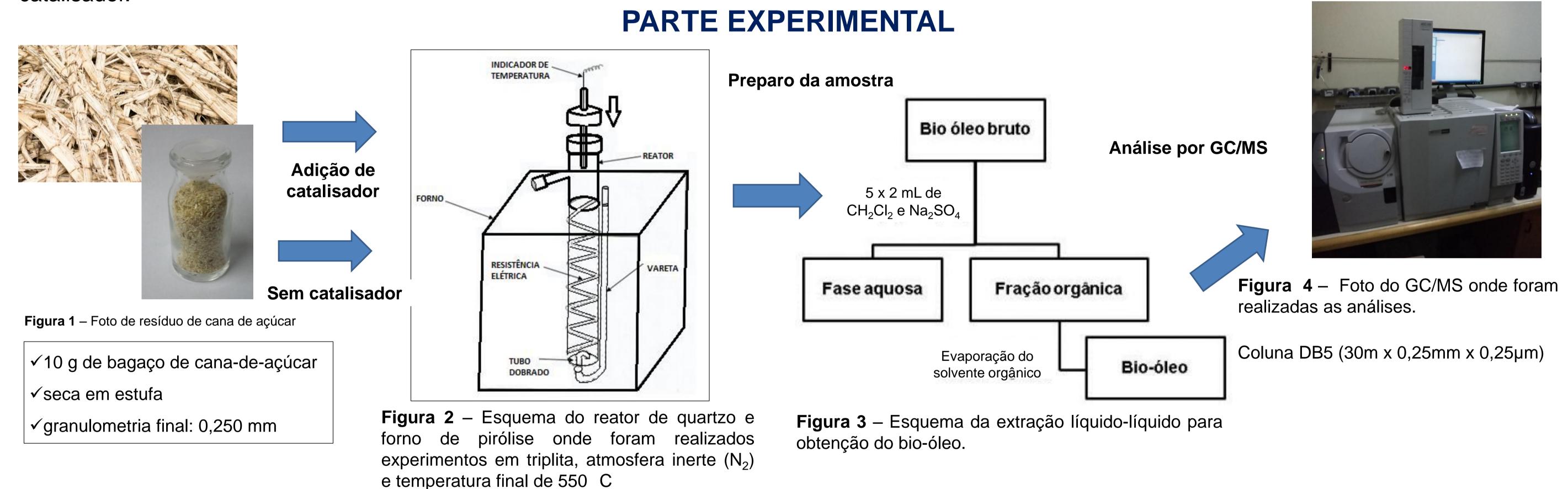


SALÃO DE INICIAÇÃO CIENTÍFICA XXVIII SIC

oaz no plural


Pirólise catalítica de bagaço de cana-de-açúcar com nano partículas de ouro e caracterização do bio-óleo por cromatografia monodimensional

Ayla Marcella de Aguiar Scholdz¹, Claudia Alcaraz Zini¹

¹Instituto de Química - UFRGS, Bento Goncalves, 9500, 91501-970 Porto Alegre, Brasil

INTRODUÇÃO

Os resíduos gerados do beneficiamento da cana-de-açúcar representam 400 milhões de toneladas anualmente, sendo o Brasil o maior produtor mundial de cana-de-açúcar. Assim, a busca de novos processos de transformação de resíduos agroindustriais em produtos de maior valor agregado é crescente e representa uma importante meta ambiental e econômica para o país. A pirólise convencional e catalítica destacam-se como uma das opções para a transformação deste resíduos agroindustriais em produtos de maior valor agregado, principalmente, o bio-óleo que pode ser empregado tanto para geração de energia, como para insumos da indústria química (fenóis, furanos e derivados). O uso de diferentes catalisadores no processo de pirólise tem sido alvo constante de pesquisa científica, já que os catalisadores abrem a perspectiva de desoxigenação do bio-óleo e/ou de produção de bio-óleos ricos em compostos de grande interesse econômico para a indústria. Neste contexto, o trabalho tem como objetivo a produção e caracterização de bio-óleo proveniente da pirólise intermediária catalítica e não catalítica do bagaço de cana-de-açúcar, bem como, avaliar o potencial de nano partículas de ouro como catalisador.

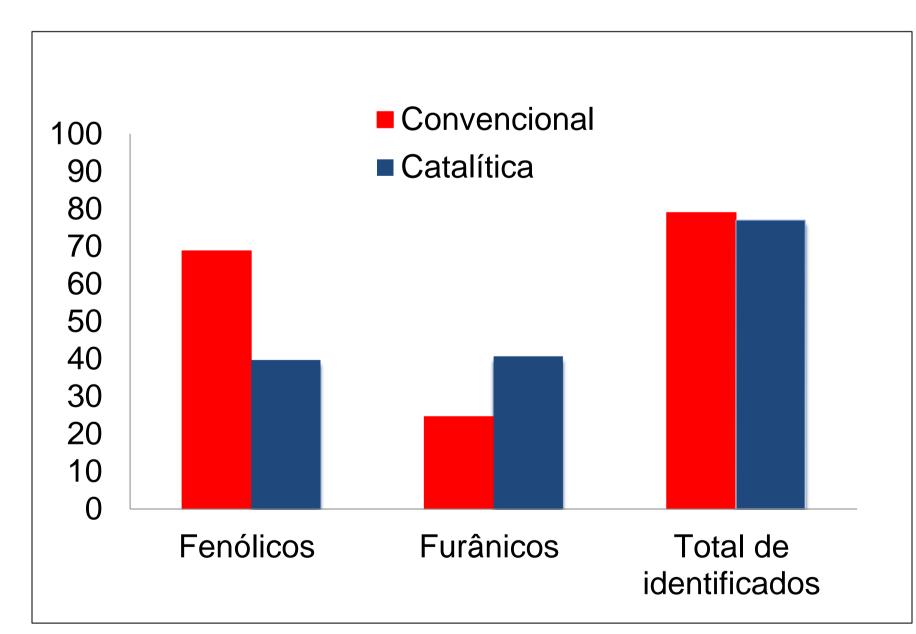


Figura 5 – Gráfico de barras da área percentual das classes majoritárias identificadas e área total identificada em pirólise convencional e catalítica.

RESULTADOS E DISCUSSÃO

Tabela 1 – Compostos majoritários identificados através da determinação de índices de retenção (Rlexp, experimental; Rllit, reportado na literatura) nos bio-óleos de pirólise convencional (Pir Conv) e catalítica (Pir Cat) e suas respectivas áreas cromatográficas percentuais (Área %).

Compostos majoritário	RI _{exp}	RI _{lit}	Pir Conv Área %	Pir Cat Área %
4-propil-fenol	1264	1258	16,3	ND*
2,3-dihidrobenzofurano	1228	1223	13,4	15,6
5-hidróxi-metil-furfural	1254	1261	10,8	24,6
siringol	1356	1354	6,7	6,9
<i>p</i> -vinil-guaiacol	1316	1311	5,6	5,3

CONCLUSÕES

A utilização de catalisador de nano partículas de ouro em pirólise intermediária de bagaço de cana de açúcar levou à produção de um bio-óleo mais rico em furanos, quando comparado ao bio-óleo gerado pela pirólise convencional, que teve como classe predominante, a dos fenóis. Desta forma, constata-se que a presença ou ausência de catalisador de nano partículas de ouro durante a pirólise de bagaço de cana apresenta o potencial de direcionar o processo para produção majoritária de furanos ou fenóis, respectivamente. Estes compostos são amplamente utilizados em Química Fina. Furanos são utilizados na indústria de produção de lubrificantes, adesivos, plásticos e nylons. Já, os fenóis são empregados no processamento de alimentos, produção de fármacos e como substituintes dos fenóis de origem fóssil na produção de resinas fenólicas.

REFERÊNCIAS

