

SALÃO DE INICIAÇÃO CIENTÍFICA XXVIII SIC

Evento	Salão UFRGS 2016: SIC - XXVIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2016
Local	Campus do Vale - UFRGS
Título	Probabilidades advindas de redes quânticas de spins
Autor	JADER ECKERT BRASIL
Orientador	ARTUR OSCAR LOPES

Probabilidades Advinadas de Redes Quânticas de Spins

Jader E. Brasil Artur Lopes UFRGS

O objetivo do trabalho é analisar um problema dentro da área de Mecânica Estatística Quântica. Considerando a C^* -Álgebra das matrizes complexas 2 por 2, denotada por \mathcal{M}_2 , com a operação * que é tomar a adjunta da matriz. O espaço $(\mathbb{C}^2)^n$ descreve uma rede quântica de n spins.

Para um n fixo, $\omega = \omega_n : \mathcal{M}_2 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_2 \longrightarrow \mathbb{C}$ é dito um estado C^* -dinâmico se $\omega_n(I^{\otimes n}) = 1$ e $\omega_n(a) \geq 0$, quando a é um operador positivo.

Fixando um certo operador autoadjunto $H:(\mathbb{C}^2\otimes\mathbb{C}^2)\longrightarrow(\mathbb{C}^2\otimes\mathbb{C}^2)$ que irá definir $H_n=\sum_{j=0}^{n-2}I^{\otimes j}\otimes H\otimes I^{\otimes (n-j-2)}$ agindo em $(\mathbb{C}^2)^n$.

Seja o estado de Gibs $\rho_{H,\beta,n} = \frac{1}{Tr(e^{-\beta H_n})}e^{-\beta H_n}$ associado a H e $\beta > 0$ um número real. Fixando uma matriz autoadjunta $L: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ com autovalores reais λ_1, λ_2 e uma base ortonormal de autovetores ψ_1, ψ_2 . Considerando o C^* -estado ω dado por

$$\omega_{H,\beta,n}(L_1 \otimes L_2 \otimes \cdots \otimes L_n) = \frac{1}{Tr(e^{-\beta H_n})} Tr(e^{-\beta H_n}(L_1 \otimes L_2 \otimes \cdots \otimes L_n)),$$

que irá determinar de forma natural uma probabilidade μ_{β} no espaço de Bernoulli $\{1,2\}^n$ via:

$$\mu_n(j_1, j_2, ..., j_n) = \omega(P_{\psi_{j_1}}, P_{\psi_{j_2}}, ..., P_{\psi_{j_n}}),$$

onde P_{ψ} é o operador projeção sobre $\psi \in \mathbb{C}^2$, com $|\psi| = 1$. O objeto de estudo são as propriedades das probabilidades μ_{β} .