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"Science is a way of life. Science is a perspective. Science is the process
that takes us from confusion to understanding in a manner that’s precise,

predictive and reliable – a transformation, for those lucky enough to
experience it, that is empowering and emotional."

— BRIAN GREENE
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ABSTRACT

Performance interference has been a well-known problem in datacenter networks (DCNs) and
one that remains a constant topic of discussion in the literature. Several measurement studies
concluded that throughput achieved by virtual machines (VMs) in current datacenters can vary
by a factor of five or more, leading to poor and unpredictable overall application performance.
Recent efforts have proposed techniques that present some shortcomings, such as underutiliza-
tion of resources, significant management overhead or negligence of non-network resources. In
this thesis, we introduce three proposals that address performance interference in DCNs: IoN-
Cloud, Predictor and Packer. IoNCloud leverages the key observation that temporal bandwidth
demands of cloud applications do not peak at exactly the same time. Therefore, it seeks to
provide predictable and guaranteed performance while minimizing network underutilization by
(a) grouping applications in virtual networks (VNs) according to their temporal network usage
and need of isolation; and (b) allocating these VNs on the cloud substrate. Despite achieving
its objective, IoNCloud does not provide work-conserving sharing among VNs, which limits
utilization of idle resources. Predictor, an evolution over IoNCloud, dynamically programs the
network in Software-Defined Networking (SDN)-based DCNs and uses two novel algorithms to
provide network guarantees with work-conserving sharing. Furthermore, Predictor is designed
with scalability in mind, taking into consideration the number of entries required in flow tables
and flow setup time in DCNs with high turnover and millions of active flows. IoNCloud and Pre-
dictor neglect resources other than the network at allocation time. This leads to fragmentation
of non-network resources and, consequently, results in less applications being allocated in the
infrastructure. Packer, in contrast, aims at providing predictable and guaranteed network per-
formance while minimizing overall multi-resource fragmentation. Extending the observation
presented for IoNCloud, the key insight for Packer is that applications have complementary
demands across time for multiple resources. To enable multi-resource allocation, we devise
(i) a new abstraction for specifying temporal application requirements (called Time-Interleaved
Multi-Resource Abstraction – TI-MRA); and (ii) a new allocation strategy. We evaluated IoN-
Cloud, Predictor and Packer, showing their benefits and overheads. In particular, all of them
provide predictable and guaranteed network performance; Predictor reduces flow table size in
switches and flow setup time; and Packer minimizes multi-resource fragmentation.

Keywords: Datacenter networks. Performance interference. Bandwidth guarantees. Work-
conserving sharing.



Atingindo Desempenho Previsível, Garantido e com Conservação de Trabalho em Redes
de Datacenter

RESUMO

A interferência de desempenho é um desafio bem conhecido em redes de datacenter (DCNs),
permanecendo um tema constante de discussão na literatura. Diversos estudos concluíram que a
largura de banda disponível para o envio e recebimento de dados entre máquinas virtuais (VMs)
pode variar por um fator superior a cinco, resultando em desempenho baixo e imprevisível para
as aplicações. Trabalhos na literatura têm proposto técnicas que resultam em subutilização de
recursos, introduzem sobrecarga de gerenciamento ou consideram somente recursos de rede.
Nesta tese, são apresentadas três propostas para lidar com a interferência de desempenho em
DCNs: IoNCloud, Predictor e Packer. O IoNCloud está baseado na observação que diferentes
aplicações não possuem pico de damanda de banda ao mesmo tempo. Portanto, ele busca pro-
ver desempenho previsível e garantido enquanto minimiza a subutilização dos recursos de rede.
Isso é alcançado por meio (a) do agrupamento de aplicações (de acordo com os seus requisitos
temporais de banda) em redes virtuais (VNs); e (b) da alocação dessas VNs no substrato físico.
Apesar de alcançar os seus objetivos, ele não provê conservação de trabalho entre VNs, o que
limita a utilização de recursos ociosos. Nesse contexto, o Predictor, uma evolução do IoNCloud,
programa dinamicamente a rede em DCNs baseadas em redes definidas por software (SDN) e
utiliza dois novos algoritmos para prover garantias de desempenho de rede com conservação
de trabalho. Além disso, ele foi projetado para ser escalável, considerando o número de re-
gras em tabelas de fluxo e o tempo de instalação das regras para um novo fluxo em DCNs com
milhões de fluxos ativos. Apesar dos benefícios, o IoNCloud e o Predictor consideram apenas
os recursos de rede no processo de alocação de aplicações na infraestrutura física. Isso leva à
fragmentação de outros tipos de recursos e, consequentemente, resulta em um menor número
de aplicações sendo alocadas. O Packer, em contraste, busca prover desempenho de rede pre-
visível e garantido e minimizar a fragmentação de diferentes tipos de recursos. Estendendo a
observação feita ao IoNCloud, a observação-chave é que as aplicações têm demandas comple-
mentares ao longo do tempo para múltiplos recursos. Desse modo, o Packer utiliza (i) uma nova
abstração para especificar os requisitos temporais das aplicações, denominada TI-MRA (Time-
Interleaved Multi-Resource Abstraction); e (ii) uma nova estratégia de alocação de recursos.
As avaliações realizadas mostram os benefícios e as sobrecargas do IoNCloud, do Predictor e
do Packer. Em particular, os três esquemas proveem desempenho de rede previsível e garantido;
o Predictor reduz o número de regras OpenFlow em switches e o tempo de instalação dessas
regras para novos fluxos; e o Packer minimiza a fragmentação de múltiplos tipos de recursos.
Palavras-chave: Redes de datacenter. Interferência de desempenho. Garantias de largura de
banda. Compartilhamento com conservação de trabalho.
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1 INTRODUCTION

Cloud computing has significantly changed the landscape of Information Technology (IT)
by offering on-demand provisioning of resources for tenants. In this model, providers increase
resource utilization, reduce operational costs and, thus, achieve economies of scale by imple-
menting cloud datacenters as highly multiplexed shared environments, with different applica-
tions coexisting on the same set of physical resources (ARMBRUST et al., 2009; ARMBRUST
et al., 2010; CRONKITE-RATCLIFF et al., 2016). Tenants, in turn, can scale in and out their
applications as they need, with a simple pay-as-you-go pricing model (i.e., users pay according
to the time and amount of computing resources consumed). This allows tenants to execute sev-
eral kinds of services in the cloud platform, both inward computation with bandwidth-intensive
requirements and user-facing applications with strict response times (XIE et al., 2012; JANG et
al., 2015).

1.1 Motivation

Providers, however, lack practical, efficient and reliable mechanisms to offer bandwidth
guarantees for applications (LEE et al., 2014; DOGAR et al., 2014; CHOWDHURY; ZHONG;
STOICA, 2014; NAGARAJ et al., 2016). The intra-cloud network is typically oversubscribed
and shared in a best-effort manner, relying on TCP to achieve high utilization and scalability.
TCP, nonetheless, does not provide robust isolation among flows1 in the network (GUO et al.,
2014; LI; DONG; GODFREY, 2015; CRONKITE-RATCLIFF et al., 2016; HE et al., 2016);
in fact, long-lived flows with a large number of packets are privileged over small ones (ABTS;
FELDERMAN, 2012), a problem called performance interference (SHIEH et al., 2011; GROSV-
ENOR et al., 2015; BALLANI et al., 2013).

Recent studies (GROSVENOR et al., 2015; JUDD, 2015; SCHAD; DITTRICH; QUIANÉ-
RUIZ, 2010; WANG; NG, 2010; BALLANI et al., 2011; JANG et al., 2015; SHEA et al.,
2014) concluded that, due to performance interference, the network throughput achieved by
virtual machines (VMs) can vary by a factor of five or more, resulting in poor and unpredictable
network performance (BALLANI et al., 2013). More specifically, when available bandwidth for
an application goes below a certain threshold, the total application execution time is elongated
(i.e., overall performance is reduced) (XIE et al., 2012). This behavior happens because of
three main reasons: (i) applications have mixed communication and computation (CHEN et al.,
2014); (ii) applications tend to generate traffic in bursts (JEYAKUMAR et al., 2013); and (iii)
the computation often depends on the data received from the network (if communication speed
is reduced due to the lack of available bandwidth, the subsequent computation is delayed) (GUO
et al., 2013b).

The lack of network guarantees directly impacts both tenants and providers. Tenants do

1Flows are characterized by sequences of packets from source to destination hosts.
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not receive the allocation of network resources for their requests (which may hinder both
throughput-intensive and latency-sensitive applications) and, in some occasions, may only de-
ploy specific enterprise applications in the cloud (POPA et al., 2013). Moreover, costs are
unpredictable due to high network variability (applications may take longer to execute (XIE
et al., 2012)). Providers, in turn, have the throughput of their datacenters reduced (because of
performance interference) (JUDD, 2015; HE et al., 2016), which may hurt revenue (BALLANI
et al., 2011).

Related work has proposed techniques to cope with performance interference. Approaches
can be divided according to the kind of guarantees they offer, either deterministic (e.g., Silo (JANG
et al., 2015) and Hadrian (BALLANI et al., 2013)) or non-deterministic (e.g., PIAS (BAI et al.,
2015), QJump (GROSVENOR et al., 2015) and NumFabric (NAGARAJ et al., 2016)). In spite
of improving network performance, they present important shortcomings, including (i) under-
utilization of resources (Silo and QJump); (ii) significant management overhead to dynamically
perform rate calculation and enforce such rate for each flow (Hadrian and NumFabric), as the
network can have millions of flows per second (BENSON; AKELLA; MALTZ, 2010); and (iii)
starvation of large flows (PIAS). Moreover, none of these proposals optimize the allocation
of resources other than the network, which may result in fragmentation of computing resources
(e.g., CPU, memory and disk I/O). Therefore, we aim at proposing schemes without these short-
comings, even if it means introducing some complexity (such as requiring that tenants perform
a fine-grained specification of their applications).

1.2 Hypothesis and Research Questions

To improve the state-of-the-art in the context of network performance in datacenters, partic-
ularly in terms of providing minimum bandwidth guarantees for tenants and their applications,
this thesis presents the following hypothesis:

Hypothesis: a datacenter allocation strategy that considers multiple types of resources
(CPU, memory, disk I/O and, particularly, the entire – traditional or SDN-based – network)
can scalably provide predictable and guaranteed network performance for cloud applications,
without hurting multi-resource utilization and provider revenue.

In order to guide the investigations conducted in this thesis, the following research questions
(RQ) associated with the hypothesis are defined and presented:

RQ1: How can a distributed resource such as the network be efficiently managed, given the
large scale and high dynamicity of cloud platforms?

RQ2: How can bandwidth be reserved for applications without hurting network utilization?

RQ3: How can SDN-based DCNs scalably provide predictable and guaranteed performance?

RQ4: How to enable the detailed specification of temporal requirements of multiple resources
for applications, in order to help achieving guaranteed network performance without hurt-
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ing utilization of other types of resources?

RQ5: While providing predictable and guaranteed network performance, can multi-resource
utilization in an environment as dynamic as the cloud (i.e., with high rate of application
arrival and departure) be maximized (i.e., minimizing multi-resource fragmentation)?

The proposed research questions are intentionally broad and could lead to several investi-
gations and outcomes. At the end of this study, at least one possible answer for each question
is provided. Note that the answers in this thesis are supported by a substantial amount of re-
sults and analysis. However, this does not mean that different approaches could not accomplish
similar results.

1.3 Proposals and Contributions

During the PhD, we proposed three approaches to address the challenge of performance
interference in DCNs: IoNCloud, Predictor and Packer. For IoNCloud, we leverage the key
observation that temporal bandwidth demands of cloud applications do not peak at exactly the
same time (WANG et al., 2012; CHEN; SHEN, 2014) and propose a resource allocation strat-
egy for reserving and isolating network resources in datacenters. It aims at minimizing resource
underutilization while providing an efficient way to predictably share bandwidth among appli-
cations, with low management overhead. To show the benefits of the strategy, we developed
IoNCloud (Isolation of Networks in the Cloud), a scheme for Infrastructure-as-a-Service (IaaS)
datacenters that implements the proposed allocation strategy. IoNCloud employs the abstraction
of attraction/repulsion among tenant applications2 according to their temporal network usage
and need of isolation, and groups them into virtual networks (VNs) with bandwidth guarantees.
In doing so, we seek to explore the trade-off between high resource utilization (a common goal
for providers to reduce operational costs) and strict network guarantees (desired by tenants).

Despite achieving predictable and guaranteed network performance, IoNCloud does not
provide work-conserving sharing among VNs, which keeps reserved resources idle while some
other applications could benefit by using them. Therefore, we developed Predictor, an evolution
over IoNCloud, to provide network guarantees with work-conserving sharing.

Predictor dynamically programs and configures the network in Software-Defined Network-
ing (SDN)-based DCNs. In this context, Predictor is designed with scalability of SDN-based
DCNs in mind, taking into consideration the number of entries required in flow tables and flow
setup time in DCNs with high turnover and millions of active flows. To achieve network guar-
antees and scalability in both full-bisection and oversubscribed SDN-based DCNs, it relies on
two key observations: (i) providers do not need to control each flow individually, since they
charge tenants based on the amount of resources consumed by applications; and (ii) congestion
control in the network is expected to be proportional to the tenant’s payment (BALLANI et al.,

2An application is represented by a set of VMs that consume computing and network resources (see Chap-
ter 3.1.2 for more details).
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2013; JANG et al., 2015).

With these insights, Predictor deals with performance interference and scalability of SDN
in DCNs as follows. Performance interference is addressed by employing two SDN-based
algorithms to dynamically program the network, improving resource sharing. By doing so,
both tenants and providers have benefits. Tenants achieve predictable network performance by
receiving minimum bandwidth guarantees for their applications. Providers, in turn, maintain
high network utilization, essential to achieve economies of scale.

Scalability is improved in two ways. First, as we show through measurements (Section 2.3.2),
reducing flow table size also decreases the time taken to install rules in flow tables (stored in
Ternary Content-Addressable Memory – TCAM) of SDN-enabled switches3. In the proposed
approach, flow table size is minimized by managing flows at application-level and by using
wildcards (when possible). This setting allows providers to control traffic and gather statistics
at application-level for each link and device in the network.

Second, we propose to proactively install rules for intra-application communication, guar-
anteeing bandwidth between VMs of the same application. By installing rules at application
allocation time, flow setup time is reduced. Inter-application rules, in turn, may be either proac-
tively installed in SDN-enabled switches (if tenants know other applications that their appli-
cations will communicate with (GROSVENOR et al., 2015) or if the provider employs some
predictive technique (XIE et al., 2012; LACURTS et al., 2013)) or reactively installed according
to demands. Proactively installing rules has both benefits and drawbacks: while flow setup time
is eliminated, some flow table entries may take longer to expire (they might be removed only
when their respective applications conclude and are deallocated). Our decision is motivated by
the fact that intra-application traffic volume is expected to be the highest type of traffic (BAL-
LANI et al., 2013).

In spite of achieving their goals, IoNCloud and Predictor (and most allocation strategies
in the literature (JANG et al., 2015; BALLANI et al., 2013)) neglect resources other than the
network at allocation time; as a matter of fact, CPU and memory are typically allocated ac-
cording to slots (GHODSI et al., 2011). Slot-based allocation, unfortunately, often causes over-
allocation of resources, which leads to wastage (as applications do not use all of their allocated
resources) and fragmentation (GRANDL et al., 2014). In general, over-allocation of resources
for applications results in less applications being accepted in the infrastructure and in lower
datacenter utilization.

To address the aforementioned limitations, we leverage two observations: (i) extending
the insight presented for IoNCloud, applications have complementary demands across time for
multiple resources (GRANDL et al., 2014); and (ii) utilization of different resources peaks at
different times (CHEN; SHEN, 2014). Following these observations, we design and evaluate
Packer. Besides providing guaranteed network performance with work-conserving sharing (like

3We use the terms “SDN-enabled switches” and “forwarding devices” to refer to the same set of SDN-enabled
network devices, that is, data plane devices that forward packets based on a set of rules.
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Predictor), Packer aims at minimizing overall multi-resource fragmentation and, consequently,
at increasing datacenter utilization for multiple types of resources (network, CPU, memory and
disk I/O), without considering slots.

Packer is designed with four aspects in mind: application abstraction, multi-resource al-
location, network sharing and resource monitoring. First, Packer utilizes a novel abstraction
for applications, called Time-Interleaved Multi-Resource Abstraction (TI-MRA). Unlike previ-
ous abstractions (BALLANI et al., 2011; LEE et al., 2014; XIE et al., 2012; BALLANI et al.,
2013), TI-MRA imposes no predefined structure for applications and allows the specification
of requirements for multiple resources across time. Second, Packer employs a new alloca-
tion strategy that extends previous heuristics developed for multi-dimensional bin packing, in
order to reduce multi-resource fragmentation. Third, Packer leverages SDN/OpenFlow to dy-
namically configure and enforce bandwidth guarantees for applications throughout the entire
network (taking an approach similar to Predictor’s). Fourth, Packer employs a resource mon-
itoring mechanism to avoid resource wastage and to provide fast and up-to-date information
upon unexpected events (e.g., if an application gets delayed due to a resource being congested).

Class of applications to maximize the benefits of each proposal. IoNCloud, Predic-
tor and Packer were developed considering the most important classes of cloud applications
(throughput-intensive and latency-sensitive ones). All three schemes provide network perfor-
mance guarantees. Nonetheless, each scheme is better suited for certain types of applications,
as follows.

IoNCloud and Packer use temporal (or the peak, at the cost of some underutilization) de-
mands of network resources (IoNCloud) and multiple types of resources (Packer). Conse-
quently, like Proteus (XIE et al., 2012) and CloudMirror (LEE et al., 2014), they are better
suited for tenants that repeatedly run the same type of applications with similar input and data
sets. This is common in iterative data processing (e.g., PageRank (LANGVILLE; MEYER,
2011; PAGE et al., 1999), Hypertext-Induced Topic Search (KLEINBERG, 1999), recursive
relational queries (BANCILHON; RAMAKRISHNAN, 1986), social network analysis and net-
work traffic analysis), where much of the data stay unchanged from iteration to iteration (XIE
et al., 2012). In this case, applications could be profiled periodically or on each run4. Further-
more, other applications may also take advantage of Packer by specifying only peak demands
for multiple resources and, at runtime, employing its monitoring mechanism to avoid wasting
resources.

Predictor, in turn, does not require temporal resource requirements of applications; it only
needs the bandwidth guarantees required by each application. In case the bandwidth guarantees
of some applications are under- or over-provisioned, Predictor’s work-conserving rate enforce-
ment algorithm automatically adjusts the rate in order to avoid bandwidth wastage. Therefore,
Predictor is suited for most classes of cloud applications, including MapReduce, machine learn-

4We discuss how to profile temporal resource requirements for IoNCloud and Packer in Chapters 3 and 5,
respectively.
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ing (ZHOU et al., 2008) and general user-facing web applications with strict latency require-
ments.

Contributions. Overall, the major contributions of this thesis are:

‚ IoNCloud, a scheme for large-scale cloud datacenters. IoNCloud (i) groups applications
in virtual networks; (ii) maps them on the physical substrate; and (iii) provisions network
resources at each link the VN was allocated on according to peak aggregate demands of
applications in the same group that utilize the link (i.e., the bandwidth required at the
period of time when the sum of network demands of applications belonging to the same
group is the highest). Evaluation results show that IoNCloud (i) provides predictable
network performance with guaranteed bandwidth for tenants; and (ii) reduces network
underutilization, allocated bandwidth (which allows more applications to be admitted in
the cloud) and management overhead;

‚ Predictor, a scheme that leverages SDN and employs two novel algorithms to provide pre-
dictable network performance. Specifically, Predictor offers bandwidth guarantees with
work-conserving sharing for tenants and fine-grained network management for providers.
It also addresses the scalability challenges of SDN-based DCNs by controlling flows at
application-level and by proactively installing rules in forwarding devices. Results show
that Predictor (i) provides guaranteed network performance with work-conserving shar-
ing; (ii) significantly reduces the number of rules in flow tables; and (iii) requires small
controller load;

‚ Packer, a scheme that, in addition to providing predictable and guaranteed network per-
formance, minimizes multi-resource fragmentation. We achieve these goals by lever-
aging SDN and using novel algorithms to (i) allocate applications considering multiple
resources; and (ii) periodically set the allowed rate for each VM. We evaluate Packer
and show that it provides minimum bandwidth guarantees for applications and work-
conserving sharing for providers, and improves datacenter utilization and provider rev-
enue in comparison to related work, with the cost of taking more (yet acceptable) time to
allocate applications.

‚ A novel abstraction for specifying application requests in Packer, called Time-Interleaved
Muti-Resource Abstraction (TI-MRA). Unlike previous abstractions (BALLANI et al.,
2011; XIE et al., 2012; BALLANI et al., 2013; LEE et al., 2014), TI-MRA allows the
specification of temporal demands for multiple resources without a predefined structure
for applications.

1.4 Organization

This thesis is outlined as follows. Chapter 2 defines basic concepts used throughout the
thesis and examines datacenter networks (including topology, type of traffic and variable per-
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formance) and software-defined networking (benefits and scalability challenges). Chapters 3, 4
and 5 introduce, respectively, IoNCloud, Predictor and Packer, with a thorough evaluation and
discussion of their generality and limitations. Finally, Chapter 6 discusses related work and
Chapter 7 presents concluding remarks and perspectives for future work.
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2 BACKGROUND

In this chapter, we present the context in which our proposals (IoNCloud, Predictor and
Packer) were built. In particular, we first define basic concepts used throughout the thesis
(Section 2.1). Then, we take a look at datacenter networks (Section 2.2), highlighting the main
aspects related to our proposals. Finally, we discuss the benefits and challenges (including
results from experiments) of employing software-defined networking in DCNs for Predictor
and Packer (Section 2.3).

2.1 Basic Concepts

In this section, we present the definition of basic concepts used throughout the thesis, as
follows.

Application. An application is represented by a set of distributed computing entities (tasks
or VMs) that communicate among themselves and/or with users through the network. These
computing entities receive input data (from users, cloud services or other applications), perform
some computation on the received data and produce a result, which is sent to users or to some
other application/service. Furthermore, each application is executed by a tenant.

Management overhead in the network. Network management refers to three types of
operations: (i) communication between data and control planes in SDN; (ii) routing and for-
warding packets in both traditional and software-defined networks; and (iii) rate-limiting traffic
in the intra-cloud network. Communication between the data and control planes in SDN is nec-
essary for several types of operations, such as updating state in forwarding devices and getting
information from the network. Routing refers to determining the set of paths used by each flow
in the network, while forwarding represents the operation of sending packets along a specific
path. Finally, rate-limiting refers to determining the share of bandwidth used by each flow of
each tenant application in comparison to all other flows using the same link, for each link in the
network. Consequently, management overhead happens when one or more of these operations
are costly, both in terms of resource consumption (e.g., CPU, memory and bandwidth) or time
taken to be peformed.

Quality of Service (QoS). It refers to the capability of a network to provide minimum
service guarantees to (selected) tenants, according to their requests. In the context of this thesis,
it refers to tenants getting minimum network performance guarantees for applications.

2.2 Datacenter Networks

Datacenters are the core of cloud computing, and their network is an essential component
to allow distributed applications to run efficiently and predictably (BALLANI et al., 2011).
However, not all datacenters provide cloud computing. In fact, there are two main types of
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datacenters: production and cloud. Production datacenters are often shared by one tenant or
among multiple (possibly competing) groups, services and applications, but with low rate of ar-
rival and departure. They run data-analytics jobs with relatively little variation in demands, and
their size varies from hundreds of servers to tens of thousands of servers. Cloud datacenters, in
contrast, have high rate of tenant arrival and departure (churn) (SHIEH et al., 2011; ZHENG et
al., 2015; DELIMITROU; SANCHEZ; KOZYRAKIS, 2015), run both user-facing applications
and inward computation, require elasticity (since application demands are highly variable) and
consist of tens to hundreds of thousands of physical servers (ABTS; FELDERMAN, 2012).
Moreover, clouds can be composed of several datacenters spread around the world (SUNG et
al., 2016). As an example, Google, Microsoft and Amazon (three of the biggest players in the
market) have datacenters in four continents; and each company has over 900,000 servers (AN-
THONY, 2013).

Providers typically have three main goals when designing a DCN (GUO et al., 2008): scala-
bility, fault tolerance and agility. First, the infrastructure must scale to a large number of servers
(and preferably allow incremental expansion with commodity equipment and little effort). Sec-
ond, a DCN should be fault tolerant against failures of both computing and network resources.
Third, a DCN ideally needs to be agile enough to assign any VM (which is part of a service or
application) to any server (GREENBERG et al., 2009). As a matter of fact, DCNs should ensure
that computations are not bottlenecked on communication (SINGLA; GODFREY; KOLLA,
2014).

Currently, providers attempt to meet these goals by implementing the network as a multi-
rooted tree (JANG et al., 2015), using LAN technology for VM addressing and two main strate-
gies for routing: Equal-Cost MultiPath (ECMP) and Valiant Load Balancing (VLB) (MARCON
et al., 2015). We structure our discussion of DCNs in the following manner. First, we examine
the typical topology currently implemented by providers (Section 2.2.1). Then, we survey mea-
surement studies regarding the types of traffic in DCNs (Section 2.2.2). Finally, we look into
network performance variability (Section 2.2.3).

2.2.1 Topology

Figure 2.1 shows a canonical three-tiered multi-rooted tree-like topology, which is imple-
mented in current datacenters (BENSON; AKELLA; MALTZ, 2010; BALLANI et al., 2011;
AGACHE; DEACONESCU; RAICIU, 2015). The three tiers are: (i) the access (edge) layer,
composed of Top-of-Rack (ToR) switches that connect servers mounted on every rack; (ii)
the aggregation (distribution) layer, consisting of devices that interconnect ToR switches in
the access layer; and (iii) the core layer, formed by switches that interconnect switches in the
aggregation layer. Furthermore, every ToR switch may be connected to multiple aggregation
switches for redundancy (usually 1+1 redundancy) and every aggregation switch is connected
to multiple core switches. Typically, a three-tiered network is implemented in datacenters with
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more than 8,000 servers (AL-FARES; LOUKISSAS; VAHDAT, 2008). In smaller datacenters,
the core and aggregation layers are collapsed into one tier, resulting in a two-tiered datacenter
topology (flat layer 2 topology) (BENSON; AKELLA; MALTZ, 2010).

Figure 2.1 – A canonical three-tiered tree-like datacenter network topology.

Source: by author (2015).

This multi-tiered topology has a significant amount of oversubscription, where servers at-
tached to ToR switches have significantly more (possibly an order of magnitude) provisioned
bandwidth between one another than they do with hosts in other racks (ABTS; FELDERMAN,
2012). Providers employ this technique in order to reduce costs and improve resource utiliza-
tion, which are key properties to help them achieve economies of scale.

This topology, however, presents some drawbacks. First, the limited bisection bandwidth1

constrains server-to-server capacity, and resources eventually get fragmented (limiting agility)
(CURTIS; KESHAV; LOPEZ-ORTIZ, 2010; CURTIS et al., 2012). Second, multiple paths are
poorly exploited (for instance, only a single path is used within a layer-2 domain by spanning
tree protocol), which may potentially cause congestion on some links even though other paths
exist in the network and have available capacity. Third, the rigid structure hinders incremental
expansion (SINGLA et al., 2012). Fourth, the topology is inherently failure-prone due to the
use of many links, switches and servers (LIU; MUPPALA, 2013).

To improve bisection bandwidth, some proposals follow a Clos-based (switch-oriented) de-
sign. A Clos topology is built up from multiple layers of switches (DALLY; TOWLES, 2003).
Each switch in a layer is connected to all switches in the next layer, which provides extensive
path diversity. Two proposals follow a Clos design: VL2 (GREENBERG et al., 2009; GREEN-
BERG et al., 2011) and Fat-Tree (AL-FARES; LOUKISSAS; VAHDAT, 2008).

VL2 (GREENBERG et al., 2009; GREENBERG et al., 2011) is a Clos-based topology that

1The bisection bandwidth of the network is the worst-case segmentation (i.e., with minimum bandwidth) of the
network in two equally-sized partitions (FARRINGTON; RUBOW; VAHDAT, 2009).
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provides a larger number of paths between any two aggregation switches than the conventional
topology. This means that, for N intermediate switches, the failure of one of them reduces the
bisection bandwidth by only 1/N, which the authors call graceful degradation of bandwidth. An
example of VL2 is shown is Figure 2.2(a).

Fat-Tree (AL-FARES; LOUKISSAS; VAHDAT, 2008), in turn, is a specific type of Clos
topology (folded Clos topology). The topology, shown in Figure 2.2(b), is organized in a k-
ary tree-like structure. There are k pods, each one of them has two layers (aggregation and
access) of k/2 switches. Each k/2 switch from the access layer is connected to k/2 servers and
the remaining ports are connected to k/2 aggregation switches. Each of the (k/2)2 k-port core
switches has one port connected to each of k pods. More specifically, the i-th port of any core
switch is connected to pod i so that consecutive ports in the aggregation layer of each pod switch
are connected to core switches on k/2 strides. In general, a fat-tree built with k-port switches
supports k3/4 hosts.

Figure 2.2 – Clos-based topologies.

Layer 1

Layer 2

Layer 3

Servers

(a) VL2.

Core

Aggregation

Access (ToR)

Servers

Pod0 Pod1 Pod2 Pod3

(b) Fat-Tree.

Source: by author (2015).

There are also other DCN topologies in the literature, such as switch-oriented (OSA (CHEN
et al., 2012)), hybrid switch/server (DCell (GUO et al., 2008) and BCube (GUO et al., 2009)),
server-only (CamCube (ABU-LIBDEH et al., 2010)) and random graph (SINGLA; GODFREY;
KOLLA, 2014; SINGLA et al., 2012) topologies. We do not discuss these topologies because
we follow related work (XIE et al., 2012; JANG et al., 2015) and focus on the topology imple-
mented by most current datacenters (i.e., tree-like ones).

2.2.2 Traffic Properties

Traffic can be divided in two broad categories: north/south and east/west communication.
North/south traffic (also known as extra-cloud) corresponds to the communication between a
source and a destination host where one of the ends is located outside the cloud platform. In
contrast, east/west traffic (also known as intra-cloud) is the communication in which both ends
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are located inside the cloud. These types of traffic usually depend on the kind and mix of ap-
plications: user-facing applications (e.g., web services) typically exchange data with users and,
thus, generate north/south communication, while inward computation (such as MapReduce)
requires coordination among its VMs, generating east/west communication. Some studies (RE-
CIO, 2012) indicate that north/south and east/west traffic correspond to around 25% and 75%
of traffic volume, respectively. They also point out that both are increasing in absolute terms,
but east/west is growing on a larger scale (RECIO, 2012).

Traffic in the cloud network is characterized by flows; each flow is identified by sequences
of packets from a source to a destination node (i.e., a flow is defined by a set of packet header
fields, such as source and destination addresses and ports and transport protocol). Typically,
a bimodal flow classification scheme is employed, using elephant and mice classes. Elephant
flows are composed of a large number of packets injected in the network, are usually long-
lived and exhibit bursty behavior. In comparison, mice flows have a small number of packets
and are short-lived (ABTS; FELDERMAN, 2012). Several measurement studies (BENSON;
AKELLA; MALTZ, 2010; BODÍK et al., 2012; KANDULA et al., 2009; BENSON et al.,
2011b; MENG; PAPPAS; ZHANG, 2010; GROSVENOR et al., 2015; BALLANI et al., 2013;
LACURTS et al., 2013; JANG et al., 2015) were conducted to characterize network traffic and
its flows. We summarize their findings as follows:

‚ Traffic asymmetry. Requests from users to cloud services are abundant, but small in
most occasions. Cloud services, however, process these requests and typically send re-
sponses which are comparatively larger.

‚ Nature of traffic. Network traffic is highly volatile and bursty, with links running close
to their capacity at several times during a day. Traffic demands change quickly, with
some transient spikes and other longer ones (possibly requiring more than half the full-
duplex bisection bandwidth) (LIU; KIND; LIU, 2013). Moreover, traffic is unpredictable
at long time-scales (e.g., 100 seconds or more). However, it can be predictable on shorter
timescales (at 1 or 2 seconds). Despite the predictability over small timescales, it is diffi-
cult for traditional schemes (such as statistical multiplexing) to make a reliable estimate
of bandwidth demands for VMs (WANG; MENG; ZHANG, 2011).

‚ General traffic location and exchange. Most traffic generated by servers (on average
80%) stays within racks. Server pairs from the same rack and from different racks ex-
change data with a probability of only 11% and 0.5%, respectively. Probabilities for intra-
and extra-rack communication are as follows: servers either talk with fewer than 25% or
to almost all servers of the same rack; and servers communicate with less than 10% or do
not communicate with servers located outside its rack.

‚ Intra- and inter-application communication. Most volume of traffic (around 70-80%)
represents data exchange between VMs of the same application, with 18% of applica-
tions generating 99% of this traffic volume. In comparison, inter-application traffic vol-
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ume represents around 20-30% of data exchange. However, the communication matrix
between them is sparse; only 2% of application pairs exchange data, with the top 5%
of pairs accounting for 99% of inter-application traffic volume. Consequently, commu-
nicating applications form several highly-connected components, with few applications
connected to hundreds of other applications in star-like topologies.

‚ Flow size, duration and number. Mice (small) flows represent around 99% of the total
number of flows in the network. They usually have less than 10 kilobytes and last only
a few hundreds of milliseconds. Elephant (large) flows, in turn, represent only 1% of the
number of flows, but account for more than half of the total traffic volume. They may
have tens of megabytes and last for several seconds. With respect to flow duration, flows
of up to 10 seconds represent 80% of flows, while flows of 200 seconds are less than 0.1%
(and contribute to less than 20% of the total traffic volume). Further, flows of 25 seconds
or less account for more than 50% of bytes. Finally, it has been estimated that a typical
rack has around 10,000 active flows per second, which means that a network comprising
100,000 servers can have over 25,000,000 active flows.

‚ Flow arrival patterns. Arrival patterns can be characterized by heavy-tailed distributions
with a positive skew. They best fit a log-normal curve having ON and OFF periods (at
both 15 ms and 100 ms granularities). In particular, inter arrival times at both servers and
ToR switches have periodic modes spaced apart by approximately 15 ms, and the tail of
these distributions is long (servers may experience flows spaced apart by 10 seconds).

‚ Link utilization. Utilization is, on average, low in all layers but the core; in fact, in the
core, a subset of links (up to 25% of all core links) often experience high utilization. In
general, link utilization varies according to temporal patterns (time of day, day of week
and month of year), but variations can be an order of magnitude higher at core links
than at aggregation and access links. Due to these variations and the bursty nature of
traffic, highly utilized links can happen quite often; 86% and 15% of links may experience
congestion lasting at least 10 seconds and 100 seconds, respectively, while longer periods
of congestion tend to be localized to a small set of links.

‚ Hot-spots. They are usually located at core links and can appear quite frequently, but the
number of hot-spots never exceeds 25% of core links.

‚ Packet losses. Losses occur frequently even at underutilized links. Given the bursty
nature of traffic, an underutilized network (e.g., with mean load of 10%) can experience
lots of packet drops. Measurement studies found that packet losses occur usually at links
with low average utilization (but with traffic bursts that go beyond 100% of link capacity);
more specifically, such behavior happens at links of the aggregation layer and not at links
of the access and core layers. Ideally, topologies with full bisection bandwidth (such
as a Fat-Tree) should experience no loss, but the employed routing mechanisms (e.g.,
ECMP and VLB) cannot utilize the full capacity provided by the set of multiple paths
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and, consequently, there is some packet loss in such networks as well (BENSON et al.,
2011b).

2.2.3 Performance Variability

Currently, providers (for instance, Amazon EC2) offer VMs with guaranteed computing
resources (JANG et al., 2015). However, the network is shared in a best-effort manner (LEE
et al., 2014). Several recent measurement studies (GROSVENOR et al., 2015; JUDD, 2015;
SCHAD; DITTRICH; QUIANÉ-RUIZ, 2010; WANG; NG, 2010; BALLANI et al., 2011;
JANG et al., 2015; SHEA et al., 2014) concluded that, due to perfomance interference, the
network throughput achieved by VMs can vary by a factor of five or more. For instance, Grosv-
enor et al. (GROSVENOR et al., 2015) show that variability can worsen tail performance by
50ˆ for clock synchronization (PTPd) and 85ˆ for key-value stores (Memcached). As the com-
putation typically depends on the data received from the network (XIE et al., 2012; MITTAL
et al., 2015) and the network is agnostic to application-level requirements (CHOWDHURY;
ZHONG; STOICA, 2014), such variability often results in poor and unpredictable application
performance (SHEN; LI, 2014). In this situation, tenants end up spending more money.

Performance variability is usually associated with three factors: type of traffic, network
oversubscription and congestion control. First, the traffic in DCNs is remarkably different from
other networks (GUO et al., 2014). Furthermore, the heterogeneous set of applications gener-
ates flows that are sensitive to either latency, throughput or both (CURTIS; KIM; YALAGAN-
DULA, 2011; JANG et al., 2015); throughput-intensive flows are larger, creating contention
in some links, which results in packets from latency-sensitive flows being discarded (adding
significant latency) (GILL; JAIN; NAGAPPAN, 2011; ABTS; FELDERMAN, 2012).

Second, the conventional topology is typically oversubscribed, with more bandwidth avail-
able in servers than in the core (as discussed in Section 2.2.1). When periods of traffic bursts
happen, the lack of bandwidth up the tree (i.e., at aggregation and core layers) results in con-
tention and, thus, packet discards at congested links (leading to subsequent retransmissions).
Since the duration of the timeout period is typically one or two orders of magnitude more than
the round-trip time (RTT), latency is increased, becoming a significant source of performance
variability (ABTS; FELDERMAN, 2012).

Third, TCP congestion control (used in such networks) cannot ensure performance isolation
among applications; in fact, it only guarantees fairness among flows. Judd and Stanley (JUDD,
2015) show through measurements that many TCP design assumptions do not hold in datacenter
networks, leading to inadequate performance. While TCP can provide high utilization, it does
so very inefficiently. They conclude that the overall median throughput of the network is lower
and that there is a large variation among flow throughput. This scenario is further exacerbated
by UDP, which does not have any mechanism to control how distinct flows share the network.

Popa et al. (POPA et al., 2012) examines two main requirements for network sharing: (i)
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bandwidth guarantees for tenants and their applications; and (ii) work-conserving sharing to
achieve high network utilization for providers. In particular, these two requirements present a
trade-off: strict bandwidth guarantees may reduce utilization, since applications have variable
network demands over time (XIE et al., 2012); and a work-conserving approach means that, if
there is residual bandwidth and some applications have demands, they should utilize it (even if
the available bandwidth belongs to the guarantees of another application) (SHIEH et al., 2011).

2.3 Software-Defined Networking

In this section, we show a basic overview of SDN, as well as its benefits and challenges
(including results from experiments) in DCNs.

Basic overview of SDN operation. Software-Defined Networking (SDN) seeks to decouple
the control and data planes of the network, which enables the network to become programmable
and the physical infrastructure to be abstracted from applications and services (JARRAYA;
MADI; DEBBABI, 2014). Open Networking Foundation (ONF) presents a basic architec-
ture (OPEN NETWORKING FOUNDATION, 2013) for SDN (depicted in Figure 2.3). This
architecture is split in three main layers, as follows.

Infrastructure Layer. It is composed of the network’s physical resources (e.g., SDN-
enabled switches) that are part of the data plane. Forwarding devices are programmed by
controllers (located in the control layer) via the OpenFlow (MCKEOWN et al., 2008) proto-
col (the most accepted standard by both academia and industry) and forward packets based on
a set of rules;

Control Layer. This layer consists of one or more controllers providing a logically central-
ized control for the entire network. The control plane has a global view of the network, enabling
decisions to be performed based on the current state of the whole network;

Application Layer. This layer is composed of control applications running on top of a log-
ically centralized controller (control plane). These applications are responsible for the behavior
of the network (including routing and quality of service).

In this paradigm, network devices (infrastructure layer) forward packets based on a set of
rules dynamically generated by a controller (control layer) according to policies implemented
by control applications (application layer). The operation of installing a rule (to handle a spe-
cific flow) in a SDN-enabled switch is called flow setup and works as follows. When a packet
arrives, the forwarding device ASIC performs a lookup in the flow table(s). If there is a match,
the packet is forwarded according to the matching rule(s). Otherwise (in case it is the first packet
of a flow), the following steps are performed: (a) the ASIC sends the packet to the management
CPU; (b) an operating system interruption is raised; (c) the packet is sent to the OpenFlow agent
at the SDN-enabled switch; (d) the agent processes the packet and sends a request (containing
the whole packet or the first 128 bytes, depending on the configuration) to the controller; (e)
the controller receives and processes the request; (f ) the controller sends the appropriate (set
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Figure 2.3 – Basic SDN architecture defined by ONF.

Source: by author (2015).

of) rule(s) to handle the new flow; (g) the SDN-enabled switch receives the reply, installs the
rule(s) and forwards the packet (and subsequent packets of the same flow) accordingly.

In general, SDN brings both benefits (Section 2.3.1) and scalability challenges (Section 2.3.2)
for DCNs. After discussing them, we examine proposals that attempt to address these chal-
lenges (Section 2.3.3).

2.3.1 Benefits

SDN (with OpenFlow) offers several benefits for providers and tenants (KREUTZ et al.,
2014). First, it does not rely on complex distributed protocols to synchronize information among
forwarding devices and routers, thus becoming less error-prone. Second, this paradigm offers
programmability to dynamically configure and manage the entire network, enabling providers
to offer a base-level of network performance guarantees for tenants. Third, control logic central-
ization simplifies the development of complex networking functions, services and applications.
Fourth, control applications (running on top of the controller) can seamlessly react to changes
in order to maintain the correct operation of the network (following the specified policies, ac-
cording to the current state of the network and the needs of tenants).

In general, administrators can efficiently apply a wide-range of policies (without requiring
complex device by device configuration), including bandwidth guarantees (at application-level,
which is required by several types of applications (CHOWDHURY; ZHONG; STOICA, 2014)),
routing and load balancing (for instance, to address the limitations of ECMP (ALIZADEH
et al., 2014; HU et al., 2015)). SDN also provides near-optimal traffic management, since
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the controller can request and receive detailed information about network load on a low-level
granularity (e.g., by device, link or specific flows traversing a link).

2.3.2 Scalability Challenges in DCNs

SDN-based networks involve the control plane more frequently than traditional network-
ing (CURTIS et al., 2011). In the context of large-scale DCNs, this aspect leads to two scal-
ability issues: flow setup time (the time taken to install new flow rules in forwarding devices)
and flow table size in SDN-enabled switches (JARRAYA; MADI; DEBBABI, 2014; HU et al.,
2015).

Flow setup time. It may add impractical delay for flows, especially for latency-sensitive
ones (JANG et al., 2015) (as adding even 1 ms of latency to these flows is intolerable (AL-
IZADEH et al., 2010)). As SDN relies on the communication between network devices (data
plane) and a logically centralized controller (control plane), it increases (i) control plane load
and (ii) latency (sources for augmented delay). Control plane load is increased because a typical
ToR switch will have to request rules to the controller for approximately more than 1,500 new
flows per second (KANDULA et al., 2009) and the controller is expected to process and reply
to all requests in, at most, a few milliseconds. Consequently, this may end up making both the
communication with the controller and the controller itself bottlenecks. Latency is augmented
because new flows are delayed at least two RTTs (i.e., communication between the ASIC and
the management CPU and between that CPU and the controller) (CURTIS et al., 2011), so that
the controller can install the appropriate rules at forwarding devices.

Experiments to measure flow setup time. We evaluated the time taken to perform the
operation of inserting rules at a SDN-enabled switch’s TCAM. Our measurement setup (shown
in Figure 2.4) consists of one host with three 1 Gbps interfaces connected to an OpenFlow
switch (Centec v350): eth0 interface is connected to the control port and eth1 and eth2 are
connected to data ports on the switch. The switch uses OpenFlow 1.3 and has a TCAM that
stores at most 2,000 rules. The host runs OpenFlow controller Ryu, which listens for control
packets on eth0.

The experiment works as follows. The switch begins with a given number of rules installed
in the TCAM (which represents its table occupancy). The host runs a packet generator to send
a single UDP flow on eth1. This flow generates a table-miss event in the switch (i.e., the switch
does not have an appropriate rule to handle the flow sent by the packet generator). Consequently,
the switch sends a packet_in message to the controller. Upon receiving the packet_in, the
controller processes the request and sends back a flow_mod message with the appropriate rule
to be installed in the switch TCAM to handle the flow. Once the switch installs the rule, it
forwards the matching packets to the link connected on the host eth2 interface. Like He et
al. (HE et al., 2015), the latency of the operation is calculated as follows: (i) timestamp1 is
recorded when the controller sends the flow_mod to the switch on eth0; and (ii) timestamp2 is
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Figure 2.4 – Measurement setup.
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Source: by author (2016).

recorded when the first packet of the flow arrives on the host eth2 interface. Since the round-
trip time (RTT) between the switch and host is negligible in our experiments2, the latency is
calculated by subtracting timestamp1 from timestamp2.

Figure 2.5 shows the latency of inserting new rules at the TCAM (y-axis) according to the
number of rules already installed in the table (x-axis). The experiment was repeated 10 times;
each point in the plot represents one measured value of one repetition and the line depicts the
median value. Results show that median latency and variability increase according to flow
table occupancy. These results are in line with previous measurements in the literature, such as
He et al. (HE et al., 2015). Since adding even 1ms may be intolerable for some applications
(e.g., latency-sensitive ones) (ALIZADEH et al., 2010), reduced flow table occupancy is highly
desirable in DCNs because of flow setup time.

Figure 2.5 – Latency of inserting new rules according to flow table occupancy.
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Flow table size. Flow tables are a restricted resource in commodity SDN-enabled switches,
as TCAMs are typically expensive and power-hungry (COHEN et al., 2014; JYOTHI; DONG;
GODFREY, 2015; HU et al., 2015). Such devices usually have a limited number of entries

2While the RTT is negligible in our experiments (as the switch is directly connected to the controller), it may
not be the case in large-scale datacenters with hundreds of switches.
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available for OpenFlow rules, which may not be enough when considering that large-scale
datacenter networks have an elevated number of active flows per second (BENSON; AKELLA;
MALTZ, 2010). That is, the number of entries required in flow tables can be significantly
higher than the amount of resources available in commodity devices used in DCNs (CURTIS et
al., 2011; COHEN et al., 2014)

Therefore, the design of a proposal must take both flow setup time and flow table size in
SDN-enabled switches into account. We address them in Chapter 4, in which we introduce
Predictor. Before that, we (i) analyze recent efforts that tackle these challenges (Section 2.3.3);
and (ii) introduce IoNCloud (Chapter 3).

2.3.3 Improving Scalability in DCNs

Some proposals attempt to address the scalability challenges of SDN/OpenFlow in DCNs.
DevoFlow (CURTIS et al., 2011) and DIFANE (YU et al., 2010) propose to reduce controller
responsibilities in the network. The first one introduces new mechanisms for devolving control
to forwarding devices (for small flows only; large flows are handled by the controller) and
for efficient statistics gathering. Devolving control is accomplished through rule cloning and
local actions. Rule cloning allows SDN-enabled switches to clone rules, replacing wildcarded
fields of existing rules by values matching new flows, and all other aspects of the original
rules are inherited. Local actions allow rules to be augmented with a set of routing actions
that an SDN-enabled switch can take without involving the controller (e.g., multipath support
and rapid rerouting). Statistics gathering, in turn, is performed through sampling (uniformly
chosen packets are sent to the controller at a specific rate), triggers and reports (OpenFlow is
extended with threshold-based triggers on counters) and approximate counters (maintained for
small flows that match an existing rule).

The second one keeps all packets in the data plane by directing them through intermediate
forwarding devices that store the appropriate rules. The controller is only responsible for par-
titioning the set of rules over the SDN-enabled switches. More specifically, DIFANE is built
based on two main ideas, as follows. First, the controller generates and distributes the set of
rules across a subset of the SDN-enabled switches in the network, which are called authority
switches. Second, the SDN-enabled switches handle all packets in the data plane, diverting
packets through authority switches according to the rules required.

Despite the benefits DevoFlow and DIFANE achieve in DCNs, they require more complex,
customized hardware at forwarding devices. This requirement increases provider cost, which
ends up being translated to more expensive resources for tenants.

Like DevoFlow, Hedera (AL-FARES et al., 2010) and Mahout (CURTIS; KIM; YALA-
GANDULA, 2011) also route elephant flows according to the rules defined by a centralized
controller, while mice flows are handled by SDN-enabled switches. Hedera is a dynamic flow
scheduling system for DCNs. It collects flow information from forwarding devices, computes
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appropriate paths and instructs devices to reroute traffic accordingly. The system uses its global
view of the network and knowledge of traffic demands to reduce bottlenecks when scheduling
flows. Its main goal is to maximize network utilization with minimal impact on active flows.

Mahout proposes to monitor and detect large (elephant) flows by observing the end-hosts’
socket buffers (through a shim layer in the OS). It manages elephant flows through an in-band
signaling mechanism between the shim layer (at end-hosts) and the controller. At the forwarding
device, mice flows are routed using the current load-balancing scheme (e.g., ECMP and VLB),
while elephant flows are managed by rules defined by the controller.

To efficiently route large flows and utilize available resources through the multiple parallel
paths, Hedera and Mahout require precise statistics from the network with at most 500 ms of
interval between (RAICIU et al., 2010). Nevertheless, obtaining statistics with such frequency
is impractical in dynamic networks such as large DCNs (CURTIS et al., 2011).

Lastly, Kandoo (YEGANEH; GANJALI, 2012) provides a logically distributed control
plane for large-scale networks. It has two layers of controllers: the bottommost layer con-
sists of a group of controllers with no interconnection and no knowledge of the network-wide
state; and the topmost layer is composed of a logically centralized controller that maintains a
global view of the network. While local controllers handle frequent events, the root controller
handles only rare events. Nonetheless, it presents scalability issues to handle the high dynamic
traffic patterns of DCNs, as the distributed set of controller instances need to maintain synchro-
nized information (strong consistency) for the whole network. This is necessary in order to
route traffic through less congested paths and to reserve resources for applications.

Having presented the context in which our proposals were built, we introduce IoNCloud,
Predictor and Packer, respectively, in Chapters 3, 4 and 5.
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3 IONCLOUD: PREDICTABLE NETWORK SHARING

IoNCloud implements our novel approach to allocate tenant applications in large-scale cloud
platforms. The proposed strategy aims at providing performance predictability in the intra-
cloud network while minimizing resource underutilization. To achieve this, unlike previous
work (JANG et al., 2015; XIE et al., 2012; BALLANI et al., 2011; RODRIGUES et al., 2011),
IoNCloud groups applications in virtual networks according to their temporal bandwidth de-
mands.

This chapter is structured as follows. We first present the design of IoNCloud in Section 3.1.
Then, we quantitatively evaluate it in Section 3.2. Finally, we discuss the generality and lim-
itations of the proposed scheme in Section 3.3 and close the chapter with a brief summary in
Section 3.4.

3.1 Design

In IoNCloud, all applications that belong to the same group are allocated on the same VN
and share the same set of (virtual) network resources (i.e., they have shared bandwidth guar-
antees). Virtual networks, in turn, are completely isolated from one another, which means that
each group has a guaranteed amount of network resources. An abstract view of IoNCloud is
shown in Figure 3.1, which depicts application requests being received and allocated in two
steps. The first step is responsible for application demand analysis and grouping, while the
second maps VNs (groups composed of sets of applications) onto the physical substrate.

We first discuss how to obtain network profiles of applications to be allocated in the cloud
platform (Section 3.1.1) and describe in detail the information contained in application requests
(Section 3.1.2). Then, we present our novel strategy to group complementary applications in
VNs according to their temporal network demands (Section 3.1.3) and to embed VNs on the
cloud substrate (Section 3.1.4).

3.1.1 Network Profile of Applications

IoNCloud assumes that network profiles were previously generated (using techniques pro-
posed in the literature, such as the ones described by Xie et al. (2012), LaCurts et al. (2013),
Lee et al. (2014) and LaCurts et al. (2014)) and, thus, uses such information as input for incom-
ing application requests. Like Choreo (LACURTS et al., 2013), IoNCloud considers, in each
profile, the number of bytes sent by the application rather than the observed rate, as the former
is independent of network congestion.

In particular, we highlight the feasibility of obtaining these profiles. In addition to the traffic
properties discussed in Section 2.2.2, other properties related to the temporal demands of appli-
cations were verified by some studies (BALLANI et al., 2011; BENSON; AKELLA; MALTZ,
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Figure 3.1 – IoNCloud model overview.
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2010; XIE et al., 2012; LACURTS et al., 2013; CHEN; SHEN, 2014). These studies have
conducted experiments on VM resource utilization during both short- and long-term periods of
time. Their main findings are summarized as follows: (i) application traffic patterns are pre-
dictable; (ii) VMs of the same application (such as MapReduce) tend to have similar resource
consumption; (iii) the same application running different datasets has similar patterns of re-
source usage; and (iv) periodical (e.g., daily) patterns of resource utilization can be observed
for long-term applications.

These results enabled the proposal of some techniques to profile cloud applications. For
instance, Xie et al. (2012) and LaCurts et al. (2013) use network monitoring tools (sFlow and
tcpdump) to collect traffic traces (gathering application communication patterns), while Lee et
al. (2014) discuss the utilization of application templates (provided as a library for users). Xie
et al. (2012) also convert the output of these measurements into coarse-grained pulse functions.
Such studies perform these profiling runs during a testing phase or in production environments,
which allows them to collect sufficient information to create network profiles before running
applications in the cloud. Therefore, such techniques can be used for IoNCloud, so that appli-
cation profiles are known before allocation.

Unlike CloudMirror (LEE et al., 2014), IoNCloud also considers applications that cannot
have their network profiles generated in advance (for instance, because the application requires
an elevated amount of resources to run a profiling test or it concludes very quickly). In such situ-
ations, the time-varying function Bptq (detailed in Section 3.1.2), which indicates the temporal
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network demands of applications, is represented by a constant function (i.e., the same band-
width requirement during the entire application lifetime). This constant value is specified by
the tenant when submitting the request to the cloud. Such method enables the application to re-
ceive predictable and guaranteed network performance at the expense of some underutilization
(since applications typically present variable traffic demands during their execution).

Note that some studies (e.g., Benson, Akella and Maltz (2010) and Kandula et al. (2009))
state that traffic in DCNs is unpredictable at long time-scales (e.g., 100 seconds or more) be-
cause they consider all traffic in the network. IoNCloud, like Proteus (XIE et al., 2012) and
Choreo (LACURTS et al., 2013), requires temporal bandwidth demands of only the application
being allocated. In other words, traffic is profiled for each application independently, not for
the entire network.

3.1.2 Application Requests

Tenants request applications using the hose model (DUFFIELD et al., 1999a), similarly to
prior work (POPA et al., 2013; POPA et al., 2012; JANG et al., 2015), as shown in Figure 3.2.
In this abstraction, all VMs of an application are connected to a virtual switch through dedicated
bidirectional links.

Figure 3.2 – Abstract view of an application’s network topology.
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More specifically, each application request is represented by its resource demand and for-
mally defined by <N, Bptq>, with the terms specifying the number of VMs and the temporal
bandwidth required by the application. The bandwidth demand is a time-varying function Bptq,
similarly to Proteus (XIE et al., 2012). It represents the bandwidth required by the application
at time “t”. The amount of bandwidth reserved in each link connecting a VM to the applica-
tion’s virtual switch is represented by maxpBptqq, which denotes the peak temporal demand
of the application’s VM. This fine-grained specification allows IoNCloud to capture network
requirements of applications in a precise manner.

Without loss of generality, we follow previous work (BALLANI et al., 2011; XIE et al.,
2012; JANG et al., 2015) and make two assumptions. First, we abstract away computing re-
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sources and assume a homogeneous set of VMs (i.e., equal in terms of CPU, memory and
storage consumption). Second, we consider that all VMs of a given application follow the same
network model1. Note that we make these assumptions only for the sake of notation simplicity.
In practice, IoNCloud can easily support a heterogeneous set of VMs and different network
models for VMs of the same application (see Section 3.3 for more details).

3.1.3 Application Demand Analysis and Grouping

This first step is responsible for analyzing network demands of applications and grouping
them in virtual networks. This way, high resource utilization can be achieved without hurting
predictability.

Figure 3.3 shows an example of how IoNCloud performs this process. In Figure 3.3(a),
bandwidth requirements (dashed lines) of two applications (A and B) are fully guaranteed
through a simple static reservation model (where the peak bandwidth is reserved, represented by
dotted lines). However, this basic model causes underutilization of resources (shown by arrows
in the figure), as unused bandwidth of one application (virtual network) cannot be used by any
other application. IoNCloud, in contrast, enables applications with complementary bandwidth
requirements (from either the same or different tenants) to share network resources. This is
done by grouping them in the same VN and reserving the peak aggregate demand (i.e., the time
when the sum of network demands of applications belonging to the same group is the highest),
represented by the dotted line in Figure 3.3(b). Therefore, IoNCloud achieves better resource
utilization, since periods of low demand from one application can be compensated by periods
of high demand from other ones. Note that IoNCloud removes performance interference in the
network by reserving the peak aggregate bandwidth of the applications (that belong to the same
group) sharing a given link. Furthermore, it significantly reduces management overhead when
compared to Proteus (XIE et al., 2012), since the latter must modify reservations as time passes
by.

Figure 3.3 – Temporal network usage.
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1Many applications, such as MapReduce (which represents an important class of applications running in data-
centers (GUO et al., 2013a)), have similar bandwidth demands among their VMs (XIE et al., 2012).
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Note that, even though the applications in the same group may belong to different tenants
and share bandwidth with one another, they receive minimum bandwidth guarantees. This
happens because they have varying temporal network demands and the peak temporal aggregate
demand of the group was reserved.

Algorithm. We design a time-varying network-aware algorithm to efficiently analyze the
temporal bandwidth usage of applications and group them in virtual networks (see Algorithm
3.1). The key idea is based on minimizing the amount of unused bandwidth for each group cre-
ated (i.e., reducing wasted bandwidth) and, therefore, enabling more applications to be admitted
and allocated in the cloud platform. Formally, the objective is defined as reducing allocated (but
unused) bandwidth:

Minimize
ÿ

tPT

˜

MaxAggBand´
ÿ

appPG

Bptq

¸

@G P Groups (3.1)

where MaxAggBand “ maxp
ř

appPGBptq @t P T q denotes the maximum aggregate band-
width of group G (i.e., the bandwidth that will be effectively reserved on links used for the
group), T is the set of values representing the discrete time (in milliseconds) of the group’s
lifetime, G is a set that contains the applications in the group and Groups is the set of all to-be-
allocated groups. Thereby, the formula minimizes the unused bandwidth when choosing which
applications will compose each group.

The algorithm works as follows. First, a bundle of incoming applications (Applications)
is received and the set of groups (GroupList) is initialized as empty. The algorithm, then,
retrieves one application (app) at a time from the set Applications (lines 3 – 14) at no partic-
ular order and verifies three possibilities of grouping (lines 4 – 8): (i) creating a new group
composed of app and another application from the set Applications (i.e., trying all pairs of
possible groupings of app with other incoming applications and selecting the one with least un-
derutilization); (ii) inserting app into one of the existing groups; and (iii) creating a new group
with app only. After verifying these possibilities, the best option is selected (line 9), app and
possibly another application (if the first option was selected) are removed from Applications

(line 10), and the newly created group is inserted in the set GroupList, in case the first or third
options were selected (lines 11 – 13). Finally, once the entire bundle of incoming applications
has been analyzed and included into groups, the algorithm concludes, returns the set of groups
(line 15) and the process of allocating each group (represented by a virtual network) onto the
cloud infrastructure is started.

3.1.4 Virtual Network Allocation

This step is responsible for allocating each virtual network (group composed of applications
that present complementary temporal bandwidth demands) created in the previous phase on the
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Algorithm 3.1: Time-varying network-aware group creation.
Input : Bundle of applications to be allocated in the cloud
Output: List of application groups GroupList

1 Create a set Applications with all incoming applications;
2 Create an empty set GroupList;
3 foreach app P Applications do
4 Evaluate three possibilities of grouping:
5 Creating new group containing app and a chosen application from Applications;
6 Including app in existing group of the set GroupList;
7 Creating new group with single application app;
8 end
9 Among the three above, select the option with least underutilization;

10 Remove grouped applications from Applications;
11 if new group was created then
12 Include new group in the set GroupList;
13 end
14 end
15 return the set GroupList;

physical infrastructure.
A simplified example of VN allocation in IoNCloud is shown in Figure 3.4. For the sake

of simplicity, there are only two groups to be allocated, each one with two applications. For
each group, IoNCloud prioritizes clustering VMs of the same application in the same physical
server, since good locality reduces the amount of network resources used for intra-application
communication2. For a single application, VMs located in the same server do not consume
network resources when they communicate with each other. VMs allocated in different servers,
in turn, need a certain amount of bandwidth to exchange data, which is given by the server with
the lowest peak aggregate rate for an application. Consider “Server 1” (S1) and “Server 3” (S3)
in the figure, which host application 1 (app1). The bandwidth needed by VMs of this application
for communication among themselves is given by minp|S1,app1 |, |S3,app1 |q ˆmaxpBptqq, where
|Sx,app1 | represents the number of VMs of app1 placed at the xth server and maxpBptqq denotes
the peak bandwidth used by a single VM during its lifetime. In this example, minp6, 2q ˆ 15 “

30 Mbps.
A group of applications, in contrast, requires the peak aggregate bandwidth demand of the

group (instead of the sum of the peak demands of each application). Therefore, the allocated
bandwidth on each physical link l of a VN corresponds to the peak aggregate demand of VMs
in the group that use link l. This allocation is illustrated in Figure 3.4 in two situations: (i) when
more than one application of the same group share a link, the aggregate peak bandwidth of the
VMs of these applications is reserved (as we can see in Server 3, where 40 Mbps is reserved
instead of 50 Mbps); and (ii) when a single application of a group uses a link, the bandwidth
reserved corresponds to the amount needed by its VMs alone (other applications of the group
do not need to use that link, as we can see in core links). Last but not least, note that VNs do
not share bandwidth with one another (i.e., groups are completely isolated).

Algorithm. We developed a greedy algorithm to allocate virtual networks on the physical

2We follow related work (BALLANI et al., 2011; XIE et al., 2012; JANG et al., 2015) and consider only intra-
application communication when allocating applications in the cloud platform, as this type of communication
represents most of the traffic in the cloud (BALLANI et al., 2013).
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Figure 3.4 – Shared bandwidth guarantees for applications.
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substrate (see Algorithm 3.2). Because locality is key to make efficient use of resources, we ad-
dress it with two granularities: (i) VMs of the same application are mapped on the infrastructure
according to a VM placement objective (which is explained bellow); and (ii) VMs belonging
to applications of the same group are allocated close to each other, because their bandwidth
demands are complementary and, thus, network underutilization can be reduced (as determined
by the grouping algorithm in the previous step). In general, the algorithm takes advantage of
application affinity to allocate virtual networks in accordance with a given objective for virtual
machine placement. IoNCloud can use any objective for VM placement, and it currently imple-
ments three different ones: minimizing bandwidth reservation (MinBand); minimizing energy
consumption (MinEnergy); and maximizing fault tolerance (MaxFT). Since IoNCloud is agnos-
tic about VM placement, these objectives will be detailed after the following overview of the
allocation algorithm.

The algorithm allocates one VN at a time, with a coordinated node and link mapping, fol-
lowing insights provided by Chowdhury, Rahman and Boutaba (2009). The first step is the
allocation of nodes (VMs) for each application in the group (lines 2 – 4), according to the VM
placement policy defined. After all VMs of a VN are allocated, the algorithm starts the second
step of the coordinated mapping, which is the allocation of bandwidth for the group (lines 5 –
7). This is performed through a bottom-up strategy, as follows. First, network resources are
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Algorithm 3.2: Virtual network embedding.
Input : Physical infrastructure P , Set of groups GroupList
Output: Success/Failure array allocated

1 foreach Group g P GroupList do
// VM allocation

2 foreach Application app P g do
3 Allocate VMs of app in the cloud infrastructure according to a predefined objective (e.g., minimum bandwidth, energy

consumption or fault tolerance);
4 end

// Bandwidth allocation
5 foreach Level lv from 0 to Height(P) do
6 Allocate bandwidth at lv according to demands of VMs at lower levels (similarly to Figure 3.4);
7 end
8 allocatedrgs Ð success/failure code for the allocation of group g;
9 end

10 return allocated;

reserved in racks (level 0). Then, they are reserved, in order, for each subsequent level of the
topology3 (according to the bandwidth needed by communication between VMs from distinct
racks that belong to the same application, always aggregating the amount of bandwidth needed
by VMs of the same group).

The algorithm returns a success code for each VN that was embedded on the substrate and
a failure code otherwise (line 10). Application requests that belong to an unallocated VN are
discarded (similarly to Amazon EC2 admission control (AMAZON, 2013)).

VM placement objectives. VM placement is often implemented as a multi-dimensional
packing with constraints being defined according to a placement goal. As stated in the algorithm
overview, IoNCloud currently supports three different goals, which are denoted: (i) MinBand;
(ii) MinEnergy; and (iii) MaxFT. These placement goals are detailed next.

MinBand optimizes VM placement for minimal bandwidth reservation. It achieves this goal
by clustering VMs of the same application and of the same group on the smallest subtree in the
physical infrastructure (similarly to Ballani et al. (2011)). It takes two factors into account when
searching for physical machines in the infrastructure to allocate VMs of a given application: (i)
the number of VM slots available in each server; and (ii) the number of allocated VMs of the
same group in each server. This way, it selects the server with the highest number of available
VM slots (in case the application has more to-be-allocated VMs than the number of available
VM slots per server) or the server with available slots holding the highest number of VMs of
other applications of the same group. This behavior allows the algorithm to concentrate VMs
of the same application and of the same group in the minimum number of servers, which tends
to reduce the bandwidth needed by communication between VMs of the same application and
the amount of network resources reserved for each VN, respectively.

MinEnergy follows insights from Mann et al. (2011) to consider energy consumption. VMs
are consolidated on servers in order to reduce the number of servers turned on, thus minimizing
the total amount of power consumed by these servers. This is achieved by a first-fit algorithm

3Like related work (RODRIGUES et al., 2011; BALLANI et al., 2011; XIE et al., 2012; MARCON et al.,
2013; JANG et al., 2015), we assume the physical infrastructure topology in cloud datacenters is defined as a tree.
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for packing VMs into servers. The only restriction is that VMs of the same application prioritize
servers of the same rack first, as to avoid inter-rack communication.

MaxFT considers fault tolerance by spreading VMs on the cloud platform, so that appli-
cations can survive upon link, switch and/or rack failures (similarly to Bodík et al. (2012)).
The key idea is to increase the number of servers used to allocate VMs in accordance to a
given spreading factor (sf ). In particular, the minimum number of servers is determined con-
sidering the servers with available resources and the number of VMs from the application each
one of them can host. The new number of servers that will host these VMs is determined
by choosing the minimum value between (i) the multiplication of the minimum number of
servers required to allocate such VMs and sf and (ii) the number of VMs of the application:
ExpectedNumSrvs “ minpMinNumSrvspAppq ˆ sf, NumVMspAppqq. To illustrate the effect of
the spreading factor, consider a very simple example where a single application with 6 VMs
is being embedded on a homogeneous datacenter with 4 available VM slots per server. In this
example, the minimum number of servers required to allocate the application is two (r6 VMs /
4 slots s). When sf is set to 1, the algorithm allocates all VMs in two servers. By increasing sf

to 2, 3 and 4, the number of servers increases, respectively, to 4, 6 and 6. A high sf (resulting in,
at most, one VM per server) is usually required for applications that need high availability (such
as web services) (GILL; JAIN; NAGAPPAN, 2011), as failures potentially have high impact on
user experience.

Allocation quality. Algorithm 3.2 was designed as a constructive heuristic with the focus
of providing efficient allocation of resources for tenants. Therefore, it takes solution feasibility
into account, but does not consider optimality. We made this choice for the following reason.
Optimal techniques typically take a considerable amount of time to find the best solution for
environments as big as cloud platforms (with hundreds of thousands of servers and hundreds of
network devices) (MARCON et al., 2013). However, the allocation process must be performed
as quickly as possible, since there are high rates of tenant arrival and departure (as discussed in
Section 2.2). Therefore, it is computationally expensive to employ optimization strategies for
these large-scale environments (YU et al., 2008).

3.2 Evaluation

In this section, we demonstrate the benefits of IoNCloud for both providers and tenants. Our
evaluation focuses primarily on quantifying the advantage of grouping applications in virtual
networks in terms of network predictability and resource utilization. Toward this end, we first
describe the environment (in Section 3.2.1) and, then, present the main results (in Section 3.2.2).



45

3.2.1 Setup

Datacenter topology. We follow previous work (BALLANI et al., 2011; XIE et al., 2012;
MARCON et al., 2013) and implement a discrete-event simulator that models a multi-tenant
datacenter. We focus on tree-like topologies similar to multi-rooted trees used in current cloud
platforms (BALLANI et al., 2013). The physical substrate is defined as a three-level tree topol-
ogy with 8,000 servers at level 0, each with 4 VM slots (i.e., with a total amount of 32,000 avail-
able VMs in the cloud). Every machine is linked to a ToR switch (40 machines form a rack),
and every 20 ToRs are connected to an aggregation switch. Finally, all aggregation switches
are connected to a core switch. Link capacities are defined as follows: machines are connected
to ToR switches with access links of 1 Gbps; links from racks up to aggregation switches are
10 Gbps; and aggregation switches are attached to a core switch with links of 50 Gbps. Thus,
the default oversubscription of the network is 4.

Workload. To the best of our knowledge, there is no available source that provides re-
alistic traces for cloud DCNs. Therefore, in line with related work (BALLANI et al., 2011;
XIE et al., 2012; BALLANI et al., 2013), we generated the workload according to results ob-
tained by measurement studies (BENSON; AKELLA; MALTZ, 2010; KANDULA et al., 2009;
GREENBERG et al., 2011; SHIEH et al., 2011). More specifically, the workload is composed
of requests of applications to be allocated in the cloud platform. Requests are formed by a het-
erogeneous set of applications (including MapReduce and Web Services), which is represen-
tative of applications running in public cloud platforms (ABTS; FELDERMAN, 2012). Each
application is represented as a tuple <N, Bptq>, with N being the number of VMs and Bptq a
time-varying function to specify temporal network demands. The former is exponentially dis-
tributed around a mean of 49 VMs (following prior work). The latter was generated following
results obtained by Kandula et al. (2009), Benson, Akella and Maltz (2010) and Greenberg et
al. (2011). In fact, we used measurements related to inter-arrival flow time and size at servers
to simulate application traffic.

Note that a few studies (BENSON et al., 2011b; KANDULA et al., 2009) indicate that
traffic is unpredictable at long time-scales for the entire network. Therefore, we generate the
traffic for each application (not the entire network), which is feasible (XIE et al., 2012).

3.2.2 Results

We compare IoNCloud, which employs shared bandwidth guarantees, with the approach
adopted by most related work (BALLANI et al., 2011; RODRIGUES et al., 2011; GUO et al.,
2010), which creates one virtual network per application. Ideally, we would have compared
IoNCloud with Proteus (XIE et al., 2012). Proteus uses as input pulse functions obtained from
the temporal network demands of applications. However, the generation of such pulse functions
is addressed as a black-box in the paper and, thus, we cannot precisely develop a generator that
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mimics its behavior.

As previously mentioned (Section 3.1.4), the algorithm used for virtual network allocation is
agnostic in terms of VM placement. Hence, three VM placement algorithms are used in exper-
iments: (i) MinBand, which minimizes the amount of bandwidth reserved for communication
between VMs of the same application; (ii) MinEnergy, which minimizes energy consumption
by reducing the number of used servers; and (iii) MaxFT, which maximizes fault-tolerance
based on a given parameter (the desired ratio of extra servers used for spreading VMs).

For all experiments, we plot the percentile difference between both approaches given by the
following equation: p IoNCloud

One VN per App
´ 1q ˆ 100. Hence, negative percentiles mean IoNCloud has

achieved a lower value than traditional approaches, while positive percentiles mean IoNCloud
has achieved a higher value than traditional approaches. In general lower values are better, with
the sole exception being Figure 3.8.

Amount of reserved network resources. Figure 3.5 shows the total amount of reserved
network resources according to the different placement algorithms. The y-axis represents the
percentile difference between both approaches regarding the amount of bandwidth allocated,
hence the lower the value, the better. We see that for any given approach, the amount of reserved
resources increases in accordance with VM spreading. As expected, the shared bandwidth
mechanism employed by IoNCloud outperforms the traditional methods when VMs are spread
around the network, as it reduces the amount of reserved resources (up to 16.70%). This means
that the provider can accept more applications in the cloud, improve resource utilization and,
ultimately, increase datacenter throughput.

Figure 3.5 – Reserved network resources according to the placement algorithm employed.
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In contrast, IoNCloud is unable to achieve gains (in fact, with 0.65% of overhead in the
worst-case) when there is no spreading, that is, when VMs are as packed as possible. This hap-
pens because the resource reservation employed by IoNCloud is performed per group, instead
of per application (as traditional approaches). Therefore, the bandwidth allocated to each vir-
tual link is only released after all applications in the respective group have finished. This design
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choice was deliberately chosen; such model can reduce the overhead of calculating the amount
of bandwidth to be deallocated for each application that finishes its execution at each virtual
link of the group. Moreover, we expect VM spreading to be norm in real cloud networks due to
high churn of applications in these environments.

We further analyze bandwidth allocation by measuring the amount of reserved resources in
access and aggregation layers4 of the topology for all VM placement algorithms. We see in Fig-
ure 3.6 that IoNCloud allocates less resources in both layers. In particular, note that IoNCloud
has better results in the aggregation. This effect also increases the chance of allocating virtual
links, since network oversubscription at this level is higher than at the edge, and decreases the
probability of packet discards in the network (which usually happens at this level (BENSON;
AKELLA; MALTZ, 2010), as discussed in Section 2.2.2).

Figure 3.6 – Per-layer analysis of reserved network resources.
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Source: by author (2015).

Underutilization in the network. Figure 3.7 depicts the percentile difference of unused
bandwidth for different placement algorithms. Underutilization is quantified by measuring the
unused bandwidth on each virtual link. Lower values are better, since they mean that the cloud

4In our experiments, there were no reserved resources in the core.
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infrastructure is making better use of its reserved resources. As expected, IoNCloud achieves
lower underutilization than current approaches. In fact, when compared to traditional schemes,
IoNCloud is able to reduce waste, saving up to 18% of resources.

Figure 3.7 – Overall underutilization of resources.
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IoNCloud can reduce resource underutilization, but it still suffers from some underutiliza-
tion. As mentioned in the previous experiment, this happens because the current implementation
of IoNCloud performs bandwidth deallocation at group granularity (as opposed to application
granularity).

Ratio of Allocated VMs. This metric shows the proportion of VMs that were allocated in
servers. Higher values are better, as the revenue of the cloud provider is proportional to the
number of VMs it allocates. Figure 3.8 shows the difference between VM allocation ratios. As
observed, IoNCloud performs better for all algorithms except MinEnergy. Although the number
of slots and VMs is the same, the allocation ratio differs depending on the allocation goal. This
is because VMs can only be allocated if there is enough bandwidth for guaranteeing the setup
of virtual links. Hence, reducing the amount of allocated bandwidth (as seen in Figure 3.5)
increases the acceptance ratio of VMs in the cloud platform (since bandwidth is the bottleneck
resource).

To understand the behavior of VM rejection, we perform experiments in a scenario where
all datacenter links have unlimited bandwidth. Table 3.1 shows a comparison between both sce-
narios: normal and unlimited bandwidth. As can be observed, the assumption that bandwidth
consumption interferes in VM allocation is verified, since all methods achieve 100% allocation
with unlimited bandwidth. Note that MinEnergy is the only algorithm that achieves 100% VM
allocation ratio under normal conditions. This is because VMs are packed together and frag-
mentation is minimal, thus, the majority of VMs will be closer. When minimizing bandwidth
(MinBand), VMs may be allocated on free slots that are far from each other, which means that
virtual links have a higher probability of reaching a bottlenecked physical link. MaxFT worsens
this behavior, as it explicitly allocates VMs farther from each other.
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Figure 3.8 – Ratio of VMs that were placed in physical servers.
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Table 3.1 – VM allocation ratio with different VM placement goals for scenarios with normal and
unlimited bandwidth capacity on links.

VM placement goal Bandwidth
Normal Unlimited

MinBand 0.929 1
MinEnergy 1 1
MaxFT, sf=2 0.845 1
MaxFT, sf=3 0.892 1
MaxFT, sf=4 0.888 1

Source: by author (2015).

Link Sharing and Management Overhead. We also measure the number of reservations
over each link in the datacenter network. Figure 3.9 shows the percentile difference of the
maximum number of virtual links allocated in the network. We find that IoNCloud results in
a significantly lower number of reservations to be managed (which can be as high as 22.32%
less). In an environment as large and dynamic as a cloud platform, where network devices are
limited in terms of the amount of control state and the rate at which these states can be updated,
this typically results in a reduced reservation management overhead. Furthermore, during the
experiments, we observed relatively small absolute values (an overall value of less than 10,000)
for the number of reservations for all strategies. This reflects the spatial locality applied by the
allocation algorithms and suggests that the bandwidth reservation schemes can be accomplished
using technologies already available in current datacenters (e.g., using rate-limiters in off-the-
shelf switches or programmability of hypervisors (XIE et al., 2012)).

Generality of the results. We believe the obtained results are generalizable to most work-
loads and real cloud platforms (e.g., Amazon EC2 and Microsoft Azure). First, even though we
could not obtain real traces from public cloud networks, we reversed engineered the traces used
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Figure 3.9 – Maximum number of allocated virtual links.
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by Kandula et al. (2009) and Benson, Akella and Maltz (2010), generating applications with
heterogeneous traffic (e.g., MapReduce and web service) to share bandwidth. Second, we used
a tree-topology in our experiments to mimic current datacenter networks (JANG et al., 2015)
and to follow related work (BALLANI et al., 2013; BALLANI et al., 2011; XIE et al., 2012), so
that the benefits and overheads of IoNCloud (i) can be closer to what would happen in current
DCNs; and (ii) follow the same pattern of prior work, respectively.

However, note that the used workload represents neither the best nor the worst-case scenar-
ios, both of which are not expected to happen (i.e., they are unrealistic). The best-case is when
all applications have complementary demands with other applications and the grouping would
be formed in a way that no bandwidth would be wasted in any period of time. This would
further maximize the benefits of IoNCloud presented in our evaluation. In contrast to the best-
case, the worst-case scenario happens when no application has complementary demands with
other applications. This would result in one virtual network per application and the benefits of
IoNCloud would be reduced to the advantages of related proposals that allocate one application
per VN (e.g., Oktopus (BALLANI et al., 2011)).

3.3 Discussion

Datacenter network topology. Current datacenters are typically implemented through a
multi-rooted tree topology (JANG et al., 2015). Therefore, we focus on this kind of topology to
show the benefits of IoNCloud. However, IoNCloud can be easily adapted for other topologies,
such as random graphs (SINGLA; GODFREY; KOLLA, 2014; SINGLA et al., 2012). In par-
ticular, it can be applied to multipath topologies, both where load balancing is uniform across
paths and where it is not uniform. For the first case (e.g., Fat-Tree), a single aggregate link can
be used as a representation for a set of parallel links for bandwidth reservation (BALLANI et
al., 2011; POPA et al., 2013). For the latter, IoNCloud would have to use an additional layer at
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hypervisor-level to control each path and its respective bandwidth for communication between
VMs.

Online allocation of applications. IoNCloud uses the principle of allocating groups of ap-
plications in order to increase datacenter resource utilization. In this context, there is, at least,
two ways of robustly providing online allocation for incoming application requests: (i) by allo-
cating an incoming application to an existing group; and (ii) by allocating requests according to
time slots. The first approach is straightforward, but may introduce some overhead to manage
network resources when expanding and shrinking existing groups. The second one (which we
employed in our evaluation) takes advantage of high churn in cloud environments (SHIEH et
al., 2011; ZHENG et al., 2015). Thus, for each time slot (i.e., a predefined period of time), IoN-
Cloud can allocate the set of incoming requests by grouping them according to their bandwidth
demands, without modifying previously allocated groups (less overhead).

Generality of the network model. Currently, IoNCloud adopts a single network model for
all VMs of the same application. Nonetheless, it requires no modification when considering
VMs of the same application with distinct network profiles. However, it may add some com-
plexity to the resource allocation process. Another option is to extend IoNCloud to enforce
per-VM traffic models by reserving bandwidth on links according to the VM with the highest
demand in each application (at the cost of some underutilization).

Network virtualization implementation. In practice, there are two ways of implementing
VNs on the cloud: (i) in hypervisors; and (ii) in network devices. The first option is typically
employed by state-of-the-art proposals (BALLANI et al., 2013; BALLANI et al., 2011; RO-
DRIGUES et al., 2011; POPA et al., 2013; JEYAKUMAR et al., 2013; JANG et al., 2015),
since it is easier to scale to large datacenters. The second is performed using SDN and Open-
Flow. IoNCloud is agnostic about the technique utilized for network virtualization; in fact, it
can use any of these approaches.

3.4 Summary

Cloud providers seek to increase datacenter resource utilization in order to reduce opera-
tional costs and achieve economies of scale. However, they lack efficient mechanisms to control
how the intra-cloud network is shared among tenant applications. Therefore, they offer no real
bandwidth guarantees for tenants, resulting in unpredictable network performance. We have
introduced IoNCloud, a scheme that provides network predictability while minimizing resource
underutilization and management overhead. To achieve this, IoNCloud groups applications in
VNs according to their temporal bandwidth usage. Evaluation results show the benefits of our
strategy, which is able to use available bandwidth more efficiently, reducing allocated band-
width, network underutilization and management overhead.
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4 PREDICTOR: PREDICTABLE, WORK-CONSERVING NETWORK SHARING

IoNCloud does not provide work-conserving sharing among VNs, hurting provider revenue.
Predictor, in turn, implements a novel and low-overhead strategy to provide fine-grained man-
agement and predictable performance with work-conserving sharing in both full-bisection and
oversubscribed SDN-based cloud DCNs.

Predictor is designed taking four requirements into consideration: (i) scalability, (ii) re-
siliency, (iii) predictable and guaranteed network performance, and (iv) high network utiliza-
tion. First, any design for network sharing must scale to hundreds of thousands of VMs and
deal with heterogeneous workloads of applications (traffic properties of DCNs were discussed
in Section 2.2.2). Second, it needs to be resilient to churn both at flow-level (because of the rate
of new flows/s (BENSON; AKELLA; MALTZ, 2010)) and at application-level (given the rates
of application allocation/deallocation observed in datacenters (SHIEH et al., 2011)). Third,
it needs to provide predictable and guaranteed network performance, allowing applications to
maintain a base-level of performance even when the network is congested. Finally, any design
should achieve high network utilization, so that spare bandwidth can be used by applications
with more demands than their guarantees.

We describe Predictor as follows. First, we present its design in Section 4.1. Then, we
quantitatively show its benefits and overheads in Section 4.2. Finally, we discuss its generality
and limitations in Section 4.3 and close the chapter with a brief summary in Section 4.4.

4.1 Design

Predictor is designed to fulfill the above requirements. While providers can reduce op-
erational costs and achieve economies of scale, tenants can run their applications predictably
(possibly faster, reducing costs). Figure 4.1 shows an overview of Predictor, which is com-
posed of five components: Predictor controller, allocation module, application information base
(AIB), network information base (NIB) and OpenFlow controller. They are discussed next.

Predictor Controller. It receives requests from tenants. A request can be either an appli-
cation to be allocated (whose resources to be used are determined by the allocation module) or
a solicitation for inter-application bandwidth guarantees (detailed in Sections 4.1.1 and 4.1.2).
In case of an incoming application, it sends the request to the allocation module. Once the
allocation is completed (or if the request is for inter-application communication), the Predictor
controller generates and sends appropriate flow rules to the OpenFlow controller. The Open-
Flow controller, then, updates the tables (of forwarding devices) that need to be modified.

Note that the controller installs rules to identify flows at application-level1 (more details in

1The granularity of rules (at application-level) hinders neither network controllability for providers nor network
sharing among tenants and their applications because (a) providers charge tenants based on the amount of resources
consumed by applications; and (b) congestion control in the network is expected to be performed at application-
level (BALLANI et al., 2013).
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Figure 4.1 – Predictor overview.
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Sections 4.2 and 4.3). Predictor can also take advantage of flow management at lower levels (for
instance, by matching source and destination MAC and IP fields), since it uses the OpenFlow
protocol. Nonetheless, given the amount of resources available in commodity SDN-enabled
switches and the number of flows that come and go in a small period of time, low-level rules
are kept to a minimum.

Allocation Module. This component is responsible for allocating incoming applications
in the datacenter infrastructure, according to available resources. It receives requests from the
Predictor controller, determines the set of resources to be allocated for each new request and
updates the AIB and NIB. We detail the allocation logic in Section 4.1.2.2.

Application Information Base (AIB). It keeps detailed information regarding each allo-
cated application, including its identifier (ID), VM-to-server mapping, IP addresses, bandwidth
guarantees, network weight (for work-conserving sharing), links being used and other applica-
tions it communicates with. It provides information for the Predictor controller to compute flow
rules that need to be installed in SDN-enabled switches.

Network Information Base (NIB). It is composed of a database of resources, including
hosts, switches, links and their capabilities (such as link capacity and latency). In general, it
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keeps information about computing and network state, received from the OpenFlow controller
(current state) and the allocation module (resources used for newly allocated applications). The
Predictor controller uses information stored in the NIB to map logical actions (e.g., intra- or
inter-application communication) into the physical network. While the AIB maintains informa-
tion at application granularity, the NIB keeps information at network layer. The design of the
NIB was inspired by Onix (KOPONEN et al., 2010) and PANE (FERGUSON et al., 2013).

OpenFlow Controller. It is responsible for communication to/from forwarding devices and
Open vSwitches (PFAFF et al., 2015) in hypervisors, in order to update network state and get
information from the network (e.g., congested links and failed resources). It receives informa-
tion from the Predictor controller to modify flow tables in forwarding devices and updates the
NIB upon getting information from the network.

We explain Predictor in detail by describing application requests (Section 4.1.1), the mecha-
nisms employed for resource sharing (Section 4.1.2) and the control plane design (Section 4.1.3).

4.1.1 Application Requests

Like in IoNCloud (Chapter 3) and similarly to past proposals (POPA et al., 2013; BALLANI
et al., 2011; XIE et al., 2012; BALLANI et al., 2013; JANG et al., 2015), tenants request
applications using the hose model to capture the semantics of the guarantees being offered, as
shown in Figure 4.2. Recall that, in this model, all VMs of an application are connected to a
non-blocking virtual switch through dedicated bidirectional links.

In Predictor, each application a is represented by its resource demands and network weight,
or more formally, xNa, Ba, wa, comm

inter
a y. Its terms are: Na P N˚ specifies the number of

VMs; Ba P R` represents the bandwidth guarantees required by each VM; wa P r0, 1s indicates
the network weight; and comminter

a is an optional field that contains information about inter-
application communication for application a.

Figure 4.2 – Virtual network topology of a given application.

Non-Blocking Virtual Switch

VMa,1 VMa,Na

......

Request:
< Na, Ba, wa, comma      >

Ba + spare(s, va)

inter
Request:

Each VM gets a guaranteed
bandwidth rate of Ba plus
spare bandwidth according
to the application's weight

Source: by author (2016).

The network weight is defined by the provider according to the tenant’s payment. It en-
ables residual bandwidth (unallocated or reserved bandwidth for an application and not cur-
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rently being used) to be proportionally shared among applications with more demands than
their guarantees (work-conservation). Therefore, the total amount of bandwidth available for
each VM of application a at a given period of time, following the hose model, is denoted by
Ba ` spareps, vaq, where spareps, vaq identifies the share of spare bandwidth assigned to VM
v of application a located at server s:

spareps, vaq “
wa

ř

vÒVs|vPVs
wv
ˆ SpareCapacity (4.1)

where Vs denotes the set of all co-resident VMs (i.e., VMs placed at server s), v Ò Vs | v P Vs
represents the subset of VMs at server s that need to use more bandwidth than their guarantees
and SpareCapacity indicates the residual capacity of the link that connects server s to the ToR
switch.

The term comminter
a is optional and allows tenants to proactively request guarantees for

inter-application communication (since it would be infeasible to provide all-to-all communi-
cation between VMs in the datacenter (BALLANI et al., 2013)). It is a set composed of ele-
ments in the form of xsrcVMa, dstVMs, begTime, endTime, reqRatey, where: srcVMa denotes
the source VM of application a; dstVMs is the set of destination VMs (i.e., unicast or multicast
communication from the source VM to each destination VM); begTime and endTime repre-
sent, respectively, the time that the communication starts and ends; and reqRate indicates the
total amount of bandwidth per second needed by flows belonging to traffic from this (these)
communication(s).

By providing optional specification of inter-application communication, Predictor allows
requests from tenants with and without knowledge of application communication patterns and
desired resources. Application traffic patterns are often known (GROSVENOR et al., 2015;
CHOWDHURY; ZHONG; STOICA, 2014) or can be estimated by employing the techniques
described by Lee et al. (LEE et al., 2014), Xie et al. (XIE et al., 2012) and LaCurts et al. (LACURTS
et al., 2013). Note that, even if tenants do not proactively request resources for communication
with other applications/services (i.e., they do not use comminter

a ), their applications will still
be allowed to reactively receive guarantees for communication with others (as detailed in Sec-
tion 4.1.2.1).

In line with past proposals (BALLANI et al., 2011; XIE et al., 2012; BALLANI et al., 2013;
JANG et al., 2015), two assumptions are made. First, we abstract away non-network resources
and consider all VMs with the same amount of CPU, memory and storage. Second, we consider
that all VMs of a given application receive the same bandwidth guarantees (Ba). Nonetheless,
note that our strategy needs no modification when removing these assumptions.
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4.1.2 Resource Sharing

In this section, we discuss how resources are shared among applications. In particular, we
first examine how bandwidth guarantees are provided. Then, we take a look at the process of
resource allocation and, finally, we present the logic behind the work-conserving mechanism
employed by Predictor.

4.1.2.1 Bandwidth Guarantees

Predictor provides bandwidth guarantees for both intra- and inter-application communica-
tion. We discuss each one next.

Intra-application network guarantees. Typically, this type of communication represents
most of the traffic in DCNs (BALLANI et al., 2013). Thus, Predictor allocates and ensures
bandwidth guarantees at application allocation time2 by proactively installing flow rules and
rate-limiters in the network through OpenFlow.

Each VM of a given application a is assigned a bidirectional rate of Ba (as detailed in
Section 4.1.1). Limiting the communication between VMs located in the same server or in
the same rack is straightforward, since it can be done locally by the Open vSwitch at each
hypervisor.

In contrast, for inter-rack communication, bandwidth must be guaranteed throughout the
network, along the path used for such communication. Predictor provides guarantees for this
traffic by employing the concept of VM clusters3. To illustrate this concept, Figure 4.3 shows a
simplified scenario where a given application a has four clusters: ca,1, ca,2, ca,3 and ca,4. Since
each VM of a cannot send or receive data at a rate higher than Ba, traffic between a pair of
clusters ca,x and ca,y is limited by the smallest cluster: rateca,x,ca,y “ minp|ca,x|, |ca,y|q ˆ Ba,
where rateca,x,ca,y represents the calculated bandwidth for communication between clusters ca,x
and ca,y (for x, y P t1, 2, 3, 4u and x ‰ y), and |ca,i| denotes the number of VMs in cluster i
of application a. In this case, rateca,x,ca,y is guaranteed along the path used for communication
between these two clusters by rules and rate-limiters configured in forwarding devices through
OpenFlow.

We apply this strategy at each level up the topology (reserving the minimum rate required
for the communication among clusters). In general, the bandwidth required by one VM clus-
ter to communicate with all other clusters of the same application is given by the following

2While Predictor may overprovision bandwidth at the moment applications are allocated, it does not waste
bandwidth because of its work-conserving strategy (explained in Section 4.1.2.3). Without overprovisioning band-
width at first, it would not be feasible to provide bandwidth guarantees for applications (as DCNs are typically
oversubscribed).

3A VM cluster is a set of VMs of the same application located in the same rack.
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expression:

rateca,x “ min

˜

|ca,x| ˆBa,
ÿ

cPCa,c‰ca,x

|c| ˆBa

¸

@ca,x P Ca (4.2)

where rateca,x denotes the bandwidth required by cluster x to communicate with other clusters
associated with application a and Ca indicates the set of all clusters of application a.

Figure 4.3 – Example of intra-application bandwidth guarantees.
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Source: by author (2016).

Inter-application communication. Applications in datacenters may exhibit complex com-
munication patterns. However, providing them with static hose guarantees does not scale for
DCNs (BALLANI et al., 2013), since bandwidth guarantees would have to be enforced between
all pairs of VMs. Furthermore, tenants may not know in advance all applications/services that
their applications will communicate with.

Predictor can dynamically set up guarantees for inter-application communication according
to the needs of applications and residual bandwidth in the network. In case guarantees were
not requested using the field comminter

a (as described in Section 4.1.1), the Predictor controller
provides two ways of establishing guarantees for communication between VMs of distinct ap-
plications and services, as follows.

Reacting to new flows in the network. When a VM needs to exchange data with one or more
VMs of another application, it can simply send packets to those VMs. The hypervisor (through
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its Open vSwitch) of the server hosting the source VM receives such packets and, since they do
not match any rule, sends them to the controller. The Predictor controller, then, determines the
rules needed by the new flows and installs the set of rules along the appropriate path(s) in the
network.

Receiving communication requests from applications. Prior to initiating the communication
with VMs belonging to other applications, the source VM can send a request to the Predictor
controller for communication with VMs from other application(s). This request is composed of
the set of destination VMs, the bandwidth needed and the expected amount of time the commu-
nication will last. Upon receiving the request, the Predictor controller verifies residual resources
in the network, sends a reply and, in case there are enough available resources, generates and
installs the appropriate set of rules and rate-limiters for this communication. This approach is
similar to providing an API for applications to request network resources, like PANE (FERGU-
SON et al., 2013).

4.1.2.2 Resource Allocation

The allocation process is responsible for performing admission control and mapping appli-
cation requests in the datacenter infrastructure. An allocation can only be made if there are
enough computing and network resources available (MOENS et al., 2014). That is, VMs must
only be mapped to servers with available resources, and there must be enough residual band-
width for communication between VMs (as specified in the request). For simplicity, we follow
related work (BALLANI et al., 2011; XIE et al., 2012; JANG et al., 2015) and discuss Predictor
and its allocation component in the context of traditional tree-based topologies implemented in
current datacenters.

We design a location-aware heuristic to efficiently allocate tenant applications in the infras-
tructure. The key principle is minimizing bandwidth for intra-application communication (thus
allocating VMs of the same application as close as possible to each other), since this type of
communication generates most of the traffic in the network (as discussed before) and DCNs
typically have scarce resources (XIE et al., 2012).

Algorithm 4.1 allocates one application at a time, as requests are received. It receives as
input the physical infrastructure P (composed of servers, racks, switches and links) and the
incoming application request a (formally defined in Section 4.1.1 as xNa, Ba, wa, comm

inter
a y),

and works as follows. First, it searches for the best placement in the infrastructure for the
incoming application via dynamic programming (lines 1 – 17). To this end,NP

s pl´1q represents
the set of neighbors (directly connected switches) of switch s at level l ´ 1. Furthermore,
three data structures are defined and dynamically initialized for each request: (i) set Ra stores
subgraphs with enough computing resources for application a; (ii) V a

s stores the total number
of VMs of application a the s-rooted subgraph can hold; and (iii) Ca

s stores the number of VM
clusters that can be formed in subgraph s. The algorithm traverses the topology starting at rack
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level (level 1), up to the core, and determines subgraphs with enough available resources to
allocate the incoming request.

Algorithm 4.1: Location-aware algorithm.
Input : Physical infrastructure P (composed of servers, racks, switches and links), Application a=xNa, Ba, wa, comminter

a y

Output: Success/Failure code allocated

// Search for the best placement in the infrastructure
1 Ra Ð ∅;
2 foreach level l of P do
3 if l == 1 then // Top-of-Rack switches
4 foreach ToR r do
5 V a

r Ð num. available VMs in the rack;
6 Ca

r Ð 1;
7 if V a

r ě Na then Ra Ð Ra Y tru ;
8 end
9 end

10 else // Aggregation and core switches
11 foreach Switch s at level l do
12 V a

s Ð
ř

wPtNP
s pl´1qu V

a
w ;

13 Ca
s Ð

ř

wPtNP
s pl´1qu C

a
w;

14 if V a
s ě Na then Ra Ð Ra Y tsu ;

15 end
16 end
17 end

// Proceed to the allocation
18 allocatedÐ failure code;
19 while Application a not allocated and Ra not empty do
20 rÐ Select subgraph from Ra;
21 Ra Ð Ra z tru;

// VM placement
22 Allocate VMs of application a at r;

// Bandwidth allocation
23 foreach Level l from 0 to Height(r) do
24 Allocate bandwidth at l according to Section 4.1.2.1 and Equation 4.2;
25 end
26 foreach Inter-application communication c P comminter

a do
27 Allocate bandwidth for inter-application communication c specified at allocation time (as defined in Section 4.1.1);
28 end

29 if Application was successfully allocated at r then
30 allocatedÐ success code
31 end
32 else allocatedÐ failure code;
33 end
34 return allocated;

After verifying the physical infrastructure and determining possible placements, the algo-
rithm starts the allocation phase (lines 18 - 33). First, it selects one subgraph r at a time from
the set Ra to allocate the application (line 20). The selection of a candidate subgraph takes
into account the number of VM clusters. Therefore, the selected subgraph is the one with the
minimum number of VM clusters, so that VMs of the same application are allocated close to
each other, reducing the amount of bandwidth needed for communication between them (as the
network often represents the bottleneck when compared to computing resources (CHEN et al.,
2014)).

When a subgraph is selected, the algorithm allocates the application with a coordinated
node (VM-to-server, in line 22) and link (bandwidth reservation, in lines 23 – 28) mapping,
similarly to the virtual network embedding problem (CHOWDHURY; RAHMAN; BOUTABA,
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2009). In particular, bandwidth for intra-application communication (lines 23 – 25) is allocated
through a bottom-up strategy, as follows. First, it is reserved at servers (level 0). Then, it
is reserved, in order, for each subsequent level of the topology, according to the bandwidth
needed by communication between VMs from distinct racks that belong to the same application
(as explained in Section 4.1.2.1 and in Equation 4.2, and exemplified in Figure 4.3). After that,
bandwidth for inter-application communication (that was specified at allocation time in field
comminter

a ) is allocated in lines 26 – 28 (recall that comminter
a was defined in Section 4.1.1).

Finally, the algorithm returns a success code if application a was allocated or a failure
code otherwise (line 34). Applications that could not be allocated upon arrival are discarded,
similarly to Amazon EC2 (AMAZON, 2014).

4.1.2.3 Work-Conserving Rate Enforcement

Predictor provides bandwidth guarantees with work-conserving sharing. This is because
only enforcing guarantees through static provisioning leads to underutilization and fragmenta-
tion (POPA et al., 2013), while offering work-conserving sharing only does not provide strict
guarantees for tenants (BALLANI et al., 2013). Therefore, in addition to ensuring a base-level
of guaranteed rate, Predictor proportionally shares available bandwidth among applications with
more demands than their guarantees, as defined in Equation 4.1.

We design an algorithm to periodically set the allowed rate for each co-resident VM on a
server. In order to provide smooth interaction with TCP, we follow ElasticSwitch (POPA et
al., 2013) and execute the work-conserving algorithm between periods of time one order of
magnitude larger than the network round-trip time (RTT), e.g., 10 ms instead of 1 ms.

Algorithm 4.2 aims at enabling smooth response to bursty traffic (since traffic in DCNs
may be highly variable over short periods of time (ABTS; FELDERMAN, 2012; NAGARAJ et
al., 2016)). It receives as input the list of VMs (Vs) hosted on server s, their current demands
(which are determined by monitoring VM socket buffers, similarly to Mahout (CURTIS; KIM;
YALAGANDULA, 2011)), their bandwidth guarantees and their network weight (specified in
the application request and defined in Section 4.1.1).

First, the rate for each VM is calculated based on their demands and the guaranteed band-
width Brvs (lines 1 – 4). In case the demand of a VM is equal or lower than its bandwidth
guarantees (represented by v Ó Vs | v P Vs), the rate is assigned and enforced (line 2), so
that the exact amount of bandwidth needed for communication is used (wasting no network
resources). In contrast, the guarantee Brvs is initially assigned to nRatervs for each VM v P Vs

with higher demands than its guarantees (represented by v Ò Vs | v P Vs), in line 3. Then,
the algorithm calculates the residual bandwidth of the link connecting the server to the ToR
switch (line 5). The residual bandwidth is calculated by subtracting from the link capacity the
guarantees of VMs with higher demands than their guarantees and the rate of VMs with equal
or lower demands than their guarantees.
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Algorithm 4.2: Work-conserving rate allocation.
Input : Set of VMs Vs allocated on server s, Current demands of VMs demand, Bandwidth guarantees B for each VM, Network

weight w for each VM
Output: Rate nRate for each co-resident VM

1 foreach v P Vs do
2 if v Ó Vs then nRatervs Ð demandrvs ;
3 else nRatervs Ð Brvs ;
4 end

5 residualÐ LinkCapacity ´
´

ř

vÒVs
Brvs `

ř

vÓVs
demandrvs

¯

;

6 hungryVMsÐ v Ò Vs | v P Vs;
7 while residual ą 0 and hungryVMs not empty do
8 foreach v P hungryVMs do

9 nRatervs Ð nRatervs `min

ˆ

demandrvs ´ nRatervs,

ˆ

wrvs
ř

uÒVs
wrus

ˆ residual

˙˙

;

10 if nRatervs ““ demandrvs then
11 hungryVMsÐ hungryVMs z tvu;
12 end
13 end
14 end
15 return nRate;

The last step establishes the bandwidth for VMs with higher demands than their guarantees
(line 6 - 14). The rate (line 9) is determined by adding nRatervs (initialized in line 3) and
the minimum bandwidth between (i) the difference of the current demand (demandrvs) and
the rate (nRatervs); and (ii) the proportional share of residual bandwidth the VM would be
able to receive according to its weight wrvs. Note that there is a “while” loop (lines 7 – 14)
to guarantee that all residual bandwidth is used or all demands are satisfied. If this loop were
not used, there could be occasions when there would be unsatisfied demands even though some
bandwidth would be available.

With this algorithm, Predictor guarantees that VMs will not receive more bandwidth than
they need (which would waste network resources) and bandwidth will be fully utilized if there
are demands (work-conservation). Moreover, the algorithm has fast convergence on bandwidth
allocation and can adapt to the significant variable communication demands of cloud applica-
tions. Therefore, if there is available bandwidth, VMs can send traffic bursts at a higher rate (un-
like Silo (JANG et al., 2015), Predictor allows traffic bursts with complete work-conservation).

In summary, if the demand of a VM exceeds its guaranteed rate, data can be sent and re-
ceived at least at the guaranteed rate. Otherwise, if it does not, the unutilized bandwidth will be
shared among co-resident VMs whose traffic demands exceed their guarantees. We provide an
extensive evaluation in Section 4.2 to verify the benefits of the algorithm.

4.1.3 Control Plane Design

The control plane design of the network is an essential part of software-defined networks,
as disconnection between the control and data planes may lead to severe packet loss and per-
formance degradation (forwarding devices can only operate correctly while connected to a con-
troller) (MULLER et al., 2014; HU et al., 2013). Berde et al. (BERDE et al., 2014) define
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four requirements for the control plane: (i) high availability (usually five nines (ROS; RUIZ,
2014)); (ii) global network state, as the control plane must be aware of the entire network state
to provide guarantees for tenants and their applications; (iii) high throughput, to guarantee
performance in terms of satisfying requests even at periods of high demands; and (iv) low la-
tency, so that end-to-end latency for control plane communication (i.e., updating network state
in response to events) is small.

Based on these requirements, Figure 4.4 shows the control plane design for Predictor. In this
figure, we show, as a basic example, a typical 2-layer tree-like topology with decoupled control
and data planes. We can see two major aspects: (i) the placement of controller instances (control
plane logic) as a cluster in one location of the network (connected to all core switches); and (ii)
the separation between resources for both planes (represented by different line styles and colors
for link bandwidth), indicating out-of-band control plane communication. We discuss them
next.

Figure 4.4 – Design of Predictor’s control plane.

.....

Controller 
Instance 1

Controller 
Instance N

Servers

ToR devices

Aggregation/Core devices

Network brain
(control logic)

Control plane bandwidth
Data plane bandwidth

Traditional 2-level tree-like datacenter network

Source: by author (2016).

Cluster of controller instances. Following WL2 (CHEN et al., 2015), the control plane
logic is composed of a cluster of controller instances. There are two reasons for this. First and
most important, Predictor needs strong consistency among the state of its controllers to provide
network guarantees for tenants and their applications. If instances were placed at different loca-
tions of the topology, the amount of synchronization traffic would be unaffordable, since DCNs
typically have highly dynamic traffic patterns with variable demands (ABTS; FELDERMAN,
2012; GUO et al., 2014; NAGARAJ et al., 2016). Moreover, DCNs are typically oversubscribed
with scarce bandwidth (XIE et al., 2012).
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Second, the control plane is expected to scale-out (periodically grow or shrink the number
of active controller instances) according to its load, needed for high availability and through-
put. Since DCNs usually count with multiple paths (GILL; JAIN; NAGAPPAN, 2011), one
controller location is often sufficient to meet existing requirements (HELLER; SHERWOOD;
MCKEOWN, 2012). Furthermore, if controllers were placed at several locations, a controller
placement algorithm (e.g., Survivor (MULLER et al., 2014)) would have to be executed each
time the number of instances were adjusted, which would delay the response to data plane
requests (as this is a NP-Hard problem (HELLER; SHERWOOD; MCKEOWN, 2012)).

Out-of-band control. Predictor uses out-of-band control to manage the network. As
the network load may change significantly over small periods of time (BENSON; AKELLA;
MALTZ, 2010) and some links may get congested (ABTS; FELDERMAN, 2012) (due to the
high oversubscription factor (ADAMI et al., 2013)), the control and data planes must be kept
isolated from one another, so that traffic from one plane does not interfere4 with the other. In
other words, control plane traffic should not be impacted by rapid changes in data plane traffic
patterns (e.g., bursty traffic). Using out-of-band control, some bandwidth of each link shared
with the data plane (or all bandwidth from links dedicated to control functions) is reserved for
the control plane (represented in Figure 4.4 as red dotted lines). In the next section, we show
how the amount of bandwidth reserved for the control plane affects efficiency of Predictor.

4.2 Evaluation

Below, we evaluate the benefits and overheads of Predictor. We focus on showing that
Predictor (i) can scale to large SDN-based DCNs; (ii) provides both predictable network per-
formance (with bandwidth guarantees) and work-conserving sharing; and (iii) outperforms ex-
isting schemes for DCNs (the baseline SDN/OpenFlow controller and DevoFlow (CURTIS et
al., 2011)). Towards this end, we first describe the environment and workload used (in Sec-
tion 4.2.1). Then, we examine the main aspects of the implementation of Predictor (in Sec-
tion 4.2.2). Finally, we present the results in Section 4.2.3.

4.2.1 Setup

Environment. We have implemented a simulator that models an IaaS multi-tenant, SDN-
based datacenter. The network is defined as a tree-like topology, similar to current DCNs and
related work (XIE et al., 2012; BALLANI et al., 2013; JANG et al., 2015). It is composed of
a three-tier topology with 16,000 servers at level 0. We follow current schedulers and related
work (GRANDL et al., 2014) and divide computing resources of servers (corresponding to

4In oversubscribed networks, such as DCNs, where traffic may exceed link capacities in some occasions, in-
band control may result in network inconsistencies, as control packets may not (or take a long time to) reach the
destination.
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some amount of CPU, memory and storage) into slots for hosting VMs; each server is divided
into 4 slots, resulting in a total amount of 64,000 available VMs in the datacenter. Every 40
machines form a rack, and every 10 ToRs are connected to an aggregation switch. Finally,
all aggregation switches are connected to a core switch. The capacity of each link is defined
as follows: 1 Gbps for server-ToR links, 10 Gbps for ToR-aggregation links and 50 Gbps for
aggregation-core links.

Workload. The workload is composed of incoming application requests (to be allocated in
the datacenter) arriving over time. In particular, we consider a heterogeneous set of applications,
including MapReduce and Web Services. As defined in Section 4.1.1, each application a is
represented as a tuple xNa, Ba, wa, comm

inter
a y. Given the lack of publicly available traces for

DCNs, the workload was generated in line with related work (XIE et al., 2012; BALLANI et
al., 2013). Na is exponentially distributed around a mean of 49 VMs (following measurements
from prior work (SHIEH et al., 2011)). Ba was generated by reverse engineering the traces
used by Benson et al. (BENSON; AKELLA; MALTZ, 2010) and Kandula et al. (KANDULA
et al., 2009). More specifically, we used their measurements related to inter-arrival flow-time
and flow-size at servers to generate and simulate network demands of applications. Unless
otherwise specified, of all traffic, 20% of flows are destined to other applications (BALLANI
et al., 2013) and 1% is classified as large flows (ABTS; FELDERMAN, 2012). We pick the
destination of each flow by first determining whether it is an intra- or inter-application flow and
then uniformly selecting a destination. The weight wa is uniformly distributed in the interval
r0, 1s.

Like in IoNCloud, we generate the traffic used in the experiments for each application (not
the entire network), since a few studies (BENSON et al., 2011b; KANDULA et al., 2009)
indicate that traffic is unpredictable at long time-scales for the entire network.

4.2.2 Aspects of Predictor

Figure 4.5 shows the server-level architecture of Predictor. As described by Pfaff et al. (PFAFF
et al., 2015), the virtual machines allocated on the server send and receive packets to/from the
network through the hypervisor, using an Open vSwitch. We implemented a local controller
which directly communicates with the Open vSwitch. Together, the Open vSwitch and the local
controller are responsible for handling all traffic to/from local virtual machines.

This architecture leverages the relatively large amount of processing power at end-hosts
(MOSHREF et al., 2016) in the datacenter to implement two key aspects of Predictor (following
the description presented in the previous sections): (i) identifying flows at application-level; and
(ii) providing network guarantees and dynamically enforcing rates for VMs. Both aspects are
discussed next.

First, to perform application-level flow identification, Predictor utilizes Multiprotocol La-
bel Switching (MPLS). More specifically, applications are identified in OpenFlow rules (at the
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Figure 4.5 – Server-level architecture of Predictor.
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Open vSwitch) through the label field in the MPLS header. The MPLS label is composed of 20
bits, which allows Predictor to identify 1,048,576 different applications. The complete opera-
tion of identifying and routing packets at application-level works as follows. For each packet
received from the source VM, the Open vSwitch (controlled via the OpenFlow protocol) in
the source hypervisor pushes a MPLS header (four bytes) with an ID in the label field (the
application ID of the source VM for intra-application communication or a composite ID for
inter-application communication). Subsequent switches in the network use MPLS label and IP
source and destination addresses (which may be wildcarded, depending on the possibilities of
routing) matching fields to choose the correct output port to forward incoming packets. When
packets arrive at the destination hypervisor, the Open vSwitch pops the MPLS header and for-
wards the packet to the correct VM.

Second, the local controller at each server performs rate-limiting of VMs. More precisely,
the local controller dynamically sets the allowed rate for each hosted VM by installing the
appropriate rules and rate-limiters at the Open vSwitch. The rate is calculated by Algorithm 4.2,
discussed in Section 4.1.2.3. Note that Predictor also reduces rate-limiting overhead when
compared to previous schemes (e.g., Silo (JANG et al., 2015), Hadrian (BALLANI et al., 2013),
CloudMirror (LEE et al., 2014) and ElasticSwitch (POPA et al., 2013)), for it only rate-limits
the source VM while other schemes rate-limit each pair of source-destination VMs.

4.2.3 Results

Next, we explain the behavior of the three schemes we are comparing against each other
(Predictor, DevoFlow and the baseline). Then, we show the results of the evaluation: (i) we
examine the scalability of employing Predictor on large SDN-based DCNs; and (ii) we verify
bandwidth guarantees and predictability.

Comparison. We compare Predictor with the baseline SDN/OpenFlow controller and the
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state-of-the-art controller for DCNs (DevoFlow (CURTIS et al., 2011)). Before showing the
results, we briefly explain the behavior of Predictor, the baseline and DevoFlow.

In Predictor, bandwidth for intra-application communication is guaranteed at allocation
time. For inter-application communication guarantees, we consider two modes of operation,
as follows. The first one is called Proactive Inter-Application Communication (PIAC), in which
tenants specify in the request all other applications that their applications will communicate
with (by using the field comminter

a , as explained in Section 4.1.1). The second one is called
Reactive Inter-Application Communication (RIAC), in which rules for inter-application traf-
fic are installed by the controller by either reacting to new flows in the network or receiving
communication requests from applications, as defined in Section 4.1.2.1. Note that both modes
correspond to the extremes for inter-application communication: while PIAC considers that all
inter-application communication is specified at allocation time, RIAC considers the opposite.
Furthermore, we highlight that both modes result in the same number of rules in devices, but
differ in controller load and flow setup time (results are shown below).

In the baseline, SDN-enabled switches forward to the controller packets that do not match
any rule in the flow table (we consider the default behavior of OpenFlow versions 1.3 and
1.4 upon a table-miss event). The controller, then, responds with the appropriate set of rules
specifically designed to handle the new flow.

DevoFlow considers flows at the same granularity than the baseline, thus generating a simi-
lar number of rules in forwarding devices. However, forwarding devices rely on more powerful
hardware and templates to generate rules for small flows without involving the controller. For
large flows, DevoFlow has two modes of operation. DevoFlow Triggers requires SDN-enabled
switches to identify large flows and ask the controller for appropriate rules for these flows (i.e.,
only packets of large flows are forwarded to the controller). DevoFlow Statistics, in turn, re-
quires forwarding devices to send the controller uniformly chosen samples (packets), typically
at a rate of 1/1000 packets, so that the controller itself identifies and generates rules for large
flows. In summary, both DevoFlow modes generate the same number of rules in devices, but
differ in controller load and flow setup time.

Scalability metrics. We use four metrics to verify the scalability of Predictor in SDN-based
datacenter networks: number of rules in flow tables, controller load, impact of reserved control
plane bandwidth and flow setup time. These are typically the factors that restrict scalability the
most (JARRAYA; MADI; DEBBABI, 2014; POPA et al., 2013).

Reduced number of flow table entries. Figure 4.6 shows how network load (measured in
new flows/second per rack) affects flow table occupancy in forwarding devices. More precisely,
the plots in Figures 4.6(a), 4.6(b) and 4.6(c) show, respectively, the maximum number of entries
observed in our experiments5 that are required in any hypervisor, ToR and aggregation switch

5Since flow table capacity of current available OpenFlow switches ranges from one thousand (NAKAGAWA
et al., 2013) to around one million entries (NOVIFLOW, 2015), the observed values during the experiments are
within acceptable ranges.
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for a given average rate of new flows at each rack (results for core devices are not shown, as
they are similar for all three schemes).

Figure 4.6 – Maximum number of rules (that were observed in the experiments) in forwarding devices.
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(a) In hypervisors.
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(b) In ToRs.
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(c) In aggregation switches.

Source: by author (2016).

In all three plots, we see that the average number of arriving flows during an experiment
affects directly the number of rules needed in devices. These results are explained by the fact
that the number of different flows that pass through forwarding devices is large and may quickly
increase due to the elevated number of end-hosts (VMs) and arriving flows in the network.
Overall, the increase of the total number of flows requires more rules for the correct operation
of the network (according to the needs of tenants) and enables richer communication patterns
(representative of cloud datacenters (BALLANI et al., 2013)). Note that the number of rules for
the baseline and DevoFlow is similar because (i) they consider flows at the same granularity;
and (ii) the same default timeout for rules was adopted for all three schemes.

The results show that Predictor substantially outperforms DevoFlow and the baseline (es-
pecially for realistic numbers of new flows in large-scale DCNs, i.e., higher than 1,500 new
flows/second per rack (POPA et al., 2013)). More importantly, the curves representing Predictor
have a smaller growing factor than the ones for DevoFlow and the baseline. The observed im-
provement happens because Predictor manages flows at application-level and also wildcards the
source and destination addresses in rules when possible (as explained in Section 4.2.2). Predic-
tor reduces the number of rules up to 94% in hypervisors, 78% in ToRs and 37% in aggregation
devices. In particular, the reduction in aggregation switches is smaller than in hypervisors and
ToRs because more rules need to be installed with destination IP addresses (i.e., they cannot be
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installed with wildcards in the IP destination field). In core devices, the reduction is negligible
(around 1%), because (a) a high number of flows does not need to traverse core links to reach
their destinations, thus the baseline and DevoFlow do not install many rules in core devices,
while Predictor installs application-level rules; and (b) Predictor proactively installs rules for
intra-application traffic (while other schemes install rules reactively).

Since Predictor considers flows at application-level and inter-application flows may require
rules at a lower granularity (e.g., by matching MAC and IP fields), we now analyze how the
number of inter-application flows affects the number of rules in forwarding devices for Predictor
(previous results considered 20% of inter-application flows, a realistic percentage according to
the literature (BALLANI et al., 2013)). Note that we only show results for Predictor because the
percentage of inter-application flows does not impact the number of rules in forwarding devices
for the baseline and DevoFlow.

Figure 4.7 shows the maximum number of entries in hypervisors, ToR, aggregation and
core devices observed in our experiments (y-axis) for a given percentage of inter-application
flows (x-axis), considering an average of 1,500 new flows/second per rack. As expected, we
see that the number of rules in devices increases according to the number of inter-application
flows. This happens because this type of communication often involves a restricted subset of
VMs from different applications. Therefore, Predictor may not install application-level rules for
these flows and may end up installing lower-granularity ones (e.g., by matching the IP field).
Nonetheless, application-level rules address most of the traffic in the DCN.

Moreover, the number of rules in aggregation and, in particular, in core switches is higher
than in ToR devices and in hypervisors. It is so because core switches interconnect several ag-
gregation switches and, as time passes, the arrival and departure of applications lead to disper-
sion of available resources in the infrastructure. In this context, VMs from different applications
(allocated in distinct ToRs) communicate with each other through paths that use aggregation and
core switches.

In general, Predictor reduces the number of rules installed in forwarding devices, which can
(i) improve hypervisor performance (as measured by LaCurts et al. (LACURTS et al., 2013));
(ii) minimize the amount of TCAM occupied by rules in SDN-enabled switches (TCAMs are a
very expensive resource (COHEN et al., 2014) and consume a high amount of power (KREUTZ
et al., 2014)); and (iii) minimize the time needed to install new rules in TCAMs, as measured
in Section 2.3.2.

Low controller load. As DCNs typically have high load, the controller should handle
flow setups efficiently. Figure 4.8 shows the required capacity in number of messages/s for
the controller. For better visualization, the y-axis is represented in logarithmic scale, as the
values differ significantly for different schemes. As expected, the number of messages sent
to the controller increases according to the average number of new flows/s per rack (except for
Predictor PIAC and DevoFlow Statistics). The controller must set up network paths and allocate
resources according to arriving flows (flows without matching rules in forwarding devices).
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Figure 4.7 – Maximum number of rules in forwarding devices for different percentages of inter-
application flows for Predictor.
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The baseline imposes a higher load to its controller than other schemes. DevoFlow Statistics
requires a regular load to its controller, independently of the number of flows, as the number
of messages sent by forwarding devices to the controller depends only on the amount of traffic
in the network; in this scheme, devices send to the controller randomly chosen packet sam-
ples at a rate of 1/1000 packets. DevoFlow Triggers, in turn, only needs controller intervention
to install rules for large flows (at the cost of more powerful hardware at forwarding devices).
Thus, it significantly reduces controller load, but may also reduce controller knowledge of (i)
network load and (ii) flow table state in SDN-enabled switches. Predictor RIAC proactively
installs application-level rules for intra-application communication at allocation time and re-
actively sends rules for inter-application traffic upon receiving communication requests, which
reduces the number of flow requests when compared to the baseline (« 91%) but increases it
in comparison to DevoFlow Triggers (« 8%). Finally, Predictor PIAC receives fine-grained
information about intra- and inter-application communication at application allocation time,
proactively installing the respective rules when needed. Therefore, controller load can be sig-
nificantly reduced (i.e., the controller receives requests only when applications are allocated)
without hurting knowledge of network state, but at the cost of some burden on tenants (as they
need to specify inter-application communication at allocation time for Predictor PIAC).

Recall that the Predictor modes under evaluation correspond to extremes. Therefore, in
practice, we expect that Predictor controller load will be between the results shown for PIAC
and RIAC. Moreover, we do not show results for controller load varying the number of large
flows because results are the same for both modes (and also for the baseline and DevoFlow
Statistics). DevoFlow Triggers, however, imposes a higher load to its controller as the number
of large flows increases (Figure 4.8 depicted results for a realistic value of 1% of large flows).

So, in both modes, the Predictor controller is aware of most of the traffic (at application-
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Figure 4.8 – Controller load.
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level) and performs fine-grained control. In contrast, DevoFlow Triggers has knowledge of only
large flows (approximately 50% of the total traffic volume (BENSON; AKELLA; MALTZ,
2010)) and DevoFlow Statistics has partial knowledge of network traffic with a high number of
messages sent to the controller.

Impact of control plane bandwidth. SDN separates the control and data planes. Ideally,
control plane communication is expected to be isolated from data plane traffic, avoiding cross-
interference. In this context, the bandwidth it requires varies: the more dynamic the network, the
more control plane traffic may be required for updating network state and getting information
from forwarding devices. We evaluate the impact of reserving some amount of bandwidth (5%,
10%, 15%, 20%, 25% and 30%) on data plane links to the control plane and compare it with
a baseline value of 0% (which represents no bandwidth reservation for the control plane). In
other words, we want to verify how the acceptance ratio of applications (y-axis) is affected
according to the amount of bandwidth reserved for the control plane (x-axis), since the network
is the bottleneck in comparison to computing resources (XIE et al., 2012; CHEN et al., 2014).
Figure 4.9 confirms that acceptance ratio of requests decreases according to the amount of
bandwidth available for the control plane (clearly, more bandwidth for the control plane means
less bandwidth for the data plane). Nonetheless, this reduction is small, even for a worst-
case scenario: reserving 30% of bandwidth on data plane links for the control plane results in
accepting around 9% fewer requests (regarding the total number of requests).

Therefore, depending on the configuration, SDN may affect DCN resource utilization and,
consequently, provider revenue. There are two main reasons: (i) it involves the control plane
more frequently (CURTIS et al., 2011); and (ii) SDN-enabled switches are constantly exchang-
ing data with the controller (for both flow setup and the controller to get updated information
about network state). In this context, the amount of bandwidth required for the control plane for
flow setup is directly proportional to the number of requests to the controller (Figure 4.8). In
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Figure 4.9 – Impact of reserved bandwidth for the control plane on acceptance ratio of requests (error
bars show 95% confidence interval).
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our experiments, SDN-enabled switches were configured to send the first 128 bytes of the first
packet of new flows to the controller (instead of sending the whole packet). With this configu-
ration and for a realistic number of new flows/s per rack (i.e., 1,500 new flows), the bandwidth
required by the controller for flow setup for each scheme was at most the following: 1 Mbps for
Predictor PIAC, 15 Mbps for Predictor RIAC, 2 Mbps for DevoFlow Triggers, 173 Mbps for
DevoFlow Statistics and 166 Mbps for the baseline. Even though Predictor may require more
bandwidth for its control plane than DevoFlow in some occasions, it has better knowledge of
current network state and does not need customized hardware at forwarding devices.

After verifying the feasibility of employing Predictor on large-scale, SDN-based DCNs (i.e.,
the benefits provided by Predictor, as well as the overheads), we turn our focus to the challenge
of bandwidth sharing unfairness. In particular, we show that Predictor (i) proportionally shares
available bandwidth; (ii) provides minimum bandwidth guarantees for applications; and (iii)
provides work-conserving sharing under worst-case scenarios, achieving both predictability for
tenants and high utilization for providers.

Impact of weights on proportional sharing. Before demonstrating that Predictor provides
minimum guarantees with work-conserving sharing, we evaluate the impact of weights when
proportionally sharing available bandwidth. More specifically, we first want to confirm that
available bandwidth is proportionally shared according to the weights assigned to applications
and their VMs.

Toward this end, Figure 4.10 shows, during a predefined period of time, three VMs from
different applications allocated on a given server with same demands (the demand of each VM
is indicated by the blue line in the plot) and guarantees (red line), but different weights (0.2,
0.4 and 0.6, respectively). We verify that, in case that the sum of all three VM demands do not
exceed the link capacity (1 Gbps), all VMs have their demands satisfied (e.g., between 1s – 86s



72

and 118s – 197s), independently of their guarantees. In contrast, if the sum of demands exceed
the link capacity, each VM gets a share of available bandwidth (i.e., more than its guarantees)
according to its weight (the higher the weight, the more bandwidth it gets). Note that, in this
case, the rate of each VM stabilizes (between 87s – 117s and 197s – 500s) because, as the sum
of demands exceed the link capacity (and VMs have the same demands and guarantees), the
only factor that impacts available bandwidth sharing is the weight. In general, the results show
that the use of weights enables proportional sharing.

Figure 4.10 – Proportional sharing according to weights (VM 1: 0.2; VM 2: 0.4; and VM 3: 0.6),
considering the same guarantees (200 Mbps) and the same demands for all three VMs allocated on a
given server connected through a link of 1 Gbps.
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Minimum bandwidth guarantees for VMs. We define it as follows: the VM rate should be
(a) at least the guaranteed rate if the demand is equal or higher than the guarantees; or (b) equal
to the demand if it is lower than the guarantees. To illustrate this point, we show, in Figure 4.11,
the set of VMs (in this case, three VMs from different applications) allocated on a given server
during a predefined time period of an experiment. Note that VM 1 [Figure 4.11(a)] and VM 3
[Figure 4.11(c)] have similar guarantees, but receive different rates (“used bandwidth”) when
their demands exceed the guarantees (e.g., after 273s). This happens because they have dif-
ferent network weights (0.17 and 0.59, respectively), and the rate is calculated considering
the demands, bandwidth guarantees, network weight and residual bandwidth. Moreover, we
see (from Figures 4.10 and 4.11) that VMs may not get the desired rate to satisfy all of their
demands instantaneously (when their demands exceed their guarantees) because (i) the link
capacity is limited; and (ii) available bandwidth is proportionally shared among VMs.

In summary, we see that Predictor provides minimum bandwidth guarantees for VMs, since
the actual rate of each VM is always equal or higher than the minimum between the demands
and the guarantees. Therefore, applications have minimum bandwidth guarantees and, thus, can
achieve predictable network performance.
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Figure 4.11 – Bandwidth rate achieved by the set of VMs allocated on a given server during a predefined
period of time.
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Work-conserving sharing. Bandwidth which is not allocated, or allocated but not cur-
rently used, should be proportionally shared among other VMs with more demands than their
guarantees (according to the weights of each application, using Algorithm 4.2). Figure 4.12
shows the aggregate bandwidth6 on the server holding the set of VMs in Figure 4.11. In these
two figures, we verify that Predictor provides work-conserving sharing in the network, as VMs
can receive more bandwidth (if their demands are higher than their guarantees) when there is
spare bandwidth. Thus, providers can achieve high network utilization. Furthermore, by pro-
viding work-conserving sharing, Predictor offers high responsiveness7 to changes in bandwidth

6Note that Predictor considers only bandwidth guarantees when allocating VMs (i.e., it does not take into
account temporal demands). Therefore, even though the sum of temporal demands of all VMs allocated on a given
server may exceed the server link capacity, the sum of bandwidth guarantees of these VMs will not exceed the link
capacity.

7Responsiveness is a critical aspect of cloud guarantees (MOGUL; POPA, 2012).
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requirements of applications.

Figure 4.12 – Work-conserving sharing on the server holding the set of VMs from Figure 4.11.
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In general, Predictor provides significant improvements over DevoFlow, as it allows high
utilization in the network for providers and predictability with guarantees for tenants and their
applications. As a side effect, Predictor may have higher controller load than DevoFlow (the
cost of providing fine-grained management in the network without imposing to tenants the
burden of specifying inter-application communication at allocation time).

Generality of the results. Like in IoNCloud, we believe that the obtained results are gener-
alizable to most workloads and real cloud platforms (e.g., Amazon EC2 and Microsoft Azure).
Despite the fact that we could not obtain real traces from public clouds for pragmatic reasons,
we reversed engineered the traces used by Kandula et al. (2009) and Benson, Akella and Maltz
(2010), generating a mixed workload (from different types of applications, such as MapReduce
and web services). Moreover, we chose a tree-topology to evaluate Predictor because we wish to
mimic current datacenter networks (JANG et al., 2015) and to follow related work (BALLANI
et al., 2013; BALLANI et al., 2011; XIE et al., 2012).

We highlight that the used workload represents a middle-case (a realistic demand). We did
not evaluate the best- and worst-case scenarios because they are unrealistic, i.e., they are not
expected to happen in practice. Nonetheless, we briefly discuss them in the following manner.
The best-case happens when all VMs generate only intra-application communication. Since
Predictor manages flows at application-level, it would result in (i) the minimum number of
rules and rate-limiters necessary to correctly forward traffic and ensure bandwidth guarantees
for applications; and (ii) the lowest controller load. In contrast, the worst-case occurs when all
VMs generate only inter-application communication with a specific traffic pattern that requires
rules to be installed at VM-to-VM granularity (not at application-level). This would result in
flow table size being similar to DevoFlow and the baseline and in controller load being similar
to the baseline. In this case, Predictor would still provide minimum bandwidth guarantees and
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work-conserving sharing (as opposed to DevoFlow and the baseline).

4.3 Discussion

After evaluating Predictor, we discuss its generality and limitations.

Application-level flow identification. In our proof-of-concept implementation, Predic-
tor identifies flows at application-level through the MPLS label (application ID with 20 bits).
Therefore, it needs a MPLS header in each packet (adding four bytes of overhead). In practice,
there are at least two other options to provide such functionality. First, when considering the
matching fields defined by OpenFlow, application-level flows could also be identified by uti-
lizing IEEE standard 802.1ad (Q-in-Q) with double VLAN tagging. The advantage of double
tagging is a higher number of IDs available (24 bits), while the drawback is an overhead of
eight bytes (two VLAN headers) per packet. Second, application-level flows could be identified
by using OpenFlow Extensible Match (OXM)8 to define a unique match field for this purpose.
Nonetheless, this method is less flexible, as it requires (i) switch support for OXM; and (ii)
programming to add a new matching field in forwarding devices.

Topology-awareness. Even though Algorithm 4.1 was specifically designed for tree-like
topologies, the proposed strategy is topology-agnostic. Therefore, we simply need to replace
Algorithm 4.1 to employ Predictor in DCNs with other types of interconnections. We used a
tree-like placement algorithm in this paper for three reasons. First, currently most providers
implement DCNs as (oversubscribed) trees, since they can control the oversubscription factor
more easily with this type of structure (in order to achieve economies of scale). Second, by
using an algorithm specially developed for a particular structure, we can enable better use of
resources. Thus, we show more clearly the benefits and overheads of the proposed strategy.
Third, we used tree topologies for the sake of explanation, as it is easier to explain and to
understand how bandwidth is allocated and shared among VMs of the same application in this
kind of topology (e.g., in Figure 4.3) than, for example, in random graphs.

Dynamic rate allocation with feedback from the network. The designed work-conserving
algorithm does not take into account network feedback provided by the OpenFlow module. This
design choice was deliberately made; we aim at reducing management traffic in the network,
since DCNs are typically oversubscribed networks with scarce resources (XIE et al., 2012).
Nonetheless, the algorithm could be extended to consider feedback, which would further help
controlling the bandwidth used by flows traversing congested links.

Application ID management. Predictor controller assigns IDs for applications (in order to
identify flows at application-level) upon allocation and releases IDs upon deallocation. There-
fore, ID management is straightforward, as Predictor has full control over which IDs are in use
at each period of time.

8OXM was introduced in OpenFlow version 1.2 and currently is supported by several commercial forwarding
devices.
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Application request abstraction. Currently, Predictor only supports the hose model (DUFFIELD
et al., 1999b). Nonetheless, it can use extra control applications (one for each abstraction) (i) to
parse requests specified with other models (e.g., TAG (LEE et al., 2014) and hierarchical hose
model (BALLANI et al., 2013)); and (ii) to install rules accordingly. With other abstractions,
Predictor would employ the same sharing mechanism (Section 4.1.2). Thus, it would provide
the same level of guarantees.

4.4 Summary

Datacenter networks are typically shared in a best-effort manner, resulting in interference
among applications. SDN may enable the development of a robust solution for interference.
However, the scalability of SDN-based proposals is limited, because of flow setup time and the
number of entries required in flow tables.

We have introduced Predictor in order to scalably provide predictable and guaranteed per-
formance for applications in SDN-based DCNs. Performance interference is addressed by us-
ing two novel SDN-based algorithms. Scalability is tackled as follows: (i) flow setup time is
reduced by proactively installing rules for intra-application communication at allocation time
(since this type of communication represents most of the traffic in DCNs); and (ii) the number
of rules in forwarding devices is minimized by managing flows at application-level. Evaluation
results show the benefits of Predictor. First, it provides minimum bandwidth guarantees with
work-conserving sharing (successfully solving performance interference). Second, it eliminates
flow setup time for most traffic in the network and significantly reduces flow table size (up to
94%), while keeping low controller load (successfully dealing with scalability of SDN-based
DCNs). In future work, we intend to evaluate Predictor on a testbed (such as CloudLab (Cloud-
Lab, 2016)).
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5 PACKER: MINIMIZING MULTI-RESOURCE FRAGMENTATION

IoNCloud and Predictor provide predictable and guaranteed network performance. How-
ever, they neglect non-network resources (e.g., CPU, memory and disk), resulting in frag-
mentation of these resources. As a matter of fact, applications perform rich and complex
tasks (DOGAR et al., 2014), with different demands for each resource type (GHODSI et al.,
2011). Most applications running on datacenters have multiple stages, where a subsequent
stage can only start when the previous stage finishes (XIE et al., 2012). Consequently, any re-
source that becomes a bottleneck and delays a stage (especially performance interference in the
network (BALLANI et al., 2013)) may slow down the entire application.

To address the aforementioned challenge, we propose Packer, a scheme that aims at (i) pro-
viding the same level of network guarantees than Predictor; and (ii) minimizing multi-resource
fragmentation and, consequently, increasing datacenter utilization. To achieve these goals,
Packer considers multiple types of resources to admit (allocate) applications in the datacenter,
so that tenants can request and receive the necessary amount of resources that their applications
need to correctly execute and finish without delay. Furthermore, by considering multiple re-
sources, providers can avoid over-allocation (GRANDL et al., 2014) and make better use of the
whole infrastructure, allocating more applications and increasing revenue.

This chapter is structured as follows. We first present the design of Packer in Section 5.1.
Then, we describe its evaluation in Section 5.2. Finally, we discuss the generality and limita-
tions in Section 5.3 and close the chapter with a brief summary in Section 5.4.

5.1 Design

Packer implements a novel strategy for minimizing multi-resource fragmentation and for
providing predictable and guaranteed network performance in large-scale cloud datacenters.
Figure 5.1 shows an overview of Packer. The scheme is composed of three components: dat-
acenter resource manager (DRM), OpenFlow-enabled switches and one local controller per
server. They are discussed next.

Figure 5.1 – Packer overview.
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Datacenter resource manager (DRM). It is responsible for (i) allocating applications in
the datacenter; and (ii) handling global events (e.g., bandwidth enforcement throughout the
entire network for applications). More specifically, it receives an application request (in the
form of a TI-MRA specification) and employs a novel resource allocation strategy (described in
Section 5.1.2) to determine the set of resources to be used by the application. Then, it sends the
application tasks to the servers that will execute them (as determined by the allocation strategy)
and, via OpenFlow, configures switches (with rules and rate-limiters) to provide connectivity
and network performance guarantees for the application. Furthermore, the DRM periodically
receives up-to-date information regarding resource usage from local controllers at servers and
from OpenFlow switches.

OpenFlow switches. These devices are responsible for forwarding traffic according to the
instructions received from the DRM. They receive rules and rate-limiters to correctly handle
traffic and enforce bandwidth for applications. Moreover, they periodically report resource
usage statistics to the DRM.

Local controllers (LCs) at servers. They are part of the resource monitoring mechanism
utilized in Packer (described in Section 5.1.4). LCs are responsible for (i) monitoring multi-
resource usage at servers and reporting it to the DRM; (ii) enforcing allocations; and (iii)
reacting to local events (e.g., dealing with congested resources inside their respective server).

We detail Packer in the following manner. We first present the novel abstraction (called
Time-Interleaved Multi-Resource Abstraction – TI-MRA) used for applications in Section 5.1.1.
Then, we utilize TI-MRA as input for the new allocation algorithm (Section 5.1.2) and describe
the strategy used for providing predictable and guaranteed network performance (Section 5.1.3).
Finally, we detail the resource monitoring mechanism in Section 5.1.4. The notations used
throughout this chapter are presented in Table 5.1.

5.1.1 Time-Interleaved Multi-Resource Abstraction (TI-MRA)

Prior work has designed abstractions expressed as physical network models (i.e., the hose
model) (BALLANI et al., 2011; XIE et al., 2012; JANG et al., 2015), two-level trees (hierarchi-
cal hose) (BALLANI et al., 2011; BALLANI et al., 2013) or based on communication patterns
(TAG) (LEE et al., 2014). However, they focus on the network and neglect other resources. In
particular, the hose model (used by most related work) does not accurately capture the network
requirements of applications with complex traffic interactions (LEE et al., 2014).

An effective abstraction is expected to consider two purposes. The first is to allow tenants
to specify their application requirements in a simple and accurate manner. The second is to
allow providers to minimize over-allocation (i.e., allocating the correct amount of resources
required by applications), which may increase the percentage of allocated applications and,
consequently, may improve datacenter throughput.

Based on these purposes and the limitations of prior work, we propose a novel abstraction
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Table 5.1 – Notations adopted throughout this chapter.

Symbol Description

A Set of application requests
Ga

TI´MRA TI-MRA graph of application a P A
V a Set of nodes of application a P A (V a “ Ka Y Ca)
Ka Set of tasks of application a P A (Ka Ď V a)
Ca Set of cloud services used by app a P A (Ca Ă V a)
Ea Set of edges (dependencies between nodes) of app a P A
Ta Discrete time instants of application a P A (Ta Ď T )
wa Weight of application a P A

N Set of all infrastructure nodes (N “ S Y J )
S Set of servers in the datacenter infrastructure (S Ď N )
J Set of services available in the datacenter (J Ă N )
L Set of links in the datacenter network
T Discrete time instants of the infrastructure
P Set of all paths available in the network

Ppn1, n2q Set of paths from src node n1 P N to dest node n2 P N
wr Weight of r P tCPU, MEM, IO_WRITE, IO_READ, BANDu

δpv, r, tq Amount of resource r P tCPU, MEM, IO_WRITE, IO_READu required by node v P V a at time t P Ta for
app a P A

σpe “ pu, vq, tq Bandwidth for communication between nodes u, v P V a | e “ pu, vq P Ea at time t P Ta for application
a P A

Mnpvq Node n P N that holds the node v P V a of app a P A
Mepu, vq Infrastructure path (P pMnpuq,Mnpvqq) used for communication between nodes u, v P V a of app

a P A
Apnq Tasks running at infrastructure node n P N
Bplq Total capacity (bandwidth) of link l P L
Cplq Communications (edges in the TI-MRA) using link l P L
Dpuq Application that task u belongs to
Epvq Nodes that node v P V a | a P A depends on

Qpn, r, tq Amount of available resource r on n P N at time t P T
Rpn, rq Capacity of infrastructure node n P N for resource type r

Source: by author (2016).

for applications, called Time-Interleaved Multi-Resource Abstraction (TI-MRA). TI-MRA al-
lows the specification of not only network demands but also other types of resources. TI-MRA
leverages tenants’ knowledge of their applications to yield a flexible representation of the ap-
plications’ resource consumption. It uses the same principle of (a) temporal bandwidth require-
ments in TIVC (XIE et al., 2012), but extends it to all kinds of resources; and (b) communication
patterns in TAG (LEE et al., 2014). Furthermore, it also takes into account dependencies other
than among tasks (such as between tasks and cloud services), in order to optimize the use of
resources. The intuition is that TI-MRA allows a flexible representation of application require-
ments rather than imposing a predefined abstraction (e.g., the hose model) for applications to
map their requirements to.

TI-MRA extends the concept of time-varying graphs (TVGs) (WEHMUTH; ZIVIANI;
FLEURY, 2015) to represent temporal demands of multiple resources. A TI-MRA graph of
application a P A is represented as Ga

TI-MRA “ xV
a, Ea, T a, wa, δ, σy, with the terms being de-

fined as follows: V a “ Ka Y Ca is the set of application nodes, composed of tasks (Ka) and
cloud services required by the application (Ca); Ea is the set of edges, representing the depen-
dencies between nodes; T a is the set of discrete time instants, from the time the first node of
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application a begins its computation to the time the last node finishes; wa P r0, 1s is defined by
the provider (based on the tenant’s payment) and indicates the weight of application a, so that
residual resources (unallocated, or reserved resources for an application and not currently being
used) can be proportionally shared among applications with more demands than their guaran-
tees (work-conservation); and δpv, r, tq P R` returns the demand of node v P V a at time t P T a

for resource r P tCPU, MEM, IO_WRITE, IO_READu. The last function, σpe “ pu, vq, tq P R`, de-
notes the bandwidth necessary for communication between nodes u P V a and v P V a | u ‰ v at
time t P T a, for e “ pu, vq P Ea. Note that we do not consider moving nodes and edges across
time. This does not impact the generality of TI-MRA because when a node or edge has no
demand for a given resource, the call for the respective function (δpv, r, tq or σpe “ pu, vq, tq)
returns zero.

An example of TI-MRA is shown in Figure 5.2. The figure depicts a simple application
composed of five tasks and temporal resource requirements for CPU, memory, disk I/O write,
disk I/O read and bandwidth. In this example, tasks T1 and T2 get their input data from storage
service STS1; T3 depends on tasks T1 and T2 and on data sent from cloud service CS1; T4 reads
data from storage service STS2 to perform its computation; and T5 depends on tasks T3 and T4

and stores the final result in STS3. Moreover, note that edges (links representing the exchange
of data) are unidirectional (different amounts of bandwidth for sending and receiving data).
Having two links instead of a single bidirectional link avoids over-allocation and bandwidth
wastage.

Figure 5.2 – TI-MRA of a simple application composed of five tasks (T1 to T5), where tasks read and
write data from/to storage services (STS1, STS2 and STS3) and use cloud service CS1.
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Source: by author (2016).

Producing TI-MRA models. TI-MRA can be used not only by tenants who have a deep un-
derstanding of their application demands, but also by users who do not know it in advance. The
former can tune resource demands according to the application requirements, possibly reducing
costs (avoiding over-allocation) without impact on performance. The latter, in turn, can specify
only peak demands for resources (i.e., a constant temporal function). This would be similar to
the hose model specification. Alternatively, the same strategy employed in CloudMirror (LEE
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et al., 2014) for generating TAG models could be used here: application templates for TI-MRA
could be provided as a library for users through the extension of cloud orchestration systems
like OpenStack Heat and AWS CloudFormation.

5.1.2 Allocation Strategy

The problem of allocating applications considering multiple types of resources in data-
centers can be reduced to multi-dimensional bin packing (also called vector bin packing –
VBP) (GRANDL et al., 2014), which is NP-Hard for every dimension d and APX-Hard for
d ě 2 (PANIGRAHY et al., 2011). Given balls (application tasks) and bins (servers) with sizes
for each property (resource) considered, VBP assigns the balls to bins according to an opti-
mization objective. In our case, the goal is to reduce fragmentation and over-provisioning and,
consequently, improve the percentage of allocated applications and their tasks.

In case applications are constrained by a single resource (e.g., network), the problem be-
comes, in essence, a one dimensional bin packing (PANIGRAHY et al., 2011). However, cloud
applications are typically constrained by multiple resources, including network (JANG et al.,
2015) and CPU (OUSTERHOUT et al., 2015). Moreover, the network is a distributed resource
(composed of several links); therefore, the amount of resources consumed depends on band-
width demands of tasks as well as their location in the infrastructure (the whole path used for
communication must be taken into account), which increases the difficulty in efficiently opti-
mizing the use of resources.

Problem definition. The process of multi-resource allocation is formally defined as follows.
The TI-MRA specification of application a P A is given by Ga

TI´MRA “ xV
a, Ea, T a, wa, δ, σy.

A node v P V a can be either a task or a cloud service and is mapped to an infrastructure node
n P N . Each task k P Ka | Ka Ď V a is assigned to an infrastructure server (s P S | S Ď N )
by mapping Mn : Ka Ñ S, @a P A (Equation 5.1). Each cloud service c P Ca | Ca Ă V a

required by application a P A, in turn, is part of the set of services (J | J Ă N ) available in
the platform (offered by either the provider or a tenant) and is assigned to a node j P J that
runs the requested service by mapping Mn : Ca Ñ J , @a P A (Equation 5.2).

Mnpkq P S | k P K
a or (5.1)

Mnpcq P J | c P Ca (5.2)

Each dependency between nodes (i.e., edges in the TI-MRA graph, specified in set Ea) is
mapped to a single path between the corresponding infrastructure nodes (servers for tasks and
cloud services for services needed by the application). The assignment is defined by mapping
Me : E

a Ñ P , @a P A, where P denotes the set of all available paths in the network, such that
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for all e “ pu, vq P Ea, @a P A:

Mepu, vq P P pMnpuq,Mnpvqq (5.3)

The nodes in V a run for at most T a discrete time units to perform the computation required
by application a P A and communicate among themselves using links e P Ea. Each node
v P V a presents temporal demands for computing resource r P tCPU, MEM, IO_WRITE, IO_READu
(δpv, r, tq), @t P T a. Furthermore, each edge e “ pu, vq P Ea between communicating nodes u
and v (such that u ‰ v) presents temporal bandwidth demands: σpe “ pu, vq, tq, @t P T a.

A valid allocation is constrained by the amount of available resources. More specifically, a
cloud service j P J will only perform the task required by node c P Ca | a P A if it has enough
available resources to satisfy the demands. Similarly, a task can only be allocated in a server
if the server has enough available capacity for each type of resource being considered. Given
Apnq a function that returns all tasks running at infrastructure node n P N , Rpn, rq a function
that returns the capacity of infrastructure node n P N for resource r and T the discrete time
instants of the infrastructure, the constraint for computing resources is defined as follows:

ÿ

vPApnq
δpv, r, tq ď Rpn, rq @n P N, @r P tCPU, MEM, IO_WRITE, IO_READu, @t P T (5.4)

The network is a special case, since it is a distributed resource. Specifically, bandwidth
must be taken into account at the entire path used for each communication between application
nodes and the amount of allocated bandwidth at a link l must not exceed the total capacity of l
(Equation 5.5).

ÿ

e“pu,vqPCplq
σpe, tq ď Bplq @l P L, @t P T (5.5)

where L represents the set of links in the datacenter network, Cplq returns the set of communica-
tions (edges in TI-MRA graphs of applications) using link l and Bplq returns the total capacity
(bandwidth) of link l.

Note that the above constraints are non-linear, in particular functions A and C (since they de-
pend on the allocation of application nodes in infrastructure nodes). Efficient solvers are known
only for some non-linear problems, such as the quadratic assignment problem. However, even
when placement considerations are eliminated, the problem of VBP is APX-Hard (WOEGIN-
GER, 1997) and re-solving it whenever new applications arrive worsens the process. Conse-
quently, finding the optimal solution is expensive and requires a lot of time. Unfortunately,
large-scale cloud datacenters require the allocation process to be performed as fast as possible,
since they typically have high rate of application arrival and departure.
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Algorithm. VBP has several proposed heuristics (PANIGRAHY et al., 2011). However,
those heuristics cannot be used in datacenters without substantial modification, as they (i) as-
sume that all input (i.e., applications) is known a priori, whereas we need to cope with online
arrival of applications; (ii) consider “balls” of a fixed size, while applications have time-varying
demands; and (iii) do not consider a distributed resource such as the network (with paths com-
posed of multiple links). Therefore, we design a novel algorithm to efficiently allocate appli-
cations in cloud datacenters. The key principle is minimizing multi-resource fragmentation,
thus improving the ratio of allocated applications and, consequently, maximizing datacenter
utilization and provider revenue.

Algorithm 5.1 allocates one application at a time, as requests arrive. It receives as input the
datacenter infrastructure (xN,L, T ,Py) and the TI-MRA specification of an application a P A
(Ga

TI-MRA “ xV
a, Ea, T a, wa, δ, σy). First, it calculates available resources (CPU, memory, disk

I/O write and disk I/O read) in servers (lines 1 – 3) and available bandwidth in links (lines 4 –
6). Since each node of application a may have a different duration, available resources in the
infrastructure are calculated for T a time units (the duration of a).

After that, nodes in V a are sorted sequentially according to their initial execution time and
the nodes they depend on (line 7). Based on the sorted list of nodes (sNodes), the algorithm gets
one node v at a time (line 8), initializes as empty the list of infrastructure nodes with enough
available resources to hold node v (line 9) and calculates, based on our novel metric shown
in Equation 5.6, the score of v on infrastructure nodes (lines 10 – 15). The metric works as
follows. Equation 5.6 seeks to maximize the score achieved by both computing and network
resources according to their current utilization level (calculated in Equations 5.7 and 5.8, re-
spectively) in case there are enough available resources (i.e., node n P N and link l P L, which
v would use for communication with the application nodes it depends on if it were allocated on
n, have enough available resources at all times t P T a). Otherwise, it returns ´8. For each
computing resource R “ tCPU, MEM, IO_WRITE, IO_READu (Equation 5.7) and for bandwidth
BAND (Equation 5.8), the metric subtracts the resource demand from the respective available
resource, raises the resulting value by the power of 3, multiplies it by the amount of the respec-
tive available resource and multiplies it again by the weight associated to the resource (wr). In
particular, wr is dynamically defined as being inversely proportional to the current utilization
level of r and is calculated as wr “ 1´p utilprq

ř

sPRYtBANDu utilpsq
q, @r P RYtBANDu. That is, the higher

the current utilization of r, the lower its weight. This way, the metric prioritizes resources with
lower utilization.

Srn, vs “

$

’

&

’

%

SCrn, vs ` SBrn, vs δpv, r, tq ď Qpn, r, tq and σppu, vq, tq ď Qpl, BAND, tq,
@r P R, @u P Epvq, @t P T a, @l PMepu, vq;

´8 otherwise.
(5.6)
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SCrn, vs “
ÿ

tPTa

ÿ

rPR

wr
ˆ pQpn, r, tq ´ δpv, r, tqq3 ˆQpn, r, tq (5.7)

SBrn, vs “
ÿ

tPTa

ÿ

uPEpvq

ÿ

lPMepu,vq

wBAND
ˆ pQpl, BAND, tq ´ σppu, vq, tqq3 ˆQpl, BAND, tq (5.8)

Note that the metric described here uses normalized values (for resource requirements of
applications as well as residual resources in the datacenter infrastructure) by the capacity of the
node/link being considered.

The next step is the allocation of v and its communication dependencies (edges with v as
the destination node in the TI-MRA graph) in lines 16 – 23, according to Equations 5.1 – 5.5.
Function GetNodeWithBestScore returns the infrastructure node with the best (maximum)
score in the list FeasibleNodes for holding node v (line 16). In case no infrastructure node has
enough available resources to hold v, the algorithm returns a failure code and application a is
discarded (line 17). Otherwise, node v is allocated at infrastructure node n (line 19) and, since
nodes that v depends on are already allocated (i.e., dependencies are allocated first, according
to the sorted list of nodes), bandwidth for communication between v and its dependencies is
also allocated (lines 20 – 22). When all nodes and edges in the TI-MRA graph of application a
are successfully allocated, the algorithm returns a success code and finishes (line 25).

Algorithm 5.1: Multi-Resource Allocation Algorithm.
Input : Datacenter infrastructure xN,L, T ,Py, Application a represented by Ga

TI-MRA “ xV
a, Ea, Ta, wa, δ, σy

Output: Success/Failure code

1 foreach Infrastructure node n P N do
2 Qrn, r, ts ÐRpn, rq ´ř

vPApnq δpv, r, tq, @r P tCPU, MEM, IO_WRITE, IO_READu, @t P Ta | Ta Ď T ;
3 end
4 foreach Infrastructure link l P L do
5 Qrl, BAND, ts Ð Bplq ´ř

e“pu,vqPCplq σpe, tq, @t P T
a | Ta Ď T ;

6 end

7 sNodesÐ SortNodes (V a);

8 foreach v P sNodes do
9 FeasibleNodesÐH;

10 foreach n P N do
11 Srn, vs Ð calculate score according to Equations 5.6, 5.7 and 5.8;
12 if Scorern, vs ‰ ´8 then
13 FeasibleNodesÐ FeasibleNodes Y tnu;
14 end
15 end

16 nÐ GetNodeWithBestScore(FeasibleNodes);

17 if n is null then return failure code;
18 else
19 Mnpvq Ð n;
20 foreach u P Epvq do
21 Mepu, vq Ð p | p P P pMnpuq,Mnpvqq;
22 end
23 end
24 end
25 return success code;
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5.1.3 Network Sharing Strategy

The network sharing strategy has two objectives: (i) providing predictable and guaranteed
network performance for applications, in order to avoid performance interference (JANG et
al., 2015); and (ii) achieving work-conserving sharing, so that applications have the possibility
of using more bandwidth than their guarantees when needed and providers can achieve high
network utilization.

To achieve these goals, we leverage the paradigm of SDN to dynamically configure the
network, in order to enforce bandwidth guarantees and to provide work-conserving sharing.
The strategy works as follows. According to the output of Algorithm 5.1 for application a P A,
the DRM performs two actions. First, it sends each task of a to the local controller of its selected
server (as LCs manage and enforce resource allocation at servers). Second, it installs rules and
rate-limiters in forwarding devices to guarantee connectivity and bandwidth for communication
between these nodes.

In addition to ensuring a base level of guaranteed rate for applications, the strategy can
proportionally share available bandwidth among applications with more demands than their
guarantees. Towards this end, local controllers run an algorithm to periodically set the allowed
rate for each allocated application node. Algorithm 5.2 aims at enabling smooth response to
bursty traffic (since traffic in DCNs may be highly variable over short periods of time (ABTS;
FELDERMAN, 2012)). It receives as input the infrastructure node n P N that it belongs to, the
current time t P T , current bandwidth demands of application nodes allocated at n (which are
determined by monitoring socket buffers, similarly to Mahout (CURTIS; KIM; YALAGAN-
DULA, 2011)) and temporal bandwidth requirements of these nodes (specified in the request).
First, the algorithm initializes as empty the list of application nodes with more bandwidth de-
mands than the value specified in the request (line 1). Then, for each application node v allo-
cated at n (line 2), the minimum rate between (i) the specified demand at time t (σp

ř

pv, ˚q, tq,
which represents the sum of bandwidth required by node v for communication with all nodes
that depend on v at time t) and (ii) the current demand of v (drvs) is assigned to nRate (line 3).
If the current demand is higher than the specified demand, the node is added to the list of nodes
with more demands than their guarantees (called hungryNodes, in line 4).

Then, the algorithm calculates the residual bandwidth (Qpn, BAND, tq) of the link connecting
server n to its top-of-rack (ToR) switch at time t (line 6). The residual bandwidth is calculated
by subtracting from the link capacity the rate assigned to the application nodes (in line 3). The
last step establishes the bandwidth rate for application nodes with more demands than their guar-
antees, if there is available bandwidth (lines 7 – 14). The rate of each node v P hungryNodes

(in line 10) is determined by adding nRatervs (initialized in line 3) and the minimum band-
width between (i) the difference of the current demand (drvs) and the rate (nRatervs); and (ii)
the proportional share of residual bandwidth the application node can receive according to its
weight wDpvq (calculated in line 9), where Dpvq indicates the application that node v belongs to.



86

Algorithm 5.2: Work-conserving algorithm.
Input : Infrastructure node n, Time t P T , Current bandwidth demands of applications nodes d, Temporal bandwidth requirements

of application nodes σ
Output: Rate nRate for each application node

1 hungryNodesÐH;
2 foreach v P Apnq do
3 nRatervs Ðmin pσp

ř

pv,˚q, tq, drvsq;
4 if σp

ř

pv,˚q, tq ă drvs then hungryNodesÐ hungryNodes Y v;
5 end

6 Qpn, BAND, tq Ð Bplinkq ´ř

vPApnq nRatervs, at time t;

7 while Qpn, BAND, tq ą 0 and hungryNodes not empty do
8 foreach v P hungryNodes do

9 valueÐmin

ˆ

drvs ´ nRatervs,

ˆ

wDpvq
ř

uPhungryNodes wDpuq ˆQpn, BAND, tq
˙˙

;

10 nRatervs Ð nRatervs ` value;
11 Qpn, BAND, tq ÐQpn, BAND, tq ´ value;

12 if nRatervs ““ drvs then hungryNodesÐ hungryNodes z tvu;
13 end
14 end
15 return nRate;

The residual bandwidth is updated in line 11 and, in case the demands of node v were satisfied,
it is removed from the list hungryNodes (line 12). Note that there is a “while” loop (lines 7
– 14) to guarantee that all residual bandwidth is used or all demands are satisfied. If this loop
were not used, there could be occasions when there would be unsatisfied demands even though
some bandwidth would be available.

In summary, if the demand of an application node exceeds its guaranteed rate (the rate
specified in the request – σ), data can be sent and received at least at the guaranteed rate.
Otherwise, if it does not, the unutilized bandwidth will be shared among co-resident application
nodes whose traffic demands exceed their guarantees (work-conservation).

Finally, as discussed in Chapter 2, note that SDN has scalability challenges on DCNs (JAR-
RAYA; MADI; DEBBABI, 2014): (i) elevated flow setup time, as forwarding devices ask
the controller for appropriate rules when they receive the first packet of a new flow; and (ii)
large flow tables in switches, since DCNs may have millions of flows per second (BENSON;
AKELLA; MALTZ, 2010) and, thus, the number of entries needed in TCAMs may be signif-
icantly higher than the amount of resources available in commodity switches. We adopt the
strategy proposed in Predictor (Chapter 4) to address these challenges.

5.1.4 Resource Monitoring Mechanism

Packer is designed with scalability and high multi-resource utilization (i.e., minimizing frag-
mentation of multiple resources) in mind. This implies that the resource monitoring mecha-
nism (i) should not incur significant overhead (especially to scarce resources such as the net-
work (XIE et al., 2012)); and (ii) needs to be able to acquire real-time information about re-
source usage, so that idle resources can be allocated to applications that need them. Moreover,
the mechanism is expected to provide fast and up-to-date information upon unexpected events
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(e.g., in case an application gets delayed due to a resource being congested).

We designed a two-level strategy for resource monitoring, composed of (i) the datacenter
resource manager (DRM) and (ii) local controllers at servers and OpenFlow switches. First,
a local controller runs at each server and coordinates the allocation of the server’s resources
to application tasks. LCs have two objectives, described as follows. The first objective is to
observe aggregate resource usage and periodically report it to the DRM (so that the DRM gets
updated information about the infrastructure utilization). The second objective is related to
handling local events: since LCs have no interconnection among themselves (in order to reduce
management traffic in the network) and no knowledge of infrastructure-wide state, they are
allowed to handle only local events (e.g., dealing with local congested resources and enforcing
allocations to tasks). This is important for relieving the load on the DRM and for reducing the
amount of bandwidth used for communication between LCs and the DRM.

Second, the DRM maintains infrastructure-wide state, as it periodically receives resource
usage statistics from local controllers at servers and from switches (via the OpenFlow protocol).
With the information received from servers and switches, it reacts to global events such as
the allocation of applications and bandwidth enforcement throughout the entire network for
applications.

5.2 Evaluation

In this section, we focus on showing that Packer (i) minimizes multi-resource fragmenta-
tion; (ii) improves provider revenue; (iii) incurs acceptable overhead; (iv) provides predictable
and guaranteed network performance with work-conserving sharing; and (v) outperforms ex-
isting state-of-the-art schemes (Tetris (GRANDL et al., 2014) and slot-based allocation (THE
APACHE SOFTWARE FOUNDATION, 2014c; THE APACHE SOFTWARE FOUNDATION,
2015)).

5.2.1 Setup

Environment. We have implemented a simulator that models computing and network re-
sources of a multi-tenant datacenter. For computing resources, we follow Tetris (GRANDL et
al., 2014) and use a similar server configuration: 16 CPU cores, 32 GB of memory, 4 disks
operating at 50 MBps each for read and write operations and a 1 Gbps NIC. For the slot-based
scheme, we follow related work (BALLANI et al., 2011) and divide each server into four equal
slots. The network, in turn, is defined as a tree-like topology, similar to current DCNs and re-
lated work (JANG et al., 2015). It is composed of a three-tier topology with 1,200 servers at
level 0. Every 40 machines form a rack, and every 10 ToRs are connected to an aggregation
switch. Finally, all aggregation switches are connected to a core switch. Unless otherwise spec-
ified, the capacity of each link is defined as follows: 1 Gbps for server-ToR links, 10 Gbps for
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ToR-aggregation links and 100 Gbps for aggregation-core links.

Workload. We built a workload suite composed of incoming application requests (to be
allocated in the datacenter) arriving over time. We consider a heterogeneous set of applications,
including MapReduce and Web Services. As defined in Section 5.1.1, each application a is
represented by a TI-MRA graph Ga

TI-MRA “ xV
a, Ea, T a, wa, δ, σy. Given the lack of publicly

available traces for DCNs, the workload was generated in line with related work (GRANDL
et al., 2014; SHIEH et al., 2011; BENSON; AKELLA; MALTZ, 2010; KANDULA et al.,
2009; XIE et al., 2012). First, like Tetris (GRANDL et al., 2014), computing resources of
tasks were picked uniformly at random between 0 and the maximum value of a slot. Note
that we limit the demand for computing resources of each task from each application to the
maximum size of a slot in order to provide a fair and accurate comparison (otherwise, since we
use the same workload for all schemes, some tasks would never be allocated with the slot-based
approach). Second, like Predictor (in Chapter 4), bandwidth demands were generated based
on the measurements from Benson et al. (BENSON; AKELLA; MALTZ, 2010) and Kandula
et al. (KANDULA et al., 2009). Finally, the weight wa of each application a is uniformly
distributed in the interval r0, 1s.

5.2.2 Results

We compare Packer with Tetris (GRANDL et al., 2014) and the slot-based allocation (THE
APACHE SOFTWARE FOUNDATION, 2014c; THE APACHE SOFTWARE FOUNDATION,
2015). For all experiments comparing different strategies, we plot the percentage difference
between Packer and the related work being compared as Packer´related_work

Packer
ˆ 100. Hence, posi-

tive values mean Packer has achieved a higher value than the approach being compared, while
negative values mean Packer has achieved a lower value. In general higher values are better,
with the sole exception being the overhead of the allocation algorithm (Figure 5.6).

Increased acceptance ratio. Figure 5.3 shows the proportion of application tasks that were
allocated between Packer and Tetris and Packer and slot-based according to the time. Higher

values are better, as they mean that Packer allocates more tasks than the respective proposal
being compared. At first, the gains of Packer in comparison to the other proposals have high
variability because there are ample resources and, therefore, most incoming applications are
allocated. As time passes and the cloud-load increases (less available resources), the gains tend
to stabilize (around time 1,000), because new applications are allocated only when already al-
located applications conclude their execution and are deallocated (which releases resources). In
general, we observe that Packer consistently outperforms Tetris («30%) and slot-based alloca-
tion («67%). Although the amount of available resources in the infrastructure is the same, the
allocation ratio differs for each approach. This happens because each scheme uses a different
allocation strategy. More specifically, Tetris seeks to minimize computing resource fragmen-
tation, while only penalizing the bandwidth used. This may not result in good choices for
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allocation because of network fragmentation (as the network is an important bottleneck in data-
centers (XIE et al., 2012)). The slot-based allocation, in turn, is constrained by the static number
and size of slots in the servers, which limit the feasible choices for allocating tasks to servers.
In contrast to both proposals, Packer employs our novel algorithm described in Section 5.1.2
and better explores the trade-off between using local computing resources (CPU, memory and
disk I/O) and remote distributed resources (the network).

Figure 5.3 – Acceptance ratio of application tasks.
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Maximized resource utilization. Figure 5.4 depicts the percentage difference between
Packer and Tetris and Packer and slot-based allocation for the utilization of different types of
resources. Positive values indicate that Packer achieves better utilization than the respective
proposal being compared (the higher the value, the better), while negative values denote that
the proposal being compared achieves better results than Packer. Figures 5.4(a), 5.4(b), 5.4(c)
and 5.4(d) show results for CPU, memory, disk I/O write and disk I/O read, respectively. We
see that, during most of the time, Packer allows better use of available resources, improving
utilization by a significant percentage. Nonetheless, Packer has lower utilization of some types
of resources at some periods of time (negative values in the plots). This happens because, with
different allocation strategies, different applications are accepted and rejected in each scheme.
Therefore, despite allocating significantly more application tasks than Tetris and slot-based
(Figure 5.3), there are some small periods of time when the tasks allocated in Packer consume
less resources.

Figure 5.4(e), in turn, shows the percentage difference of bandwidth utilization. We verify
that Packer can maintain significantly higher utilization of the network than Tetris («76% more)
and slot-based («87% more). Moreover, during the experiments, Packer never achieved lower
network utilization than the proposals being compared. In general, Figures 5.3 and 5.4 show
that Packer accepts more applications and, consequently, maximizes utilization, which indicates
that fragmentation is minimized.
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Figure 5.4 – Resource utilization (positive values in the y-axis indicate that Packer achieves better
utilization than the respective proposal being compared, while negative values denote that the proposal
being compared achieves better utilization than Packer).
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(a) CPU.
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(b) Memory.
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(c) Disk I/O write.
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(d) Disk I/O read.
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(e) Bandwidth.

Source: by author (2016).

Increased provider revenue. We follow related work (BALLANI et al., 2011; XIE et al.,
2012) and adopt a simple pricing model to quantify provider revenue for Packer, Tetris and slot-
based allocation, which effectively charges both computation and networking. A tenant running
application a pays:

ř

tPTa

ř

vPV a p
ř

r δpv, r, tq ˆ kv `
ř

uPEpvq σppu, vq, tq ˆ kbq, where r P

tCPU, MEM, IO_WRITE, IO_READu, kv is the unit-time computing resource cost and kb is the unit-
volume bandwidth cost. Figure 5.5 depicts the revenue of Packer in comparison to Tetris and
slot-based allocation (error bars show 95% confidence interval). Higher values are better, as
they mean that Packer provides more revenue than the respective proposal being compared.
We see that, by improving the allocation ratio of application tasks (Figure 5.3) and resource
utilization (Figure 5.4), Packer can significantly increase provider revenue («29% and «60%
in comparison to Tetris and slot-based, respectively).
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Figure 5.5 – Revenue.
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Acceptable overhead. Figure 5.6 quantifies the overhead introduced by Packer in compar-
ison to Tetris and slot-based (error bars show 95% confidence interval). The overhead is given
by the mean time taken to allocate an incoming application in the infrastructure. Here, positive
values indicate that Packer takes more time to allocate applications than the respective proposal
being compared, while negative values would indicate that Packer takes less time (i.e., lower

values are better). We see that Packer takes more time to allocate applications than the other two
proposals («53% more time than Tetris and «81% more than slot-based). This is justified by
three factors (i) the complexity of the allocation metric (Section 5.1.2); (ii) the fact that Packer
considers the whole network (as opposed to Tetris that only penalizes network use); and (iii)
the fact that Packer verifies each computing resource (CPU, memory and disk I/O) according
to the applications’ requirements (as opposed to slot-based that statically divides computing re-
sources into slots). Nonetheless, while the percentage is high, the median time taken to allocate
applications (observed in our experiments) is small for all three proposals: «15.4s in Packer,
«3.5s in Tetris and «0.3s in slot-based allocation. Thus, considering the benefits provided by
Packer (shown in Figures 5.3, 5.4 and 5.5), it is acceptable to take some additional seconds to
allocate applications.

Now, we turn our focus to the challenge of performance interference. In particular, we
show that Packer provides (i) minimum bandwidth guarantees for applications; and (ii) work-
conserving sharing, achieving both predictability for tenants and high utilization for providers.
To show the results in a clear way, here we consider the temporal bandwidth guarantees of
application tasks (σ) as a constant function (while the actual requirements vary over time).

Minimum bandwidth guarantees for applications. Packer adopts the following definition
of minimum bandwidth guarantees: the task rate should be (a) at least the guaranteed rate if the
demands are equal or higher than the guarantees; or (b) equal to the demands if they are lower
than the guarantees. To illustrate it, we show, in Figure 5.7, a task allocated on a given server
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Figure 5.6 – Allocation time.
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during a predefined time period of an experiment. We see that the task may not get the desired
rate to satisfy all of its demands instantaneously (when its demands exceed its guarantees)
because (i) the link capacity is limited; and (ii) available bandwidth is proportionally shared
among tasks. In summary, we verify that Packer provides minimum bandwidth guarantees for
tasks, since the actual rate is always equal or higher than the minimum between the demands
and the guarantees. Therefore, applications have minimum bandwidth guarantees and, thus, can
achieve predictable network performance.

Figure 5.7 – Bandwidth allocation for a task on a given server.
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Work-conserving sharing. Work-conservation is the ability to use more bandwidth if the
task has higher demands than its guarantees and there is available bandwidth in the network. In
other words, bandwidth which is not allocated, or allocated but not currently used, should be
proportionally shared among tasks with more demands than their guarantees (according to the
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weights of each application – wa, using Algorithm 5.2). Figure 5.8 shows the aggregate band-
width1 on the server holding the task in Figure 5.7. In these two figures, we verify that Packer
provides work-conserving sharing in the network, as tasks can receive more bandwidth (if their
demands are higher than their guarantees) when there is spare bandwidth. Thus, providers can
achieve high utilization.

Figure 5.8 – Work-conserving sharing on a given server.
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Generality of the results. We believe that the obtained results are generalizable to most
real workloads and cloud platforms. However, recall that Packer takes into account multiple
types of resources. Consequently, in case most applications have more demand for the same
type of resource (even if this is not a realistic scenario), the results may vary. For instance,
consider an extreme example of a datacenter with high network utilization (e.g., «99%), but
low CPU, memory and disk I/O utilization. In this situation, acceptance ratio of applications
will be determined only by the network and, thus, may be different in comparison to the obtained
results. We defer a detailed evaluation of this type of scenario to future work.

5.3 Discussion

We discuss here some questions that have arisen during the design of Packer.

TI-MRA pros and cons. This abstraction considers temporal demands of resources. There
are advantages and drawbacks of adopting this approach. The main advantage is to mini-
mize multi-resource underutilization, which significantly improves datacenter utilization (i.e.,
reduces wastage). The main drawback is the need for fine-grained specification of applications,
which may be a burden on some tenants (the ones with less knowledge of their applications).

1Note that Packer considers the temporal bandwidth guarantees requested (σ) when allocating tasks. Therefore,
although the sum of the actual demands of all tasks allocated on a given server may exceed the server link capacity,
the sum of bandwidth guarantees of these tasks will not exceed the link capacity.
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Hence, TI-MRA also allows the specification of only peak demands for multiple resources,
minimizing the burden of application specification. While this may reduce infrastructure uti-
lization, it does not impact provider revenue, as tenants are allocating such resources and paying
for them.

Profiling application demands for specifying TI-MRA. Datacenter application demands
are often known (GROSVENOR et al., 2015) or can be obtained from tenants (BALLANI et
al., 2011; JANG et al., 2015). Alternatively, we employ the techniques described by Grandl et
al. (GRANDL et al., 2014), Chen and Shen (CHEN; SHEN, 2014) and Lee et al. (LEE et al.,
2014). First, according to Chen and Shen (CHEN; SHEN, 2014), the same task (i.e., the same
program with the same options) running on different servers tends to have similar resource uti-
lization patterns. In this context, recurring applications are common in datacenters (AGARWAL
et al., 2012); for instance, analytic applications repeat hourly or daily to perform the same com-
putation on new data (GRANDL et al., 2014). Therefore, Packer can use statistics measured
in prior runs of the same application. Second, according to Lee et al. (LEE et al., 2014), or-
chestration systems like OpenStack Heat and AWS CloudFormation could be used to generate
abstract models. They use templates (provided as a library for tenants) that explicitly describe
the structure of applications and their resource demands. In this sense, these systems could be
extended with temporal multi-resource requirements to generate TI-MRAs. Third, Packer can
use the pattern detection algorithm for resource demands developed by Chen and Shen (CHEN;
SHEN, 2014). The algorithm utilizes logs of resource usage recorded by the cloud datacenter
from previous runs of the same application and, thereby, can estimate utilization patterns for
the requested application. Fourth, in case none of the previous methods can be used, we follow
Grandl et al. (GRANDL et al., 2014) and over-estimate resource demands (by considering a
constant temporal function). Note that over-estimation is better than under-estimation, as the
former does not slow down applications. Furthermore, Packer’s resource monitoring mech-
anism verifies idle resources and reports them to the DRM, so that they can be allocated to
applications.

Employing existing abstractions in the literature for Packer. Packer could use existing
abstractions for application specification, with the constraint that those abstractions take into
account multiple types of resources. Adapting other abstractions for Packer could be performed
with the development of a module that reads the specification and converts it to a TI-MRA, so
that the use of other abstractions would be seamless to Packer’s allocation process.

5.4 Summary

We presented Packer, a scheme that addresses the challenges of multi-resource allocation
and performance interference in the network. It employs a novel abstraction called Time-
Interleaved Multi-Resource Abstraction (TI-MRA) and a new algorithm for allocating multiple
types of resources with reduced fragmentation. Furthermore, Packer uses (a) SDN to dynam-
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ically configure and manage the network according to available resources and requirements of
applications; and (b) a monitoring mechanism to avoid wastage and congested resources. Evalu-
ation results show that (i) acceptance ratio of applications is increased; (ii) datacenter utilization
is maximized (i.e., fragmentation is minimized); (iii) provider revenue is augmented; and (iv)
applications achieve predictable and guaranteed network performance with work-conserving
sharing.

In future work, we intend to propose novel allocation strategies to consider other aspects
(such as availability and energy consumption) and to evaluate Packer in a testbed (e.g., Cloud-
Lab (CloudLab, 2016)).
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6 RELATED WORK

Providers require efficient and robust mechanisms to manage DCNs. Ideally, they should
enforce isolation among tenants and quality of service (QoS). Currently, DCNs are agnostic
to network demands of applications (JANG et al., 2015). More specifically, DCNs are imple-
mented with high utilization in mind (which allows providers to achieve economies of scale),
and VMs may not have bandwidth guarantees.

Researchers have proposed several schemes to address performance interference among ten-
ants and to minimize multi-resource fragmentation. Related work can be divided in two cate-
gories: network performance (Section 6.1), related to IoNCloud, Predictor and Packer; and
multi-resource allocation (Section 6.2), related to Packer.

6.1 Network Performance

There is an extensive body of literature that addresses network performance in DCNs.
These approaches can provide deterministic bandwidth guarantees (Section 6.1.1) and non-
deterministic bandwidth guarantees (Section 6.1.2). Each one of these proposals presents pros
and cons, discussed in the following sections.

6.1.1 Deterministic Bandwidth Guarantees

These schemes take advantage of rate-limiting at hypervisors, VM placement and virtual
network embedding in order to increase their robustness.

Silo (JANG et al., 2015) builds upon the key insight that controlling tenant bandwidth leads
to deterministic bounds on network queuing delay and offers tenants guaranteed bandwidth,
delay and burst allowance for traffic between VMs of the same application. The system is
composed of two components: (i) an admission control and VM placement algorithm to effi-
ciently map tenants’ multi-dimensional network guarantees; and (ii) a software packet pacer
for fine-grained rate-limiting of VMs.

CloudMirror (LEE et al., 2014) utilizes new network abstraction and placement algorithm
to provide bandwidth guarantees for applications. First, the novel network abstraction, called
Tenant Application Graph (TAG), is based on applications’ communication patterns. An exam-
ple of TAG is depicted in Figure 6.1. Figure 6.1(a) illustrates the model of a simple application,
composed of two components (C1 and C2), and Figure 6.1(b) shows an alternative way of vi-
sualizing the model expressed in Figure 6.1(a), highlighting the communication between VMs
in the same components and also in different components. Second, the placement algorithm
meets requirements specified by TAGs while considering the high availability required by ap-
plications.

SecondNet (GUO et al., 2010) is a DCN virtualization architecture that uses the concept
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Figure 6.1 – TAG model.
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of virtual datacenter (VDC) as the unit of resource allocation. It distributes all the virtual-
to-physical mapping, routing and bandwidth guarantees in server hypervisors and uses port-
switching based source routing (PSSR) to allow efficient routing in arbitrary topologies utilizing
commodity switches.

Oktopus (BALLANI et al., 2011) explores the trade-off between the guarantees offered
to tenants, the tenant cost and provider revenue. It offers two novel abstractions for tenants:
virtual cluster (VC) and virtual oversubscribed cluster (VOC). VC ensures the virtual network
has no oversubscription and, thus, the maximum rate at which VMs of the same application can
exchange data is their guarantees. VOC, in turn, is designed for applications that can deal with
some level of oversubscription, in order to minimize the bandwidth allocated on the physical
infrastructure (which can reduce tenant costs).

Gatekeeper (RODRIGUES et al., 2011) enables network performance isolation among ap-
plications using a distributed mechanism implemented at the virtualization layer of each hy-
pervisor. It provides a minimum and a maximum rate for VMs, thus achieving deterministic
bandwidth guarantees for applications. Moreover, the maximum rate can be set to infinity in
order to maximize network utilization (at the cost of non-deterministic guarantees).

CloudNaaS (BENSON et al., 2011a) leverages SDN to provide increased control over net-
work resources, providing bandwidth guarantees for tenants. It allows applications to be de-
ployed with a rich and extensible set of network functions (e.g., isolation, custom addressing,
service differentiation and flexible interposition of middleboxes).

In general, Silo, CloudMirror, SecondNet, Oktopus, Gatekeeper and CloudNaaS provide
predictable network performance. However, such predictability presents a high cost: these ef-
forts may result in network underutilization, as they statically reserve resources for applications
based on their peak bandwidth demands. For instance, Silo uses packet pacing (shown in Fig-
ure 6.2) to control bandwidth of VMs and latency of traffic. This allows the system to achieve
its goals, but may hurt utilization. Furthermore, these proposals address only intra-application
communication.
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Figure 6.2 – Example of bandwidth guarantees in Silo. Guarantees for VM1 and VM2 are 2 Gbps and
1 Gbps, respectively. Void packets are used to achieve packet pacing, which may result in underutilization
of resources.
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Proteus (XIE et al., 2012), in turn, uses a fine-grained virtual network abstraction, called
Time-Interleaved Virtual Cluster (TIVC), that models the temporal network demands of cloud
applications. With TIVC, the system can provide bandwidth guarantees and reduce bandwidth
waste, allowing more applications to be allocated into the datacenter. Proteus also provides
a novel allocation algorithm that considers the spatial and temporal demands of resources to
map applications in the infrastructure. The system, however, has a complex allocation scheme
with significant management overhead, since it reserves bandwidth for each application at each
period of time according to the network profile of the respective application. Moreover, it is not
work-conserving (i.e., it only reserves bandwidth according to the profile, which does not take
into account possible delays - or unpredictable changes - that may happen during execution).

EyeQ (JEYAKUMAR et al., 2013) attempts to provide bandwidth guarantees with work-
conservation. The system is based on the key insight that, by relieving the network’s core
of persistent congestion, bandwidth can be partitioned in a distributed manner at the edge. It
also leverages the high bisection bandwidth in DCNs and enforces admission control based on
traffic, regardless of the transport protocol. This design pushes bandwidth contention to the
edge, enabling EyeQ, in theory, to support end-to-end minimum bandwidth guarantees to VMs.
Despite providing strict guarantees in full bisection networks, the system does not completely
eliminate congestion at core links in oversubscribed networks and, upon core-link congestion,
EyeQ cannot provide bandwidth guarantees (GUO et al., 2013b).

HUG (CHOWDHURY et al., 2016) aims at offering bandwidth guarantees for applications
without hurting network utilization. While it achieves its objective for full-bisection networks,
it cannot offer bandwidth guarantees for applications in oversubscribed networks. Moreover, it
may also introduce high management overhead, as the scheme needs to determine a correlation
vector for each tenant that quantifies, for each bit sent on a given link, the amount of bits the
tenant sends on other links.

Finally, Hadrian (BALLANI et al., 2013) introduces a strategy that considers two factors.
First, it addresses communication dependencies between VMs of the same application as well
as VMs of different applications, guaranteeing bandwidth for expected communication (i.e., for
communication specified when submitting the request). Second, it takes into account upper-
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bound proportionality (i.e., the maximum bandwidth a tenant can acquire is in proportion to its
payment). Despite the benefits, it (i) needs a larger, custom packet header (hindering its deploy-
ment); (ii) does not ensure complete work-conservation, as the maximum allowed bandwidth is
limited according to the tenant’s payment; and (iii) requires switches to dynamically perform
rate calculation (and enforce such rate) for each flow in the network.

6.1.2 Non-Deterministic Bandwidth Guarantees

Seawall (SHIEH et al., 2011) and NetShare (LAM et al., 2012) share the network pro-
portionally according to weights assigned to VMs and tenants. Seawall (SHIEH et al., 2010;
SHIEH et al., 2011) is a bandwidth allocation scheme that divides network capacity based on
an administrator-specified policy. The key idea is to assign weights to any entity that gener-
ates traffic (such as a VM or a process) and to allocate bandwidth according to these weights
in a proportional way. It uses congestion control and point-to-multipoint tunnels to enforce
bandwidth sharing.

NetShare (LAM et al., 2012) proposes a statistical multiplexing mechanism to allocate band-
width for tenants in a proportional way, to achieve high utilization and to provide weighted hi-
erarchical max-min fair sharing (bandwidth unused by an application is shared proportionally
by other applications). The weights are either specified by a manager or automatically assigned
at each switch port based on a virtual machine heuristic.

FairCloud (POPA et al., 2012), in turn, explores the trade-off among network proportional-
ity (i.e., network resources should be divided among tenants in proportion to their payments),
minimum guarantees and high utilization. To better navigate among the factors of this trade-off,
three resource allocation policies are proposed: Proportional Sharing at Link-level (PS-L), Pro-
portional Sharing at Network-level (PS-N) and Proportional Sharing on Proximate Links (PS-
P). PS-L achieves link proportionality, but does not offer bandwidth guarantees. PS-N provides
better proportionality at network level (congestion proportionality), but also offers no minimum
guarantees. Lastly, PS-P provides minimum bandwidth guarantees in tree-based topologies, but
does not offer proportionality.

NumFabric (NAGARAJ et al., 2016) allows operators to specify different bandwidth allo-
cation objectives and achieves them using distributed mechanisms at both switches and end-
hosts. More specifically, it (i) is based on the Network Utility Maximization (NUM) (KELLY;
MAULLOO; TAN, 1998) to allow per-flow allocation policies to be expressed using different
utility functions; and (ii) utilizes, as objective, the maximization of the sum of utility functions.

Seawall, NetShare, FairCloud and NumFabric, however, may result in substantial manage-
ment overhead (since bandwidth consumed by each flow at each link is dynamically calculated
according to the flow weight, and large DCNs can have millions of flows per second). In
particular, NumFabric and FairCloud require changes in switches, and NetShare presents two
limitations. First, scalability is compromised because queues have to be configured at each
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switch port for each application. Second, it relies on specific features of Fulcrum switches to
implement its mechanisms, which reduces its deployability (BARI et al., 2013).

Varys (CHOWDHURY; ZHONG; STOICA, 2014), Aalo (CHOWDHURY; STOICA, 2015),
CODA (ZHANG et al., 2016), Baraat (DOGAR et al., 2014), PIAS (BAI et al., 2015) and
Karuna (CHEN et al., 2016) seek to improve application performance by minimizing aver-
age and tail flow completion time. Varys is a system that allows data-intensive frameworks to
express their communication requirements as coflows1, guaranteeing starvation freedom and
maintaining high network utilization. The system implements two algorithms to schedule and
allocate bandwidth for coflows. First, Smallest-Effective-Bottleneck-First (SEBF) greedily
schedules a coflow based on the flow which the completion time is the bottleneck. Second,
Minimum-Allocation-for-Desired-Duration (MADD) allocates rates to individual flows inside
the coflow. MADD slows down all the flows in a coflow to match the completion time of the
flow that will take the longest time to finish. This way, other coflows can make progress and the
average coflow completion time decreases.

Like Varys, Aalo and CODA also use the coflow abstraction to improve network perfor-
mance of applications. However, unlike Varys, Aalo seeks to schedule coflows without prior
knowledge. It implements a multi-level scheduler, called Discretized Coflow-Aware Least-
Attained Service (D-CLAS), to separate coflows into several priority queues based on the num-
ber of bytes already sent by each coflow. CODA argues that existing coflow-based solutions rely
on modifying applications to extract coflows, which may be unrealistic for many practical sce-
narios. Consequently, it aims at automatically identifying and scheduling coflows without any
application modification. It uses an incremental clustering algorithm to perform application-
transparent coflow identification and an error-tolerant scheduler to mitigate identification errors.

Baraat is a decentralized task-aware scheduling system for datacenters. Baraat addresses
the problems associated with centralized scheduling (e.g., scalability and fault tolerance) and
makes coordinated scheduling decisions while incurring low overhead. To enable decentralized
scheduling, it assigns a globally unique priority for each task (all flows of a task share the task’s
priority). Moreover, the system uses an algorithm called FIFO with limited multiplexing (FIFO-
LM), which schedules tasks based on their arrival order, but dynamically changes the level of
multiplexing when heavy tasks are encountered. This way, FIFO-LM ensures that small tasks
are not blocked by heavy tasks that, in turn, are not starved.

PIAS aims at minimizing flow completion time by implementing Shortest Job First (SJF)
with the assumption that flow size is not known beforehand (no prior information about appli-
cations’ network demands). The system uses multiple priority queues available in commodity
switches to implement a Multiple Level Feedback Queue (MLFQ). MLFQ gradually demotes
flows from higher-priority queues to lower-priority ones based on the number of bytes the flow
has sent. Figure 6.3 shows a general view of PIAS. End-hosts tag packets according to prior-

1Coflow (CHOWDHURY; STOICA, 2012) is defined as a collection of flows that share a common performance
goal (e.g., minimizing the completion time of the latest flow or ensuring that flows meet a common deadline).
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ities. In switches, packets in different queues are scheduled with strict priority, while packets
in the same queue are scheduled in a FIFO order. With this setting, mice flows are expected to
conclude while being in the first few high-priority queues, being prioritized over elephant flows.

Figure 6.3 – PIAS overview.

Source: Bai et al. (2015).

Karuna (CHEN et al., 2016) addresses the challenge of scheduling flows with and without
deadlines. It aims at maximizing deadline meet rate for deadline flows and at minimizing av-
erage flow completion time (FCT) for non-deadline flows. Towards this end, it implements a
protocol called Minimal-impact Congestion control Protocol (MCP) to give deadline flows as
little bandwidth as possible and extends PIAS for non-deadline flows.

QJUMP (GROSVENOR et al., 2015) addresses network interference by reducing switch
queueing, since placing a finite bound on queueing allows better control over interference. In
QJUMP, every application is assigned to a class. Flows from higher classes are rate-limited
in the end-host, but can jump the queue over packets from lower classes once allowed into
the network. The system explores the trade-off between throughput and latency. Thus, it can
provide some level of guarantees ranging from strictly bounded latency with low rate to line-rate
throughput with high latency variance.

Overall, these schemes (Varys, Aalo, CODA, Baraat, PIAS, Karuna and QJUMP) are able to
improve network performance. However, none of them offers deterministic (strict) bandwidth
guarantees. In particular, QJUMP may provide some level of guarantees, but is restricted to a
specific system configuration (the maximum allowed rate is low and, thus, network utilization is
significantly reduced). Furthermore, Karuna cannot guarantee that deadline flows will complete
within their deadline upon a bursty arrival of such flows.

6.2 Multi-Resource Allocation

Proposals for multi-resource allocation can be classified in two categories: slot-based allo-
cation and dynamic allocation of resources. We detail each one of them as follows.



102

Slot-based allocation. These approaches (JANG et al., 2015; BALLANI et al., 2013; BAL-
LANI et al., 2011; THE APACHE SOFTWARE FOUNDATION, 2014b; THE APACHE SOFT-
WARE FOUNDATION, 2014a; THE APACHE SOFTWARE FOUNDATION, 2015) allocate
resources based on slots for VMs. A slot-based allocation typically consider one resource dur-
ing the process (e.g., CPU, memory or network) and predefined amounts of other resources, and
allocates them. This leads to wastage and fragmentation, as only the resource considered in the
process is optimized. This scenario is further exacerbated by the churn of applications in cloud
datacenters.

Dynamic allocation of resources. Tetris (GRANDL et al., 2014), dominant resource fair-
ness (DRF) (GHODSI et al., 2011) and a spatial/temporal strategy (CHEN; SHEN, 2014) aim
at minimizing overall fragmentation of resources. Tetris is a multi-resource cluster scheduler
that packs applications to machines according to their requirements. However, the system (i)
may result in starvation (depending on the workload); and (ii) may not provide guarantees in
oversubscribed networks. DRF, in turn, is a generalization of max-min fairness2, where the al-
location of an application is determined by the application’s dominant share (i.e., the maximum
share that the application has been allocated of any resource). Since DRF focus on fairness,
it may result in fragmentation (GRANDL et al., 2014). Furthermore, DRF does not consider
the network in the allocation process. Finally, Chen and Shen (2014) propose a VM allocation
strategy that consolidates complementary VMs across space and time. This strategy focuses
only on CPU and memory and, consequently, does not address performance interference in the
network.

6.3 Summary

Table 6.1 shows an overview of the proposals discussed in this chapter. We compare
them with IoNCloud, Predictor and Packer considering the following properties: (i) alloca-
tion method, in order to verify if they handle admission control in the cloud; (ii) minimum
bandwidth guarantees (which is desired by tenants); (ii) work-conserving sharing and high uti-
lization (which is desired by providers); and (iv) the management overhead they introduce.

In particular, we highlight some important aspects. First, IoNCloud, Gatekeeper and Hadrian
provide limited work-conservation because of the following reason. IoNCloud allows work-
conserving sharing only inside virtual networks (i.e., among applications of the same group,
not among groups), while Gatekeeper allows it only up to a maximum value for each appli-
cation (specified by the tenant) and Hadrian limits the maximum bandwidth of an application
according to the tenant’s payment.

Second, HUG and EyeQ provide limited minimum guarantees because the network needs
full-bisection bandwidth. In other words, they do not provide guarantees in oversubscribed net-
works. Third, some proposals (such as PIAS and QJump) assume there exists an allocation

2Max-min fairness maximizes the minimum allocation received by an application in the infrastructure.
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mechanism to admit applications in the cloud datacenter (i.e., applications are already allo-
cated). Therefore, they only manage network resources at application runtime.

Fourth, management overhead is typically high when approaches need to manage bandwidth
at a fine granularity (e.g., per-flow). This happens because DCNs have hundreds of thousands
of servers (and VMs), hundreds of switches and hundreds of links, with millions of active flows
per second (as shown by Benson, Akella and Maltz (2010)). For instance, consider a large DCN
(with 100,000 VMs) where each flow is rate-limited at each link according to the requested guar-
antees and with the possibility of receiving more bandwidth (due to work-conserving sharing).
In this case, overhead would be high to manage traffic in the network.

In general, we see that IoNCloud, Predictor and Packer cover more aspects than related
proposals. IoNCloud provides minimum bandwidth guarantees for applications with work-
conserving sharing inside each virtual network. This enables IoNCloud to achieve high net-
work utilization and low management overhead (since providers only need to manage virtual
networks). Predictor, in turn, provides minimum bandwidth guarantees with work-conservation
and achieves high utilization with low management overhead (as flows are managed at application-
level). Finally, Packer, in contrast to IoNCloud and Predictor, considers multiple types of re-
sources at allocation time. Packer also provides minimum guarantees and work-conservation,
allowing the network to be highly utilized. Furthermore, like Predictor, it manages flows at
application-level, thus achieving low management overhead.
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Table 6.1 – Comparison of IoNCloud, Predictor and Packer with related work.

Proposals Allocation method Min guarantees Work-conservation High utilization Management overhead
IonCloud Network-only 3 Limited 3 Low
Predictor Network-only 3 3 3 Low
Packer Multi-resource 3 3 3 Low
HUG Network-only Limited 3 3 High
Silo Network-only 3 7 7 Low
CloudMirror Network-only 3 7 7 Low
SecondNet Network-only 3 7 7 Low
Oktopus Network-only 3 7 7 Low
Gatekeeper 7 3 Limited 7 Low
CloudNaaS Network-only 3 7 7 Low
Proteus Network-only 3 7 3 High
EyeQ 7 Limited 3 3 High
Hadrian Network-only 3 Limited 7 High
Seawall 7 7 3 3 High
NetShare 7 7 3 3 High
FairCloud (PS-L) 7 7 3 3 High
FairCloud (PS-N) 7 7 3 3 High
FairCloud (PS-P) 7 3 3 3 High
NumFabric 7 3 3 3 High
Varys 7 7 3 3 High
Aalo 7 7 3 3 High
CODA 7 7 3 3 High
Baraat 7 7 3 3 Low
PIAS 7 7 3 3 Low
Karuna 7 7 3 3 Low
QJump 7 3 7 7 Low
Tetris Multi-resource 7 3 3 Low
DRF Multi-resource 3 7 7 Low

Source: by author (2016).
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7 CONCLUDING REMARKS

In this thesis, we addressed the challenge of performance interference in cloud datacenters,
in order to provide predictable and guaranteed network performance with work-conserving shar-
ing. In particular, current DCNs are subject to interference because of three main factors (as
detailed in Sections 2.2.2 and 2.2.3): type of traffic, network oversubscription and congestion
control. First, traffic in DCNs is complex, bursty and presents different patterns than traditional
networks (GUO et al., 2014). Second, the topology is typically oversubscribed, with more band-
width available in servers than in the core (SINGH et al., 2015). Providers use oversubscrip-
tion in order to increase average network utilization, so that operational costs can be reduced.
However, the high rate at which applications arrive ends up fragmenting available resources,
and VMs of the same application may need to be allocated on distant servers (SHIEH et al.,
2011). In this context, they need to use high-utilized and oversubscribed links to communicate
among themselves (which may increase performance interference). Third, despite providing
high utilization, TCP congestion control does not offer isolation at application-level (ABTS;
FELDERMAN, 2012). In fact, it only ensures some fairness at flow-level. Overall, the median
throughput of the network is low and there is a large variation among flow throughput (JUDD,
2015).

To cope with performance interference, we proposed IoNCloud, Predictor and Packer. IoN-
Cloud, the first contribution of this thesis, leverages the key insight that temporal bandwidth
demands of cloud applications do not peak at exactly the same time. We showed that, unlike
related work, it can provide bandwidth guarantees for applications while maintaining high DCN
utilization. More specifically, results indicate that IoNCloud (i) provides predictable network
performance with guaranteed bandwidth for tenants; and (ii) reduces network underutilization,
allocated bandwidth (which allows more applications to be admitted in the cloud) and manage-
ment overhead. However, while IoNCloud provides predictable network performance for ten-
ants and their applications, it does not offer work-conserving sharing among virtual networks
(only inside VNs).

To improve network sharing and provide complete work-conservation, we leveraged SDN
and designed Predictor (the second contribution of this thesis), a scheme that addresses perfor-
mance interference by utilizing two novel algorithms. Predictor is also designed with scalability
of SDN-based DCNs in mind, taking into consideration the number of entries required in flow
tables and flow setup time in DCNs with millions of active flows. More specifically, Predictor
considers flows at application-level (reducing flow table size) and proactively installs rules and
rate-limiters at allocation time (minimizing flow setup time). Results show that Predictor pro-
vides guaranteed network performance, offers complete work-conserving sharing, significantly
reduces the number of rules in flow tables and requires small controller load.

Despite achieving predictable and guaranteed network performance, IoNCloud and Predic-
tor neglect non-network resources, which may result in fragmentation of such resources (i.e.,



106

reduced datacenter utilization). Packer, the third contribution of this thesis, addresses the chal-
lenges of performance interference and multi-resource allocation. In particular, it aims at mini-
mizing fragmentation (consequently, increasing utilization) of multiple types of resources while
guaranteeing network performance for applications. To enable Packer to achieve its goals, we
developed a novel abstraction for applications in cloud datacenters, called Time-Interleaved
Multi-Resource Abstraction (TI-MRA), the fourth contribution of this thesis. TI-MRA al-
lows the specification multi-resource requirements for applications through the use of temporal
functions. While more complex than the hose model, it allows finer-grained specification of re-
source demands for complex applications and, at the same time, provides a simple interface for
requesting applications that either do not present complex interactions or that execution patterns
are unknown (by specifying only peak demands for resources).

In Chapter 1, we presented the following hypothesis (based on the limitations of state-of-
the-art proposals in the context of network performance in cloud datacenters):

Hypothesis: a datacenter allocation strategy that considers multiple types of resources
(CPU, memory, disk I/O and, particularly, the entire – traditional or SDN-based – network)
can scalably provide predictable and guaranteed network performance for cloud applications,
without hurting multi-resource utilization and provider revenue.

The research conducted and the proposal of IoNCloud, Predictor and Packer set a clear path
towards supporting the proposed hypothesis. With IoNCloud, we confirmed that, in case the en-
tire network is taken into account at allocation time, cloud applications can receive predictable
and guaranteed network performance. Moreover, IoNCloud also enabled (i) higher network uti-
lization (with limited work-conservation) in comparison to proposals in the literature; and (ii)
more applications to be accepted in the datacenter (increasing provider revenue). With Predic-
tor, we showed that it is possible to provide complete work-conservation while offering guar-
anteed network performance in SDN-based DCNs. Finally, we designed Packer and showed
that, in addition to the benefits offered by Predictor, it is possible to minimize multi-resource
fragmentation, which further maximizes resource utilization and provider revenue.

Based on the work presented in this thesis, it is possible to identify evidences to answer the
research questions associated with the hypothesis that have been posed to guide this study. The
answer to each question is detailed as follows.

RQ1: How can a distributed resource such as the network be efficiently managed, given the
large scale and high dynamicity of cloud platforms?
Answer. In this thesis, we developed novel algorithms to efficiently utilize network vir-
tualization (IoNCloud) and SDN (Predictor and Packer) in order to manage resources and
achieve predictable and guaranteed performance in large-scale networks (as evaluated in
Sections 3.2, 4.2 and 5.2). First, the use of network virtualization and the proposal of
two new algorithms enable physical resources to be divided into slices, allowing a certain
amount of bandwidth to be reserved for one or more applications in a flexible and precise
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manner (e.g., independence between virtual and physical topologies). Second, the de-
velopment of novel SDN-based algorithms enables network resources to be dynamically
configured and managed according to application requirements and available resources in
SDN-based DCNs.

RQ2: How can bandwidth be reserved for applications without hurting network utilization?
Answer. We developed two approaches to maintain high network utilization. First, in
IoNCloud, applications with complementary temporal bandwidth demands are grouped
in the same virtual network, thus sharing the bandwidth reserved for their VN. Since
VNs are completely isolated from one another (in order to provide performance isolation
among different groups of applications), bandwidth is shared only inside VNs (a limited
form of work-conservation, but enough to minimize resource underutilization in compar-
ison to related work). Second, in Predictor and Packer, the use of SDN/OpenFlow along
with their respective allocation and rate enforcement algorithms enable applications to
receive minimum bandwidth guarantees while proportionally sharing unused bandwidth
according to weights (even if the bandwidth is allocated to an application, it can be used
by other applications if the former is not currently using it).

RQ3: How can SDN-based DCNs scalably provide predictable and guaranteed performance?
Answer. In Predictor, we showed how to scalably provide predictable and guaranteed
performance in SDN-based DCNs. More specifically, Predictor achieves scalability by
proactively installing rules and rate-limiters in forwarding devices (thus eliminating flow
setup time) and by managing flows at application-level (thus reducing the number of en-
tries in flow tables). Predictor also employs two novel algorithms to address performance
interference.

RQ4: How to enable the detailed specification of temporal requirements of multiple resources
for applications, in order to help achieving guaranteed network performance without hurt-
ing utilization of other types of resources?
Answer. We developed a novel abstraction for applications in cloud datacenters, called
Time-Interleaved Multi-Resource Abstraction (TI-MRA). TI-MRA allows the specifi-
cation of temporal demands for multiple types of resources (CPU, memory, disk I/O
and bandwidth). It uses the same principle of (a) temporal bandwidth requirements in
TIVC (XIE et al., 2012), but extends it to all kinds of resources; and (b) communication
patterns in TAG (LEE et al., 2014). Furthermore, it also takes into account dependencies
other than among tasks (such as between tasks and cloud services), in order to optimize
the use of resources.
TI-MRA can be used by all tenants, both with and without a deep knowledge of their
application requirements. Users who have a deep understanding of their applications can
tune resource demands according to the application requirements, possibly reducing costs
without impact on performance. Tenants without knowledge of their applications, in turn,
can specify only peak demands for resources (i.e., a constant temporal function for each
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type of resource).

RQ5: While providing predictable and guaranteed network performance, can multi-resource
utilization in an environment as dynamic as the cloud (i.e., with high rate of application
arrival and departure) be maximized (i.e., minimizing multi-resource fragmentation)?
Answer. We addressed this challenge in Packer. More specifically, Packer employs a
novel strategy that uses TI-MRA to consider temporal requirements of multiple types of
resources at allocation time and a novel allocation strategy to improve utilization and,
consequently, to minimize fragmentation. The strategy is based on an algorithm that
extends existing heuristics for multi-dimensional bin packing, in order to cope with online
arrival of applications, time-varying application requirements and distributed resources
(e.g., the set of network links used by communications between tasks).

We consider improving IoNCloud, Predictor and Packer in the following manner. First,
since IoNCloud achieves its benefits through grouping of applications in VNs, we plan on de-
veloping new grouping methods and thoroughly evaluate them. Second, we intend to implement
and evaluate new allocation algorithms based on metrics other than bandwidth (e.g., fault toler-
ance and energy consumption) for Predictor and Packer. Third, we plan on performing a more
extensive evaluation of IoNCloud, Predictor and Packer, considering more metrics, more factors
and how these factors influence their respective schemes. For instance, we intend to evaluate
how the number and size of groups impact network performance for applications in IoNCloud.
Finally, we will evaluate the three schemes on a testbed (such as CloudLab (CloudLab, 2016)).
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APPENDIX A RESUMO ESTENDIDO DA TESE

O paradigma de computação em nuvem mudou significativamente o cenário de Tecnologia
da Informação (TI), oferecendo provisionamento de recursos sob demanda para os locatários.
Nesse modelo, os provedores buscam aumentar a utilização dos recursos, reduzir os custos
operacionais e, consequentemente, alcançar economias de escala por meio da implementação
de datacenters de nuvem como ambientes compartilhados altamente multiplexados, com di-
ferentes aplicações coexistindo no mesmo conjunto de recursos físicos (ARMBRUST et al.,
2009; ARMBRUST et al., 2010). Os locatários, por sua vez, podem escalar suas aplicações de
acordo com as demandas, em um modelo de pagamento denominado pay-as-you-go (ou seja,
os usuários pagam de acordo com o tempo e a quantidade de recursos computacionais consum-
idos). Isso permite que os locatários possam executar vários tipos de aplicações/serviços na
nuvem, tanto as centradas em computação e que necessitam de grande quantidade de largura de
banda na rede quanto as que necessitam de baixa latência (XIE et al., 2012; JANG et al., 2015).

Entretanto, os provedores carecem de mecanismos eficientes e confiáveis para oferecer
garantias de largura de banda às aplicações (LEE et al., 2014; DOGAR et al., 2014; CHOWD-
HURY; ZHONG; STOICA, 2014; NAGARAJ et al., 2016). A rede interna da nuvem é tipica-
mente sobrecarregada (maior quantidade de banda nas bordas que no núcleo) e compartilhada
em um modelo de melhor esforço, dependendo do TCP para alcançar alta utilização e escalabili-
dade. O TCP, no entanto, não fornece isolamento robusto entre diferentes fluxos1 na rede (GUO
et al., 2014; LI; DONG; GODFREY, 2015; CRONKITE-RATCLIFF et al., 2016; HE et al.,
2016); na verdade, os fluxos de longa duração com um grande número de pacotes (denominados
fluxos elefante) são privilegiados em detrimento dos pequenos (chamados fluxos rato) (ABTS;
FELDERMAN, 2012), um problema denominado interferência de desempenho (SHIEH et al.,
2011; GROSVENOR et al., 2015; BALLANI et al., 2013).

Estudos recentes (GROSVENOR et al., 2015; JUDD, 2015; SCHAD; DITTRICH; QUIANÉ-
RUIZ, 2010; WANG; NG, 2010; BALLANI et al., 2011; JANG et al., 2015; SHEA et al., 2014)
concluíram que, devido à interferência de desempenho, o throughput na rede alcançado por
máquinas virtuais (VMs) pode variar por um fator superior a cinco, resultando em desempenho
de rede baixo e imprevisível (BALLANI et al., 2013). Mais especificamente, quando a largura
de banda disponível para uma aplicação fica abaixo de um certo limiar, o tempo total de ex-
ecução da aplicação é alongado (ou seja, o desempenho geral é reduzido) (XIE et al., 2012).
Esse comportamento ocorre devido a três razões principais: piq aplicações realizam computação
e comunicação de rede de forma intercalada (CHEN et al., 2014); piiq aplicações tendem a gerar
tráfego em rajadas (JEYAKUMAR et al., 2013); e piiiq a computação muitas vezes depende dos
dados recebidos pela rede (se a velocidade de comunicação é reduzida devido à falta de largura
de banda disponível, o processamento subsequente é retardado) (GUO et al., 2013b).

A falta de garantias de rede impacta diretamente em locatários e provedores. Os locatários

1Fluxos são caracterizados por sequências de pacotes da origem ao destino.
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não recebem a alocação de recursos de rede para as suas aplicações (o que pode dificultar tanto
aplicações que necessitam de alta taxa de transferência quanto aplicações sensíveis à latência)
e, portanto, em certas ocasiões podem executar somente algumas aplicações específicas na nu-
vem (POPA et al., 2013). Além disso, os custos são imprevisíveis devido à alta variabilidade
de banda disponível na rede (aplicações podem demorar mais tempo para executar (XIE et al.,
2012)). Os provedores, por sua vez, têm o throughput dos seus datacenters reduzido (por causa
da interferência desempenho) (JUDD, 2015; HE et al., 2016), o que pode afetar negativamente
a receita (BALLANI et al., 2011).

Os trabalhos relacionados propuseram diversas técnicas para lidar com a interferência de
desempenho. As propostas são divididas de acordo com o tipo de garantias que elas oferecem:
deterministas (por exemplo, Silo (JANG et al., 2015) e Hadrian (BALLANI et al., 2013)) e
não-deterministas (por exemplo, PIAS (BAI et al., 2015), QJump (GROSVENOR et al., 2015)
e NumFabric (NAGARAJ et al., 2016)). Apesar de melhorar o desempenho da rede, elas ap-
resentam deficiências importantes, incluindo (i) subutilização de recursos (Silo e QJump); (ii)
significativa sobrecarga de gerenciamento ao calcular dinamicamente a taxa de banda e aplicar
essa taxa para cada fluxo na rede (Hadrian e NumFabric), já que a rede pode ter milhões de
fluxos ativos por segundo (BENSON; AKELLA; MALTZ, 2010); e (iii) inanição de fluxos
elefante (PIAS). Além disso, nenhuma dessas propostas otimiza a alocação de outros tipos de
recursos, o que pode resultar em fragmentação de recursos computacionais (por exemplo, CPU,
memória e disco). Portanto, o objetivo é propor esquemas sem essas deficiências, mesmo que
isso signifique introduzir alguma complexidade (como exigir que os locatários façam uma es-
pecificação detalhada de suas aplicações).

Nesta tese, são apresentadas três propostas para lidar com a interferência de desempenho
em redes de datacenters (DCNs): IoNCloud, Predictor e Packer. Inicialmente, utilizou-se a
observação fundamental que as demandas temporais de largura de banda das aplicações na
nuvem não possuem pico ao mesmo tempo (WANG et al., 2012; CHEN; SHEN, 2014) e, por
isso, foi proposta uma estratégia de alocação para a reserva e isolamento de recursos de rede em
datacenters. Ela visa minimizar a subutilização de recursos ao mesmo tempo em que provê uma
maneira eficiente de compartilhar previsivelmente a largura de banda entre as aplicações, com
baixa sobrecarga de gerenciamento. Para mostrar os benefícios da estratégia, foi desenvolvido o
IoNCloud, um esquema que implementa a estratégia proposta. O IoNCloud emprega o conceito
de atração/repulsão entre aplicações de acordo com os seus requisitos temporais de banda e
necessidade de isolamento, e agrupa tais aplicações em redes virtuais (VNs) com garantias de
largura de banda. Dessa forma, a estratégia busca explorar o compromisso entre alta utilização
da rede (objetivo dos provedores para reduzir os custos operacionais) e garantias estritas de rede
(desejadas pelos locatários).

Apesar de atingir desempenho de rede previsível e garantido, o IoNCloud não provê conser-
vação de trabalho entre VNs, o que mantém os recursos reservados ociosos enquanto outras apli-
cações poderiam se beneficiar ao usá-los. Por isso, foi desenvolvido o Predictor, uma evolução
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em relação ao IoNCloud, a fim de fornecer garantias de rede e conservação de trabalho.

O Predictor busca programar e configurar dinamicamente a rede em datacenters baseados
em redes definidas por software (SDN), visto que SDN é uma tendência crescente em data-
centers (SINGH et al., 2015). Nesse contexto, o Predictor foi projetado para ser escalável,
considerando o número de regras em tabelas de fluxo e o tempo de instalação das regras para
um novo fluxo em DCNs com milhões de fluxos ativos. Para alcançar garantias de rede e es-
calabilidade tanto em redes com bisseção total de banda quanto em DCNs sobrecarregadas, ele
baseia-se em duas observações fundamentais: (i) provedores não precisam controlar cada fluxo
individualmente, uma vez que eles cobram os locatários com base na quantidade de recursos
consumidos pelas aplicações; e (ii) o controle de congestionamento na rede deve ser propor-
cional ao pagamento dos locatários (BALLANI et al., 2013; JANG et al., 2015).

Com base nessas observações, o Predictor lida com a interferência desempenho e a escala-
bilidade de SDN em DCNs da seguinte maneira. A interferência desempenho é abodada com
a utilização de SDN e o emprego dois novos algoritmos para melhorar o compartilhamento
da rede, o que beneficia tanto locatários quanto provedores. Os locatários podem alcançar de-
sempenho de rede previsível, recebendo garantias de largura de banda para as suas aplicações.
Os provedores, por sua vez, mantêm alta taxa de utilização da rede, essencial para alcançar
economias de escala.

A escalabilidade de SDN em DCNs é endereçada de duas formas. Primeiro, a ocupação
da tabela de fluxos é reduzida por meio do gerenciamento de fluxos em nível de aplicação
(considerando as duas observações feitas anteriormente). Essa configuração permite que os
provedores possam controlar o tráfego e coletar estatísticas em nível de aplicação para cada
enlace e dispositivo na rede. Segundo, o tempo de instalação de regras para um novo fluxo é
reduzido por meio da instalação proativa de regras em switches SDN no momento da alocação
para garantir largura de banda para a comunicação entre VMs da mesma aplicação. As regras
para esse tipo de comunicação são proativamente instaladas porque o volume de tráfego entre
VMs da mesma aplicação é maior que entre VMs de diferentes aplicações (BALLANI et al.,
2013). As regras para comunicação entre VMs de diferentes aplicações, por sua vez, podem ser
proativamente instaladas em switches (se os locatários conhecem as outras aplicações com as
quais suas aplicações se comunicarão (GROSVENOR et al., 2015) ou se o provedor empregar
alguma técnica preditiva (XIE et al., 2012; LACURTS et al., 2013)) ou reativamente instaladas
de acordo com as demandas. Note que a instalação proativa de regras tem vantagens e desvan-
tagens: enquanto a latência para novos fluxos é reduzida, algumas regras na tabela de fluxos
podem levar mais tempo para expirar (há a possibilidade que elas só sejam removidas quando
as suas respectivas aplicações concluírem e forem desalocadas).

Apesar de atingir os seus respectivos objetivos, o IoNCloud e o Predictor (e a maioria das
estratégias de alocação presentes na literatura (JANG et al., 2015; BALLANI et al., 2013))
negligenciam a alocação de recursos que não sejam de rede; na verdade, CPU e memória são
tipicamente alocadas de acordo com slots (GHODSI et al., 2011). A alocação baseada em slots,
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infelizmente, resulta em superalocação, o que leva ao desperdício (visto que as aplicações não
usam todos os seus recursos alocados) e à fragmentação (GRANDL et al., 2014). Em geral, a
superalocação resulta em um menor número de aplicações sendo aceitas na infraestrutura e em
menor utilização do datacenter.

Para lidar com as limitações acima referidas, utilizam-se duas observações fundamentais:
(i) estendendo a observação feita ao IoNCloud, aplicações têm demandas complementares ao
longo do tempo para múltiplos tipos de recursos (GRANDL et al., 2014); e (ii) a utilização de
diferentes recursos têm picos de demanda em momentos distintos (CHEN; SHEN, 2014). Com
base nessas observações, é proposto o Packer. Além de fornecer desempenho de rede garantido
com conservação de trabalho (como o Predictor), o Packer visa minimizar a fragmentação de
múltiplos tipos de recursos e, consequentemente, aumentar a utilização do datacenter para os
principais recursos (rede, CPU, memória e disco), sem considerar slots.

O Packer é projetado com base em quatro aspectos: abstração para aplicações, alocação de
múltiplos tipos de recursos, compartilhamento de rede e monitoramento de recursos. Primeiro, o
Packer utiliza uma nova abstração para as aplicações, chamada Time-Interleaved Multi-Resource

Abstraction (TI-MRA). Diferentemente das abstrações existentes na literatura (BALLANI et
al., 2011; LEE et al., 2014; XIE et al., 2012; BALLANI et al., 2013), o TI-MRA não impõe
nenhuma estrutura predefinida para as aplicações e permite a especificação de requisitos para
vários tipos de recursos ao longo do tempo. Segundo, o Packer emprega uma nova estratégia de
alocação que estende as heurísticas previamente desenvolvidas para o problema de otimização
do empacotamento com múltiplas dimensões (multi-dimensional bin packing), a fim de reduzir
a fragmentação de recursos. Terceiro, o Packer utiliza redes definidas por software (SDN) e
OpenFlow (JARRAYA; MADI; DEBBABI, 2014) para configurar e assegurar dinamicamente
garantias de largura de banda para as aplicações em toda a rede. Quarto, o Packer emprega um
mecanismo de monitoramento de recursos para evitar o desperdício e para reagir a eventos in-
esperados (por exemplo, se uma aplicação atrasa devido a um recurso que está congestionado).

Classe de aplicações para maximizar os benefícios de cada proposta. O IoNCloud, o
Predictor e o Packer foram desenvolvidos considerando as classes mais importantes de apli-
cações para a nuvem (aquelas com grande uso da rede e as sensíveis à latência). Todos os
três esquemas fornecem garantias de desempenho de rede. No entanto, cada esquema é mais
adequado para certos tipos de aplicações, como segue.

O IoNCloud e o Packer utilizam demandas temporais (ou o pico de demanda, com o custo
de uma certa subutilização) para recursos de rede (IoNCloud) e para vários tipos de recursos
(Packer). Consequentemente, como o Proteus (XIE et al., 2012) e o CloudMirror (LEE et al.,
2014), eles são mais adequados para locatários que executem repetidamente os mesmos tipos
de aplicações, com dados de entrada semelhantes entre as diferentes execuções da mesma apli-
cação. Isso é comum em aplicações que realizam o processamento de dados de forma iterativa
(por exemplo, PageRank (LANGVILLE; MEYER, 2011; PAGE et al., 1999), busca de tópicos
induzida por hipertexto (KLEINBERG, 1999), consultas relacionais recursivas (BANCILHON;
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RAMAKRISHNAN, 1986), análise de redes sociais e análise do tráfego de rede), nas quais a
maior parte dos dados permanece inalterada de iteração para iteração (XIE et al., 2012). Nesse
caso, o uso de recursos das aplicações pode ser medido periodicamente ou em cada execução.
Além disso, outras aplicações também podem tirar proveito do Packer com a especificação do
pico de demanda para cada tipo de recurso. Nesse contexto, o mecanismo de monitoramento de
recursos do Packer é empregado durante a execução das aplicações, a fim de evitar o desperdí-
cio.

O Predictor, por sua vez, não exige demandas temporais de recursos para as aplicações; ele
só requer a taxa de largura de banda que deve ser garantida para cada aplicação. No caso das
garantias de largura de banda de algumas aplicações serem sub- ou super-provisionadas, o algo-
ritmo de conservação de trabalho do Predictor ajusta a taxa de envio e de recebimento de dados,
a fim de evitar o desperdício de banda. Portanto, o Predictor é adequado para a maioria das apli-
cações na nuvem, incluindo PageRank (LANGVILLE; MEYER, 2011), Memcached (NISH-
TALA et al., 2013; MEMCACHED, 2015), MapReduce, aprendizado de máquina (ZHOU et
al., 2008) e aplicações web voltadas para o usuário (que possuem requisitos estritos de latência).

Contribuições. De modo geral, as principais contribuições dessa tese são:

‚ O IoNCloud, um esquema para datacenters de nuvem de grande escala. O IoNCloud (i)
agrupa aplicações em redes virtuais; (ii) mapeia tais aplicações no substrato físico; e (iii)
fornece recursos de rede em cada enlace que a VN foi alocada de acordo com o pico
temporal das demandas agregadas das aplicações no mesmo grupo que utilizam o enlace
(ou seja, a largura de banda necessária no instante em que a soma das demandas de rede
das aplicações pertencentes ao mesmo grupo é a mais elevada). Os resultados da avaliação
mostram que o IoNCloud (i) fornece desempenho de rede previsível, com largura de
banda garantida aos locatários; e (ii) reduz a subutilização da rede, a quantidade de banda
alocada (o que permite mais aplicações serem alocadas na nuvem) e a sobrecarga de
gerenciamento;

‚ O Predictor, um esquema para DCNs baseadas em SDN que emprega dois novos algo-
ritmos para fornecer desempenho de rede previsível. Mais especificamente, o Predic-
tor oferece garantias de largura de banda com conservação de trabalho para locatários e
gerenciamento de rede em grão-fino para provedores. Ele também aborda os desafios de
escalabilidade de SDN em DCNs por meio do controle de fluxos em nível de aplicação
e da instalação proativa de regras em dispositivos de encaminhamento. Os resultados
mostram que o Predictor (i) fornece desempenho de rede garantido com conservação de
trabalho; (ii) reduz significativamente o número de regras em tabelas de fluxo de switches;
e (iii) requer baixa carga no controlador;

‚ O Packer, um esquema que, além de proporcionar desempenho de rede previsível e garan-
tido, minimiza a fragmentação de múltiplos tipos de recursos. Ele alcança esses objetivos
por meio da utilização de SDN e de dois novos algoritmos para (i) alocar aplicações con-
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siderando vários recursos; e (ii) definir periodicamente a taxa de banda de cada VM. Os
resultados mostram que o Packer fornece garantias mínimas de largura de banda para as
aplicações e conservação de trabalho para os provedores, e aumenta a utilização dos recur-
sos do datacenter e a receita do provedor em comparação com os trabalhos relacionados,
com o custo de levar mais tempo para alocar aplicações;

‚ Uma nova abstração para especificar aplicações no Packer, denominada Time-Interleaved
Muti-Resource Abstraction (TI-MRA). Diferentemente das abstrações presentes na lite-
ratura (BALLANI et al., 2011; XIE et al., 2012; BALLANI et al., 2013; LEE et al., 2014),
o TI-MRA permite a especificação de demandas temporais para vários tipos de recursos,
sem uma estrutura predefinida para as aplicações.
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4.1 OVERVIEW

Datacenters are the core of cloud computing, and their network is an essential component
to allow distributed applications to run efficiently and predictably [1]. However, not
all datacenters provide cloud computing. In fact, there are two main types of datacen-
ters: production and cloud. Production datacenters are often shared by one tenant or
among multiple (possibly competing) groups, services, and applications, but with low
rate of arrival and departure. They run data analytics jobs with relatively little varia-
tion in demands, and their size varies from hundreds of servers to tens of thousands of
servers. Cloud datacenters, in contrast, have high rate of tenant arrival and departure
(churn) [2], run both user-facing applications and inward computation, require elasticity
(since application demands are highly variable), and consist of tens to hundreds of thou-
sands of physical servers [3]. Moreover, clouds can comprise several datacenters spread
around the world. As an example, Google, Microsoft, and Amazon (three of the biggest
players in the market) have datacenters in four continents; and each company has over
900,000 servers.

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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This chapter presents an in-depth study of datacenter networks (DCNs), relevant
standards, and operation. Our goal here is three-fold: (i) provide a detailed view of the
networking infrastructure connecting the set of servers of the datacenter via high-speed
links and commodity off-the-shelf (COTS) switches [4]; (ii) discuss the addressing and
routing mechanisms employed in this kind of network; and (iii) show how the nature of
traffic may impact DCNs and affect design decisions.

Providers typically have three main goals when designing a DCN [5]: scalability,
fault tolerance, and agility. First, the infrastructure must scale to a large number of
servers (and preferably allow incremental expansion with commodity equipment and lit-
tle effort). Second, a DCN should be fault tolerant against failures of both computing and
network resources. Third, a DCN ideally needs to be agile enough to assign any virtual
machine or, in short, VM (which is part of a service or application) to any server [6].
As a matter of fact, DCNs should ensure that computations are not bottlenecked on
communication [7].

Currently, providers attempt to meet these goals by implementing the network
as a multi-rooted tree [1], using LAN technology for VM addressing and two main
strategies for routing: equal-cost multipath (ECMP) and valiant load balancing (VLB).
The shared nature of DCNs among a myriad of applications and tenants and high
scalability requirements, however, introduce several challenges for architecture design,
protocols and strategies employed inside the network. Furthermore, the type of traffic
in DCNs is significantly different from traditional networks [8]. Therefore, we also sur-
vey recent proposals in the literature to address the limitations of technologies used in
today’s DCNs.

We structure this chapter as follows. First, we begin by examining the typical
multi-rooted tree topology used in current datacenters and discuss its benefits and
drawbacks. Then, we take a look at novel topologies proposed in the literature, and
how network expansion can be performed in a cost-efficient way for providers. After
addressing the structure of the network, we look into the traffic characteristics of these
high-performance, dynamic networks and discuss proposals for traffic management on
top of existing topologies. Based on the aspects discussed so far, we present layer-2 and
layer-3 routing, its requirements and strategies typically employed to perform such task.
We also examine existing mechanisms used for VM addressing in the cloud platform
and novel proposals to increase flexibility and isolation for tenants. Finally, we discuss
the most relevant open research challenges and close this chapter with a brief summary
of DCNs.

4.2 TOPOLOGIES

In this section, we present an overview of datacenter topologies. The topology describes
how devices (routers, switches and servers) are interconnected. More formally, this is
represented as a graph, in which switches, routers and servers are the nodes, and links
are the edges.
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4.2.1 Typical Topology

Figure 4.1 shows a canonical three-tiered multi-rooted tree-like physical topology, which
is implemented in current datacenters [1, 9]. The three tiers are: (1) the access (edge)
layer, comprising the top-of-rack (ToR) switches that connect servers mounted on every
rack; (2) the aggregation (distribution) layer, consisting of devices that interconnect ToR
switches in the access layer; and (3) the core layer, formed by routers that interconnect
switches in the aggregation layer. Furthermore, every ToR switch may be connected to
multiple aggregation switches for redundancy (usually 1+1 redundancy) and every aggre-
gation switch is connected to multiple core switches. Typically, a three-tiered network is
implemented in datacenters with more than 8000 servers [4]. In smaller datacenters, the
core and aggregation layers are collapsed into one tier, resulting in a two-tiered datacenter
topology (flat layer-2 topology) [9].

This multitiered topology has a significant amount of oversubscription, where
servers attached to ToR switches have significantly more (possibly an order of mag-
nitude) provisioned bandwidth between one another than they do with hosts in other
racks [3]. Providers employ this technique in order to reduce costs and improve resource
utilization, which are key properties to help them achieve economies of scale.

This topology, however, presents some drawbacks. First, the limited bisection band-
width1 constrains server-to-server capacity, and resources eventually get fragmented
(limiting agility) [11, 12]. Second, multiple paths are poorly exploited (e.g., only a single
path is used within a layer-2 domain by spanning tree protocol), which may poten-
tially cause congestion on some links even though other paths exist in the network and
have available capacity. Third, the rigid structure hinders incremental expansion [13].

Core

Aggregation

Access (ToR)

Servers

Figure 4.1. A canonical three-tiered tree-like datacenter network topology.

1The bisection bandwidth of the network is the worst-case segmentation (i.e., with minimum bandwidth) of
the network in two equally-sized partitions [10].
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Fourth, the topology is inherently failure-prone due to the use of many links, switches
and servers [14]. To address these limitations, novel network architectures have been
recently proposed; they can be organized in three classes [15]: switch-oriented, hybrid
switch/server and server-only topologies.

4.2.2 Switch-Oriented Topologies

These proposals use commodity switches to perform routing functions, and follow a clos-
based design or leverage runtime reconfigurable optical devices. A clos network [16]
consists of multiple layers of switches; each switch in a layer is connected to all switches
in the previous and next layers, which provides path diversity and graceful bandwidth
degradation in case of failures. Two proposals follow the Clos design: VL2 [6] and
Fat-Tree [4]. VL2, shown in Figure 4.2a, is an architecture for large-scale datacenters and
provides multiple uniform paths between servers and full bisection bandwidth (i.e., it is
non-oversubscribed). Fat-Tree, in turn, is a folded Clos topology. The topology, shown
in Figure 4.2b, is organized in a non-oversubscribed k-ary tree-like structure, consisting
of k-port switches. There are k two-layer pods with k/2 switches. Each k/2 switch in the
lower layer is connected to k/2 servers, and the remaining ports are connected to k/2
aggregation switches. Each of the (k/2)2k-port core switches has one port connected to
each of k pods. In general, a fat-tree built with k-port switches supports k3/4 hosts. Despite
the high capacity offered (agility is guaranteed), these architectures increase wiring costs
(because of the number of links).

Optical switching architecture (OSA) [17], in turn, uses runtime reconfigurable opti-
cal devices to dynamically change physical topology and one-hop link capacities (within
10 milliseconds). It employs hop-by-hop stitching of multiple optical links to provide
all-to-all connectivity for the highly dynamic and variable network demands of cloud
applications. This method is shown in the example of Figure 4.3. Suppose that demands
change from the left table to the right table in the figure (with a new highlighted entry).
The topology must be adapted to the new traffic pattern, otherwise there will be at least
one congested link. One possible approach is to increase capacity of link F–G (by reduc-
ing capacity of links F–D and G–C), so congestion can be avoided. Despite the flexibility
achieved, OSA suffers from scalability issues, since it is designed to connect only a few

Layer 1

(a)

Layer 2

Layer 3

Servers

Core

(b)

Aggregation

Access (ToR)

Servers
Pod 0 Pod 1 Pod 3Pod 2

Figure 4.2. Clos-based topologies. (a) VL2 and (b) Fat-tree.
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Figure 4.3. OSA adapts according to demands (adapted from Ref. [17]).

thousands of servers in a container, and latency-sensitive flows may be affected by link
reconfiguration delays.

4.2.3 Hybrid Switch/Server Topologies

These architectures shift complexity from network devices to servers, i.e., servers per-
form routing, while low-end mini-switches interconnect a fixed number of hosts. They
can also provide higher fault-tolerance, richer connectivity and improve innovation,
because hosts are easier to customize than commodity switches. Two example topologies
are DCell [5] and BCube [18], which can arguably scale up to millions of servers.

DCell [5] is a recursively built structure that forms a fully connected graph using
only commodity switches (as opposed to high-end switches of traditional DCNs). DCell
aims to scale out to millions of servers with few recursion levels (it can hold 3.2 million
servers with only four levels and six hosts per cell). A DCell network is built as follows.
A level-0 DCell (DCell0) comprises servers connected to a n-port commodity switch.
DCell1 is formed with n + 1 DCell0; each DCell0 is connected to all other DCell0 with
one bidirectional link. In general, a level-k DCell is constructed with n + 1 DCellk−1 in the
same manner as DCell1. Figure 4.4a shows an example of a two-level DCell topology. In
this example, a commodity switch is connected with four servers (n = 4) and, therefore,
a DCell1 is constructed with 5 DCell0. The set of DCell0 is interconnected in the following
way: each server is represented by the tuple (a1, a0), where a1 and a0 are level 1 and 0
identifiers, respectively; and a link is created between servers identified by the tuples
(i, j − 1) and (j, i), for every i and every j > i.

Similarly to DCell, BCube [18] is a recursively built structure that is easy to design
and upgrade. Additionally, BCube provides low latency and graceful degradation of
bandwidth upon link and switch failure. In this structure, clusters (a set of servers inter-
connected by a switch) are interconnected by commodity switches in a hypercube-based
topology. More specifically, BCube is constructed as follows: BCube0 (level-0 BCube)
consists of n servers connected by a n-port switch; BCube1 is constructed from n BCube0

and n n-port switches; and BCubek is constructed from n BCubek−1 and nk n-port
switches. Each server is represented by the tuple (x1, x2), where x1 is the cluster num-
ber and x2 is the server number inside the cluster. Each switch, in turn, is represented by
a tuple (y1, y2), where y1 is the level number and y2 is the switch number inside the level.
Links are created by connecting the level-k port of the i-th server in the j-th BCubek−1

to the j-th port of the i-th level-k switch. An example of two-level BCube with n = 4
(4-port switches) is shown in Figure 4.4b.
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Figure 4.4. Hybrid switch/server topologies. (a) Two-level DCell and (b) two-level BCube.

Despite the benefits, DCell and BCube require a high number of NIC ports at
end-hosts — causing some overhead at servers — and increase wiring costs. In par-
ticular, DCell results in non-uniform multiple paths between hosts, and level-0 links are
typically more utilized than other links (creating bottlenecks). BCube, in turn, provides
uniform multiple paths, but uses more switches and links than DCell [18].

4.2.4 Server-Only Topology

In this kind of topology, the network comprises only servers that perform all network
functions. An example of architecture is CamCube [19], which is inspired in Content
Addressable Network (CAN) [20] overlays and uses a 3D torus (k-ary 3-cube) topol-
ogy with k servers along each axis. Each server is connected directly to 6 other servers,
and the edge servers are wrapped. Figure 4.5 shows a 3-ary CamCube topology, result-
ing in 27 servers. The three most positive aspects of CamCube are (1) providing robust
fault-tolerance guarantees (unlikely to partition even with 50% of server or link failures);
(2) improving innovation with key-based server-to-server routing (content is hashed to a
location in space defined by a server); and (3) allowing each application to define spe-
cific routing techniques. However, it does not hide topology from applications, has higher
network diameter O( 3

√
N) (increasing latency and traffic in the network) and hinders

network expansion.

4.2.5 Summary of Topologies

Table 4.1 summarizes the benefits and limitations of these topologies by taking four
properties into account: scalability, resiliency, agility and cost. The typical DCN topol-
ogy has limited scalability (even though it can support hundreds of thousands of servers),
as COTS switches have restricted memory size and need to maintain an entry in their For-
warding Information Base (FIB) for each VM. Furthermore, it presents low resiliency,
since it provides only 1+1 redundancy, and its oversubscribed nature hinders agility.

134



“9780471697558c04” — 2015/3/20 — 11:09 — page 81 — #7

TOPOLOGIES 81

(0,2,2)

(0,2,1)

(0,2,0)

(1,2,0)

(1,2,1)

(2,2,0)

(2,2,1)

(2,1,2)

(2,1,1)

(1,1,2)

(0,1,2)

(0,1,1)

(0,1,0)

(0,0,2)

(0,0,1)

(0,0,0)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(2,1,0)

(1,0,2)

(2,0,2)

(2,0,1)

(2,0,0)

(1,2,2)

(2,2,2)

Figure 4.5. Example of 3-ary CamCube topology (adapted from Ref. [21]).

TABLE 4.1. Comparison among datacenter network topologies

Proposal
Properties

Scalability Resiliency Agility Cost

Typical DCN Low Low No Low
Fat-Tree High Average Yes Average
VL2 High High Yes High
OSA Low High No High
DCell Huge High No High
BCube Huge High Yes High
CamCube Low High No Average

Despite the drawbacks, it can be implemented with only commodity switches, resulting
in lower costs.

Fat-Tree and VL2 are both instances of a Clos topology with high scalability and full
bisection bandwidth (guaranteed agility). Fat-Tree achieves average resiliency, as ToR
switches are connected only to a subset of aggregation devices, and has average overall
costs (mostly because of increased wiring). VL2 scales through packet encapsulation,
maintaining forwarding state only for switches in the network, achieves high resiliency
by providing multiple shortest paths and by relying on a distributed lookup entity for
handling address queries. As a downside, its deployment has increased costs (due to
wiring, significant amount of exclusive resources for running the lookup system and the
need of switch support for IP-in-IP encapsulation).
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OSA was designed taking flexibility into account in order to improve resiliency (i.e.,
by using runtime reconfigurable optical devices to dynamically change physical topology
and one-hop link capacities). However, it has low scalability (up to a few thousands of
servers), no agility (as dynamically changing link capacities may result in congested
links) and higher costs (devices should support optical reconfiguration).

DCell and BCube aim at scaling to millions of servers while ensuring high resiliency
(rich connectivities between end-hosts). In contrast to BCube, DCell does not provide
agility, as the set set of non-uniform multiple paths may be bottlenecked by links at
level-0. Finally, their deployment costs may be significant, since they require a lot of
wiring and more powerful servers in order to efficiently perform routing.

CamCube, in turn, is unlikely to partition even with 50% of server or link failures,
thus achieving high resiliency. Its drawback, however, is related to scalability and agility;
both properties can be hindered because of high network diameter, which indicates that,
on average, more resources are needed for communication between VMs hosted by dif-
ferent servers. CamCube also has average deployment costs, mainly due to wiring and
the need of powerful servers (to perform network functions).

As we can see, there is no perfect topology, since each proposal focus on specific
aspects. Ultimately, providers are cost-driven: they choose the topology with the lowest
costs, even if it cannot achieve all properties desired for a datacenter network running
heterogenous applications from many tenants.

4.3 NETWORK EXPANSION

A key challenge concerning datacenter networks is dealing with the harmful effects that
their ever-growing demand causes on scalability and performance. Because current DCN
topologies are restricted to 1+1 redundancy and suffer from oversubscription, they can
become underprovisioned quite fast. The lack of available bandwidth, in turn, may cause
resource fragmentation (since it limits VM placement) [11] and reduce server utilization
(as computations often depend on the data received from the network) [2]. In conse-
quence, the DCN can loose its ability to accommodate more tenants (or offer elasticity
to the current ones); even worse, applications using the network may start performing
poorly, as they often rely on strict network guarantees2.

These fundamental shortcomings have stimulated the development of novel DCN
architectures (seen in Section 4.2) that provide large amounts of (or full) bisection band-
width for up to millions of servers. Despite achieving high bisection bandwidth, their
deployment is hindered by the assumption of homogeneous sets of switches (with the
same number of ports). For example, consider a Fat-Tree topology, where the entire
structure is defined by the number of ports in switches. These homogeneous switches
limit the structure in two ways: full bisection bandwidth can only be achieved with

2For example, user-facing applications, such as Web services, require low-latency for communication with
users, while inward computation (e.g., Map-Reduce) requires reliability and bisection bandwidth in the intra-
cloud network.

136



“9780471697558c04” — 2015/3/20 — 11:09 — page 83 — #9

NETWORK EXPANSION 83

specific numbers of servers (e.g., 8,192 and 27,648) and incremental upgrade may require
replacing every switch in the network [13].

In fact, most physical datacenter designs are unique; hence, expansions and upgrades
must be custom-designed and network performance (including bisection bandwidth, end-
to-end latency and reliability) must be maximized while minimizing provider costs [11,
12]. Furthermore, organizations need to be able to incrementally expand their networks
to meet the growing demands of tenants [13]. These facts have motivated recent studies
[7, 11–13] to develop techniques to expand current DCNs to boost bisection bandwidth
and reliability with heterogeneous sets of devices (i.e., without replacing every router
and switch in the network). They are discussed next.

4.3.1 Legup

Focused on tree-like networks, Legup [12] is a system that aims at maximizing network
performance at the design of network upgrades and expansions. It utilizes a linear model
that combines three metrics (agility, reliability and flexibility), while being subject to
the cloud provider’s budget and physical constraints. In an attempt to reduce costs, the
authors of Legup develop the Theory of Heterogeneous Clos Networks to allow modern
and legacy equipment to coexist in the network. Figure 4.6 depicts an overview of the
system. Legup assumes an existing set of racks and, therefore, only needs to determine
aggregation and core levels of the network (more precisely, the set of devices, how they
interconnect, and how they connect to ToR switches). It employs a branch and bound
optimization algorithm to explore the solution space only for aggregation switches, as
core switches in a heterogeneous Clos network are restricted by aggregation ones. Given
a set of aggregation switches in each step of the algorithm, Legup performs three actions.
First, it computes the minimum cost for mapping aggregation switches to racks. Second,
it finds the minimum cost distribution of core switches to connect to the set of aggregation
switches. Third, the candidate solution is bounded to check its optimality and feasibil-
ity (by verifying if any constraint is violated, including provider’s budget and physical
restrictions).

Branch and bound algorithm

Bounding
function

Feasibility check

Mapping of
aggregation

switches

Core switch
selection

DCN design
DCN design,
switch types

and physical details

Figure 4.6. Legup’s overview (adapted from Ref. [12]).
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Figure 4.7. Comparison between (a) Fat-Tree and (b) Jellyfish with identical equipment

(adapted from Ref. [13]).

4.3.2 Rewire

Recent advancements in routing protocols may allow DCNs to shift from a rigid tree to
a generic structure [11, 22–25]. Based on this observation, Rewire [11] is a framework
that performs DCN expansion on arbitrary topologies. It has the goal of maximizing net-
work performance (i.e., finding maximum bisection bandwidth and minimum end-to-end
latency), while minimizing costs and satisfying user-defined constraints. In particular,
Rewire adopts a different definition of latency: while other studies model it by the
worst-case hop-count in the network, Rewire also considers the speed of links and the
processing time at switches (because unoptimized switches can add an order of mag-
nitude more processing delay). Rewire uses simulated annealing (SA) [26] to search
through candidate solutions and implements an approximation algorithm to efficiently
compute their bisection bandwidth. The simulated annealing, however, does not take
the addition of switches into account; it only optimizes the network for a given set of
switches. Moreover, the process assumes uniform queuing delays for all switch ports,
which is necessary because Rewire does not possess knowledge of network load.

4.3.3 Jellyfish

End-to-end throughput of a network is quantitatively proved to depend on two fac-
tors: (1) the capacity of the network and (2) the average path length (i.e., throughput is
inversely proportional to the capacity consumed to deliver each byte) [13]. Furthermore,
as noted earlier, rigid DCN structures hinder incremental expansion. Consequently, a
degree-bounded3 random graph topology among ToR switches, called Jellyfish [13], is
introduced, with the goal of providing high bandwidth and flexibility. It supports device
heterogeneity, different degrees of oversubscription and easy incremental expansion (by
naturally allowing the addition of heterogeneous devices). Figure 4.7 shows a comparison

3Degree-bounded, in this context, means that the number of connections per node is limited by the number of
ports in switches.
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of Fat-Tree and Jellyfish with identical equipment and same diameter (i.e., 6). Each ring
in the figure contains servers reachable within the number of hops in the labels. We see
that Jellyfish can reach more servers in fewer hops, because some links are not use-
ful from a path-length perspective in a Fat-Tree (e.g., links marked with “x”). Despite
its benefits, Jellyfish’s random design brings up some challenges, such as routing and
the physical layout. Routing, in particular, is a critical feature needed, because it allows
the use of the topology’s high capacity. However, results show that the commonly used
ECMP does not utilize the entire capacity of Jellyfish, and the authors propose the use
of k-shortest paths and MultiPath TCP [25] to improve throughput and fairness.

4.3.4 Random Graph-Based Topologies

Singla et al. [7] analyze the throughput achieved by random graphs for topologies with
both homogeneous and heterogeneous switches, while taking optimization into account.
They obtain the following results: random graphs achieve throughput close to the optimal
upper-bound under uniform traffic patterns for homogeneous switches, and heteroge-
neous networks with distinct connectivity arrangements can provide nearly identical high
throughput. Then, the acquired knowledge is used as a building block for designing large-
scale random networks with heterogeneous switches. In particular, they utilize the VL2
deployed in Microsoft’s datacenters as a case study, showing that its throughput can be
significantly improved (up to 43%) by only rewiring the same devices.

4.4 TRAFFIC

Proposals of topologies for datacenter networks presented in Sections 4.2 and 4.3 share
a common goal: provide high bisection bandwidth for tenants and their applications. It is
intuitive that a higher bisection bandwidth will benefit tenants, since the communication
between VMs will be less prone to interference. Nonetheless, it is unclear how strong is
the impact of the bisection bandwidth. This section addresses this question by surveying
several recent measurement studies of DCNs. Then, it reviews proposals for dealing with
related limitations. More specifically, it discusses traffic patterns—highlighting their
properties and implications for both providers and tenants—and shows how literature
is using such information to help designing and managing DCNs.

Traffic can be divided in two broad categories: north/south and east/west communi-
cation. North/south traffic (also known as extra-cloud) corresponds to the communication
between a source and a destination host where one of the ends is located outside the cloud
platform. By contrast, east/west traffic (also known as intra-cloud) is the communication
in which both ends are located inside the cloud. These types of traffic usually depend
on the kind and mix of applications: user-facing applications (e.g., web services) typ-
ically exchange data with users and, thus, generate north/south communication, while
inward computation (i.e., MapReduce) requires coordination among its VMs, generat-
ing east/west communication. Studies [27] indicate that north/south and east-west traffic
correspond to around 25% and 75% of traffic volume, respectively. They also point that
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both are increasing in absolute terms, but east/west is growing on a larger scale [27].
Towards understanding traffic characteristics and how it influences the proposal of novel
mechanisms, we first discuss traffic properties defined by measurement studies in the lit-
erature [9, 28–30] and, then, examine traffic management and its most relevant proposals
for large-scale cloud datacenters.

4.4.1 Properties

Traffic in the cloud network is characterized by flows; each flow is identified by
sequences of packets from a source to a destination node (i.e., a flow is defined by a
set packet header fields, such as source and destination addresses and ports and transport
protocol). Typically, a bimodal flow classification scheme is employed, using elephant
and mice classes. Elephant flows comprise a large number of packets injected in the net-
work over a short amount of time, are usually long-lived and exhibit bursty behavior. In
comparison, mice flows have a small number of packets and are short-lived [3]. Several
measurement studies [9, 28–31] were conducted to characterize network traffic and its
flows. We summarize their findings as follows:

• Traffic asymmetry. Requests from users to cloud services are abundant, but small
in most occasions. Cloud services, however, process these requests and typically
send responses that are comparatively larger.

• Nature of traffic. Network traffic is highly volatile and bursty, with links run-
ning close to their capacity at several times during a day. Traffic demands change
quickly, with some transient spikes and other longer ones (possibly requiring
more than half the full-duplex bisection bandwidth) [32]. Moreover, traffic is
unpredictable at long time scales (e.g., 100 seconds or more). However, it can
be predictable on shorter timescales (at 1 or 2 seconds). Despite the predictabil-
ity over small timescales, it is difficult for traditional schemes, such as statistical
multiplexing, to make a reliable estimate of bandwidth demands for VMs [33].

• General traffic location and exchange. Most traffic generated by servers (on aver-
age 80%) stays within racks. Server pairs from the same rack and from different
racks exchange data with a probability of only 11% and 0.5%, respectively. Prob-
abilities for intra- and extra-rack communication are as follows: servers either talk
with fewer than 25% or to almost all servers of the same rack; and servers com-
municate with less than 10% or do not communicate with servers located outside
its rack.

• Intra- and inter-application communication. Most volume of traffic (55%) repre-
sents data exchange between different applications. However, the communication
matrix between them is sparse; only 2% of application pairs exchange data, with
the top 5% of pairs accounting for 99% of inter-application traffic volume. Conse-
quently, communicating applications form several highly connected components,
with few applications connected to hundreds of other applications in star-like
topologies. In comparison, intra-application communication represents 45% of the
total traffic, with 18% of applications generating 99% of this traffic volume.
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• Flow size, duration, and number. Mice flows represent around 99% of the total
number of flows in the network. They usually have less than 10 kilobytes and last
only a few hundreds of milliseconds. Elephant flows, in turn, represent only 1%
of the number of flows, but account for more than half of the total traffic volume.
They may have tens of megabytes and last for several seconds. With respect to
flow duration, flows of up to 10 seconds represent 80% of flows, while flows of
200 seconds are less than 0.1% (and contribute to less than 20% of the total traffic
volume). Further, flows of 25 seconds or less account for more than 50% of bytes.
Finally, it has been estimated that a typical rack has around 10,000 active flows
per second, which means that a network comprising 100,000 servers can have over
25,000,000 active flows.

• Flow arrival patterns. Arrival patterns can be characterized by heavy-tailed dis-
tributions with a positive skew. They best fit a log-normal curve having ON and
OFF periods (at both 15 and 100 milliseconds granularities). In particular, inter
arrival times at both servers and ToR switches have periodic modes spaced apart by
approximately 15 milliseconds, and the tail of these distributions is long (servers
may experience flows spaced apart by 10 seconds).

• Link utilization. Utilization is, on average, low in all layers but the core; in fact,
in the core, a subset of links (up to 25% of all core links) often experience high
utilization. In general, link utilization varies according to temporal patterns (time
of day, day of week and month of year), but variations can be an order of magnitude
higher at core links than at aggregation and access links. Due to these variations
and the bursty nature of traffic, highly utilized links can happen quite often; 86%
and 15% of links may experience congestion lasting at least 10 and 100 seconds,
respectively, while longer periods of congestion tend to be localized to a small set
of links.

• Hot spots. They are usually located at core links and can appear quite frequently,
but the number of hot spots never exceeds 25% of core links.

• Packet losses. Losses occur frequently even at underutilized links. Given the bursty
nature of traffic, an underutilized network (e.g., with mean load of 10%) can expe-
rience lots of packet drops. Measurement studies found that packet losses occur
usually at links with low average utilization (but with traffic bursts that go beyond
100% of link capacity); more specifically, such behavior happens at links of the
aggregation layer and not at links of the access and core layers. Ideally, topologies
with full bisection bandwidth (i.e., a Fat-Tree) should experience no loss, but the
employed routing mechanisms cannot utilize the full capacity provided by the set
of multiple paths and, consequently, there is some packet loss in such networks as
well [28].

4.4.2 Traffic Management

Other set of papers [34–37] demonstrate that available bandwidth for VMs inside the
datacenter can vary by a factor of five or more in the worst-case scenario. Such variability
results in poor and unpredictable network performance and reduced overall application
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performance [1, 38, 39], since VMs usually depend on the data received from the network
to execute the subsequent computation.

The lack of bandwidth guarantees is related to two main factors. First, the canonical
cloud topology is typically oversubscribed, with more bandwidth available in leaf nodes
than in the core. When periods of traffic bursts happen, the lack of bandwidth up the
tree (i.e., at aggregation and core layers) results in contention and, therefore, packet dis-
cards at congested links (leading to subsequent retransmissions). Since the duration of
the timeout period is typically one or two orders of magnitude more than the round-trip
time, latency is increased, becoming a significant source of performance variability [3].
Second, TCP congestion control does not provide robust isolation among flows. Conse-
quently, elephant flows can cause contention in congested links shared with mice flows,
leading to discarded packets from the smaller flows [2].

Recent proposals address this issue either by employing proportional sharing or by
providing bandwidth guarantees. Most of them use the hose model [40] for network
virtualization and take advantage of rate-limiting at hypervisors [41], VM placement [42]
or virtual network embedding [43] in order to increase their robustness.

Proportional sharing. Seawall [2] and NetShare [44] allocate bandwidth at
flow-level based on weights assigned to entities (i.e., VMs or services running inside
these VMs) that generate traffic in the network. While both assign weights based on
administrator specified policies, NetShare also supports automatic weight assignment.
Both schemes are work-conserving (i.e., available bandwidth can be used by any flow
that needs more bandwidth), provide max–min fair sharing and achieve high utilization
through statistical multiplexing. However, as bandwidth allocation is performed per flow,
such methods may introduce substantial management overhead in large datacenter net-
works (with over 10,000 flows per rack per second [9]). FairCloud [45] takes a different
approach and proposes three allocation policies to explore the trade-off among network
proportionality, minimum guarantees and high utilization. Unlike Seawall and NetShare,
FairCloud does not allocate bandwidth along congested links at flow-level, but in pro-
portion to the number of VMs of each tenant. Despite the benefits, FairCloud requires
customized hardware in switches and is designed specifically for tree-like topologies.

Bandwidth guarantees. SecondNet [46], Gatekeeper [47], Oktopus [1], Proteus [48],
and Hadrian [49] provide minimum bandwidth guarantees by isolating applications in
virtual networks. In particular, SecondNet is a virtualization architecture that distributes
the virtual-to-physical mapping, routing and bandwidth reservation state in server hyper-
visors. Gatekeeper configures each VM virtual NIC with both minimum and maximum
bandwidth rates, which allows the network to be shared in a work-conserving man-
ner. Oktopus maps tenants’ virtual network requests (with or without oversubscription)
onto the physical infrastructure and enforces these mappings in hypervisors. Proteus
is built based on the observation that allocating the peak bandwidth requirements for
applications leads to underutilization of resources. Hence, it quantifies the temporal
bandwidth demands of applications and allocates each one of them in a different virtual
network. Hadrian extends previous schemes by also taking inter-tenant communication
into account and allocating applications according to a hierarchical hose model (i.e., per
VM minimum bandwidth for intra-application communication and per tenant minimum
guarantees for inter-tenant traffic). By contrast, a group of related proposals attempt to
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provide some level bandwidth sharing among applications of distinct tenants [50–52].
The approach introduced by Marcon et al. [51] groups applications in virtual networks,
taking mutually trusting relationships between tenants into account when allocating each
application. It provides work-conserving network sharing, but assumes that trust relation-
ships are determined in advance. ElasticSwitch [52] assumes there exists an allocation
method in the cloud platform and focuses on providing minimum bandwidth guarantees
with a work-conserving sharing mechanism (when there is spare capacity in the net-
work). Nevertheless, it requires two extra management layers for defining the amount of
bandwidth for each flow, which may add overhead. Finally, EyeQ [50] leverages high
bisection bandwidth of DCNs to support minimum and maximum bandwidth rates for
VMs. Therefore, it provides work-conserving sharing, but depends on the core of the net-
work to be congestion-free. None of these approaches can be readily deployed, as they
demand modifications in hypervisor source code.

4.5 ROUTING

Datacenter networks often require specially tailored routing protocols, with different
requirements from traditional enterprise networks. While the latter presents only a
handful of paths between hosts and predictable communication patterns, DCNs require
multiple paths to achieve horizontal scaling of hosts with unpredictable traffic matri-
ces [4, 6]. In fact, datacenter topologies (i.e., the ones discussed in Section 4.2) typically
present path diversity, in which multiple paths exist between servers (hosts) in the net-
work. Furthermore, many cloud applications (ranging from Web search to MapReduce)
require substantial (possibly full bisection) bandwidth [53]. Thus, routing protocols must
enable the network to deliver high bandwidth by using all possible paths in the structure.
We organize the discussion according to the layer involved, starting with the network
layer.

4.5.1 Layer 3

To take advantage of the multiple paths available between a source and its destination,
providers usually employ two techniques: ECMP [54] and VLB [6, 55, 56]. Both strate-
gies use distinct paths for different flows. ECMP attempts to load balance traffic in the
network and utilize all paths which have the same cost (calculated by the routing pro-
tocol) by uniformly spreading traffic among them using flow hashing. VLB randomly
selects an intermediate router (occasionally, a L3 switch) to forward the incoming flow
to its destination.

Recent studies in the literature [46, 53, 57, 58] propose other routing techniques for
DCNs. As a matter of fact, the static flow-to-path mapping performed by ECMP does
not take flow size and network utilization into account [59]. This may result in saturating
commodity switch L3 buffers and degrading overall network performance [53]. There-
fore, a system called Hedera [53] is introduced to allow dynamic flow scheduling for
general multi-rooted trees with extensive path diversity. Hedera is designed to maximize
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Figure 4.8. PSSR overview (adapted from Ref. [46]).

network utilization with low scheduling overhead of active flows. In general, the sys-
tem performs the following steps: (1) detects large flows at ToR switches; (2) estimates
network demands of these large flows (with a novel algorithm that considers bandwidth
consumption according to a max–min fair resource allocation); (3) invokes a placement
algorithm to compute paths for them; and (4) installs the set of new paths on switches.

Hedera uses a central OpenFlow controller4 [60] with a global view of the network
to query devices, obtain flow statistics and install new paths on devices after computing
their routes. With information collected from switches, Hedera treats the flow-to-path
mapping as an optimization problem and uses a simulated annealing metaheuristic to
efficiently look for feasible solutions close to the optimal one in the search space. SA
reduces the search space by allowing only a single core switch to be used for each des-
tination. Overall, the system delivers close to optimal performance and up to four times
more bandwidth than ECMP.

Port-switching based source routing (PSSR) [46] is proposed for the SecondNet
architecture with arbitrary topologies and commodity switches. PSSR uses source rout-
ing, which requires that every node in the network knows the complete path to reach
a destination. It takes advantage of the fact that a datacenter is administered by a sin-
gle entity (i.e., the intra-cloud topology is known in advance) and represents a path as a
sequence of output ports in switches, which is stored in the packet header. More specif-
ically, the hypervisor of the source VM inserts the routing path in the packet header,
commodity switches perform the routing process with PSSR and the destination hyper-
visor removes PSSR information from the packet header and delivers the packet to the
destination VM. PSSR also introduces the use of virtual ports, because servers may have
multiple neighbors via a single physical port (e.g., in DCell and BCube topologies). The
process performed by a switch is shown in Figure 4.8. Switches read the pointer field in
the packet header to get the exact next output port number (step 1), verify the next port
number in the lookup virtual-port table (step 2), get the physical port number (step 3)
and, in step 4, update the pointer field and forward the packet. This routing method intro-
duces some overhead (since routing information must be included in the packet header),
but, according to the authors, can be easily implemented on commodity switches using
Multi-Protocol Label Switching (MPLS) [61].

4We will not focus our discussion in OpenFlow in this chapter. It is discussed in Chapter 6.
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Bounded Congestion Multicast Scheduling (BCMS) [57], introduced to efficiently
route flows in Fat-trees under the hose traffic model, aims at achieving bounded con-
gestion and high network utilization. By using multicast, it can reduce traffic, thus
minimizing performance interference and increasing application throughput [62]. BCMS
is an online multicast scheduling algorithm that leverages OpenFlow to (1) collect band-
width demands of incoming flows; (2) monitor network load; (3) compute routing paths
for each flow; and (4) configure switches (i.e., installing appropriate rules to route flows).
The algorithm has three main steps, as follows. First, it checks the conditions of uplinks
out of source ToR switches (as flows are initially routed towards core switches). Second,
it carefully selects a subset of core switches in order to avoid congestion. Third, it further
improves traffic load balance by allowing ToR switches to connect to core switches with
most residual bandwidth. Despite its advantages, BCMS relies on a centralized controller,
which may not scale to large datacenters under highly dynamic traffic patterns such as
the cloud.

Like BCMS, Code-Oriented eXplicit multicast (COXcast) [58] also focuses on rout-
ing application flows through the use of multicasting techniques (as a means of improving
network resource sharing and reducing traffic). COXcast uses source routing, so all infor-
mation regarding destinations are added to the packet header. More specifically, the
forwarding information is encoded into an identifier in the packet header and, at each
network device, is resolved into an output port bitmap by a node-specific key. COXcast
can support a large number of multicast groups, but it adds some overhead to packets
(since all information regarding routing must be stored in the packet).

4.5.2 Layer 2

In the Spanning Tree Protocol (STP) [63], all switches agree on a subset of links to be
used among them, which forms a spanning tree and ensures a loop-free network. Despite
being typically employed in Ethernet networks, it does not scale, since it cannot use
the high-capacity provided by topologies with rich connectivities (i.e., Fat-Trees [24]),
limiting application network performance [64]. Therefore, only a single path is used
between hosts, creating bottlenecks and reducing overall network utilization.

STP’s shortcomings are addressed by other protocols, including Multiple Spanning
Tree Protocol (MSTP) [65], Transparent Interconnect of Lots of Links (TRILL) [22]
and Link Aggregation Control Protocol (LACP) [66]. MSTP was proposed in an attempt
to use the path diversity available in DCNs more efficiently. It is an extension of STP
to allow switches to create various spanning trees over a single topology. Therefore,
different Virtual LANs (VLANs) [67] can utilize different spanning trees, enabling the
use of more links in the network than with a single spanning tree. Despite its objective,
implementations only allow up to 16 different spanning trees, which may not be sufficient
to fully utilize the high-capacity available in DCNs [68].

TRILL is a link-state routing protocol implemented on top of layer-2 technologies,
but bellow layer-3, and is designed specifically to address limitations of STP. It discovers
and calculates shortest paths between TRILL devices (called routing bridges or, in short,
RBridges), which enables shortest path multihop routing in order to use all available paths
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in networks with rich connectivities. RBridges run Intermediate System to Intermediate
System (IS-IS) routing protocol (RFC 1195) and handle frames in the following manner:
the first RBridge (ingress node) encapsulates the incoming frame with a TRILL header
(outer MAC header) that specifies the last TRILL node as the destination (egress node),
which will decapsulate the frame.

Link Aggregation Control Protocol (LACP) is another layer-2 protocol used in
DCNs. It transparently aggregates multiple physical links into one logical link known
as Link Aggregation Group (LAG). LAGs only handle outgoing flows; they have no
control over incoming traffic. They provide flow-level load balancing among links in the
group by hashing packet header fields. LACP can dynamically add or remove links in
LAGs, but requires that both ends of a link run the protocol.

There are also some recent studies that propose novel strategies for routing frames
in DCNs, namely Smart Path Assignment in Networks (SPAIN) [24] and Portland [64].
SPAIN [24] focuses on providing efficient multipath forwarding using COTS switches
over arbitrary topologies. It has three components: (1) path computation; (2) path setup;
and (3) path selection. The first two components run on a centralized controller with
global network visibility. The controller first pre-computes a set of paths to exploit the
rich connectivities in the DCN topology, in order to use all available capacity of the
physical infrastructure and to support fast failover. After the path computation phase,
the controller combines these multiple paths into a set of trees, with each tree belonging
to a distinct VLAN. Then, these VLANs are installed on switches. The third compo-
nent (path selection) runs at end-hosts for each new flow; it selects paths for flows with
the goals of spreading load across the pre-computed routes (by the path setup compo-
nent) and minimizing network bottlenecks. With this configuration, end-hosts can select
different VLANs for communication (i.e., different flows between the same source and
destination can use distinct VLANs for routing). To provide these functionalities, how-
ever, SPAIN requires some modification to end-hosts, adding an algorithm to choose
among pre-installed paths for each flow.

PortLand [64] is designed and built based on the observation that Ethernet/IP proto-
cols may have some inherent limitations when designing large-scale arbitrary topologies,
such as limited support for VM migration, difficult management and inflexible commu-
nication. It is a layer-2 routing and forwarding protocol with plug-and-play support for
multi-rooted Fat-Tree topologies. PortLand uses a logically centralized controller (called
fabric manager) with global visibility and maintains soft state about network config-
uration. It assigns unique hierarchical Pseudo MAC (PMAC) addresses for each VM
to provide efficient, provably loop-free frame forwarding; VMs, however, do not have
the knowledge of their PMAC and believe they use their Actual MAC (AMAC). The
mapping between PMAC and AMAC and the subsequent frame header rewriting is per-
formed by edge (ToR) switches. PMACs are structured as pod.position.port.vmid, where
each field respectively corresponds to the pod number of the edge switch, its position
inside the pod, the port number in which the physical server is connected to and the
identifier of the VM inside the server. With PMACs, PortLand transparently provides
location-independent addresses for VMs and requires no modification in commodity
switches. However, it has two main shortcomings (1) it requires a Fat-Tree topology
(instead of the traditional multi-rooted oversubscribed tree) and (2) at least half of the
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ToR switch ports should be connected to servers (which, in fact, is a limitation of
Fat-Trees) [69].

4.6 ADDRESSING

Each server (or, more specifically, each VM) must be represented by a unique canoni-
cal address that enables the routing protocol to determine paths in the network. Cloud
providers typically employ LAN technologies for addressing VMs in datacenters, which
means there is a single address space to be sliced among tenants and their applications.
Consequently, tenants have neither flexibility in designing their application layer-2 and
layer-3 addresses nor network isolation from other applications.

Some isolation is achieved by the use of VLANs, usually one VLAN per tenant.
However, VLANs are ill-suited for datacenters for four main reasons [51, 70–72]: (1) they
do not provide flexibility for tenants to design their layer-2 and layer-3 address spaces;
(2) they use the spanning tree protocol, which cannot utilize the high-capacity available
in DCN topologies (as discussed in the previous section); (3) they have poor scalabil-
ity, since no more than 4094 VLANs can be created, and this is insufficient for large
datacenters; and iv) they do not provide location-independent addresses for tenants to
design their own address spaces (independently of other tenants) and for performing
seamless VM migration. Therefore, providers need to use other mechanisms to allow
address space flexibility, isolation and location independence for tenants while multi-
plexing them in the same physical infrastructure. We structure the discussion in three
main topics: emerging technologies, separation of name and locator and full address
space virtualization.

4.6.1 Emerging Technologies

Some technologies employed in DCNs are: Virtual eXtensible Local Area Network
(VXLAN) [73], Amazon Virtual Private Cloud (VPC) [74] and Microsoft Hyper-V [75].
VXLAN [73] is an Internet draft being developed to address scalability and multipath
usage in DCNs when providing logical isolation among tenants. VXLAN works by cre-
ating overlay (virtual layer-2) networks on top of the actual layer-2 or on top of UDP/IP.
In fact, using MAC-in-UDP encapsulation abstracts VM location (VMs can only view
the virtual layer-2) and, therefore, enables a VXLAN network to be composed of nodes
within distinct domains (DCNs), increasing flexibility for tenants using multi-datacenter
cloud platforms. VXLAN adds a 24-bit segment ID field in the packet header (allowing
up to 16 million different logical networks), uses ECMP to distribute load along mul-
tiple paths and requires Internet Group Management Protocol (IGMP) for forwarding
frames to unknown destinations, or multicast and broadcast addresses. Despite the bene-
fits, VXLAN header adds 50 bytes to the frame size, and multicast and network hardware
may limit the usable number of overlay networks in some deployments.

Amazon VPC [74] provides full IP address space virtualization, allowing tenants to
design layer-3 logical isolated virtual networks. However, it does not virtualize layer-2,
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which does not allow tenants to send multicast and broadcast frames [71]. Microsoft
Hyper-V [75] is a hypervisor-based system that provides virtual networks for tenants to
design their own address spaces; Hyper-V enables IP overlapping in different virtual net-
works without using VLANs. Furthermore, Hyper-V switches are software-based layer-2
network switches with capabilities to connect VMs among themselves, with other virtual
networks and with the physical network. Hyper-V, nonetheless, tends to consume more
resources than other hypervisors with the same load [76].

4.6.2 Separation of Name and Locator

VL2 [6] and Crossroads [70] focus on providing location independence for VMs, so that
providers can easily grow or shrink allocations and migrate VMs inside or across datacen-
ters. VL2 [6] uses two types of addresses: location-specific addresses (LAs), which are
the actual addresses in the network, used for routing; and application-specific addresses
(AAs), permanent address assigned to VMs that remain the same even after migrations.
VL2 uses a directory system to enforce isolation among applications (through access
control policies) and to perform the mapping between names and locators; each server
with an AA is associated with the LA from the ToR it is connected to. Figure 4.9 depicts
how address translation in VL2 is performed: the source hypervisor encapsulates the
AA address with the LA address of the destination ToR for each packet sent; packets
are forwarded in the network through shortest paths calculated by the routing protocol,
using both ECMP and VLB; when packets arrive at the destination ToR switch, LAs
are removed (packets are decapsulated) and original packets are sent to the correct VMs
using AAs. To provide location-independent addresses, VL2 requires that hypervisors
run a shim layer (VL2 agent) and that switches support IP-over-IP.

Crossroads [70], in turn, is a network fabric developed to provide layer agnos-
tic and seamless VM migration inside and across DCNs. It takes advantage of
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the Software-Defined Networking (SDN) paradigm [77] and extends an OpenFlow
controller to allow VM location-independence without modifications to layer-2 and
layer-3 network infrastructure. In Crossroads, each VM possess two addresses: a
PMAC and a Pseudo IP (PIP), both with location and topological information
embedded in them. The first one ensures that traffic originated from one dat-
acenter and en route to a second datacenter (to which the VM was migrated)
can be maintained at layer-2, while the second guarantees that all traffic des-
tined to a migrated VM can be routed across layer-3 domains. Despite its ben-
efits, Crossroads introduces some network overhead, as nodes must be identi-
fied by two more addresses (PMAC and PIP) in addition to the existing MAC
and IP.

4.6.3 Full Address Space Virtualization

Cloud datacenters typically provide limited support for multi-tenancy, since tenants
should be able to design their own address spaces (similar to a private environment) [71].
Consequently, a multi-tenant virtual datacenter architecture to enable specific-tailored
layer-2 and layer-3 address spaces for tenants, called NetLord [71], is proposed. At hyper-
visors, NetLord runs an agent that performs Ethernet+IP (L2+L3) encapsulation over
tenants’ layer-2 frames and transfers them through the network using SPAIN [24] for
multipathing, exploring features of both layers. More specifically, the process of encap-
sulating/decapsulating is shown in Figure 4.10 and occurs in three steps, as follows: (1)
the agent at the source hypervisor creates L2 and L3 headers (with source IP being a
tenant-assigned MAC address space identifier, illustrated as MAC_AS_ID) in order to
direct frames through the L2 network to the correct edge switch; (2) the edge switch
forwards the packet to the correct server based on the IP destination address in the vir-
tualized layer-3 header; (3) the hypervisor at the destination server removes the virtual
L2 and L3 headers and uses the IP destination address to deliver the original packet
from the source VM to the correct VM. NetLord can be run on commodity switches and
scale the network to hundreds of thousands of VMs. However, it requires an agent run-
ning on hypervisors (which may add some overhead) and support for IP forwarding on
commodity edge (ToR) switches.
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4.7 RESEARCH CHALLENGES

In this section, we analyze and discuss open research challenges and future directions
regarding datacenter networks. As previously mentioned, DCNs (i) present some dis-
tinct requirements from traditional networks (e.g., high scalability and resiliency); (ii)
have significantly different (often more complex) traffic patterns; and (iii) may not be
fully utilized, because of limitations in current deployed mechanisms and protocols (for
instance, ECMP). Such aspects introduce some challenges, which are discussed next.

4.7.1 Heterogeneous and Optimal DCN Design

Presently, many Internet services and applications rely on large-scale datacenters to
provide availability while scaling in and out according to incoming demands. This is
essential in order to offer low response time for users, without incurring excessive costs
for owners. Therefore, datacenter providers must build infrastructures to support large
and dynamic numbers of applications and guarantee quality of service (QoS) for ten-
ants. In this context, the network is an essential component of the whole infrastructure,
as it represents a significant fraction of investment and contributes to future revenues
by allowing efficient use of datacenter resources [15]. According to Zhang et al. [78],
network requirements include (i) scalability, so that a large number of servers can be
accommodated (while allowing incremental expansion); (ii) high server-to-server capac-
ity, to enable intensive communication between any pair of servers (i.e., at full speed of
their NICs); (iii) agility, so applications can use any available server when they need
more resources (and not only servers located near their current VMs); (iv) uniform net-
work utilization to avoid bottlenecks; and (v) fault tolerance to cope with server, switch
and link failures. In fact, guaranteeing such requirements is a difficult challenge. Look-
ing at these challenges from the providers viewpoint make them even more difficult to
address and overcome, since reducing the cost of building and maintaining the network
is seen as a key enabler for maximizing profits [15].

As discussed in Section 4.2, several topologies (e.g., Refs. [4–6, 17, 18]) have been
proposed to achieve the desired requirements, with varying costs. Nonetheless, they
(i) focus on homogeneous networks (all devices with the same capabilities); and (ii) do
not provide theoretical foundations regarding optimality. Singla et al. [7], in turn, take
an initial step towards addressing heterogeneity and optimality, as they (i) measure the
upper-bound on network throughput for homogeneous topologies with uniform traffic
patterns; and (ii) show an initial analysis of possible gains with heterogeneous networks.
Despite this fact, a lot remains to be investigated in order to enable the development of
more efficient, robust large-scale networks with heterogeneous sets of devices. In sum-
mary, very little is known about heterogeneous DCN design, even though current DCNs
are typically composed of heterogenous equipment.

4.7.2 Efficient and Incremental Expansion

Providers need to be constantly expanding their datacenter infrastructures to accommo-
date ever-growing demands. For instance, Facebook has been expanding its datacenters
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for some years [79–82]. This expansion is crucial for business, as the increase of demand
may negatively impact scalability and performance (e.g., by creating bottlenecks in the
network). When the whole infrastructure is upgraded, the network must be expanded
accordingly, with a careful design plan, in order to allow efficient utilization of resources
and to avoid fragmentation. To address this challenge, some proposals in the litera-
ture [7, 11–13] have been introduced to enlarge current DCNs without replacing legacy
hardware. They aim at maximizing high bisection bandwidth and reliability. However,
they often make strong assumptions (e.g., Legup [12] is designed for tree-like net-
works, and Jellyfish [13] requires new mechanisms for routing). Given the importance
of datacenters nowadays (as home of hundreds of thousands of services and applica-
tions), the need for efficient and effective expansion of large-scale networks is a key
challenge for improving provider profit, QoS offered to tenant applications and quality
of experience (QoE) provided for users of these applications.

4.7.3 Network Sharing and Performance Guarantees

Datacenters host applications with diverse and complex traffic patterns and different
performance requirements. Such applications range from user-facing ones (i.e., Web
services and online gaming) that require low latency communication to inward com-
putation (e.g., scientific computing) that need high network throughput. To gain better
understanding of the environment, studies [1, 9, 30, 49, 83] conducted measurements
and concluded that available bandwidth for VMs inside the cloud platform can vary by
a factor of five or more during a predefined period of time. They demonstrate that such
variability ends up impacting overall application execution time (resulting in poor and
unpredictable performance). Several strategies (including Refs. [2, 47, 48, 52, 84]) have
been proposed to address this issue. Nonetheless, they have one or more of the following
shortcomings: (i) require complex mechanisms, which, in practice, cannot be deployed;
(ii) focus on network sharing among VMs (or applications) in a homogeneous infras-
tructure (which simplifies the problem [85]); (iii) perform static bandwidth reservations
(resulting in underutilization of resources); or (iv) provide proportional sharing (no strict
guarantees). In fact, there is an inherent trade-off between providing strict guarantees
(desired by tenants) and enabling work-conserving sharing in the network (desired by
providers to improve utilization), which may be exacerbated in a heterogenous network.
We believe this challenge requires further investigation, since such high-performance
networks ideally need simple and efficient mechanisms to allow fair bandwidth sharing
among running applications in a heterogeneous environment.

4.7.4 Address Flexibility for Tenants

While network performance guarantees require quantitative performance isolation,
address flexibility needs qualitative isolation [71]. Cloud DCNs, however, typically pro-
vide limited support for multi-tenancy, as they have a single address space divided
among applications (according to their needs and number of VMs). Thereby, tenants
have no flexibility in choosing layer-2 and layer-3 addresses for applications. Note that,
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ideally, tenants should be able to design their own address spaces (i.e., they should have
similar flexibility to a private environment), since already developed applications may
necessitate a specific set of addresses to correctly operate without source code mod-
ification. Some proposals in the literature [6, 70, 71] seek to address this challenge
either by identifying end-hosts with two addresses or by fully virtualizing layer-2 and
layer-3. Despite adding flexibility for tenants, they introduce some overhead (e.g., hyper-
visors need a shim layer to manage addresses, or switches must support IP-over-IP) and
require resources specifically used for address translation (in the case of VL2). This is
an important open challenge, as the lack of address flexibility may hinder the migration
of applications to the cloud platform.

4.7.5 Mechanisms for Load Balancing Across Multiple Paths

DCNs usually present path diversity (i.e., multiple paths between servers) to achieve
horizontal scaling for unpredictable traffic matrices (generated from a large number of
heterogeneous applications) [6]. Their topologies can present two types of multiple paths
between hosts: uniform and non-uniform ones. ECMP is the standard technique used for
splitting traffic across equal-cost (uniform) paths. Nonetheless, it cannot fully utilize
the available capacity in these multiple paths [59]. Non-uniform multiple paths, in turn,
complicate the problem, as mechanisms must take more factors into account (i.e., path
latency and current load). There are some proposals in the literature [46, 53, 57, 58]
to address this issue, but they either cannot achieve the desired response times (e.g.,
Hedera) [86] or are developed for specific architectures (e.g., PSSR for SecondNet).
Chiesa et al. [87] have taken an initial approach towards analyzing ECMP and propose
algorithms for improving its performance. Nevertheless, further investigation is required
for routing traffic across both uniform and non-uniform parallel paths, considering not
only tree-based topologies, but also newer proposals such as random graphs [7, 13]. This
investigation should lead to novel mechanisms and protocols that better utilize available
capacity in DCNs (e.g., eliminating bottlenecks at level-0 links in DCell).

4.8 SUMMARY

In this chapter, we have presented basic foundations of datacenter networks and rele-
vant standards, as well as recent proposals in the literature that address limitations of
current mechanisms. We began by studying network topologies in Section 4.2. First, we
examined the typical topology utilized in today’s datacenters, which consists of a multi-
rooted tree with path diversity. This topology is employed by providers to allow rich
connectivity with reduced operational costs. One of its drawbacks, however, is the lack
of full bisection bandwidth, which is the main motivation for proposing novel topologies.
We used a three-class taxonomy to organize the state-of-the-art datacenter topologies:
switch-oriented, hybrid switch/server and server-only topologies. The distinct charac-
teristic is the use of switches and/or servers: switches only (Fat-Tree, VL2 and OSA),
switches and servers (DCell and BCube) and only servers (CamCube) to perform packet
routing and forwarding in the network.
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These topologies, however, usually present rigid structures, which hinders incre-
mental network expansion (a desirable property for the ever-growing cloud datacenters).
Therefore, we took a look at network expansion strategies (Legup, Rewire and Jellyfish)
in Section 4.3. All of these strategies have the goal of improving bisection bandwidth to
increase agility (the ability to assign any VM of any application to any server). Further-
more, the design of novel topologies and expansion strategies must consider the nature
of traffic in DCNs. In Section 4.4, we summarized recent measurement studies about
traffic and discussed some proposals that deal with traffic management on top of a DCN
topology.

Then, we discussed routing and addressing in Sections 4.5 and 4.6, respectively.
Routing was divided in two categories: layer-3 and layer-2. While layer-3 routing typi-
cally employs ECMP and VLB to utilize the high-capacity available in DCNs through the
set of multiple paths, layer-2 routing uses the spanning tree protocol. Despite the bene-
fits, these schemes cannot efficiently take advantage of multiple paths. Consequently,
we briefly examined proposals that deal with this issue (Hedera, PSSR, SPAIN and
Portland). Addressing, in turn, is performed by using LAN technologies, which does
not provide robust isolation and flexibility for tenants. Towards solving these issues, we
examined the proposal of a new standard (VXLAN) and commercial solutions developed
by Amazon (VPC) and Microsoft (Hyper-V). Furthermore, we discussed proposals in the
literature that aim at separating name and locator (VL2 and Crossroads) and at allowing
full address space virtualization (NetLord).

Finally, we analyzed open research challenges regarding datacenter networks: (i) the
need to design more efficient DCNs with heterogeneous sets of devices, while con-
sidering optimality; (ii) strategies for incrementally expanding networks with general
topologies; (iii) network schemes with strict guarantees and predictability for tenants,
while allowing work-conserving sharing to increase utilization; (iv) address flexibil-
ity to make the migration of applications to the cloud easier; and (v) mechanisms
for load balancing traffic across different multiple parallel paths (using all available
capacity).

Having covered the operation and research challenges of intra-datacenter networks,
the next three chapters inside the networking and communications part discuss the fol-
lowing subjects: inter-datacenter networks, an important topic related to cloud platforms
composed of several datacenters (e.g., Amazon EC2); the emerging paradigm of SDN, its
practical implementation (OpenFlow) and how these can be applied to intra- and inter-
datacenter networks to provide fine-grained resource management; and mobile cloud
computing, which seeks to enhance capabilities of resource-constrained mobile devices
using cloud resources.
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Abstract—The intra-cloud network is typically shared in a
best-effort manner, which causes tenant applications to have no
actual bandwidth guarantees. Recent proposals address this issue
either by statically reserving a slice of the physical infrastructure
for each application or by providing proportional sharing among
flows. The former approach results in overprovisioned network
resources, while the latter requires substantial management
overhead. In this paper, we introduce a resource allocation
strategy that aims at providing an efficient way to predictably
share bandwidth among applications and at minimizing resource
underutilization while maintaining low management overhead.
To demonstrate the benefits of the strategy, we develop IoN-
Cloud, a system that implements the proposed allocation scheme.
IoNCloud employs the abstraction of attraction/repulsion among
applications according to their temporal bandwidth demands
in order to group them in virtual networks. In doing so, we
explore the trade-off between high resource utilization (which
is desired by providers to achieve economies of scale) and
strict network guarantees (necessary for tenants to run jobs
predictably). Evaluation results show that IoNCloud can (a)
provide predictable network sharing; and (b) reduce allocated
bandwidth, resource underutilization and management overhead
when compared against state-of-the-art proposals.

I. INTRODUCTION

Cloud providers lack practical, efficient and reliable mech-
anisms to offer bandwidth guarantees for applications [1],
[2]. The intra-cloud network is typically oversubscribed and
shared in a best-effort manner, relying on TCP to achieve high
network utilization and scalability. TCP, nonetheless, does not
provide robust isolation among flows in the network [3]; in
fact, long-lived flows with a large number of packets are priv-
ileged over small ones (which is typically called performance
interference [4]) [5]. Moreover, recent studies [6], [7] show that
bandwidth available for virtual machines (VMs) in the intra-
cloud network can vary by a factor of five or more, resulting
in poor and unpredictable overall application performance.

The lack of network guarantees directly impacts both ten-
ants and providers. Tenants are unable to enforce the allocation
of network resources for their requests (which particularly
hinders applications with strict bandwidth requirements) and
can only deploy some specific enterprise applications in the
cloud [8]. Moreover, costs are unpredictable due to high net-
work variability (in many services, the subsequent computation
depends on the data received from the network [9], [10]).
Providers, in turn, may lose revenue, because performance
interference ends up reducing datacenter throughput [1], [6].

Recent proposals [3], [6], [8], [11], [12] address this
issue either by offering minimum guarantees or by providing

proportional sharing. The former explicitly reserves a slice of
the physical infrastructure for each application, which results
in overprovisioned resources for tenants (since the temporal
network usage of applications is not constant). The latter, in
turn, assigns administrator-specific weights for entities (such
as VMs and processes) in order to provide proportional sharing
at flow-level in the network. However, it requires substantial
management overhead, since bandwidth consumed by each
flow is determined according to its weight for each link in
the path, and large-scale datacenter networks can have over
10 million flows per second [13].

In this paper, we leverage the key observation that temporal
bandwidth demands of cloud applications do not peak at
exactly the same time [14], [15] and propose a resource
allocation strategy for reserving and isolating network re-
sources in cloud datacenters. It aims at minimizing resource
underutilization while providing an efficient way to predictably
share bandwidth among applications, with low management
overhead. To show the benefits of the strategy, we develop
IoNCloud (Isolation of Networks in the Cloud), a system
that implements the proposed allocation scheme. IoNCloud
employs the abstraction of attraction/repulsion among tenant
applications according to their temporal network usage and
need of isolation, and groups them into virtual networks (VNs)
with bandwidth guarantees. In doing so, we seek to explore
the trade-off between high resource utilization (a common goal
for providers to reduce operational costs) and strict network
guarantees (desired by tenants).

Overall, the major contributions of this paper are threefold.
First, we propose a topology-agnostic network-performance-
aware resource allocation strategy for cloud datacenters. It
improves network predictability by grouping tenant applica-
tions into virtual networks according to their temporal band-
width demands. Second, we develop IoNCloud, a system that
implements the proposed strategy for large-scale datacenters.
IoNCloud (i) groups applications in VNs; (ii) maps them on
the physical substrate; and (iii) provisions network resources at
each link the VN was allocated on according to peak aggregate
demands of applications in the same group that utilize the
link (i.e., the bandwidth required at the period of time when
the sum of network demands of applications belonging to the
same group is the highest). Third, we evaluate and show that,
in comparison with the state-of-the-art [6], IoNCloud provides
the same level of network predictability with less bandwidth
reserved for applications, reduced resource underutilization
and lower management overhead.

The remainder of this paper is organized as follows.
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Section II examines related work. In Section III, we intro-
duce our resource allocation strategy (and its implementation,
IoNCloud), and Section IV presents the evaluation of the
proposed strategy. Finally, Section V discusses the generality
and limitations of IoNCloud, and Section VI closes the paper.

II. RELATED WORK

Most related approaches attempt to offer bandwidth guar-
antees by taking advantage of rate-limiting at hypervisors,
VM placement and VN embedding in order to increase their
robustness. They can be separated in three classes, as discussed
below.

Spatial-temporal awareness. Proteus [9], Choreo [16]
and the approach developed by Chen and Shen [15] use
spatial and temporal demands of applications to map them
in the cloud. However, they present some drawbacks. Proteus
requires a complex allocation scheme and provides only a rigid
network model for each application, defined at its allocation
time. Choreo requires its placement algorithm to have detailed
knowledge about current network state; such information may
not be easily obtained in large-scale datacenter networks. In
particular, Proteus and Choreo may add substantial manage-
ment overhead to achieve their goals. Finally, Chen and Shen
only focus on temporal demands of computing resources.

Network guarantees. Oktopus [6] and SecondNet [17]
provide strict bandwidth guarantees by isolating each applica-
tion in a distinct VN. Despite their benefits, these approaches
result in underutilization of resources and internal fragmenta-
tion of both computing and network resources upon high rate
of tenant arrival and departure. EyeQ [12] and Gatekeeper [18],
in turn, can offer bandwidth guarantees only when the core
of the network is congestion-free. Baraat [1] and Varys [10]
achieve high network utilization, but cannot provide strict
bandwidth guarantees for tenants. Finally, ElasticSwitch [8]
and the Logistic Model [3] are orthogonal to our approach,
as they assume there exists an allocation method in the cloud
platform (i.e., applications are already allocated).

Proportional sharing. Seawall [4] and Hadrian [11] allow
bandwidth sharing at link-level according to weights assigned
to VMs. FairCloud [19], in turn, proposes mechanisms that
explore the trade-off among network proportionality, minimum
guarantees and high utilization. These methods, however, re-
sult in substantial management overhead, because bandwidth
consumed by each flow at each link is determined according to
its weight in comparison to other flows sharing the same link
(and the intra-cloud network can have over 10 million flows
per second [13]).

In summary, these approaches either result in overprovi-
sioned network resources or require substantial management
overhead. Therefore, we introduce a resource allocation strat-
egy that aims at providing network predictability with reduced
bandwidth underutilization and low management overhead, and
materialize it by developing a system called IoNCloud.

III. IONCLOUD

The IoNCloud system implements our novel approach to
allocate tenant applications in large-scale cloud platforms. The
proposed strategy aims at providing performance predictability
in the intra-cloud network while minimizing resource under-
utilization. To achieve this, unlike previous work [6], [9],

[17], [18], IoNCloud groups applications in virtual networks
according to their temporal bandwidth demands.

In this strategy, all applications that belong to the same
group share the same set of (virtual) network resources (i.e.,
they have shared bandwidth guarantees). Virtual networks, in
turn, are completely isolated from one another, which means
that each group has a guaranteed amount of network resources.
An abstract view of IoNCloud is shown in Figure 1, which
depicts application requests being received and allocated in
two steps. The first step is responsible for application demand
analysis and grouping, while the second maps VNs (groups
composed of sets of applications) onto the physical substrate.
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Fig. 1: IoNCloud model overview.

We first discuss how to obtain network profiles of ap-
plications (Section III-A) and describe application requests
(Section III-B). Then, we present our novel strategy to group
complementary applications in VNs (Section III-C) and to
embed VNs on the cloud substrate (Section III-D).

A. Network Profile of Applications

IoNCloud assumes that network profiles were previously
generated (using techniques proposed in the literature, such as
the ones described by Xie et al. [9], LaCurts et al. [16] and
Lee et al. [2]) and, thus, uses such information as input for
incoming application requests. Like Choreo [16], IoNCloud
considers, in each profile, the number of bytes sent by the
application rather than the observed rate, as the former is
independent of network congestion.

In particular, we highlight the feasibility of obtaining
these profiles. Several studies [6], [9], [13], [15], [16] have
conducted experiments on VM resource utilizations during
both short- and long-term periods of time. Their main findings
are summarized as follows: i) application traffic patterns are
predictable; ii) VMs of the same application (such as MapRe-
duce) tend to have similar resource consumption; iii) the same
application running different datasets has similar patterns of
resource usage; and iv) periodical (e.g., daily) patterns of
resource utilization can be observed for long-term applications.

These results enabled the proposal of some techniques to
profile cloud applications. For instance, Xie et al. [9] and
LaCurts et al. [16] use network monitoring tools (sFlow and
tcpdump) to collect traffic traces (gathering application com-
munication patterns), while Lee et al. [2] discuss the utilization
of application templates (provided as a library for users). Xie et
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al. also convert the output of these measurements into coarse-
grained pulse functions. Both studies perform these profiling
runs during a testing phase or in production environments,
which allows them to collect sufficient information to create
network profiles before running applications in the cloud.
Therefore, such techniques can be used for IoNCloud, so that
application profiles are known before allocation.

IoNCloud also considers applications that cannot have their
network profiles generated in advance (for instance, because
the application requires an elevated amount of resources to run
a profiling test or concludes very quickly). In such situations,
the time-varying function B(t) (detailed in Section III-B),
which indicates the temporal network demands of applications,
is represented by a constant function (i.e., the same band-
width requirement during the entire application lifetime). This
constant value is specified by the tenant when submitting the
request to the cloud.

B. Application Requests

Tenants request applications using the hose-model (simi-
larly to prior work [8], [9], [19], [20]). In this abstraction,
all VMs of an application are connected to a virtual switch
through dedicated bidirectional links. Each application request
is represented by its resource demand and formally defined
by <N, B(t)>, with the terms specifying the number of VMs
and the temporal bandwidth required by the application. The
bandwidth demand is a time-varying function B(t), similarly
to Proteus [9]. It represents the bandwidth required by the
application at time “t”. The amount of bandwidth of each
link connecting a VM to the application virtual switch is
represented by max(B(t)), which denotes the peak temporal
demand of the application’s VM. This fine-grained specifi-
cation allows IoNCloud to capture network requirements of
applications in a precise manner.

Without loss of generality, we follow previous work [6], [9]
and make two assumptions. First, we abstract away computing
resources and assume a homogeneous set of VMs (i.e., equal
in terms of CPU, memory and storage consumption). Second,
we consider that all VMs of a given application follow the
same network model1.

C. Application Demand Analysis and Grouping

This first step is responsible for analyzing network de-
mands of applications and grouping them in VNs. This way,
high resource utilization can be achieved without hurting
predictability.

Figure 2 shows an example of how IoNCloud performs this
process. In Figure 2(a), bandwidth requirements (dashed lines)
of two applications (A and B) are fully guaranteed through
a simple static reservation model (where the peak bandwidth
is reserved, represented by dotted lines). However, this basic
model causes underutilization of resources (shown by arrows
in the figure), as unused bandwidth of one application (virtual
network) cannot be used by any other application [8], [9].
IoNCloud, in contrast, enables applications with complemen-
tary bandwidth requirements to share network resources. This
is done by grouping them in the same VN and reserving

1Many applications, such as MapReduce (which represents an important
class of applications running in datacenters), have similar bandwidth demands
among their VMs [9].

the peak aggregate demand, represented by the dotted line
in Figure 2(b). Therefore, IoNCloud achieves better resource
utilization, since periods of low demand from one application
can be compensated by periods of high demand from other
ones. Note that IoNCloud removes performance interference
in the network by reserving the peak aggregate bandwidth
of the applications (that belong to the same group) sharing a
given link. Furthermore, it significantly reduces management
overhead when compared to Proteus [9], since the latter must
modify reservations as time passes by.

Algorithm. The key idea is based on minimizing the
amount of unused bandwidth for each group created (i.e., re-
ducing wasted bandwidth). Algorithm 1 retrieves one applica-
tion (app) at a time from the set of applications Applications
and verifies three possibilities of grouping: i) creating a new
group composed of app and another application from the set
Applications (i.e., trying all pairs of possible groupings of
app with other incoming applications and selecting the one
with least underutilization); ii) inserting app into one of the
existing groups; and iii) creating a new group with app only.
After verifying these possibilities, the best option is selected.
Finally, once the entire bundle of incoming applications has
been analyzed and included into groups, the algorithm con-
cludes, returns the set of groups and the process of allocating
each group (represented by a VN) on the cloud is started.

Algorithm 1: Network-aware group creation.
Input : Bundle of applications to be allocated in the cloud
Output: List of application groups GroupList

1 Create a set Applications with all incoming applications;
2 Create an empty set GroupList;
3 foreach app ∈ Applications do
4 Evaluate three possibilities of grouping:
5 Creating new group containing app and a chosen application from

Applications;
6 Including app in existing group of the set GroupList;
7 Creating new group with single application app;
8 Among the three above, select the option with least underutilization;
9 Remove grouped applications from Applications;

10 if new group was created then
11 Include new group in the set GroupList;
12 return the set GroupList;

D. Virtual Network Allocation

This step is responsible for allocating each VN (group
composed of applications that present complementary temporal
bandwidth demands) on the physical infrastructure.

A simplified example is shown in Figure 3, where there
are only two groups to be allocated, each one with two
applications. For each group, IoNCloud prioritizes clustering
VMs of the same application in the same physical server, since
good locality reduces the amount of network resources used
for intra-application communication2. For a single application,
VMs located in the same server do not consume network
resources when they communicate with each other. VMs
allocated in different servers, in turn, need a certain amount of
bandwidth to exchange data, which is given by the server with
the lowest peak aggregate rate for an application. Consider
“Server 1” (S1) and “Server 3” (S3) in the figure, which host
application 1 (app1). The bandwidth needed by VMs of this

2We follow related work [6], [9], [18] and consider only intra-application
communication when allocating applications in the cloud platform, as this type
of communication represents most of the traffic in the cloud [11].
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Fig. 2: Temporal network usage.

application for communication among themselves is given by
min(|S1,app1

|, |S3,app1
|) ∗ max(B(t)), where |Sx,app1

| repre-
sents the number of VMs of app1 placed at the xth server and
max(B(t)) denotes the peak bandwidth used by a single VM
during its lifetime. In this example, min(6, 2)∗15 = 30 Mbps.

15*2
(15*2) (10*2)

(10*2)

+

+

+

40

15 Mbps

10 Mbps

Time

B
a
n

d
w

id
th

Server 1

(10*2)
+

(10*2)

(5*2)

(5*2)

3*3

Group 1

Group 2

21

4

1111

1 1

11

22

2 2

22

22

33

3

33

3

4 4

44

4 444

4

15 Mbps (1)

10 Mbps (2)

3 Mbps (4)
5 Mbps (3)

Access (ToR) Access (ToR)

Time

B
a
n

d
w

id
th

Server 2 Server 4 Server 5Server 3 Server 6

(5*2)

+

13
(3*3)

(5*2)

Fig. 3: Shared bandwidth guarantees for applications.

A group of applications, in contrast, requires the peak
aggregate bandwidth demand of the group. Therefore, the allo-
cated bandwidth on each physical link l of a VN corresponds
to the peak aggregate demand of VMs in the group that use l.
This allocation is illustrated in Figure 3 in two situations: i)
when more than one application of the same group share a link,
the aggregate peak bandwidth of the VMs of these applications
is reserved: for instance, in Server 3, VMs of applications 1
and 2 from group 1 share the access link and, if they were
isolated, they would require 50 Mbps (15 × 2 + 10 × 2), but
only 40 Mbps is reserved because this is the peak temporal
demand of the group for this link (according to the temporal
demands of applications shown below the servers in the figure);
and ii) when a single application of a group uses a link, the
bandwidth reserved corresponds to the amount needed by its
VMs alone (other applications of the group do not need to
use that link, as we can see in core links). Last but not least,
note that VNs do not share bandwidth with one another (i.e.,
groups are completely isolated).

Algorithm. Algorithm 2 takes advantage of application
affinity to allocate VNs on the substrate3. Since locality is
key to make efficient use of resources, we address it with
two granularities: i) VMs of the same application are mapped
on the infrastructure according to a VM placement objective

3Like related work [6], [9], [18], [20], we assume the physical infrastructure
topology in cloud datacenters is defined as a multi-rooted tree [5].

(since IoNCloud is agnostic about VM placement, these ob-
jectives will be detailed after the overview of the allocation
algorithm); and ii) VMs belonging to applications of the
same group are allocated close to each other, because their
bandwidth demands are complementary and, thus, network
underutilization can be reduced (as determined by the grouping
algorithm in the previous step). The algorithm allocates one
VN at a time, with a coordinated node and link mapping,
following insights provided by Chowdhury et al. [21]. The first
step is the allocation of nodes (VMs) for each application in the
group, according to the VM placement policy defined. After
all VMs of a VN are allocated, the algorithm starts the second
step of the mapping, which is the allocation of bandwidth
for the group according to the example shown in Figure 3.
The algorithm returns a success code for each VN that was
embedded on the substrate and a failure code otherwise.

Algorithm 2: Virtual network embedding.
Input : Physical infrastructure P , Set of groups GroupList
Output: Success/Failure array allocated

1 foreach Group g ∈ GroupList do
// VM allocation

2 foreach Application app ∈ g do
3 Allocate VMs of app in the cloud infrastructure according to a

predefined objective (e.g., minimum bandwidth, energy consumption,
or fault tolerance);

// Bandwidth allocation
4 foreach Level lv from 0 to Height(P) do
5 Allocate bandwidth at lv according to demands of VMs at lower

levels (similarly to Figure 3);
6 allocated[g] ← success/failure code for the allocation of group g;
7 return allocated;

VM placement objectives. VM placement is often imple-
mented as a multi-dimensional packing with constraints being
defined according to a placement goal. IoNCloud currently
supports three different goals, as follows. First, MinBand
minimizes bandwidth consumption by clustering VMs of the
same application and of the same group on the smallest subtree
in the physical infrastructure (similarly to Ballani et al. [6]).
Second, MinEnergy follows insights from Mann et al. [22] and
uses a first-fit algorithm to reduce the number of servers turned
on, thus minimizing the total amount of power consumed
by these servers. Third, MaxFT considers fault tolerance by
spreading VMs on the cloud platform, so that applications
can survive upon link, switch and/or rack failures (similarly
to Bodík et al. [23]). The key idea is to increase the number
of servers used to allocate VMs in accordance to a given
spreading factor (sf ). In particular, the minimum number of
servers is determined considering the servers with available
resources, and the number of VMs from the application each
one of them can host. The new number of servers that will
host these VMs is determined by choosing the minimum value
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between (i) the multiplication of the minimum number of
servers required to allocate such VMs and sf and (ii) the
number of VMs of the application: ExpectedNumSrvs =
min(MinNumSrvs(App) ∗ sf, NumVMs(App)).

Allocation quality. Algorithm 2 was designed as a con-
structive heuristic with the focus of providing efficient alloca-
tion of resources. It does not consider optimality, because it
is computationally expensive to employ optimization strategies
for large-scale cloud platforms [6], [20] and the allocation must
be performed as quickly as possible (since there are high rates
of tenant arrival and departure [4], known as churn). We defer
a detailed study of the advantages and drawbacks of employing
optimization models for IoNCloud to future work.

IV. EVALUATION

In this section, we demonstrate the benefits of IoNCloud for
both providers and tenants. Our evaluation focuses primarily on
quantifying the advantage of grouping applications in virtual
networks in terms of network predictability and resource
utilization. Toward this end, we first describe the environment
and, then, present the main results.

A. Environment

Datacenter topology. We follow previous work [6], [9],
[20] and implement a discrete-event simulator that models a
multi-tenant datacenter. We focus on tree-like topologies sim-
ilar to multi-rooted trees used in current cloud platforms [11].
The physical substrate is defined as a three-level tree topology
with 8,000 servers at level 0, each with 4 VM slots (i.e.,
with a total amount of 32,000 available VMs in the cloud).
Every machine is linked to a ToR switch (40 machines form
a rack), and every 20 ToRs are connected to an aggregation
switch. Finally, all aggregation switches are connected to a
core switch. Link capacities are defined as follows: machines
are connected to ToR switches with access links of 1 Gbps;
links from racks up to aggregation switches are 10 Gbps; and
aggregation switches are attached to a core switch with links
of 50 Gbps. Thus, the default oversubscription of the network
is 4.

Workload. In line with related work [6], [9], [11], we
generated the workload according to results obtained by mea-
surement studies [4], [13], [24]. More specifically, the work-
load is composed of requests of applications to be allocated in
the cloud platform. Requests are formed by a heterogeneous
set of applications (including MapReduce and Web Services),
which is representative of applications running on public cloud
platforms [5]. Each application is represented as a tuple <N,
B(t)>, with N being the number of VMs and B(t) a time-
varying function to specify the temporal network demand. The
former is exponentially distributed around a mean of 49 VMs
(representative of current clouds [4]). The latter was generated
following results obtained by Benson et al. [13] and Kandula
et al. [24] (we used measurements related to inter-arrival flow
time and size at servers to simulate application traffic).

B. Results

We compare IoNCloud, which employs shared band-
width guarantees, with the approach adopted by most related
work [6], [17], [18], which creates one virtual network per
application. Ideally, we would have compared IoNCloud with

Proteus [9]. Proteus uses as input pulse functions obtained
from the temporal network demands of applications. However,
the generation of such pulse functions is addressed as a black-
box in the paper and, thus, we cannot precisely develop a
generator that mimics its behavior.

As previously mentioned (Section III-D), the algorithm
used for virtual network allocation is agnostic in terms of VM
placement. Hence, three VM placement algorithms are used
in experiments: (i) MinBand, which minimizes the amount
of bandwidth reserved for communication between VMs; (ii)
MinEnergy, which minimizes energy consumption by reducing
the number of used servers; and (iii) MaxFT, which maximizes
fault-tolerance based on a given parameter (the desired ratio
of extra servers used for spreading VMs).

For all experiments, we plot the percentile difference
between both approaches given by the following equation:
( IoNCloud
One VN per App

− 1) ∗ 100%. Hence, negative percentiles mean
IoNCloud has achieved a lower value than traditional ap-
proaches, while positive percentiles mean IoNCloud has
achieved a higher value than traditional approaches. In general
lower values are better, with the sole exception being Figure 7.
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Fig. 4: Amount of reserved network resources.

Amount of reserved network resources. Figure 4 shows
the total amount of reserved network resources according to
the different placement algorithms. The y-axis represents the
percentile difference between both approaches regarding the
amount of bandwidth allocated, hence the lower the value,
the better. We see that for any given approach, the amount of
reserved resources increases in accordance with VM spreading.
As expected, the shared bandwidth mechanism employed by
IoNCloud outperforms the traditional methods when VMs are
spread around the network, as it reduces the amount of re-
served resources (up to 16.70%). This means that the provider
can accept more applications in the cloud, improve resource
utilization and, ultimately, increase datacenter throughput.

In contrast, IoNCloud is unable to achieve gains (in fact,
with 0.65% of overhead in the worst-case) when there is
no spreading, that is, when VMs are as packed as possible.
This happens because the resource reservation employed by
IoNCloud is performed per group, instead of per application
(as traditional approaches). Therefore, the bandwidth allocated
to each virtual link is only released after all applications in
the respective group have finished. This design choice was
deliberately chosen; such model can reduce the overhead of
calculating the amount of bandwidth to be deallocated for each
application that finishes its execution at each virtual link of the
group. Moreover, we expect VM spreading to be norm in real
cloud networks due to the high churn [4] of applications in
these environments.

We further analyze bandwidth allocation by measuring the
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amount of reserved resources in access and aggregation levels4

of the topology for all VM placement algorithms. We see
in Figure 5 that IoNCloud allocates less resources at both
levels. In particular, note that IoNCloud has better results
in the aggregation. This effect also increases the chance of
allocating virtual links, since network oversubscription at this
level is higher than at the edge, and decreases the probability
of packet discards in the network (which usually happens at
this level [13]).
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Fig. 5: Per-level analysis of reserved network resources.

Underutilization in the network. Figure 6 depicts the
percentile difference of unused bandwidth for different place-
ment algorithms. Underutilization is quantified by measuring
the unused bandwidth on each virtual link. Lower values are
better, since they mean that the cloud infrastructure is making
better use of its reserved resources. As expected, IoNCloud
achieves lower underutilization than current approaches. In
fact, when compared to traditional schemes, IoNCloud is able
to reduce waste, saving up to 18% of resources.
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Fig. 6: Overall underutilization of resources.

IoNCloud can reduce resource underutilization, but it still
suffers from some underutilization. As mentioned in the pre-
vious experiment, this happens because the current implemen-
tation of IoNCloud performs bandwidth deallocation at group
granularity (as opposed to application granularity).

Ratio of Allocated VMs. This metric shows the proportion
of VMs that were allocated in servers. Higher values are better,

4In our experiments, there were no reserved resources at the core.

as the revenue of the cloud provider is proportional to the num-
ber of VMs it allocates. Figure 7 shows the difference between
VM allocation ratios. As observed, IoNCloud performs better
for all algorithms. Although the number of slots and VMs is the
same, the allocation ratio differs depending on the allocation
goal. This is because VMs can only be allocated if there is
enough bandwidth for guaranteeing the setup of virtual links.
Hence, reducing the amount of allocated bandwidth (as seen in
Figure 4) increases the acceptance ratio of VMs in the cloud
platform (since bandwidth is the bottleneck resource).

−5

 0

 5

 10

 15

 20

 25

MinBand

MinEnergy

MaxFT, sf=2

MaxFT, sf=3

MaxFT, sf=4

A
ll

o
ca

te
d

 V
M

s 
(%

)

Algorithms

+1.61%
+0.00%

+6.86%

+2.91%

+6.98%
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To understand the behavior of VM rejection, we perform
experiments in a scenario were all datacenter links have
unlimited bandwidth. Table I shows a comparison between
both scenarios: normal and unlimited bandwidth. As can be ob-
served, the assumption that bandwidth consumption interferes
in VM allocation is verified, since all methods achieve 100%
allocation with unlimited bandwidth. Note that MinEnergy is
the only algorithm that achieves 100% VM allocation ratio
under normal conditions. This is because VMs are packed
together and fragmentation is minimal, thus, the majority of
VMs will be closer. When minimizing bandwidth (MinBand),
VMs may be allocated on free slots that are far from each
other, which means that virtual links have a higher probability
of reaching a bottlenecked physical link. MaxFT worsens this
behavior, as it explicitly allocates VMs farther from each other.

TABLE I: VM allocation ratio with normal and unlimited
bandwidth capacity on links.

VM placement goal Bandwidth
Normal Unlimited

MinBand 0.929 1
MinEnergy 1 1
MaxFT, sf=2 0.845 1
MaxFT, sf=3 0.892 1
MaxFT, sf=4 0.888 1

Link Sharing and Management Overhead. We also
measure the number of reservations over each link in the
datacenter network. Figure 8 shows the percentile difference of
the maximum number of virtual links allocated in the network.
We find that IoNCloud results in a significantly lower number
of reservations to be managed (which can be as high as 22.32%
less). In an environment as large and dynamic as a cloud
platform, where network devices are limited in terms of the
amount of control state and the rate at which these states
can be updated, this typically results in a reduced reservation
management overhead. Furthermore, during the experiments,
we observed relatively small absolute values (an overall value
of less than 10,000) for the number of reservations for all
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strategies. This reflects the spatial locality applied by the
allocation algorithms and suggests that the bandwidth reserva-
tion schemes can be accomplished using technologies already
available in current datacenters (e.g., using rate-limiters in off-
the-shelf switches or programmability of hypervisors [9]).
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Fig. 8: Maximum number of allocated virtual links.

V. DESIGN DISCUSSION

Datacenter network topology. Current datacenters are
typically implemented through a multi-rooted tree topol-
ogy [11]. Therefore, in this paper, we focus on this kind
of topology to show the benefits of IoNCloud. However,
IoNCloud can be easily adapted for other topologies, such as
random graphs [25]. In particular, it can be applied to multi-
path topologies, both where load balancing is uniform across
paths and where it is not uniform. For the first case (e.g., Fat-
Tree), a single aggregate link can be used as a representation
for a set of parallel links for bandwidth reservation [6], [8].
For the latter, IoNCloud would have to use an additional
layer at hypervisor-level to control each path and its respective
bandwidth for communication between VMs.

Online allocation of applications. IoNCloud allocates
groups of applications in order to increase datacenter resource
utilization. In this context, there is, at least, two ways of
robustly providing online allocation for incoming application
requests: i) by allocating an incoming application to an existing
group; and ii) by allocating requests according to time slots.
The first approach is straightforward, but may introduce some
overhead to manage network resources when expanding an
existing group. The second one (which we employed in our
evaluation) takes advantage of high churn in cloud environ-
ments [4]. Thus, for each time slot (i.e., a predefined time
period), IoNCloud can allocate the set of incoming requests by
grouping them according to their bandwidth demands, without
modifying previously allocated groups (less overhead).

Generality of the network model. Currently, IoNCloud
adopts a single network model for all VMs of the same
application. Nonetheless, it requires no modification when
considering VMs of the same application with distinct network
profiles. However, it may add some complexity to the resource
allocation process. Another option is to extend the system
to enforce per-VM traffic models by reserving bandwidth on
links according to the VM with the highest demand in each
application (at the cost of some underutilization).

VI. CONCLUSIONS AND FUTURE WORK

We have introduced IoNCloud, a system that provides net-
work predictability while minimizing resource underutilization
and management overhead. To achieve this, IoNCloud groups
applications in VNs according to their temporal bandwidth

usage. Evaluation results show the benefits of our strategy,
which is able to use available bandwidth more efficiently,
reducing allocated bandwidth, network underutilization and
management overhead. In future work, we intend to extend
IoNCloud in two ways: i) by considering other objectives
for application grouping; and ii) by adding VM migration to
minimize network traffic.
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Abstract—Software-Defined Networking (SDN) can simplify
traffic management in large-scale datacenter networks (DCNs).
On one hand, it provides a robust method to address the challenge
of performance interference (bandwidth sharing unfairness) in
DCNs. On the other, its pragmatic implementation based on
OpenFlow introduces scalability challenges, as it (a) adds latency
for new flows (the controller must process hundreds of thousands
of requests per second and install appropriate rules in switches);
and (b) requires large flow tables in devices (DCNs can have
more than 16 million distinct flows per second with different
requirements and duration). To employ OpenFlow-based SDN
in DCNs, recent work has proposed techniques that require
hardware customization to keep up with the high dynamic traffic
patterns of these networks. We make two key observations:
providers do not need to control each flow individually (e.g.,
VM-to-VM), since they charge tenants based on the amount
of resources consumed by applications; and congestion control
in the intra-cloud network is expected to be proportional to
the tenant’s payment. Based on these insights, we introduce
Predictor, a novel system for DCNs that enables fine-grained
network management for providers, minimizes flow table size
by controlling flows at application-layer and reduces flow setup
time by proactively installing rules in switches. It also enables
tenants to request and receive predictable network performance
for both intra- and inter-application communication, with work-
conserving bandwidth sharing. Evaluation results show that
Predictor provides significant improvements against DevoFlow
(reducing flow table size up to 87%) and offers predictable and
guaranteed network performance for tenants.

I. INTRODUCTION

The paradigm of Software-Defined Networking (SDN) has
emerged as an efficient method that offers programability to
dynamically manage and configure network resources. On one
hand, SDN provides a robust method to address the challenge
of performance interference [1], [2] in multi-tenant cloud
datacenter networks (DCNs). While providers offer guaranteed
computing resources, the network is shared in a best-effort
manner among all tenants [3]. The lack of network guarantees
(for both intra- and inter-application communication) results
in unpredictable and poor overall application performance [4].
Several recent papers [1], [5]–[7] have proposed techniques
to address this issue. Nonetheless, they do not provide fine-
grained control over network resources for providers, as they
require complex interactions among hundreds of thousands of
hypervisors.

On the other hand, SDN, and pragmatic OpenFlow-based
deployments, faces scalability challenges in DCNs (and, in
general, in high-performance, dynamic networks) for the fol-
lowing reasons [8], [9]. First, the transition between the data

and control planes whenever a new flow arrives at a switch1

may add some delay (latency for communication between
switches and the controller), and the high frequency at which
flows arrive and demands change in DCNs hinders controller
scalability. Second, the number of entries needed in flow
tables of forwarding devices can be significantly higher than
the amount of resources available in commodity switches,
especially for large-scale DCNs [8], [10] (as such networks
can have more than 16 million flows per second [11]).

Scaling the controller has been the main topic of some
studies. They address this issue either by devolving control
to the data plane [8], [12] or by developing a logically
distributed controller [13]. The former approach adds several
functionalities to switches and, thus, requires more complex,
customized hardware, while the latter does not scale for large
DCNs where communications occur between virtual machines
(VMs) connected by different top-of-rack (ToR) switches.

In this paper, we make two key observations: (i) providers
do not need to control each flow individually, since they
charge tenants based on the amount of resources consumed
by applications; and (ii) congestion control in the intra-cloud
network is expected to be proportional to the tenant’s payment
[1], [14]. Therefore, we adopt a broader definition of flows,
considering it at application-layer2, and introduce Predictor, a
novel system for Infrastructure-as-a-Service (IaaS) cloud data-
centers. Predictor addresses the two aforementioned challenges
(performance interference and scalability of OpenFlow-based
deployments in DCNs), offering the following benefits.

First, it enables fine-grained network management for cloud
providers by employing the SDN paradigm and allowing
control of flows at application-layer. Predictor makes use of
wildcards to reduce flow table size at switches and to allow
providers to control traffic and gather statistics at application-
layer for each link and device in the network.

Second, it enables tenants to request and receive a
minimum guaranteed bandwidth for both intra- and inter-
application communication, while allowing the use of more
bandwidth when there is spare capacity (work-conservation).
The controller proactively installs rules in switches at appli-
cation allocation time to guarantee bandwidth for communi-
cation between VMs of the same application, and reactively
sends rules for inter-application communication. On one hand,
proactively installing rules at switches reduces flow setup time
and management traffic in the network (since switches do not

1We use the terms “switches” and “forwarding devices” to refer to the same
set of SDN-enabled network devices, that is, data plane devices that forward
packets based on a set of flow rules.

2An application is represented by a set of VMs that consume computing
and network resources (see Section III-A for further details).
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request the controller assistance for each new flow). On the
other hand, some flow table entries may take longer to expire
(they are removed only when their respective applications
conclude and are deallocated). Inter-application forwarding
rules, in turn, are reactively installed in switches, because
applications may not know all other applications they will
communicate with in advance (when they are allocated) and
intra-application traffic volume is expected to be higher [1].

Overall, the major contributions of this paper are:

• We propose a topology-agnostic strategy that takes
advantage of SDN to provide fine-grained network
management for IaaS providers (e.g., by controlling
flows at link-level) and predictable performance with
guaranteed bandwidth for tenants, without requiring
customized hardware in switches.

• We present the design of Predictor, a novel system
that implements the proposed strategy for large-scale
DCNs.

• We show the benefits of Predictor, comparing it
against the state-of-the-art controller for DCNs (De-
voFlow [8]). Evaluation results show that Predictor
can significantly reduce flow table size at forwarding
devices (up to 87%) with small increase of con-
troller load. Furthermore, Predictor offers predictable
network performance with guaranteed bandwidth and
work-conserving sharing.

The paper is organized as follows. Section II provides the
background on the cloud network sharing problem and the pros
and cons of using SDN to solve it. Section III describes our
strategy (and its implementation, Predictor), while Section IV
presents its evaluation. Section V discusses the generality and
limitations of our strategy, and Section VI examines related
work. Finally, Section VII concludes the paper with final
remarks and perspectives for future work.

II. BACKGROUND

This section first examines the intra-cloud network sharing
problem and, then, discusses the benefits and drawbacks of
employing SDN on DCNs.

A. Cloud Datacenter Network Sharing

Current cloud providers (such as Amazon EC2) typically
offer VMs with guaranteed computing resources. However,
the underlying network is shared in a best-effort manner [7].
Measurement studies [4], [5] concluded that the network
throughput achieved by VMs can vary by a factor of five
or more. Such variability results in poor and unpredictable
application performance, and tenants end up spending more
money (since their applications take longer to finish) [5].

Popa et al. [14] elaborates on two main requirements
for network sharing: i) bandwidth guarantees for both intra-
and inter-application communication; and ii) work-conserving
sharing to achieve high network utilization for providers. In
particular, these two requirements present a trade-off: strict
bandwidth guarantees may reduce utilization, since applica-
tions have variable network demands over time [6]; and a
work-conserving approach means that, if there is residual
bandwidth and some applications have demands, they should
utilize it (even if the available bandwidth belongs to the

guarantees of another application) [15]. Therefore, we employ
SDN to enable fine-grained network management in order to
develop a robust strategy to explore this trade-off.

B. Software-Defined Networking

SDN [16] seeks to decouple the control and data planes
of the network. The pros and cons of using SDN to solve the
network sharing problem in DCNs are discussed below.

Benefits. SDN (and OpenFlow) offers programability to
dynamically configure and manage the entire network, en-
abling providers to offer a base level of network performance
guarantees for tenants. In particular, it allows administrators
to apply a wide-range of policies with little effort (without
requiring device by device configuration), including bandwidth
guarantees, routing and fault tolerance [8]. SDN also pro-
vides near-optimal traffic management, since the controller
can request and receive information about network load on
a low-level granularity (e.g., by device, link or specific flows
traversing a link).

Drawbacks. This paradigm involves the control plane more
frequently than traditional networking. The two main issues
related to DCNs are flow setup time (the time taken to install
a new flow rule in forwarding devices) and flow table size in
switches.

Flow setup time is an important factor to be considered,
as a new flow in the network is delayed at least two RTTs
in forwarding devices (i.e., communication between the ASIC
and the management CPU and between that CPU and the
controller) [8], so the controller can install the appropriate rules
at switches. Furthermore, when inserting high-priority rules at
the Ternary Content-Addressable Memory (TCAM), switches
must move down the table all other entries with lower priorities
(which takes more time as flow table size increases). These
delays may be impractical for latency-sensitive flows (adding
even 1 ms of latency to these flows is intolerable [17]).

Flow tables, in turn, are a restricted resource in commodity
switches, as TCAMs are typically expensive [8], [10]. Such
devices usually have a limited number of entries available for
OpenFlow rules, which may not be enough when considering
that large-scale datacenter networks can have an elevated
number of flows per second [11] (and approximately more
than 1,500 new flows per second per rack [18]).

III. PREDICTOR

Predictor implements our novel and low-overhead strategy
to provide fine-grained management and predictable sharing
inside the cloud DCN. It was designed taking four require-
ments into consideration: scalability, resiliency, predictable and
guaranteed network performance and high network utilization.
First, scalability is essential for the system to be realistic, as the
network sharing strategy must scale to hundreds of thousands
of VMs and to the heterogeneous workloads of cloud appli-
cations. Second, resiliency to churn at flow- and application-
layer, as DCNs have high rate of new flows per second [11]
and datacenters can have high rate of application allocation
and deallocation [15], respectively. Third, predictable and
guaranteed network performance in order to allow applications
to maintain a certain level of performance even when the
network is congested. Finally, high network utilization, so
that all spare bandwidth can be used independently of the
bandwidth guarantees assigned to VMs.
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An overview of Predictor is shown in Figure 1. The system
is composed of five components: Predictor controller, allo-
cation module, application information base (AIB), network
information base (NIB) and OpenFlow controller. They are
discussed next.

OpenFlow Controller

Predictor Controller

Allocation Module
Application
Information
Base (AIB)

Network
Information
Base (NIB)

Requests

Fig. 1: Predictor system overview.

Predictor Controller. It receives both applications to be
allocated (whose resources to be used are determined by the
allocation module) and requests for inter-application commu-
nication (detailed in Section III-B). In case of an incoming
application, it sends the request to the allocation module. Once
the allocation is completed (or if the request is for inter-
application communication), the Predictor controller generates
and sends appropriate flow rules to the OpenFlow module.
The OpenFlow module, then, updates the tables (of forwarding
devices) that need to be modified.

The controller installs rules to identify flows at application-
layer (more details in Section III-E). It can also take advantage
of flow management at lower levels (for instance, by matching
source and destination MAC and IP fields), since it uses
the OpenFlow protocol. Nonetheless, given the amount of
resources available in commodity switches and the number
of flows that come and go in a small period of time, such
low-level rules are expected to be kept to a minimum.

Allocation Module. This component is responsible for al-
locating incoming applications at the cloud platform, according
to available resources. It receives requests from the Predictor
controller, determines the set of resources to be allocated for
each new request and updates the AIB and NIB. We detail the
resource allocation logic in Section III-C.

Application Information Base (AIB). It keeps detailed
information regarding each allocated application, including its
identifier (ID), VM-to-server mapping, IP addresses, band-
width guarantees, network weight (for work-conserving shar-
ing), links being used and other applications it communicates
with. It provides information for the Predictor controller to
compute flow rules that need to be installed in switches.

Network Information Base (NIB). It is composed of a
database of resources, including hosts, switches, links and
their capabilities (such as rate-limiters, and link capacity and
latency). In general, it keeps information about computing
and network state, which are received from the OpenFlow
controller (current state) and the allocation module (resources
used for newly allocated applications). The Predictor controller
uses information stored in the NIB to map logical actions (e.g.,
intra- or inter-application communication) into the physical
network. While AIB maintains information at application gran-
ularity, NIB keeps information at network layer. The design of
NIB was inspired by Onix [16] and PANE [19].

OpenFlow Controller. It is responsible for communication
to/from forwarding devices and Open vSwitches at hypervi-
sors, in order to update network state and get information
from the network. It receives information from the Predictor
controller to modify flow tables in forwarding devices and
updates the NIB upon getting information from the network.

We first describe in detail application requests (Sec-
tion III-A) and how intra- and inter-application communication
is handled (Section III-B), and use such information for the
allocation of applications in the datacenter (Section III-C).
Then, we present how the system provides work-conserving
network sharing (Section III-D) and how key functionalities
are implemented (Section III-E).

A. Application Requests

Tenants request applications using the hose-model (sim-
ilarly to prior work [1], [5]–[7]), in order to capture the
semantics of the guarantees being offered. In this model, all
VMs of an application are connected to a non-blocking virtual
switch through dedicated bidirectional links. Each application
a is represented by its resource demand and network weight,
formally defined as < Na, Ba, wa >, with the terms being
defined as follows: Na ∈ N∗ specifies the number of VMs;
Ba ∈ R+ represents the bandwidth guarantees required by
each VM; and wa ∈ [0, 1] indicates the network weight.
In particular, the network weight enables residual bandwidth
(unallocated, or reserved bandwidth for an application and
not currently being used) to be proportionally shared among
applications with more demands than their guarantees. There-
fore, the total amount of bandwidth available for a VM of
application a at a given period of time, following the hose
model, is denoted by Ba + spare(s, va), where spare(s, va)
identifies the share of spare bandwidth assigned to VM v of
application a located at server s:

spare(s, va) =
wa∑

v↑Vs|v∈Vs
wv

∗ SpareCapacity (1)

where Vs denotes the set of all co-resident VMs (i.e., VMs
placed at server s), v ↑ Vs | v ∈ Vs represents the subset of
VMs at server s that need to use more bandwidth than their
guarantees and SpareCapacity indicates the residual capacity
of the link that connects the physical server to the ToR switch.

Two assumptions are made for the sake of explanation
(these are not limitations), as follows. First, we abstract away
non-network resources and consider all VMs with the same
amount of CPU, memory and storage. Second, we consider
that all VMs of a given application receive the same bandwidth
guarantees.

B. Bandwidth Guarantees

Predictor provides bandwidth guarantees for both intra- and
inter-application communication. We discuss each one next.

Intra-application network guarantees. Typically, this
type of communication represents most of the traffic in
DCNs [1]. Thus, Predictor allocates and ensures bandwidth
guarantees at application allocation time by proactively in-
stalling flow rules and rate-limiters in the network through
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OpenFlow3. Each VM of a given application a is assigned a
bidirectional rate of Ba (as detailed in Section III-A). Limiting
the communication between VMs located in the same rack
is straightforward, since it can be done locally by the Open
vSwitch at each hypervisor.

In contrast, for inter-rack communication, bandwidth must
be guaranteed throughout the network, along the path used
for such communication. Predictor provides guarantees for
this traffic by employing the concept of VM clusters (set of
VMs of the same application located in the same rack). To
illustrate this concept, consider a simplified scenario where a
given application a has two clusters: ca,1 and ca,2. Since each
VM of a cannot send or receive data at a rate higher than Ba,
traffic between the pair of clusters ca,1 and ca,2 is limited by
the smallest cluster: rateca,1,ca,2

= min(|ca,1|, |ca,2|) ∗ Ba,
where rateca,1,ca,2 represents the calculated bandwidth for
communication between clusters ca,1 and ca,2, and |ca,i|
denotes the number of VMs in cluster i of application a.
In this case, rateca,1,ca,2

is guaranteed along the path used
for communication between these two clusters by rate-limiters
configured in forwarding devices through OpenFlow.

Inter-application communication. Providing static hose
guarantees for this type of communication does not scale for
DCNs [1], as bandwidth guarantees for each VM would need
to be enforced for communication with all other VMs in the
network. Furthermore, tenants cannot be expected to know
before allocation all other applications and services that their
applications will communicate with. Instead, Predictor dynam-
ically sets up guarantees for inter-application communication
according to the needs of applications and residual bandwidth
in the network. The Predictor controller provides two ways of
establishing guarantees for communication between VMs of
distinct applications and services, as follows.

Reacting to new flows in the network. When a VM needs to
exchange data with one or more VMs of another application,
it can simply send packets to those VMs. The hypervisor
(through its Open vSwitch) of the server hosting the source
VM receives such packets and, since they do not match any
rule, sends them to the OpenFlow controller. The Predictor
controller will, then, be called to determine the rules needed
by the new flows, and the set of rules will be installed along
the paths in the network.

Receiving communication requests from applications. Prior
to initiating the communication with VMs belonging to other
applications, the source VM can send a request to the Predictor
controller for communication with VMs from other applica-
tion(s). This request is composed of the set of destination
VMs, the bandwidth needed and the expected amount of time
the communication will last. Upon receiving the request, the
Predictor controller verifies residual resources in the network,
sends a reply, and, in case there are enough available resources,
generates and installs the appropriate set of rules for this
communication. This approach is similar to providing an
API for applications to request network resources, which is
employed by PANE [19].

3While Predictor may overprovision bandwidth at the moment applications
are allocated, it does not waste bandwidth because of its work-conserving
strategy (explained in Section III-D). Without overprovisioning bandwidth at
first, it would not be feasible to provide bandwidth guarantees for applications
(as DCNs are typically oversubscribed).

C. Resource Allocation

The allocation process is responsible for performing admis-
sion control and mapping application requests in the datacenter
infrastructure. A valid allocation must satisfy two require-
ments: computing and network resource availability [20]. For
simplicity, we discuss Predictor and its allocation component
in the context of traditional tree-based topologies implemented
in current datacenters [7].

We design a location-aware heuristic to efficiently allocate
tenant applications in cloud platforms. The key principle is
minimizing bandwidth for intra-application communication
(thus allocating VMs of the same application as close as
possible to each other), since this type of communication
generates most of the traffic in DCNs (as discussed before).

Algorithm 1 allocates one application at a time, as requests
are received. First, it searches for the best placement in
the infrastructure for the incoming application via dynamic
programming. To this end, three data structures are defined
and dynamically initialized for each request: i) set Ra stores
subgraphs with enough computing resources for application a;
ii) V a

s stores the total number of VMs of application a the
s-rooted subgraph can hold; and iii) Ca

s stores the number of
VM clusters that can be formed in subgraph s. The algorithm
traverses the topology starting at rack level, and up to the core,
and determines subgraphs with enough available resources to
allocate the incoming request (lines 2 - 12).

Algorithm 1: Location-aware algorithm.
Input : Physical infrastructure P , Application a
Output: Success/Failure code allocated

1 Ra ← ∅;
2 foreach level l of P do
3 if l == 1 then // Top-of-Rack switches
4 foreach ToR r do
5 V a

r ← number of available VMs in the rack;
6 Ca

r ← 1;
7 if V a

r ≥ Na then Ra ← Ra ∪ {r};
8 else // Aggregation and core switches
9 foreach Switch s at level l do

10 V a
s ←

∑
w∈{set of directly connected switches at level l−1} V a

w ;
11 Ca

s ←
∑

w∈{set of directly connected switches at level l−1} Ca
w ;

12 if V a
s ≥ Na then Ra ← Ra ∪ {s};

13 allocated ← failure code;
14 while Application a not allocated and Ra not empty do
15 ra ← Select subgraph from Ra;
16 allocated ← Allocation of VMs and bandwidth for application a at ra;
17 return allocated;

After verifying the physical infrastructure and determining
possible placements, the algorithm selects one subgraph ra at
a time to allocate the application (lines 13 - 16). The selection
of a candidate subgraph takes into account the number of
VM clusters. Therefore, the selected subgraph is the one
with the minimum number of VM clusters, so that VMs
of the same application are allocated close to each other,
reducing the amount of bandwidth needed for intra-application
communication (recall that the network often represents the
bottleneck when compared to computing resources). When a
subgraph is selected, the algorithm allocates the application,
reserving bandwidth for communication between its VMs as
presented in Section III-B.

Finally, the algorithm returns a success code if application
a was allocated or a failure code otherwise (line 17). Appli-
cations that could not be allocated upon arrival are discarded,
similarly to Amazon EC2 admission control.
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D. Work-Conserving Rate Enforcement

Predictor provides bandwidth guarantees with work-
conserving sharing. This is because only enforcing guarantees
through static provisioning results in underutilization and frag-
mentation [7], while only work-conserving sharing does not
provide strict guarantees for tenants [1]. Therefore, in addition
to ensuring a base level of guaranteed rate, Predictor can pro-
portionally share available bandwidth among applications with
more demands than their guarantees, as defined in Equation 1.

We design an algorithm to periodically set the allowed
rate for each co-resident VM on a server. In order to provide
smooth interaction with TCP, we follow ElasticSwitch [7] and
execute the work-conserving algorithm between periods of
time one order of magnitude larger than the network round-trip
time (RTT), i.e., 10 ms instead of 1 ms.

Algorithm 2 aims at enabling smooth response to bursty
traffic (since traffic in DCNs may be highly variable over short
periods of time [21]). It receives as input the list of VMs (Vs)
hosted on the server (s) and their current demands (which
are determined by monitoring VM socket buffers, similarly
to Mahout [22]). First, the rate of each VM with demands
less or equal than its bandwidth guarantees (represented by
v ↓ Vs | v ∈ Vs) is calculated and enforced (lines 1 - 2).
Then, the algorithm calculates the residual bandwidth of the
link connecting the server to the ToR switch (line 3). The
residual bandwidth is calculated by subtracting from the link
capacity the guarantees of VMs with higher demands than their
guarantees (represented by v ↑ Vs | v ∈ Vs) and the rate of
VMs with less or equal demands than their guarantees.

Algorithm 2: Work-conserving rate allocation.
Input : VM set Vs, Current demand of VMs demand
Output: Rate nRate for each co-resident VM

1 foreach v ↓ Vs | v ∈ Vs do
2 nRate[v] ← min(Bv, demand[v]);
3 residual ← LinkCapacity −

(∑
v↑Vs

Bv +
∑

v↓Vs
nRate[v]

)
;

4 foreach v ↑ Vs | v ∈ Vs do
5 nRate[v] ←

Bv + min

(
demand[v]− Bv,

(
wv∑

v↑Vs
wv
× residual

))
;

6 return nRate;

The last step establishes the bandwidth for VMs with
higher demands than their guarantees (line 4 - 5). The rate is
determined by adding the guarantees (Bv) and the minimum
bandwidth between i) the difference of the current demand
(demand[v]) and the guarantees (Bv); and ii) the proportional
share of residual bandwidth the VM would be able to receive
according to its weight wv . By calculating the minimum band-
width between these two values, Predictor guarantees that VMs
will not receive more bandwidth than they need (which would
waste network resources). With this approach, the algorithm
can adapt to the significant variable communication demands
of applications.

In summary, if the demand of a VM exceeds its guaranteed
rate, data can be sent and received at least at that guaranteed
rate. Otherwise, if it doesn’t, the unutilized bandwidth will be
shared among co-resident VMs whose traffic demands exceed
their guarantees.

E. Key Implementation Aspects

Predictor relies on two key aspects: i) identifying flows
at application-layer; and ii) providing network guarantees and
dynamically enforcing rates for VMs. Figure 2 shows how our
proof-of-concept implementation of Predictor handles these
aspects, which are discussed next.

First, to perform application-layer flow identification, Pre-
dictor utilizes Multiprotocol Label Switching (MPLS). More
specifically, applications are identified in OpenFlow rules
through the label field in the MPLS header. The MPLS label
is composed of 20 bits, which allows Predictor to identify
1,048,576 different applications. The complete operation of
identifying and routing packets at application-layer works
as follows. For each packet received from the source VM,
the Open vSwitch (controlled via the OpenFlow protocol) in
the hypervisor pushes a MPLS header (four bytes) with the
application ID of the source VM in the label field. Subsequent
switches in the network use both MPLS label and IP desti-
nation address (which may be wildcarded, depending on the
possibilities of routing) matching fields to choose the correct
output port to forward incoming packets. When packets arrive
at the destination hypervisor, the Open vSwitch pops the MPLS
header and forwards the packet to the correct VM.

Second, Predictor runs a local controller at hypervisor-
level of each server in order to rate-limit VMs. More pre-
cisely, the local controller installs the appropriate rules at
the Open vSwitch to dynamically set the allowed rate for
each hosted VM. Such rate is calculated by Algorithm 2,
discussed in Section III-D. Note that Predictor also reduces
rate-limiting overhead when compared to previous schemes
(e.g., Hadrian [1], CloudMirror [2] and ElasticSwitch [7]), as
it only rate-limits the source VM while other schemes rate-
limit each pair of source-destination VMs.

VMn...Server

Hypervisor

VM1

Open vSwitch

Local Controller (LC)

Logical Link

LC gets information from the Open vSwitch 
and dynamically sets the rate of each VM

Open vSwitch 
receives outgoing 
packets from VMs 
and pushes a MPLS 
header with the 
application ID as 
the label 

Open vSwitch 
receives incoming 
packets for VMs 
and pops the 
MPLS header 

Fig. 2: Server-level implementation of Predictor features.

IV. EVALUATION

We focus on showing that Predictor (i) can scale to large
DCNs; (ii) provides both predictable network performance
(with bandwidth guarantees) and work-conserving sharing; and
(iii) outperforms existing schemes for DCNs (the baseline
SDN/OpenFlow controller and DevoFlow [8]).

A. Setup

Environment. We have implemented a simulator that mod-
els an IaaS multi-tenant datacenter. The network is defined as
a tree-like topology, similar to current DCNs. It is composed
of a three-tier topology with 16,000 servers at level 0; each
server has 4 VM slots, resulting in a total amount of 64,000
available VMs. Every 40 machines form a rack, and every
20 ToRs are connected to an aggregation switch. Finally, all
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(c) At aggregation switches.

Fig. 3: Highest number of rules at forwarding devices.

aggregation switches are connected to a core switch. The
capacity of each link is defined as follows: 1 Gbps for server-
ToR links, 10 Gbps for ToR-aggregation links and 50 Gbps for
aggregation-core links. Therefore, the default oversubscription
of the network is 4.

Workload. The workload is composed of incoming appli-
cation requests (to be allocated in the cloud platform) arriving
over time. In particular, we consider an heterogeneous set
of applications, including MapReduce and Web Services. As
defined in Section III-A, each application a is represented as
a tuple < Na, Ba, wa >. Given the lack of proper traces
for DCNs, the workload was generated in line with related
work [1], [6]. Na is exponentially distributed around a mean
of 49 VMs (following measurements from prior work [15]).
Ba was generated by reverse engineering the traces used by
Benson et al. [11] and Kandula et al. [18]. More specifically,
we used their measurements related to inter-arrival flow-time
and flow-size at servers to generate and simulate network
demands of applications. Of all traffic, 20% of flows are
destined to other applications [1]. We pick the destination of
each flow by first determining whether it is an intra- or inter-
application flow, and then uniformly select a destination. The
weight wa is uniformly distributed in the interval [0, 1].

B. Results

We begin by examining the scalability of employing Pre-
dictor on large DCNs. To this end, we verify controller load as
well as the number of rules in flow tables, as these are typically
the factors that restrict scalability the most [7], [9]. We com-
pare Predictor against the baseline SDN/OpenFlow controller
and the state-of-the-art controller for DCNs (DevoFlow [8]). In
the baseline scheme, switches forward to the controller packets
that do not match any rule in the flow table (we consider
the default behavior of OpenFlow versions 1.3 and 1.4 upon
a table-miss event). The controller, then, responds with the
appropriate set of rules specifically designed to handle the new
flow. DevoFlow, in turn, considers flows at the same granularity
than the baseline. However, forwarding devices, through the
use of more powerful hardware and template rules, generate
rules for small flows (without involving the controller) and
forward only packets of large flows to the controller. Therefore,
switches have similar number of rules when compared to the
baseline, but controller load is significantly reduced.

Reduced number of flow table entries. Figure 3 shows
how the offered load (in new flows per second per rack) affects
the occupancy of flow tables. More precisely, the plots show
in Figures 3(a), 3(b) and 3(c), respectively, the largest number
of entries required at any hypervisor, ToR and aggregation

switch for a given mean rate of new flows at each rack (in core
devices, results are not shown, as Predictor provides negligible
gains).

In all three plots, we see that the mean number of arriving
flows during an experiment affects directly the number of
rules needed in devices. Results in Figure 3(a) present a
logarithmic behavior according to the mean number of new
flows, while in Figures 3(b) and 3(c), a linear one. These
results are explained as follows: (i) the number of different
flows that pass through ToR and aggregation switches is large
and may quickly increase due to the elevated number of end-
hosts (VMs) and arriving flows in the network; and (ii) in
hypervisors, the number of rules (and distinct flows) is smaller
(with a reduced growth when increasing the number of new
flows in the network) because of the limited number of VMs
hosted at each physical server.

Overall, the increase of the total number of flows requires
more rules for the correct operation of the network (according
to the needs of tenants) and enables richer communication
patterns (representative of cloud datacenters [1]). Additionally,
the number of rules for the baseline and DevoFlow is similar
because (i) they consider flows at the same granularity; and
(ii) the same default timeout for rules was adopted.

Because Predictor manages flows at application-layer and
also wildcards the destination address in rules when possible
(as explained in Section III-E, when the routing process was
described), it significantly reduces the number of rules needed
in forwarding devices, especially for realistic numbers of flows
in large-scale DCNs (i.e., higher than 1500 new flows per
second per rack [7]). In fact, Predictor reduces the number
of rules up to 87% at hypervisors, 75% at ToRs and 40% at
aggregation devices. In core devices, the reduction is negligible
(around 1%), because (a) a high number of flows does not
need to traverse core links to reach their destinations, thus
baseline and DevoFlow (which handle flows at VM-to-VM
granularity) do not install many rules at core devices, while
Predictor installs application-layer rules at these devices; and
(b) Predictor proactively installs rules for intra-application
traffic (while other schemes install rules reactively).

In summary, Predictor reduces the number of rules required
in forwarding devices, which can (i) minimize the amount of
resources occupied by rules in TCAMs of forwarding devices
(TCAM is a very expensive resource [10]); (ii) improve
hypervisor performance (as measured by LaCurts et al. [23]);
and (iii) minimize the time needed to install high-priority rules
in TCAMs, since all lower-priority rules in the table must be
moved down to perform this operation.

Small controller load. As DCNs typically have a high
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number of flows per second, it is important that the controller
is able to efficiently handle flow setups. Figure 4 shows the
flow request rate the controller needs to be able to process
in each case. As expected, the number of messages sent to
the controller increases according to the mean number of new
flows per rack, because the controller must set up network
paths and allocate resources for these new flows (i.e., flows
without matching rules in forwarding devices). The baseline
imposes a higher load to its controller than DevoFlow (recall
that DevoFlow only requires controller intervention to install
rules for large flows, at the cost of more powerful hardware
at forwarding devices). Predictor, in turn, proactively installs
application-layer rules for intra-application communication at
allocation time and reactively sends rules for inter-application
traffic upon receiving communication requests, significantly
reducing the number of flow requests when compared to the
baseline (around 77%).

In contrast, Predictor requires more flow request messages
than DevoFlow (around 22% more, considering the total num-
ber of flows in the network), most of which are from inter-
application traffic. Nonetheless, Predictor controller load can
be reduced by allowing tenants to specify at allocation time
some (or all) other applications and services that their appli-
cations will communicate with (at the cost of some burden, as
tenants will need more knowledge of their applications).

In general, the Predictor controller is aware of all traffic in
the network, while the DevoFlow controller has knowledge of
only large flows (approximately 50% of the total traffic [11]),
to perform fine-grained management in the network.
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Fig. 4: Controller load.

After verifying the feasibility of employing Predictor on
DCNs, we turn our focus to the challenge of bandwidth
sharing unfairness. In particular, we show that Predictor can
provide minimum bandwidth guarantees with work-conserving
resource sharing under worst-case scenarios, achieving both
predictability for tenants and high utilization for providers.

Minimum bandwidth guarantees for VMs. We define it
as follows: the VM rate should be (a) at least the guaranteed
rate if the demand is equal or higher than the guarantees; or
(b) equal to the demand if it is lower than the guarantees.
To illustrate this point, we show, in Figure 5, the set of
VMs (in this case, three VMs from different applications)
allocated on a given server during a predefined time period
of an experiment. Note that VM1 [Figure 5(a)] and VM2
[Figure 5(b)] have similar guarantees, but receive different
rates (“used bandwidth”). This happens because they have
different network weights, and the rate is calculated according
to their demands, bandwidth guarantees, network weight and
residual bandwidth. In summary, we see that Predictor provides

minimum bandwidth guarantees for VMs, since the actual rate
of each VM is always equal or higher than the minimum
between the application demand and the guarantees. Therefore,
applications have minimum bandwidth guarantees and, thus,
can achieve predictable network performance.
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Fig. 5: Bandwidth allocation for VMs on a given server during
a predefined period of time.

Work-conserving network sharing on servers. It means
that bandwidth which is not allocated, or allocated but not
currently used, should be proportionally shared among other
VMs with more demands than their guarantees (according to
the weights of each application). Figure 6 shows the aggregate
bandwidth4 on the server holding the set of VMs in Figure 5.
In these two figures, we verify that Predictor provides work-
conserving sharing in the network, as VMs can receive more
bandwidth (if their demands are higher than their guarantees)
when there is spare bandwidth. Thus, providers can achieve
high network utilization.

In general, Predictor provides significant improvements

4Note that Predictor considers bandwidth guarantees when allocating VMs
(i.e., it does not take into account temporal demands). Therefore, even though
the sum of temporal demands of all VMs allocated on a given server may
exceed the server link capacity, the sum of bandwidth guarantees of these
VMs will not exceed the link capacity.
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Fig. 6: Work-conserving sharing on a given server.

over DevoFlow, as it allows high utilization and fine-grained
management in the network for providers and network pre-
dictability with guarantees for tenants and their applications.
As a side effect, Predictor has higher controller load than
DevoFlow (the cost of providing fine-grained management in
the network).

V. DISCUSSION

Application-layer flow identification. In our proof-
of-concept implementation, Predictor identifies flows at
application-layer through an MPLS label (application ID with
20 bits). Therefore, it needs an MPLS header in each packet
(adding four bytes of overhead). In practice, when considering
the matching fields defined by OpenFlow, application-layer
flows could also be identified by utilizing IEEE standard
802.1ad (Q-in-Q) with double VLAN tagging. The advantage
of double tagging is higher number of IDs available (24 bits),
while the drawback is an overhead of eight bytes (two VLAN
headers) per packet.

Dynamic rate allocation with feedback from the net-
work. The designed work-conserving algorithm does not take
into account the network feedback provided by the OpenFlow
module. This design choice was deliberately made; we aim
at reducing the amount of management traffic in the network,
since DCNs are typically oversubscribed networks with scarce
resources [6]. Nonetheless, the algorithm can be easily ex-
tended to consider feedback, which can further help controlling
the bandwidth used by flows traversing congested links.

Application ID management. Predictor controller assigns
IDs for applications (in order to identify flows at application-
layer) upon allocation and releases IDs upon deallocation.
Therefore, ID management is straightforward, as Predictor has
full control over which IDs are in use at each period of time.

VM migration. Ideally, VM migration should be trans-
parent to tenants. Predictor can maintain IPs and guarantee
connectivity of VMs upon migration by readily installing
new flow rules (and, if needed, removing old rules) in the
appropriate forwarding devices.

Failures. Link and forwarding device failure impacts the
traffic using the failed resource. By providing a logically
centralized control (with real-time network state gathered by
the OpenFlow module), Predictor can quickly detect failures
and react accordingly, for instance, by rerouting the affected
traffic (i.e., installing alternative paths).

VI. RELATED WORK

Researchers have proposed several schemes to enable the
use of the SDN paradigm in DCNs and to improve manage-
ment and network sharing among tenants. Proposals related to
Predictor can be divided into three classes, as follows.

OpenFlow controllers. DevoFlow [8] and DIFANE [12]
propose to devolve control to the data plane. The first one
introduces new mechanisms to detect elephant flows and make
routing decisions at forwarding devices, while the second
keeps all packets in the data plane. These schemes, however,
require more complex, customized hardware at forwarding
devices. Kandoo [13] provides a logically distributed con-
trol plane for large-scale networks. Nonetheless, it presents
scalability issues when communication occurs between VMs
located at different racks (a common case in DCNs).

Distributed rate-limiting. CloudMirror [2], Oktopus [5],
Proteus [6] and Choreo [23] provide strict bandwidth guar-
antees for tenants by isolating applications in virtual net-
works. Despite their benefits, these approaches are not work-
conserving and address only intra-application communication.
ElasticSwitch [7] and EyeQ [24] attempt to provide strict
bandwidth guarantees with work-conservation. However, they
focus only on intra-application communication, and EyeQ
cannot provide guarantees upon core-link congestion [25].
Finally, Hadrian [1] introduces a strategy that considers inter-
application communication, but (i) it requires a larger, custom
packet header (hindering its deployment); and (ii) its switches
must dynamically perform rate calculation (and enforce such
rate) for each flow in the network.

Flow table management. FasTrak [26] seeks to reduce
hypervisor overhead by managing ToR devices and hypervisors
as a unified set, moving rules back and forth. Despite the
benefits, it (i) requires generic routing encapsulation (GRE)
between the source and destination ToRs (20 bytes of data
overhead per packet); (ii) may add latency for flows when
moving their respective rules between hypervisors and ToRs;
and (iii) cannot precisely rate-limit VMs (as their rate must
be dynamically calculated by both ToRs and hypervisors
according to the rules at each one of them).

VII. FINAL REMARKS

We have introduced Predictor, a system that takes advan-
tage of the SDN paradigm to provide fine-grained network
management and predictable bandwidth sharing among appli-
cations in DCNs. To achieve this goal, Predictor addresses
the scalability challenges of OpenFlow: i) it minimizes flow
setup time by proactively installing rules for intra-application
communication at allocation time (since this type of commu-
nication represents most of the traffic in DCNs); and ii) it
reduces the number of flow rules in forwarding devices by
managing flows at application-layer. Evaluation results show
the benefits of Predictor, which can scale to large networks
and provide predictable network performance. In future work,
we will address Predictor’s placement in DCNs, as controller
placement is an important challenge of SDNs [27].
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Packer employs a novel allocation strategy that (a) extends previous heuristics developed for
multi-dimensional bin packing; and (b) uses as input a new abstraction, called Time-Interleaved
Multi-Resource Abstraction (TI-MRA), for specifying temporal multi-resource requirements of
applications. It also leverages Software-Defined Networking to dynamically enforce bandwidth
guarantees and to provide work-conserving sharing. Since Packer brings more benefits if tem-
poral requirements are specified, it is better suited for applications that present a predefined
behavior, repeatedly running the same type of tasks with similar input sizes and data sets (such
as PageRank and traffic analysis). Results show that, in comparison to the state-of-the-art,
acceptance ratio is increased, datacenter utilization is improved (i.e., fragmentation is mini-
mized), provider revenue is augmented and applications achieve predictable and guaranteed
network performance with work-conservation, with the cost of taking more (yet acceptable)
time to allocate applications.

‚ Title: Packer: Minimizing Multi-Resource Fragmentation and Performance Interference
in Datacenters

‚ Conference: IFIP Networking 2017

‚ Type: Main track (full-paper)

‚ Qualis: B1

‚ Date: June 13-15, 2017

‚ Location: Stockholm, Sweden



Packer: Minimizing Multi-Resource Fragmentation
and Performance Interference in Datacenters

Daniel S. Marcon, Marinho P. Barcellos
Institute of Informatics – Federal University of Rio Grande do Sul, RS, Brazil

Email: {daniel.stefani, marinho}@inf.ufrgs.br

Abstract—Cloud applications perform rich and complex tasks,
with time-varying demands for multiple types of resources
(CPU, memory, disk I/O and network). However, multi-resource
allocation is APX-Hard and, consequently, providers simplify it
by (i) allocating computing resources according to slots (which
leads to fragmentation); and (ii) allowing the network to be
shared in a best-effort manner (which leads to performance
interference among applications). Recent efforts cannot minimize
multi-resource fragmentation and, at the same time, provide
guaranteed network performance. In this paper, we introduce
Packer, a scheme that aims at minimizing multi-resource frag-
mentation and providing predictable and guaranteed network
performance with work-conservation. Packer employs a novel
allocation strategy that (a) extends previous heuristics developed
for multi-dimensional bin packing; and (b) uses as input a new
abstraction, called Time-Interleaved Multi-Resource Abstraction
(TI-MRA), for specifying temporal multi-resource requirements
of applications. It also leverages Software-Defined Networking to
dynamically enforce bandwidth guarantees and to provide work-
conserving sharing. Since Packer brings more benefits if temporal
requirements are specified, it is better suited for applications that
present a predefined behavior, repeatedly running the same type
of tasks with similar input sizes and data sets (such as PageRank
and traffic analysis). Results show that, in comparison to the state-
of-the-art, acceptance ratio is increased, datacenter utilization is
improved (i.e., fragmentation is minimized), provider revenue is
augmented and applications achieve predictable and guaranteed
network performance with work-conservation, with the cost of
taking more (yet acceptable) time to allocate applications.

I. INTRODUCTION

Cloud applications often perform rich and complex tasks,
with different temporal demands for multiple types of re-
sources (CPU, memory, disk I/O and network) [1]. They
typically have multiple stages, where a subsequent stage can
only start after the previous stage finishes [2]. Consequently,
any resource that becomes a bottleneck and delays a stage may
slow down the entire application.

In this context, multi-resource allocation is a key building
block of cloud datacenters. Because the allocation problem is
APX-Hard [3], state-of-the-art proposals typically simplify it
by (i) allocating computing resources according to slots [1];
and (ii) allowing the network to be shared in a best-effort
manner, which leads to performance interference among ap-
plications [4], [5]. The former (slot-based allocation) usually
causes over-allocation, leading to wastage (as applications do
not use all of their allocated resources) and fragmentation [6].
In particular, fragmentation results in less applications being
accepted in the infrastructure and in lower datacenter utiliza-
tion. The latter (performance interference) results in poor and
unpredictable network performance for applications.

Allocating resources to applications in datacenters has
been the main focus of several recent efforts [1], [4], [6].
Tetris [6] considers multiple resources at allocation time,

but does not provide bandwidth guarantees along the entire
network. Dominant Resource Fairness (DRF) [1] also consid-
ers multiple resources, but focuses on fairness (which may
result in fragmentation [6]). Silo [4] offers predictable network
performance, but allocates computing resources according to
slots. In general, these approaches cannot minimize multi-
resource fragmentation and, at the same time, provide guar-
anteed network performance.

In this paper, we propose Packer, a scheme for large-
scale Infrastructure-as-a-Service cloud datacenters. Its design
is based on two observations: (i) applications have complemen-
tary demands across time for multiple resources [6]; and (ii)
utilization of different resources peaks at different times [7].
Packer has two objectives: minimizing multi-resource frag-
mentation (consequently, increasing datacenter utilization); and
providing predictable and guaranteed network performance
with work-conserving sharing. To achieve these goals, it takes
into account multiple types of resources to admit (allocate)
applications in the datacenter without considering slots, so
that tenants can request and receive the necessary amount of
resources that their applications need to correctly execute and
finish without delay and providers can avoid over-allocation.

Packer is designed with four aspects in mind: application
abstraction, multi-resource allocation, network sharing and
resource monitoring. First, Packer utilizes a novel abstrac-
tion for applications, called Time-Interleaved Multi-Resource
Abstraction (TI-MRA). Unlike previous abstractions [2], [8]–
[10], TI-MRA imposes no predefined structure for applications
and allows the specification of requirements for multiple re-
sources across time. Second, Packer employs a new allocation
strategy that extends previous heuristics developed for multi-
dimensional bin packing, in order to reduce multi-resource
fragmentation. Third, Packer leverages Software-Defined Net-
working (SDN) and OpenFlow [11] to dynamically configure
and enforce bandwidth guarantees for applications throughout
the entire network. Fourth, Packer employs a monitoring
mechanism to avoid resource wastage and to provide fast and
up-to-date information upon unexpected events (e.g., if an
application gets delayed due to a resource being congested).

Like Proteus [2] and the strategy in [7], Packer uses
temporal resource demands to achieve maximum benefits.
Consequently, it is better suited for applications that present
a predefined behavior, repeatedly running the same type of
tasks with similar input and data sets. This is common in
iterative data processing (e.g., PageRank, hypertext-induced
topic search, recursive relational queries, social network anal-
ysis and network traffic analysis), where much of the data
stays unchanged from iteration to iteration [2]. In this case,
applications are profiled periodically or on each run. Further-
more, other applications can also take advantage of Packer by
specifying only peak demands for multiple resources and, at
runtime, employing its monitoring mechanism not to waste
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resources.

Overall, the major contributions of this paper are:

• A novel abstraction for applications, called Time-
Interleaved Muti-Resource Abstraction (TI-MRA). In
contrast to previous abstractions [2], [8]–[10], TI-
MRA allows the specification of demands for multiple
resources without a predefined structure for applica-
tions.

• A novel admission control algorithm that, by extend-
ing existing heuristics for multi-dimensional bin pack-
ing, minimizes resource fragmentation. The algorithm
uses TI-MRA as input to coordinate requirements of
applications in different resource dimensions across
time.

• Packer, a scheme that combines TI-MRA and the
novel admission control algorithm to provide pre-
dictable and guaranteed network performance with
work-conserving sharing. Evaluation results show that
it provides network performance guarantees, and im-
proves datacenter utilization and provider revenue in
comparison to related work, with the cost of taking
more (yet acceptable) time to allocate applications.

This paper is organized as follows. Section II introduces
Packer, while Section III presents its evaluation. Section IV
discusses the generality and limitations of Packer, and Sec-
tion V examines related work. Finally, Section VI concludes
the paper with final remarks and perspectives for future work.

II. PACKER

Packer implements a novel strategy for minimizing multi-
resource fragmentation and for providing predictable and
guaranteed network performance in large-scale cloud datacen-
ters. Figure 1 shows an overview of Packer. The scheme is
composed of three components: datacenter resource manager
(DRM), OpenFlow-enabled switches and one local controller
per server. They are discussed next.

Datacenter Resource Manager

OpenFlow-enabled Switches Local Controllers

Report network usage

Send rules and 
rate-limiters

Report computing 
resource usage

Send tasks to be 
executed in servers

Fig. 1: Packer overview.

Datacenter resource manager (DRM). It is responsible
for (i) allocating applications in the datacenter; and (ii) han-
dling global events (e.g., bandwidth enforcement throughout
the entire network for applications). More specifically, it
receives an application request (in the form of a TI-MRA
specification) and employs a novel resource allocation strategy
(described in § II-B) to determine the set of resources to be
used by the application. Then, it sends the application tasks to
the servers that will execute them (as determined by the allo-
cation strategy) and, via OpenFlow, configures switches (with
rules and rate-limiters) to provide connectivity and network
performance guarantees for the application. Furthermore, the
DRM periodically receives up-to-date information regarding
resource usage from local controllers at servers and from
OpenFlow switches.

TABLE I: Notations adopted throughout the paper.

Symbol Description

A Set of application requests
Ga

TI−MRA TI-MRA graph of application a ∈ A
V a Set of nodes of application a ∈ A (V a = Ka ∪ Ca)
Ka Set of tasks of application a ∈ A (Ka ⊆ V a)
Ca Set of cloud services used by app a ∈ A (Ca ⊂ V a)
Ea Set of edges (dependencies between nodes) of app a ∈ A
Ta Discrete time instants of application a ∈ A (Ta ⊆ T )
wa Weight of application a ∈ A
N Set of all infrastructure nodes (N = S ∪ J )
S Set of servers in the datacenter infrastructure (S ⊆ N )
J Set of services available in the datacenter (J ⊂ N )
L Set of links in the datacenter network
T Discrete time instants of the infrastructure
P Set of all paths available in the network

P(n1, n2) Set of paths from src node n1 ∈ N to dest node n2 ∈ N
wr Weight of r ∈ {CPU, MEM, IO_WRITE, IO_READ, BAND}

δ(v, r, t) Amount of resource r ∈ {CPU, MEM, IO_WRITE, IO_READ}
required by node v ∈ V a at time t ∈ Ta for app a ∈ A

σ(e = (u, v), t) Bandwidth for communication between nodes u, v ∈ V a |
e = (u, v) ∈ Ea at time t ∈ Ta for application a ∈ A

Mn(v) Node n ∈ N that holds the node v ∈ V a of app a ∈ A
Me(u, v) Infrastructure path (P (Mn(u),Mn(v))) used for com-

munication between nodes u, v ∈ V a of app a ∈ A
A(n) Tasks running at infrastructure node n ∈ N
B(l) Total capacity (bandwidth) of link l ∈ L
C(l) Communications (edges in the TI-MRA) using link l ∈ L
D(u) Application that task u belongs to
E(v) Nodes that node v ∈ V a | a ∈ A depends on

Q(n, r, t) Amount of available resource r on n ∈ N at time t ∈ T
R(n, r) Capacity of infrastructure node n ∈ N for resource type r

OpenFlow switches. These devices are responsible for for-
warding traffic according to the instructions received from the
DRM. They receive rules and rate-limiters to correctly handle
traffic and enforce bandwidth for applications. Moreover, they
periodically report resource usage statistics to the DRM.

Local controllers (LCs) at servers. They are part of the re-
source monitoring mechanism utilized in Packer (described in
§ II-D). LCs are responsible for (i) monitoring multi-resource
usage at servers and reporting it to the DRM; (ii) enforcing
allocations; and (iii) reacting to local events (e.g., dealing with
congested resources inside their respective server).

We detail Packer in the following manner. We first present
the novel abstraction (called TI-MRA) used for applications
in § II-A. Then, we utilize TI-MRA as input for the new
allocation algorithm (§ II-B) and describe the strategy used
for providing predictable and guaranteed network performance
(§ II-C). Finally, we detail the resource monitoring mecha-
nism in § II-D. The notations used throughout the paper are
presented in Table I.

A. Time-Interleaved Multi-Resource Abstraction (TI-MRA)

Prior work has designed abstractions expressed as physical
network models (i.e., the hose model) [2], [4], [8], two-level
trees (hierarchical hose) [8], [10] or based on communication
patterns (TAG) [9]. However, they focus on the network
and neglect other resources. In particular, the hose model
(used by most related work) does not accurately capture the
network requirements of applications with complex traffic
interactions [9].

An effective abstraction is expected to consider two pur-
poses. The first is to allow tenants to specify their application
requirements in a simple and accurate manner. The second is to
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allow providers to minimize over-allocation (i.e., allocating the
correct amount of resources required by applications), which
may increase the percentage of allocated applications and,
consequently, may improve datacenter throughput.

Based on these purposes and the limitations of prior work,
we propose a novel abstraction for applications, called Time-
Interleaved Multi-Resource Abstraction (TI-MRA). TI-MRA
allows the specification of not only network demands but also
other types of resources. TI-MRA leverages tenants’ knowl-
edge of their applications to yield a flexible representation
of the applications’ resource consumption. It uses the same
principle of (a) temporal bandwidth requirements in TIVC [2],
but extends it to all kinds of resources; and (b) communication
patterns in TAG [9]. Furthermore, it also takes into account
dependencies other than among tasks (such as between tasks
and cloud services), in order to optimize the use of resources.
The intuition is that TI-MRA allows a flexible representation
of application requirements rather than imposing a predefined
abstraction (e.g., the hose model) for applications to map their
requirements to.

TI-MRA extends the concept of time-varying graphs
(TVGs) [12] to represent temporal demands of multiple re-
sources. A TI-MRA graph of application a ∈ A is represented
as GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉, with the terms being
defined as follows: V a = Ka ∪ Ca is the set of application
nodes, composed of tasks (Ka) and cloud services required
by the application (Ca); Ea is the set of edges, representing
the dependencies between nodes; T a is the set of discrete
time instants, from the time the first node of application a
begins its computation to the time the last node finishes;
wa ∈ [0, 1] indicates the weight of application a, so that
residual resources (unallocated, or reserved resources for an
application and not currently being used) can be proportionally
shared among applications with more demands than their
guarantees (work-conservation); and δ(v, r, t) ∈ R+ returns
the demand of node v ∈ V a at time t ∈ T a for resource
r ∈ {CPU, MEM, IO_WRITE, IO_READ}. The last function, σ(e =
(u, v), t) ∈ R+, denotes the bandwidth necessary for commu-
nication between nodes u ∈ V a and v ∈ V a | u 6= v at time
t ∈ T a, for e = (u, v) ∈ Ea. Note that we do not consider
moving nodes and edges across time. This does not impact
the generality of TI-MRA because when a node or edge has
no demand for a given resource, the call for the respective
function (δ(v, r, t) or σ(e = (u, v), t)) returns zero.

An example of TI-MRA is shown in Figure 2. The figure
depicts a simple application composed of five tasks and tem-
poral resource requirements for CPU, memory, disk I/O write,
disk I/O read and bandwidth. In this example, tasks T1 and T2

get their input data from storage service STS1; T3 depends
on tasks T1 and T2 and on data sent from cloud service
CS1; T4 reads data from storage service STS2 to perform
its computation; and T5 depends on tasks T3 and T4 and
stores the final result in STS3. Moreover, note that edges (links
representing the exchange of data) are unidirectional (different
amounts of bandwidth for sending and receiving data). Having
two links instead of a single bidirectional link avoids over-
allocation and bandwidth wastage.

Producing TI-MRA models. TI-MRA can be used not
only by tenants who have a deep understanding of their
application demands, but also by users who do not know it in
advance. The former can tune resource demands according to
the application requirements, possibly reducing costs (avoiding

CPU(t)
Mem(t)

DiskRead(t)
DiskWrite(t)

CPU(t)
Mem(t)

DiskRead(t)
DiskWrite(t)

Band(t)

Band(t) Band(t)

Band(t) Band(t)

Band(t)

Band(t)
Band(t)

DiskRead(t)

DiskWrite(t)

Band(t)

T2

T1 CPU(t)
Mem(t)

DiskRead(t)
DiskWrite(t)

T5

CPU(t)
Mem(t)

DiskRead(t)
DiskWrite(t)

T3

CPU(t)
Mem(t)

DiskRead(t)
DiskWrite(t)

T4

STS2

CS1

STS3

DiskRead(t)
STS1

Fig. 2: TI-MRA of a simple application composed of five tasks
(T1 to T5), where tasks read and write data from/to storage
services (STS1, STS2 and STS3) and use cloud service CS1.

over-allocation) without impact on performance. The latter,
in turn, can specify only peak demands for resources (i.e., a
constant temporal function). This would be similar to the hose
model specification. Alternatively, the same strategy employed
in CloudMirror [9] for generating TAG models could be used
here: application templates for TI-MRA could be provided as
a library for users through the extension of cloud orchestration
systems like OpenStack Heat and AWS CloudFormation.

B. Allocation Strategy

The problem of allocating applications considering multi-
ple types of resources in datacenters can be reduced to multi-
dimensional bin packing (also called vector bin packing –
VBP) [6], which is NP-Hard for every dimension d and APX-
Hard for d ≥ 2 [3]. Given balls (application tasks) and bins
(servers) with sizes for each property (resource) considered,
VBP assigns the balls to bins according to an optimization
objective. In our case, the goal is to reduce fragmentation and
over-provisioning and, consequently, improve the percentage
of allocated applications and their tasks.

In case applications are constrained by a single resource
(e.g., network), the problem becomes, in essence, a one dimen-
sional bin packing [3]. However, cloud applications are typi-
cally constrained by multiple resources, including network [4]
and CPU [13]. Moreover, the network is a distributed resource
(composed of several links); therefore, the amount of resources
consumed depends on bandwidth demands of tasks as well as
their location in the infrastructure (the whole path used for
communication must be taken into account), which increases
the difficulty in efficiently optimizing the use of resources.

Problem definition. The process of multi-resource allo-
cation is formally defined as follows. The TI-MRA speci-
fication of application a ∈ A is given by GaTI−MRA =
〈V a, Ea, T a, wa, δ, σ〉. A node v ∈ V a can be either a task or
a cloud service and is mapped to an infrastructure node n ∈ N .
Each task k ∈ Ka | Ka ⊆ V a is assigned to an infrastructure
server (s ∈ S | S ⊆ N ) by mapping Mn : Ka → S, ∀a ∈ A
(Equation 1). Each cloud service c ∈ Ca | Ca ⊂ V a required
by application a ∈ A, in turn, is part of the set of services
(J | J ⊂ N ) available in the platform (offered by either the
provider or a tenant) and is assigned to a node j ∈ J that runs
the requested service by mapping Mn : Ca → J , ∀a ∈ A
(Equation 2).

Mn(k) ∈ S | k ∈ Ka or (1)

Mn(c) ∈ J | c ∈ Ca (2)
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Each dependency between nodes (i.e., edges in the TI-
MRA graph, specified in set Ea) is mapped to a single path be-
tween the corresponding infrastructure nodes (servers for tasks
and cloud services for services needed by the application). The
assignment is defined by mapping Me : Ea → P, ∀a ∈ A,
where P denotes the set of all available paths in the network,
such that for all e = (u, v) ∈ Ea, ∀a ∈ A:

Me(u, v) ∈ P (Mn(u),Mn(v)) (3)

The nodes in V a run for at most T a discrete time units
to perform the computation required by application a ∈ A
and communicate among themselves using links e ∈ Ea.
Each node v ∈ V a presents temporal demands for comput-
ing resource r ∈ {CPU, MEM, IO_WRITE, IO_READ} (δ(v, r, t)),
∀t ∈ T a. Furthermore, each edge e = (u, v) ∈ Ea between
communicating nodes u and v (such that u 6= v) presents
temporal bandwidth demands: σ(e = (u, v), t),∀t ∈ T a.

A valid allocation is constrained by the amount of available
resources. More specifically, a cloud service j ∈ J will
only perform the task required by node c ∈ Ca | a ∈ A
if it has enough available resources to satisfy the demands.
Similarly, a task can only be allocated in a server if the
server has enough available capacity for each type of resource
being considered. Given A(n) a function that returns all tasks
running at infrastructure node n ∈ N , R(n, r) a function that
returns the capacity of infrastructure node n ∈ N for resource
r and T the discrete time instants of the infrastructure, the
constraint for computing resources is defined as follows:

∑

v∈A(n)

δ(v, r, t) ≤ R(n, r)

∀n ∈ N, ∀r ∈ {CPU, MEM, IO_WRITE, IO_READ}, ∀t ∈ T (4)

The network is a special case, since it is a distributed
resource. Specifically, bandwidth must be taken into account
at the entire path used for each communication between
application nodes and the amount of allocated bandwidth at
a link l must not exceed the total capacity of l (Equation 5).

∑

e=(u,v)∈C(l)
σ(e, t) ≤ B(l) ∀l ∈ L, ∀t ∈ T (5)

where L represents the set of links in the datacenter network,
C(l) returns the set of communications (edges in TI-MRA
graphs of applications) using link l and B(l) returns the total
capacity (bandwidth) of link l.

Note that the above constraints are non-linear, in particular
functions A and C (since they depend on the allocation of
application nodes in infrastructure nodes). Efficient solvers
are known only for some non-linear problems, such as the
quadratic assignment problem. However, even when placement
considerations are eliminated, the problem of VBP is APX-
Hard [14] and re-solving it whenever new applications arrive
worsens the process. Consequently, finding the optimal solu-
tion is expensive and requires a lot of time. Unfortunately,
large-scale cloud datacenters require the allocation process to
be performed as fast as possible, since they typically have high
rate of application arrival and departure.

Algorithm. VBP has several proposed heuristics [3]. How-
ever, those heuristics cannot be used in datacenters without
substantial modification, as they (i) assume that all input (i.e.,
applications) is known a priori, whereas we need to cope with
online arrival of applications; (ii) consider “balls” of a fixed
size, while applications have time-varying demands; and (iii)

do not consider a distributed resource such as the network
(with paths composed of multiple links). Therefore, we design
a novel algorithm to efficiently allocate applications in cloud
datacenters. The key principle is minimizing multi-resource
fragmentation, thus improving the ratio of allocated applica-
tions and, consequently, maximizing datacenter utilization and
provider revenue.

Algorithm 1 allocates one application at a time, as re-
quests arrive. It receives as input the datacenter infrastructure
(〈N,L, T ,P〉) and the TI-MRA specification of an application
a ∈ A (GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉). First, it calculates
available resources (CPU, memory, disk I/O write and disk I/O
read) in servers (lines 1 – 2) and available bandwidth in links
(lines 3 – 4). Since each node of application a may have a
different duration, available resources in the infrastructure are
calculated for T a time units (the duration of a).

After that, nodes in V a are sorted sequentially according to
their initial execution time and the nodes they depend on (line
5). Based on the sorted list of nodes (sNodes), the algorithm
gets one node v at a time (line 6), initializes as empty the
list of infrastructure nodes with enough available resources to
hold node v (line 7) and calculates, based on our novel metric
shown in Equation 6, the score of v on infrastructure nodes
(lines 8 – 11). The metric extends the ones in Panigrahy et
al. [3] and works as follows. Equation 6 seeks to maximize
the score achieved by both computing and network resources
according to their current utilization level (calculated in Equa-
tions 7 and 8, respectively) in case there are enough available
resources (i.e., node n ∈ N and link l ∈ L, which v would use
for communication with the application nodes it depends on if
it were allocated on n, have enough available resources at all
times t ∈ T a). Otherwise, it returns −∞. For each computing
resource R = {CPU, MEM, IO_WRITE, IO_READ} (Equation 7)
and for bandwidth BAND (Equation 8), the metric subtracts
the resource demand from the respective available resource,
raises the resulting value by the power of 3, multiplies it by
the amount of the respective available resource and multiplies
it again by the weight associated to the resource (wr). In
particular, wr is dynamically defined as being inversely pro-
portional to the current utilization level of r and is calculated
as wr = 1−( util(r)∑

s∈R∪{BAND} util(s)
),∀r ∈ R∪{BAND}. That is, the

higher the current utilization of r, the lower its weight. This
way, the metric prioritizes resources with lower utilization.

S[n, v] =





δ(v, r, t) ≤ Q(n, r, t) and
SC[n, v] + SB[n, v] σ((u, v), t) ≤ Q(l, BAND, t),

∀r ∈ R, ∀u ∈ E(v), ∀t ∈ Ta,
∀l ∈Me(u, v);

−∞ otherwise.

(6)

SC[n, v] =
∑

t∈Ta

∑

r∈R

wr ∗ (Q(n, r, t) − δ(v, r, t))3 ∗ Q(n, r, t) (7)

SB[n, v] =
∑

t∈Ta

∑

u∈E(v)

∑

l∈Me(u,v)

wBAND ∗ (Q(l, BAND, t)− σ((u, v), t))3 ∗ Q(l, BAND, t) (8)

Note that the metric described here uses normalized values
(for resource requirements of applications as well as residual
resources in the datacenter infrastructure) by the capacity of
the node/link being considered.

The next step is the allocation of v and its communication
dependencies (edges with v as the destination node in the
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TI-MRA graph) in lines 12 – 17, according to Equations 1
– 5. Function GetNodeWithBestScore returns the infras-
tructure node with the best (maximum) score in the list
FeasibleNodes for holding node v (line 12). In case no in-
frastructure node has enough available resources to hold v, the
algorithm returns a failure code and application a is discarded
(line 13). Otherwise, node v is allocated at infrastructure node
n (line 15) and, since nodes that v depends on are already
allocated (i.e., dependencies are allocated first, according to the
sorted list of nodes), bandwidth for communication between v
and its dependencies is also allocated (lines 16 – 17). When
all nodes and edges in the TI-MRA graph of application a are
successfully allocated, the algorithm returns a success code
and finishes (line 18).

Algorithm 1: Multi-Resource Allocation Algorithm.
Input : Datacenter infrastructure 〈N,L, T ,P〉, Application a represented by

Ga
TI-MRA = 〈V a, Ea, Ta, wa, δ, σ〉

Output: Success/Failure code

1 foreach Infrastructure node n ∈ N do
2 Q[n, r, t] ← R(n, r)−∑v∈A(n) δ(v, r, t), ∀r ∈

{CPU, MEM, IO_WRITE, IO_READ}, ∀t ∈ Ta | Ta ⊆ T ;
3 foreach Infrastructure link l ∈ L do
4 Q[l, BAND, t] ←

B(l)−∑e=(u,v)∈C(l) σ(e, t), ∀t ∈ Ta | Ta ⊆ T ;

5 sNodes ← SortNodes (V a);

6 foreach v ∈ sNodes do
7 FeasibleNodes ← ∅;
8 foreach n ∈ N do
9 S[n, v] ← calculate score according to Equations 6, 7 and 8;

10 if Score[n, v] 6= −∞ then
11 FeasibleNodes ← FeasibleNodes ∪ {n};
12 n ← GetNodeWithBestScore(FeasibleNodes);

13 if n is null then return failure code;
14 else
15 Mn(v) ← n;
16 foreach u ∈ E(v) do
17 Me(u, v) ← p | p ∈ P (Mn(u),Mn(v));
18 return success code;

C. Network Sharing Strategy

The network sharing strategy has two objectives: (i) pro-
viding predictable and guaranteed network performance for
applications, in order to avoid performance interference [4];
and (ii) achieving work-conserving sharing, so that appli-
cations have the possibility of using more bandwidth than
their guarantees when needed and providers can achieve high
network utilization.

To achieve these goals, we leverage the paradigm of SDN
to dynamically configure the network, in order to enforce
bandwidth guarantees and to provide work-conserving sharing.
The strategy works as follows. According to the output of
Algorithm 1 for application a ∈ A, the DRM performs two
actions. First, it sends each task of a to the local controller
of its selected server (as LCs manage and enforce resource
allocation at servers). Second, it installs rules and rate-limiters
in forwarding devices to guarantee connectivity and bandwidth
for communication between these nodes.

In addition to ensuring a base level of guaranteed rate for
applications, the strategy can proportionally share available
bandwidth among applications with more demands than their
guarantees. Towards this end, local controllers run an algorithm
to periodically set the allowed rate for each allocated applica-
tion node. Algorithm 2 aims at enabling smooth response to
bursty traffic (since traffic in DCNs may be highly variable

over short periods of time [15]). It receives as input the
infrastructure node n ∈ N that it belongs to, the current
time t ∈ T , current bandwidth demands of application nodes
allocated at n (which are determined by monitoring socket
buffers, similarly to Mahout [16]) and temporal bandwidth
requirements of these nodes (specified in the request). First,
the algorithm initializes as empty the list of application nodes
with more bandwidth demands than the value specified in the
request (line 1). Then, for each application node v allocated
at n (line 2), the minimum rate between (i) the specified
demand at time t (σ(

∑
(v, ∗), t), which represents the sum

of bandwidth required by node v for communication with all
nodes that depend on v at time t) and (ii) the current demand
of v (d[v]) is assigned to nRate (line 3). If the current demand
is higher than the specified demand, the node is added to the
list of nodes with more demands than their guarantees (called
hungryNodes, in line 4).

Algorithm 2: Work-conserving algorithm.
Input : Infrastructure node n, Time t ∈ T , Current bandwidth demands of

applications nodes d, Temporal bandwidth requirements of application
nodes σ

Output: Rate nRate for each application node

1 hungryNodes ← ∅;
2 foreach v ∈ A(n) do
3 nRate[v] ← min (σ(

∑
(v, ∗), t), d[v]);

4 if σ(
∑

(v, ∗), t) < d[v] then hungryNodes ← hungryNodes ∪ v;

5 Q(n, BAND, t) ← B(link)−∑v∈A(n) nRate[v], at time t;

6 while Q(n, BAND, t) > 0 and hungryNodes not empty do
7 foreach v ∈ hungryNodes do
8 value ←

min

(
d[v]− nRate[v],

(
wD(v)

∑
u∈hungryNodes wD(u)

×Q(n, BAND, t)

))
;

9 nRate[v] ← nRate[v] + value;
10 Q(n, BAND, t) ← Q(n, BAND, t) − value;

11 if nRate[v] == d[v] then hungryNodes← hungryNodes \ {v};
12 return nRate;

Then, the algorithm calculates the residual bandwidth
(Q(n, BAND, t)) of the link connecting server n to its top-of-
rack (ToR) switch at time t (line 5). The residual bandwidth
is calculated by subtracting from the link capacity the rate
assigned to the application nodes (in line 3). The last step
establishes the bandwidth rate for application nodes with more
demands than their guarantees, if there is available bandwidth
(lines 6 – 11). The rate of each node v ∈ hungryNodes (in
line 9) is determined by adding nRate[v] (initialized in line
3) and the minimum bandwidth between (i) the difference of
the current demand (d[v]) and the rate (nRate[v]); and (ii) the
proportional share of residual bandwidth the application node
can receive according to its weight wD(v) (calculated in line
8), where D(v) indicates the application that node v belongs
to. The residual bandwidth is updated in line 10 and, in case
the demands of node v were satisfied, it is removed from the
list hungryNodes (line 11). Note that there is a “while” loop
(lines 6 – 11) to guarantee that all residual bandwidth is used
or all demands are satisfied. If this loop were not used, there
could be occasions when there would be unsatisfied demands
even though some bandwidth would be available.

In summary, if the demand of an application node exceeds
its guaranteed rate (the rate specified in the request – σ),
data can be sent and received at least at the guaranteed
rate. Otherwise, if it does not, the unutilized bandwidth will
be shared among co-resident application nodes whose traffic
demands exceed their guarantees (work-conservation).
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Finally, note that SDN has scalability challenges on
DCNs [11]: (i) elevated flow setup time, as forwarding devices
ask the controller for appropriate rules when they receive the
first packet of a new flow; and (ii) large flow tables in switches,
since DCNs may have millions of flows per second [17]
and, thus, the number of entries needed in TCAMs may be
significantly higher than the amount of resources available
in commodity switches. We adopt the strategy proposed in
Marcon et al. [18] to address these challenges. The interested
reader may refer to [18] for more details.

D. Resource Monitoring Mechanism

Packer is designed with scalability and high multi-resource
utilization (i.e., minimizing fragmentation of multiple re-
sources) in mind. This implies that the resource monitoring
mechanism (i) should not incur significant overhead (espe-
cially to scarce resources such as the network [2]); and
(ii) needs to be able to acquire real-time information about
resource usage, so that idle resources can be allocated to
applications that need them. Moreover, the mechanism is
expected to provide fast and up-to-date information upon
unexpected events (e.g., in case an application gets delayed
due to a resource being congested).

We designed a two-level strategy for resource monitoring,
composed of (i) the DRM and (ii) local controllers at servers
and OpenFlow switches. First, a local controller runs at each
server and coordinates the allocation of the server’s resources
to application tasks. LCs have two objectives, described as
follows. The first objective is to observe aggregate resource
usage and periodically report it to the DRM (so that the DRM
gets updated information about the infrastructure utilization).
The second objective is related to handling local events: since
LCs have no interconnection among themselves (in order to
reduce management traffic in the network) and no knowledge
of infrastructure-wide state, they are allowed to handle only
local events (e.g., dealing with local congested resources and
enforcing allocations to tasks). This is important for relieving
the load on the DRM and for reducing the amount of band-
width used for communication between LCs and the DRM.

Second, the DRM maintains infrastructure-wide state, as
it periodically receives resource usage statistics from local
controllers at servers and from switches (via the OpenFlow
protocol). With the information received from servers and
switches, it reacts to global events such as the allocation of
applications and bandwidth enforcement throughout the entire
network for applications.

III. EVALUATION

In this section, we focus on showing that Packer (i) min-
imizes multi-resource fragmentation; (ii) improves provider
revenue; (iii) incurs acceptable overhead; (iv) provides pre-
dictable and guaranteed network performance with work-
conserving sharing; and (v) outperforms existing state-of-the-
art schemes (Tetris [6] and slot-based allocation [19], [20]).

A. Setup

Environment. We have implemented a simulator that
models computing and network resources of a multi-tenant
datacenter. For computing resources, we follow Tetris [6] and
use a similar server configuration: 16 CPU cores, 32 GB of
memory, 4 disks operating at 50 MBps each for read and write

operations and a 1 Gbps NIC. For the slot-based scheme, we
follow related work [8] and divide each server into four equal
slots. The network, in turn, is defined as a tree-like topology,
similar to current DCNs and related work [4]. It is composed
of a three-tier topology with 1,200 servers at level 0. Every
40 machines form a rack, and every 10 ToRs are connected
to an aggregation switch. Finally, all aggregation switches are
connected to a core switch. Unless otherwise specified, the
capacity of each link is defined as follows: 1 Gbps for server-
ToR links, 10 Gbps for ToR-aggregation links and 100 Gbps
for aggregation-core links.

Workload. We built a workload suite composed of in-
coming application requests (to be allocated in the datacenter)
arriving over time. We consider a heterogeneous set of applica-
tions, including MapReduce and Web Services. As defined in
§ II-A, each application a is represented by a TI-MRA graph
GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉. Given the lack of publicly
available traces for DCNs, the workload was generated in line
with related work [2], [6], [17], [21], [22]. First, like Tetris [6],
computing resources of tasks were picked uniformly at random
between 0 and the maximum value of a slot. Note that we limit
the demand for computing resources of each task from each
application to the maximum size of a slot in order to provide a
fair and accurate comparison (otherwise, since we use the same
workload for all schemes, some tasks would never be allocated
with the slot-based approach). Second, bandwidth demands
were generated based on the measurements from Benson et
al. [17] and Kandula et al. [22]. Finally, the weight wa of each
application a is uniformly distributed in the interval [0, 1].

B. Results

We compare Packer with Tetris [6] and the slot-based
allocation [19], [20]. For all experiments comparing different
strategies, we plot the percentage improvement (or reduction)
between Packer and the related work being compared as
Packer−related_work

Packer
∗100%. Hence, positive values mean Packer

has achieved a higher value than the approach being compared,
while negative values mean Packer has achieved a lower value.
In general, higher values are better, with the sole exception
being the overhead of the allocation algorithm (Figure 6).

Increased acceptance ratio. Figure 3 shows the proportion
of application tasks that were allocated between Packer and
Tetris and Packer and slot-based according to the time. Higher
values are better, as they mean that Packer allocates more
tasks than the respective proposal being compared. At first,
the gains of Packer in comparison to the other proposals
have high variability because there are ample resources and,
therefore, most incoming applications are allocated. As time
passes and the cloud-load increases (less available resources),
the gains tend to stabilize (around time 1,000), because new
applications are allocated only when already allocated appli-
cations conclude their execution and are deallocated (which
releases resources). In general, we observe that Packer con-
sistently outperforms Tetris (≈30%) and slot-based allocation
(≈67%). Although the amount of available resources in the
infrastructure is the same, the allocation ratio differs for each
approach. This happens because each scheme uses a different
allocation strategy. More specifically, Tetris seeks to minimize
computing resource fragmentation, while only penalizing the
bandwidth used. This may not result in good choices for
allocation because of network fragmentation (as the network
is an important bottleneck in datacenters [2]). The slot-based
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allocation, in turn, is constrained by the static number and
size of slots in the servers, which limit the feasible choices
for allocating tasks to servers. In contrast to both proposals,
Packer employs our novel algorithm described in § II-B and
better explores the trade-off between using local computing
resources (CPU, memory and disk I/O) and remote distributed
resources (the network).
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Fig. 3: Acceptance ratio of application tasks.

Maximized resource utilization. Figure 4 depicts the
percentage difference between Packer and Tetris and Packer
and slot-based allocation for the utilization of different types of
resources. Positive values indicate that Packer achieves better
utilization than the respective proposal being compared (the
higher the value, the better), while negative values denote
that the proposal being compared achieves better results than
Packer. Figures 4(a), 4(b), 4(c) and 4(d) show results for
CPU, memory, disk I/O write and disk I/O read, respectively.
We see that, during most of the time, Packer allows better use
of available resources, improving utilization by a significant
percentage. Nonetheless, Packer has lower utilization of some
types of resources at some periods of time (negative values
in the plots). This happens because, with different allocation
strategies, different applications are accepted and rejected in
each scheme. Therefore, despite allocating significantly more
application tasks than Tetris and slot-based (Figure 3), there
are some small periods of time when the tasks allocated in
Packer consume less resources.

Figure 4(e), in turn, shows the percentage difference of
bandwidth utilization. We verify that Packer can maintain sig-
nificantly higher utilization of the network than Tetris (≈76%
more) and slot-based (≈87% more). Moreover, during the
experiments, Packer never achieved lower network utilization
than the proposals being compared. In general, Figures 3 and 4
show that Packer accepts more applications and, consequently,
maximizes utilization, which indicates that fragmentation is
minimized.

Increased provider revenue. We follow related work [2],
[8] and adopt a simple pricing model to quantify provider
revenue for Packer, Tetris and slot-based allocation, which
effectively charges both computation and networking. A
tenant running application a pays:

∑
t∈Ta

∑
v∈V a (

∑
r

δ(v, r, t) ∗ kv +
∑
u∈E(v) σ((u, v), t) ∗ kb), where r ∈

{CPU, MEM, IO_WRITE, IO_READ}, kv is the unit-time comput-
ing resource cost and kb is the unit-volume bandwidth cost.
Figure 5 depicts the revenue of Packer in comparison to Tetris
and slot-based allocation (error bars show 95% confidence
interval). Higher values are better, as they mean that Packer
provides more revenue than the respective proposal being
compared. We see that, by improving the allocation ratio of
application tasks (Figure 3) and resource utilization (Figure 4),

Packer can significantly increase provider revenue (≈29% and
≈60% in comparison to Tetris and slot-based, respectively).

Acceptable overhead. Figure 6 quantifies the overhead
introduced by Packer in comparison to Tetris and slot-based
(error bars show 95% confidence interval). The overhead
is given by the mean time taken to allocate an incoming
application in the infrastructure. Here, positive values indicate
that Packer takes more time to allocate applications than the
respective proposal being compared, while negative values
would indicate that Packer takes less time (i.e., lower values
are better). We see that Packer takes more time to allocate
applications than the other two proposals (≈53% more time
than Tetris and ≈81% more than slot-based). This is justified
by three factors (i) the complexity of the allocation metric
(§ II-B); (ii) the fact that Packer considers the whole network
(as opposed to Tetris that only penalizes network use); and
(iii) the fact that Packer verifies each computing resource
(CPU, memory and disk I/O) according to the applications’
requirements (as opposed to slot-based that statically divides
computing resources into slots). Nonetheless, while the per-
centage is high, the median time taken to allocate applications
(observed in our experiments) is small for all three proposals:
≈15.4s in Packer, ≈3.5s in Tetris and ≈0.3s in slot-based
allocation. Thus, considering the benefits provided by Packer
(shown in Figures 3, 4 and 5), it is acceptable to take some
additional seconds to allocate applications.

Now, we turn our focus to the challenge of performance
interference. In particular, we show that Packer provides (i)
minimum bandwidth guarantees for applications; and (ii)
work-conserving sharing, achieving both predictability for ten-
ants and high utilization for providers. To show the results in a
clear way, here we consider the requested temporal bandwidth
guarantees of application tasks (σ) as a constant function
(while the actual requirements vary over time).

Minimum bandwidth guarantees for applications.
Packer adopts the following definition of minimum bandwidth
guarantees: the task rate should be (a) at least the guaranteed
rate if the demands are equal or higher than the guarantees; or
(b) equal to the demands if they are lower than the guarantees.
To illustrate it, we show, in Figure 7, a task allocated on a given
server during a predefined time period of an experiment. We
see that the task may not get the desired rate to satisfy all of its
demands instantaneously (when its demands exceed its guaran-
tees) because (i) the link capacity is limited; and (ii) available
bandwidth is proportionally shared among tasks. In summary,
we verify that Packer provides minimum bandwidth guarantees
for tasks, since the actual rate is always equal or higher than the
minimum between the demands and the guarantees. Therefore,
applications have minimum bandwidth guarantees and, thus,
can achieve predictable network performance.

Work-conserving sharing. Work-conservation is the abil-
ity to use more bandwidth if the task has higher demands than
its guarantees and there is available bandwidth in the network.
In other words, bandwidth which is not allocated, or allocated
but not currently used, should be proportionally shared among
tasks with more demands than their guarantees (according to
the weights of each application – wa, using Algorithm 2).
Figure 8 shows the aggregate bandwidth1 on the server holding

1Note that Packer considers the temporal bandwidth guarantees requested
(σ) when allocating tasks. Therefore, although the sum of the actual demands
of all tasks allocated on a given server may exceed the server link capacity, the
sum of bandwidth guarantees of these tasks will not exceed the link capacity.
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(a) CPU.
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(b) Memory.
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(c) Disk I/O write.
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(d) Disk I/O read.
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(e) Bandwidth.

Fig. 4: Resource utilization (positive values in the y-axis indicate that Packer achieves better utilization than the respective
proposal being compared, while negative values denote that the proposal being compared achieves better utilization than Packer).
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the task in Figure 7. In these two figures, we verify that Packer
provides work-conserving sharing in the network, as tasks can
receive more bandwidth (if their demands are higher than their
guarantees) when there is spare bandwidth. Thus, providers can
achieve high utilization.
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IV. DISCUSSION

We discuss here some questions that have arisen during the
design of Packer.

TI-MRA pros and cons. This abstraction considers tem-
poral demands of resources. There are advantages and draw-
backs of adopting this approach. The main advantage is to
minimize multi-resource underutilization, which significantly
improves datacenter utilization (i.e., reduces wastage). The
main drawback is the need for fine-grained specification of
applications, which may be a burden on some tenants (the
ones with less knowledge of their applications). Hence, TI-
MRA also allows the specification of only peak demands
for multiple resources, minimizing the burden of application
specification. While this may reduce infrastructure utilization,
it does not impact provider revenue, as tenants are allocating
such resources and paying for them.

Profiling application demands for specifying TI-MRA.
Datacenter application demands are often known [23] or can
be obtained from tenants [4], [8]. Alternatively, we employ the
techniques described by Grandl et al. [6], Chen and Shen [7]
and Lee et al. [9]. First, according to Chen and Shen [7],
the same task (i.e., the same program with the same options)
running on different servers tends to have similar resource
utilization patterns. In this context, recurring applications are
common in datacenters [24]; for instance, analytic applications
repeat hourly or daily to perform the same computation on
new data [6]. Therefore, Packer can use statistics measured in
prior runs of the same application. Second, according to Lee et
al. [9], orchestration systems like OpenStack Heat and AWS
CloudFormation could be used to generate abstract models.
They use templates (provided as a library for tenants) that
explicitly describe the structure of applications and their re-
source demands. In this sense, these systems could be extended
with temporal multi-resource requirements to generate TI-
MRAs. Third, Packer can use the pattern detection algorithm
for resource demands developed by Chen and Shen [7]. The
algorithm utilizes logs of resource usage recorded by the cloud
datacenter from previous runs of the same application and,
thereby, can estimate utilization patterns for the requested
application. Fourth, in case none of the previous methods can
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be used, we follow Grandl et al. [6] and over-estimate resource
demands (by considering a constant temporal function). Note
that over-estimation is better than under-estimation, as the
former does not slow down applications. Furthermore, Packer’s
resource monitoring mechanism verifies idle resources and
reports them to the DRM, so that they can be allocated to
applications.

Employing existing abstractions in the literature for
Packer. Packer could use existing abstractions for application
specification, with the constraint that those abstractions take
into account multiple types of resources. Adapting other ab-
stractions for Packer could be performed with the development
of a module that reads the specification and converts it to a TI-
MRA, so that the use of other abstractions would be seamless
to Packer’s allocation process.

V. RELATED WORK

Proposals related to Packer are divided in two categories,
as follows.

Multi-resource allocation. On one hand, schemes such as
[19], [20] allocate computing resources based on slots. How-
ever, this leads to wastage and fragmentation, as the amount
of resources in each slot is statically defined. On the other
hand, Tetris [6], Dominant Resource Fairness (DRF) [1] and
the spatial/temporal strategy [7] propose to dynamically adjust
the allocation according to resource demands. Nonetheless,
they present the following drawbacks: Tetris may result in
starvation (depending on the workload) and may not provide
guarantees in oversubscribed networks; DRF may result in
fragmentation [6], as it focuses solely on fairness; and the
strategy in [7] considers only temporal demands of CPU
and memory, but neglects the network. Packer, in contrast,
minimizes fragmentation (unlike slot-based schemes and DRF)
and provides bandwidth guarantees even in oversubscribed
networks (unlike Tetris and the strategy in [7]).

Network performance in DCNs. There is an extensive
body of literature that addresses network performance in
DCNs. We focus on the most important proposals related to
Packer. Oktopus [8], CloudMirror [9] and Silo [4] provide
network guarantees for applications. However, they focus only
on network resources and may result in underutilization, as
they statically reserve resources for applications based on
their peak bandwidth demands. Proteus, in turn, allocates
applications according to their temporal network demands.
Despite reducing network underutilization, it neither considers
other types of resources nor provides work-conserving sharing
among applications (i.e., it uses rigid network models for
each allocated application). Unlike Oktopus, CloudMirror, Silo
and Proteus, Packer considers multiple types of resources and
provides work-conserving sharing.

VI. FINAL REMARKS

In this paper, we introduced Packer, a scheme that ad-
dresses the challenges of multi-resource allocation and per-
formance interference in the network. It employs a novel
abstraction called Time-Interleaved Multi-Resource Abstrac-
tion (TI-MRA) and a new algorithm for allocating multiple
types of resources with reduced fragmentation. Furthermore,
Packer uses (a) SDN to dynamically configure and manage
the network according to available resources and requirements
of applications; and (b) a monitoring mechanism to avoid
wastage and congested resources. Evaluation results show that

(i) acceptance ratio of applications is increased; (ii) datacenter
utilization is maximized (i.e., fragmentation is minimized);
(iii) provider revenue is augmented; and (iv) applications
achieve predictable and guaranteed network performance with
work-conserving sharing. In future work, we intend to develop
a prototype and evaluate Packer in a testbed (e.g., Cloud-
Lab [25]).
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APPENDIX F SUBMITTED PAPER TO ELSEVIER COMPUTER NETWORKS

Performance interference has been a well-known problem in datacenters and one that re-
mains a constant topic of discussion in the literature. Software-Defined Networking (SDN)
may enable the development of a robust solution for interference, as it allows dynamic con-
trol over resources through programmable interfaces and flow-based management. However, to
date, the scalability of existing SDN-based approaches is limited, because of the number of en-
tries required in flow tables and delays introduced. In this paper, we propose Predictor, a scheme
to scalably address performance interference in SDN-based datacenter networks (DCNs), pro-
viding minimum bandwidth guarantees for applications and work-conservation for providers.
Two novel SDN-based algorithms are proposed to address performance interference. Scalabil-
ity is improved in Predictor as follows: first, it minimizes flow table size by controlling flows at
application-level; second, it reduces flow setup time by proactively installing rules in switches.
We conducted an extensive evaluation, in which we verify that Predictor provides (i) guaranteed
and predictable network performance for applications and their tenants; (ii) work-conserving
sharing for providers; and (iii) significant improvements over DevoFlow (the state-of-the-art
SDN-based proposal for DCNs), reducing flow table size (up to 94%) and having similar con-
troller load and flow setup time.
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Abstract

Performance interference has been a well-known problem in datacenters and one that remains a constant topic of discussion in
the literature. Software-Defined Networking (SDN) may enable the development of a robust solution for interference, as it allows
dynamic control over resources through programmable interfaces and flow-based management. However, to date, the scalability of
existing SDN-based approaches is limited, because of the number of entries required in flow tables and delays introduced. In this
paper, we propose Predictor, a scheme to scalably address performance interference in SDN-based datacenter networks (DCNs),
providing minimum bandwidth guarantees for applications and work-conservation for providers. Two novel SDN-based algorithms
are proposed to address performance interference. Scalability is improved in Predictor as follows: first, it minimizes flow table
size by controlling flows at application-level; second, it reduces flow setup time by proactively installing rules in switches. We
conducted an extensive evaluation, in which we verify that Predictor provides (i) guaranteed and predictable network performance
for applications and their tenants; (ii) work-conserving sharing for providers; and (iii) significant improvements over DevoFlow
(the state-of-the-art SDN-based proposal for DCNs), reducing flow table size (up to 94%) and having similar controller load and
flow setup time.

Keywords:
Datacenter networks, Software-Defined Networking, Network sharing, Performance interference, Bandwidth guarantees,
Work-conservation

1. Introduction

We study how to address the challenge of performance in-
terference [1, 2] in large-scale, SDN-based datacenter networks
(DCNs). Specifically, interference remains a constant topic of
discussion in the literature [3, 4, 5, 6, 7, 8, 9, 10]. In this context,
we aim at achieving minimum bandwidth guarantees for appli-
cations and their tenants while maintaining high utilization (i.e.,
providing work-conserving capabilities) in large DCNs.

Software-Defined Networking (SDN) [11] may enable the
development of a robust solution to deal with performance in-
terference, as it allows dynamic control over resources through
programmable interfaces and flow-based management [12].
However, to date, the scalability of existing SDN-based ap-
proaches is limited, because of the number of entries required in
flow tables and delays introduced (mostly related to flow setup
time) [12, 13, 14]. The number of entries required in flow tables
can be significantly higher than the amount of resources avail-
able in commodity switches used in DCNs [13, 15], as such
networks typically have very large flow rates (e.g., over 16 mil-
lion/s [16]). Flow setup time, in turn, is associated with the
transition between the data and control planes whenever a new
flow arrives at a switch1 (latency for communication between

1We use the terms “switches” and “forwarding devices” to refer to the same

switches and the controller), and the high frequency at which
flows arrive and demands change in DCNs restricts controller
scalability [17]. As a result, the lack of scalability hinders the
use of SDN to address interference in large DCNs.

The scalability of SDN-based datacenters could be improved
by devolving the control to the data plane, such as proposed
by DevoFlow [13] and Difane [18], but deployability is lim-
ited since they require switches with customized hardware.
Another approach would be using a logically distributed con-
troller, such as proposed by Kandoo [19]. However, it does
not scale for large DCNs where communications occur be-
tween virtual machines (VMs) connected by different top-of-
rack (ToR) switches. This happens because the distributed
set of controllers needs to maintain synchronized information
(strong consistency) for the whole network. This is necessary
in order to route traffic through less congested paths and to re-
serve resources for applications.

We rely on two key observations to address performance in-
terference and scalability of SDN in DCNs: (i) providers do
not need to control each flow individually, since they charge
tenants based on the amount of resources consumed by applica-

set of SDN-enabled network devices, that is, data plane devices that forward
packets based on a set of flow rules.
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tions2; and (ii) congestion control in the network is expected
to be proportional to the tenant’s payment [3, 20]. There-
fore, we adopt a broader definition of flow, considering it at
application-level3, and introduce Predictor, a scheme for large-
scale datacenters. Predictor deals with the two aforementioned
challenges (namely, performance interference and scalability of
SDN/OpenFlow in DCNs) in the following manner.

Performance interference is addressed by employing two
SDN-based algorithms (described in Section 5) to dynami-
cally program the network, improving resource sharing. By
doing so, both tenants and providers have benefits. Tenants
achieve predictable network performance by receiving mini-
mum bandwidth guarantees for their applications (using Algo-
rithm 1). Providers, in turn, maintain high network utilization
(due to work-conservation provided by Algorithm 2), essential
to achieve economies of scale.

Scalability is improved in two ways. First, as we show
through measurements (Section 2), reducing flow table size also
decreases the time taken to install rules in flow tables (stored in
Ternary Content-Addressable Memory – TCAM) of switches.
In the proposed approach, flow table size is minimized by man-
aging flows at application-level and by using wildcards (when
possible). This setting allows providers to control traffic and
gather statistics at application-level for each link and device in
the network.

Second, we propose to proactively install rules for intra-
application communication, guaranteeing bandwidth between
VMs of the same application. By installing rules at application
allocation time, flow setup time is reduced. Inter-application
rules, in turn, may be either proactively installed in switches
(if tenants know other applications that their applications will
communicate with [5] or if the provider employs some pre-
dictive technique [21, 22]) or reactively installed according to
demands. Proactively installing rules has both benefits and
drawbacks: while flow setup time is eliminated, some flow ta-
ble entries may take longer to expire (they might be removed
only when their respective applications conclude and are deal-
located). Our decision is motivated by the fact that intra-
application traffic volume is expected to be the highest type of
traffic [20].

Contributions. In comparison to our previous work [23],
in this paper we present a substantially improved version of
Predictor, in terms of both efficiency and resource usage. We
highlight five main contributions. First, we run experiments
to motivate Predictor and show that the operation of inserting
rules at the TCAM takes more time and is more variable ac-
cording to flow table occupancy. Thereby, the lower the num-
ber of rules in TCAMs, the better. Second, we extend Predictor
to proactively provide inter-application communication guaran-
tees (rather than only reactively providing it), which can further
reduce flow setup time. Third, we develop improved versions
of the allocation and work-conserving rate enforcement algo-
rithms to provide better utilization of available resources (with-

2Without loss of generality, we assume one application per tenant.
3An application is represented by a set of VMs that consume computing and

network resources (see Section 4 for more details).

out adding significant complexity to the algorithms). Fourth,
we address the design of the control plane for Predictor, as it
is an essential part of a software-defined network to provide ef-
ficient and dynamic control of resources. Fifth, we conduct a
more extensive evaluation, comparing Predictor with different
modes of operation of DevoFlow [13] and considering several
factors to analyze its benefits, overheads and technical feasibil-
ity. Predictor reduces flow table size up to 94%, offers low aver-
age flow setup time and presents low controller load, while pro-
viding minimum bandwidth guarantees for tenants and work-
conserving sharing for providers.

The remainder of this paper is organized as follows. Sec-
tion 2 examines the challenges of performance interference and
scalability of SDN in DCNs. Section 3 provides an overview
of Predictor, while Section 4 details application requests. Sec-
tions 5 and 6 describe, respectively, the mechanisms employed
for resource sharing and the control plane design. Section 7
presents the evaluation, and Section 8 discusses generality and
limitations. Finally, Section 9 examines related work and Sec-
tion 10 concludes the paper with final remarks and perspectives
for future work.

2. Motivation and Research Challenges

In this section, we review performance interference (Section
2.1) and discuss the challenges of using SDN in large-scale
DCNs to build a solution for interference (Section 2.2). In the
context of SDN, we adopt an OpenFlow [24] view, since it is
the most accepted SDN implementation by Academia and In-
dustry. Through OpenFlow switch measurements, we quantify
flow setup time and show it can hinder scalability of SDN as a
solution to the performance interference problem.

2.1. Datacenter Network Sharing

Several recent measurement studies [2, 3, 5, 25, 26, 27, 28]
concluded that, due to perfomance interference, the network
throughput achieved by VMs can vary by a factor of five or
more. For instance, Grosvenor et al. [5] show that variabil-
ity can worsen tail performance by 50× for clock synchroniza-
tion (PTPd) and 85× for key-value stores (Memcached). As
the computation typically depends on the data received from
the network [21] and the network is agnostic to application-
level requirements [9], such variability often results in poor and
unpredictable application performance [29]. In this situation,
tenants end up spending more money.

Performance variability is usually associated with two fac-
tors: type of traffic and congestion control. The type of traf-
fic in DCNs is remarkably different from other networks [30].
Furthermore, the heterogeneous set of applications generates
flows that are sensitive to either latency or throughput [31];
throughput-intensive flows are larger, creating contention in
some links, which results in packets from latency-sensitive
flows being discarded (adding significant latency) [32, 33].
TCP congestion control (used in such networks), in turn, cannot
ensure performance isolation among applications [34]; it only
guarantees fairness among flows. Judd and Stanley [25] show
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through measurements that many TCP design assumptions do
not hold in datacenter networks, leading to inadequate perfor-
mance. While TCP can provide high utilization, it does so very
inefficiently. They conclude that the overall median throughput
of the network is low and that there is a large variation among
flow throughput.

Popa et al. [35] examines two main requirements for net-
work sharing: (i) bandwidth guarantees for tenants and their
applications; and (ii) work-conserving sharing to achieve high
network utilization for providers. In particular, these two re-
quirements present a trade-off: strict bandwidth guarantees may
reduce utilization, since applications have variable network de-
mands over time [21]; and a work-conserving approach means
that, if there is residual bandwidth, applications should use it as
needed (even if the available bandwidth belongs to the guaran-
tees of another application) [1].

In this context, SDN/OpenFlow can enable dynamic, fine-
grained network management in order to develop a robust strat-
egy to explore this trade-off and achieve predictable network
performance with bandwidth guarantees and work-conserving
sharing.

2.2. Scalability Challenges of SDN/OpenFlow in DCNs
SDN-based networks involve the control plane more fre-

quently than traditional networking [13]. In the context of
large-scale DCNs, this aspect leads to two scalability issues:
flow setup time (the time taken to install new flow rules in for-
warding devices) and flow table size in switches.

Flow setup time. It may add impractical delay for flows,
especially for latency-sensitive ones [3] (as adding even 1 ms
of latency to these flows is intolerable [36]). As SDN relies on
the communication between network devices (data plane) and
a logically centralized controller (control plane), it increases
(i) control plane load and (ii) latency (sources for augmented
delay). Control plane load is increased because a typical ToR
switch will have to request rules to the controller for approx-
imately more than 1,500 new flows per second [37] and the
controller is expected to process and reply to all requests in, at
most, a few milliseconds. Consequently, this may end up mak-
ing both the communication with the controller and the con-
troller itself bottlenecks. Latency is augmented because new
flows are delayed at least two RTTs (i.e., communication be-
tween the ASIC and the management CPU and between that
CPU and the controller) [13], so that the controller can install
the appropriate rules at forwarding devices.

Experiments to measure flow setup time. We evaluated
the time taken to perform the operation of inserting rules at a
switch’s TCAM. Our measurement setup (shown in Figure 1)
consists of one host with three 1 Gbps interfaces connected to
an OpenFlow switch (Centec v350): eth0 interface is connected
to the control port and eth1 and eth2 are connected to data ports
on the switch. The switch uses OpenFlow 1.3 and has a TCAM
that stores at most 2,000 rules. The host runs OpenFlow con-
troller Ryu, which listens for control packets on eth0.

The experiment works as follows. The switch begins with
a given number of rules installed in the TCAM (which repre-
sents its table occupancy). The host runs a packet generator to

Control channel

Sending link

Receiving link

eth0

eth1

eth2

Figure 1: Measurement setup.

send a single UDP flow on eth1. This flow generates a table-
miss event in the switch (i.e., the switch does not have an ap-
propriate rule to handle the flow sent by the packet generator).
Consequently, the switch sends a packet_in message to the con-
troller. Upon receiving the packet_in, the controller processes
the request and sends back a flow_mod message with the ap-
propriate rule to be installed in the switch TCAM to handle the
flow. Once the switch installs the rule, it forwards the matching
packets to the link connected on the host eth2 interface. Like
He et al. [38], the latency of the operation is calculated as fol-
lows: (i) timestamp1 is recorded when the controller sends the
flow_mod to the switch on eth0; and (ii) timestamp2 is recorded
when the first packet of the flow arrives on the host eth2 inter-
face. Since the round-trip time (RTT) between the switch and
host is negligible in our experiments4, the latency is calculated
by subtracting timestamp1 from timestamp2.

Figure 2 shows the latency of inserting new rules at the
TCAM (y-axis) according to the number of rules already in-
stalled in the table (x-axis). The experiment was repeated 10
times; each point in the plot represents one measured value of
one repetition and the line depicts the median value. Results
show that median latency and variability increase according to
flow table occupancy. These results are in line with previous
measurements in the literature, such as He et al. [38]. Since
adding even 1ms may be intolerable for some applications (e.g.,
latency-sensitive ones) [36], reduced flow table occupancy is
highly desirable in DCNs because of flow setup time.

 1

 2

 3

 4

 5

 6

 7

 250  500  750  1000  1250  1500  1750  2000

L
at

en
cy

 (
m

s)

Flow table occupancy (number of rules)

One measurement Median

Figure 2: Latency of inserting new rules according to flow table occupancy.

4While the RTT is negligible in our experiments (as the switch is directly
connected to the controller), it may not be the case in large-scale datacenters
with hundreds of switches.
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Flow table size. Flow tables are a restricted resource in com-
modity switches, as TCAMs are typically expensive and power-
hungry [14, 15, 39]. Such devices usually have a limited num-
ber of entries available for OpenFlow rules, which may not be
enough when considering that large-scale datacenter networks
have an elevated number of active flows per second [16].

Therefore, the design of Predictor takes both flow setup time
and flow table size in switches into account. More specifi-
cally, Predictor proactively installs rules for intra-application
communication at allocation time (thereby eliminating the la-
tency of flow setup for most traffic in DCNs) and considers
flows at application-level (reducing the number of flow table
entries and, consequently, the time taken to install new rules in
forwarding devices). We detail Predictor and justify the deci-
sions in the next sections.

3. Predictor Overview

We first present an overview of Predictor, including its com-
ponents and the interactions between them in order to address
the challenge of performance interference in large-scale, SDN-
based DCNs.

Predictor is designed taking four requirements into consider-
ation: (i) scalability, (ii) resiliency, (iii) predictable and guar-
anteed network performance, and (iv) high network utilization.
First, any design for network sharing must scale to hundreds
of thousands of VMs and deal with heterogeneous workloads
of applications (typically with bursty traffic). Second, it needs
to be resilient to churn both at flow-level (because of the rate
of new flows/s [16]) and at application-level (given the rates of
application allocation/deallocation observed in datacenters [1]).
Third, it needs to provide predictable and guaranteed network
performance, allowing applications to maintain a base-level of
performance even when the network is congested. Finally, any
design should achieve high network utilization, so that spare
bandwidth can be used by applications with more demands than
their guarantees.

Predictor is designed to fulfill the above requirements. While
providers can reduce operational costs and achieve economies
of scale, tenants can run their applications predictably (pos-
sibly faster, reducing costs). Figure 3 shows an overview
of Predictor, which is composed of five components: Predic-
tor controller, allocation module, application information base
(AIB), network information base (NIB) and OpenFlow con-
troller. They are discussed next.

Predictor Controller. It receives requests from tenants. A
request can be either an application to be allocated (whose re-
sources to be used are determined by the allocation module)
or a solicitation for inter-application bandwidth guarantees (de-
tailed in Sections 4 and 5). In case of an incoming application, it
sends the request to the allocation module. Once the allocation
is completed (or if the request is for inter-application commu-
nication), the Predictor controller generates and sends appro-
priate flow rules to the OpenFlow controller. The OpenFlow
controller, then, updates the tables (of forwarding devices) that
need to be modified.

OpenFlow Controller

Predictor Controller

Allocation Module
Application
Information
Base (AIB)

Network
Information
Base (NIB)

Users

Switches and Open vSwitches

App request

Inter-app request

...

Send
requests

Send app for allocation

Generate and send rules

Update AIB

Update flow tables

Update NIB
Info about

allocated apps

Provide info 
about resources

Send up-to-date info

Update NIB

Figure 3: Predictor overview.

Note that the controller installs rules to identify flows at
application-level5 (more details in Sections 7 and 8). Predic-
tor can also take advantage of flow management at lower levels
(for instance, by matching source and destination MAC and IP
fields), since it uses the OpenFlow protocol. Nonetheless, given
the amount of resources available in commodity switches and
the number of flows that come and go in a small period of time,
low-level rules are kept to a minimum.

Allocation Module. This component is responsible for al-
locating incoming applications in the datacenter infrastructure,
according to available resources. It receives requests from the
Predictor controller, determines the set of resources to be allo-
cated for each new request and updates the AIB and NIB. We
detail the allocation logic in Section 5.2.

Application Information Base (AIB). It keeps detailed in-
formation regarding each allocated application, including its
identifier (ID), VM-to-server mapping, IP addresses, band-
width guarantees, network weight (for work-conserving shar-
ing), links being used and other applications it communicates
with. It provides information for the Predictor controller to
compute flow rules that need to be installed in switches.

Network Information Base (NIB). It is composed of a
database of resources, including hosts, switches, links and their
capabilities (such as link capacity and latency). In general, it
keeps information about computing and network state, received
from the OpenFlow controller (current state) and the allocation
module (resources used for newly allocated applications). The
Predictor controller uses information stored in the NIB to map
logical actions (e.g., intra- or inter-application communication)
into the physical network. While the AIB maintains informa-

5The granularity of rules (at application-level) hinders neither network con-
trollability for providers nor network sharing among tenants and their applica-
tions because, as discussed in Section 1, (a) providers charge tenants based on
the amount of resources consumed by applications; and (b) congestion control
in the network is expected to be performed at application-level [20].
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tion at application granularity, the NIB keeps information at
network layer. The design of the NIB was inspired by Onix [11]
and PANE [40].

OpenFlow Controller. It is responsible for communication
to/from forwarding devices and Open vSwitches [41] in hyper-
visors, in order to update network state and get information
from the network (e.g., congested links and failed resources).
It receives information from the Predictor controller to modify
flow tables in forwarding devices and updates the NIB upon
getting information from the network.

We explain Predictor in detail by describing application re-
quests (Section 4), the mechanisms employed for resource shar-
ing (Section 5) and the control plane design (Section 6).

4. Application Requests

Tenants request applications using the hose model (similarly
to past proposals [2, 3, 17, 20, 21]) to capture the semantics of
guarantees being offered, as shown in Figure 4. In this model,
all VMs of an application are connected to a non-blocking vir-
tual switch through dedicated bidirectional links. Each appli-
cation a is represented by its resource demands and network
weight, or more formally, 〈Na, Ba,wa, comminter

a 〉. Its terms are:
Na ∈ N∗ specifies the number of VMs; Ba ∈ R+ represents
the bandwidth guarantees required by each VM; wa ∈ [0, 1] in-
dicates the network weight; and comminter

a is an optional field
that contains information about inter-application communica-
tion for application a.

Non-Blocking Virtual Switch

VMa,1 VMa,Na

......

Request:
< Na, Ba, wa, comma      >

Ba + spare(s, va)

inter
Request:

Each VM gets a guaranteed
bandwidth rate of Ba plus
spare bandwidth according
to the application's weight

Figure 4: Virtual network topology of a given application.

The network weight enables residual bandwidth (unallocated
or reserved bandwidth for an application and not currently
being used) to be proportionally shared among applications
with more demands than their guarantees (work-conservation).
Therefore, the total amount of bandwidth available for each
VM of application a at a given period of time, following the
hose model, is denoted by Ba + spare(s, va), where spare(s, va)
identifies the share of spare bandwidth assigned to VM v of ap-
plication a located at server s:

spare(s, va) =
wa∑

v↑Vs |v∈Vs
wv
∗ SpareCapacity (1)

where Vs denotes the set of all co-resident VMs (i.e., VMs
placed at server s), v ↑ Vs | v ∈ Vs represents the subset of
VMs at server s that need to use more bandwidth than their
guarantees and SpareCapacity indicates the residual capacity
of the link that connects server s to the ToR switch.

The term comminter
a is optional and allows tenants to

proactively request guarantees for inter-application com-
munication (since it would be infeasible to provide
all-to-all communication between VMs in the datacen-
ter [20]). It is a set composed of elements in the form of
〈srcVMa, dstVMs, begTime, endTime, reqRate〉, where:
srcVMa denotes the source VM of application a; dstVMs is
the set of destination VMs (i.e., unicast or multicast com-
munication from the source VM to each destination VM);
begTime and endTime represent, respectively, the time that
the communication starts and ends; and reqRate indicates
the total amount of bandwidth per second needed by flows
belonging to traffic from this (these) communication(s).

By providing optional specification of inter-application com-
munication, Predictor allows requests from tenants with and
without knowledge of application communication patterns
and desired resources. Application traffic patterns are often
known [5, 9] or can be estimated by employing the techniques
described by Lee et al. [7], Xie et al. [21] and LaCurts et al. [22].
Note that, even if tenants do not proactively request resources
for communication with other applications/services (i.e., they
do not use comminter

a ), their applications will still be allowed to
reactively receive guarantees for communication with others (as
detailed in Section 5.1).

In line with past proposals [2, 3, 20, 21], two assumptions
are made. First, we abstract away non-network resources and
consider all VMs with the same amount of CPU, memory and
storage. Second, we consider that all VMs of a given applica-
tion receive the same bandwidth guarantees (Ba).

5. Resource Sharing

In this section, we discuss how resources are shared among
applications. In particular, we first examine how bandwidth
guarantees are provided. Then, we take a look at the process
of resource allocation and, finally, we present the logic behind
the work-conserving mechanism employed by Predictor.

5.1. Bandwidth Guarantees
Predictor provides bandwidth guarantees for both intra- and

inter-application communication. We discuss each one next.
Intra-application network guarantees. Typically, this type

of communication represents most of the traffic in DCNs [20].
Thus, Predictor allocates and ensures bandwidth guarantees at
application allocation time6 by proactively installing flow rules
and rate-limiters in the network through OpenFlow.

Each VM of a given application a is assigned a bidirectional
rate of Ba (as detailed in Section 4). Limiting the communi-
cation between VMs located in the same server or in the same
rack is straightforward, since it can be done locally by the Open
vSwitch at each hypervisor.

6While Predictor may overprovision bandwidth at the moment applications
are allocated, it does not waste bandwidth because of its work-conserving strat-
egy (explained in Section 5.3). Without overprovisioning bandwidth at first,
it would not be feasible to provide bandwidth guarantees for applications (as
DCNs are typically oversubscribed).
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In contrast, for inter-rack communication, bandwidth must
be guaranteed throughout the network, along the path used for
such communication. Predictor provides guarantees for this
traffic by employing the concept of VM clusters7. To illustrate
this concept, Figure 5 shows a simplified scenario where a given
application a has four clusters: ca,1, ca,2, ca,3 and ca,4. Since
each VM of a cannot send or receive data at a rate higher than
Ba, traffic between a pair of clusters ca,x and ca,y is limited by
the smallest cluster: rateca,x,ca,y = min(|ca,x|, |ca,y|) ∗ Ba, where
rateca,x,ca,y represents the calculated bandwidth for communica-
tion between clusters ca,x and ca,y (for x, y ∈ {1, 2, 3, 4} and x ,
y), and |ca,i| denotes the number of VMs in cluster i of applica-
tion a. In this case, rateca,x,ca,y is guaranteed along the path used
for communication between these two clusters by rules and
rate-limiters configured in forwarding devices through Open-
Flow.

We apply this strategy at each level up the topology (reserv-
ing the minimum rate required for the communication among
clusters). In general, the bandwidth required by one VM cluster
to communicate with all other clusters of the same application
is given by the following expression:

rateca,x = min

|ca,x| ∗ Ba,
∑

c∈Ca,c,ca,x

|c| ∗ Ba

 ∀ca,x ∈ Ca (2)

where rateca,x denotes the bandwidth required by cluster x to
communicate with other clusters associated with application a
and Ca indicates the set of all clusters of application a.

Inter-application communication. Applications in data-
centers may exhibit complex communication patterns. How-
ever, providing them with static hose guarantees does not scale
for DCNs [20], since bandwidth guarantees would have to be
enforced between all pairs of VMs. Furthermore, tenants may
not know in advance all applications/services that their applica-
tions will communicate with.

Predictor can dynamically set up guarantees for inter-
application communication according to the needs of applica-
tions and residual bandwidth in the network. In case guarantees
were not requested using the field comminter

a (as described in
Section 4), the Predictor controller provides two ways of estab-
lishing guarantees for communication between VMs of distinct
applications and services, as follows.

Reacting to new flows in the network. When a VM needs to
exchange data with one or more VMs of another application, it
can simply send packets to those VMs. The hypervisor (through
its Open vSwitch) of the server hosting the source VM receives
such packets and, since they do not match any rule, sends them
to the controller. The Predictor controller, then, determines the
rules needed by the new flows and installs the set of rules along
the appropriate path(s) in the network.

Receiving communication requests from applications. Prior
to initiating the communication with VMs belonging to other
applications, the source VM can send a request to the Predic-

7A VM cluster is a set of VMs of the same application located in the same
rack.

Virtual Switch

VM1 VM10

......

B a

Request for application a

B
a

Intra-application communication guarantees

Ba

Ba

4Ba

5Ba5Ba

2Ba3Ba

VM1VM2 VM3 VM4 VM5 VM6 VM7VM8VM9 VM10{C a,2
{C a,1

{C a,3

{C a,4

Figure 5: Example of intra-application bandwidth guarantees.

tor controller for communication with VMs from other appli-
cation(s). This request is composed of the set of destination
VMs, the bandwidth needed and the expected amount of time
the communication will last. Upon receiving the request, the
Predictor controller verifies residual resources in the network,
sends a reply and, in case there are enough available resources,
generates and installs the appropriate set of rules and rate-
limiters for this communication. This approach is similar to
providing an API for applications to request network resources,
like PANE [40].

5.2. Resource Allocation

The allocation process is responsible for performing admis-
sion control and mapping application requests in the datacen-
ter infrastructure. An allocation can only be made if there are
enough computing and network resources available [42]. That
is, VMs must only be mapped to servers with available re-
sources, and there must be enough residual bandwidth for com-
munication between VMs (as specified in the request). For sim-
plicity, we follow related work [2, 3, 21] and discuss Predictor
and its allocation component in the context of traditional tree-
based topologies implemented in current datacenters.

We design a location-aware heuristic to efficiently allocate
tenant applications in the infrastructure. The key principle
is minimizing bandwidth for intra-application communication
(thus allocating VMs of the same application as close as pos-
sible to each other), since this type of communication gener-
ates most of the traffic in the network (as discussed before) and
DCNs typically have scarce resources [21].
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Algorithm 1 allocates one application at a time, as requests
are received. It receives as input the physical infrastructure P
(composed of servers, racks, switches and links) and the in-
coming application request a (formally defined in Section 4 as
〈Na, Ba,wa, comminter

a 〉), and works as follows. First, it searches
for the best placement in the infrastructure for the incoming ap-
plication via dynamic programming (lines 1 – 12). To this end,
NP

s (l − 1) represents the set of neighbors (directly connected
switches) of switch s at level l−1. Furthermore, three data struc-
tures are defined and dynamically initialized for each request:
(i) set Ra stores subgraphs with enough computing resources for
application a; (ii) Va

s stores the total number of VMs of appli-
cation a the s-rooted subgraph can hold; and (iii) Ca

s stores the
number of VM clusters that can be formed in subgraph s. The
algorithm traverses the topology starting at rack level (level 1),
up to the core, and determines subgraphs with enough available
resources to allocate the incoming request.

Algorithm 1: Location-aware algorithm.
Input : Physical infrastructure P (composed of servers, racks, switches and links),

Application a=〈Na, Ba,wa, comminter
a 〉

Output: Success/Failure code allocated

// Search for the best placement in the infrastructure
1 Ra ←∅;
2 foreach level l of P do
3 if l == 1 then // Top-of-Rack switches
4 foreach ToR r do
5 Va

r ← num. available VMs in the rack;
6 Ca

r ← 1;
7 if Va

r ≥ Na then Ra ← Ra ∪ {r} ;
8 else // Aggregation and core switches
9 foreach Switch s at level l do

10 Va
s ←

∑
w∈{NP

s (l−1)} Va
w;

11 Ca
s ←

∑
w∈{NP

s (l−1)} Ca
w;

12 if Va
s ≥ Na then Ra ← Ra ∪ {s} ;

// Proceed to the allocation
13 allocated← failure code;
14 while Application a not allocated and Ra not empty do
15 r← Select subgraph from Ra;
16 Ra ← Ra \ {r};

// VM placement
17 Allocate VMs of application a at r;

// Bandwidth allocation
18 foreach Level l from 0 to Height(r) do
19 Allocate bandwidth at l according to Section 5.1 and Equation 2;
20 foreach Inter-application communication c ∈ comminter

a do
21 Allocate bandwidth for inter-application communication c specified at

allocation time (as defined in Section 4);

22 if Application was successfully allocated at r then
23 allocated← success code
24 else allocated← failure code;
25 return allocated;

After verifying the physical infrastructure and determining
possible placements, the algorithm starts the allocation phase
(lines 13 - 24). First, it selects one subgraph r at a time from
the set Ra to allocate the application (line 15). The selec-
tion of a candidate subgraph takes into account the number
of VM clusters. Therefore, the selected subgraph is the one
with the minimum number of VM clusters, so that VMs of the
same application are allocated close to each other, reducing the
amount of bandwidth needed for communication between them
(as the network often represents the bottleneck when compared
to computing resources [43]).

When a subgraph is selected, the algorithm allocates the ap-

plication with a coordinated node (VM-to-server, in line 17) and
link (bandwidth reservation, in lines 18 – 21) mapping, simi-
larly to the virtual network embedding problem [44]. In par-
ticular, bandwidth for intra-application communication (lines
18 – 19) is allocated through a bottom-up strategy, as follows.
First, it is reserved at servers (level 0). Then, it is reserved, in
order, for each subsequent level of the topology, according to
the bandwidth needed by communication between VMs from
distinct racks that belong to the same application (as explained
in Section 5.1 and in Equation 2, and exemplified in Figure 5).
After that, bandwidth for inter-application communication (that
was specified at allocation time in field comminter

a ) is allocated
in lines 20 – 21 (recall that comminter

a was defined in Section 4).
Finally, the algorithm returns a success code if application a

was allocated or a failure code otherwise (line 25). Applications
that could not be allocated upon arrival are discarded, similarly
to Amazon EC2 [45].

5.3. Work-Conserving Rate Enforcement
Predictor provides bandwidth guarantees with work-

conserving sharing. This is because only enforcing guarantees
through static provisioning leads to underutilization and frag-
mentation [17], while offering work-conserving sharing only
does not provide strict guarantees for tenants [20]. Therefore,
in addition to ensuring a base-level of guaranteed rate, Predic-
tor proportionally shares available bandwidth among applica-
tions with more demands than their guarantees, as defined in
Equation 1.

We design an algorithm to periodically set the allowed rate
for each co-resident VM on a server. In order to provide smooth
interaction with TCP, we follow ElasticSwitch [17] and execute
the work-conserving algorithm between periods of time one or-
der of magnitude larger than the network round-trip time (RTT),
e.g., 10 ms instead of 1 ms.

Algorithm 2 aims at enabling smooth response to bursty traf-
fic (since traffic in DCNs may be highly variable over short pe-
riods of time [33, 46]). It receives as input the list of VMs (Vs)
hosted on server s, their current demands (which are determined
by monitoring VM socket buffers, similarly to Mahout [31]),
their bandwidth guarantees and their network weight (specified
in the application request and defined in Section 4).

First, the rate for each VM is calculated based on their de-
mands and the guaranteed bandwidth B[v] (lines 1 – 3). In case
the demand of a VM is equal or lower than its bandwidth guar-
antees (represented by v ↓ Vs | v ∈ Vs), the rate is assigned and
enforced (line 2), so that the exact amount of bandwidth needed
for communication is used (wasting no network resources). In
contrast, the guarantee B[v] is initially assigned to nRate[v] for
each VM v ∈ Vs with higher demands than its guarantees (rep-
resented by v ↑ Vs | v ∈ Vs), in line 3. Then, the algorithm cal-
culates the residual bandwidth of the link connecting the server
to the ToR switch (line 4). The residual bandwidth is calculated
by subtracting from the link capacity the guarantees of VMs
with higher demands than their guarantees and the rate of VMs
with equal or lower demands than their guarantees.

The last step establishes the bandwidth for VMs with higher
demands than their guarantees (line 5 - 10). The rate (line 8)
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Algorithm 2: Work-conserving rate allocation.
Input : Set of VMs Vs allocated on server s, Current demands of VMs demand,

Bandwidth guarantees B for each VM, Network weight w for each VM
Output: Rate nRate for each co-resident VM

1 foreach v ∈ Vs do
2 if v ↓ Vs then nRate[v]← demand[v] ;
3 else nRate[v]← B[v] ;

4 residual← LinkCapacity −
(∑

v↑Vs B[v] +
∑

v↓Vs demand[v]
)
;

5 hungryVMs← v ↑ Vs | v ∈ Vs;
6 while residual > 0 and hungryVMs not empty do
7 foreach v ∈ hungryVMs do
8 nRate[v]←

nRate[v] + min
(
demand[v] − nRate[v],

(
w[v]∑

u↑Vs w[u] × residual
))

;

9 if nRate[v] == demand[v] then
10 hungryVMs← hungryVMs \ {v};
11 return nRate;

is determined by adding nRate[v] (initialized in line 3) and the
minimum bandwidth between (i) the difference of the current
demand (demand[v]) and the rate (nRate[v]); and (ii) the pro-
portional share of residual bandwidth the VM would be able
to receive according to its weight w[v]. Note that there is a
“while” loop (lines 6 – 10) to guarantee that all residual band-
width is used or all demands are satisfied. If this loop were not
used, there could be occasions when there would be unsatisfied
demands even though some bandwidth would be available.

With this algorithm, Predictor guarantees that VMs will not
receive more bandwidth than they need (which would waste
network resources) and bandwidth will be fully utilized if there
are demands (work-conservation). Moreover, the algorithm has
fast convergence on bandwidth allocation and can adapt to the
significant variable communication demands of cloud applica-
tions. Therefore, if there is available bandwidth, VMs can send
traffic bursts at a higher rate (unlike Silo [3], Predictor allows
traffic bursts with complete work-conservation).

In summary, if the demand of a VM exceeds its guaranteed
rate, data can be sent and received at least at the guaranteed
rate. Otherwise, if it does not, the unutilized bandwidth will
be shared among co-resident VMs whose traffic demands ex-
ceed their guarantees. We provide an extensive evaluation in
Section 7 to verify the benefits of the algorithm.

6. Control Plane Design

The control plane design of the network is an essential part of
software-defined networks, as disconnection between the con-
trol and data planes may lead to severe packet loss and perfor-
mance degradation (forwarding devices can only operate cor-
rectly while connected to a controller) [47, 48]. Berde et al. [49]
define four requirements for the control plane: (i) high avail-
ability (usually five nines [50]); (ii) global network state, as
the control plane must be aware of the entire network state to
provide guarantees for tenants and their applications; (iii) high
throughput, to guarantee performance in terms of satisfying re-
quests even at periods of high demands; and (iv) low latency, so
that end-to-end latency for control plane communication (i.e.,
updating network state in response to events) is small.

Based on these requirements, Figure 6 shows the control
plane design for Predictor. In this figure, we show, as a ba-
sic example, a typical 2-layer tree-like topology with decou-
pled control and data planes. We can see two major aspects:
(i) the placement of controller instances (control plane logic) as
a cluster in one location of the network (connected to all core
switches); and (ii) the separation between resources for both
planes (represented by different line styles and colors for link
bandwidth), indicating out-of-band control plane communica-
tion. We discuss them next.

.....

Controller 
Instance 1

Controller 
Instance N

Servers

ToR devices

Aggregation/Core devices

Network brain
(control logic)

Control plane bandwidth
Data plane bandwidth

Traditional 2-level tree-like datacenter network

Figure 6: Design of Predictor’s control plane.

Cluster of controller instances. Following WL2 [51], the
control plane logic is composed of a cluster of controller in-
stances. There are two reasons for this. First and most impor-
tant, Predictor needs strong consistency among the state of its
controllers to provide network guarantees for tenants and their
applications. If instances were placed at different locations of
the topology, the amount of synchronization traffic would be
unaffordable, since DCNs typically have highly dynamic traffic
patterns with variable demands [30, 33, 46]. Moreover, DCNs
are typically oversubscribed with scarce bandwidth [21].

Second, the control plane is expected to scale-out (periodi-
cally grow or shrink the number of active controller instances)
according to its load, needed for high availability and through-
put. Since DCNs usually count with multiple paths [32], one
controller location is often sufficient to meet existing require-
ments [52]. Furthermore, if controllers were placed at several
locations, a controller placement algorithm (e.g., Survivor [47])
would have to be executed each time the number of instances
were adjusted, which would delay the response to data plane
requests (as this is a NP-Hard problem [52]).

Out-of-band control. Predictor uses out-of-band control to
manage the network. As the network load may change signifi-
cantly over small periods of time [16] and some links may get
congested [33] (due to the high oversubscription factor [53]),
the control and data planes must be kept isolated from one an-
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other, so that traffic from one plane does not interfere8 with
the other. In other words, control plane traffic should not be
impacted by rapid changes in data plane traffic patterns (e.g.,
bursty traffic). Using out-of-band control, some bandwidth of
each link shared with the data plane (or all bandwidth from links
dedicated to control functions) is reserved for the control plane
(represented in Figure 6 as red dotted lines). In the next section,
we show how the amount of bandwidth reserved for the control
plane affects efficiency of Predictor.

7. Evaluation

Below, we evaluate the benefits and overheads of Predictor.
We focus on showing that Predictor (i) can scale to large SDN-
based DCNs; (ii) provides both predictable network perfor-
mance (with bandwidth guarantees) and work-conserving shar-
ing; and (iii) outperforms existing schemes for DCNs (the base-
line SDN/OpenFlow controller and DevoFlow [13]). Towards
this end, we first describe the environment and workload used
(in Section 7.1). Then, we examine the main aspects of the im-
plementation of Predictor (in Section 7.2). Finally, we present
the results in Section 7.3.

7.1. Setup

Environment. We have implemented a simulator that mod-
els an IaaS multi-tenant, SDN-based datacenter. The network
is defined as a tree-like topology, similar to current DCNs and
related work [3, 20, 21]. It is composed of a three-tier topol-
ogy with 16,000 servers at level 0. We follow current sched-
ulers and related work [54] and divide computing resources of
servers (corresponding to some amount of CPU, memory and
storage) into slots for hosting VMs; each server is divided into
4 slots, resulting in a total amount of 64,000 available VMs
in the datacenter. Every 40 machines form a rack, and every
10 ToRs are connected to an aggregation switch. Finally, all
aggregation switches are connected to a core switch. The ca-
pacity of each link is defined as follows: 1 Gbps for server-
ToR links, 10 Gbps for ToR-aggregation links and 50 Gbps for
aggregation-core links.

Workload. The workload is composed of incoming applica-
tion requests (to be allocated in the datacenter) arriving over
time. In particular, we consider a heterogeneous set of ap-
plications, including MapReduce and Web Services. As de-
fined in Section 4, each application a is represented as a tu-
ple 〈Na, Ba,wa, comminter

a 〉. Given the lack of publicly avail-
able traces for DCNs, the workload was generated in line
with related work [20, 21]. Na is exponentially distributed
around a mean of 49 VMs (following measurements from prior
work [1]). Ba was generated by reverse engineering the traces
used by Benson et al. [16] and Kandula et al. [37]. More specif-
ically, we used their measurements related to inter-arrival flow-
time and flow-size at servers to generate and simulate network

8In oversubscribed networks, such as DCNs, where traffic may exceed link
capacities in some occasions, in-band control may result in network inconsis-
tencies, as control packets may not (or take a long time to) reach the destination.

demands of applications. Unless otherwise specified, of all traf-
fic, 20% of flows are destined to other applications [20] and
1% is classified as large flows [33]. We pick the destination
of each flow by first determining whether it is an intra- or inter-
application flow and then uniformly selecting a destination. The
weight wa is uniformly distributed in the interval [0, 1].

7.2. Implementation Aspects of Predictor

Figure 7 shows the architecture of the server-level imple-
mentation of Predictor. As described by Pfaff et al. [41], the
virtual machines allocated on the server send and receive pack-
ets to/from the network through the hypervisor, using an Open
vSwitch. We implemented a local controller which directly
communicates with the Open vSwitch. Together, the Open
vSwitch and the local controller are responsible for handling
all traffic to/from local virtual machines.

VMn

...Server

Hypervisor

VM1

Local 
Controller (LC)

Logical Links

vS
Open vSwitch

Figure 7: Architecture of server-level implementation of Predictor.

This architecture leverages the relatively large amount of
processing power at end-hosts [55] in the datacenter to im-
plement two key aspects of Predictor (following the descrip-
tion presented in the previous sections): (i) identifying flows at
application-level; and (ii) providing network guarantees and dy-
namically enforcing rates for VMs. Both aspects are discussed
next.

First, to perform application-level flow identification, Pre-
dictor utilizes Multiprotocol Label Switching (MPLS). More
specifically, applications are identified in OpenFlow rules (at
the Open vSwitch) through the label field in the MPLS header.
The MPLS label is composed of 20 bits, which allows Predictor
to identify 1,048,576 different applications. The complete op-
eration of identifying and routing packets at application-level
works as follows. For each packet received from the source
VM, the Open vSwitch (controlled via the OpenFlow protocol)
in the source hypervisor pushes a MPLS header (four bytes)
with an ID in the label field (the application ID of the source
VM for intra-application communication or a composite ID
for inter-application communication). Subsequent switches in
the network use MPLS label and IP source and destination ad-
dresses (which may be wildcarded, depending on the possibili-
ties of routing) matching fields to choose the correct output port
to forward incoming packets. When packets arrive at the des-
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tination hypervisor, the Open vSwitch pops the MPLS header
and forwards the packet to the correct VM.

Second, the local controller at each server performs rate-
limiting of VMs. More precisely, the local controller dynam-
ically sets the allowed rate for each hosted VM by installing the
appropriate rules and rate-limiters at the Open vSwitch. The
rate is calculated by Algorithm 2, discussed in Section 5.3.
Note that Predictor also reduces rate-limiting overhead when
compared to previous schemes (e.g., Silo [3], Hadrian [20],
CloudMirror [7] and ElasticSwitch [17]), for it only rate-limits
the source VM while other schemes rate-limit each pair of
source-destination VMs.

7.3. Results

Next, we explain the behavior of the three schemes we are
comparing against each other (Predictor, DevoFlow and the
baseline). Then, we show the results of the evaluation: (i) we
examine the scalability of employing Predictor on large SDN-
based DCNs; and (ii) we verify bandwidth guarantees and pre-
dictability.

Comparison. We compare Predictor with the baseline
SDN/OpenFlow controller and the state-of-the-art controller for
DCNs (DevoFlow [13]). Before showing the results, we briefly
explain the behavior of Predictor, the baseline and DevoFlow.

In Predictor, bandwidth for intra-application communication
is guaranteed at allocation time. For inter-application com-
munication guarantees, we consider two modes of operation,
as follows. The first one is called Proactive Inter-Application
Communication (PIAC), in which tenants specify in the request
all other applications that their applications will communicate
with (by using the field comminter

a , as explained in Section 4).
The second one is called Reactive Inter-Application Commu-
nication (RIAC), in which rules for inter-application traffic are
installed by the controller by either reacting to new flows in
the network or receiving communication requests from appli-
cations, as defined in Section 5.1. Note that both modes cor-
respond to the extremes for inter-application communication:
while PIAC considers that all inter-application communication
is specified at allocation time, RIAC considers the opposite.
Furthermore, we highlight that both modes result in the same
number of rules in devices, but differ in controller load and flow
setup time (results are shown below).

In the baseline, switches forward to the controller packets
that do not match any rule in the flow table (we consider the
default behavior of OpenFlow versions 1.3 and 1.4 upon a table-
miss event). The controller, then, responds with the appropriate
set of rules specifically designed to handle the new flow.

DevoFlow considers flows at the same granularity than the
baseline, thus generating a similar number of rules in forward-
ing devices. However, forwarding devices rely on more pow-
erful hardware and templates to generate rules for small flows
without involving the controller. For large flows, DevoFlow has
two modes of operation. DevoFlow Triggers requires switches
to identify large flows and ask the controller for appropriate
rules for these flows (i.e., only packets of large flows are for-
warded to the controller). DevoFlow Statistics, in turn, re-

quires forwarding devices to send the controller uniformly cho-
sen samples (packets), typically at a rate of 1/1000 packets, so
that the controller itself identifies and generates rules for large
flows. In summary, both DevoFlow modes generate the same
number of rules in devices, but differ in controller load and flow
setup time.

Scalability metrics. We use four metrics to verify the scala-
bility of Predictor in SDN-based datacenter networks: number
of rules in flow tables, controller load, impact of reserved con-
trol plane bandwidth and flow setup time. These are typically
the factors that restrict scalability the most [12, 17].

Reduced number of flow table entries. Figure 8 shows how
network load (measured in new flows/second per rack) affects
flow table occupancy in forwarding devices. More precisely,
the plots in Figures 8(a), 8(b) and 8(c) show, respectively, the
maximum number of entries observed in our experiments9 that
are required in any hypervisor, ToR and aggregation switch for
a given average rate of new flows at each rack (results for core
devices are not shown, as they are similar for all three schemes).

In all three plots, we see that the average number of arriv-
ing flows during an experiment affects directly the number of
rules needed in devices. These results are explained by the fact
that the number of different flows that pass through forwarding
devices is large and may quickly increase due to the elevated
number of end-hosts (VMs) and arriving flows in the network.
Overall, the increase of the total number of flows requires more
rules for the correct operation of the network (according to the
needs of tenants) and enables richer communication patterns
(representative of cloud datacenters [20]). Note that the num-
ber of rules for the baseline and DevoFlow is similar because
(i) they consider flows at the same granularity; and (ii) the same
default timeout for rules was adopted for all three schemes.

The results show that Predictor substantially outperforms De-
voFlow and the baseline (especially for realistic numbers of
new flows in large-scale DCNs, i.e., higher than 1,500 new
flows/second per rack [17]). More importantly, the curves rep-
resenting Predictor have a smaller growing factor than the ones
for DevoFlow and the baseline. The observed improvement
happens because Predictor manages flows at application-level
and also wildcards the source and destination addresses in rules
when possible (as explained in Section 7.2). Predictor reduces
the number of rules up to 94% in hypervisors, 78% in ToRs
and 37% in aggregation devices. In core devices, the reduc-
tion is negligible (around 1%), because (a) a high number of
flows does not need to traverse core links to reach their destina-
tions, thus the baseline and DevoFlow do not install many rules
in core devices, while Predictor installs application-level rules;
and (b) Predictor proactively installs rules for intra-application
traffic (while other schemes install rules reactively).

Since Predictor considers flows at application-level and inter-
application flows may require rules at a lower granularity (e.g.,
by matching MAC and IP fields), we now analyze how the num-
ber of inter-application flows affects the number of rules in for-

9Since flow table capacity of current available OpenFlow-enabled switches
ranges from one thousand [56] to around one million entries [57], the observed
values during the experiments are within acceptable ranges.
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(a) In hypervisors.
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(b) In ToRs.
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(c) In aggregation switches.

Figure 8: Maximum number of rules (that were observed in the experiments)
in forwarding devices.

warding devices for Predictor (previous results considered 20%
of inter-application flows, a realistic percentage according to
the literature [20]). Note that we only show results for Predic-
tor because the percentage of inter-application flows does not
impact the number of rules in forwarding devices for the base-
line and DevoFlow.

Figure 9 shows the maximum number of entries in hypervi-
sors, ToR, aggregation and core devices observed in our experi-
ments (y-axis) for a given percentage of inter-application flows
(x-axis), considering an average of 1,500 new flows/second per
rack. As expected, we see that the number of rules in devices in-
creases according to the number of inter-application flows. This
happens because this type of communication often involves a
restricted subset of VMs from different applications. There-
fore, Predictor may not install application-level rules for these
flows and may end up installing lower-granularity ones (e.g.,
by matching the IP field). Nonetheless, application-level rules
address most of the traffic in the DCN.

Moreover, the number of rules in aggregation and, in par-

ticular, in core switches is higher than in ToR devices and in
hypervisors. It is so because core switches interconnect several
aggregation switches and, as time passes, the arrival and depar-
ture of applications lead to dispersion of available resources in
the infrastructure. In this context, VMs from different applica-
tions (allocated in distinct ToRs) communicate with each other
through paths that use aggregation and core switches.
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Figure 9: Maximum number of rules in forwarding devices for different per-
centages of inter-application flows for Predictor.

In general, Predictor reduces the number of rules installed in
forwarding devices, which can (i) improve hypervisor perfor-
mance (as measured by LaCurts et al. [22]); (ii) minimize the
amount of TCAM occupied by rules in switches (TCAMs are
a very expensive resource [15] and consume a high amount of
power [58]); and (iii) minimize the time needed to install new
rules in TCAMs, as measured in Section 2.

Low controller load. As DCNs typically have high load,
the controller should handle flow setups efficiently. Figure 10
shows the required capacity in number of messages/s for the
controller. For better visualization, the y-axis is represented in
logarithmic scale, as the values differ significantly for different
schemes. As expected, the number of messages sent to the con-
troller increases according to the average number of new flows/s
per rack (except for Predictor PIAC and DevoFlow Statistics).
The controller must set up network paths and allocate resources
according to arriving flows (flows without matching rules in for-
warding devices).
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Figure 10: Controller load.

The baseline imposes a higher load to its controller than other
schemes. DevoFlow Statistics requires a regular load to its
controller, independently of the number of flows, as the num-
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ber of messages sent by forwarding devices to the controller
depends only on the amount of traffic in the network; in this
scheme, devices send to the controller randomly chosen packet
samples at a rate of 1/1000 packets. DevoFlow Triggers, in
turn, only needs controller intervention to install rules for large
flows (at the cost of more powerful hardware at forwarding de-
vices). Thus, it significantly reduces controller load, but may
also reduce controller knowledge of (i) network load and (ii)
flow table state in switches. Predictor RIAC proactively installs
application-level rules for intra-application communication at
allocation time and reactively sends rules for inter-application
traffic upon receiving communication requests, which reduces
the number of flow requests when compared to the baseline
(≈ 91%) but increases it in comparison to DevoFlow Triggers
(≈ 8%). Finally, Predictor PIAC receives fine-grained infor-
mation about intra- and inter-application communication at ap-
plication allocation time, proactively installing the respective
rules when needed. Therefore, controller load can be signifi-
cantly reduced (i.e., the controller receives requests only when
applications are allocated) without hurting knowledge of net-
work state, but at the cost of some burden on tenants (as they
need to specify inter-application communication at allocation
time for Predictor PIAC).

Recall that the Predictor modes under evaluation correspond
to extremes. Therefore, in practice, we expect that Predictor
controller load will be between the results shown for PIAC and
RIAC. Moreover, we do not show results for controller load
varying the number of large flows because results are the same
for both modes (and also for the baseline and DevoFlow Statis-
tics). DevoFlow Triggers, however, imposes a higher load to
its controller as the number of large flows increases (Figure 10
depicted results for a realistic value of 1% of large flows).

So, in both modes, the Predictor controller is aware of most
of the traffic (at application-level) and performs fine-grained
control. In contrast, DevoFlow Triggers has knowledge of only
large flows (approximately 50% of the total traffic volume [16])
and DevoFlow Statistics has partial knowledge of network traf-
fic with a high number of messages sent to the controller.

Impact of control plane bandwidth. SDN separates the
control and data planes. Ideally, control plane communication
is expected to be isolated from data plane traffic, avoiding cross-
interference. In this context, the bandwidth it requires varies:
the more dynamic the network, the more control plane traffic
may be required for updating network state and getting infor-
mation from forwarding devices. We evaluate the impact of re-
serving some amount of bandwidth (5%, 10%, 15%, 20%, 25%
and 30%) on data plane links to the control plane and compare
it with a baseline value of 0% (which represents no bandwidth
reservation for the control plane). In other words, we want to
verify how the acceptance ratio of applications (y-axis) is af-
fected according to the amount of bandwidth reserved for the
control plane (x-axis), since the network is the bottleneck in
comparison to computing resources [21, 43]. Figure 11 con-
firms that acceptance ratio of requests decreases according to
the amount of bandwidth available for the control plane (clearly,
more bandwidth for the control plane means less bandwidth for
the data plane). Nonetheless, this reduction is small, even for a

worst-case scenario: reserving 30% of bandwidth on data plane
links for the control plane results in accepting around 9% fewer
requests.
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Figure 11: Impact of reserved bandwidth for the control plane on acceptance
ratio of requests (error bars show 95% confidence interval).

Therefore, depending on the configuration, SDN may affect
DCN resource utilization and, consequently, provider revenue.
There are two main reasons: (i) it involves the control plane
more frequently [13]; and (ii) switches are constantly exchang-
ing data with the controller (for both flow setup and the con-
troller to get updated information about network state). In this
context, the amount of bandwidth required for the control plane
for flow setup is directly proportional to the number of requests
to the controller (Figure 10). In our experiments, switches were
configured to send the first 128 bytes of the first packet of new
flows to the controller (instead of sending the whole packet).
With this configuration and for a realistic number of new flows/s
per rack (i.e., 1,500 new flows), the bandwidth required by the
controller for flow setup for each scheme was at most the fol-
lowing: 1 Mbps for Predictor PIAC, 15 Mbps for Predictor
RIAC, 2 Mbps for DevoFlow Triggers, 173 Mbps for DevoFlow
Statistics and 166 Mbps for the baseline. Even though Predic-
tor may require more bandwidth for its control plane than De-
voFlow in some occasions, it has better knowledge of current
network state and does not need customized hardware at for-
warding devices.

Reduced flow setup time. The SDN paradigm typically in-
troduces additional latency for the first packet of new flows; tra-
ditional SDN implementations (e.g., baseline) delay new flows
for at least two RTTs in forwarding devices (communication
between the ASIC and the management CPU and between that
CPU and the controller)10 [13].

The results in Figure 12 show the minimum, average and
maximum flow setup time (additional latency) for the schemes
being compared, during the execution of the experiments. For
a better comparison, latency values are normalized accord-
ing to the maximum value of the baseline (i.e., the highest
value in our measurements). Predictor PIAC proactively in-
stalls rules for (a) intra-application traffic at allocation time
and (b) for inter-application traffic before the communication

10For a detailed study of latency in SDN, the interested reader may refer to
Phemius et al. [59].
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starts (due to the information provided in the application re-
quest). Thus, it has no additional latency for new flows. Pre-
dictor RIAC, in turn, presents no additional latency for most
of the flows (due to the proactive installation of rules for intra-
application communication). However, it introduces some de-
lay for inter-application flows (maximum measured latency was
around 80% of the maximum for the baseline). As both Pre-
dictor modes correspond to extremes, results will actually be
somewhere between RIAC and PIAC. That is, the level of in-
formation regarding inter-application communication in appli-
cation requests will vary, thus eliminating flow setup time for
some inter-application flows.

In DevoFlow Statistics, forwarding devices generate rules for
all flows in the network. In other words, most of the latency
is composed of the time taken for communication between the
ASIC and the management CPU when a new flow is detected.
Later on, the controller installs specific rules for large flows
when it identifies such flows. Thus, this scheme typically intro-
duces low additional latency. In the case of DevoFlow Triggers,
large flows require controller assistance (thereby increasing ad-
ditional latency), while small flows are handled by the forward-
ing devices themselves (low additional latency).

Finally, the baseline requires that forwarding devices always
ask for controller assistance to handle new flows, resulting in
increased control traffic and flow setup time in comparison to
Predictor and DevoFlow.
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Figure 12: Flow setup time (normalized by the maximum flow setup time of
the baseline) introduced by the SDN paradigm for new flows.

After verifying the feasibility of employing Predictor on
large-scale, SDN-based DCNs (i.e., the benefits provided by
Predictor, as well as the overheads), we turn our focus to the
challenge of bandwidth sharing unfairness. In particular, we
show that Predictor (i) proportionally shares available band-
width; (ii) provides minimum bandwidth guarantees for ap-
plications; and (iii) provides work-conserving sharing under
worst-case scenarios, achieving both predictability for tenants
and high utilization for providers.

Impact of weights on proportional sharing. Before
demonstrating that Predictor provides minimum guarantees
with work-conserving sharing, we evaluate the impact of
weights when proportionally sharing available bandwidth.
More specifically, we first want to confirm that available band-
width is proportionally shared according to the weights as-
signed to applications and their VMs.

Toward this end, Figure 13 shows, during a predefined pe-
riod of time, three VMs from different applications allocated
on a given server with same demands and guarantees, but dif-
ferent weights (0.2, 0.4 and 0.6, respectively). We verify that,
in case that the sum of all three VM demands do not exceed
the link capacity (1 Gbps), all VMs have their demands satis-
fied (e.g., between 1s – 86s and 118s – 197s), independently of
their guarantees. In contrast, if the sum of demands exceed the
link capacity, each VM gets a share of available bandwidth (i.e.,
more than its guarantees) according to its weight (the higher
the weight, the more bandwidth it gets). Note that, in this case,
the rate of each VM stabilizes (between 87s – 117s and 197s –
500s) because, as the sum of demands exceed the link capac-
ity (and VMs have the same demands and guarantees), the only
factor that impacts available bandwidth sharing is the weight.
In general, the results show that the use of weights enables pro-
portional sharing.
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Figure 13: Proportional sharing according to weights (VM 1: 0.2; VM 2: 0.4;
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of 1 Gbps.

Minimum bandwidth guarantees for VMs. We define it as
follows: the VM rate should be (a) at least the guaranteed rate if
the demand is equal or higher than the guarantees; or (b) equal
to the demand if it is lower than the guarantees. To illustrate this
point, we show, in Figure 14, the set of VMs (in this case, three
VMs from different applications) allocated on a given server
during a predefined time period of an experiment. Note that
VM 1 [Figure 14(a)] and VM 3 [Figure 14(c)] have similar
guarantees, but receive different rates (“used bandwidth”) when
their demands exceed the guarantees (e.g., after 273s). This
happens because they have different network weights (0.17 and
0.59, respectively), and the rate is calculated considering the
demands, bandwidth guarantees, network weight and residual
bandwidth. Moreover, we see (from Figures 13 and 14) that
VMs may not get the desired rate to satisfy all of their demands
instantaneously (when their demands exceed their guarantees)
because (i) the link capacity is limited; and (ii) available band-
width is proportionally shared among VMs.

In summary, we see that Predictor provides minimum band-
width guarantees for VMs, since the actual rate of each VM
is always equal or higher than the minimum between the de-
mands and the guarantees. Therefore, applications have mini-
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mum bandwidth guarantees and, thus, can achieve predictable
network performance.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1  50  100  150  200  250  300  350  400  450  500

B
an

d
w

id
th

 (
in

 M
b
p
s)

Time (sec)

less demand than guarantees

work−conserving sharing (with VM 2)

reduced rate due to proportional
sharing with VM 3

unsatisfied demand due to proportional sharing with VM 3

Guarantees
VM demand

Used bandwidth

(a) VM 1.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1  50  100  150  200  250  300  350  400  450  500

B
an

d
w

id
th

 (
in

 M
b
p
s)

Time (sec)

less demand than guarantees

bursty traffic

proportional sharing with VM 1

Guarantees
VM demand

Used bandwidth

(b) VM 2.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1  50  100  150  200  250  300  350  400  450  500

B
an

d
w

id
th

 (
in

 M
b
p
s)

Time (sec)

less demand than guarantees
increased rate

proportional sharing (VM 1)

unsatisfied demand due to proportional
sharing with VM 1

Guarantees
VM demand

Used bandwidth

(c) VM 3.

Figure 14: Bandwidth rate achieved by the set of VMs allocated on a given
server during a predefined period of time.

Work-conserving sharing. Bandwidth which is not allo-
cated, or allocated but not currently used, should be proportion-
ally shared among other VMs with more demands than their
guarantees (according to the weights of each application, us-
ing Algorithm 2). Figure 15 shows the aggregate bandwidth11

on the server holding the set of VMs in Figure 14. In these
two figures, we verify that Predictor provides work-conserving
sharing in the network, as VMs can receive more bandwidth (if
their demands are higher than their guarantees) when there is
spare bandwidth. Thus, providers can achieve high network uti-
lization. Furthermore, by providing work-conserving sharing,

11Note that Predictor considers only bandwidth guarantees when allocating
VMs (i.e., it does not take into account temporal demands). Therefore, even
though the sum of temporal demands of all VMs allocated on a given server
may exceed the server link capacity, the sum of bandwidth guarantees of these
VMs will not exceed the link capacity.

Predictor offers high responsiveness12 to changes in bandwidth
requirements of applications.
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Figure 15: Work-conserving sharing on the server holding the set of VMs from
Figure 14.

In general, Predictor provides significant improvements over
DevoFlow, as it allows high utilization and fine-grained man-
agement in the network for providers and predictability with
guarantees for tenants and their applications. As a side ef-
fect, Predictor may have higher controller load than DevoFlow
(the cost of providing fine-grained management in the network
without imposing to tenants the burden of specifying inter-
application communication at allocation time).

8. Discussion

After evaluating Predictor, we discuss its generality and lim-
itations.

Application-level flow identification. In our proof-
of-concept implementation, Predictor identifies flows at
application-level through the MPLS label (application ID with
20 bits). Therefore, it needs a MPLS header in each packet
(adding four bytes of overhead). In practice, there are at
least two other options to provide such functionality. First,
when considering the matching fields defined by OpenFlow,
application-level flows could also be identified by utilizing
IEEE standard 802.1ad (Q-in-Q) with double VLAN tagging.
The advantage of double tagging is a higher number of IDs
available (24 bits), while the drawback is an overhead of eight
bytes (two VLAN headers) per packet. Second, application-
level flows could be identified by using OpenFlow Extensible
Match (OXM)13 to define a unique match field for this purpose.
Nonetheless, this method is less flexible, as it requires (i) switch
support for OXM; and (ii) programming to add a new matching
field in forwarding devices.

Topology-awareness. Even though Algorithm 1 was specif-
ically designed for tree-like topologies, the proposed strategy
is topology-agnostic. Therefore, we simply need to replace Al-
gorithm 1 to employ Predictor in DCNs with other types of in-
terconnections. We used a tree-like placement algorithm in this

12Responsiveness is a critical aspect of cloud guarantees [60].
13OXM was introduced in OpenFlow version 1.2 and currently is supported

by several commercial forwarding devices.
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paper for three reasons. First, currently most providers imple-
ment DCNs as (oversubscribed) trees, since they can control the
oversubscription factor more easily with this type of structure
(in order to achieve economies of scale). Second, by using an
algorithm specially developed for a particular structure, we can
enable better use of resources. Thus, we show more clearly the
benefits and overheads of the proposed strategy. Third, we used
tree topologies for the sake of explanation, as it is easier to ex-
plain and to understand how bandwidth is allocated and shared
among VMs of the same application in this kind of topology
(e.g., in Figure 5) than, for example, in random graphs.

Dynamic rate allocation with feedback from the network.
The designed work-conserving algorithm does not take into ac-
count network feedback provided by the OpenFlow module.
This design choice was deliberately made; we aim at reducing
management traffic in the network, since DCNs are typically
oversubscribed networks with scarce resources [21]. Nonethe-
less, the algorithm could be extended to consider feedback,
which would further help controlling the bandwidth used by
flows traversing congested links.

Application ID management. Predictor controller assigns
IDs for applications (in order to identify flows at application-
level) upon allocation and releases IDs upon deallocation.
Therefore, ID management is straightforward, as Predictor has
full control over which IDs are in use at each period of time.

Application request abstraction. Currently, Predictor only
supports the hose model [61]. Nonetheless, it can use extra con-
trol applications (one for each abstraction) (i) to parse requests
specified with other models (e.g., TAG [7] and hierarchical hose
model [20]); and (ii) to install rules accordingly. With other
abstractions, Predictor would employ the same sharing mech-
anism (Section 5). Thus, it would provide the same level of
guarantees.

9. Related Work

Researchers have proposed several schemes to address scala-
bility in large-scale, SDN-based DCNs and performance inter-
ference among applications. Proposals related to Predictor can
be divided into three classes: OpenFlow controllers (related to
scalability in SDN-based DCNs), and deterministic and non-
deterministic bandwidth guarantees (related to performance in-
terference).

OpenFlow controllers. DevoFlow [13] and DIFANE [18]
propose to devolve control to the data plane. The first one intro-
duces new mechanisms to make routing decisions at forward-
ing devices for small flows and to detect large flows (to request
controller assistance to route them), while the second keeps all
packets in the data plane. These schemes, however, require
more complex, customized hardware at forwarding devices.
Kandoo [19] provides a logically distributed control plane for
large networks. Nonetheless, it does not scale when most com-
munications occur between VMs located in different racks. It
is so because the distributed set of controller instances needs to
maintain synchronized information (strong consistency) for the
whole DCN. This is necessary in order to route traffic through
less congested paths and to reserve resources for applications.

Lastly, Hedera [62] and Mahout [31] require precise statistics
from the network with at most 500 ms of interval between
them to efficiently route large flows and utilize available re-
sources [63]. However, obtaining statistics with such frequency
is impractical in large DCNs [13]. Predictor, in contrast, re-
quires neither customized hardware nor precise statistics from
the network with at most 500 ms of interval between them, and
scales to the high dynamic traffic patterns of DCNs.

Deterministic bandwidth guarantees. They take advantage
of rate-limiting at hypervisors [64], VM placement [65] and
virtual network embedding [66] in order to increase their ro-
bustness. Silo [3], CloudMirror [7] and Oktopus [2] provide
strict bandwidth guarantees for tenants by isolating applications
in virtual networks. Unlike Predictor, these approaches do not
provide complete work-conservation (which may result in un-
derutilization of resources) and address only intra-application
communication.

Proteus [21], in contrast to Predictor, must profile temporal
network demands of applications before allocation, since it re-
quires such information for allocating applications in the infras-
tructure. Such requirement may be unrealistic for some types
of applications (e.g., ones that consume an excessive amount of
resources or that have requirements which depend on external
factors). EyeQ [67] attempts to provide bandwidth guarantees
with work-conservation. However, different from Predictor, it
cannot provide guarantees upon core-link congestion [68] (and
congestion is not rare in DCNs [34]). Finally, Hadrian [20] in-
troduces a strategy that considers inter-application communica-
tion, but it (i) needs a larger, custom packet header (hindering its
deployment); (ii) does not ensure complete work-conservation,
as the maximum allowed bandwidth is limited according to the
tenant’s payment; and (iii) requires switches to dynamically
perform rate calculation (and enforce such rate) for each flow
in the network. Unlike Hadrian, Predictor provides complete
work-conservation and performs rate calculation at server hy-
pervisors (freeing switches from this burden).

Non-deterministic bandwidth guarantees. Seawall [1] and
NetShare [69] share the network proportionally according to
weights assigned to VMs and tenants. Thus, they allocate band-
width at flow- and link-level. FairCloud [35] explores the trade-
off among network proportionality, minimum guarantees and
high utilization. These proposals, however, may result in sub-
stantial management overhead (since bandwidth consumed by
each flow at each link is dynamically calculated according to
the flow weight, and large DCNs can have millions of flows
per second [16]). Predictor, in contrast, reduces management
overhead by considering flows at application-level.

Varys [9], Baraat [8] and PIAS [4] seek to improve applica-
tion performance by minimizing average and tail flow comple-
tion time (FCT). Karuna [6], in turn, minimizes FCT for non-
deadline flows while ensuring that deadline flows just meet their
deadlines. Unlike Predictor, none of them provide minimum
bandwidth guarantees.

QJUMP [5] explores the trade-off between throughput and
latency. While being able to provide low latency for selected
flows, it may significantly reduce network utilization (as op-
posed to Predictor, which can achieve high network utilization).
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Finally, AC/DC TCP [34] and vCC [70] address TCP un-
fairness by performing congestion control at the virtual switch
in the hypervisor. Consequently, they are mostly orthogonal
to Predictor, since a DCN needs both congestion control (e.g.,
AC/DC TCP and vCC) and bandwidth allocation (e.g., Predic-
tor).

10. Conclusion

Datacenter networks are typically shared in a best-effort
manner, resulting in interference among applications. SDN
may enable the development of a robust solution for interfer-
ence. However, the scalability of SDN-based proposals is lim-
ited, because of flow setup time and the number of entries re-
quired in flow tables.

We have introduced Predictor in order to scalably provide
predictable and guaranteed performance for applications in
SDN-based DCNs. Performance interference is addressed by
using two novel SDN-based algorithms. Scalability is tackled
as follows: (i) flow setup time is reduced by proactively in-
stalling rules for intra-application communication at allocation
time (since this type of communication represents most of the
traffic in DCNs); and (ii) the number of rules in forwarding
devices is minimized by managing flows at application-level.
Evaluation results show the benefits of Predictor. First, it pro-
vides minimum bandwidth guarantees with work-conserving
sharing (successfully solving performance interference). Sec-
ond, it eliminates flow setup time for most traffic in the network
and significantly reduces flow table size (up to 94%), while
keeping low controller load (successfully dealing with scalabil-
ity of SDN-based DCNs). In future work, we intend to evaluate
Predictor on a testbed (such as CloudLab [71]).
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