

PRODUÇÃO DE CRISTAIS FERROMAGNÉTICOS A PARTIR DA DRENAGEM ÁCIDA DE MINAS

Carolina Marques Rodrigues¹, Ivo André Homrich Schneider¹ (orientador)

1. Universidade Federal do Rio Grande do Sul.

paz no plural

INTRODUÇÃO O processo de beneficiamento do carvão brasileiro gera grande me de rejeitos. Os rejeitos contêm níveis variados de pirita (FeS2)

volume de rejeitos. Os rejeitos contêm níveis variados de pirita (FeS₂) que se oxida na presença de oxigênio e água, gerando um efluente, chamado drenagem ácida de minas (DAM), considerado um problema grave devido ao forte impacto ambiental e dificuldade de resolução. Contudo, a pirita pode ser concentrada e submetida a processos hidrometalúrgicos, de forma a produzir materiais com valor agregado. Assim, o objetivo deste trabalho foi desenvolver duas rotas para produzir cristais ferromagnéticos a partir da pirita.

METODOLOGIA

Na metodologia, empregou-se uma planta piloto de lixiviação com um concentrado de pirita. Nesta unidade, realizou-se uma etapa de lixiviação com água sob condições aeróbias (Figura 1a), com o intuito de se obter um extrato aquoso rico em íons férricos (Figura 1b). A seguir, procederam-se mudanças no sistema de forma a estabelecer uma condição anaeróbia (Figura 2a) e redutora ao meio para transformação dos íons férricos (Fe³⁺) para ferrosos (Fe²⁺) (Figura 2b).

Figura 5. (a) Difratograma mostrando a fase melanterita (à esquerda). (b) Difratograma mostrando a fase magnetita sintetizada a partir do sulfato ferroso heptahidratado (à direita).

Figura 1. (a) Lixiviação em planta piloto. (b) íons férricos.

Figura 2. (a) Mudança do sistema. (b) íons ferrosos.

A partir deste estágio, as duas rotas foram traçadas. Na rota 1, produziu-se um material magnético pela simples elevação do pH do lixiviado rico em íons ferrosos (Figura 3). Na rota 2, conduziu-se uma etapa adicional, misturando-se álcool etílico ao lixiviado, para promover a precipitação dos íons Fe^{2+} e SO_4^{2-} na forma de sulfato ferroso heptahidratado (melanterita) (Figura 4). Para fins de comparação tembém foi explicado um padrão do megnetito do suímico fino.

Figura 6. (a) Histogramas das distribuições granulométricas para a magnetita (à esquerda) e (b) ferrita (à direita) respectivamente.

Tabela 1. Concentrações elementares para as duas rotas via ICP-OES.

Metais	Rota 1 (%)	Rota 2 (%)	Padrão (%)
Са	0,63	0,14	0,14
Си	0,0004	0,037	0,023
Zn	5,1	11,3	0,034
Fe	43,7	63,8	66,2
Mn	1,8	0,91	0,004
Na	4,6	0,28	0,31
Cd	0,019	0,065	0,02
Cr	0,015	0,007	0,005
Ni	0,12	0,049	0,0004
Pb	0,001	0,046	0,042
Al	2,00	0,60	0,42
Со	0,13	0,046	0,003
As	0,084	0,20	0,002

também foi analisado um padrão de magnetita de química fina.

RESULTADOS

A caracterização dos sólidos obtidos deu-se em relação à composição cristalina (difração de Raios-X) (Figuras 5a e 5b), análise elementar (ICP-OES) (Tabela 1), granulometria (difração de raios de laser) (Figuras 6a e 6b) e campo magnético (magnetômetro) (Figura 7).

H(kOe) (Campo Magnético Aplicado) Figura **7**. Análise de campo magnético via magnetômetro.

CONCLUSÕES

Ambas as rotas resultaram na obtenção dos nano e micro cristais ferromagnéticos. Foram obtidas ferritas (MFe_2O_4 , onde M é um metal bivalente). Os principais substituintes nas ferritas (M) foram Zn, Na e Al, Mn respectivamente. A concentração de Zn para a magnetita (Rota 2) apresentou-se acima do esperado, sendo necessárias mais análises para concluir sobre este fato. Esses cristais poderão ser aplicados em suspensões de meio denso bem como na produção de pigmentos, suportes magnéticos e material adsorvente em tratamento de efluentes.

PROPESQ