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Abstract

FURLAN, A. P. - Computational study of the effects of the confinement and the
interacting solutes on the properties of the simplified water-like models

Although the familiarity and simplicity, the water show a set of thermodynamic, dynamics
and structural properties which are still subject to intense research. The increase of density
as the temperature, of diffusion as the density, or even of ordering with the temperature are
examples of some of its unusual behavior. In order to better understand these properties
numerous approaches have been used, such as the use of confinement geometries, simplified
models, or ever mixtures. Among the confinement geometries used, are those, nanopores,
parallel plates and porous media. The porous media are formed by fixed obstacles that
impose the additional excluded volume effects to the system. In the case of mixtures, when
they occur between liquids able to form hydrogen-bonds, the unusual behavior of water give
rise to a set even higher anomalous properties. The water-methanol mixture, for example,
has a set of excess properties unable to be described by usual theories. Some examples
are the maximum in the specific heat and minimum in excess volume and enthalpy. In
this Ph.D. project, we study by numerical simulations, the confinement of water by porous
media(or under quenched disorder) and the mixture of water with interacting solutes. The
first study is performed using a 2D lattice model which is widely known in the literature.
In a second stage, we study the influence of interacting solutes on the properties of lattice
and continuous models. For the lattice model, we develop a solute model and a technique
to simulate mixtures of lattice models at constant pressure. Using this technique, we study
the excess properties of the mixture. For the continuous model we study the influence of
a dimeric solute on the TMD of a water-like model and posteriorly we study the excess
properties of this type of mixture.

Keywords: Water confinement, water anomalies, porous media, lattice models, mixtures,
Monte Carlos simulations.



Resumo

FURLAN, A. P. - Estudo computacional dos efeitos de confinamento e de solutos
interagentes nas propriedades de modelos simplificados tipo-água

Apesar de sua familiaridade e simplicidade, a água apresenta um conjunto propriedades ter-
modinâmicas, dinâmicas e estruturais que são ainda objeto de intensa pesquisa. O aumento
da densidade com a temperatura, da difusão com a densidade, ou ainda do ordenamento
com a temperatura são exemplos de alguns de seus comportamentos não usuais. Com a
finalidade de melhor compreender tais propriedades inúmeras abordagens têm sido uti-
lizadas, tais como o uso geometrias de confinamento, modelos simplificados ou até mesmo
misturas. Dentre as geometrias confinantes frequentemente usadas, encontra-se, nanoporos,
placas paralelas e meio porosos. Os meios porosos são formados por obstáculos fixos que
impõem efeitos de volume excluído adicionais ao sistema. Já no caso de misturas quando
elas ocorrem entre líquidos capazes de formar ligações de hidrogênio, o comportamento não
usual da água dá origem a um conjunto ainda maior de propriedades anômalas. A mistura
água-metanol por exemplo, é munida de um conjunto propriedades de excesso incapazes de
serem descritas pelas teorias usuais. São alguns exemplos, o máximo no calor específico e
o mínimo no volume e entalpia de excesso. Neste projeto de doutoramento, nós estudamos
por simulações numericas o confinamento por meio poroso (desordem queched) e misturas
de água com solutos interagentes. O primeiro estudo é realizado usando um modelo 2D
tipo-água que é largamente conhecido na literatura. No segundo estágio, estamos a in-
fluência de solutos interagentes nas propriedades de modelos em rede e contínuos. Para o
modelo em rede, nós desenvolvemos um modelo de soluto e posteriormente uma técnica
capaz de simular misturas de modelos em rede a pressão constante. De posse desta técnica
estudamos as propriedades de excesso da mistura.

Palavras-chave: Confinamento de água, anomalias da água, meios porosos, modelo de
rede,misturas, metanol, simulação de Monte Carlo
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Chapter 1

Introduction

1.1 The Water

The water is a substance of fundamental importance for the creation and maintenance
of life. In the body it works diluting solids, transporting nutrients and controling the
temperature. The water is also emplyoed in the control of temperture in thermal machines,
in the production of food, in the energy generation, among others. Even though abundant
and quite common in nature water is not a simple liquid, instead it exhibits a number of
unusual properties. Actually it has 74 anomalies known to this date [1].

The peculiarities present on the thermodynamic, dynamic and structural properties of
water makes it one of the main representative of the selecteed group known as anomalous
liquids. Such substances exhibts non-usual properties such as the increase of the density
with the temperature, the increase of the diffusion coefficient with the increase of the
density [4, 5, 20] and others. The collective interactions between water molecules plus
the effect of the temperature gives rise to the complex phase diagram illustrated in the
figure 1.1.

In the pressure versus temperature phase diagram illustrated in the figure 1.1, it is
possible to observe three main phases: solid, liquid and gas, separated by first-order phase
transition lines (thick lines). The three lines end in a triple point located at Tt = 273.26K

and Pt = 611.69Pa. At higher temperatures and pressures, the gas-liquid coexistence line
ends in a critical point, located at Tc = 647K and Pc = 2.30×107 Pa. For the temperature
above the critical point no liquid-gas phase transition is observed. At low-temperatures
many crystalline structures coexist and they are represented by roman numbers in the
figure 1.1. For example, the regions VIII and Ih represent the ice-eight and hexagonal ice
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Figure 1.1 The water
phase diagram shown in
reference [1]. Solid thick
lines represent first-
order phase transition
between phases as solid-
liquid, liquid-vapour,
vapour-solid. The thin
solid lines represent the
limit of structures in the
solid phase. The roman
numbers represent the
different structures of
Ice. The black dashed
line represents the
second-order phase
transition. The circles
represent the end, criti-
cal and tricritical points
and are described on
the figure. The gray
dashed lines work as a
guide of eyes.

respectively. The hexagonal ice form is the most popular ice structure. It is the form of ice
found in the nature, and give the origin to the hexagonal structure observed in the six-fold
symmetry in ice crystals [1].

Despite the richness of the water phase diagram, a region close to 220 K and 200MPa,
has received particular attention. This region is located at supercooled temperature, be-
tween TH = 232K ( the temperature of cubic ice crystallization ) and TX = 150K ( the tem-
perature of homogeneous nucleation ) [21]. It receives the name of “no man’s land” [3,22–25]
because system coming from the liquid phases, immediately crystalizes and no liquid phase
is observed. The large increase in the response function in temperatures surrouding the no
man’s land it was assumed the possibility of the presence of two metastable liquids. This
theory received the name of the second critical point hypothesis (SCPH) [3]. The SPCH [3]
was originally formulated based on the experimental results [26] that showed the existence
of two amorphous phases, a high-density amorphous phase (HDA) and a low-density amor-
phous phase (LDA), at very low temperatures [26]. The SCPH conjectures, as illustrated
in the Figure 1.2, that the increase of the temperature would lead, continuously, the HDA
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Figure 1.2 Temperature versus
pressure phase diagram of water.
LDA and HDA represent the low
density and high-density amorphous
phases respectively [2] observed ex-
perimentally. The LDL and the
HDL represent the low density and
high density liquid phases observed
only in simulations [3]. The solid
line separated by a first-order phase
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ter from supercooled and the super-
cooled from “no man’s land” and this
from the amorphous region. The
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and LDA phases, to the liquid phases called low-density liquid (LDL) and high-density
liquid (HDL). These liquid phases would be separated by the same first order transition
which divides the amorphous phase (see figure 1.2), however the liquid-liquid transition
would end in a critical point known by liquid-liquid critical point (LLCP) or the, second
critical point (SCP). The critical fluctuations in the vicinity of the liquid-liquid critical
points would explain the anomalies present in water. Unfortunately this critical point is
located in a region of pressures and temperatures in which liquid water is inaccessible to
the experiments. Water freezes for these pressures and temperatures and the region is
called “no man’s land” or homogeneous nucleation region.

Among the different anomalies present in water, the large increase of the response
functions are the properties more closely related with the hypothesis of the second critical
point. The specific heat at constant pressure, cp, and the isothermal compressibility, κT ,
are example of these functions. Both cp and κT show a large increase in the vicinity of
the LLCP temperature. This increase never becomes a divergence (which is a requirement
for a critical point) because the system crystalizes before reaching the hypotetical critical
temperature.
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Although of apparent agreement of LLCP scenario and experimental results, other sce-
narios have been proposed for describing the behavior of water in the supercooled region.
The stability limit/critical point free scenario (SL/CPF) [27,28], for example, claims that
no critical point exists and suggests that a order-disorder transition extends until regions
of the limit of stability of liquid-water. In a similar way, the singularity-free scenario [29]
defends that the increase in the response function of water in supercooled regions is just
a sharp increase but is not related to any critical point. Independently of scenario, the
different hypothesis states that, at low temperatures the water is composed by two dif-
ferent metastable liquids, a low-density liquid (LDL) and high degree of local tetrahedral
order [30,31], and a high-density liquid (HDL) with structure more disordered and higher
coordination number [32].

Independent of which scenario is correct, or even, which o them have more experimen-
tal evidences, it is well known that the water exhibits a considerable amount of unusual
behavior popularly, regarded as anomalies. The best known is certainly the anomaly in
the density. For normal liquids the density increases with the decrease of the temperature.
Water has a maximum in the density [4,5,20], Other examples of water anomalies are the
anomaly in the diffusion, in the translational order parameter, in the orientational order
parameter, in the viscosity, in the specific heat, in the surface tension, in the compress-
ibility, the relative permitivity, in the dieletric constant and in the solubility. In fact, the
literature reports more than 74 different water anomalies [1].

The existence of the anomalies can not be explained by a simple mechanism as van
der Waals theory. In the case of the anomalous liquids and in the particular case of water
two length scales are needed. The origin of these two length scales is the presence of
the hydrogen bonds in addition to the van der Waals interactions. But, what are the
hydrogen-bonds [1, 8] ? These structures appear (see figure 1.3) as a consequence of the
bonds between the oxygen and the hydrogen of distinct molecules. The figure 1.3 exhibits
a water molecule and its four hydrogen bonds with the neighboring water molecules. The
hydrogen of the upper and left molecules shares electrons of its valence shell with the
oxygen of central molecule, forming two bonds. In a similar way, each hydrogen of central
molecule shares its electron with the oxygen of the molecule below. In this sense, a central
molecule makes four hydrogen bonds, two as a donor and two as a receptor.

The set of four molecules of water receives the name of tetramers and as mentioned
previously, the arrangement between them is fundamental for understanding the origin of
water anomalies. These structures, show two distinct arrangements (see Figure 1.4 (A)),
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Figure 1.3 Tetrahedral structure of water. The
white spheres represent the hydrogen and the
gray spheres are oxygens. Dashed lines represent
the hydrogen bonds at distance 1.88Å.

one more dense, with high configurational entropy, in which the tetramers tend to be
closer to each other, and other forming a less dense structure, more organized and with
the tetramers more distant (see Figure 1.4 (B)).

Figure 1.4 Two possible configurations for the octamer. (A) Shows a close structure in which
the tetramers are non-bonded; (B) shows open structures and with bonded tetramers [1].

The competition of these two structures as the temperature is incresead leads to the
appearance of the density anomaly. At low temperatures, the tetrahedral structure remains
stable forming all the hydrogen bonds. However, the increase of the temperature distorts
its tetrahedral geometry sharing and breaking of the hydrogen bonds and as consequence,
approximating a fraction of neighbor water molecules. This phenomenon of the approxi-
mation of water particles, or in other words, increasing of the density with respect to the
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temperature receives the name of the anomaly in the density [4, 5, 20] and its behavior is
illustrated in the Figure 1.5. As the temperature increases even further entropic effects
dominates and the molecules become more appart, decreasing the density.
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Figure 1.5 Experimental data
water. Figure shows the maxi-
mum in density as function of tem-
perature T = 4◦C at pressure
of 1 atm. The figure was taken
from [4].

While the density anomaly assumes a central role in the thermodynamic anomalies
group, the diffusion represents a very important dynamic anomalous behavior. As illus-
trated in the figure 1.6, for low temperatures the diffusion coefficient increases with the
increase of pressure [5] while in normal materials the diffusion coefficient is a monotonic
decreasing function with the density (or pressure). The diffusion anomaly belongs to the
dynamical anomalies group and its origin is in sharing of the hydrogen-bonds. The in-
creasing of the pressure induces a partial approaching of water molecules by disrupting
hydrogen-bonds, increasing the displacement of the molecules.

As mentioned previously, in addition to density anomaly reported in the Figure 1.5, the
water also shows an anomalous behavior on its response functions, such as, specific heat
at constant pressure cp and isothermal compressibility κT . While usual liquids increase
monotonically their response functions with the increase of the temperature, the water
decreases its values until a specific temperature, T ∼ 35◦C for cp (see figure 1.7 (A)) and
T ∼ 46◦C for κT (see figure 1.7 (B)), and only after these temperatures, it acquires an
usual behavior in which they increase as the temperature goes up.

In addition the anomalies mentioned above, for the temperatures above the supercooled
(T > TM)regions, the response functions present a “divergent” behavior as shown on the
inset of Figure 1.7 (A) [1,33] and Figure 1.7 (B) [1,27] for specific heat and compressibility
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Figure 1.6 Diffusion coefficient ver-
sus pressure for different tempera-
tures. The large circles represent
the maximum in diffusion and the
dashed line connects these points [5].

respectively. The “divergent” behavior of cp and κT (see inset figure 1.7 (A) and (B)) are
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Figure 1.7 At figure (A) the dependence of specific heat at constant pressure and on inset
the same property at supercooled temperatures [1]. At (B) the thermal compressibility against
temperature and on inset is shown the peak in this property [1].

usually associated with the presence of criticality in this region, and for this reason is in
complete agreement with the SCPH.

Due to the difficulties of keeping water liquid in the “no man’s land”, computer simu-
lations have shown to be a powerful tool for the accessing this region. In this way, several
classical models of water have been proposed, for example, ST2, SPC, SPC/E, TIP3P,
TIP5P and SPC/Fw [34–38]. These models are commonly known as atomistic models
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since they are built atom by atom. In the SPC (Simple Point Charge) model for example,
the water molecule has three centers of concentrated charge, being the atoms H positive
and atom O negative. These sites are positioned in a trigonal geometry with O-H distance
equal to 95.48 pm and H-O-H angle equal to 109.42 degrees. The SPC/E, extended simple
point charge model is a slight reparameterisation of the SPC model of water, in which the
oxygen and the hydrogen charges present a modified value. Independently on the model
chosen, both of them show a good agreement with experimental results of the supercooled
water and water anomalies, being frequently used to analyze the thermodynamic, dy-
namic and structural anomalous behavior of water. The ST2 model [34,39] not only shows
liquid-liquid coexistence as well as, it presents an incredible agreement with experimental
results in relation to the changes in response function at vapor-liquid coexsitence [40] and
pressure-density phase diagram.

Even though atomistic models are a very interesting tool to reproduce the anomalies
of water, they are not able to identify its origin. They exhibit many parameters and the
complexity of these atomistic models hinders the detecting the main aspects responsible to
anomalous behavior. In order to explore the mechanism behind the presence of anomalies
and of the second critical point, the development of coarse-graining models has been an
interesting strategy.

These models are based on the idea that under the influence of the temperature,
tetramers of water move from opened structures to closed structures as shown in the
figure 1.4. This mechanism suggests that the interaction between the tetramers could be
represented by potentials with two scales. A given scale of the potential is identified as a
minimum on the potential curve. Consequently, a potential with two scales presents a local
minimum and a global minimum. The location and the characteristic values of different
scales of the potential, define the emergence of the competitive nature present in liquid
water [8, 41, 42].

The first two length scale potential was proposed by Stell and Hemmer [6]. They
developed a ramp like spherical symmetric potential as shown in the figure 1.8(A). Sub-
sequently, Jagla showed that this potential in three dimensions lead to the presence of
double criticality and anomalies similar to the water [7]. On basis of the assumption of
Stell and Hemmer, a number of spherical (symmetric) two length scales potential have
been proposed [8, 42–45]. Unfortunately, not all the two length scale potentials show the
presence of anomalies. If any of the two of the length scale potentials is too attractive (see
figure 1.8(B)) the anomalies will not be present. On the contrary, the cases in which the
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attractive scale is present, the double criticality appears. In addition, if the potential is
not smooth, the anomalies will also not be present, but double criticality appears [9, 43].

The success of the Jagla model led the development of more realistic smooth potentials.
Such models are also represented by two length scales potentials and are known as the core-
softened potential (CS). They do not represent a water molecule but clusters of molecules,
for example, the tetramers shown in figure 1.3. These potentials show a repulsive core with
a softening region when particles are very close and an attractive region particles are more
distant as shown in figure 1.9. In figure 1.9(A) is shown a two length scale potential with
a very weak attractive part in the spirit of the work of Bell [46] and Jagla [7]. Oliveira et.
al. [41,43] proposed a two length scale potential formed by a Lennard-Jones potential plus
a Gaussian. This combination results in a repulsive shoulder at short distances and an
attractive part at long distances being able to reproduce many features observed in liquid
water, such as anomaly in density, diffusion, translation order parameter and cascade
structure between the classes of anomalies. Following the well potential [9, 47] a smooth
version was proposed and analyzed by Franzese [9] and both are illustrated in the figure 4.1.
This potential, despite presenting a rather complex structure, it is able to reproduce the
anomalous behavior of water and also LGCP and LLCP.
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Figure 1.8 At (A) a two length scales potential purely repulsive [6]. At (B) two length
scales potential but with an attractive part [7].

Notwithstanding the relevance of the findings obtained with of the spherical symmetric
effective potential, they all do not exhibit the anisotropy present in the tetrahedral structure
of water. In order to circumvent this difficulty, a number of lattice models in which the
spherical symmetry is broken were developed. The pioneer model in this approach is the
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Figure 1.9 At (A) potential proposed by de Oliveira et. al. [8]. On inset is presented the force.
At (B) is represented a continuous potential with energy barrier more pronounced. This potential
was proposed by Franzese et.al. [9].

Bell-Lavis model [46,48]. This model and its variations are in two dimensions, the structure
of water is represented by two states variable. The interactions between water molecules
can be of two ways: van der Waals energy and a hydrogen-bond energy. Although of
simplicity and low number of adjustable parameters, this model is able to capture the
anomalous behavior of density and diffusion and also liquid phases [49, 50].

Following the ideas of Bell-Lavis [46], more recently was proposed the Associating Lat-
tice Gas (ALG) model. This model combines the occupational variables capable to produce
liquid-gas coexistence with arm variables that also lead to the density and the diffusion
anomalies [51–53] and in contrast to the Bell-Lavis, liquid-liquid phase coexistence. It is a
good example of two length scales potential in a lattice system where directionality is an
intrinsic ingredient. The inclusion of directionality adds orientational entropy and frustra-
tion, not present in the spherical symmetric systems. Therefore, when the properties of
water depend on the two aspects, the lattice model becomes a good tool for describing the
system. The similar idea gave rise to others directional water-like models [46]. An interest-
ing aspect of this class of the models is that due to excess of the symmetries and the degree
of freedom intrinsic these models move the second critical point predicted for water into
critical lines. Over time, other water lattice models were proposed, among them should be
mention the model proposed by Franzese and Stanley [54] and the Ciach et.al [55]. The
model of the Ciach [55] is an extension of the well known Blume-Emery-Griffthis model [56]
where the opened and closed structures of the tetramers of water are represented by two
different states. Through the mean-field approximation, they showed that the model repro-
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duce the TMD of water with quantitavive agreement and predicts the liquid-liquid critical
point.

1.2 Water confined

As mentioned previously, liquid water can not be experimentally observed in the “no
man’s land” due to the homogeneous nucleation phenomena and therefore, the existence of
the liquid-liquid phase transition can not be tested. In order to circumvent this difficulty,
experiments with confined water have been proposed [57, 58]. The idea behind the use of
confinement is that a wall disrupts the hydrogen-bonds, in which the formation of ice is
disturbed and then moveing the crystallization to lower temperatures in such a way that
liquid-liquid transition can be detected.

Then, experimental studies and computer simulations of confined water [11, 57, 59–
61] have shown that the water remains liquid in supercooled regions. This fact suggests
the possibility of detection of criticality. Even though confinement moves the melting
temperature it does not move it low enough to make possible to observe the LLCP. The
indirect measures are necessary. The experimental studies measure the diffusion coefficient
and observe a fragile to strong transition1 on crossing the Widom line [10] (the analytic
continuation of the coexistence line beyond the critical point) as illustrated in figure 1.10.
In addition to the possibility to test the LLCP hypothesis, the study of confined water also
has been used to modeling biological environment [62] and develop new nanomaterials [63].

Simulational studies of water confined between parallel plates are widely used in lit-
erature to represent both biological and nanoconfined systems [60, 64, 65]. In these cases,
the temperature of maximum density (TMD) moves to lower temperatures when compared
with the bulk temperature, and the system is structured in layers depending on the distance
of plates. Another type of confinement widely used in literature is the porous media 2. It
is an interesting alternative to represent the confined structure of the inner rocks on the
earth and in the cellulose in plants. In addition, the nanopores are the confined structures
used for testing the double criticality hypotesis [66].

1A fragile to strong , or just, fragile-strong transition, is characterized by a change in the diffusion
coefficient, from Arrhenius (D ∝ e1/T ) to non-Arrhenius.

2Along this text we will use synonyms of random porous media, such as porous matrix, nanoporous
matrices, disordered porous, disordered media etc.
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Figure 1.10 (A) A hypothetical phase diagram. The negatively sloped liquid–liquid co-
existence line generates a Widom line that extends beyond the critical point (filled circle),
suggesting that water may exhibit a fragile-to-strong transition for P < Pc (path α). (B)
A sketch of the pressure-temperature phase diagram for the two-scale Jagla model. Upon
cooling at constant pressure above the critical point (path α), the liquid changes, as the
path crosses the Widom line, from a low-density state (LDL - non-Arrhenius dynamics) to
a high-density state (HDL - Arrhenius dynamics) as the path crosses the Widom line. [10].

1.2.1 Porous media

Porous media also have shown an alternative not only to study confined water but also
to technological applications, such as gas storage, heterogeneous catalysis, activated carbon
fibers and silica gels. Computer simulations of fluids confined in disordered porous structure
are still a very difficult task. In general, the adsorption properties of this kind of systems
are exclusive to a given distribution of obstacles that compose the porous media [67]. For
this reason, the full understanding of the behavior of fluid adsorbed is necessary realize an
average over a representative sample of the disorder. The literature reports many different
techniques to generate the porous media. The most used technique consists in simulating
a gas with number of particles equal to number of obstacles of the porous media and after
a given number of simulation steps, the particles suffer a quench, in which they held fixed
on their positions. The simulation box is filled using a grand canonical simulation. This
procedure is then repeted in order to obtain different distribution of obstacles and therefore,
perform an average over the replicas. Another possibility is simulate a gas with number
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of particles equal to the number of obstacles plus number of particles of fluid. After a
given number of the simulation steps the obstacles are fixed on their positions, while the
particles of fluid are free to move in the porous media. In this case, the procedure also be
repeted to obtain more samples of porous media. Although of easy implementation, the
relaxation process and the average over replicas demand a very high computational cost,
and in some cases an unworkable task.

Computer simulations show that the effects of adsorption are strongly related to the
geometry of matrix [68]. Strekalova et.al. [11] studied a water-like model confined in
nanoporous matrices of different geometries as shown in the figure 1.11: a ordered (DIST)
and random distribution of obstacles (RND). In this work, they studied the influence of

Figure 1.11 At DIST
is shown a porous ma-
trix in which the posi-
tion of obstacles are ob-
tained by Gaussian dis-
tortion of a cubic lattice.
At RND the position of
obstacle are chosen ran-
domly [11].

geometry of porous matrix in a water-like model. They employed two different water-like
models for the interaction potential, a Jagla potential [7] as illustrated in the figure 1.8(B)
and a CS potential [9] as shown in the figure 4.1(B).

They show that the influence of obstacles on the TMD and LLCP of the fluid is strongly
related to the geometry of the system. In both cases the LLCP shifts to lower temperatures
and higher densities and pressures. However, in the disordered confining matrix case, the
shift of temperature is more pronounced than the density and pressure ones. They also
show that DIST geometry preserves the liquid-liquid coexistence, whereas the RND case
shrinks the region.

A similar idea was explored by Dominguez et.al [69]. Using molecular dynamics sim-
ulation, they studied the changes in the anomalous behavior of a water-like model [41],
illustrated in figure 4.1(A) due to confinement in disordered porous media. The interaction
beetwen obstacles (matrix) and fluid was modelled through the Lennard-Jones potential.
They showed that the anomalous behavior is suppressed by the influence of media, mainly
the diffusion anomaly. They also claim that is expected that all anomalies disappear if the
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density of the porous matrix is high enough.
Page et.al [12] performed Monte Carlo simulation for studing the effects of porous

media at vapor-liquid transition in Kaminsky-Monson molecular model [70]. They used
two types of porous media: disordered and face-centered cubic (FCC), as shown figure 1.12.
In accordance with other authors [11,69], they showed that the critical temperature moves
to lower temperatures when compared with the bulk temperature, but this effect is also
influenced by the geometry of matrix. As result the interaction between fluid-obstacles,

(A) (B)

Figure 1.12 Image taken from [12]. Gray large spheres represent the particles of the
matrix and black spheres represent the fluid. Two configurations of porous media were
explored in this work. At (A) is shown an FCC and at (B) a disordered configuration is
shown.

they showed that the temperature-density phase diagram is considerable changed, given
origin to a new phase and a new critical point, not present in the bulk might appear.

The effects of confinement of the porous matrix in water-like models are not a exclusivity
only of the continuous models. The study of this type of confinement is also used in lattice
models. In these cases, the obstacles are modeled as sites of lattice where the particles can
not assume. An example of this approach is reported in Ref. [13], for different fraction of
obstacles. The figure 1.13(a) and (b) illustrate the implementation of the matrix. They
observed that the disruption of the bonds, motivated by the placement of the obstacle,
decreasing the liquid-liquid coexistence and give origin to a second critical point, different
of the LLCP. This behavior is due to the suppression of the fluctuations of the system. The
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(c) (d)

Figure 1.13 Figure taken from reference [13]. At (a) snapshot of the region occupied
by the obstacle/repulsive nanoparticle. The small cian spheres represent water particles
and the colors on the bonds represent the possible state of the water particle.(b) Snapshot
of the system with 2.4% of its volume occupied by obstacles (large golden spheres) ran-
domly placed. (c) and (d) are fluctuations of volume and compressibility KT for different
concetrations of the obstacles respectively.

placement of obstacles in the system gives origin a different local ordering, since that the
domain of boundaries increase with the concetration and then decrease the fluctuations in
the response functions. The same is not true in the bulk system when a small variations in
the temperature induces a rapid change from ordered to a disordered configuration, given
rise a first-order phase transition.

1.3 Mixtures of associating fluids

Associating fluids is the nomenclature referred to the fluids composed of molecules
presenting associative interactions. An associative interaction in turn, is an attractive
interaction between two molecules which is both short ranged and highly directional. In-
teraction of this nature shows a saturation phenomena originated by the attractive and
repulsive parts of a particle. Hydrogen-bonded fluids, like water, ionic and organic liquids
are common examples of this group of fluid. Contained in the group of association fluids,
the mixture of water and organic molecules corresponds to a very emblematic example
of the real mixture. In this context, and motivated by its fundamental and technological
reason, the mixtures of water and methanol have been intensively studied.

Wada and Umeda [14] showed that the variation of the temperature of maximum density
of water moves to higher temperatures as the including of the solute, as shown in the
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figure 1.14. The variations in the TMD (∆TMD) are obtained by relation ∆TMD = TM−TW
where TM represents temperature of mixture and TW temperautre of water. For this reason,
the regions where ∆TMD > 0 represent the regions where the TMD increase front of the
insertion of the solute.

This behavior is quite unexpected, since the standard behavior of mixtures is decrease
the value TMD. In addition to this conclusion, they showed that the variation of the
temperature is strongly dependent on the size of the methyl group of the alcohol. In this

Figure 1.14 Experimental re-
sult displayed in reference [14].
The figure shows the varia-
tion in temperature of maxi-
mum density as function of the
solute fraction.

case, as higher the size of the methyl group, higher is the variation in the temperature of
maximum density. It is also possible to verify that the range in which the variation in TMD
is positive is equally affected by the size of the methyl group. In the figure 1.14 the curve
corresponding to the t-butanol shows the higher variations and the behavior resists only
for very low solute fractions. For the ethanol (red dash-dotted curve), in which the methyl
group is considerable lower than the t-butanol, the amplitude of the ∆T is lower, but the
positive values in ∆T resists for higher solute fraction when compared to the t-butanol.

The excess properties are also widely studied in this context. A given excess property
AE of a mixture can be obtained by

AE(x2, p, T ) = A(x2, p, T )−
[
x2A

0
2(p, T ) + (1− x2)A0

1(p, T )
]
, (1.1)

where A(x2) is the value of the property A in the real mixture at solute fraction x2, pressure
p and temperature T and A0

2 and A0
1 are the value of property A of the solute and solvent

in an ideal mixture respectively. A solution is called ideal if each component of the mixture
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fulfills a relation like, Ai = xiA
0
i

3. Although there is not, actually, ideal mixtures, some
mixtures presents a behavior very close to that described by Raoult’s law. Unfortunately,
mixtures of the associating liquids can not be, in general, described by this law. The
interactions intermediated by short-range attractive potentials and strong directionality
(e.g. hydrogen-bonds) confer a particular unusual feature to the mixture.

Experimental results for this mixture show that the excess enthalpy [15] and excess
volume [16] present a non-monotonic behavior in relation to the solute fraction. The
excess enthalpy for example, decreases until methanol fraction close to xMe = 0.35 and
from this value, increase until become an ideal mixture (see figure 1.15(A)). The excess
volume in turn, shows a minimum for methanol fractions close to xMe = 0.52 [16] (see
figure 1.15(B)).
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Figure 1.15 (A) Excess enthalpy versus alcohol fraction. The squares and the circles are
experimental data for ethanol and methanol respectively [15]. At (B) Excess volume as function
of methanol fraction. Circles are experimental data [16].

Similar to reported in excess enthalpy and volume, the specific heat also presents a
nonideal behavior in relation to methanol fraction. The excess specific heat at constant
pressure presents a maximum for low methanol fractions, x2 ∼ 0.16 [71, 72] as shown in
figure 1.16. Is possible to list several properties that in a mixture of associating fluids
exhibit an unusual behavior, the excess free-energy for example also belongs to this group.
This property presents a harmonic dependence in relation to the methanol fraction [73].

In the last years, distinct approaches have been used to study the properties of this
kind of mixtures. The statistical associating fluid theory (SAFT) and computer simulations
have been shown a poweful tool to describe the liquid structure of the associating fluid. In

3Initially the Raoult’s law was written in terms of the pressure, pi = p0ixi
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Figure 1.16 Experimental
data of excess specific heat at
constant pressure in function
of methanol fraction. The
blue circles are experimental
data and solid line works as a
guide for eyes.

this context of the SAFT theory, the Helmholtz free energy is expressed as an appropriate
functions of the parameters and number of different segments representing the chemical
groups that make up the molecules. Despite applicability and accuracy of this theory in
the description of the phase equilibrium of the associating fluids and their mixtures, in
general for a good accuracy of thermodynamic behavior of these systems is necessary to
use the experimental or/and simulation data.

Traditionally, these type of problems are performed through sophisticated computa-
tional molecular models. To represent the water several models are used, among then
SPC/E [36], ST4 [74] and TIP5P [37], on the other hand, to represent the organic molecule,
in general, are used force fields such as OPLS (Optimized Potential for Liquid State) and
TraPPE (Transferable Potentials for Phase Equilibria). In this direction Bakó et.al. [17]
showed that with the increasing of alcohol fraction, the structure of water maintain its
tetrahedral structure, however, the number of hydrogen-bonds is substantially reduced.
(see figure 1.17). In a similar way, using classical MD simulations, Allison et.al [18] showed
that not only the hydrogen-bonds decreases, but the water molecules are divided into rings
and cluster, as well as reported experimentally by Dixit et.al [75].

Analysis of spatial distribution function [76] showed that the system is highly structured
around of hydroxyl group and the methanol molecules are solvated by water molecules.
Face of the difficulty to describe the behavior of water-methanol mixtures by the standard
atomistic models, González et.al [19] proposed a new force field based on TIP4P/2005
+ OPLS/2016 to describe the excess properties and the variations on the TMD of the
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(A) (B)

Figure 1.17 At (A) the gray lobes represent the spherical distribution function of water
molecules around a central water molecule at rOw...Ow ≤ 3.5. The cases I,II,III and IV
represent methanol fractions of xm = 0, 0.1, 0.5 and 0.9 respectively [17]. At (B) is shown
a water-methanol mixture with methanol fraction of 0.70. The blue spheres represent
the water oxygen atoms and sticks represent the methanol molecules. Dashed blue lines
indicate the hydrogen-bonding [18].

mixture. In general terms, the model proposed in the reference [19] is based on the fit
the cross interaction parameters from the experimental excess properties over the whole
composition range. The fit procedure was made expressing the dependence of the hE and
vE with the composition through the Taylor expansion. With these values, they develop
a force-field that can precisely reproduce the thermodynamic properties of the methanol-
water system for any composition. The results of this model can be shown in the figure 1.18.
The mixture rules added with the new force-field reproduce quantitatively well the excess
enthalpy and volume (for volume see the reference [16]), while the excess isobaric molar
heat capacity exhibits a quantitative agreement only for low solute fractions. Based on
the success of their model on the describing the excess thermodynamic of the mixture,
they studied the variations in the TMD(see figure 1.19). In the figure 1.19 we observe that
the model has not the same succes on the description the shift in the TMD. In all models
studied by then, the shift in the TMD ∆T , are in disagreement with experimental behavior
in the temperature, exhibiting deviations amounting to about 300% at x2 = 0.05.

Front of the difficult to reproduce the excess thermodynamic and the variations in the
TMD of water by the classical atomistic models and added to this, the high computational
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Figure 1.18 (Left) excess enthalpy for the water methanol mixture and (Right) excess
isobaric molar heat capacity cEP . Filled squares correspond to simulations with the Lorentz-
Berthelot combining rules for the water-methanol interactions and empty squares are re-
sults obtained with the model developed in this reference [19]. Full line represent experi-
mental data in both figures.

Figure 1.19 Difference ∆T be-
tween the TMD of the mixture
and that of pure water plot-
ted as a function of methanol
mole fraction x2. Simulation re-
sults for the OPLS+TIP4P/2005,
the L2+TIP4P/2005, and the
OPLS/2016+TIP4P/2005.
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cost of these models, different alternative have been proposed, among them, the simplified
models with effective potentials assume an essential role. In this approach, the water is fre-
quently represented by the potentials mentioned in the Section 1.1, whereas the alcohol par-
ticle are represented by a chain formed by attractive and repulsive sites. For the methanol
for example (the most simple alcohol molecule) the molecule is frequently represented by
a dimer, in which one of the particle of dimmer represent the methyl group and other
represent the hydroxyl group. In this approach different combinations of hydroxyl-methyl
potentials have been proposed. Using a Jagla [7] like potentials for the hydroxyl group
and a hard sphere potential for methyl group, Suet. al. [77] obtain, for a set of parameters
studied, a good agreement of excess volume with experimental (see figure 1.20) however,
for TMD, their results diverge of the behavior expected for water-methanol mixture [14].
Some of the discrepancies, the authors attribute to the potential used to methanol-like
particles, was the same of water particles.

In a similar direction, Su et.al studied the mixture of water and alcohol where the
alcohol is represented by an amphiphilic dimer. The idea of this paper is to reproduce the
methyl group of an alcohol by a repulsive particle of the dimer and the hydroxyl group
of by an attractive particle of the dimer. The water particles are modeled by a sphere
represented by a Jagla potential [7]. In this approach different combinations of hydroxyl-
methyl potentials have been proposed. Using a Jagla [7] like potentials for the hydroxyl
group and a hard sphere potential for methyl group, Su et. al. [77] obtain, for a given set
of parameters studied, a good agreement of excess volume with experimental result (see
figure 1.20), where the excess volume exhibits a minimum at fractions of ϕ = x2 = 0.5

as shown also in the figure 1.15(B). This result reflects that despite the simplicity, the
universal ingredients that give origin to the minimum in the excess volume are captured by
the model. The same thing does not happen with the TMD. The variations ∆T in relation
to the pure water show negative values, diverging of the behavior expected for water-
methanol. The authors attribute the discrepancies between experiment and model to the
similarities between potential used to represent the distinct species of the system. Similar
idea was explored by Hus et. al. [78,79], where the hydroxyl group and water particles are
modeled by CS potentials and the methyl group is represented by Lennard-Jones potential.
They observe a good agreement with the excess volume but the for enthalpy, the behavior
of the model is somewhat different of experimental data. They also studied the effects of
methanol on TMD of the model, and differently of reference [77], they obtain a qualitative
behavior, similar to experimental results [14].
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Figure 1.20 At (A) The excess volume versus methanol volume fraction. Symbols rep-
resent simulation data and solid lines are guides of eyes. At (B) variation of TMD versus
the methanol fraction at different pressures. Methanol fraction of mixture, at different
pressures.

Given the impossibility to obtain a universal argument that connect the changes in the
excess thermodynamic and the shape of the interaction parameters, Fujiharaet. al. [80]
studied the excess thermodynamic behavior for a mixture of LJ particles subject to different
mixture rules. They adopted four distinct cases given by

εA12 = ε11 A(association) (1.2)

εLB12 = (ε11 × ε22)1/2 LB(Lorentz− Berthelot) (1.3)

εID12 =
(ε11 + ε22)

2
ID(quasi− ideal) (1.4)

εS12 = ε22 S(solvation) (1.5)

(1.6)

where the subindex 1 and 2 represent the specie of the particle involved in the mixture
and εA12 < εLB12 < εID12 < εS12. In the Figure 1.21(A) is shown the excess volume. Just the
case A the excess volume is able to assume positive values, but its absolute value is four
times lower than that of the case S for example. The excess volume curves are so negative
the higher the cross interacions. It can be understood through the argument that with
more strong cross-interactions, particles of different types will be more close, reducing the
volume of the mixture in relation to the ideal mixture. In relation to the excess enthalpy,
the effects of the temperature are more modest and the cases LB and ID have a behavior
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Figure 1.21 (A) V E
p and (B) HE

p . Filled markers and solid lines represent T = 90K and p =
0MPa. Open markers and dashed lines represent T = 100K and p = 0MPa. Blue circles represent
association (A), green diamonds represent Lorentz-Berthelot (LB), blue squares represent quasi-
ideal(ID) and red triangles solvation(S).

almost ideal. The maximum value assumed in theses cases is 66J/mol. For the cases A and
S the system show a strong non-ideal behavior, assuming a parabolic behavior. Although
of very generic, the results showed above show a tendence of how the excess properties of
a binary mixtures changes as function of the attractive part of interaction potential.

1.4 Objectives and organization of the thesis

This thesis is divided in two parts characterized by two distinct problems. In the first
part we dedicate to understand the changes in the thermodynamic, dynamic and structural
properties of a lattice water-like model when it is subject to a disorder. The disorder
adopted here is a random quenched disorder, commonly referenced by porous media. In
this part we obtain the phase diagram of system and study the critical, dynamical and
thermodynamical properties of system for different densities of the disorder/obstacles. The
details and results of this work can be seen in the Chapter 2 and were published in the
reference [81].

The second part we studied the properties of mixture of water models and different
solutes. In this part we divided in two different approachs, for the first we studied the
effect of the attractive and repulsive interactions in the excess properties of a water-solute
mixture. Here, both water and solute, are represented by a three-dimensional lattice model.
The details and results for this part of work can be seen in the Chapter 3 and were published
in the reference [82]
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The third part of this thesis and then the third Chapter, we extend our study about
the aqueous mixtures studing the effects of size of solute in the excess properties of the
system. In this work use a two length scale potential to model the water and dimers
represented by a repulsive particle and CS particle. We studied here, two solutes, one with
a big hydrophobic particle and other with a small hydrophobic particle. The details and
results for this part of work can be seen in the Chapter 4 and are submitted to publication
on the Journal Chemical Physics.

Afther these three chapters we ends this thesis with the general conclusions shown in
the Chapter 5 and one appendices for explain with more details some thecniques used in
this thesis.
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Chapter 2

Influence of disordered porous media on
the anomalous properties of a simple
water model

The thermodynamic, dynamic and structural behavior of a water-like system confined
in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two
dimensional associating lattice gas model that exhibits density and diffusion anomalies, in
similarity to the anomalies present in liquid water. The matrix is a triangular lattice in
which fixed obstacles impose restrictions to the occupation of the particles. We show that
obstacles shortens all lines, including the phase coexistence, the critical and the anomalous
lines. The inclusion of a very dense matrix not only suppress the anomalies but also the
liquid-liquid critical point.

2.1 The Model

The ALG model is defined in a triangular lattice, in which each accessible site i can be
empty or occupied by a water molecule. Empty sites have σi = 0 while occupied sites have
σi = 1. Each water molecule has orientational states represented by the variable τ that
presents six arms, being two inert arms with τi = 0 and four active arms with τi = 1. They
represent the possibility of a molecule to form hydrogen bonds with up to four neighbor
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molecules. The two inert arms are diametrically positioned, in such a way that there are
just three different orientational states. Fig. 2.1 exemplifies the geometry of the model.

τ
(4)
i = 0 τ

(1)
i = 0

τ
(3)
i = 1

τ
(6)
i = 1

τ
(2)
i = 1

τ
(5)
i = 1

σi Figure 2.1 The occupational and ori-
entational states of a molecule at the
site i. The arms variables are: τ (1)

i = 0,
τ

(2)
i = 1, τ (3)

i = 1, τ (4)
i = 0, τ (5)

i = 1,
τ

(6)
i = 1.

A bond is formed only when the active arms of two neighbor molecules point out to
each other, namely τiτj = 1. In this case, the interaction energy between two bonded arms
reads −v while non bonded arms contribute with a higher energy of −v+ 2u (punishment
for non forming hydrogen bonds). The Hamiltonian of the system is given by

H = 2u
∑

〈i,j〉
σiσj

[(
1− v

2u

)
− τiτj

]
− µ

∑

i

σi . (2.1)

The phase behavior of the system in the absence of obstacles was already analyzed in
a previous publication [51] and it is reviewed as follows. At ground state, T ∗ ≡ T/v = 0,
the grand potential per site is Φ = e−µN where e = 〈H〉 /L2. At low chemical potentials,
the lattice is empty and the system is constrained in gas phase, ρ = 0. In this phase the
grand potential is ΦGAS = 0. Increasing the chemical potential the system reaches a point
at which the gas phase coexists with a low density liquid phase (LDL). In this phase, the
density is ρ = 3/4 and each particle forms four hydrogen bonds with its neighbors, resulting
in a grand potential per site ΦLDL/L

2 = −(3/2)v− (3/4)µ and consequently in a gas-LDL
coexistence chemical potential µ∗G−LDL = µG−LDL/v = −2. For high chemical potentials,
all sites of lattice are occupied by particles, resulting in a density ρ = 1 and grand potential
per site ΦHDL/L

2 = −3v+ 2u− µ. The coexistence between the LDL phase and the HDL
phase occurs at µ∗LDL−HDL = µLDL−HDL/v = 8u/v − 6. The main features of LDL and
HDL phases are exemplified in Fig. 2.2 for two possible configurations at T ∗ = 0.

At temperatures T ∗ ≡ T/kBv > 0, the model was also already analyzed by Monte
Carlo simulations [51]. The chemical potential versus temperature phase diagram is shown
in the Fig. 2.3(a).
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(a) (b)

Figure 2.2 Examples of a configuration for the HDL (a) and LDL (b) phases for the Associating
Lattice Gas (ALG) model. The solid and dashed lines indicate the bonding and inert arms,
respectively.

The gas-LDL and LDL-HDL transition lines are first-order transitions, ending in re-
spective the tricritical points T ∗c1 and T ∗c2, respectively. These two tricritical points are
connected by a line of continuous transitions, the λ−line. For the ALG model with no
obstacles the tricritical temperatures, T ∗c1 = 0.65 and T ∗c2 = 0.65, respectively. In order to
understand the differences between the LDL and HDL phases, the lattice as shown in the
Fig. 3.2(a) is divided in four sublattices as illustrated in the Fig. 3.2(b). The LDL phase is
characterized by one of the sublattices being empty while all the others are filled, in such
a way that the transition to the HDL phase occurs when the empty sublattice is filled.
Also, it is signed by a rotation in the inert arms, in which in the HDL phase they are
all parallel. In the LDL phase, each particle forms four bonded arms that show a zigzag
structure, whereas in the HDL phase each particle also forms four bonded arms but with
parallel lines.

The density of bonds, is also an important quantity for characterizing the phase tran-
sitions and can be obtained by

ρhb =
1

L2

L2∑

i=1

∑

i+δ

σiσi+δτiτi+δ. (2.2)

At T ∗ = 0 the gas, LDL and HDL phases has ρhb reading 0, 1.5 and 2,respectively. Thus
the phase transitions are also signed by changes in the fraction of hydrogen bonds. At very
high temperature the system is disordered. The sublattice occupations do not exhibit any
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Figure 2.3 For the ALG model, panel (a) shows the phase diagram µ∗ vs T ∗ , illustrating the
gas-LDL (empty circles) and the LDL-HDL (filled circles) phase transitions, the λ-line (empty
squares) and the TMD line (filled triangles). In panel (b) we plot the c∗V versus T ∗ for µ∗ = −0.80
(circles), µ∗ = 0.60 (diamonds) and µ∗ = 1.20 (squares). In (c) the system density ρ versus T ∗

for fixed µ∗along the TMD line (dashed line).

ordering. By lowering T ∗, the λ-line is crossed, which one sublattice is emptied and the
others remaining filled with an reorganization of the inert arms that form the above ordered
zig-zag structure. This the λ−line transition is identified by the peak of the specific heat
at constant volume cV [51].

In this work the disordered porous media is introduced by considering fixed obstacles
that are randomly distributed in the lattice. Each obstacle occupies a single site and
interacts with the particles via a “hard core” constraint. The density of obstacles is given
by ρo = No/L

2 where No is the number of obstacles and L2 is the system volume. In Fig.
3.2(a), a lattice configuration composed of water, obstacles and empty sites is exemplified.
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Figure 2.4 (a) shows a lattice configuration where the solid gray, the solid black and the dashed
circles describe water molecules, obstacles and empty sites respectively. For clarity, the bonds are
not shown. (b) shows a lattice configuration with the subdivision in four sublattices.

2.2 The Methods and Simulation Details

Numerical simulations have been performed for the triangular lattices of size L = 35

and periodic boundary conditions. Three representative values for the density of obstacles
ρo = 0.08, 0.24 and 0.40 have been considered.

In all cases, we have used 106 Monte Carlo (MC) steps to equilibrate the system and
106 MC steps for evaluating the relevant quantities. Each Monte Carlo step is defined as
the number of L2 trials for generating new configurations, including the choice of empty
sites and water molecules. Additional simulations for L = 24, 35, 40, 56 and 80 and finite
size scaling analysis were performed in order to study the critical lines and to test size
effects in the porosity.

All the thermodynamic properties have been obtained by performing grand canonical
Monte Carlo (MC) simulations for fixed T ∗, µ∗ ≡ µ/v and ρ0 [47]. Microscopic configura-
tions are generated according to the Metropolis algorithm [83] described as follows. First,
the obstacles are randomly distributed. Then, a site k not occupied by an obstacle is ran-
domly selected. If the site k is not occupied, an attempt to occupy the site with a water
molecule in a randomly selected arm orientation is made. If the site k is already occupied
by a water molecule one of the following actions are tried: to empty the site or to change
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the arm configuration of the water molecule to one of the other two possible states. Next,
to accept or not the attempts to change the site occupation, the energy difference ∆H
between the original and the new configuration is computed. The configuration change is
accepted according to the Metropolis prescription min{1, e−β∆H}, where β = 1/kBT . As
mentioned previously, this process is first repeated 106 times without computing and after
this, thermodynamic quantities are averaged over 106 Monte Carlo steps.

Some remarks over the obstacles distributions are required. In principle, a random dis-
tribution might lead to statistical problems. According to some works [84,85], systems with
random disorder loose the self-averaging and averages over many distributions of obstacles
are required. However, this affects mainly the computation of critical temperatures and
exponents. In the present case, by performing tests with different random distributions
of obstacles, we have verified that the tested temperatures and chemical potentials led to
results not sensitive to the specific distribution of obstacles. Then, for simplicity only one
random distribution was employed. For calculating the critical λ-line, we considered the
peak of the specific heat at constant volume, given by

cV =
1

V T 2

[
〈
δH2

〉
gcan
−
〈δHδN〉2gcan
〈δN2〉 gcan

]
+

3NkB
2V

(2.3)

where δX = X − 〈X〉 with X = H and N and averages are evaluated in the ensemble of
T, µ fixed. The chemical potentials and temperatures of the λ−line were obtained through
the finite size scaling analysis of cV employing L = 24, 35, 40, 56 and 80.

In addition to the thermodynamic quantities, the influence of obstacles in the dynamic
properties was also investigated. Since we perform Monte Carlo simulations, the dynamics
is characterized through the diffusion coefficient D given by Einstein’s relation

D = lim
t→∞
〈∆r(t)2〉

4t
, (2.4)

where 〈∆r(t)2〉 = 〈(r(t)− r(0))2〉 is the mean square displacement per particle and time is
measured in Monte Carlo steps. Although the diffusion coefficient (measured under Monte
Carlo simulations) is a stochastic dynamics and not a real space mobility, it is possible to
associate the former with the concept of diffusion anomalous like the behavior observed in
liquid water [52]. The numerical MC procedure for calculating the diffusion is described as
follows. First, the system is equilibrated by employing the previous Metropolis dynamics
for fixed T ∗ and µ∗. After the equilibrium is reached, an occupied site i and it’s neighbor
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j are chosen randomly. In case of neighbor site j be empty, the molecule moves to the
empty site also following the above Metropolis prescription min{1, e−β∆H}, where ∆H is
the difference of energy due to the movement. A Monte Carlo step t is defined through
the number of trials of movement for all system particles. After repeating this algorithm
nt times, where n is the number of molecules in the lattice, the diffusion coefficient is
calculated from Eq.(2.4). Here we employ t = 800 for the evaluations.

2.3 Results

2.3.1 Structural and thermodynamic behavior

First, let us exam what happens with the phases present in the system as the obstacles
are introduced. Fig. 2.5 shows the water density ρ, versus the reduced chemical potential
µ∗, for distinct porous densities at the fixed temperature T ∗ = 0.40. Figure 2.5 also shows
that for T ∗ = 0.40 the gas-LDL phases exhibits a smaller hysteresis loop when compared
with the LDL-HDL transition. This indicates that the gas-LDL free-energy barrier is
smaller than the LDL-HDL barrier. This also reflects in the difference between the gas-
LDL critical temperature, T ∗c1, that is smaller than the LDL-HDL tricritical temperature,
T ∗c2. The size of the hysteresis loops change with the temperature and lattice size but in
all the analyzed cases the gas-LDL is much smaller than the LDL-HDL loop.

The inclusion of obstacles changes the temperature and chemical potential locations of
the gas-LDL and the LDL-HDL phase transition. In particular, the increase in the number
of obstacles leads to the disruption of the hydrogen bonds, decreasing the free-energy
barriers separating the coexisting phases. This explains the decrease in the hysteresis loop
when obstacles are included. In addition, the density gap between the two liquid phases
becomes less abrupt and the inclusion of obstacles moves the transition points to larger
chemical potentials.

Figs. 2.6, 2.7 and 2.8 illustrate the chemical potential versus temperature phase di-
agrams for ρo = 0.08, 0.24 and 0.40, respectively. In particular, by increasing ρo the
tricritical points T ∗c1 and T ∗c2, in which the gas-LDL and LDL-HDL coexistence lines meet
the λ−line, decreases as shown in Figs. 2.6 , 2.7 and 2.8. More specifically, while for the
system without obstacles the gas-LDL tricritical point is located at Tc1 = 0.65, it moves to
T ∗c1 = 0.60, 0.55 and 0.52 for ρo = 0.08, 0.24 and 0.40, respectively.

This scenario becomes even more drastic in the case of the LDL-HDL phase transition.
The tricritical point not only decreases its value from T ∗c2 = 0.825 (no obstacles) to Tc2 =
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Figure 2.5 ρ vs µ∗ for distinct porous densities ρo for T ∗ = 0.40.

0.57 and Tc2 = 0.52 for ρo = 0.08 and 0.24, respectively but the critical line disappears for
ρo = 0.40, implying the absence of liquid-liquid transition line.

The changes in the transition points can be understood by verifying that the inclusion
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Figure 2.6 For ρo = 0.08: (a) Chemical potential µ∗ versus reduced temperature T ∗ phase
diagram showing the Gas-LDL (empty circles), the LDL-HDL (filled circles) phase transitions,
the λ-line (empty squares) and the TMD line (filled triangles). (b) Specific heat at constant
volume cV versus T ∗ for the system with obstacles (filled squares) and system with no obstacles
(empty circles) at µ∗ = −1.00. Panel (c) ρ versus T ∗ for µ∗ = 0.0, . . . , 2.2 showing the TMD line
(dashed line).

of obstacles suppress partially the structured patterns found in the LDL and HDL phases
(see e.g Fig. 2.2(a) and (b) for the zero obstacle system). In the case of the LDL phase the
ordered structure is distorted as ρo increases, as illustrated in the Fig. 2.9 for µ∗ = −0.5.
For the lowest case ρo = 0.08, the degree of confinement is low and most occupied sites
preserve at least three bonds. As ρo is raised (here exemplified for ρo = 0.24 and 0.40)
the fraction of disrupted bonds increases, reaching a limit in which the connectivity of
the network is lost. Similar effect is verified in the HDL phase, but the effect is more
pronounced in such case. This can be understood by recalling that in the LDL phase,
obstacles occupy partially empty sites with neighboring molecules not forming hydrogen
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Figure 2.7 For ρo = 0.24: (a) Chemical potential µ∗ versus reduced temperature T ∗ phase
diagram showing the Gas-LDL (empty circles), the LDL-HDL (filled circles) phase transitions,
the λ-line (empty squares) and the TMD line (filled triangles). (b) Specific heat at constant
volume cV versus T ∗ for the system with obstacles (filled squares) and system with no obstacles
(empty circles) at µ∗ = −1.00. Panel (c) ρ versus T ∗ for µ∗ = 0.0, . . . , 2.0 showing the TMD line
(dashed line).

bonds. Thus, the disruption of hydrogen bonds is more relevant in the HDL phase.
This lost of connectivity also explains why the transition from the disordered structure

to the LDL through the λ-line occurs for lower temperatures when compared with the
temperatures obtained for the system with no obstacles. For example, for µ = −1 and
distinct obstacle densities ρo = 0.08 and ρo = 0.24, analysis of the peak of c∗V show
(in all cases) a scaling with L−1, from which we obtain the critical temperatures T ∗c =

0.795(1) and 0.717(1), respectively. These estimates are lower than 0.866(1), obtained for
the unconfined system. This transition is a order-disorder transition in which one of the
sublattices becomes empty while the others are filled, consequently the increase of number
of obstacles increases the entropy by breaking bonds what favors disordered phase.

Thus, all transition points, move for lower temperatures as a way for "compensating"
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Figure 2.8 For ρo = 0.40: (a) Chemical potential µ∗ versus reduced temperature T ∗ phase
diagram showing the Gas-LDL (empty circles), the LDL-HDL (filled circles) phase transitions,
the λ-line (empty squares) and the TMD line (filled triangles). (b) Specific heat at constant
volume cV versus T ∗ for the system with obstacles (filled squares) and system with no obstacles
(empty circles) at µ∗ = −1.00. Panel (c) ρ versus T ∗ for µ∗ = 0.0, . . . , 2.0 showing the TMD line
(dashed line).

the above increase of disorder. In other words, due to the inclusion of obstacles, the
structured phases exist only for lower temperatures than in the unconfined system, whose
decreasing become more pronounced as ρ0 increases. Finally, for high density of obstacles
the λ-line transition is destroyed by destroyed of fluctuations. The last comment concerns
in the comparison between the TMD as ρ0 increases, as shown in Fig. 2.10. As for the
transition lines, the TMD shortens and move for lower temperatures (with maximum ρ

decreasing) as ρ0 increases. However, in contrast with previous results, for ρ0 = 0.40 a tiny
TMD (ranged from T ∗ = 0.50 to 0.70 with ρ = 0.56 to 0.64) is verified.
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(c) (d)

Figure 2.9 Spatial snapshot (35 ×
35 sites) of triangular lattice. Each
site is represented by hexagon, with
its six nearest-neighbor sites. White
hexagons represent vacancies, black
represent obstacles and gray represent
water-like particles. The snapshots ex-
hibit character configurations of sys-
tem with chemical potential µ∗ = −0.5
and temperature T ∗ = 0.3. In (a) we
present the unconfined system. In (b)
the system submitted at low degree of
confinement ρo = 0.08 and the blue
rectangles denote the regions where the
characteristic geometry of LDL of ALG
is preserved. In (c), intermediate de-
gree of confinement ρ = 0.24, and green
rectangles denote the LDL structure.
The highest degree of confinement ρ =
0.40 is shown in (d).
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Figure 2.10 Chemi-
cal potential versus tem-
perature illustrating (a)
the TMD lines (b) the
gas-LDL tricritial point
(c) the LDL-HDL criti-
cal point values for the
unconfined (circles) and
the system with differ-
ent concentrations of ob-
stacles. The symbols
squares, triangles and
diamonds correspond to
the ρo = 0.08, 0.24 and
0.40, respectively.
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2.3.2 Diffusion and dynamic anomaly

Besides the influence of the immobile obstacles in the thermodynamic quantities, an-
other relevant question concerns what happens with the water mobility as the density of
obstacles increases.
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Figure 2.11 Diffusion
coefficient versus density
at fixed temperatures
for: (A) ρo = 0.08, (B)
ρo = 0.24 and (C) ρo =
0.40. The solid gray
lines are the values of
the diffusion coefficient
for T ∗ = 0.30 . . . 1.00
with ∆T ∗ = 0.05 (from
bottom to top), the blue
dashed and dot-dashed
lines connect the mini-
mum and maximum in
D respectively.

Fig. 2.11 shows the diffusion coefficient computed using Eq. (2.4) for different T ∗’s
and ρ0’s. Similarly with what happens for the ALG model with no obstacles, the diffusion
coefficient presents a region in densities in which D increases with ρ. This is the so called
diffusion anomaly also present in water. The addition of obstacles shrinks the region in
temperatures and pressures in which the diffusion anomaly is present and for ρo = 0.40 no
diffusion anomaly is observed.

The dynamic anomaly depends crucially of the presence of a high number of neighbor
sites occupied by the fluid [86]. The obstacles make this difficult and for a very high number
of obstacles, the mobility becomes even impossible.

Since for water-like systems, typically the region in the µ∗-T ∗ phase diagram in which
the density anomaly is present is close to the region where the diffusion anomaly appears.
Therefore one expects that the suppression of the first is directly related to the disappear-
ance of the other.
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2.4 Conclusion

The effects of fixed obstacles in thermodynamic and dynamic properties of an simplified
water-like model have been investigated. For low degree of confinement, the thermody-
namic, structural and dynamic properties of model are almost totally preserved due to the
low steric effects. For intermediate case, ρo = 0.24, the system suffers significant changes
such as, the decrease of the critical and tricritical points to lower temperatures, resulting
in a reduction of coexistence regions. This effect is more dramatic for the liquid-liquid
coexistence that disappear for ρo = 0.40. The density and diffusion anomalous regions are
also shifted to lower temperature, keeping the reduction in temperature-chemical potential
phase diagram. The disappearance of the liquid-liquid temperature also reflects in the ab-
sence of density and diffusion anomalous regions in the limit of large density of obstacles.
Both effects are related to both the entropy increase due to the presence of the obstacles
and the disruption of the bonds network.

This work is published at : Phys. Rev. E 92, 032404 (2015)
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Chapter 3

Lattice Model for water-solute mixtures

This chapter is dedicated to N. G. Almarza
In memoriam

A lattice model for the study of mixtures of associating liquids is proposed. Solvent
and solute are modeled by adapting the associating lattice gas (ALG) model. The nature
of interaction solute/solvent is controlled by tuning the energy interactions between the
patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic,
inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out
and the behavior of pure components and the excess properties of the mixtures have been
studied. The pure components: water (solvent) and solute, have quite similar phase dia-
grams, presenting: gas, low density liquid, and high density liquid phases. In the case of
solute, the regions of coexistence are substantially reduced when compared with both the
water and the standard ALG models. A numerical procedure has been developed in order
to attain series of results at constant pressure from simulations of the lattice gas model in
the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy
as the function of the solute fraction have been studied for different interaction parame-
ters of the model. Our model is able to reproduce qualitatively well the excess volume
and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the
model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols
and amines. The inert case reproduces the behavior of large alcohols such as, propanol,
butanol and pentanol. For the last case (hydrophobic), the excess properties reproduce
the behavior of ionic liquids in aqueous solution.
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3.1 The Model

We consider three systems: pure water, pure solute and water-solute mixture. In the
three cases, the system is defined on a body-centered cubic (BCC) lattice. The use of the
same model for describing the solvent and the solute aims to: identify that the anomalous
properties of these systems are related to the presence of hydrogen bonding and to identify
the differences in the behavior of the excess properties with the solute-solvent interaction.
In our model sites on the lattice can be either empty or occupied by a water or by a solute
molecule. Particles representing both water and solute molecules carry four arms that
point to four of the nearest neighbor (NN) sites on the BCC lattice as illustrated by the
figure 3.1. The interactions between NN molecules are described in the framework of the
lattice patchy models [87]. The particles carry eight patches (four of them corresponding
to the arms in the ALG model), and each of the patches points to one of the NN sites
in the BCC lattice as illustrated in the figure 3.1. The water molecules have two patches
of the type A (donors), two patches of the type B(acceptors) and four patches of the
type D (which do not participate in bonding interactions). The patch D represents the
non-bonding interactions that are usually represented by the short-range van der Waals
interaction. Since the patches of the types A and B participate in the hydrogen bonding,
a water molecule can participate in up to four hydrogen bonds. The structure of the solute
is similar to the structure of the water, but it has only one patch of type A, the other patch
A is replaced by a patch of the type C that represents the anisotropic group which makes
water and the solute different. In the case in which the solute is the methanol C is the
methyl group while for other alcohols and ionic liquids it does represent larger chains.

The distinction between patches implies 12 possible orientations for the water molecules
and 24 possible orientations for the solute molecules.

The potential energy is defined as a sum of interactions between pairs of particles
located at sites which are NN on the BCC lattice. The interaction between particles i and
j, which are NN, only depends on the type of patch of particle i that points to particle j,
and on the type of patch of particle j that points to particle i. The values of the interaction
as a function of the types of the two interacting patches are summarized in the Table 3.1.
The interaction between occupied neighbor sites is repulsive with an increase of energy by
εij = ε with the exception of three cases. For patch-patch interaction of type A − B the
energy interaction is taken as: εij = −ε. If the interaction is of type B − C, with the
B patch belonging to a solute molecule there is also an attractive interaction εij = −λSε
(with λS > 0), whereas if the patch B belongs to a water molecule the interaction energy
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Figure 3.1 Representation of lattice for pure components. The blue sphere represents the
water and the patches A and B represent the donors and acceptors arms respectively. The
red sphere represent the solute particle and the arms A and B represent the donor and
acceptors, and the patch C represents the anisotropic group
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Figure 3.2 Representation of
lattice. Si and Sj represent par-
ticle on its respective positions
i and j. Blue sphere represent
a water and red, a solute parti-
cle. BW and BS represent the
patches B of water and solute
respectively. The patchD is not
represented here for the clarity
of the image.

is given by εij = −λW ε.
We have considered λS = 0.25, and three cases for the B-C water-solute interaction:

attraction with λW = λS, non-interacting with λW = 0 and repulsion with λW < 0. The
first case represents systems dominated by the water-solute attraction. This is the case of
the methanol in which it is assumed that the methyl group shows a small but attractive
interaction with the water. This also represents the ionic liquids in which the anions
groups are hydrophilic and the cationic chains are not too long [9, 88]. The second case
represents alcohols with larger non-polar alkyl substituents [15]. The third case represents
the ionic liquids in which the combination of the anions and cations lead to an hydrophobic
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p(S) D A BW BS C
D ε ε ε ε ε
A ε ε −ε −ε ε
BW ε −ε ε ε −λW ε
BS ε −ε ε ε −λSε
C ε ε −λW ε −λSε ε

Table 3.1 Interactions between NN particles of the same type (solute or water). The
interaction depends on the patches of both particles involved in the interparticle bond.
The interaction between patches of type C and B depends on the type of molecule: water
(W) or solute (S) that provides the patch B. We consider 0 < λS ≤ 1; and ε > 0. Patches
of types A, B, and C correspond to the four arms of the standard ALG model.

interaction [9, 88]. Due to the simplicity of our model solute, size and hydrophobicity
effects are not taken into account independently, but both are considered through the λW
parameter.

At zero temperature for the cases of the pure water and the pure solute systems three
possible thermodynamic phases can appear in the model: For low values of the chemical
potential, µ, the stable phase is the empty lattice representing the gas phase at reduced
density, ρ∗ = N/NL = 0, with N being the number of particles (occupied sites) and
NL the number of sites of the lattice. Increasing µ a low density liquid phase (LDL)
appears [89–92], where half of the sites of the lattice are occupied by particles (ρ∗ = 1/2).
These sites are those belonging to one of the diamond sublattices [93] that can be defined
on the BCC lattice. Every patch of the type A is pointing to a patch of the type B, and
vice versa as shown in the Fig. 3.3(A). In the case of water only pair interactions AB
occur. In the case of the solute both AB and CB interactions occur. At higher values
of the chemical potential, the stable phase is the high density liquid (HDL), where all
the sites are occupied, and as for the LDL phase, in the case of water, every patch of
type A is bonded to a patch of type B and vice versa, as shown in the Fig. 3.3(B). In
the case of the solute every patch of type A is bonded to a patch of type B and every
patch of type C is bounded to a patch of type B. The modification of the ALG model by
considering different types of arms introduce, at zero temperature, a residual entropy per
particle s0, that in thermodynamic limit can be written as, s0 = kB limN→∞ [N−1 lnQ0(N)],
where kB is Boltzmann’s constant, and Q0(N) is the number of configurations of the
system, in which every patch of type B is interacting with a patch of type A (or C), and
every patch of type A (or C) is interacting with a patch of type B. Using Monte Carlo
(MC) simulations and thermodynamic integration techniques [94, 95] we have obtained
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(A)

(B)

Figure 3.3 (A) LDL (B) HDL phases. At (B), the colors blue and red are used to facilitate
the visualization.

the values of residual entropy for the water (s(W)
0 /kB = 0.41041 ± 0.00002) and solute

(s(S)
0 /kB = 1.10356± 0.00002) models. For more details about the computation of residual

entropies, see Appendix A.
From the values of residual entropy we can study the system in ground state. The

Grand Canonical thermodynamic potential can be written as:

Φ ≡ −pV = U − TS − µN, (3.1)

where U is the internal energy, S is the entropy, and N the number of particles (occupied
positions). In the Ground State, the stable phase for a given value of µ is the one with the
minimum value of Φ. Considering the description of the ordered phases explained above,
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for the water model Φ take the values (for T → 0):

Φ
(W)
G (V, µ)/V ∗ = 0 (ρ∗ = 0);

Φ
(W)
LDL(V, µ)/V ∗ = −ε− Ts(W)

0 /2− µ/2; (ρ∗ = 1/2);

Φ
(W)
HDL(V, µ)/V ∗ = −Ts(W)

0 − µ; (ρ∗ = 1)

(3.2)

with V ∗ being the reduced volume (equal to the number of sites). Imposing that in coexis-
tence the Φ

(W)
G = Φ

(W)
LDL and Φ

(W)
LDL = Φ

(W)
HDL we obtain the values of the chemical potential

and the pressure, at the transitions in the limit of low temperatures

µ = −2ε− Ts(W)
0 , pw0/ε = 0, G-LDL water

µ = 2ε− Ts(W)
0 , pw0/ε = 2, LDL-HDL water;

(3.3)

where the factor w0 = V/NL correspond to the volume per site. For the case of pure solute
the thermodynamic potential Φ of the different phases as T → 0 is given by

Φ
(S)
G (V, µ)/V ∗ = 0; (ρ = 0);

Φ
(S)
LDL(V, µ)/V ∗ = −(1 + λS)ε/2− Ts(S)

0 /2− µ/2; (ρ = 1/2);

Φ
(S)
HDL(V, µ)/V ∗ = (1− λS)ε− Ts(S)

0 − µ; (ρ = 1),

(3.4)

and for the phase equilibria at low temperature we get:

µ = −(1 + λS)ε− Ts(S)
0 , pw0/ε = 0, G-LDL solute,

µ = (3− λS)ε− Ts(S)
0 , pw0/ε = 2, LDL-HDL solute

(3.5)

All the relevant quantities will be expressed in reduced units, such as:

µ∗ =
µ

ε
, T ∗ =

kBT

ε
, c∗V =

cV
kB
, p∗ =

pw0

ε
, s∗ =

s

kB
(3.6)

3.2 Simulation and Numerical Details

In order to obtain the phase diagrams and compute the thermodynamic and structural
properties of one-component systems, we have performed MC simulations in the grand
canonical ensemble (GCE) for system sizes 512 ≤ NL ≤ 65536 where NL = 2L3. The
simulations have used ∼ 8 × 106 MC sweeps for equilibration and ∼ 4 × 106 sweeps for
evaluating the relevant quantities. Each MC sweep is defined as NL one-site attempts to
generate a new configuration. Each attempt is carried out as follows: i) A site i on the
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lattice is chosen at random; this site can adopt ns possible states, Si = 0, 1, 2 · · · , ns − 1

(ns = 13 for pure water; ns = 25 for pure solute, and ns = 37 for the mixtures); Si = 0

represents an empty site, and the remaining values stand for the different species that can
occupy the site and their respective orientations. ii) For the selected site, one of its possible
ns states is selected at random, with probabilities given by:

P (Si) ∝ exp

[
−Ui(Si)− µ(Si)

kBT

]
, Si = 0, 1, 2, . . . , ns; (3.7)

where Ui(Si) contains the potential energy interactions between site i at state Si with its
NN, and µ(Si) is the chemical potential of the component associated with state Si. Notice
that for an empty site Si = 0, both Ui(Si) and µ(Si) are zero, and that for Si 6= 0, the
value of Ui depends on the states of the sites which are NN of i.

We have combined the one-site sampling procedure with different advanced techniques
in order to enhance the simulation efficiency: In the regions close to continuous transi-
tions, where critical slowing down may be present [96], we have made use of the Parallel
Tempering (PT) method [97,98]. The Gibbs-Duhem integration [99] technique adapted for
working in the GCE [87,93] was employed in the location of the discontinuous phase tran-
sitions of the system. In order to study the excess properties of the mixtures as functions
of the pressure and temperature we have developed methods to build up isobars for one-
component systems (See Subsection 3.2.1), and lines at constant pressure and temperature
with varying composition for the binary mixtures (See Subsection 3.2.2).

3.2.1 Computation of isobars for pure components

The excess properties of binary mixtures are usually measured experimentally at fixed
conditions of temperature and pressure [15,16]. For lattice gas models it is neither straight-
forward not practical the use of simulation in the NPT ensemble. The usual alternative
is to carry out simulations in the grand canonical ensemble and compute the pressure by
means of thermodynamic integration. Since we are interested in analyzing the excess prop-
erties at fixed pressure, we have developed a procedure to build up the lines µ(T |p) for pure
components, i.e. we fix the pressure and compute the chemical potential as a function of
temperature at fixed pressure. The objective is to apply this to the ordered phases: LDL
and HDL. The pressure at (very) low temperature for these phases can be computed from
the ground state analysis. In the GCE the change of the pressure for transformations at
constant T and V , is given by dp = ρdµ. The density of the condensed phases at very low
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temperature hardly changes with µ, therefore, we can integrate the pressure to get.

p = p0 + (µ− µ0) ρ0 (3.8)

where the values of p0, µ0, and ρ0 can be taken as those corresponding to the phase
coexistence at low temperature (Eqs. 3.2-3.5). Once we now how to compute the chemical
potential for a given pressure p at a (low) temperature T1, we will develop the integration
scheme to move on the (µ, T ) plane at the fixed pressure p. Imposing dp = 0 in the
differential form for the thermodynamic potential of the GCE we get:

dµ = −U + pV −Nµ
NT

dT = − ũ− p+ µρ

ρT
dT (3.9)

We typically considered systems with NL = 2× 163.

3.2.2 The properties of mixtures at fixed T and p

The excess properties of mixing are usually defined as the differences between the
values of the property of the mixture at a given composition, x, and the value of the same
property for an ideal mixture of the components at the same conditions of x, T , and p. It is,
therefore, desirable to develop simulation strategies to sample in an efficient way different
compositions of a given mixture for fixed conditions of temperature and pressure. In order
to achieve this aim for our lattice model we have borrowed ideas to form the Gibbs-Duhem
integration procedures, as we did for computing isobars of pure components.

The differential form for the grand canonical potential of a binary mixture can be
written as:

− d
(
pV

T

)
= Ud

(
1

T

)
− p

T
dV −

2∑

i=1

Nid
(µi
T

)
; (3.10)

where Ni is the number of molecules of component i, and µi is the chemical potential of
component i. If we fix T , p, and V , the chemical potential of the two components can not
vary independently when modifying the composition. It should be fulfilled:

N1dµ1 +N2dµ2 = 0 . (3.11)
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Using activities zi ≡ exp[µi/(kBT )] to carry out the integration of Eq. (3.11) we get:

N1

z1

dz1 +
N2

z2

dz2 = 0 . (3.12)

Let us assume that for some values of T , and p, we know the values of the activities of
the pure components z(0)

1 , and z(0)
2 . We can integrate numerically (using simulation results)

the differential equation:

dz2 = −N1z2

N2z1

dz1 . (3.13)

For instance, using as starting point (z1 = z
(0)
1 , z2 = 0) and considering z1 as the indepen-

dent variable and integrating Eq. (3.13) up to z1 = 0, we should reach z2(z1 = 0) = z
(0)
2 .

This condition provides a powerful consistency check of the thermodynamic integration
schemes at constant pressure. The numerical integration of (3.13) can be carried out using
the same numerical procedures as in Sec. 3.2.1. There is still, a minor technical problem,
that appears in the limits zi → 0; where Ni → 0, and therefore the ratio (Ni/zi) can not
be directly computed from the simulation. This problem can be solved by applying the
Widom-insertion test technique [95] to compute the activity of the minority component
(which actually has mole fraction x = 0) as a function of its density. The result can be
written as:

lim
zi→0+

ρ∗i
zi

= qi 〈exp [−∆ui/(kBT )]〉 ; (3.14)

where 〈exp [−∆ui/(kBT )]〉 represents the average of the Boltzmann exponential over at-
tempts of insertion of a test particle of type i with random position and random orientation
on a pure component system of the other component and qi is the number of possible ori-
entations for molecules of type i. Results were obtained from simulations of systems with
NL = 2× 163.

3.3 Numerical Results

3.3.1 The phase diagram for pure components

The chemical potential vs. temperature phase diagrams are shown in the Fig. 3.4
for the pure water and for the pure solute. Three different phases, G, LDL, and HDL
appear, as expected. At low temperature, there are two, G-LDL and LDL-HDL first-order
transitions, as shown in the figure 3.5 and 3.6.
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The first order LDL-HDL transition finishes, both for water and solute, in a liquid-liquid
tricritical point (LLTCP). The LLTCPs occur at T ∗tc ' 0.59 and µ∗tc ' 1.67 for water and at
T ∗tc = 0.25 µ∗tc = 2.42 the solute. Above Ttc the LDL-HDL transition becomes continuous
and defines the λ−line (See Fig. 3.4). At high temperature, it appears a continuous
transition between G and HDL phases (τ−line in Fig. 3.4).A liquid-liquid transition (LLT)
as shown in the figure 3.4 is also observed in molecular liquids. Experimental evidences
suggest the existence of two liquid phases in the triphenyl-phosphite [100–102] and in the
n-butanol [103]. In addition, Monte Carlo simulations, Hus et al. [78] showed that this
type of transition is observed in isotropic models for methanol.

The coexistence line between the G and LDL phases for water extends up to a bicritical
point (LGBCP) [104] located at T ∗bc ' 1.00 and µ∗bc ' −0.22. At this LGBCP the G-
LDL transition meets the lines for the critical G-HDL (τ−line) and LDL-HDL (λ−line)
transitions. In the case of solute, the G-LDL first order transition meets the λ-line at an
end point located at T ∗t ' 0.74, µ∗t ' 0.86. Above this temperature there is a G-HDL
first order transition up to a tricritical point (LGTCP) located at T ′∗tc ' 0.85, µ′∗tc = 0.84.
Above this temperature the G-HDL transition becomes continues and defines the τ -line
The details of the calculation of the critical. lines are explained in the Appendix 3.3.2.

Gas-liquid transition in patchy associative lattice models is nothing a new. Tavares
et al. [105], showed that systems of this nature not only have this kind of coexistence
but, depending on the ratio between the interactions of the patches (we are above this
ratio), the coexistence line can presents a reentrant behavior, and closed miscibility loop.
Papaioannou et al. [106] showed that for the case of water and methanol, the gas-liquid
coexistence can be obtained through the SAFT-γ Mie group with excellent accuracy in
relation to the experimental data.

3.3.2 Critical lines and order parameters

The λ−line

The continuous τ and λ transitions, illustrated in the figure 3.4 are represented by thin
lines and circles. The values of the temperatures and chemical potentials for the criti-
cal lines were obtained by computing appropriated order parameters and their associated
moments or cumulants.

In the case of the λ line, the θλ order parameter is defined as follows. The system
is divided into eight sublattices [91]. The figure 3.7 illustrates the behavior of the eight
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Figure 3.4 Reduced
chemical poten-
tial versus reduced
temperature phase
diagram for (up) pure
water (down) pure so-
lute. Solid thick lines
represent first-order
phase transitions,
liquid-gas (LGT) and
liquid-liquid (LLT).
Thin lines represent
continuous (second-
order) transition, the
empty circles show the
λ−line and the filled
circles are the τ−line.
The big patterned
circles represent the
multi-critical points of
the model. (See the
text for details).

sublattices as a function of the temperature at the λ-line. As the temperature is decreased
four sublattices become full while other four stay empty. Then, from the density of these
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sublattices, the order parameter is defined by

θλ =
2

V

[
full∑

i=1

ρi −
empty∑

j=1

ρj

]
, (3.15)
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where the index i runs over the four sublattices which become full at the LDL phase while
the subindex j runs over the four sublattices which remain empty at the LDL phase. The
figure 3.7 illustrates the value of this order parameter as a function of the temperature for
fixed chemical potentials for both the pure water and the pure solute cases showing the
transition from all the sublattices equally populated to a preferential occupation in four
sublattices.
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Figure 3.7 Order parameter θλ versus reduced temperature for (A) water and (B) so-
lute for various chemical potentials. Average density of the empty (red) and full (blue)
sublattices for (C) water and for (D) the solute.

This transition can also be described by taking into account that for the ALG model
there are four possible realizations of the LDL structure (with diamond structure) on the
BCC lattice. The occupancy of the sites and orientations of the arms (patches of types
A, B and C) is well defined for each LDL realization. The realizations of the lattice
are obtained by a union of even/odd sites belonging to a BCC lattice. The sites are
represented by (2i, 2j, 2k) and (2i+ 1, 2j + i, 2k + 1) with i, j,and k integers. An example
of the subsets Si can be: S1 = {(000), (022), (202), (220)}, S2 = {(002), (020), (200), (222)},
S3 = {(111), (331), (133), (313)} and S4 = {(131), (311), (113), (333)}. The realizations Di
(i = 1, 2, 3, 4) are then obtained by union of the subsets Si,

D1 ≡ S1 ∪ S3 , D2 ≡ S1 ∪ S4 ,

D3 ≡ S2 ∪ S3 , D4 ≡ S2 ∪ S4 .

resulting in four possible realizations.
Taking into account the orientation of the occupied sites on a given configuration, we
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can compute the number of particles in the system compatible with each of the four LDL
realizations. Let ni, with i = 1, 2, 3, 4 be those numbers. From each configuration, we can
sort the ni values so that na ≥ nb ≥ nc ≥ nd, and compute their corresponding densities
ρa = na/NL, ρb = nb/NL · · · . In the thermodynamic limit (NL →∞), we expect for the G
phase: ρa ' ρb ' ρc ' ρd ' ρ/4. For the HDL phase ρa ' ρb � ρc ' ρd, and finally for
the LDL phase ρa � ρb. Accordingly the presence of the LDL phase can be detected by
an order parameter, Oλ ,given by

Oλ = ρa − ρb; (3.16)

The system size dependence of the shape the Oλ distribution can be analyzed by looking
at the ratio [96]:

g4λ =
〈O4

λ〉
〈O2

λ〉
2 ; (3.17)

where the angular brackets represent average values. In figure 3.8, we show the results
for 〈Oλ〉 and g4λ as functions of the chemical potential for various lattice sizes and at
T ∗ = 0.80. The crossing of the lines of g4λ for different values of L locate the critical
chemical potential at that temperature, i.e, the corresponding point of the λ−line.

Complementary to the study of the θλ and Oλ order parameters described above, the
behavior of the specific heat at constant volume for different system sizes were analyzed.

At criticality, it is expected that the specific heat would show a divergence as the
thermodynamic limit is approached. The finite-size scaling behavior of the critical exponent
of the specific heat, α, gives the critical behavior at the infinite system [96]. The heat
capacity at constant volume ( per lattice site) cV = (∂U/∂T )N,V /V is computed from the
data obtained from simulations at constant chemical potential through the expression [94],

cV =
1

kBT 2V

[
〈
δU2

〉
− 〈δUδN〉

2

〈δN2〉

]
. (3.18)

Here U is the interaction energy of model described in the Table 3.1, and N is the
number of particles. The averages in Eq. (3.18) are carried out on the grand canonical
ensemble.

The figure 3.9 shows the specific heat at constant volume versus temperature at constant
µ, illustrating the diverging peak at T ∗ ' 0.9 for the pure water system and at T ∗ ' 0.6

for the pure solute, as L increases. The peak in the heat capacity cV in addition to the Oλ

and θλ behavior is employed to locate the λ−line.
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Figure 3.8 Location of the contin-
uous LDL-HDL transitions for the
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(B) Order parameter Oλ and (C) g4λ
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Figure 3.10 Oτ versus reduced temperature for different systems sizes at chemical po-
tential µ = 2.0 for water (A) and solute (B) models. g4τ versus reduced temperature for
different systems sizes at chemical potential µ = 2.0 for water (C) and solute (D) models.

The τ−line

The τ -line corresponds to the transition between G and HDL phases. An order parame-
ter based on the symmetry of the ALG model can be defined to quantify the HDL ordering
of the configurations. The BCC lattice can be splitted into two interpenetrated cubic
sublattices. In the HDL structure, each sublattice adopts a different but complementary
orientation. The appropriate order parameter for the τ -line is given by

Oτ =
1

NL

∣∣∣∣∣
NL∑

i=1

l(i)s(i)

∣∣∣∣∣ , (3.19)

where l(i) assumes +1 if a sublattice is formed by even sites and −1 if it is formed by a
odd sites. s(i) represents the orientation of the particles in the site i. Particles with arms
orientated to, (i, j, k) = {(1, 1, 1); (−1,−1, 1); (−1, 1,−1); (1,−1,−1)} receive s = +1, to
(i, j, k) = {(−1, 1, 1); (1 − 11); (1, 1,−1); (−1,−1,−1)} receive s = −1, and empty sites
receive s(i) = 0. This order parameter is analogous to that for antiferromagnetic Ising
models in bipartite lattices. In the figure 3.10 we show the shape of the order parameter
at the HDL-G transition (top panels). For the G phase Oτ vanishes in the thermodynamic
limit while for the HDL it remains finite. The approximate location of the transition is
obtained by the crossing of the curves for different sizes. Even though the behavior of the
order parameter illustrates how the structure of the phases change at the phase transition,
it does not provide the precise temperature and chemical potential. The precise location
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of the transitions can be achieved by looking at the system size dependence of the ratio,
g4τ :

g4τ =
〈O4

τ 〉
〈O2

τ 〉2
, (3.20)

where the brackets indicate average over grand canonical simulations. At the τ -line tran-
sition, it is expected that the values of g4τ become independent of the system size. The
figure 3.10, examples for water and solute of the behavior of g4τ (T,NL) for fixed µ, at the
G −HDL transition (λ− line) are presented. The value of g4τ at the crossing region, to-
gether with the form of the order parameter suggest three-dimensional Ising criticality. In
addition the location of the τ -line can be confirmed by the divergence of the heat capacity.

3.3.3 The excess properties of the water-solute mixtures

Next, we explore the mixture of water and solute. The thermodynamic excess properties
of the mixture are defined by comparing the values of a given extensive property per mol
(or per molecule) with the values of this quantity for an ideal mixture. In the case of the
excess volume we have:

V̄ E(x, p, T ) = V̄ (x, p, T )−
[
(1− x)V̄ 0

1 (p, T ) + xV̄ 0
2 (p, T )

]
; (3.21)

where V̄ (x, p, T ) is the volume per molecule of the mixture at molecular fraction x of the
solute (component 2) x (i.e. x ≡ x2), V̄ 0

1 (p, T ) and V̄ 0
2 (p, T ) are the volumes per molecule

of the pure solvent (component 1) and pure solute respectively.
The thermodynamic properties for different compositions at constant T and p were

computed using GCE simulations coupled to the integration schemes explained in Appen-
dices 3.2.1 and 3.2.2. In practice, for one component systems we apply an integration
scheme to find the line, µ(T |p) in the plane µ − T that corresponds to a fixed value, p of
the pressure, and for the mixtures we calculate the line µ1(µ2|T, p) in the plane µ1 − µ2

that keep fixed the values of T and p.
The volumes per molecule were estimated from the simulations as: V̄ = V/〈N〉. The

enthalpy, H of a given system is given by H = U + pV , where U is the internal energy
(given for the patch-patch interactions). The enthalpy per molecule can be estimated
as: H̄ = [〈U〉+ pV ] 〈N〉. Whereas the mole fraction for given values of the activities
zi = exp [−µi/(kBT )], is computed as: 〈x〉 ' 〈N2〉/〈N〉.

The integration procedure provides the results for the different properties at equally
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spaced discrete values of the activity, z, of one of the components, (say component 1)
which span from z1 = z

(0)
1 (pure solvent) to z1 = 0 (pure solute). For each of these cases

the properties of interest, x(z1), V̄ (z1), H̄(z1), · · · are computed. Then, to estimate the
dependence of the molar properties with the composition these properties are fitted to
polynomials of x as:

Ȳf (x, T, p) =

jmax∑

j=0

a
(Y )
j (T, p)xj. (3.22)

The degree of the polynomial, jmax, is chosen according to statistical criteria, ensuring
that the fitted function provides a good description of the values of the property in the
whole range x ∈ [0, 1]. Using the functions given in Eq. (3.22) the excess properties for
the volume or the enthalpy are computed as a function of x as:

Ȳ E(x, T, p) = Ȳf (x, T, p)− xȲf (1, T, p)− (1− x)Ȳf (0, T, p). (3.23)

The λW = λS = 0.25 case

First, we analyze the case in which the B-C solvent-solute and solute-solute interactions
are both attractive and they have the same value namely λW = λS = 0.25. This represents a
system in which in addition the solvent interacts with the solute in two different ways, B-A
and B-C, both attractive. In principle this would be the case of the water - alcohol mixture
where water forms hydrogen bonds with the alcohol and shows and effective attraction with
the alkyl group.

The figure 3.11 illustrates the excess volume for the pressure and temperature p∗ = 0.10

and T ∗ ' 0.3. For the pure solvent, this point is at a temperature below the temperature
of maximum density. As the fraction of the solute increases, the excess volume decreases
until it reaches a minimum. The presence of this minimum in a water-solute system is
observed in the water-methanol [16,71,107–109], in the water-ethanol [110], in the water-
alkanolamines [111,112] and in the water-hydrophilic ionic liquids [113] solutions.

The negative value of the excess volume can be understood as follows. The excess
volume for mixtures originates from the competition between energy and entropy [80,114].
Since the solvent-solvent is more attractive than the solute-solvent, the energetic balance
favors the solution to occupy a larger volume [80, 114]. However, the excess volume has a
contribution from the entropy. As solute is added to the system the phase diagram shrinks
and the phases are shifted to lower temperatures and higher densities [92,115]. In the case
of non anomalous systems, discribed by a Lennard-Jones potential, this shift in the phase
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diagram is not relevant and in the case of λW = λS the excess volume is positive [80].
In our system due to the different orientations of the solute, the entropic effect is more
relevant and the excess volume is negative.

The figure 3.11 also shows the excess enthalpy for our model as a function of the fraction
of the solute. The minimum observed in HE is also present in the in water-methanol [116],
water-ethanol [117], water-alkanolamines- [118] and in water with hydrophilic ionic liq-
uids [113] solutions.
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Figure 3.11 (A) excess volume and (B) excess enthalpy per particle as a function of solute
concentration for λS = 0.25,λW = 0.25, p∗ = 0.10 and several temperatures.

The figure 3.12 illustrates snapshots of the system as the concentration of the solute
is increased. Since the system is in the LDL phase of the solvent, there is one sublattice
empty while the other is filled. In the case in which the solute is a hard sphere, as the
solute is added to the system it enters in the empty sublattice not competing with the
solvent occupation [92]. Here this is not the case. The solute enters in the same sublattice
occupied by the solvent.

The excess enthalpy is a combination of the excess internal energy and the excess volume
(HE = UE + pV E). The excess volume is negative as explained above. The excess internal
energy of the mixture is positive due to the solvent-solute less attractive interaction when
compared with the solvent-solvent interaction. The balance between these two competing
terms for the λW = 0.25 leads to a small but negative excess enthalpy.
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(B) (C)

Figure 3.12 The snapshot of system for λW = 0.25 and T ∗ = 0.350. The blue and
red spheres represent the water and solute respectively. At (A)-x2 = 0.024105, (B)-x2 =
0.704341 and (C)-x2 = 1.

The λW = 0 and λS = 0.25 case

Next, we analyze the case in which the B-C solute-solute patch is attractive but the
B-C solvent-solute patch has no interaction. In this case λW = 0 while the solute-solute
B-C is attractive namely λS = 0.25. This represents a system in which in addition the
solvent interacts with the solute only through the B-A patch. In principle, this would be
the case of the water-alcohol mixture in which the alkyl group is larger than the preceding
case and therefore the molecule is less hydrophilic.
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Figure 3.13 (A) Excess volume and (B) Excess enthalpy versus fraction of solute for
various temperatures, λW = 0, λM = 0.25 and p∗ = 0.10.

The figure 3.13 illustrates the excess volume and the excess enthalpy as a function of
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the fraction of the solute for various temperatures.
The excess volume here as in the previous case, is a combination of energy and entropy.

The energy of the mixture is much higher than the entropy of each pure system what
contributes to a positive excess volume. The entropy is still more relevant and the excess
entropy is larger than in the previous case but it is still negative.

The excess enthalpy (HE = UE + pV E) is composed of a small negative excess volume
and a excess energy that is positive because both the solvent-solvent and solute-solute
interaction are more attractive than the solute-solvent interaction. So, in this case the
excess enthalpy is positive.

This behavior is consistent with the excess volume and enthalpy of mixtures of water
and large alcohol molecules such as propanol, butanol and pentanol [15,119].

The λW = −0.25 and λS = 0.25 case

Finally, we analyze the case in which the B-C solute-solute patch is attractive but the
B-C solvent-solute patch is repulsive. In this case, λW = −0.25 is repulsive while the
solute-solute B-C is attractive namely λM = 0.25. This represents a system in which in
addition the solvent interacts with the solute through the B-A with attraction probably
forming hydrogen bonds while show repulsion through the B-C patch. In principle, this
would be the case of the water mixing with molecules that exhibit a hydrophilic region, and
eventually, can form a hydrogen bond, but the overall water-solute interaction is repulsive.
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Figure 3.14 (A) Excess volume and (B) excess enthalpy versus fraction of methanol for
various temperatures. λW = −0.25, λM = 0.25 and p∗ = 0.10.
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The figure 3.14 illustrates the excess volume and the excess enthalpy as a function of
the fraction of the solute for various temperatures. This behavior is found in hydrophobic
ionic liquids [113,120].

In this last case, the solute-solvent energy is much larger than the solute-solute and
solvent-solvent interaction, so the entropic effect is not enough and the excess volume is
positive. Similarly the enthalpy that is a combination of this positive excess energy and
excess volume is also positive.

It is important to notice that these three effects of both negative excess functions, one
negative and one positive and both negative by controling the solvent-solute from mildly
attractive to repulsive would not be obtained in a Lennard-Jones type of fluid in which the
orientational degrees of freedom is not present.

3.4 Conclusions

In this paper, a combination of two Associating Lattice Models is employed to represent
a mixture of solute and solvent. The idea is to explore the effect of the orientational degrees
of freedom present in the model and of the solute-solvent energy in the excess properties
of the mixture.

The ALG model in the range of parameters employed for discribing the solvent exhibits
the density and diffusion anomalous behavior present in water. The solute is modeled by
molecules that form two types of bonds with water: one attractive hydrogen bond-like, the
A-B interaction, plus an additional, tunable, B − C interaction.

The pure components, by construction, present very similar phase diagrams. Both
present, first (G-LDL/LDL-HDL) and second order (λ−line/τ−line) transitions, as well
as some multicritical points. The phases in coexistence are also the same. The difference
between solute and solvent is in the critical temperatures and the location of the temper-
ature of maximum density, at extremely low temperatures for the case of the solute.

For the mixture, by tuning only one parameter, the B-C patch, from attractive to re-
pulsive the model qualitatively reproduce the behavior of the excess volume and enthalpy
of different types of mixtures that represent solutes ranging from hydrophilic to hydropho-
bic.
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The mapping of the relative hydrophobicity of the solutes through the λW parameter
of the model, allows us to explain the trends of the excess properties of the mixtures as
function of the intermolecular effective interaction.

Our results indicate that when the balance between the solute-solute plus the solvent-
solvent energies are lower than the solvent-solute energy but solute-solvent is hydrophilic,
the entropic contribution for the excess volume makes it negative and the excess enthalpy
also negative.

When the solute-solvent is hydrophobic the excess energy is very positive so the excess
volume becomes positive. The same applies to the excess enthalpy.

Our result even though based on a very simple model reproduce a mechanism that
seems to be present in a large variety aqueous solutions.

This work is published at : J. Chem. Phys. 145, 144501 (2016)
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Chapter 4

Temperature of maximum density and
excess properties of short-chain alcohol
aqueous solutions: A simplified model
simulation study

We perform an extensive computational study of binary mixtures of water and short-
chain alcohols resorting to two-scale potential models to account for the singularities of
hydrogen bonded liquids. Water molecules are represented by a well studied core softened
potential which is known to qualitatively account for a large number of water’s characteris-
tic anomalies. Along the same lines, alcohol molecules are idealized by dimers in which the
hydroxyl groups interact with each other and with water with a core softened potential as
well. Interactions involving non-polar groups are all deemed purely repulsive. We find that
the qualitative behavior of excess properties (excess volume, enthalpy and constant pres-
sure heat capacity) agrees with that found experimentally for alcohols such as t-butanol
in water. Moreover, we observe that our simple solute under certain conditions acts as
an “structure-maker”, in the sense that the temperature of maximum density of the bulk
water model increases as the solute is added, i.e. the anomalous behavior of the solvent is
enhanced by the solute.
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4.1 The Model

As mentioned above, we will have spherical particles representing water-like molecules,
together with an amphiphilic solute with a purely repulsive site accounting for the apolar
tail, R, in addition to an OH site, characterized by OH-OH and OH-water interactions
with two length scales [44]. A short range repulsion accounts for the high density liquid
phase, and a much longer range repulsion and attraction attempts to roughly model the
more open structures due to hydrogen bonding. To make matters simpler, we will use the
same the softened-core potential both for water-water, OH-OH and OH-water interactions,
defined by,

Usc(rij) = 4εsc

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
1∑

`=0

u`εsc exp

[
− 1

c2
`

(
rij − r`
σ

)2
]
. (4.1)

Here, rij represents the separation between sites i and j. The first term on the r.h.s. of
Equation (4.1), is the standard 12-6 Lennard-Jones (LJ) potential [94], whereas the second
term is the summation of two Gaussians, centered at r0 = 0.7σ and r1 = 3σ, with depths
uo = 5 and u1 = −0.75 and widths c0 = 1 and c1 = 0.5 respectively. The potential
of Eq. (4.1), displays two different length scales, an attractive scale at r ≈ 3σ and a
repulsive shoulder at r ≈ σ. Of the many possible choices of two-scale potentials, ours
has been motivated by its ability to account for many of the anomalous features of fluid
water [5, 44, 121], displaying the characteristic cascade ordering of anomalies [30]. For the
parameters chosen in this work, the model is known to display a density anomaly with
a TMD curve in the supercritical region [44]. The attractive well that can be seen in
Figure 4.1 is not sufficient to place the anomalous region within the stable liquid phase, in
contrast with the situation in real water. Despite these limitations, as already mentioned,
this model potential is an excellent candidate to reproduce water anomalies [44].

The non-polar site-site interactions (R-R, R-OH, and R-water) are represented by a
purely repulsive Weeks-Chandler-Andersen potential (WCA) [122] of the form

Ur(rij) =

{
ULJ(rij)− ULJ(rc) if r ≤ rm

0 if r > rm
(4.2)

where, ULJ(r) is the standard 12-6 LJ potential with parameters (εr, σr), and ULJ(rm) is
the LJ potential computed at cutoff distance given by the position of the minimum of the
LJ interaction, rm = 21/6σr.
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In what follows we have used as unit length, σ=σww = σw−OH = σOH−OH , and as
energy unit, εsc. Reduced pressure and temperature are defined as P ∗ = Pσ3/εsc and
T ∗ = kBT/εsc, where kB is Boltzmann’s constant. The simulation time step is given in
reduced units of τ = σ

√
m/εsc, where m is one of the particle masses. Since here we are

not interested in dynamic properties, we have considered all particle masses identical.
As mentioned, we have considered an heteronuclear model, in which σr/σ = 5/3 (a

rough model for tert-butanol), and a homonuclear model in which σr/σ = 1.
The energy parameter of the repulsive interaction was set to εr/εsc = 1.21, and the dimer

bond length to dR−OH = 0.48σ. This choice of parameters was to some extent inspired by
the OPLS force field widely used to simulate alcohols [123]. Cross interaction parameters
were computed using Lorentz-Berthelot mixing rules [94]. A graphical representation of
our molecular models and the corresponding interactions is depicted in Figure 4.1.
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Figure 4.1 Interac-
tion potential versus
distance. The solid
blue line represents
the softened-core in-
teraction potential Usc
(equation 4.1) between
OH-OH, OH-water
and water-water sites.
The dashed red line
and green dot-dashed
line represent the R-R,
R-OH and R-water
repulsive interactions.

4.2 Simulation details

Using the LAMMPS package [124], we have performed MD simulations for a system
with a number of particles ranging from 2000 to 4000 for various compositions.

The simulations were performed in the NPT ensemble with a Nosée-Hoover thermostat
and barostat [125, 126] and particles were placed in a cubic box with standard periodic
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boundary condition. The dimer bonds were kept fixed using a SHAKE algorithm [127],
with a tolerance factor of 10−5. Since the system can undergo a demixing transition, we
have systematically checked that the thermodynamic conditions under consideration were
away from instability by inspection of the small wave vector behavior of the concentration-
concentration structure factor [128,129]. For our mixture this quantity is defined by

Scc(Q) = x2
ROHSww(Q) + x2

wSROH−ROH(Q)− 2xROHxwSw−ROH(Q), (4.3)

where xw and xROH = 1− xw are the mole fractions of water and alcohol respectively. For
the partial structure factors, we have approximated SROH−ROH = SRR and Sw−ROH = SwR,
i.e. we have neglected the contribution of the OH-sites of the dimer. In the study of
demixing, this approximation is harmless, since the positions of R and OH sites within the
same molecule are obviously tightly bound. The site-site structure factors are numerically
determined from the spatial configurations generated during additional NVT simulation
runs (in order to keep the box size constant for the binning procedure in Q-space) using
standard procedures [129].

The signature of concentration fluctuations associated with demixing is typically a
low-Q diverging concentration-concentration structure factor. By monitoring this quantity
along our simulations we have ruled out the presence of inhomogeneities due to demixing.

Our simulations started from a compositionally disordered mixture of ROH and water
particles, which was equilibrated at the chosen pressure and temperature for 1×107 steps
in the NPT-ensemble. Production runs were 8×107 step long. The time step was set to
5× 10−6τ in reduced units.

4.3 Results

In what follows we will present our results both for the hetero- and homonuclear ROH
models in a solution of our water-like fluid, first focusing on the ROH influence on the
temperature of the maximum density curve of water (which was already determined in
Ref. Si10). We will analyze the influence of the alkyl-group size on the changes of the
TMD, comparing the results of our heteronuclear and homonuclear models. Finally, we will
analyze the behavior of the excess thermodynamics of the mixture just for the heteronuclear
model.
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4.3.1 The temperature of maximum density (TMD)

The density anomaly in water and ROH aqueous solutions can be easily detected repre-
senting the temperature dependence of the density along isobars. This can be done studying
a series of state points along various isobars by means of NPT simulations. These results are
presented in Figure 4.2 for various ROH mole fractions, namely xROH = 0.00, 0.01, . . . , 0.04,
first for our heteronuclear model. Note that the apparent low values of the reduced density
are due to the fact that densities are scaled with the inner core of the potential. If scaled
with the range of the second repulsive range (≈ 2.5σ), which is a more appropriate measure
of the molecular size, we will have reduced densities in line with what one should expect
for a liquid (ρ∗ ≈ 0.5 ∼ 0.9).

At a certain concentration of ROH the TMD disappears, since our ROH model lacks a
density anomaly. A relatively accurate numerical estimate of the TMDs was was obtained
by a polynomial fit to the simulated densities. These points (denoted by solid squares)
are connected in Figure 4.2 with short-dashed lines, that constitute the TMD curve in the
T − ρ plane. We observe that the region on the left of the TMD points is characterized
by the typical density anomaly, namely a density increase upon heating. Note that for all
compositions the TMD increases with pressure, to reach and maximum and then decreases.
This decrease of the TMD with pressure corresponds to the experimental behavior found in
water [130], and is the result of the destructuring effect of pressure on the open structures
(hydrogen bonded network in the case of water) whose interplay with the high density
phase gives rise to the density anomaly. The increase of the TMD with pressure at low
pressures is not found experimentally, and it is a consequence of the fact that in our model
the TMD curve is placed in the supercritical region. This feature is present even in models
for which the TMD curve is in a low density liquid region, such as the ramp fluid [131].

The various TMD curves for different mole fractions are represented in Figure 4.3.
One readily appreciates that the addition of alcohol reduces the density range and the
temperature at which the density anomaly is found, ultimately leading to its disappearance.
Points at equal pressure are connected by dashed lines.

The change in the TMD with respect of that of pure water (∆TMD(xROH) = TMD(xROH)−
TMD(xROH = 0)) induced by the presence of solute is represented in 4.4 for various pres-
sures. For pressures below P ∗ ≈ 10, and up to a certain concentration, we observe that
our solute acts as a “structure-maker”. This means that the presence of solute molecules
enhances the anomalous behavior of water, by favoring the build up of open structures
and hence increasing the TMD. At P ∗ = 9.2, the curve presents a maximum around

67



0.4 0.5 0.6
T ∗

5.0

5.4

5.8

6.2

6.6

ρ∗

×10−2

(A)

0.4 0.5 0.6
T ∗

5.0

5.4

5.8

6.2

6.6

ρ∗

×10−2

(B)

0.4 0.5 0.6
T ∗

5.0

5.4

5.8

6.2

6.6

ρ∗

×10−2

(C)

0.4 0.5 0.6
T ∗

5.0

5.4

5.8

6.2

6.6

ρ∗

×10−2

(D)

Figure 4.2 Temperature dependence of the density for various solute compositions along isobars
with increasing pressure from bottom to top (P ∗ = 2.3, . . . , 27.6). Open circles correspond to
simulation data and a dotted line denotes a polynomial fit. (A) xROH = 0.0 (pure water), (B)
xROH = 0.01, (C) xROH = 0.02 and (D) xROH = 0.03. The TMD is represented by filled symbols,
which are connected with a dashed curve that correspond to a polynomial fit, to represent the
TMD curve. Pressure increases from bottom to top.

xROH = 0.03 and then decays, which is the qualitative behavior of the TMD tert-butanol
in water [14]. We find that as pressure increases the change in the TMD is lowered, and
as a matter of fact for P ∗ > 10, ∆TMD(xROH) < 0, and the solute behaves as a “structure-
breaker”, reducing the range of anomalous behavior of water. This is accordance with the
fact that the increase of pressure tends to destroy the low density structures that give rise
to the density anomaly, therefore the structuring effect of the solute decreases, to finally
turn the “structure-maker” into a “structure-breaker”. For sufficiently high pressures our
alcohol-like molecules behave like standard solutes which tend to decrease the TMD [14],
i.e. the effect of the two-scale interaction stemming from the OH site is no longer apparent
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for sufficiently high pressures. A parallel situation occurs with the effect of the hydrogen
bonds in water when pressure starts to break them.
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Figure 4.4 Change in
the temperature of max-
imum density with re-
spect to the bulk solvent
value vs. alcohol mole
fraction for various pres-
sures for the heteronu-
clear alcohol model.
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Now in Figure 4.5 we present the corresponding ρ−T TMD curves for the homonuclear
model of alcohol in solution. The first effect one can observe is the shift of the TMD
curves as a function of solute concentration is minimized with respect to that observed in
Figure 4.3 for the heteronuclear case. This is a clear indication that the larger the size
of the apolar tail of the ROH, the more significant the effect of the solute on the TMD.
The size dependency of the anomalous behavior is more clearly illustrated in Figure 4.6,
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Figure 4.5 Same
as Figure 4.3 for the
homonuclear alcohol
model

where change in the TMD, ∆TMD(xROH) for the homonuclear model is represented as a
function of alcohol concentration, xROH for various pressures. Note that the same scale as
in Figure 4.4 is used. Comparison of both figures shows that the increase in size of the
apolar tail of the alcohol increases the changes in the TMD. On one hand, for pressures
below P ∗ ≈ 10 the maximum in ∆TMD(xROH) (a characteristic of t-butanol and ethanol in
dilution [14]), practically disappears for the homonuclear model. Interestingly, this model
displays a behavior resembling that of methanol [14], for which the maximum is hardly
visible. For this values of the pressure, the “structure-maker” character of the model alcohol
is enhanced when the apolar chain is larger. This is in agreement with the experimental
data, and with the theoretical predictions of Chatterjee et al. [132] statistical mechanical
model for solutions of apolar solvents in water. Now, as pressure increases above, P ∗ ≈ 10

the solute behaves as a “structure breaker”, and interestingly, its effect on the TMD is
also more significant as the size of the R-site increases, to the point that the drop of the
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TMD for the largest concentration considered is three times larger for the heteronuclear
model. Unfortunately, we are not aware of any experimental investigation of the pressure
dependence of ∆TMD(xROH), but since the net effect of pressure is to reduce the range of
anomalous behavior (in real fluid by breaking the hydrogen bond network, in our model
by displacing particles towards to first range of the potential), that fact that the effect
is maximized when the volume of the solute is larger is understandable from a enthalpic
point of view.
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Figure 4.6 Change in
the temperature of max-
imum density with re-
spect to the bulk solvent
value vs. alcohol mole
fraction for various pres-
sures for the homonu-
clear alcohol model.

From a microscopic point of view, structural effects of the addition of solute should be
visible in the water-water and water-OH pair distribution functions. These are plotted in
Figures 4.7 for P ∗ = 6.8 and T ∗ = 0.4. One observes that a small number water particles
move into the first scale of the potential (more compact structures), but at the same time,
the area corresponding to the second repulsive range of the potential (r ≈ 2σ) becomes
more populated, which is particularly visible in the evolution of the second maximum of the
gwOH site-site function. In this way, the addition of solute molecules leads to an increase
of open structures and more compact ones. The balance between these open and compact
structures is correlated with the subtle change from ∆TMD > 0 to ∆TMD < 0 as xROH
grows.
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Figure 4.7 Water-water (left) and Water-OH (right) radial distribution functions for P ∗ = 6.8
and T ∗ = 0.4 for various solute concentrations. The insets show zoom of the regions around the
first two maxima.

4.3.2 Excess thermodynamic properties

Excess thermodynamic properties of a mixture are defined as the difference between
the values of a given thermodynamic quantity and those that would be obtained in an ideal
mixture. For a given quantity, A, the corresponding excess property is defined by

AE(x2, p, T, ) = A(x2, p, T )−
[
x2A

0
2(p, T ) + (1− x2)A0

1(p, T )
]

(4.4)

where A(x2, p, T ) is the value A in binary mixture of a given composition defined by mole
fractions (x1, x2). A0

1 and A0
2 are the values of A for the pure components at the same

thermodynamic state. Quantities of interest in binary mixtures are the excess volume V E,
enthalpy, HE, and specific heat at constant pressure cEP . Excess entropy is also of interest,
but it is not directly accessible in MD calculation. Excess volumes, V E, are determined
from the average volume values obtained along NPT simulations for the mixtures and pure
components. Similarly, excess enthalpy is obtained from the usual expression

HE(x2, p, T ) = UE (x2, p, T ) + PV E (x2, p, T ) , (4.5)

and the excess internal energy, UE, is also directly evaluated from the MD runs for the
mixture and pure components. The fluctuation of the enthalpy provides a direct path for
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the calculation of the specific heat at constant pressure, cEp ,

cp(x2, p, T ) =

(
∂H(x2, p, T )

∂T

)

P

'
〈
(H (x2, p, T )− 〈H (x2, p, T )〉)2〉

NpT
. (4.6)

and therefore,

cEp (x2, p, T ) = cP (x2, p, T )−
[
x2c

0
p,2(p, T ) + (1− x2)c0

p,1(p, T )
]
. (4.7)

This property requires extremely long simulation runs, and we have assessed the validity of
our results comparing the results of the fluctuation approach to those obtained by numerical
differentiation of the enthalpy with respect to temperature, for specific points.

Our results for the excess thermodynamics of our mixture system (heteronuclear model)
are collected in Figure 4.8. The excess volume exhibits the typical volume contraction of
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Figure 4.8 Excess thermodynamics of our
water-ROH mixture model (heteronuclear
model). (A) Excess volume; (B) excess en-
thalpy; (C) excess specific heat. In all fig-
ures the symbols are data obtained fromMD
simulations. In graphs (A) and (B) lines
are drawn as a guide to the eyes. In graph
(C), to compensate the dispersion of the
simulated date, the curve is a least squares
fit. All calculations were done at pressure
P ∗ = 18.

the mixture, characteristic of short chain alcohols [19,133,134]. This is in agreement with
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the observed behavior in g(r) (Figure 4.7), in which is seen that water particles move closer
to each other when solute is incorporated.

The situation is somewhat different for the excess enthalpy. Here our model ex-
hibits a minimum for alcohol-rich solutions, in contrast with the experimental situation
for methanol [19], ethanol [134] and tert-butanol [133]. In these cases the minimum occurs
for water-rich conditions. Moreover, tert-butanol [133] excess enthalpies change sign as the
concentration of alcohol increases but, contrary to our model’s behavior, positive values oc-
cur at high alcohol concentrations. As shown by González-Salgado and coworkers [19] these
discrepancies could be cured by a simple tuning of the cross interaction parameters. Even
with more or less sophisticated models for the pure alcohol and water, excess properties
can be even qualitatively wrong when Lorentz-Berthelot mixing rules are used [19,134].

Finally, in the lower graph of Figure 4.8 we have the excess constant pressure heat
capacity, as obtained from Eq. 4.7. The model performance for the excess heat capacity
is correlated with that of the excess enthalpy. Again here we observe the presence of
a maximum in agreement with experimental results for methanol [19] and tert-butanol
[133], but the model predicts its position at somewhat higher concentrations of alcohol.
Nonetheless, we can say that at relatively low temperature the increase of the heat capacity
reflects the structure-making character of our solvent, in accordance with the experimental
findings. Again, discrepancies such as the presence of negative values of the excess heat
capacity or the shift of the maxima to regions of higher alcohol concentration can be tuned
by a careful choice of the cross interaction parameters.

4.4 Conclusions

In summary, we have presented a detailed computer simulation study of a simple model
for diluted alcohol-water mixtures, in which the interactions involving hydrogen bonding
are represented by a two-scale potential which is known to reproduce a good number of
water anomalies. Our results for the dependence of the temperature of maximum density
on the solute concentration, are in qualitative agreement with the experimental behav-
ior of methanol and t-butanol solutions, whose molecules are modeled by a homonuclear
and heteronuclear dimer respectively. These results indicate that for a small range of
concentrations and up to certain values of pressure, these hydrogen-bonding-like solutes
tend to enhance the open structures of water and hence increase the TMD, behaving as
“structure-makers”.
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As pressure increases the “structure-breaker” character of the solutes is enhanced, being
larger as the size of the alkyl group grows. This is understandable as the presence of the
apolar group as pressure increases makes more unfavorable the open structures which are
responsible for the anomalous behavior of the model. This enthalpic effect increases with
the size of the solute molecule.

Future work will focus on the dynamic anomalies (e.g. the increase of the diffusion
constant with pressure) which are known to be influenced in a similar fashion when diluted
hydrogen bonded solutes are present, in marked contrast with the effect of other solutes,
either polar or apolar.

This work was submitted at Journal Chemical Physics. At this moment this work is
available on: arXiv:1701.08670
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Chapter 5

General Conclusions

In this thesis, we have studied the problems of confinement/disorder and mixtures in
water-like models. In the first chapter, we addressed the effect of a porous media on
the anomalous properties of a two-dimensional lattice water-like model. We have shown
that the coverage of the low-density liquid phase decreases gradually as the increasing of
the degree of confinement, and as consequence of the entropic effects, the temperature of
maximum density shifts to lower temperatures. For the anomalous behavior, we observe
that the TMD is present for all degree of confinement but the anomaly in the diffusion
remains only to intermediate degrees. Interesting features observed here is the suppression
of the fluctuations that prevents the estimation of the critical line for the intermediate and
higher degree of confinement.

In relation to the mixtures, we studied the excess properties of the aqueous solution
through a lattice model. Initially, we proposed a variation of the associating lattice gas
(3D) in order to represent both, solute and solvent. The results for pure components
was performed through a detailed study of the different order parameters and showed that
structure of the phase diagrams are quite similar, with gas and liquid phases, critical points
and critical lines. For the study of the mixture, we propose a method to simulate lattice
model at a constant pressure. Using it, we obtained the excess properties at a liquid region
of solute and solvent. Our model is able to reproduce the excess properties of different
types of solute like, short-chain alcohols and ionic liquids. When the cross interaction
is attractive, the excess volume and enthalpy are negative, since the “distance” between
solute-solvent are lower than the distance solute-solute/solvent-solvent in bulk. This kind
o behavior is observed in the water-alcohol mixture as, water-methanol and water-ethanol.
The inert case, the excess enthalpy is positive while the excess volume is still negative.
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For the case repulsive (hydrophobic) the system show a positive excess volume since the
mixture has higher density than the pure componentes due to the cross interactions. In
general lines, we show through a very simple model, with only two free parameters, that
the complex behavior of aqueous alcohol solutions can be reproduced.

In the last chapter, we addressed on the dependence of the temperature of maximum
density with the solute concentration and the excess properties. Our results show that the
TMD increase at low solute fractions similar observed experimentally for alcohol aqueous
solution. The excess volume shows the contraction effect as the introduction of solute.
This behavior is evidenced by the radial distribution function. The excess enthalpy of
our model, diverge of the experimental behavior. The fractions in which the experimental
excess enthalpy is positive, our model shows negative values and vice−versa. The specific
heat shows a maximum similar experimental results for methanol, however, in our model,
the fraction of maximum is slightly higher than the experimental results.
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Appendix A

Computation of the residual entropy

We consider a model defined over the diamond lattice with full occupancy. Each particle
(site) carries four arms which point to the four NN sites. In order to compute the residual
entropy of the lattice model for water we consider two arms of type A (or +1) and two
arms of type B (or -1). A given particle on the lattice can present qW = 4!/(2!2!) = 6

possible configurations. For the lattice model of solute, we consider two arms of type A,
two of type B and one of type C, which leads to qM = 4!/2! = 12 possible orientations of
the particle. We set interactions between NN particles, so that the interaction energy is
equal to zero for configurations compatible with the ground state of the full model, and
greater than zero another case. The pair interactions between NN particles are therefore
u = 0 when are due to the interactions between pair of arms AB or CB, and u = ε > 0

for the other cases (AA, BB, AC, and CC).
The partition function of the system can be written as:

Q =

qN∑

i=1

exp

[
−U ({S}i)

kBT
)

]
(A.1)

where N being the number of particles (sites) of the system, U the interaction energy
and q the number of possible orientations of each particle. {S}i represent the different
configurations of the system. The Helmholtz energy, A, is related with the partition
function through:

A

kBT
= − lnQ (A.2)

In the limit of infinite temperature, all the possible configurations have the same probability
and we get: A/(kBT ) = −N ln q. We are interested in the limit at low temperature. Given
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the fact that we know the partition function at high temperature, we can make use of
thermodynamic integration [94,95] to get:

A(T )/(kBT ) = −N ln q +

∫ 1/(kBT )

0

U(T ′)d

(
1

kBT ′

)
; (A.3)

Taking into account the thermodynamic relation A = U − TS, S being the entropy, and
defining reduced quantities U∗ = U/ε, and T ∗ = kBT/ε, we can get:

S(T )

kB
= N ln q1 +

U∗(T )

T ∗
−
∫ 1/T ∗

0

U∗(T ′)d (1/T ′∗) . (A.4)

In the limit of low temperature the potential energy of the model vanishes, and it is also
fulfilled limT→0(U/T ) = 0, therefore we get:

S(T )

kB
' N ln q −

∫ 1/T ∗

0

U∗(T ′)d (1/T ′∗) ; (T ∗ → 0) (A.5)

The residual entropy per particle s0(N) (as a function of the system size) can be computed
as:

s0(N)

kB
= ln q − lim

T ∗→0

∫ 1/T ∗

0

U∗(N, T ′)

N
d (1/T ′∗) (A.6)

The determination of s0(N) has been carried out using Monte Carlo simulation, in com-
bination with thermodynamic integration, and parallel tempering techniques. Different
system sizes were considered in order to carry out a finite-size scaling analysis to deter-
mine s0 in the thermodynamic limit. Parallel tempering facilitates the equilibration of the
systems at low temperature, where the systems reach the ground state (except for some
elementary excitations). For the lattice model for water, we have considered different sys-
tem sizes: N = 8`3, with ` = 2, 3, 4, · · · , 14. In each case we considered 257 values of
(1/T ∗); 1/T ∗i = i × ∆(1/T ∗); i = 0, 1, · · · , 256; with ∆(1/T ∗) = 0.050. The averaged
reduced potential energy per particle u∗ = U/(Nε) is 1 for T →∞, and it almost vanishes
for the lowest values of T considered in the integration u∗ � 10−6 (for the largest system
sizes). It decays rapidly as T → 0, making possible a reliable cut-off of the integration for
a given level of accuracy in the results. In TABLE A.1 we present the estimates for s0(N).
In order to estimate the value of s0 in the thermodynamic limit we have considered the
scaling relations used by Berg et al. [135],

s0(N)/kB = s0/kB + a1N
−θ; (A.7)
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` 2 3 4 5 6
s0(8`3)/kB 0.435774(13) 0.418939(18) 0.414306(18) 0.412543(16) 0.411693(18)

` 7 8 9 10 11
s0(8`3)/kB 0.411271(19) 0.410988(22) 0.410823(21) 0.410737(24) 0.410645(21)

` 12 13 14
s0(8`3)/kB 0.410619(14) 0.410574(13) 0.410549(8)

Table A.1 System-size dependent estimates for the residual entropy presented as s∗0(N)/kB

The fitting of the simulation results given in TABLE A.1 to Eq. (A.7), with (s0/kB), a1,
and θ being adjustable parameters leads to:

s
(W)
0 /kB = 0.410 41± 0.000 02; θ = 0.899± 0.005, (A.8)

where the label (W ) refers to water. Considering the quantities Ω(NL) = exp[s0(NL)/kB],
and fitting the results to

Ω(N) = Ω + aΩN
−θ, (A.9)

we get
Ω = 1.507 44± 0.000 04; θ = 0.905± 0.005. (A.10)

The values of the exponent θ agree within statistical uncertainty with the results of Berg et
al. [135]. For the residual entropy of the ordinary ice. Interestingly, our estimate of Ω for
our model defined over a system with cubic symmetry and the estimate of for the ordinary
ice of Berg et al. [135]: ΩIce = 1.507 38 ± 0.000 16; θ = 0.923(23), seem to coincide (at
least within error bars) in spite of the different structures of the underlying lattices.

In principle, we could apply the same simulation techniques used for the water in the
determination of the residual entropy of the lattice gas model of the solute. However, the
value of s0 for methanol can be deduced directly from the water results. Given a ground
state, the configuration of the water for a system with N molecules (occupied positions)
one can build up 2N directly related ground states for the methanol model, since the
two (undistinguishable) A patches of each particle in the water model corresponds to two
distinguishable (A and C) patches in the methanol model. Therefore, we get:

s
(S)
0 = s

(W)
0 + kB ln 2. (A.11)
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