TOA reflectance images (Table A.2), and surface

reflectance images (Table A.3). Previously, we showed detailed scores for each region

separately just for a few selected methods in Table 5.4, but here we will show for every

tested classifier and input normalization/correction type.



74Table A.1: Deforestation detection results of non-contextual classifiers trained and tested on TOA reflectance images that were normalized using
the ground truth forest medians. For each column, the best score is highlighted in bold. The columns show scores in the format a/b, where ‘a’ is
the area based score and ‘b’ is the alert based score as defined in Section 5.2.7. The first column (Overall F1-Score) shows the geometric mean of
the four tile’s deforestation F1-Score. All values are percentages.

Metric Overall Cruzeiro do Sul Defo. Metrics Placido de Castro Defo. Metrics Porto Acre Defo. Metrics Seringueiras Defo. Metrics
F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score

LDAsmall1 27.68/30.33 9.59/9.23 55.14/75.68 16.34/16.45 43.44/29.59 38.63/51.72 40.90/37.65 15.56/16.96 17.65/31.78 16.54/22.11 63.61/58.31 45.60/65.80 53.12/61.83
LDAbig1 27.51/30.39 9.58/8.76 54.19/75.68 16.28/15.70 43.93/30.30 38.95/53.45 41.29/38.68 15.21/17.24 16.99/32.71 16.05/22.58 63.77/58.54 45.42/66.23 53.05/62.15

QDAsmall1 47.22/49.49 31.47/26.13 47.84/70.27 37.96/38.09 62.76/65.62 28.51/48.28 39.21/55.63 46.84/35.75 53.04/52.34 49.75/42.48 84.54/83.57 55.68/55.41 67.14/66.64
QDAbig1 47.19/49.65 31.18/26.61 47.70/70.27 37.71/38.60 62.94/66.67 28.51/48.28 39.24/56.00 47.17/35.59 52.85/51.40 49.84/42.06 84.75/84.21 55.71/55.41 67.23/66.84

LinearSVM1 68.02/74.75 76.76/75.61 66.49/83.78 71.25/79.49 76.16/73.13 59.13/79.31 66.57/76.10 59.22/56.86 65.41/77.57 62.16/65.62 89.71/92.58 60.94/68.40 72.58/78.67
LinearSGD-SVM1 65.45/72.95 64.63/69.77 64.46/81.08 64.55/75.00 76.09/73.24 57.08/79.31 65.23/76.15 59.02/55.77 61.13/74.77 60.06/63.89 90.03/92.07 60.78/67.10 72.57/77.63

RBF-SVM1 55.73/61.38 29.38/29.91 62.97/83.78 40.07/44.08 73.45/69.14 50.16/75.86 59.61/72.34 56.35/48.78 56.61/68.22 56.48/56.89 90.38/94.64 59.13/66.67 71.49/78.23
RandomForest1 57.43/60.87 56.52/48.44 55.68/75.68 56.09/59.07 73.54/70.97 40.23/62.07 52.01/66.22 53.12/43.21 56.09/62.62 54.57/51.13 88.68/89.00 55.55/55.84 68.31/68.63

KNN1 54.50/58.91 30.79/29.81 62.16/78.38 41.18/43.19 74.69/67.11 42.54/67.24 54.20/67.17 57.57/47.53 55.29/65.42 56.41/55.06 90.07/93.36 57.32/63.20 70.06/75.38
MLP1 59.56/63.45 37.81/34.94 63.92/78.38 47.51/48.33 73.95/66.23 55.09/77.59 63.14/71.46 58.33/51.90 58.02/70.09 58.17/59.64 89.83/91.06 60.19/69.26 72.08/78.68

LDAsmall3 23.44/28.21 5.64/6.77 45.41/67.57 10.04/12.31 41.23/39.06 38.57/44.83 39.85/41.75 13.31/16.06 17.46/31.78 15.10/21.34 58.63/55.52 43.50/60.17 49.94/57.75
LDAbig3 23.68/30.00 5.84/7.76 47.70/72.97 10.41/14.03 39.57/35.71 38.05/46.55 38.80/40.42 13.74/18.75 17.98/33.64 15.58/24.08 59.15/57.99 43.33/60.61 50.02/59.27

QDAsmall3 31.38/29.99 25.98/35.82 35.95/59.46 30.16/44.71 19.30/12.56 41.06/55.17 26.25/20.46 14.35/10.46 55.58/68.22 22.81/18.14 67.33/57.35 44.65/42.42 53.69/48.77
QDAbig3 31.48/30.34 26.21/36.92 35.81/59.46 30.27/45.56 19.31/12.73 41.00/53.45 26.26/20.56 14.49/10.69 55.62/69.16 22.99/18.51 67.17/57.64 44.80/42.42 53.75/48.87

LinearSVM3 53.73/61.25 50.65/62.79 52.97/72.97 51.78/67.50 59.13/60.66 46.25/56.90 51.91/58.72 38.51/42.86 61.46/72.90 47.35/53.98 80.88/87.26 54.98/52.81 65.46/65.80
LinearSGD-SVM3 49.73/58.40 48.05/60.00 48.38/72.97 48.22/65.85 58.17/64.29 39.21/53.45 46.84/58.37 33.96/37.50 57.60/64.49 42.73/47.42 78.12/87.50 53.34/50.22 63.39/63.81

RBF-SVM3 46.35/50.63 20.15/21.14 47.03/70.27 28.21/32.50 63.22/59.65 41.96/58.62 50.44/59.13 41.85/40.62 57.65/64.49 48.50/49.85 82.50/85.71 56.21/57.14 66.87/68.57
RandomForest3 46.70/50.54 33.85/34.21 44.32/67.57 38.39/45.42 61.15/62.26 34.08/46.55 43.77/53.27 36.47/32.95 56.28/60.75 44.26/42.73 79.57/87.50 53.48/49.35 63.97/63.11

KNN3 45.70/47.53 31.72/27.37 45.27/72.97 37.31/39.81 48.00/38.10 39.27/62.07 43.20/47.21 34.67/30.17 57.84/66.36 43.35/41.48 84.60/91.01 49.44/51.08 62.41/65.44
MLP3 46.47/55.59 22.10/33.73 47.84/72.97 30.23/46.14 64.78/63.83 40.29/51.72 49.68/57.14 40.91/45.95 58.16/71.96 48.04/56.08 82.02/86.59 53.31/51.52 64.62/64.60

LDAsmall5 16.82/21.77 3.33/5.21 31.08/48.65 6.01/9.42 33.02/26.15 29.47/34.48 31.14/29.75 9.30/14.59 11.53/20.56 10.30/17.07 53.63/50.18 33.85/44.16 41.50/46.98
LDAbig5 17.38/21.65 3.56/4.49 37.57/54.05 6.51/8.29 31.96/26.56 30.30/32.76 31.11/29.34 9.19/15.82 12.52/24.30 10.60/19.16 53.65/50.00 35.21/44.59 42.52/47.14

QDAsmall5 23.49/26.72 15.22/33.33 23.65/40.54 18.52/36.59 14.50/15.44 39.27/53.45 21.18/23.96 10.92/9.52 52.99/60.75 18.10/16.47 55.95/50.00 34.75/27.27 42.87/35.29
QDAbig5 23.47/26.05 15.10/31.91 23.38/40.54 18.35/35.71 14.56/13.97 39.46/51.72 21.27/22.00 10.91/9.58 53.08/58.88 18.10/16.48 55.76/49.67 34.89/27.71 42.92/35.57

LinearSVM5 41.14/46.40 38.80/63.64 37.70/56.76 38.25/60.00 38.58/31.08 39.91/48.28 39.23/37.82 25.73/33.09 53.51/62.62 34.75/43.30 69.79/67.13 45.28/36.36 54.93/47.17
LinearSGD-SVM5 42.54/49.88 33.41/54.76 41.08/62.16 36.85/58.23 41.46/35.62 41.19/56.90 41.32/43.81 27.29/32.92 55.39/64.49 36.56/43.59 73.87/75.34 48.83/44.16 58.80/55.68

RBF-SVM5 37.65/44.29 12.84/20.56 36.49/59.46 18.99/30.56 52.39/55.10 37.99/51.72 44.04/53.36 33.92/34.38 50.40/51.40 40.55/41.20 73.04/73.86 49.83/46.75 59.24/57.26
RandomForest5 37.78/42.57 25.67/34.43 32.43/59.46 28.66/43.61 44.32/43.10 29.72/44.83 35.58/43.95 29.26/28.99 49.32/50.47 36.73/36.82 67.85/72.88 45.43/34.20 54.42/46.55

MLP5 37.51/44.10 15.86/31.43 36.62/56.76 22.13/40.46 46.67/38.89 37.73/51.72 41.73/44.40 30.07/33.33 49.88/55.14 37.52/41.55 74.02/74.13 46.54/38.53 57.15/50.70
LDAsmall9 9.72/13.44 2.70/4.00 26.89/35.14 4.90/7.18 22.65/20.37 14.80/15.52 17.90/17.62 3.63/7.91 3.53/10.28 3.58/8.94 43.00/35.53 21.24/24.24 28.43/28.82
LDAbig9 10.57/14.98 2.56/4.12 34.05/43.24 4.77/7.52 22.32/15.79 18.96/24.14 20.51/19.09 3.41/9.88 5.18/14.95 4.11/11.90 41.12/32.64 25.02/26.84 31.11/29.46

QDAsmall9 13.82/16.72 6.03/10.81 10.14/16.22 7.56/12.97 9.26/15.85 29.66/39.66 14.11/22.65 6.95/8.08 42.92/45.79 11.97/13.74 41.56/30.00 21.79/14.29 28.59/19.35
QDAbig9 13.98/15.97 6.17/10.81 10.41/16.22 7.75/12.97 9.36/12.35 30.49/39.66 14.33/18.83 6.91/7.85 42.78/45.79 11.90/13.41 42.07/30.59 22.04/14.72 28.92/19.87

LinearSVM9 28.09/31.16 19.73/34.21 21.76/29.73 20.69/31.81 24.55/27.27 31.33/32.76 27.53/29.77 17.75/18.46 43.76/39.25 25.26/25.11 56.92/62.63 34.87/29.00 43.24/39.65
LinearSGD-SVM9 29.31/33.22 25.10/41.38 24.46/32.43 24.78/36.36 23.72/28.85 31.77/37.93 27.16/32.77 17.03/21.62 46.92/41.12 24.98/28.34 56.75/55.00 35.77/26.84 43.88/36.08

RBF-SVM9 24.93/27.64 5.82/9.32 22.16/32.43 9.22/14.48 30.59/36.36 30.75/31.03 30.67/33.49 23.71/25.25 41.46/30.84 30.17/27.77 55.82/59.17 38.15/34.20 45.33/43.34
RandomForest9 25.90/29.65 12.96/36.36 16.22/29.73 14.41/32.71 31.06/29.55 22.81/29.31 26.30/29.43 20.96/21.57 43.20/36.45 28.22/27.10 53.24/43.40 34.80/22.51 42.09/29.64

MLP9 27.12/32.64 10.15/29.55 23.92/32.43 14.26/30.92 27.48/33.96 32.35/34.48 29.71/34.22 21.45/19.57 42.26/40.19 28.45/26.32 58.99/64.22 36.21/29.87 44.87/40.77
LDAsmall-GLCM3 35.03/33.48 16.55/12.44 45.95/62.16 24.34/20.73 32.26/27.27 55.22/77.59 40.73/40.36 20.71/17.10 45.88/67.29 28.53/27.27 76.50/67.95 40.82/46.32 53.23/55.09
QDAsmall-GLCM3 24.13/22.27 9.60/11.21 37.43/59.46 15.29/18.87 14.86/13.49 39.01/60.34 21.52/22.05 11.46/6.65 53.65/64.49 18.88/12.05 62.39/49.24 48.55/48.92 54.60/49.08
LinearSVM-GLCM3 45.37/48.05 49.37/51.02 42.43/67.57 45.64/58.14 38.10/31.94 62.33/79.31 47.29/45.54 22.56/20.53 68.42/86.92 33.93/33.22 76.18/71.93 46.65/52.38 57.86/60.62
RBF-SVM-GLCM3 44.92/52.59 42.04/52.00 40.68/70.27 41.35/59.77 49.33/48.96 40.29/62.07 44.36/54.74 28.33/24.74 58.40/75.70 38.15/37.29 78.42/87.23 46.26/48.92 58.19/62.68

RandomForest-GLCM3 42.32/47.03 47.25/55.56 39.46/64.86 43.00/59.85 44.31/44.74 30.17/46.55 35.90/45.63 24.32/20.38 58.49/63.55 34.36/30.86 78.20/81.70 49.25/45.02 60.44/58.05
KNN-GLCM3 42.51/47.14 37.53/43.10 37.03/67.57 37.28/52.63 42.83/36.36 49.90/72.41 46.09/48.41 25.37/21.65 56.99/76.64 35.11/33.76 73.86/77.93 42.73/45.45 54.14/57.42

CNN5 39.97/48.75 16.86/35.21 39.05/64.86 23.55/45.64 47.91/42.03 42.66/58.62 45.14/48.96 31.41/33.11 54.92/58.88 39.97/42.39 74.77/80.92 50.23/47.19 60.09/59.61
LDAsmall-GLCM5 34.05/33.13 13.16/12.57 38.65/54.05 19.64/20.39 31.74/26.05 48.43/60.34 38.35/36.39 29.06/25.69 39.06/50.47 33.33/34.05 65.09/51.19 45.48/44.59 53.55/47.66
QDAsmall-GLCM5 9.62/11.25 2.40/3.91 18.51/37.84 4.24/7.10 3.81/5.70 19.92/31.03 6.40/9.63 4.33/3.91 41.69/41.12 7.84/7.14 44.22/40.32 37.12/27.71 40.36/32.84
LinearSVM-GLCM5 34.56/37.60 26.47/46.34 27.30/43.24 26.88/44.74 30.49/25.00 48.30/62.07 37.38/35.64 18.70/17.09 63.01/71.03 28.84/27.55 66.88/63.25 38.92/35.50 49.21/45.47
RBF-SVM-GLCM5 30.42/38.61 11.69/28.33 23.38/40.54 15.59/33.36 37.27/40.74 37.22/56.90 37.24/47.48 21.54/22.16 53.04/61.68 30.63/32.61 61.16/57.93 39.70/34.20 48.15/43.01

RandomForest-GLCM5 31.89/35.77 35.23/60.71 26.76/35.14 30.41/44.51 29.66/27.71 22.93/37.93 25.87/32.03 16.66/15.20 54.73/58.88 25.54/24.16 69.44/77.98 40.84/34.20 51.44/47.55
CNN9 28.04/32.62 13.83/33.33 24.05/29.73 17.56/31.43 29.31/30.19 29.21/36.21 29.26/32.93 19.49/19.69 40.38/41.12 26.29/26.62 59.40/65.71 37.22/29.87 45.77/41.07

LDAsmall-GLCM9 23.84/22.10 4.92/4.75 31.08/48.65 8.50/8.65 32.05/33.33 28.25/32.76 30.03/33.04 37.79/35.29 23.67/25.23 29.11/29.43 45.09/24.64 42.00/33.33 43.49/28.34
QDAsmall-GLCM9 2.80/4.87 0.25/0.37 5.54/10.81 0.48/0.72 0.89/7.50 5.45/6.90 1.53/7.19 1.86/3.61 27.25/20.56 3.48/6.15 26.68/27.88 21.97/12.99 24.10/17.72
LinearSVM-GLCM9 19.89/22.12 17.45/27.78 11.49/18.92 13.85/22.51 14.21/18.09 26.91/34.48 18.60/23.73 10.54/10.92 53.13/52.34 17.59/18.07 53.14/50.57 25.58/16.45 34.53/24.83
RBF-SVM-GLCM9 20.12/21.19 4.95/8.04 14.19/24.32 7.34/12.08 23.60/26.79 18.83/22.41 20.95/24.41 18.62/15.72 43.48/40.19 26.07/22.60 48.30/32.16 35.49/28.57 40.92/30.26

RandomForest-GLCM9 18.20/20.81 11.83/23.68 13.92/24.32 12.79/24.00 12.08/13.70 15.12/18.97 13.43/15.91 10.19/11.23 47.81/46.73 16.80/18.11 56.04/53.49 28.79/18.18 38.04/27.14
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Table A.2: Deforestation detection results of classifiers trained and tested on non-atmospherically-corrected TOA reflectance images. For each
column, the best score is highlighted in bold. The columns show scores in the format a/b, where ‘a’ is the area based score and ‘b’ is the alert
based score as defined in Section 5.2.7. The first column (Overall F1-Score) shows the geometric mean of the four tile’s deforestation F1-Score.
All values are percentages.

Metric Overall Cruzeiro do Sul Defo. Metrics Placido de Castro Defo. Metrics Porto Acre Defo. Metrics Seringueiras Defo. Metrics
F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score

LDAsmall1 25.09/32.19 19.21/27.63 27.70/51.35 22.69/35.93 30.26/22.46 51.51/74.14 38.12/34.48 5.93/8.62 23.01/41.12 9.44/14.25 78.58/72.53 35.15/52.38 48.57/60.83
LDAbig1 24.58/31.67 17.87/26.32 25.81/48.65 21.12/34.16 30.18/23.08 50.61/72.41 37.81/35.00 5.96/8.29 22.49/41.12 9.43/13.80 78.94/72.92 34.98/52.38 48.48/60.97

QDAsmall1 34.69/34.85 77.13/80.00 37.84/56.76 50.77/66.40 16.73/15.31 28.76/56.90 21.15/24.12 13.57/8.44 65.08/71.96 22.46/15.11 89.93/94.38 45.06/45.02 60.03/60.96
QDAbig1 34.80/35.35 78.03/82.76 37.43/56.76 50.59/67.33 16.97/15.60 27.48/56.90 20.98/24.49 14.02/8.70 64.71/71.96 23.05/15.53 89.90/94.41 44.94/45.02 59.93/60.97

LinearSVM1 44.32/48.72 70.08/92.31 37.03/56.76 48.45/70.29 41.17/32.53 64.83/84.48 50.36/46.97 15.72/13.33 65.04/85.98 25.31/23.09 89.61/91.74 47.96/61.90 62.48/73.93
LinearSGD-SVM1 44.39/48.89 69.92/92.31 36.76/56.76 48.18/70.29 41.75/33.13 64.38/84.48 50.66/47.59 15.91/13.57 64.99/85.98 25.56/23.44 89.60/91.27 47.69/60.61 62.25/72.84

RBF-SVM1 46.60/48.46 67.27/91.30 35.00/54.05 46.04/67.91 41.23/30.11 64.13/81.03 50.19/43.91 20.23/14.65 73.32/86.92 31.72/25.07 91.74/95.39 49.57/60.17 64.37/73.80
RandomForest1 37.96/36.70 77.71/76.67 36.76/54.05 49.91/63.40 22.72/17.51 38.95/63.79 28.70/27.48 13.79/9.09 73.69/85.05 23.23/16.43 90.91/94.86 47.55/47.62 62.44/63.41

KNN1 45.62/44.96 82.85/88.89 38.51/59.46 52.58/71.26 38.45/29.47 48.43/77.59 42.87/42.72 19.30/11.26 72.94/80.37 30.52/19.75 92.22/95.34 47.78/52.81 62.95/67.97
MLP1 43.74/44.96 67.40/89.29 41.62/64.86 51.46/75.14 33.47/26.34 46.70/75.86 38.99/39.10 17.79/11.53 73.22/83.18 28.63/20.25 92.30/96.83 48.69/53.25 63.75/68.71

LDAsmall3 20.68/28.71 14.43/22.00 17.30/29.73 15.73/25.29 22.45/19.23 51.38/72.41 31.24/30.39 5.01/9.45 22.82/42.99 8.22/15.49 75.89/79.26 32.22/44.59 45.23/57.07
LDAbig3 20.10/27.86 13.03/19.23 15.68/27.03 14.23/22.47 22.03/19.32 51.19/70.69 30.80/30.34 4.97/9.27 22.59/42.99 8.14/15.26 76.56/77.13 32.55/46.32 45.68/57.88

QDAsmall3 26.25/25.54 28.75/36.67 34.19/56.76 31.23/44.55 12.31/8.39 42.92/56.90 19.13/14.62 9.09/7.12 61.55/76.64 15.84/13.04 67.62/64.17 39.89/41.13 50.18/50.13
QDAbig3 26.34/25.70 28.93/38.60 34.05/56.76 31.28/45.95 12.37/8.00 43.31/56.90 19.24/14.03 9.10/7.35 61.36/75.70 15.85/13.40 67.83/64.36 40.18/41.56 50.47/50.51

LinearSVM3 35.70/41.67 60.47/88.89 28.11/43.24 38.38/58.18 27.91/24.40 72.45/87.93 40.29/38.21 10.08/10.80 64.61/85.05 17.44/19.16 84.86/88.77 46.69/58.87 60.24/70.80
LinearSGD-SVM3 34.80/40.62 59.05/88.24 26.89/40.54 36.95/55.56 27.24/23.26 71.36/87.93 39.43/36.78 9.84/10.69 62.68/83.18 17.01/18.95 83.24/87.30 45.92/58.87 59.19/70.32

RBF-SVM3 40.27/44.52 67.90/94.74 29.73/45.95 41.35/61.88 28.96/25.00 66.69/82.76 40.38/38.40 14.61/12.99 77.41/86.92 24.59/22.61 87.34/95.40 50.54/59.31 64.03/73.14
RandomForest3 28.69/30.47 71.17/85.71 26.35/43.24 38.46/57.49 12.24/11.33 23.45/41.38 16.09/17.79 11.53/8.90 63.48/69.16 19.52/15.77 83.14/92.00 42.35/37.66 56.11/53.45

KNN3 36.34/39.08 71.58/79.17 28.24/48.65 40.50/60.26 22.27/18.01 57.27/84.48 32.07/29.69 13.28/11.70 80.71/91.59 22.81/20.75 89.50/95.83 43.84/46.75 58.85/62.85
MLP3 34.42/38.15 72.52/86.36 30.68/48.65 43.11/62.24 18.16/17.35 46.00/68.97 26.04/27.73 12.16/11.67 76.33/88.79 20.98/20.62 86.57/93.08 45.45/43.72 59.61/59.50

LDAsmall5 13.96/19.80 8.30/18.75 7.43/13.51 7.84/15.71 16.28/11.00 42.99/53.45 23.62/18.25 3.56/8.00 16.89/38.32 5.89/13.24 70.35/69.74 23.17/28.57 34.86/40.54
LDAbig5 14.27/21.16 8.07/20.69 8.24/16.22 8.16/18.18 15.35/11.29 43.56/58.62 22.70/18.93 3.63/8.21 19.11/41.12 6.10/13.68 70.66/71.43 24.84/30.30 36.76/42.55

QDAsmall5 21.13/24.50 15.09/31.91 22.70/40.54 18.13/35.71 11.93/12.20 41.26/56.90 18.51/20.09 8.61/8.03 55.91/61.68 14.92/14.21 54.26/51.66 31.42/26.84 39.79/35.33
QDAbig5 20.98/24.08 14.91/32.61 22.30/40.54 17.87/36.14 12.00/11.31 41.38/56.90 18.61/18.87 8.43/7.86 55.53/60.75 14.64/13.91 54.05/50.64 31.55/27.27 39.84/35.45

LinearSVM5 20.66/21.00 44.49/62.50 13.65/18.92 20.89/29.05 9.13/8.78 28.89/44.83 13.87/14.68 8.07/6.90 59.76/64.49 14.22/12.47 73.87/79.00 31.51/23.81 44.18/36.59
LinearSGD-SVM5 22.11/32.19 39.68/75.00 13.51/21.62 20.16/33.57 18.33/25.53 59.19/79.31 28.00/38.63 5.15/8.41 40.80/61.68 9.15/14.80 65.59/74.03 35.76/45.02 46.29/55.99

RBF-SVM5 32.66/40.59 59.92/94.44 20.41/40.54 30.44/56.73 22.38/23.33 63.42/74.14 33.08/35.50 11.62/13.85 73.22/84.11 20.05/23.78 80.46/83.59 43.32/42.86 56.32/56.66
RandomForest5 22.90/25.74 56.22/76.47 17.70/24.32 26.93/36.91 8.93/10.90 20.82/32.76 12.50/16.35 9.43/9.77 59.11/65.42 16.27/17.00 75.00/85.26 37.75/28.57 50.22/42.80

MLP5 26.55/28.64 57.49/93.33 19.19/29.73 28.77/45.10 13.53/10.75 40.42/58.62 20.28/18.17 9.79/10.53 66.87/78.50 17.08/18.56 77.13/81.90 36.84/30.30 49.86/44.24
LDAsmall9 8.11/9.40 8.30/10.53 2.57/2.70 3.92/4.30 10.06/10.24 24.86/37.93 14.33/16.13 2.45/4.62 10.68/28.04 3.99/7.94 56.15/50.43 11.68/8.23 19.34/14.14
LDAbig9 8.23/12.28 5.84/15.00 2.43/5.41 3.44/7.95 9.48/11.46 31.97/51.72 14.62/18.77 2.22/4.04 14.26/32.71 3.85/7.20 58.98/57.55 14.89/12.99 23.78/21.19

QDAsmall9 13.35/16.14 5.95/11.11 9.86/16.22 7.43/13.19 8.98/13.25 31.07/41.38 13.94/20.08 6.43/7.94 44.14/45.79 11.23/13.54 40.63/32.26 20.58/13.42 27.32/18.95
QDAbig9 13.55/15.94 6.10/10.81 10.14/16.22 7.62/12.97 9.16/12.99 31.84/41.38 14.23/19.77 6.43/7.58 44.24/46.73 11.22/13.05 41.13/31.82 20.90/13.85 27.71/19.30

LinearSVM9 14.07/17.01 32.47/40.00 3.38/5.41 6.12/9.52 9.79/12.00 37.86/43.10 15.56/18.77 6.13/9.52 56.09/62.62 11.05/16.53 67.43/64.29 25.76/18.18 37.28/28.35
LinearSGD-SVM9 18.16/22.60 37.06/33.33 7.16/8.11 12.00/13.04 13.85/20.48 62.08/72.41 22.65/31.93 5.50/9.94 58.21/69.16 10.05/17.38 71.45/78.38 27.57/23.38 39.79/36.01

RBF-SVM9 20.09/23.62 35.94/50.00 6.22/5.41 10.60/9.76 16.15/24.10 55.22/63.79 24.99/34.98 8.17/14.36 62.07/65.42 14.44/23.55 65.11/72.62 31.64/26.41 42.58/38.73
RandomForest9 15.35/18.46 33.74/54.55 7.43/13.51 12.18/21.66 5.92/8.91 17.10/24.14 8.80/13.02 7.48/7.95 53.04/46.73 13.10/13.59 59.12/63.38 29.70/19.91 39.54/30.31

MLP9 18.69/21.98 37.72/33.33 8.51/8.11 13.89/13.04 12.08/18.09 58.04/63.79 20.00/28.18 6.27/11.17 66.92/71.03 11.47/19.30 69.22/78.75 26.46/20.78 38.28/32.88
LDAsmall-GLCM3 30.31/33.16 31.13/37.04 26.76/43.24 28.78/39.90 24.93/19.35 59.06/81.03 35.06/31.25 10.80/10.72 49.04/71.96 17.70/18.66 75.47/71.88 34.43/40.69 47.29/51.96
QDAsmall-GLCM3 25.42/24.39 10.14/11.68 36.62/56.76 15.88/19.37 19.56/15.42 42.92/63.79 26.87/24.83 11.61/8.24 55.67/69.16 19.22/14.73 61.05/53.05 43.66/47.19 50.91/49.95
LinearSVM-GLCM3 37.37/39.75 59.56/81.25 36.22/62.16 45.04/70.44 26.19/19.73 68.74/82.76 37.93/31.86 12.76/10.92 73.98/90.65 21.77/19.50 75.66/71.05 40.14/47.62 52.45/57.02
RBF-SVM-GLCM3 29.81/29.73 8.95/10.50 35.27/64.86 14.28/18.08 32.35/24.85 61.76/72.41 42.46/37.00 15.53/12.43 61.88/78.50 24.83/21.46 62.95/55.66 44.96/53.25 52.45/54.43

RandomForest-GLCM3 30.95/33.45 58.21/85.19 30.68/51.35 40.18/64.08 13.87/14.22 31.13/51.72 19.19/22.30 12.49/9.23 66.21/76.64 21.02/16.48 80.53/90.44 43.64/37.66 56.60/53.18
KNN-GLCM3 36.97/40.93 43.64/59.09 35.68/64.86 39.26/61.84 27.27/23.33 65.21/74.14 38.46/35.50 14.31/12.65 70.16/88.79 23.77/22.14 70.57/71.37 41.25/48.48 52.07/57.74

CNN5 30.69/34.97 61.16/81.25 20.00/32.43 30.14/46.36 20.28/18.87 55.86/72.41 29.76/29.94 10.16/11.61 75.67/87.85 17.91/20.51 80.95/86.67 41.93/37.66 55.25/52.51
LDAsmall-GLCM5 32.00/32.90 47.21/60.00 21.76/29.73 29.79/39.76 23.76/18.50 48.30/65.52 31.85/28.85 14.25/13.04 53.88/71.03 22.54/22.04 69.17/65.31 38.01/35.93 49.06/46.36
QDAsmall-GLCM5 15.22/16.85 2.90/5.83 17.70/37.84 4.98/10.10 13.64/12.16 25.30/39.66 17.72/18.62 9.61/7.16 42.54/42.99 15.68/12.28 44.28/46.07 34.50/28.14 38.78/34.94
LinearSVM-GLCM5 30.47/34.08 34.81/61.54 23.38/37.84 27.97/46.86 21.84/20.61 56.63/72.41 31.53/32.08 12.61/11.67 71.67/80.37 21.44/20.38 67.36/68.39 34.47/32.47 45.61/44.03
RBF-SVM-GLCM5 22.70/26.41 3.84/7.87 22.03/40.54 6.54/13.18 30.02/29.63 45.04/58.62 36.02/39.36 16.84/13.86 55.29/62.62 25.82/22.70 50.30/52.15 38.63/34.20 43.70/41.31

RandomForest-GLCM5 24.91/27.41 47.94/81.25 20.41/29.73 28.63/43.53 10.57/11.92 25.69/39.66 14.98/18.33 10.79/9.04 60.24/61.68 18.29/15.77 72.87/82.80 36.98/30.74 49.06/44.83
CNN9 14.21/14.32 8.47/7.41 5.00/5.41 6.29/6.25 9.06/12.12 35.04/48.28 14.39/19.38 6.48/7.24 58.82/60.75 11.68/12.94 57.20/51.52 29.08/18.18 38.56/26.88

LDAsmall-GLCM9 23.78/22.62 33.01/22.73 9.32/13.51 14.54/16.95 16.76/16.83 25.88/32.76 20.34/22.24 15.84/12.62 46.02/46.73 23.56/19.87 57.96/46.21 38.01/28.14 45.91/34.98
QDAsmall-GLCM9 6.32/5.73 0.60/0.59 5.54/10.81 1.08/1.12 5.17/3.90 6.92/10.34 5.92/5.66 6.28/6.19 27.29/20.56 10.21/9.51 28.26/29.17 21.56/12.99 24.46/17.97
LinearSVM-GLCM9 18.95/22.51 21.01/42.86 10.14/18.92 13.67/26.25 12.80/16.30 32.29/36.21 18.34/22.48 8.93/9.87 58.64/56.07 15.49/16.78 53.96/61.25 24.00/16.45 33.23/25.93
RBF-SVM-GLCM9 16.01/19.00 3.80/11.11 9.46/18.92 5.42/14.00 16.51/14.44 23.57/25.86 19.42/18.54 12.10/13.61 45.08/43.93 19.08/20.78 42.37/40.00 26.64/17.32 32.71/24.17

RandomForest-GLCM9 13.39/14.81 16.24/30.00 7.70/13.51 10.45/18.63 4.57/5.38 13.00/17.24 6.76/8.20 7.39/7.14 47.25/45.79 12.79/12.36 54.75/52.00 26.35/16.88 35.58/25.49



76Table A.3: Deforestation detection results of classifiers trained and tested on the Landsat 8 OLI surface reflectance images provided by USGS. For
each column, the best score is highlighted in bold. The columns show scores in the format a/b, where ‘a’ is the area based score and ‘b’ is the alert
based score as defined in Section 5.2.7. The first column (Overall F1-Score) shows the geometric mean of the four tile’s deforestation F1-Score.
All values are percentages.

Metric Overall Cruzeiro do Sul Defo. Metrics Placido de Castro Defo. Metrics Porto Acre Defo. Metrics Seringueiras Defo. Metrics
F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score User’s Producer’s F1-Score

LDAsmall1 24.52/32.89 18.61/26.32 26.76/45.95 21.95/33.46 28.97/24.74 53.04/77.59 37.47/37.52 5.77/9.44 22.31/42.06 9.16/15.42 75.69/71.33 35.07/52.38 47.94/60.40
LDAbig1 24.43/32.37 18.28/26.32 26.35/45.95 21.58/33.46 29.17/22.84 52.40/75.86 37.48/35.11 5.80/9.35 22.16/42.06 9.20/15.29 76.25/71.73 34.93/53.25 47.91/61.12

QDAsmall1 35.01/35.29 77.75/76.92 38.24/54.05 51.27/63.49 26.24/22.16 24.34/44.83 25.26/29.66 10.60/7.02 63.81/71.96 18.18/12.79 89.11/92.70 49.66/49.35 63.78/64.41
QDAbig1 35.02/35.00 77.96/76.92 38.24/54.05 51.31/63.49 25.78/21.31 23.89/44.83 24.80/28.89 10.91/6.97 63.58/70.09 18.62/12.67 89.19/93.30 49.26/49.35 63.47/64.55

LinearSVM1 51.27/54.75 69.29/89.29 45.14/64.86 54.66/75.14 59.49/50.00 52.59/81.03 55.83/61.84 22.43/15.81 72.33/81.31 34.24/26.47 92.38/96.23 51.49/58.87 66.12/73.05
LinearSGD-SVM1 52.29/55.32 72.07/96.15 47.43/67.57 57.21/79.37 58.42/49.21 59.32/84.48 58.87/62.19 21.69/15.45 77.22/85.98 33.87/26.20 92.47/95.19 50.76/58.44 65.54/72.42

RBF-SVM1 51.18/55.28 72.77/85.71 41.89/62.16 53.17/72.06 55.52/44.80 51.51/82.76 53.44/58.13 24.45/18.20 71.72/80.37 36.47/29.68 92.02/97.69 51.69/61.04 66.19/75.13
RandomForest1 41.89/40.97 70.88/61.11 44.73/59.46 54.85/60.27 43.58/33.11 42.86/65.52 43.22/43.99 12.07/8.91 68.94/82.24 20.54/16.08 91.95/96.76 48.23/50.22 63.28/66.12

KNN1 49.64/53.11 83.47/92.00 40.27/56.76 54.33/70.20 55.19/43.64 43.95/72.41 48.93/54.46 23.54/17.47 70.16/82.24 35.26/28.82 92.42/95.63 49.86/58.01 64.77/72.21
MLP1 51.17/55.81 68.67/95.83 38.51/56.76 49.35/71.29 59.07/44.07 53.62/75.86 56.21/55.75 26.09/20.89 71.62/84.11 38.25/33.47 92.19/95.83 49.73/58.87 64.61/72.94

LDAsmall3 20.42/28.32 14.77/21.15 18.92/29.73 16.59/24.72 21.81/18.97 54.64/72.41 31.18/30.07 4.53/9.31 21.98/43.93 7.51/15.37 74.36/75.13 32.03/45.02 44.77/56.30
LDAbig3 19.72/27.15 13.40/18.87 17.16/27.03 15.05/22.22 21.18/19.25 53.49/72.41 30.34/30.42 4.45/8.63 21.98/42.06 7.40/14.33 75.22/75.69 31.86/44.59 44.76/56.12

QDAsmall3 26.36/26.60 29.72/42.59 34.46/59.46 31.91/49.63 13.89/9.25 40.55/51.72 20.69/15.70 8.07/6.85 61.65/75.70 14.28/12.57 69.17/66.47 40.62/41.56 51.18/51.14
QDAbig3 26.43/26.50 29.25/40.35 34.19/59.46 31.53/48.08 14.17/9.64 41.00/51.72 21.06/16.26 8.10/6.77 61.60/73.83 14.31/12.41 68.96/64.53 40.94/41.99 51.38/50.88

LinearSVM3 41.19/44.99 63.68/91.67 36.49/59.46 46.39/72.13 35.22/27.46 48.24/70.69 40.71/39.56 14.48/13.08 76.19/87.85 24.34/22.77 88.84/95.07 48.36/47.19 62.63/63.07
LinearSGD-SVM3 42.63/46.50 61.62/91.30 32.97/54.05 42.96/67.91 37.81/26.06 55.54/70.69 44.99/38.08 16.25/15.64 75.11/87.85 26.72/26.56 89.16/94.30 49.89/53.25 63.98/68.06

RBF-SVM3 44.29/47.62 75.98/100.00 34.19/56.76 47.16/72.41 38.20/26.28 53.81/68.97 44.68/38.05 17.26/16.18 76.71/86.92 28.18/27.28 87.75/92.94 51.38/54.11 64.82/68.40
RandomForest3 32.42/33.83 77.59/89.47 31.35/43.24 44.66/58.31 19.81/17.86 31.39/50.00 24.29/26.32 9.49/8.35 65.98/73.83 16.59/15.00 87.63/94.44 47.21/40.69 61.36/56.88

KNN3 40.86/43.96 76.09/100.00 30.54/54.05 43.59/70.18 31.94/22.96 51.31/77.59 39.37/35.43 16.50/13.48 76.19/86.92 27.13/23.34 89.11/95.65 45.09/48.48 59.88/64.35
MLP3 42.00/45.32 76.62/95.24 33.65/56.76 46.76/71.13 34.13/24.85 52.85/70.69 41.48/36.77 15.37/14.55 76.94/86.92 25.63/24.93 88.79/93.88 48.37/49.35 62.63/64.69

LDAsmall5 13.79/21.33 8.17/18.75 7.84/16.22 8.00/17.39 15.36/12.04 44.91/58.62 22.89/19.97 3.41/8.89 18.16/42.99 5.75/14.73 70.20/69.28 22.78/28.57 34.39/40.46
LDAbig5 13.84/21.96 7.71/20.00 8.24/16.22 7.97/17.91 14.64/13.00 46.19/67.24 22.23/21.79 3.30/8.37 19.39/42.06 5.64/13.96 71.37/77.70 24.67/29.44 36.67/42.70

QDAsmall5 20.99/25.35 15.34/30.43 22.70/43.24 18.31/35.73 12.69/14.39 38.05/51.72 19.03/22.51 7.90/8.03 55.25/60.75 13.83/14.19 55.11/52.05 31.72/27.71 40.27/36.16
QDAbig5 21.08/24.68 15.36/32.61 22.84/43.24 18.37/37.18 12.90/11.89 38.57/55.17 19.33/19.56 7.87/7.85 55.29/59.81 13.77/13.88 55.10/53.06 31.82/28.14 40.34/36.78

LinearSVM5 30.63/35.19 53.44/85.00 23.11/40.54 32.26/54.90 20.85/18.59 43.75/62.07 28.24/28.61 10.34/12.09 67.67/78.50 17.94/20.95 81.70/85.44 40.17/32.03 53.85/46.60
LinearSGD-SVM5 32.03/37.40 52.90/88.24 20.95/40.54 30.01/55.56 24.40/19.44 48.11/63.79 32.38/29.80 11.50/13.61 70.31/83.18 19.77/23.39 82.96/87.39 40.90/35.50 54.79/50.49

RBF-SVM5 35.52/42.33 60.90/100.00 23.78/40.54 34.21/57.69 27.50/24.41 53.17/67.24 36.25/35.82 13.36/16.05 70.49/85.05 22.46/27.00 80.24/82.61 44.40/44.16 57.16/57.55
RandomForest5 26.76/30.13 70.61/100.00 23.38/35.14 35.13/52.00 15.23/15.15 27.61/34.48 19.63/21.05 7.58/9.38 61.04/66.36 13.48/16.44 79.48/89.89 42.27/30.74 55.19/45.81

MLP5 30.71/35.12 63.24/89.47 21.62/37.84 32.23/53.18 20.46/19.21 48.75/68.97 28.83/30.04 10.57/11.30 69.08/83.18 18.34/19.89 79.61/84.68 38.85/33.33 52.22/47.84
LDAsmall9 7.96/8.81 7.69/17.65 2.70/2.70 4.00/4.69 9.79/9.09 27.74/44.83 14.47/15.12 2.22/3.54 11.39/28.04 3.72/6.29 57.95/50.00 11.10/7.79 18.63/13.48
LDAbig9 7.82/10.80 4.64/10.00 2.16/2.70 2.95/4.26 9.22/13.42 34.91/58.62 14.58/21.84 2.13/3.96 15.72/32.71 3.75/7.06 59.38/59.00 14.44/12.55 23.23/20.70

QDAsmall9 13.09/16.03 6.03/11.76 10.00/16.22 7.52/13.64 8.75/13.16 28.06/36.21 13.34/19.30 6.05/7.77 43.91/45.79 10.64/13.29 40.87/31.82 20.72/13.42 27.50/18.88
QDAbig9 13.24/16.28 6.08/12.12 10.14/16.22 7.60/13.87 8.91/12.50 28.76/36.21 13.61/18.58 6.08/8.06 44.33/46.73 10.69/13.76 41.06/30.34 21.04/14.72 27.83/19.82

LinearSVM9 16.12/15.97 29.82/36.36 6.89/8.11 11.20/13.26 9.93/11.70 32.93/37.93 15.26/17.89 5.96/5.36 54.96/49.53 10.76/9.67 63.19/64.56 25.92/18.18 36.76/28.37
LinearSGD-SVM9 18.52/20.25 39.47/50.00 8.11/8.11 13.45/13.95 11.96/18.31 35.36/43.10 17.88/25.70 6.90/8.77 58.07/57.01 12.33/15.20 66.31/68.42 28.34/19.91 39.71/30.85

RBF-SVM9 21.74/26.83 31.98/40.00 7.43/10.81 12.06/17.02 19.42/25.00 48.62/48.28 27.75/32.94 8.98/14.51 56.09/57.94 15.49/23.21 62.76/70.65 32.81/27.71 43.09/39.80
RandomForest9 17.79/17.75 50.37/71.43 9.19/8.11 15.54/14.56 9.33/9.26 22.68/29.31 13.22/14.07 6.00/8.06 53.65/48.60 10.79/13.82 65.85/73.85 34.31/22.94 45.11/35.01

MLP9 19.13/20.85 37.41/50.00 7.43/8.11 12.40/13.95 14.16/18.75 41.38/48.28 21.10/27.01 7.55/9.29 56.89/56.07 13.33/15.94 63.72/69.14 27.44/20.35 38.36/31.44
LDAsmall-GLCM3 30.36/31.69 29.49/29.41 25.95/43.24 27.61/35.01 23.02/17.74 64.13/77.59 33.87/28.88 12.25/11.14 54.54/78.50 20.01/19.52 74.32/71.36 32.69/39.83 45.41/51.12
QDAsmall-GLCM3 25.39/24.84 10.94/12.30 36.08/56.76 16.79/20.22 19.79/16.81 41.64/60.34 26.83/26.29 10.60/8.04 56.09/69.16 17.83/14.41 62.62/53.06 44.06/46.75 51.72/49.71
LinearSVM-GLCM3 41.14/45.43 59.87/76.67 38.51/59.46 46.88/66.98 32.13/25.97 64.45/81.03 42.88/39.33 15.25/15.24 74.31/88.79 25.30/26.02 78.53/80.49 43.90/50.65 56.32/62.17
RBF-SVM-GLCM3 34.87/36.27 16.61/21.37 35.81/64.86 22.70/32.15 34.40/28.77 60.73/74.14 43.92/41.45 17.02/12.79 63.39/82.24 26.83/22.14 69.63/66.67 45.85/52.38 55.29/58.67

RandomForest-GLCM3 32.73/37.03 60.38/85.19 34.19/59.46 43.66/70.03 19.51/18.69 30.69/50.00 23.85/27.21 11.14/9.83 64.85/75.70 19.02/17.40 81.17/91.37 45.08/41.13 57.97/56.72
KNN-GLCM3 38.47/43.29 44.78/65.00 36.49/67.57 40.21/66.26 30.72/26.52 62.01/75.86 41.09/39.30 15.30/13.72 69.18/85.05 25.06/23.62 71.70/72.25 41.96/47.19 52.94/57.09

CNN5 30.07/34.27 55.60/88.24 20.14/32.43 29.56/47.43 22.59/20.42 37.92/60.34 28.31/30.52 10.52/11.17 65.04/72.90 18.10/19.37 77.84/85.12 41.30/34.63 53.96/49.23
LDAsmall-GLCM5 29.88/30.29 44.26/40.74 17.70/27.03 25.29/32.50 22.86/17.48 55.54/72.41 32.39/28.16 13.21/11.43 58.45/72.90 21.54/19.77 69.21/69.06 33.55/35.06 45.19/46.51
QDAsmall-GLCM5 13.93/15.70 2.97/5.78 17.84/37.84 5.09/10.02 11.95/11.69 23.38/34.48 15.82/17.46 7.02/5.84 42.26/41.12 12.04/10.23 44.44/44.97 34.40/27.27 38.78/33.95
LinearSVM-GLCM5 31.42/35.55 33.59/59.26 23.65/37.84 27.76/46.19 25.18/22.45 53.62/70.69 34.27/34.08 12.97/13.30 69.93/77.57 21.88/22.70 68.18/69.59 35.69/32.90 46.86/44.68
RBF-SVM-GLCM5 26.71/29.72 7.49/12.80 22.16/40.54 11.20/19.46 31.71/28.44 42.92/60.34 36.47/38.66 17.85/14.80 56.66/63.55 27.15/24.01 56.52/59.88 38.69/33.77 45.93/43.18

RandomForest-GLCM5 25.12/26.80 43.43/70.00 21.89/32.43 29.11/44.33 13.22/11.92 25.69/36.21 17.45/17.94 9.13/8.06 58.49/61.68 15.80/14.26 73.01/84.21 37.60/31.17 49.64/45.50
CNN9 17.11/18.93 36.64/50.00 6.49/10.81 11.02/17.78 11.00/12.15 26.20/37.93 15.50/18.40 7.09/6.96 53.08/51.40 12.51/12.26 65.36/69.51 28.96/20.78 40.13/31.99

LDAsmall-GLCM9 23.24/24.32 18.47/25.00 7.84/16.22 11.01/19.67 22.79/20.99 27.23/29.31 24.81/24.46 15.53/12.05 44.71/45.79 23.05/19.08 59.54/51.30 37.93/30.30 46.34/38.10
QDAsmall-GLCM9 5.39/5.48 0.50/0.53 5.54/10.81 0.91/1.02 3.90/3.70 6.66/8.62 4.92/5.18 4.43/6.13 27.29/20.56 7.62/9.45 28.32/29.47 21.71/12.99 24.58/18.03
LinearSVM-GLCM9 18.63/22.06 19.48/37.50 10.14/18.92 13.33/25.15 13.20/16.49 29.92/36.21 18.31/22.66 8.45/9.54 56.94/53.27 14.71/16.19 53.61/58.23 24.41/16.45 33.55/25.65
RBF-SVM-GLCM9 16.09/18.72 3.86/11.11 9.73/18.92 5.53/14.00 16.76/13.10 22.17/24.14 19.08/16.98 12.26/14.20 44.66/43.93 19.24/21.46 42.69/39.45 26.89/17.32 33.00/24.07

RandomForest-GLCM9 14.02/16.43 24.08/43.75 7.97/13.51 11.98/20.65 5.31/9.76 13.77/20.69 7.66/13.26 6.55/6.20 48.24/44.86 11.53/10.89 57.70/51.32 26.68/16.02 36.48/24.41
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APPENDIX B — TESTING ALTERNATIVES TO MEDIAN NORMALIZATION

In this appendix, we show results for two alternative normalization to the subtrac-

tion by the median used through out this thesis. The first one is the subtraction by the

mean forest vector (see Table B.1), and the second one is the subtraction by the mean

vector followed by the division by the forest variance vector (see Table B.2). We have run

the experiments for these alternatives normalization just for a few selected classifiers due

to lack of time. By comparing the best methods from each of these two tables with the best

one from Table 5.2 (which shows results for the median normalization) we can see that

the best method using median normalization obtains better results than the alternatives.

Table B.1: Overall test tiles deforestation detection F1-Scores (defined in Section 5.2.7)
for classifiers trained and tested on TOA reflectance images that were normalized using
the ground truth forest mean vector. Each table cell shows F1-Scores in the format a/b,
where ‘a’ is the area based score and ‘b’ is the alert based score as defined in Section 5.2.7.
The best area and alert F1-Scores are highlighted in bold.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 27.42%/30.88% 23.01%/28.79% 16.3%/21.5% 9.2%/12.04%
QDAsmall 47.6%/49.91% 31.65%/30.39% 23.53%/26.78% 13.86%/16.75%
LinearSVM 65.65%/72.84% 54.64%/62.21% 41.57%/46.78% 27.32%/30.36%
RBF-SVM 55.3%/60.93% 44.06%/50.81% 34.95%/41.71% 24.82%/27.4%

Table B.2: Overall test tiles deforestation detection F1-Scores (defined in Section 5.2.7)
for classifiers trained and tested on TOA reflectance images that were normalized by
subtracting the ground truth forest mean vector and dividing by the forest pixel intensities
variances. Each table cell shows F1-Scores in the format a/b, where ‘a’ is the area based
score and ‘b’ is the alert based score as defined in Section 5.2.7. The best area and alert
F1-Scores are highlighted in bold.

Method/Context Size 1×1 3×3 5×5 9×9
LDAsmall 17.56%/23.85% 13.95%/22.69% 10.87%/14.74% 7.95%/11.25%
QDAsmall 57.28%/58.59% 39.99%/42.94% 28.49%/36.6% 17.15%/20.31%
LinearSVM 65.08%/71.18% 56.12%/64.69% 43.26%/50.99% 27.44%/28.96%
RBF-SVM 60.81%/68.47% 49.79%/58.34% 39.13%/43.43% 27.28%/25.83%
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