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ABSTRACT

New studies suggest that polyunsaturated fatty acids, such as omega-3, may reduce the symptoms of 
schizophrenia. The present study evaluated the preventive effect of omega-3 on interleukines (IL) and 
neurotrophin brain-derived neurotrophic factor (BDNF) levels in the brains of young rats subjected to a 
model of schizophrenia.  Treatment was performed over 21 days, starting on the 30th day of rat’s life. After 
14 days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25 mg/kg) 
was started and maintained until the last day of the experiment. BDNF levels in the rat’s prefrontal cortex 
were decreased at 1 h and 24 h after the last administration of ketamine, whereas the group administered with 
ketamine and omega-3 showed a decrease in BDNF levels only after 24 h. In contrast, both interventions 
induced similar responses in levels of IL-1β and IL6. These findings suggest that the similarity of IL-1β 
and IL6 levels in our experimental groups is due to the mechanism of action of ketamine on the immune 
system.  More studies have to be carried out to explain this pathology. In conclusion, according to previous 
studies and considering the current study, we could suggest a prophylactic role of omega-3 against the 
outcome of symptoms associated with schizophrenia.
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INTRODUCTION

Schizophrenia is considered one of the most severe 

psychiatric disorders, affecting approximately 1% 

of the world population (Andreasen et al. 2000). 

The lack of clarification about the pathophysiology 
of the disorder complicates treatment strategies 
(Tajima et al. 2009). Schizophrenia is usually 
treated with a combination of psychotherapy and 
social settings, as well as the administration of 
drugs, including atypical and typical antipsychotics 
(Kapur and Remington 2001). Given the 
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information presented, it is clear that the currently 
available pharmacological treatments for patients 
with schizophrenia are far from ideal. Moreover, 
despite the growing consensus that schizophrenia 
is a neural disorder, its etiology, neuropathology, 
pathophysiology, psychopharmacology and 
genetics open a wide field of research. In this 
context, basic animal research is a promising tool 
for studying the neurobiological basis of the neural 
and behavioral disorders relevant to schizophrenia, 
providing the basis for the evaluation and 
development of new therapies (Meyer and Feldon 
2010). 

 Current studies utilize pharmacological tools 
to evaluate the effect of new protective compounds, 
such as omega-3, against to schizophrenia. A widely 
used animal model of schizophrenia involves 
the acute or repeated administration of ketamine 
(Becker and Grecksch 2004, Bubeníková-Valesová 
et al. 2008, Canever et al. 2010, De Oliveira et al. 
2011).

According to Horrobin (1998), studies of 
the membrane phospholipid composition (MPC) 
hypothesis of schizophrenia, argue that alterations 
in the MPC of the brain, as a direct result of 
changes in fatty acid levels, could be involved 
in the etiology of schizophrenia. This argument 
is based on findings of reduced omega-3 and 
omega-6 polyunsaturated fatty acids (PUFA) 
and abnormalities in phospholipid metabolism 
in schizophrenia (Arvindakshan et al. 2003a, b). 
It has been argued that dysfunctional fatty acid 
metabolism could be involved in the etiology of 
schizophrenia, based on the findings of reduced 
omega-3 polyunsaturated fatty acids (PUFAs) in 
individuals deemed to be at an ultra high risk for 
psychotic disorders (Amminger et al. 2010). This is 
due to their altering effect on membrane fluidity and 
receptor responses following their incorporation 
into the cell. Omega-3 also can interact with the 
dopaminergic and serotonergic systems, which 
have been associated with the pathophysiology of 
schizophrenia.

Thus, evidence suggests that PUFA, such 
as long chain omega-3, may reduce symptoms 
of schizophrenia due to their neuroprotective 
properties without, however, presenting clinically 
relevant adverse effects. In general, fatty acid 
treatment seems to be a good strategy for the 
prevention of psychosis in individuals who are 
at increased risk of the disorder (McGorry et al. 
2008, Morrison et al. 2004, Amminger et al. 
2010), suggesting that the omega-3 may have 
neuroprotective or anti-inflammatory properties. 
In addition to the evidence presented, many recent 
trials have supported the hypothesis of the role of 
inflammation and nutritional deficiencies in the 
pathogenesis of schizophrenia (Raffa et al. 2011).

It is known that schizophrenia is associated 
with increased levels of certain inflammatory 
markers, suggesting the possibility that the disorder 
is primarily an inflammatory disease (Peet and 
Stokes 2005, Peet 2006). A meta-analysis of 62 
studies with 2298 people with schizophrenia and 
1858 healthy volunteers was performed to verify 
the cytokine imbalances in schizophrenia (Potvin 
et al. 2008). IL-1b, IL-6, and transforming growth 
factor-beta (TGF-b) were significantly increased in 
first episode and acutely relapsed patients and were 
state biomarkers (Monji et al. 2009). Meisenzahl 
et al. (2001), described the relationship between 
the loss of brain volume and increased production 
of immunological markers, like IL-1 (interleukin 
1). Similarly, Garver et al. (2003) presented the 
morphological changes of the brain volume and 
increased levels of IL-6 in the CSF (cerebrospinal 
fluid) in schizophrenia.

Currently, there is growing recognition that 
the pathophysiology of schizophrenia may be a 
result of dysregulated synaptic plasticity with 
changes in neurotrophins. The neurotrophin brain-
derived neurotrophic factor (BDNF) is widely 
distributed in the CNS and is considered a crucial 
protein in psychiatric illness. Thus, evidence from 
experimental studies indicates the role of diet, 
social and family interactions in the regulation of 
BDNF (Salum et al. 2008). High levels of BDNF 



An Acad Bras Cienc (2015) 87 (2 Suppl.)

	O MEGA-3 SUPPLEMENTATION IN AN ANIMAL MODEL OF SCHIZOPHRENIA	 1477

have been detected in human blood platelets, 
suggesting that human platelets may provide an 
important source of BDNF to peripheral sensory 
neurons during regeneration at the site of nerve 
damage (Radka et al. 1996, Yamamoto and Gurney 
1990).

The pharmacological interventions for 
schizophrenia promote positive outcomes, but at 
the same time trigger side effects that limit the 
effectiveness of treatment and compromise the 
patients’ quality of life. Thus, studies that can 
identify adjuvant strategies are very important for 
this population (Amminger et al. 2010). Likewise, 
the identification of biochemical markers associated 
with new strategies contributes to our knowledge 
about the pathophysiology and treatment of the 
disease. In this sense, we evaluated the preventive 
effect of omega-3 on the levels of pro-inflammatory 
interleukins and BDNF in the brains of young 
rats subjected to the ketamine-induced model of 
schizophrenia.

Significant Outcomes

•	 Omega-3 demonstrated similar beneficial 
effects in the IL-1β and IL6 levels in an animal 
model of schizophrenia.

•	 Omega-3 demonstrated significant effects on 
BDNF levels in the animals’ brains.

Limitations

Other immunological parameters could be dosed
We have just assayed 1 and 24 h we could find 

alterations in other times.

MATERIALS AND METHODS

All procedures used in the present study complied 
with the guidelines on animal care of the UFSC 
Ethics Committee on the Use of Animals that 
follows the “Principles of laboratory animal care”. 
All experimental protocols were designed with the 
goal of keeping the number of animals used to a 
minimum, as well as minimizing their suffering. 
These protocols were conducted in accordance with 

national and international legislation (guidelines 
of Brazilian Council of Animal Experimentation – 
CONCEA – and of the U.S. Public Health Service’s 
Policy on Human Care and Use of Laboratory 
Animals—PHS Policy), and with the approval 
of the Ethics Committee for Animal Research of 
the Universidade do Extremo Sul Catarinense 
(UNESC) Protocol 14/2012.

Animals

Young male Wistar rats were selected for this study 
from the Bioterio of Universidade do Extremo 
Sul Catarinense (UNESC) (aged 30-days, weight 
80-150 g). The animals were maintained in a 12 h 
light–dark cycle (lights on at 6:00 a.m.) at constant 
room temperature (22 ± 2 ºC), humidity (60 ± 75%) 
and were housed in groups of five animals per cage 
(49 x 34 x 16 cm) with free access to food and 
water.

Omega-3 Supplementation and the 
Animal Model of Schizophrenia

Omega-3 PUFAs (0.8 g/kg) were given by orogastric 
gavage once daily. For the vehicle, inert oil with 
no impact on omega-3 fatty acid metabolism was 
chosen. The vehicle was administered by gavage 
at the same concentration as the omega-3 PUFAs. 
Both treatments (vehicle or omega-3) were started 
in young animals at the 30th day of life for a total 
period of 21 days. Starting from the 14th day, the 
groups were subdivided for the second treatment 
with saline or ketamine for 7 days. 

At the end of the experiment we used four 
groups, as follows: 1) vehicle plus saline, 2) omega 
plus saline, 3) vehicle plus ketamine, and 4) omega 
plus ketamine. The omega-3 supplementation was 
performed using fish oil capsules containing EPA 
(18%) and DHA (12%). Ketamine (25 mg/kg; 
CU Chemie Uetikon, Germany) was administered 
intraperitoneally for 7 days as an animal model 
of schizophrenia. The volume of the ketamine 
injections was prepared in saline at a volume of 1 
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mL/100 g (Becker and Grecksch 2004, Imre et al. 
2006, Tomiya et al. 2006).

Thirty minutes after the last injections, the 
rats were euthanized by decapitation and the brain 
structures (striatum, hippocampus and prefrontal 
cortex) were carefully dissected for biochemical 
analysis.

Biochemical Analysis

BDNF and interleukin (IL-1β, IL6) levels in the 
prefrontal cortex, hippocampus and striatum were 
measured by sandwich ELISA according to the 
manufacturer’s instructions (Chemicon, USA for 
BDNF and Millipore, USA and Canada for NGF). 
Briefly, brain structures were homogenized in 
a phosphate buffered saline solution (PBS) with 
a protease inhibitor cocktail (Sigma). Microtiter 
plates (96-well flat bottom plates) were coated for 
24 h with samples diluted 1:2 in sample diluent 
using a standard curve varying from 7.8 to 500 pg/
ml BDNF and ILs. The plates were then washed 
four times with sample diluent, and a specific 
monoclonal antibody for each protein (IL6 and 
IL-1β or BDNF) was added. After washing, 
a peroxidase-conjugated secondary antibody 
was added to each well and incubated at room 
temperature for 1 h. After addition of streptavidin-
enzyme, the concentration of interleukins and 
BDNF was determined by absorbance at 450 
nm. The standard curve demonstrates a direct 
relationship between the optical density (OD) and 
the concentration. The total protein concentration 
was measured using bovine serum albumin as a 
standard, as previously described by Lowry et al. 
(1951). 

It is noteworthy that the pro-inflammatory 
response is observed later in similar models (Strous 
and Shoenfeld 2006). In contrast, changes in the 
levels of BDNF are observed both immediately 
after the intervention and later (Reus et al. 2011). 
Therefore, we chose to evaluate the levels of 
interleukin 24 h after death and BDNF both at 1 
hand 24 h after death.

Statistical Analysis

All values are expressed as the means ± S.E.M. 
(n equals the number of rats included in each 
analysis). The statistical analysis was carried out 
using two-way analysis of variance (ANOVA) with 
pretreatment (vehicle vs. omega) and treatment 
(vehicle vs. ketamine) as independent variables. 
The accepted level of significance for the tests 
was ≤0.05. All tests were performed using the 
Statistics software package (StatSoft Inc., Tulsa, 
OK, USA).

RESULTS

Our study tested the hypothesis that the omega-3 
polyunsaturated fatty acid prevents biochemical 
changes in animals subjected to the ketamine-
induced animal model of schizophrenia. Figure 1 
shows the levels of interleukin 1β at 24 h after the 
last injection of ketamine in the different cerebral 
structures studied. Statistical analysis indicates 
that the two categorical variables (omega and/
or ketamine) did not demonstrate effects on this 
parameter. A similar response was demonstrated 
for the levels of IL-6 after 24 h, as shown in 
Figure 2.  Thus, both interventions induced similar 
responses in the levels of IL-1β and IL6 at 24 h after 
the last administration of ketamine. Data on the 
concentrations of BDNF in Figure 3 indicate that 
the striatum and hippocampus showed no changes 
with omega-3 or ketamine. In contrast, the levels 
of BDNF were diminished in the ketamine-treated 
group compared to the control group (vehicle 
+ saline, p <0.05). Figure 3 shows the results 
of dosage on BDNF 1h after the last injection 
of ketamine, indicating an acute response to the 
interventions. Furthermore, the two-way ANOVA 
indicated an effect of ketamine on this parameter [F 
(1,11) = 6.66, p <0.05]. Figure 4 shows the results 
for BDNF concentrations in the brain structures 
at 24 h after the last administration of ketamine. 
Likewise, only the prefrontal cortex was affected 
for this parameter. Both ketamine-treated groups 
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Figure 1 - Effect of omega-3 supplementation and/or ketamine treatment (25 mg/kg) on the levels 
of IL1-β in different rat brain structures at 24 h after the last administration of ketamine. Data are 
expressed as the mean ± SEM for fi ve animals in each group. (White bars = vehicle + saline, light 
gray bars = omega + saline, medium gray bars = vehicle + ketamine and dark gray bars = omega 
+ ketamine).

Figure 2 - Effect of omega-3 supplementation and/or ketamine treatment (25 mg/kg) on the levels 
of IL6 in different rat cerebral structures at 24 h after the last administration of ketamine. Data are 
expressed as the mean ± SEM for fi ve animals in each group. (White bars = vehicle + saline, light 
gray bars = omega + saline, medium gray bars = vehicle + ketamine and dark gray bars = omega 
+ ketamine).

(vehicle+ketamine; ketamine+omega) showed 
decreased levels of BDNF compared to the 
vehicle+saline (p<0.01) and omega+saline groups 
(p<0.05), respectively. Therefore, the delayed 
action of ketamine in reducing the concentrations 
of BDNF in the brain [F (1,12) = 21.92, p <0.01] 

highlighted a selective effect of ketamine on the 
prefrontal cortex.

dIsCussIon

Omega-3 may be involved in the etiology of 
schizophrenia because biochemical studies showed 
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Figure 4 - Effect of omega-3 supplementation and/or ketamine treatment (25 
mg/kg) on BDNF levels in different rat brain structures at 24 h after the last 
administration of ketamine. Data are expressed as the mean ± SEM for fi ve 
animals in each group. * Different from vehicle + saline (white bars = vehicle + 
saline, light gray bars = omega + saline, medium gray bars = vehicle + ketamine 
and dark gray bars = omega + ketamine). */& Different from vehicle + omega 
3 (white bars = vehicle + saline, and medium gray bars = vehicle + ketamine).

Figure 3 - Effect of omega-3 supplementation and/or ketamine treatment (25 
mg/kg) on BDNF levels in different rat brain structures at 1 h after the last 
administration of ketamine. Data are expressed as the mean ± SEM for fi ve 
animals in each group. * Different from vehicle + saline (white bars = vehicle + 
saline, light gray bars = omega + saline, medium gray bars = vehicle + ketamine 
and dark gray bars = omega + ketamine).

low levels of omega-3 PUFA in the red blood 
cells of patients with major depressive disorder 
or schizophrenia. EPA and docosahexaenoic acid 
(DHA), the two main omega-3 fatty acids in fi sh 
oil, have an important role in the CNS. There is 
some evidence that the administration of EPA can 
accelerate the response to treatment, improving 

tolerability of antipsychotic medications (Berger et 

al. 2007). Omega-3 fatty acids are thought to have 

some effect on infl amma tion by modulating the 

amount and types of eicosanoids produced. Other 

effects are elicited by eicosanoid-independent 

mecha nisms, including actions upon intracellular 
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signaling pathways, transcription factor activity, 
and gene expression (Simopoulos 2002).

Currently, research has emphasized the role 
of neuroinflammation in schizophrenia. There is 
evidence relating subclinical chronic inflammation 
and schizophrenia in individuals, usually in their 
adulthood, who have already developed the illness. 
Furthermore, other studies supporting immune 
challenge data show that a dysfunctional immune 
response is evident in schizophrenia and may play 
a pivotal role in the pathophysiology of this illness 
(Doorduin et al. 2009).  

There are several competing hypotheses for 
immune alterations. One hypothesis describes 
activated microglial cells in the CNS that release 
pro-inflammatory cytokines to promote neuronal 
changes (neurogenesis and degradation) that 
contribute to the pathophysiology of schizophrenia 
(Monji et al. 2009). Another theory posits that 
abnormalities of the CNS metabolism arise in 
schizophrenia due to genetically modulated 
inflammatory reactions that damage the 
microvascular system of the brain in reaction to 
environmental stimuli (Hanson and Gottesman 
2005). 

Doorduin et al. (2009) demonstrated a 
neuroinflammatory process in the hippocampus 
of seven patients recovering from a psychotic 
episode using PET scan. This suggested that 
neuroinflammation is an important part of 
schizophrenia, particularly during psychosis. 

There is a reported association of IL-6 with 
the acute symptoms in bipolar disorder and 
schizophrenia (Brietzke et al. 2009, Naudin et al. 
1996). This comparison involved patients in the 
non-acute stage of schizophrenia and concluded 
that there is an increased presence of IL-6 in 
schizophrenia, providing further evidence that there 
is chronic immune activation and inflammation in 
schizophrenia (Potvin et al. 2008).

In contrast, human studies and our ketamine-
induced animal model demonstrated that omega-3 
supplementation did not induce changes in the 
studied interleukins (IL1β, IL6) measured at 24 h 

after the last injection of ketamine. However, 30 
mg/kg ketamine showed an increase in locomotor 
activity, behavior, movement detachment of the 
head and biochemical changes in some brain 
tissues, indicating a limitation of the model and 
significant changes in the immune system (Macedo 
et al. 2012).

On the other hand, human PET studies 
measuring the levels of dopamine following 
ketamine administration suggest that NMDA 
antagonists increase the release of dopamine in the 
striatum, and these effects are suppressed, at least 
in part, by antipsychotic drugs (Corbett et al. 1995, 
Irifune et al. 1995, Smith et al. 1998). In a recent 
study, Becker and Grecksch (2004) showed that 5 
days of ketamine administration causes changes 
in dopaminergic, serotonergic and glutamatergic 
neurotransmission, producing an increase in the 
D2 receptor in the hippocampus, a decrease in the 
frontal cortex glutamate receptor, in addiction to an 
increase in the dopamine transporter in the striatum 
and the serotonin transporter in the striatum, 
hippocampus and frontal cortex.

Inflammation is an important component 
in maintaining the homeostasis of the organism. 
However, an inflammatory response may be 
associated with loss of the homeostasis, causing 
damage to the tissue or organ dysfunction. Some 
drugs interact with the inflammatory response in 
a positive, negative, or “double” manner. Among 
these drugs, ketamine appears to have a significant 
positive effect on the regulation of inflammation. 
The NMDA receptor antagonist operates at different 
levels of inflammation by mobilizing inflammatory 
cells, producing cytokines, inflammatory mediators 
and through regulation. These interactions confer 
anti-inflammatory properties to ketamine, limiting 
the exacerbation of systemic inflammation without 
affecting the local healing processes. This evaluation 
leads to a complete view of the immunomodulatory 
properties of this complex anesthetic (Loix et al. 
2011).

These findings suggest that the similarity of 
IL1β and IL6 levels in our experimental groups 
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are due to the mechanism of action of ketamine 
on the immune system. Thus, we emphasize the 
need for studies with new models of schizophrenia 
to analyze the changes in the levels of these 
proteins in the immune system. Therefore, further 
studies should thoroughly evaluate the role of pro-
inflammatory cytokines and autoimmunity in the 
pathophysiology of this mental illness. This will 
be able to drive strategies for pharmacological 
interventions that are more targeted and effective 
for the treatment of schizophrenia, which causes 
severe impairment in quality of life of the patient 
and his or her family (Bonhomme et al. 2011).

BDNF plays an important  role  in 
neurodevelopment and neural plasticity. A recent 
meta-analysis concluded that the levels of this 
neurotrophin are altered in schizophrenic patients 
(Favalli et al. 2012). A previously described study 
showed that omega-3 fatty acids can increase 
BDNF levels and it would be involved in the 
activation of metabolic pathways (Wu et al. 2004, 
Balanzá-Martínez et al. 2011). Omega-3 is known 
to play a role in the regulation of neurotrophins 
like BDNF and its receptor Trk-B, which are 
involved in spatial learning and memory (Bhatia et 
al. 2011). Several studies have reported enhanced 
hippocampal neurogenesis along with increased 
levels of BDNF levels following omega-3 PUFAs 
treatment (Blondeau et al. 2009, Venna et al. 2009). 

Experiments conducted in animals have 
shown an increase of BDNF in the brain during 
spatial learning. In clinical depression, successful 
antidepressant treatment increased BDNF levels 
in serum (Kaneda et al. 2009). Research has also 
shown that ketamine is capable of significantly 
increasing BDNF levels in the hippocampus of 
animals 30 min after administration, but not 24 h 
after application (Autry et al. 2011). 

In the present study, we chronically 
administered ketamine to cause nerve damage, and 
the results indicated that ketamine reduced BDNF 
levels in the prefrontal cortex at 1 and 24 h after 
treatment. Still, this decrease was not prevented by 
omega-3 intake for 21 days. This result corroborates 

previous studies demonstrating that preventing 
BDNF reduction requires more intense treatment. 
It is possible that increasing the dose or duration of 
treatment with omega-3 may influence changes in 
this marker (Molteni et al. 2002).

However, postmortem studies have identified 
changes in the density and composition of glutamate 
receptors in the prefrontal cortex, thalamus and 
temporal lobe areas, with decreased activation 
during performance tests in schizophrenic patients. 
Chronic administration of phencyclidine reduces 
dopamine turnover in the frontal cortex and 
increases the release of dopamine in subcortical 
regions, particularly in the nucleus accumbens. 
These data demonstrate the interconnection of 
the dopaminergic and glutamatergic systems, 
showing that they are complementary concepts in 
understanding the pathogenesis of schizophrenia 
(Goff and Coyle 2001).

Glutamate plays a major role in neuronal 
migration, neurite development, synaptogenesis, 
neuronal pruning and apoptosis. There are a variety 
of glutamate receptor subtypes that are genetically 
encoded, but its expression can be altered by 
environmental factors during brain development, 
creating a model of glutamatergic dysfunction due 
to the interaction of genetic and environmental 
risk factors in schizophrenia (Goff and Coyle 
2001). In a more recent formulation, dopaminergic 
hypofunction in the prefrontal cortex would be 
responsible for negative symptoms, and a primary 
event in schizophrenia, leading to a secondary 
dopaminergic hyperfunction in the striatum and, 
consequently, positive symptoms (Stone et al. 
2007).

The above findings support the results of this 
research because the concentrations of BDNF were 
affected only in the prefrontal cortex at 1 and 24 h 
the last injection of ketamine. Both groups received 
treatment with ketamine (vehicle+ketamine or 
omega + ketamine). Therefore, it can be stated 
that the cortex was the brain structure that was 
most affected in this animal model, and omega-3 
partially prevented the response at 24 h after the 
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last injection. These data suggest that longer and 
higher doses of omega-3 supplementation could be 
a possible treatment that potentially ensures better 
quality of life in schizophrenic patients.

The role of the omega-3 PUFAs in the brain 
are not completely elucidated, but some evidence 
supports the hypothesis that PUFAs are essential 
for normal brain function, as a part of the cell 
membrane, by facilitating the synaptic plasticity 
and improving mitochondrial function, in addition 
to reducing the intracellular oxidative stress 
(Gomez-Pinilla 2008). These neuroprotection 
proprieties would be involved in the prevention of 
the onset of schizophrenia in prodromal patients 
(Amminger et al. 2010).

The present study tested the hypothesis that 
omega-3 polyunsaturated fatty acids prevent 
biochemical changes in animals subjected to 
the ketamine-induced model of schizophrenia. 
Omega-3 supplementation delayed the effects 
of ketamine on the levels of BDNF, a possible 
indicator of protection of this fatty acid. In contrast, 
this experimental design generated similar levels of 
interleukins, indicating that the supplement and the 
ketamine treatment had no effect on this parameter. 
These results can be due to the mechanism of 
action of ketamine on the immune system. These 
data reinforce the important role that a diet rich 
in polyunsaturated fatty acids play on preventing 
the development of diseases, raising the need for 
knowledge on the mechanisms by which omega -3 
generates such effects.
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RESUMO

Novos estudos sugerem que os ácidos graxos 
poliinsaturados, como o ômega-3, podem reduzir os 
sintomas da esquizofrenia. O presente estudo avaliou 
o efeito preventivo do ômega-3 sobre os níveis de 
interleucinas (IL) e o fator neurotrófico derivado do 
cérebro (BDNF) em cérebros de ratos jovens submetidos 
a um modelo de esquizofrenia. O tratamento foi feito 
por 21 dias, iniciando no 30º dia de vida dos animais. 
Depois de 14 dias de tratamento com ômega-3 ou 
veículo, um tratamento concomitante com salina ou 
ketamina (25 mg/kg) foi iniciado e mantido até o último 
dia do experimento. No cortex pré-frontal dos ratos, 
os níveis de BDNF diminuíram em 1 h e 24 h depois 
da última administração de ketamina enquanto que o 
grupo administrado com ketamina e ômega-3 mostrou 
uma diminuição nos níveis de BDNF somente após as 
24 h. Em contraste, ambas as intervenções induziram 
respostas similares quanto aos níveis de IL-1β e IL6. 
Esses achados sugerem que a similaridade nos níveis de 
IL-1β e IL6 em nossos grupos de experimento é devida 
ao mecanismo de ação da ketamina sobre o sistema 
imune. Mais estudos são necessários para explicar essa 
patologia. Em conclusão, de acordo com estudos prévios 
e considerando o atual estudo, nós sugerimos que o 
ômega-3 tem um papel profilático no desenvolvimento 
de sintomas associados à esquizofrenia.

Palavras-chave: omega-3, ketamina, esquizofrenia, 
neurotrofinas, interleucinas.
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