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1. Introdução

Kalray é uma empresa pioneira na concepção de processadores many-core. Seu último
lançamento, o Multi-Purpose Processor Array (MPPA R©) Bostan conta com 288 núcleos
programáveis em C/C++ com interfaces de Entrada/Saı́da (E/S) de alta velocidade. Essas
caracterı́sticas asseguram alto desempenho com baixo consumo (entre 10W e 20W) e
resposta em tempo real.

Inúmeras aplicações podem se beneficiar de tais particularidades e, entre elas,
estão os sistemas utilizados na indústria aviônica. O MPPA R© oferece previsibilidade tem-
poral, i.e. capacidade de calcular deterministicamente quanto tempo uma operação levará,
e particionamento espacial, i.e. garantia de não-interferência entre espaços de memórias
através de isolamento fı́sico. Esses aspectos são cruciais para sistemas aeronáuticos.

Este resumo estendido irá apresentar o trabalho de porte de um Real-Time Ope-
rating System (RTOS) para a arquitetura do processador MPPA R© Bostan. O documento
está dividido em 6 seções, incluindo esta introdução. Na seção 2 é exposto o contexto e a
motivação do projeto. Na seção 3 há uma análise de mercado, da metodologia de desen-
volvimento de aplicações aeronáuticas e das soluções existentes em termos de sistemas
operacionais (SOs). A seção 4 aborda os detalhes de implementação mais importantes e,
por fim, na seção 5 os resultados do trabalho são mostrados seguidos pela conclusão na
seção 6.

2. Contexto e Motivação

A Kalray foi fundada em 2008 por antigos funcionários da STMicroelectronics que
possuı́am experiência no desenvolvimento de arquiteturas paralelas e que acreditavam
fortemente em seu potencial futuro. É uma empresa do tipo fabless1, contando com uma
equipe de hardware completa que realiza desde a concepção até a verificação de funcio-
nalidade do processador.

Além do projeto de hardware, a empresa fornece também soluções de software
visando integrar e explorar a capacidade de seu produto fı́sico, entregando um pacote
completo de acordo com as necessidade de cada cliente. Atualmente, os principais nichos
de mercado atingidos são centros de processamento de dados (encriptação, compactação)
e a indústria automobilı́stica (processamento de imagem para veı́culos autônomos).

1Empresa que realiza o design de um circuito, externalizando sua produção.



A arquitetura do MPPA R© Bostan é composta por 288 núcleos de 32, ou 64 bits,
que recebem instruções do tipo Very Long Instruction Word (VLIW). Desses núcleos, 256
são para uso geral e 32 para gestão de recursos. Os núcleos são ainda subdivididos em 16
clusters de cálculo com 2MB de Shared MEMory (SMEM) e 2 clusters de E/S com 1MB
de SMEM e 2GB de Double Data Rate (DDR) para uso geral.

A comunicação interna no processador é realizada através de um Network on Chip
(NoC) temporalmente previsı́vel e eficiente. A comunicação externa é garantida através
de interfaces de E/S dos tipos Peripheral Component Interconnect (PCI) e Ethernet. Uma
visão geral da arquitetura do processador é apresentada na figura 1.

Figura 1. Visão geral do MPPA R© Bostan com detalhe para um cluster de cálculo

O projeto, por estar inserido em um contexto aviônico, tem requisitos de um sis-
tema crı́tico, onde falhas ou mal funcionamento podem representar mortes ou lesões e
grande custo por perda de equipamento. Portanto, tanto o hardware, quanto o software,
devem oferecer disponibilidade temporal, confiabilidade de execução, segurança contra
falhas e proteção contra intrusões.

As caracterı́sticas arquiteturais, previamente mencionadas, asseguram o MPPA R©

como um processador pronto para a computação crı́tica. Três aspectos são essenciais para
isso:

• Computação determinı́stica: duas operações realizadas sobre os mesmos dados de
entrada terão a mesma sequência de instruções, executadas na mesma ordem.
• Tempos de resposta restritos: duas operações realizadas sobre os mesmos dados

de entrada levarão o mesmo tempo.
• Worst-Case Execution Time (WCET): capacidade de calcular o pior caso temporal

de um sistema somando os piores casos individuais de seus componentes.

Além disso, elementos de hardware que tem efeito histórico, como a cache, podem
ser desativados para evitar alterações temporais entre execuções. Ainda, a organização
arquitetural do MPPA R© em clusters permite a replicação de operações, disponibilizando
redundância em caso de falhas.



Somando com o nı́vel de criticalidade presente no hardware, a motivação princi-
pal do projeto vem da busca da indústria aeronáutica por um sistema que exponha uma
camada de software com uma Application Programming Interface (API) padronizada, ca-
pacidade de particionamento temporal e espacial e que possa passar por um processo de
certificação. Dessa maneira, o porte de um RTOS, que já atende os requisitos previa-
mente citados, será feito para capacitar o MPPA R© em termos de hardware e software para
receber aplicações aviônicas que seguem a norma ARINC 653.

Na próxima seção explora-se em detalhe as exigências da camada de software
revisitando como elas eram atingidas em sistemas aeronáuticos antigos e como deseja-se
garanti-las atualmente.

3. Embasamento técnico

3.1. Metodologias de Desenvolvimento

Tradicionalmente a indústria aeronáutica utiliza uma metodologia denominada Federated
para a concepção dos sistemas eletrônicos das aeronaves. Essa metodologia é baseada em
unidades independentes e construı́das especificamente para uma aplicação, e.g. controle
do display da cabine de pilotagem. Tais unidades se comunicam através de um barra-
mento que segue a norma Avionics Application Standard Software Interface (ARINC) 429
visando garantir a não-interferência e requisitos temporais do sistema.

Algumas desvantagens da metodologia Federated são: subutilização de recursos,
visto que as unidades são especializadas e, possivelmente, carregam elementos que po-
deriam ser reaproveitados em outras partes do sistema; e o processo de certificação é
realizado no sistema como um todo, sendo necessária a recertificação a cada troca ou
adição de unidade.

Visando suprir tais deficiências a metodologia Integrated Modular Avionics (IMA)
surgiu. Ela utiliza como base um SO onde partições de aplicação são executadas (equi-
valentes às unidades Federated). Uma partição é, portanto, um contêiner para uma
aplicação, podendo abrigar múltiplos processos, porém, preservando a capacidade de iso-
lamento temporal e espacial (em memória) entre os processos e outras partições. As
aplicações aeronáuticas, e.g. controle do display da cabine, são assim construı́das ob-
tendo maior portabilidade e modularidade. A portabilidade vem do fato de que, como o
SO é construı́do segundo uma norma especı́fica, as aplicações desenvolvidas utilizando
um sistema podem ser facilmente portadas para outro que segue a mesma norma. A mo-
dularidade vem do isolamento entre as partições

Essa modularidade permite que aplicações com diferentes nı́veis de criticidade se-
jam executadas em paralelo no mesmo sistema. Como consequência, todo o sistema pode
ser implementado em um único chip, ao contrário de múltiplos sistemas eletrônicos inte-
grados, existe uma grande economia em peso e em consumo energético. O processo de
certificação, entretanto, é ligeiramente mais complicado, pois, o SO deve seguir estrita-
mente as normas de concepção, bem como as aplicações. Uma vez que o longo processo
de certificação, tanto para o sistema, quanto para as aplicações é concluı́do, os mesmo po-
dem ser substituı́dos por outros sistemas e aplicações que também possuam certificação,
sem necessidade de recertificação.



3.2. A norma ARINC 653
Com o desenvolvimento e a consolidação do conceito IMA, a necessidade de uma norma
para estruturar o SO responsável por gerenciar todo o sistema era iminente. A norma
ARINC 653 surgiu com o objetivo de preencher tal lacuna. Essa norma especifica basica-
mente dois aspectos do SO: sua interface e seus componentes.

A interface define como será a comunicação entre aplicações e o SO. Essa inter-
face foi denominada de APplication/EXecutive (APEX), e é uma lista de funções para
a gestão de partições, processos, tempo, memória e comunicação. Os componentes defi-
nem as estruturas básicas necessárias no SO para que ele seja capaz de fornecer a interface
APEX, entre elas um escalonador customizável, possibilidade de comunicação intra e in-
ter partições e gestão de recursos de hardware como memória e frequência.

A interface APEX é resumida e agrupada nos chamados grupos de serviço
ARINC. Funções semelhantes compõem o mesmo grupo e essa organização auxilia tanto
na implementação quanto nos testes de um SO baseado na norma ARINC 653.

Figura 2. Grupo de serviços ARINC e suas funções

3.3. TiCOS
Uma análise dos SOs disponı́veis no mercado foi feita para a definição de qual deles seria
de fato portado para o processador MPPA R©. Os aspectos mais relevantes foram ter código
aberto, haver possibilidade de contato com os desenvolvedores e respeito estrito da norma
ARINC 653.

O Time-Composable Real-Time Operating System (TiCOS) foi escolhido por sa-
tisfazer os aspectos citados anteriormente. Além disso, o TiCOS tem boa documentação,
está disponı́vel publicamente e possui colaboradores ativos. O TiCOS foi resultado da
tese de doutorado de Andrea Baldovin e baseado em outro sistema chamado de POK. Sua
implementação original é voltada para a arquitetura PowerPC da IBM que é single-core.
Além disso, a adoção do TiCOS também foi uma recomendação de parceiros externos da
Kalray neste projeto.

4. Implementação
4.1. Objetivo
Como citado, o TiCOS tem sua implementação original voltada para a arquitetura single-
core PowerPC da IBM. O código é composto principalmente por C e assembly especı́fico



da Instruction Set Architecture (ISA) PowerPC.

O objetivo deste trabalho é portar o TiCOS para a arquitetura MPPA R© da Kalray,
preservando o aspecto single-core do núcleo (kernel) do SO em um primeiro momento. A
linguagem C para o código foi mantida graças ao suporte prévio do ambiente de software
do processador. A maior mudança vem da alteração do código assembly, especı́fico para
a arquitetura MPPA R©, e o uso de uma camada de virtualização que será apresentada nas
próximas seções, o mOS.

4.2. Arquitetura

A arquitetura do TiCOS é dividida em duas camadas: aplicação e núcleo. A camada de
aplicação é formada por um componente core que expõe ao usuário as funcionalidades
do sistema e se apoia nas bibliotecas ARINC (contém as interfaces da APEX segundo
a norma), middleware (responsável por tratar os serviços de comunicação) e core (res-
ponsável por tratar os demais serviços, e.g. criação de threads, controle de tempo). A
comunicação entre a camada de aplicação (que é executada em nı́vel de usuário) e o
núcleo (executado originalmente em modo privilegiado) é feita através de chamadas de
sistema.

A camada do núcleo é formada também por um componente core que é o ponto de
entrada das chamadas de sistema e se comunica com o componente dependente da arqui-
tetura (na implementação original denominado PowerPC arch). Esse último componente
é o responsável pelo acesso aos recursos de hardware através de instruções especı́ficas do
processador.

O porte para uma nova arquitetura deve, em teoria, modificar apenas o último
componente mencionado. Dessa maneira, um componente MPPA R© arch foi adicionado
e, entre a camada do núcleo e o hardware, foi introduzida a camada de virtualização
composta pelo mOS. A figura 3 mostra a visão global da arquitetura do TiCOS.

4.3. O Hipervisor mOS

A Kalray optou por encapsular todo seu ambiente de software com um hipervisor que nada
mais é do que uma camada virtual entre o hardware e qualquer aplicação, até mesmo um
SO de terceiros.

O hipervisor mOS é um exonúcleo, um tipo especı́fico de núcleo de SO extre-
mamente minimalista e pequeno. Esse conceito foi introduzido pelo grupo de siste-
mas operacionais paralelos e distribuı́dos do MIT, em 1994. Uma de suas principais
caracterı́sticas é não forçar abstrações de hardware para as próximas camadas de soft-
ware, construindo um kernel com poucas funcionalidades mas que entrega maior flexibi-
lidade às aplicações. Um exonúcleo deve primordialmente garantir proteção, através da
virtualização, e multiplexação de recursos de hardware.

Qualquer aplicação, ou SO, que utiliza um hipervisor é, portanto, considerada
uma biblioteca, ou um SO hóspede, já que são executados em nı́vel de usuário. Algumas
caracterı́sticas particulares do mOS da Kalray são: tamanho reduzido (apenas 32KB),
presença de uma estrutura, denominada scoreboard, que armazena o estado virtual do
sistema e uso de hypercalls que são chamadas de sistema com pré e pós processamento
de dados.



Figura 3. Visão arquitetural do TiCOS com o componente MPPA R©

4.4. Metodologia de Desenvolvimento

Para este projeto a mesma metodologia de implementação foi utilizada para cada nova
funcionalidade prevista pelo sistema original. Ela é descrita abaixo:

1. Análise do código do TiCOS e das estruturas presentes no processador PowerPC;
2. Estudo de estruturas equivalentes no processador MPPA R©;
3. Identificação de funções existentes no hipervisor mOS que explorem essas estru-

turas;
4. Utilização da API do mOS ou implementação da funcionalidade.

As próximas seções apresentam detalhes de implementação e das estruturas de su-
porte de hardware presentes no processador, mostrando os principais pontos de interesse
em um trabalho de porte de um SO.

4.5. Suporte de Arquitetura

O TiCOS necessita de alguns recursos de hardware comuns e presentes na maioria dos
processadores para seu funcionamento. O primeiro deles, usado no isolamento tempo-
ral entre partições, é um registrador para o controle do tempo global do sistema jun-
tamente com um registrador decrementador. O isolamento temporal garante que ape-
nas uma partição estará em execução no sistema em um determinado slot de tempo. O



MPPA R© possui uma estrutura no scoreboard que mantém um timestamp global e virtua-
liza o registrador fı́sico decrementador de 64 bits. A API do mOS fornece acesso a ambos.

O segundo recurso é a definição de um contexto do estado arquitetural dos regis-
tradores para seu armazenamento e restauração. O MPPA R© possui 64 registradores para
uso geral e 50 registradores para funções especı́ficas. A definição dos registradores impor-
tantes para o contexto foi feita em uma struct em C e macros assembly são utilizadas
para salvar e restaurar o contexto.

O terceiro recurso é a gestão de memória através de uma Memory Management
Unit (MMU) para o particionamento espacial. Embora o MPPA R© possua tal suporte em
hardware, ele é limitado, seu uso é complexo e desencorajado pelos desenvolvedores.
A solução arquitetada foi separar a compilação do núcleo e das partições em endereços
fixos, i.e. código absoluto, sem amarração dinâmica com a MMU. O ligador então se
encarrega de empacotá-los em um objeto único (multibinário).

4.6. Casos especiais

Além das estruturas de hardware citadas, o TiCOS requer suporte extra de software
em alguns casos especiais. Quanto ao primeiro dos casos, o sistema original foi con-
cebido para ser standalone, i.e. não depender de nenhuma biblioteca externa para sua
compilação. Assim sendo, o processo de compilação do sistema é feito usando a opção
--nodefaultlibs do gcc. Para suprir a ausência de algumas funcionalidades básicas
foi necessária uma implementação minimal da libC, bem como sua compilação e poste-
rior ligação com o restante do sistema. Funções como putchar e exit foram escritas
usando chamadas de sistema próprias do MPPA R©. Rotinas aritméticas de baixo nı́vel
como divdf3, modis3, umodis3, divmodsi4 foram reaproveitadas de
outros módulos já presentes no ambiente de software da Kalray.

O segundo caso vem da atrelação entre as chamadas de sistema e a ISA em
questão, necessitando de um trabalho de porte tanto na instrução assembly utilizada,
quanto no tratador das chamadas. É um trabalho vital para o funcionamento do sistema,
visto que os serviços ARINC que necessitam acessar funcionalidades do núcleo do sis-
tema terminam em chamadas de sistema.

Na ISA do MPPA R© a instrução assembly é a scall. Ao ser executada, ela é
interceptada pelo mOS, que redireciona o fluxo da aplicação para o tratador de chamadas
de sistema. O tratador é responsável por salvar o contexto de execução, trocar as pilhas
entre partição e núcleo e chamar as próximas funções do sistema que irão completar o
fluxo de execução. O registro do tratador de chamadas de sistema é feito no scoreboard
do mOS durante a inicialização do sistema.

O terceiro caso trata do suporte aos dois tipos de troca de contexto presentes no
sistema original: dirigidas por interrupção e explı́citas. Para isso, além de um registrador
decrementador e de timestamp, é requerido o conhecimento do sistema de interrupções da
arquitetura e o registro de um tratador, semelhante ao de chamadas de sistema.

A troca de contexto dirigida por interrupção ocorre no momento em que o re-
gistrador decrementador atinge zero e levanta uma interrupção, que interrompe o fluxo
normal de execução do processador. Essa interrupção é então interceptada pelo mOS e
redirecionada para o tratador que se encarregará da troca de contexto. Esse é um tipo



de escalonamento preemptivo de partições. O registro de tal tratador também é feito no
scoreboard do mOS durante a inicialização do sistema.

A troca de contexto explı́cita ocorre quando uma partição decide esperar pelo
próximo perı́odo de execução ou por um evento. A partição faz uma chamada de sistema
que invoca o escalonador, que por sua vez retira a atual partição da execução. Esse é um
tipo de escalonamento cooperativo, porém que ainda respeita o aspecto tempo real, visto
que a próxima partição só será executada quando o slot de tempo reservada a ela começar.

5. Resultados obtidos

Antes de apresentar os resultados é importante mencionar o processo de validação utili-
zado e as dificuldades encontradas. Idealmente, ao desenvolver qualquer software visa-se
isolar suas camadas e funções para posteriormente criar testes unitários. Mesmo com a
arquitetura modular do TiCOS (seção 4.2), a utilização de testes unitários não foi possı́vel,
pela vinculação entre as camadas de núcleo e de partições de aplicação em único objeto.

Resta então como vetor de teste aplicações que serão compiladas e executadas
juntamente com o TiCOS. As aplicações de teste tem duas origens: códigos exemplo
fornecidos juntamente com o sistema original e códigos obtidos através de um gerador
automático que tem como entrada arquivos XML.

Os códigos exemplo possuı́am os estı́mulos necessários para avaliar a maioria
dos grupos de serviço ARINC. Não estavam incluı́dos testes para os grupos EVENT,
BLACKBOARD, BUFFER e PORT. Ainda, o sistema não estava sendo testado em termos
de escalabilidade, isto é, o exemplo que mais estressava o TiCOS em gestão temporal e
espacial possuı́a 3 partições com 1 processo cada.

Assim, um gerador automático de código foi usado para complementar os casos de
teste. Foram criadas aplicações para estimular os serviços EVENT e PORT e aplicações
com 4 partições e 1 ou 2 processos cada. O gerador foi necessário, pois o código do
núcleo e das partições é parametrizável através de arquivos do tipo deployment.h e
deployment.c que possuem diretivas de compilação e são de difı́cil alteração manual.
Esses arquivos, além de templates para o código fonte das aplicações, são automatica-
mente criados pelo gerador com arquivos xml como entrada, que descrevem de maneira
declarativa as partições, processos e comportamento esperado de uma aplicação.

Os critérios de avaliação para a execução dos testes foram:

• Funcionais, i.e. se a execução da aplicação está em conformidade com seu código
fonte. Para isso uma análise visual baseada em mensagens de debug foi utilizada;
• Estruturais, i.e. estado arquitetural dos registradores durante a execução de

serviços ARINC que podem modificá-los;
• Temporais, i.e. estado dos registradores de timestamp e de decremento em mo-

mentos chave da execução, como a troca de contexto.

Cada uma das aplicações teste explorava um ou mais conjunto de serviços ARINC
fornecido pelo sistema, visando-o testar na sua integridade. A execução foi feita primei-
ramente em simulação Instruction Set Simulator (ISS), que é mais rápida e facilita testes
com funções de E/S. Posteriormente a execução foi feita em hardware, buscando avaliar
os registradores fı́sicos e aspectos temporais através do uso do gdb, o que não está com-



pletamente modelado na simulação. Após ou durante a execução os critérios de avaliação
foram então aplicados para validar ou reprovar o teste.

Os resultados dos testes são apresentados na tabela 1. As células da tabela que
apresentam o sı́mbolo 3evidenciam que o grupo de serviço ARINC correspondente foi
validado através de uma aplicação executada com o TiCOS, em simulação, ou em hard-
ware (dependendo da coluna), segundo os critérios previamente citados. As células que
apresentam o sı́mbolo 7 evidenciam que o grupo de serviço não foi testado. Em espe-
cial os grupos blackboard e buffer, que fornecem comunicação intra partição, não foram
testados em nenhuma das aplicações executadas.

Tabela 1. Resultados da validação em simulação e hardware
Grupo de serviço ARINC Simulação Hardware
ERROR 3 3

TIME 3 3

PARTITION 3 3

PROCESS 3 3

EVENT 3 3

BLACKBOARD 7 7

BUFFER 7 7

PORT 3 3

O produto final é o RTOS TiCOS portado com sucesso para a arquitetura MPPA R©,
com exceção de dois grupos de serviço que não possuı́am alta prioridade no projeto se-
gundo a especificação da Kalray. Além disso melhorias no processo de compilação foram
feitas, para que todos exemplos presentes no diretório do sistema pudessem ser compila-
dos de uma só vez e posteriormente executados através de comandos simples no MPPA R©.

6. Conclusão
Os resultados da validação apontam que o porte do TiCOS foi feito com sucesso para o
MPPA R©. Esse trabalho foi de extrema importância na construção de uma prova de con-
ceito da arquitetura para aplicações aviônicas e ressaltou suas caracterı́sticas de criticidade
e tempo real.

O projeto de porte de um SO é um ótimo tópico, pois incentiva a análise de código
de terceiros, requer profundo conhecimento em C e assembly e familiaridade com a ar-
quitetura para a qual o sistema está sendo portado. O uso do mOS como hipervisor trouxe
acessibilidade aos recursos de hardware de maneira fácil, acelerando a curva de aprendi-
zado e a realização de algumas tarefas. Entretanto, sua obrigatoriedade acarreta na perda
da flexibilidade presente em sistemas bare-metal.

Como já dito anteriormente, o porte teve um aspecto single-core onde o núcleo
e as partições são executados no mesmo core, isolados temporalmente e dispostos na
SMEM em endereços fixos. Entretanto, um isolamento espacial garantido por estruturas
de hardware é necessário para um processo de certificação. Trabalhos futuros podem
explorar a MMU do MPPA R© para obter tal caracterı́stica.

No intuito de explorar a capacidade de processamento do MPPA R© um porte a
nı́vel de cluster pode ser realizado, ainda em fase de estudo. A primeira proposta foi do



tipo Asymmetric multiprocessing (AMP), com o núcleo sendo executado em um core e as
partições aplicações em cores distintos do mesmo cluster. Um porte a nı́vel do MPPA R©

completo também está em estudo. Nesse caso, o núcleo seria executado em um cluster
de E/S e as aplicações em cores distintos de clusters distintos, sendo o NoC responsável
pela comunicação entre partições.



Grenoble INP – ENSIMAG
École Nationale Supérieure d’Informatique et de Mathématiques Appliquées

Final Study Project Report

Undertaken at Kalray

Porting of an avionics ARINC653 compliant
RTOS

Matheus SCHUH
3A – SLE

22 February 2016 – 22 July 2016

Kalray SA Internship responsible
445 Rue Lavoisier Benoît de DINECHIN
38330 Montbonnot Saint Martin School Tutor

Matthieu MOY



ACKNOWLEDGEMENTS

Acknowledgements

I would like first to thank Kalray for offering me the opportunity to undertake my internship
at the Montbonnot site, for welcoming me in its facilities and for giving me all the required

material to accomplish my tasks.
I thank particularly Benoît de Dinechin for offering me this internship, for trusting me in

the accomplishment of the given tasks and for supporting me in fullfilling them.
I am also grateful to Matthieu Moy for accepting to be the tutor of this project, for the

advices given and the revisions of the report.
I also thank Pierre Guironnet de Massas and Samuel Jones for their constant support
in all OS, MPPA R© architecture and general doubts that came up throughout the internship.

Finally, I would like to thank all the Core Software Team members for receiving me
during these 5 months, for helping me in doubts and difficulties and also for their kindness

and patience with eventual french communication problems.

Matheus SCHUH 1 / 59 Final Study Project Report



ABSTRACT

Abstract

The avionics industry has a huge interest in improving their systems through better
performance and lower power consumption while maintaining the safety requirements.
Kalray’s processor comes in handy and is able to meet these needs with a proper software
environment.

The work presented in this document is focused on porting a Real-Time Operating
System (RTOS) to Kalray’s processor. This OS provides resource management and a
programming interface that respects the ARINC 653 avionics standard.

The port was successfully accomplished as the majority of the examples are functional
on simulation and on hardware. Even though, it is still a work in progress as some
ARINC services are not completely working and optimizations exploiting the processor
architecture can be made.

Keywords: Kalray, MPPA, ARINC653, embedded systems, C, assembly, processor,
many-core, APEX, RTOS, TiCOS, POK.
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RESUME

Résumé

L’industrie avionique porte un grand intérêt à l’amélioration de leurs systèmes en
ce qui concerne la performance et la consommation énérgétique, tout en respect les
contraintes de sûreté. Le processeur Kalray permet de répondre à ces besoins par son
environnement logiciel standard.

Ce document présente le travail de portage d’un système d’exploitation temps-réel
(RTOS) au processeur de Kalray. Cet OS assure la gestion des ressources et une interface
de programmation qui respecte la norme avionique ARINC 653.

Le portage a été accompli avec succès, vu que la plupart des exemples sont fonc-
tionnels en simulation et en matériel. De toute façon, cela est encore un travail en
progrès, car certains services ARINC ne marchent pas et des optimisations qui exploitent
l’architecture du processeur peuvent toujours être faites.

Mot-clés: Kalray, MPPA, ARINC653, systèmes embarqués, C, assembleur, pro-
cesseur, many-core, APEX, RTOS, TiCOS, POK.
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1 INTRODUCTION

1 Introduction

Kalray is a pioneer company in the development of many-core processor architectures.
Its latest processor release, the MPPA R©2-256 Bostan, with 288 C/C++ programmable cores,
provides a performance level similar to ASICs and high speed Input/Output (I/O) interfaces.
These characteristics allow the so-called supercomputing on a chip with low power consumption
and real-time response.

The applications that can benefit from such an architecture are the most varied: data
centers, encryption acceleration and multimedia processing are some examples. Besides from
these parallel intensive tasks, the avionics industry is particularly interested in the time pre-
dictability and space partitioning provided by the processor. The goal of the internship is to
use the aforementioned features in order to port a RTOS compliant with the ARINC 653 spec-
ification to the Kalray’s MPPA R©. Thanks to this Operating System (OS) interface, clients
may port modular avionics software to the MPPA R© processor.

This document will begin by exposing an overview of the company and the work team.
Then the internship’s subject will be presented in detail: final goal, problematic, restrictions
and work to be done. Furthermore, a technical section will follow containing the possible
analysed solutions, a description of the alternative chosen and an evaluation mechanism of the
developed product. Implementation and results sections are placed next, showing the work
accomplished until this moment. Finally, a planning with the progress, a personal appraisal
and a conclusion will be attached.
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2 CONTEXT

2 Context

2.1 The company

Kalray is an organization created in 2008 by Joël Monnier, former vice president of STMi-
croelectronics. It is specialized in the design of many-core processors targeting mainly the
embedded computing market (a photo of such processor can be seen in figure 1). As many
semiconductor companies nowadays, it is identified as fabless1, having its processors production
done in Taiwan.

More than 50 people are currently working in Kalray’s offices. They are spread throughout
Paris (financial headquarters), Montbonnot-Saint-Martin (near Grenoble), Tokyo (Japan) and
recently Los Altos (USA) in the Silicon Valley.

Figure 1: Two Kalray MPPA R©-256 processors in a board

2.2 The site

The Kalray Montbonnot-Saint-Martin site groups the most part of the company’s work-
force. It is situated in a region called Inovallée2 that incubates more than 380 companies
and laboratories. This privileged location has allowed multiple collaborative projects and the
creation of a joint laboratory with the CEA, employing more than 30 engineers.

There are two main teams in the site:

• Hardware: the logical and physical design of the processor is done by this team, which
is subdivided in:

– Backend: in charge of the placement and routing process, in order to obtain a
functional and optimized circuit layout. This design will finally be printed out on
masks3.

– Frontend: responsible for the architecture design and the hardware description of
the processor, written in VHSIC Hardware Description language (VHDL). A part
of this team implements the VHDL code in a Field Programmable Gate Array
(FPGA), providing a quick prototype interface to be used in internal projects.

1Company that externalizes the production process, being responsible only for a product’s conception.
2A science park between Meylan and Montbonnot-Saint-Martin created in 1971 with the purpose of

shorting the distances between industry and laboratories. Similar in concept with the Silicon Valley.
3A plate with transparencies that allow the light to pass in a defined pattern. In a chip production this is

used in the photolitography process, engraving a layout on a silicon wafer.
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2 CONTEXT

• Core Software: all the software tools used to program the MPPA R© are done by this
team, which has two main work branches:

– Core Development: creation of Kalray versions of GNU tools, such as k1-gcc,
k1-gdb and k1-objdump. Deployment tools such as a Instruction Set Simulator
(ISS)4 and a hardware runner5 are also developed and maintained by this branch.

– Core Applications: creation of programs that demonstrate the processor abilities
and performance. OS and libraries (such as the well known libc) are developed and
ported by this branch.

Even though Kalray has been in the market for 8 years, the startup atmosphere remains.
The communication and interaction between teams are extremely easy and the work dynamics
is flexible. That means one person is not tied down to a group, being allowed to work in
multiple projects at the same time.

2.3 The team

The Core Software team is lead by Céline Barraud and sums up to 20 engineers working,
as already mentioned, with all the problematics linked to the MPPA R© software environment.

My internship tutor is Benoît Dupont de Dinechin, who occupies the post of Chief Technol-
ogy Officer, having more than 20 years of expertise in software engineering, processor design
and compiler tools. As he is frequently busy with managing decisions, daily basic questions
are addressed to Pierre Guironnet de Massas who possesses a deep knowledge of the Kalray
environment and the process of porting an OS, specifically its kernel.

Both of these mentors work inside this team and the internship follow-up is done through
a weekly email containing the tasks accomplished in the period and the goals to attain for
the next week. This helps them verify the quality of the work and if a specific task may be
blocking the progression.

4A simulation model that imitates a processor by reading instructions, executing them and maintaining a
virtual state of such hardware.

5A tool that runs a given binary in a hardware system, in our case the MPPA R© with its k1-jtag-runner.
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3 THE INTERNSHIP PROJECT

3 The internship project

3.1 The MPPA processor

MPPA R©2-256 Bostan is Kalray’s latest processor. It implements a 32-bit/64-bit Very Long
Instruction Word (VLIW)6 core named k1b. The frequency of operation can vary between
4000MHz and 600MHz, which gives a power consumption variation between 10W and 20W.
Its peak floating-point performances are 634 GFLOPS and 316 GFLOPS for single and double
precision respectively.

In the following sub-subsections some important aspects of the processor will be detailed,
as they are required for further comprehension of the document.

3.1.1 Global Architecture

Inside the processor there are 288 cores divided in 16 Compute Clusters and 2 I/O Clusters
(IOCs) (an overview can be seen in figure 2).

Each CC is composed of 16 Processing Element (PE) cores and 1 Resource Manager (RM)
core, all sharing a local Shared MEMory (SMEM) of 2 MB. The communication between CCs
is achieved using the Network on Chip (NoC).

Each IOC is composed of 8 RM cores with multiple I/O interfaces (PCIe, Ethernet) and
an external Double Data Rate (DDR) memory that normally can be accessed only by these
cores.

Figure 2: MPPA R©2-256 Bostan Overview with a CC zoomed view

The processor was conceived originally to perform parallel calculation (for image and video
processing) with high performance and low power consumption, overcoming in these terms
a Graphics Processing Unit (GPU). Throughout the years, many other possibilities have ap-
peared: cryptography, data storage, self-driving cars, real-time systems, etc.

Isolating the DDR access and limiting the CC communication to the NoC interface are
important features for these applications. It makes the MPPA R© more energy-efficient and

6Processor architecture capable of executing multiple instructions at the same time as long as they are
not dependant.
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3 THE INTERNSHIP PROJECT

prevents unexpected timing interferences between the clusters. Another great advantage is
that the programming environment remains a C/C++ standard with no proprietary language
learning requirements.

NoC The MPPA R© contains a dual NoC that allows communication and synchronization
between the clusters. It is composed of a Data NoC (D-NoC) designed for heavier data traffic,
capable of remote writing and a Control NoC (C-NoC) which supports fast synchronization
barriers.

Figure 3: MPPA R© NoC in detail

The topology is based on a 2D torus7

augmented with direct links between IOC
nodes and NoC extension links to other
MPPA R© processors or an external FPGA.
The two NoCs are identical concerning the bi-
directional links, router arbitration, the topol-
ogy and the route encoding, differing at their
interfaces and by the size of First in, First out
(FIFO) queues. The MPPA R© NoC totalizes
32 nodes, one per CC and 8 per IOC (c.f.
figure 3).

An important aspect for time-criticality is
the NoC latency. The D-NoC which is ded-
icated to streaming data transfers (possible
biggest delays) has been designed to oper-
ate with guaranteed services, thanks to non-
blocking routers and flow regulation at source
code. The routers multiplex flows originating
from different directions, each with its own
FIFO buffer, allowing interference on a node only if they share a link to the next one. In
addition, a Round-Robin (RR) arbitration is done between the packets in these FIFOs.

All these features induce a minimal amount of perturbation on the data flow and have
allowed Kalray to develop a linear programming formulation to compute the application min-
imal bandwidth requirements, absence of FIFO queue overflow in the routers and fairness of
bandwidth allocation between the different flows.

3.1.2 The k1b VLIW core

The Kalray k1b core implements the previously mentioned 32-bit/64-bit VLIW architecture
with a 7-stage instruction pipeline8. This allows the execution of bundles9 containing up to 5
instructions.

The core also features two Arithmetic and Logic Units (ALUs), a Multiply-Accumulate
Unit (MAU) combined with a Floating-Point Unit (FPU), a Load/Store Unit (LSU), and a
Branch and Control Unit (BCU). Another important aspect to be mentioned is the endianess10

of the architecture: byte-addressable bit-little-endian, meaning that it is legal to access bytes
of a word and that the bit 0 of any data is always the least significant bit.

7Network topology to connect processing nodes in a computer system
8Hardware resource that splits the execution of an instruction into multiple steps, allowing parallelism and

faster Central Processing Unit (CPU) throughput
9Group of instructions that can be executed in parallel

10Order of the bytes in a computer memory stored word. Usually big-endian or little-endian.
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Pipeline An overview of k1b core pipeline can be seen in figure 4. The 7 stages are explained
as follows:

Figure 4: Kalray k1b pipeline

• PF (Prefetch): pre-load instructions to the core

• ID (Instruction Decode): fetch, align, decode and dispatch an instruction

• RR (Register read): read the necessary operands for an instruction

• E1, E2, E3, E4: execution stages; all executions begin in E1; results of instructions
finished before E4 are available for bypassing

All the functional units, such as the ALU or the LSU, have their own internal pipeline
structure that can be seen with more details in [1] and are out of the scope of this document.

Registers The MPPA R© provides three types of register files:

• R: 64 General Purpose Registers (32-bit)

• P: 32 General Purpose Register pairs (64-bit)

• S: 64 Special Function Registers (32-bit)

General Purpose Registers (GPRs) can be used to store all data types that fit within
their width: integers, addresses, boolean conditions, single or double precision floating-point.
Special Function Registers (SFRs) are used for program and system control and as status
registers. An introductory overview of the registers and their functions can be seen in figures
14 and 15. For further information please refer to [1].

MPPA R© Instruction Set Architecture (ISA) As already mentioned, the MPPA R© imple-
ments a VLIW core, leading to a very particular instruction set, completely different from the
standard x86 ISA.

Due to the pipeline and parallel operation units, these instructions are regrouped into
bundles in which they are encoded in ordered words called syllables. In assembly language a
valid bundle is, therefore, an ordered subsequence of:
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BCU
ALU0
ALU1
MAU
LSU
;;

Following the MPPA R© assembly rules, each instruction is separated from the next by an
end of line. Two semicolons ";;" mark the end of a bundle. In the above listing the acronyms
represent instructions that can be executed in the respective unit. For example, the BCU could
be replaced by an IGOTO, the ALU could be replaced by an ADD, and so on. For further details
of the ISA and valid bundle operations please refer to [1].

3.2 Motivation

The MPPA R© has, as shown, a unique architecture. Managing all of its features and being
able to write complex programs in bare-metal11 is rather challenging. To solve this problem,
the services provided by an OS are of great help.

Kalray software engineers have already ported multiple OSs to the MPPA R© such as RTEMS
and even Linux. They have also developed their own simplified systems called µtask12 and
simpleOS13. Third-party OSs have also been ported by partner companies such as eMCOS by
the japanese eSOL and ERIKA Enterprise by Evidence Srl.

Even though the last two mentioned ports are from RTOSs, none of them have been
projected exclusively for the avionics market. Therefore, they do not necessarily respect the
ARINC653 specification, leading to the following problems when providing such non-compliant
OS to avionics costumers:

• The general purpose APplication/EXecutive (APEX)14 interface for application software
is not available and the development will have to be done using a different API. This
may cause compatibility issues with older programs and a productivity decrease due to
the learning curve of a new API.

• The concept of partition may not be implemented, leading to applications that are not
spatially and temporally isolated.

• The final software produced has the same (or a lower) level of certification than the OS,
leading to usage restriction.

This problematic has brought up the urge of an RTOS available for the MPPA R© that is
compliant with the ARINC653 specification, and preferentially open-source. The defence and
avionics market may then have their attention drawn to the possibilities offered by Kalray’s
processor. Of course the process of porting an OS to a new architecture is not easy and many
aspects must be analysed before the implementation, particularly:

• Different ISA, forcing the rewriting of assembly parts of the kernel
11A computer running without an OS.
12Thread support functions with an Application Programming Interface (API) mirroring the classic POSIX

pthread implementation.
13Quite similar to µtask but also providing scheduling primitives between threads.
14A special type of API defined by ARINC 653 specification. More details can be seen in section 4.2.1.
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• The boot, initial steps and core configuration must be adapted but remain similar

• Memory map changes with new peripherals

• Possible optimizations can be made with a new ISA and they should be made

3.3 Objectives

The final goal of the internship is to obtain an ARINC 653 OS on the MPPA R© Compute
Clusters, starting from an open-source single-core implementation. The main tasks to be
accomplished can be listed as follows:

1. Analyse and choose an ARINC 653 compliant OS which will be then ported

2. Translate or re-implement the architecture dependant kernel files

3. Adjust the remaining kernel core files for the MPPA R© architecture

4. Adjust the OS libraries as the underlying modifications may have consequences for them

5. Optimize the system (single-core to many-core perspective change)

6. Simplify the system as the Part 4 is a subset of the original ARINC 653 standard

The tasks 5 and 6 are optional and may be executed depending on the remaining time
after a single-core port has been successfully accomplished. A more detailed technical view
of the tasks can be seen in section 5.3, while a planning using a Gantt chart can be seen in
section 8.

Concerning the quality and robustness of the final result, it should meet the criteria spec-
ified in section 5.5, which can be summarized in: having a functional system; respecting the
ARINC 653 standard, performance and timing requirements; and being integrated in Kalray’s
repository. These criteria are based on the ultimate objective of the internship: an open-
source RTOS that can be exploited by avionics costumers and used to develop applications
using Kalray’s environment.
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4 Technical aspects

4.1 Time-Critical Computing on the MPPA

Time-Critical applications are defined as the association of time constraints with informa-
tion manipulation activities such as acquisition, processing, transport, storage, coordination
and delivery [2]. Meeting time constraints requires having a suitable computing model of
an application and a computing platform whose OS or run-time software, architecture and
implementation support at least the following properties:

• Deterministic computations: given the same system environment, inputs and event
timing, computation results should be the same.

• Deterministic and predictable response times: given the same system environment; in-
puts and event timing, computation output should take the same predictable time.

• Composable execution and communication lines: updates of the system functionality
should have commensurable effects on timing properties.

The main issue with many-core platforms and time-critical applications is ensuring time-
liness15 of computation and communication, given the logical (e.g. code critical sections) or
physical interference (e.g. memory hierarchy) of tasks that execute concurrently [3].

4.1.1 MPPA general architecture features for Time-Critical Applications

The astuteness to ensure that the MPPA R© is suitable for these type of applications is to,
first of all, guarantee the timing constraints at the core and CC level, then combine the multiple
clusters and finally connect them to external interfaces through the NoC and synchronisation
capabilities.

This is possible because the core architecture makes timing analysis more precise than on
classical multicore devices with shared caches (c.f. 4.1.2), while the NoC communication can
be configured to meet certain limits on the rate and latency of data transfers (c.f. 3.1.1).

4.1.2 MPPA core architecture features for Time-Critical Applications

The VLIW architecture of MPPA R©’s core was implemented with the elimination of timing
anomalies16 in mind. The following properties assure their absence:

• All memory access instructions exist in cache and uncached variants.

• Instruction and data caches implement the Least Recently Used (LRU) replacement
policy.

• Data caches are write-through / write-around and are complemented with a write buffer

• The effects of possible hazards or stalls in instruction/execution pipeline are only tran-
sient for time-critical applications

• There is no branch prediction

15The state of being punctual, having time precision
16Situation where a local worst-case execution time does not contribute to the global worst-case [4].
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• There is no hardware support for branch prediction or out-of-order execution, which
could lead to non-deterministic or data-dependent timing.

Consequently, the Kalray VLIW core can be classified as fully time-compositional, i.e. with
no timing anomalies. An accurate static timing analysis can thus be done at the core level
using predictable and composable execution times, following local worst-cases.

4.1.3 MPPA practical usage in Time-Critical Applications

Some examples of applications that can benefit from the aforementioned MPPA R© features
are:

Control-Command Applications High safety and security requirements, typical in avion-
ics, transports, medical or industrial domains. The software is written in a model-based
programming that generates C code which can be deployed locally in different CC without
hardware or software interference between them (except for planned global interactions).

Mixed-Criticality Applications Composed by individual programs with different criticality
requirements (hard real-time, soft real-time, streaming or interactive). The goal of such
applications is to increase the system utilisation, taking advantage of underused hardware
resources and allocating them to less critical programs. The spatial partitioning between
the cores and natural boundaries provided by the CC help the deployment of this kind of
application. Moreover, there is hardware support for fast barrier synchronizations across cores
that allows advanced mixed-criticality execution techniques.

Latency Constrained Application High performance with deterministic or even real-time
execution requirements that can only be met by parallel processing. Typical classes of such
applications include: computer vision applied to self-driving vehicles, industrial robotics and
online processing of large-scale physical instrumentation. The MPPA R© architecture provides
high performance Ethernet (10 Gb/s), PCIe (Gen3) and Interlaken (10 Gb/s) directly con-
nected to the NoC that guarantees timing services. Furthermore, parallel execution patterns
can have its worst-case execution time easily calculated when running inside a CC.

4.2 State of the Art

4.2.1 ARINC 653 standard specification

Aviation industry has been transitioning from the classical federated17 structure to Inte-
grated Modular Avionics (IMA). This new concept allows avionic subsystems to be grouped
inside a limited (or even unique) set of processing units, managed by a dedicated RTOS. As
long as the OS provides a proper API and meets the safety requirements, IMA has several
advantages over a federated structure: excellent software re-use, portability and modularity, re-
ducing costs of a re-certification process. Nevertheless, as IMA is still a modern methodology,
it has a higher complexity of design and certification.

The ARINC 653 standard is closely connected to the IMA concept. Developed by aviation
experts to provide "the baseline environment for application software used within IMA and

17Avionic subsystems with a dedicated microprocessing unit for each functionality, communicating through
ARINC standard 429 (c.f. figure 5a)
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(a) Federated System (b) IMA

Figure 5: Diagram exposing the differences between federated and IMA systems

traditional ARINC 700-series avionics". Its primary objective is to define a general purpose
APEX interface between the OS and application software. The specification includes interface
requirements between application software and OS and a list of services that allow application
software to control scheduling, communication and status of processing.

Figure 6: Generic structure of an ARINC 653 compliant system

The key concept behind the ARINC 653 specification is the partition. It is nothing more
than a container for an application assuring that its execution is both spatially and temporally
isolated. Partitions are divided in two types: applications partitions and system partitions.
The former executes avionics applications and exchanges data with the system through the
APEX interface. The latter is optional and may provide services not available in the regular
APEX, such as device drives or fault management.

ARINC 653 Part 1 Initial version of the ARINC 653 standard, published October, 2003
[5] after several drafts and modifications. Defines the core aspects and required services,
particularly:

• Time and space partitioning

• APEX interface, of which the main components are:

– partition management,
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– process management,

– time management,

– memory management,

– inter-partition communication,

– intra-partition communication,

– health monitoring.

The whole set of ARINC services is a heavy task to implement and requires a complex
system to support it. Therefore, simplifications have been suggested and a supplement to the
standard was created.

ARINC 653 Part 4 on the MPPA A supplement of the ARINC 653 standard, released
June, 2012 [6] prepared to support controllers and relatively simple avionics. It is a subset
of services specified in ARINC 653 Part 1, simplifying the interface. In the subset services,
partition scheduling is restricted to only one partition time window within the partition’s period.
Process management uses a dual-process model with at most two processes within a partition.

The internship reported in this document is part of the CAPACITES project which deter-
mines that the OS ported to the MPPA R© should be compliant at least with the ARINC 653
Part 4. Moreover, the specification states that the application partitions should execute on
CCs, while the system partitions, if there is any, will run on IOCs.

As the Part 4 profile prescribes, application partitions only have two processes, a periodic
foreground process and an aperiodic background process. As a result, there is no need to
implement the intra-partition communication and synchronization objects such as blackboards,
events and semaphores. Inter-partition communication and synchronization is provided by
message queuing and message sampling, which will be supported by the NoC (c.f. paragraph
3.1.1) interfaces of the MPPA R©.

The final proposition is then to run one ARINC 653 Part 4 partition per PE core in the CCs,
in a configuration known as Bound Multi-Processing (BMP). This type of configuration allows
the developer to bind any process (partition) and all of its associated threads (processes) to a
specific core while using a common OS across all cores. An illustration of this proposition can
be seen in figure 7.

Figure 7: ARINC 653 Part 4 proposed implementation on the MPPA R©
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4.2.2 Available compliant OS

In this sub-subsection possible OS options for the porting process will be presented. A
brief introduction of each system is given, the decision, however, is postponed to the section
5.1 where proper justification concerning the choice is provided.

TiCOS TiCOS is a time-composable real-time operating system developed within the frame-
work of the PROARTIS project supporting the ARINC653 software specification and originally
targeting the PPC18 architecture. TiCOS is based on POK, a light weight operating system
implementing the ARINC653 standard and distributed under the BSD license.

Its source code is publicly available, along with documentation and some introductory
examples at the following link:

https://github.com/UPD-RTS/TiCOS

INRIA AOSTE OS Open-source implementation of an RTOS with ARINC 653 personality
based on the aforementioned POK OS. Developed by the team AOSTE, hosted by the INRIA
laboratory, that conducts research mainly on real-time embedded systems.

Its creation was motivated by the deficiencies of POK and also to obtain practical systems
to be tested in AOSTE’s framework of Worst-Case Execution Time (WCET). It is not publicly
available so the usage of this RTOS requires the collaboration of INRIA in providing its source
code, documentation and support.

18PowerPC, a ISA created by the 1991 Apple-IBM-Motorola alliance.
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5 Solution undertaken

5.1 OS choice

The OS chosen to be ported was TiCOS. Its public availability, relative stability (been
in development for 4 years) and proximity between the internship tutor B. Dinechin and its
developers were the main points taken in account for the decision. A GitHub repository was
created for this project inside the same organization (UPD-RTS) as the original version. More
details in subsection 5.4.

The high level architecture of TiCOS can be seen in figure 8. There are two main layers:
kernel layer and application layer. The first is responsible for implementing the OS services,
while the latter is composed by the user application, the ARINC library layer, the core library
layer and finally the middleware library layer. The libraries services are implemented through
system calls to functions inside the kernel layer.

Figure 8: TiCOS high level architecture with MPPA R© entity

Normally this mechanism would make the system start executing in supervisor (privileged)
mode and call the proper kernel functions. The MPPA R© port of TiCOS will embed in its arch
component (as we can see in figure 8) a virtualization layer containing an exokernel hypervisor
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called mOS. This system will be detailed in the next subsection, but in this case its main
influence is that the OS will always be in user mode and the kernel functions will end up
calling mOS that runs in supervisor mode.

5.2 mOS

Kalray’s Hypervisor, called mOS, is a lightweight exokernel that provides two main services:
processor and I/O virtualization, and strong hardware partitioning.

The exokernel concept was introduced by the MIT Parallel and Distributed Operating
Systems group in 1994. Its principle is to force as few hardware abstractions as possible to
further software layers, constructing a kernel that does apparently nothing and gives freedom to
applications. An exokernel is supposed to be tiny and only ensure protection and multiplexing
of resources, in opposition to microkernels and monolithic kernels that perform way more tasks
and provide high-level abstractions.

mOS essential characteristics are:

1. All the services commonly provided by operating systems are delayed to the user-space
execution level. As an example, it provides neither a scheduler, a memory allocator nor
virtual memory support. Moreover, its implementation is fully static and lock free.

2. Its sole role is to ensure proper usage of the underlying hardware, control and manage
access rights and ownership.

3. It has a very limited memory footprint (32 KB).

4. It allows the implementation of any complex system services in user-space. As an exam-
ple, a user-space operating system may implement fully custom virtual memory support.

A key feature that eases the port of an OS is the virtualization layer provided by the
hypervisor that exposes a symmetric 16 core CC (instead of an asymmetric 16PE + 1RM)
with direct access to the NoC (hides also the RM interface in order to use the NoC). It also
provides a virtualized view of the k1 processor core, modifying its architectural states and
behaviour.

An OS that runs with mOS support is called guestOS or libOS due to its user-space status.
The interface between such system and the hypervisor is composed of hypercalls, asynchronous
remote services and a shared memory region called scoreboard.

Scoreboard A structure that allows both mOS and a potential libOS to read and write
information. It is composed of a set of architectural registers corresponding to the processor
core, NoC, memory management, etc. They are possibly organized in their own sub-scoreboard
and are updated asynchronously or synchronously by the hypervisor. There is a scoreboard per
CC shared by all the cores of the partition.

Hypercalls Mostly related to updates of the architectural state of the virtual core. They are
divided in fast, regular and slow types, according to register use and efficiency. An exhaustive
list is provided in the internal documentation and is out of the scope of this document.
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Asynchronous remote services They are important because in the MPPA R© processor
some services, mainly related to the NoC interface configuration, cannot be issued directly by
the PE. These requests are packaged by the hypervisor in helpers, which sends them to the
RM, waits for the response and raises an event when the request is ready.

The last important aspect concerning the hypervisor is the partition setup. It relies on
a binary descriptor that allows static hardware resource allocation for an application. It also
allows the application to configure its initial MMU setup. Finally, it contains the address of the
scoreboard within the user binary and the application entry point. Currently, the hypervisor,
user application and binary descriptor are packaged together in one ELF file and loaded into
the cluster SMEM as a single unit.

5.3 Porting steps

This section will describe more in depth the services and functionalities implemented on
each of the previously presented TiCOS layers. It may be seen as a guideline or checklist for
the development covered in section 6. The document presents the port of an RTOS originally
targeting a mono-core system and, therefore, a single-core port is the first natural stage (c.f.
subsection 3.3). Nonetheless, optimizations for a many-core architecture and simplifications
regarding the ARINC 653 Part 4 specification are suggested at certain moments.

5.3.1 Kernel Layer

The kernel of TiCOS is made of three main components: an architectural dependant part
(called arch component) and two architectural independent parts (called core component and
middleware component).

The arch component is the most delicate part of the port. It accesses directly architectural
functionalities to implement kernel services, requiring assembly and architectural knowledge.
Particularly, TiCOS implements in this component: Board Support Package (BSP), system
entry point, system calls, memory management, context switch, timer and interruption support
(porting details can be seen in subsection 6.1). The core component does not need to directly
use the underneath architecture, requiring potential adjustments for memory virtualization or
user application loading, for example (porting details can be seen in subsection 6.2). The
middleware component (inter-partition communication) should not require modifications.

As a whole, the kernel layer provides the following services:

• Partition support: the concept of partition is defined in sub-subsection 4.2.1 and
TiCOS must implement time and space isolation among partitions, granting to each one
its own space with no shared memory.

• Port support: ports are the ARINC way of inter-partition communication. Since par-
titions do not share memory, the kernel is responsible for copying messages from source
ports to destination ports.

The ARINC 653 Part 4 allows the simplification of the scheduling algorithm and also the
absence of lock objects used for intra-partition communication, as there are just two processes
per partition. A minimal implementation of libc19 is embedded in the kernel layer and will
need to be MPPA R© ported due to its architectural dependant parts (porting details can be
seen in subsection 6.3).

19Library that contains common C functions like printf and memset, for example.
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5.3.2 Library Layer

The OS library layer exposes TiCOS services through user-level functions. These functions
end up in system calls to kernel services presented in the previous subsubsection. The library
is divided in three parts:

• Core library: contains the OS’s core functionalities used to implement the ARINC
library. The functions contained here are not part of the ARINC 653 specification and
should not be used directly as the application will not be portable.

• Middleware library: contains the functions that implement the majority of the func-
tionalities offered by the ARINC library. Nevertheless, it must not be accessed directly
in an user application.

• ARINC library: contains the functions responsible for creating and managing the
structures presented in subsubsection 4.2.1. Most of them make use of the two previous
libraries.

Due to the simplifications introduced by the ARINC 653 Part 4 some services do not need
to be implemented, particularly the ones related to ARINC events, blackboards and buffers.
Furthermore, almost the whole library layer should remain untouched during the port, except
for little adjustments through #ifdefine directives. For the same reason the prefix pok_ is
maintained in functions names, as they are still legacy from the POK OS. A general overview
of the library layer is presented in figure 16 (ARINC 653 Part 1) and 17 (ARINC 653 Part 4).

5.3.3 Build chain

The compilation process of TiCOS is quite complex, having the phases described below.

Kernel compilation Two files are used to generate the kernel’s executable: a configuration
file (deployment.h) containing pre-compilation directives that configure the kernel and a
linker script (kernel.lds). The build process creates the link object kernel.lo putting
together all the objects forming this layer (c.f. figure 9). The contents of each object was
described in sub-subsection 5.3.1, although its was not mentioned the subdivision of the arch
component, formed by prep.lo (BSP specific functions) and ppc.lo (all PowerPC specific
code).

Figure 9: Visualization of the kernel build process and its compilation objects.
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Partitions compilation Each partition ought to run in the system is compiled separately
into an Executable and Linking Format (ELF) file containing user code and TiCOS library.
Once again, two files are used to generate a partition’s executable: a configuration file
(deployment.h) to compile TiCOS library statically and a linker script (partition.lds)
that joins the user code (main.c, activity.c) and the shared library (libpok.a).

Figure 10: Visualization of a partitionN build process and its compilation objects.

System compilation This phase consists on integrating kernel and partitions into one
executable. Each partition ELF is padded to respect alignment and then all partitions are
assembled in a single binary called partitions.bin. Afterwards, a file containing the
sizes of each partition (sizes.c) is generated, compiled into sizes.o and embedded with
partitions.bin using obj-copy. Finally, sizes.o and kernel.lo are linked together to
create pok.elf.

Figure 11: Visualization of a partitionN build process and its compilation objects.

All the link objects named ppc.lo in the above figures are the product of architectural-
dependant layers that will need port to the MPPA R© architecture. Moreover, configuration files
that predefine directives, need to include Kalray’s compilation tools. The linker scripts that
define memory organization at execution time will also need to be modified to include mOS
and other MPPA R© particularities.

An important part of the building process is also embedding functional user applications
with the OS. The pre-configured examples that come with TiCOS will need to be adapted to
the ARINC 653 Part 4 standard and also the MPPA R© features. They are the main test vectors
of the system as a whole. The validation process will be discussed more in depth in subsection
7.1.
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5.4 Employed tools

All the machines at Kalray have as main OS Linux because the tools and drivers of their
products work only under this environment. Additionally, many essential tools for developers
in general are available exclusively on Linux. The distribution used is CentOS 7, the same
used in Ensimag machines, making the adaption even easier. Usage of Windows is possible
through servers in order to exploit the Office tools or store important files.

As already introduced in subsection 2.2 a great number of GNU tools were ported by
Kalray. They make the MPPA R© processors usable through standard programs and file formats
that developers are already familiarized with, speeding up the learning curve progress. The 3
main tools used were:

• k1-gcc: gcc port that allows the compilation of executable files for the MPPA R© (may
call k1-ar to compile assembly code and k1-ld to link files)

• k1-readelf: readelf port that allows to obtain human readable information from a
compiled ELF program

• k1-gdb: gdb port used to execute an application in debug mode, exposing useful
information at run time to track down errors

The suite of Kalray tools, already compiled, is easily obtainable from an internal machine
through an application called kalrayEnv. By giving a git commit ID or branch the application
downloads the compiled suite for the machine architecture and Linux distribution. Afterwards,
launching the command kenv switchmodifies the working environment and lets all the Kalray
tools available and already in the path, including the simulator and hardware runners.

The project was developed in a MPPA R© Developer Machine using an SSH connection from
a local machine. Concerning the project versioning, a GitHub repository was created inside the
same GitHub organization were TiCOS (and other ports) were developed. The source code
and current progress is available in the following address:

https://github.com/UPD-RTS/mppa-TiCOS

5.5 Evaluation protocol

The first criterion of success is the functional aspect of the solution. The port of TiCOS
should work on the MPPA R© and ease the development of user applications based on given
examples. Moreover, the RTOS must implement the services defined the ARINC 653 Part 4
standard while still respecting the security, space and time partitioning aspects.

A second criterion is TiCOS performance and power consumption, given the MPPA R©

embedded features for such measurement. The results can help in the validation of timing
requirements and provide useful numbers that may be used to draw clients’ attention.

Finally, the integration of this project in Kalray’s git repository with the standard runtime
OSs provided with the mOS hypervisor, or even as a standalone system is the third criterion.
This would show that the project has accomplished its objectives and meets the system quality
requirements of Kalray.

Obviously, this is a progressive evaluation protocol, meaning that the aforementioned cri-
teria will be observed progressively, as the project goes forward and more core functionalities
or ARINC services are added and tested.
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6 Implementation

In this section, the work done to extend TiCOS in order to support the MPPA R© architecture
is presented. The single-core porting process was carried following the steps introduced in
section 5.3 leading to an incremental development of the operating system layers:

1. Kernel: divided in three sublayers: arch, core and libc.

2. Library: divided in three sublayers: core, middleware and ARINC but treated together
in this section.

The development technique used allowed to focus firstly on the most architectural depen-
dant layer, dealing with specific and concise functions that together form the main function-
alities of the OS. More effort and time were dedicated to this stage as important decisions
regarding the porting are concentrated here. Furthermore, the low-level porting is not merely
an assembly-translation of code, but an attentive look to identify dispensable operations and
possible optimizations.

Once this stage was finished, all the architectural dependencies were already ported to
the MPPA R© processor and the changes performed in the next layers could be targeted to the
services proposed by the OS.

6.1 Architectural modifications

As shown in section 5.3.3 the architectural layer of TiCOS is compiled in a link object
naemd arch.lo. Its source files are machine related and mainly assembly code, which implies
in non-reusability of the original PowerPC code. Therefore a new directory named arch/mppa
has been created containing all MPPA R©-dependent code, replacing the ppc.lo object in figure
9 with mppa.lo.

6.1.1 Clock

The Kalray k1b core, introduced in section 3.1.2, provides a Real Time Controller (RTC)
in form of two 32-bit timers $t0v and $t1v that contain the current value of the timers, and
are reset to 0x0. These timers can be chained in order to provide a 64-bit timer.

In addition to that, two 32-bit timers reload value registers $t0r and $t1r are available
and are also reset to 0x0. They are directly related to how the MPPA R© RTC works.

A timer, if enabled, is decremented on each tick of the clock divider, until it reaches 0.
Upon the next tick, the timer value is loaded with its reload value ($t0v ← $t0r or $t1v ←
$t1r) When such an underflow occurs, depending on the configuration of the Timers Control
Register ($tcr), a pulse on the corresponding interrupt line is generated.

The timer.c file contains the software implementation of such hardware characteristics,
using the hypervisor. In particular, two mOS functions are worth mentioning:

1 static __inline__ void
2 mOS_timer_general_setup(void)
3 {
4 uint32_t tcr = _K1_DEFAULT_CLOCK_DIV; /* All other fields 0 */
5 __k1_club_fast_hypercall1_noret (MOS_VC_SET_TCR, tcr);
6 }
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mOS_timer_general_setup sets the $tcr aforementioned register with the _K1_DE-
FAULT_CLOCK_DIV and is called at system initialization.

1 static __inline__ int
2 mOS_timer64_setup(unsigned long long int value, unsigned long long int reload,
3 unsigned char itDisable)
4 {
5 mOS_transtype64_t t_value, t_reload;
6

7 t_value.dword = value;
8 t_reload.dword = reload;
9

10 return __k1_club_syscall5 (MOS_VC_SETUP64_TIMER,
11 t_value.low,
12 t_value.high,
13 t_reload.low,
14 t_reload.high,
15 (int) itDisable);
16 }

mOS_timer64_setup is used to set the chained 64-bit timer with its value, reload value
(usually the same) and a control char to disable or enable the interrupt associated with the
timer. Both functions end up in hypercalls (or syscalls) as the majority of mOS API.

In order to have a global system timer, the Debug System Unit (DSU)20, provides an
independent timestamp for each PE, that is cycle-accurate, updated at each tick and stored
in a particular memory address. The function used to exploit this resource is

static inline uint64_t mOS_dsu_ts_read(void);

which, once again, finishes in a syscall that performs a memory access, core-aware, at the
address corresponding to

&mppa_trace[__k1_get_dsu_id()]->timestamp

where mppa_trace is a particular zone of the DSU and __k1_get_dsu_id() returns the
current working core, assuring to retrieve the appropriate timestamp value.

6.1.2 Thread context

The original version of the OS implemented two types of data structures that represented a
thread’s context: volatile_context_t and context_t. This was due to the different types
of registers provided by the PowerPC architecture: volatile (may be modified by functions),
non-volatile (must be preserved by functions) and dedicated (must be used only for specific
purpose, similar to SFRs). Moreover, these structures were allocated on the top of the thread’s
stack. Together they formed a multiple of a quadword since, according to the PowerPC EABI
[7], a stack frame has to be quadword aligned.

The MPPA R© thread context is slightly different:

• There is no need to have two different structures holding volatile and non-volatile reg-
isters as the MPPA R© architecture does not impose these saving constraints.

20A shared memory space between all cores (at cluster level), used for debug purposes.
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• MPPA R© architecture and, in particular mOS, do not specify any alignment to stack
frames and neither obligate to place the thread’s context on the stack.

The data structure containing the processor context is presented in listing 1.

Listing 1: C structures representing the MPPA R© context.

1 typedef struct {
2 union {
3 __k1_uint32_t regs[64]; // 64 GPR
4 __k1_uint64_t force_align[32];
5 };
6 // System function registers (There are 64, 50 used and few important for the ctx)
7 __k1_uint64_t spc; //shadow program counter
8 __k1_uint64_t sps; //shadow processing status
9 __k1_uint64_t ra; //return address

10 __k1_uint32_t cs; //compute status
11 __k1_uint32_t lc; //loop counter
12 __k1_uint64_t ps; //processing status
13 __k1_uint64_t ls; //loop start address
14 __k1_uint64_t le; //loop exit address
15 } __k1_context_t;
16

17 typedef struct
18 {
19 __k1_context_t k1_base_ctx;
20 __k1_uint32_t ssp; //shadow stack pointer
21 __k1_uint32_t sssp; //shadow shadow stack pointer
22

23 } context_t;

As we can see in the listing there is a __k1_context_t, which is actually defined in low-
level Hardware Abstraction Layer (HAL) code, just included by TiCOS code. It contains the
64 32-bit wide GPRs and the most important SFRs to store in a context (all of them presented
in section 3.1.2).

The OS context uses this MPPA R© base context and adds two virtual registers, ssp and
sssp that are managed by mOS in case of nested traps/interruptions. The total size occupied
by context_t is 0x130, directive-defined and used in other parts of the system.

In addition to that, two assembly macros are used when dealing with the context:

.macro _vk1_context64_save to

.macro _vk1_context64_restore from

They are also defined in HAL code and are helpers to save/restore a full context in accor-
dance with the context_t type. The arguments to/from must be registers that contain the
memory address where to save/from where to restore the context.

A pointer to the current executing thread’s context is now maintained by the system and
updated by the scheduler, called pok_current_context. It is used in some assembly files to
save and restore a thread’s context before and after performing scheduling decisions, in the
occurence of a system call, etc.
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6.1.3 Memory management

The original version of TiCOS made use of PowerPC virtualization functionalities to manage
the memory. Even though the MPPA R© contains a Memory Management Unit (MMU) and,
thus, offer the possibility of virtualization, sizing rules and static configuration required by mOS
in order to exploit the MMU are complex and not compatible with the application flexibility
offered by the OS.

For this reason, address range checks, done by the OS at precise moments, were chosen
as memory management system. This technique allows to divide the memory in parts, each
one with different privilege levels.

For instance, the thread’s context can be moved from the top of the thread’s stack to
a dedicated OS structure allocated in memory, containing all the user application threads
contexts. Using the memory protection technique this array of contexts is stored in a protected
memory area with kernel priviilege.

The linker script and the boot process of TiCOS are what define the memory map of the
system. Firstly, mOS is booted, discovers what is the current running core and start using
a boot stack reserved specifically for that core. During the booting phase each partition is
loaded into memory and for each partition a main thread is created (with its stack) having
as responsibility creating and starting all the partition’s processes. Each ARINC process is
mapped to a thread, having, consequently, its stack as well. Moreover, an idle and kernel
thread are created for system use. In summary, the memory to be allocated is:

• A stack for the kernel (mOS boot stack and mOS kernel stack)

• A stack for the idle thread

• A stack for each partition’s (main thread)

• A stack for each partition’s process

The kernel linker script (see listing 2) pre-reserves the space for the boot and kernel stacks
inside mOS scoreboard. It also defines global labels that can be used to access these addresses
later.

Listing 2: Kernel linker script snippet

1 BOOT_STACK_SIZE = DEFINED(BOOT_STACK_SIZE) ? BOOT_STACK_SIZE : 0x100;
2 KERNEL_STACK_SIZE = DEFINED(KERNEL_STACK_SIZE) ? KERNEL_STACK_SIZE : 0x400;
3

4 MPPA_ARGAREA_SIZE = 0x1000;
5 .scoreboard ALIGN(0x100) : AT ( ALIGN(LOADADDR(.bsp_config) + SIZEOF(.bsp_config), 0x100))
6 {
7 _scoreboard_start = ABSOLUTE(.);
8 KEEP(*(.scoreboard))
9 _scb_mem_frames_array = ABSOLUTE(.);

10 . += (INTERNAL_RAM_SIZE >> 15);
11 _scoreboard_end = ABSOLUTE(.);
12 _scoreboard_boot_stack_end = ABSOLUTE(.);
13 . += (BOOT_STACK_SIZE*16);
14 _scoreboard_boot_stack_start = ABSOLUTE(.);
15 _scoreboard_kstack_end = ABSOLUTE(.);
16 . += (KERNEL_STACK_SIZE*16);
17 _scoreboard_kstack_start = ABSOLUTE(.);
18 MPPA_ARGAREA_START = ABSOLUTE(.);
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19 . += MPPA_ARGAREA_SIZE;
20 }

In particular, the label _scoreboard_boot_stack_start is used to initialize the stack
pointer’s register ($r12) in the entry point of the OS (c.f. listing 3) and _scoreboard_ksta-
ck_start is used to switch from the user stack when entering an interrupt handler or syscall
hander (c.f. listings 5 and 8).

Listing 3: System entry point

1 .section .pok_boot, "ax", @progbits
2 .align 8
3

4 .global _data_start
5 .global _vstart
6 .proc _vstart
7 .type _vstart, @function
8 _vstart:
9 make $r14, _data_start # r14 is used at some compilation modes

10 ;; # ;; ends instruction bundle
11 get $r5 = $pcr # Get processor id
12 ;;
13 extfz $r2, $r5, 15, 11 # between 0 - 15 (PE), 16 (RM) in $r2
14 ;;
15 cb.eqz $r2, __proceed # if it’s PE0 it jumps to proceed
16 ;;
17 scall MOS_VC_IDLE1 # otherwise the PE waits the end of
18 ;; # the booting process
19 __proceed: # Defines stack for each PE in the scoreboard
20 make $r3, BOOT_STACK_SIZE # Normally BOOT_STACK_SIZE = 0x100
21 ;;
22 ctz $r3, $r3 # 8 (number of zeros in $r3) stored in $r3
23 ;;
24 sll $r2, $r2, $r3 # shift proc ID << $r3
25 ;;
26 add $r2 = $r2, 8 # calculates how much the boot stack pointer
27 ;; # should be moved for the current PE
28 neg $r2, $r2
29 ;;
30 make $r12 = _scoreboard_boot_stack_start - 8
31 ;;
32 add $r12 = $r12, $r2 # move stack pointer
33 ;;
34 call pok_boot # C boot function
35 ;;
36 wpurge
37 ;;
38 make $r0 = -1 # should not endup here!
39 ;;
40 scall 1
41 ;;
42 hfxb $cs, $r1
43 ;;
44 idle1
45 ;;
46 goto -8 # should never return
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47 ;;
48 .endp _vstart

Also, through the kernel’s linker script a label _pok_heap_start is defined, identifying
the start of the heap section. When the kernel is loaded into memory the _pok_heap_start
pointer indicates where to start allocating threads stacks. The space allocation works as
follows:

• For system threads:

– The kernel thread performs an allocation for its context (size 0x130) starting from
the _pok_heap_start pointer.

– The idle thread does a stack and a context allocation, both starting from the
_pok_heap_start pointer.

• For each partition:

– An amount of memory large enough to hold all the text and data sections of the
partition is allocated (i.e. the pointer _pok_heap_start is moved forward)

– An amount of memory large enough to hold all of its threads stacks is allocated.

– From this allocated memory, some is reserved for the main thread’s stack.

– The needed space (0x130), starting from the _pok_heap_start pointer, to hold
the main thread’s context is allocated.

• For each partition’s user thread:

– Some space in the partition’s memory is reserved for the thread’s stack (on top of
the main thread’s stack)

– The needed space (0x130), starting from the _pok_heap_start pointer, to hold
the thread’s context is allocated.

The size of the kernel stack is set by default while the size of user threads stacks and idle
thread stack can be configured using the directives USER_STACK_SIZE and IDLE_STACK_SIZE.

The applications threads stacks are placed in partition’s memory starting from its bottom,
one after the other, the main thread being the first. The memory layout created by TiCOS
follows the structure depicted in figure 18.

6.2 Core modifications

The architectural modifications are reflected slightly to the core layer, as it is still bounded
to the kernel and directly exploring the features from the underneath level. Most of its code has
not changed though, and no new architecture-dependant directory was created. To implement
the needed modifications two pre-compilation directives are employed: POK_ARCH_PPC and
POK_ARCH_MPPA. They are used inside of the code to generate a configured kernel for PowerPC
architecture and MPPA R© architecture, respectively.
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6.2.1 Partition loader

The partitions compilation process was introduced in section 5.3.3. As the MMU is not
used and the concept of virtual address does not exist, the partitions linker script must be
personalized and calculate non-conflicting starting addresses for each partition.

Listing 4: Partition linker script template

1 ENTRY(main)
2 SECTIONS
3 {
4 . = SEGMENT_START(".data", DATA_ADDRESS);
5 .data : {
6 *(.rodata .rodata.*)
7 *(.data)
8 *(SORT(.init_array.*) .init_array)
9 *(SORT(.fini_array.*) .fini_array)

10 *(.bss)
11 }
12

13 . = SEGMENT_START(".text", TEXT_ADDRESS);
14 .text : AT ( ALIGN (0x100)) {
15 *(.text .text.*)
16 }
17

18 . = 0x1F0000;
19 _stack = .;
20 _end = _stack; PROVIDE (end = .);
21 }

The macros DATA_ADDRESS and TEXT_ADDRESS are relative to the kernel configuration
(i.e. where the pointer _pok_heap_start will be placed) and also incremental, regarding the
number of partitions.

Once the partitions are compiled and archived together (partitions.bin) they are copied
into the object sizes.o with the following command:

$(OBJCOPY) --add-section .archive2=partitions.bin sizes.o

The kernel linker script puts the section .archive2 inside .rodata protecting the parti-
tions objects. During the booting process of the system, these objects are retrieved from this
read-only section and loaded into memory, being assisted by the sizes calculated in sizes.c.
The function responsible for this process is:

void pok_loader_load_partition (const uint8_t part_id, uint32_t offset, uint32_t *entry)

The argument offset of each partition was calculated with base_addr of the memory
region reserved for the partition (c.f. 6.1.3). Without the concept of virtual address and
knowing statically where the partitions will be placed, this argument is always 0 in the MPPA R©

version.

6.3 LibC implementation

As TiCOS is a standalone OS, supposed to be compiled successfully without any default
library, its kernel must implement at least a minimal subset of the standard libc. In particular
two architectural dependant functions were implemented and are presented below.
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1 int putchar(const int x) {
2 unsigned long long int ret;
3 ret = __k1_club_syscall2 (4094, (volatile int) &x, 1);
4 return (int) ret;
5 }

The function putchar is usually the final subcall of a printf and performs a scall 4094.
The hardware or simulator catches this and searches for two arguments at $r0 and $r1: what
to print (&x) and its length (fixed at 1, as it is only one char at a time).

1 void exit(int level) { mOS_exit(1, level); }

The function exit uses the mOS API to perform a scall 4095 (the first argument, fixed
at 1, is emit_4095). The argument level is put in $r0. The hardware or simulator catches
this and exit the application domain with the return value present in $r0.

Furthermore, some additional low level math functions were taken from internal or open-
source code, such as __divdf3, divmodsi4, __modsi3 and __umodsi3 but are relatively well
known C implementations and out of the scope of this report.

6.4 Library modifications

The ARINC, middleware and core libraries allow the user code to call operating system
services. It is compiled separately from the kernel, yet provides access to kernel functionalities
through the system call mechanisms. The services provided by the OS did not change hence
this layer is left almost untouched, apart from the way system calls are performed.

6.4.1 System Calls Implementation

A library layer helps in the paradigm of kernel/user space separation providing user code
access to kernel functions. A way to safely jump into kernel code must be developed. Hopefully
the MPPA R© architecture is similar to PowerPC and ARM, for example, in this aspect, providing
a special instruction named scall. The listing 5 presents its use.

Listing 5: MPPA R© system call implementation

1 .text
2 .globl pok_syscall2
3 .globl pok_syscall3
4 .globl pok_syscall4
5 .globl pok_syscall5
6 .globl pok_syscall6
7 .globl pok_syscall7
8 pok_syscall2:
9 pok_syscall3:

10 pok_syscall4:
11 pok_syscall5:
12 pok_syscall6:
13 pok_syscall7:
14 scall $r0
15 ;;
16 ret
17 ;;
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In bare mode the scall instruction performs the system call with the number passed as
argument, while disabling the interrupts. When using the hypervisor, this instruction behaves
differently.

mOS catches the scall, ignoring its argument, and jumps to a code portion where it will
prepare the register set to handle the syscall. It performs a light context save, make $spc
= &scall_handler and $sps = $sps_tweaked, where tweaked means mainly disabling the
interrupts. The light context saved is restored and an rfe instruction is executed, moving
multiple registers: $ps = $sps, $sps = $ssps, $pc = $spc and $spc = $sspc. The exe-
cution then jumps to the system call handler. This address is registered at booting phase by
the function

mOS_register_scall_handler((mOS_exception_handler_t) &_system_call_ISR);

Figure 12: System call execution flow with mOS interference

The system call handler assembly code can be seen in listing 7. It prepares the OS and
the calling thread, then jumps into the C function pok_arch_sc_int that identifies the kernel
function to call and pack its arguments.

6.5 Context Switch

TiCOS has two mechanisms of context switching: interrupt-driven or explicit. The first is
done through the configuration of the RTC, described in subsection 6.1.1, to expire at specific
time slots where scheduling decisions must be taken. The latter is oriented to the cases of
yield or run-to-completion: when a periodic thread has finished its execution and must wait
the next period or when an aperiodic thread waits for an event.

6.5.1 Interrupt-driven context switching

In order to properly configure the MPPA R© interruption system several actions are performed
in booting phase. The first one is registering the address of the interruption handler, similarly
to what is done for the system calls:

mOS_register_it_handler(_interval_ISR);
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After that the function pok_bsp_time_init is called, which initializes the bsp_handlers
with the specific function to call when a timer interruption arises, do the timer general con-
figuration and associates a timer interruption with a priority level. Then it calculates the first
interruption of the system.

1 pok_ret_t pok_bsp_time_init ()
2 {
3 int err;
4

5 #ifdef POK_NEEDS_DEBUG
6 printf ("[DEBUG]\t TIMER_SETUP: Freq:%d MHZ, Div:%d, Shift:%d\n",
7 POK_BUS_FREQ_MHZ, POK_FREQ_DIV, POK_FREQ_SHIFT);
8 #endif
9 bsp_handlers_init();

10

11 mOS_configure_int (MOS_VC_IT_TIMER_0, 1 /* level */ );
12 mOS_configure_int (MOS_VC_IT_TIMER_1, 1 /* level */ );
13

14 bsp_register_it(pok_arch_decr_int, BSP_IT_TIMER_0);
15 bsp_register_it(pok_arch_decr_int, BSP_IT_TIMER_1);
16

17 mOS_timer_general_setup();
18

19 time_inter = (POK_BUS_FREQ_HZ /POK_FREQ_DIV) / POK_TIMER_FREQUENCY;
20 next_timer = time_inter;
21 time_last = get_mppa_tb();
22 last_mppa_tb = time_last;
23

24 err = pok_arch_set_decr(next_timer);
25 return err;
26 }

Finally, the function pok_arch_preempt_enable is executed, calling several mOS func-
tions that prepare the interrupt lines, the $ps register and ends by enabling the interruption
system.

1 pok_ret_t pok_arch_preempt_enable()
2 {
3 // clear pending flags
4 mOS_it_clear_num(MOS_VC_IT_TIMER_0);
5 mOS_it_clear_num(MOS_VC_IT_TIMER_1);
6

7 /* Activate stack switch for interrupts and exceptions */
8 _scoreboard_start.SCB_VCORE.PER_CPU[0].SFR_PS.isw = 1;
9 _scoreboard_start.SCB_VCORE.PER_CPU[0].SFR_PS.esw = 1;

10

11 mOS_set_it_level(0);
12 mOS_it_enable();
13

14 return (POK_ERRNO_OK);
15 }

With all these settings configured, when a timer interrupt is raised the control flow jumps
to the interrupt handler registered in mOS scoreboard: _interval_ISR (c.f. listing 8). The
execution flow that follows is exposed in figure 13 with commentaries about the role of each
function on the left side.
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Figure 13: Interruption execution flow

6.5.2 Explicit context switching

The previously mentioned cases of explicit context switch (wait for next period, wait for
event) end up calling the pok_context_switch function. After a scheduling decision, the
function receives as parameter the address of the previous context in $r0 and the address of
the new context in $r1. It is a legacy function that has maintained its interface, but only $r1
is used for the moment as the previous context should be already saved.

Listing 6: MPPA R© context switch

1 .global pok_context_switch
2 .proc pok_context_switch
3 .type pok_context_switch,@function
4 pok_context_switch:
5 add $r12, $r12, -16
6 ;;
7 copy $r13, $r1
8 ;;
9 _vk1_context64_restore $r13

10 ;;
11 add $r12, $r12, 16
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12 ;;
13 scall MOS_VC_RFE
14 ;;
15 .endp pok_context_switch
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7 Obtained results

This section will explain the validation process, the execution method and differences
between ISS simulation and real hardware execution. TiCOS porting results are then exposed
and the last subsection is dedicated to possible extensions for the system.

7.1 Validation

As introduced in section 5.3 the examples that came out-of-the-box with TiCOS were
the main test vectors used. Nevertheless, the test base was expanded with the generation of
additional examples. The complete list is presented below:

• Partition/Thread examples: minimalistic set of examples intended to introduce a
new user to the system and also test its scalability regarding the number of threads
and partitions. The kernel generated object incorporates the O(1) scheduler, libC and
essential code for a minimal working system.

– arinc653-1part: 1 partition made of 2 periodic threads

– arinc653-2parts: 2 partitions each made of 2 periodic threads

– arinc653-3parts: 3 partitions made of 1 periodic thread

– arinc653-4parts: 4 partitions made of 1 periodic thread

– arinc653-4parts-2threads: 4 partitions each made of 2 periodic threads

• Intra-communication examples: more sophisticated set of examples adding into
the kernel the lock-objects, used in intra-partition communication mechanisms such as
events and blackboards.

– arinc653-1event-O1: single partition made of 2 periodic and 2 sporadic threads
synchronizing on an ARINC event

– arinc653-1event-O1-split: single partition made of 2 periodic and 1 sporadic
thread synchronizing on an ARINC event using O1-split scheduler

• Inter-communication examples: even more complex set of examples adding the AR-
INC port services, used in inter-partition communication mechanisms such as sampling
and queuing.

– arinc653-sampling-queueing: 2 partitions each made of 4 periodic threads, 1 sam-
pling port and 3 queuing ports.

These examples were run on ISS simulation and hardware with different purposes which
will be explained in subsections 7.2 and 7.3, respectively. In both platforms the following
acceptance criteria was followed:

• Functionality, i.e. if the application execution is coherent with its source code. A visual
analysis based on punctual console prints were used for this;

• Structural integrity, i.e. architectural state of registers during the execution of ARINC
services which can modify them;
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• Temporality, i.e. state of timestamp and decrementer registers in key moments of the
execution, such as the context switch.

Therefore, in order for an application, and thus an ARINC service group, to be considered
validated and properly ported, it must pass the criteria previously mentioned.

The arinc653-1part example code and execution trace have been put in the subsection
B.3 of the appendix to provide a better visualization of an user code and how the system
behaves running it.

7.2 Simulation

As mentioned in section 2.2 an internally developed and maintained simulator is used called
Kalray-1 Instruction Set Simulator. It can be invoked by k1-mppa or k1-cluster, according
to where the binary file is supposed to be executed: IOC + CC or just CC, respectively.

The whole deployment command used to run TiCOS final ELF is:

k1-cluster -s libsyscall.so --march=k1b --cycle-based -- pok.elf

where -s specifies the syscalls library, –-march specifies the MPPA R© architecture version
(in this case bostan) and –-cycle-based which enables cycle accurate simulation. Two debug
arguments can also be provided: –-profile which generates an assembly execution trace to
analyse and/or -D which waits for k1-gdb to attach.

The simulation approach has the advantage of being available on any machine that has
the Kalray sotfware toolchain installed and eases the execution of I/O commands, as they do
not perform the whole I/O MPPA R© path, i.e. the normal execution flow is halted to require
the host computer to execute the I/O command. This abstraction helps with debug and log
messages while developing the system.

On the other hand, the ISS simulator does not contain some physical registers and even mOS
virtualized registers and the timestamp register usually differs from the hardware execution.
These aspects may cause runtime inconsistency and inability to perform the validation of some
registers.

7.3 Hardware

Again as mentioned in section 2.2 the hardware execution can be deployed using a x86
host and the Peripheral Component Interconnect (PCI) or in standalone mode through the
Join Action Group (JTAG) connection. TiCOS is a standalone system and thus the command
used is:

k1-jtag-runner --board=developer --exec-file=Cluster0:pok.elf

where –-board selects the board type, in this case a developer machine, and –-exec-file
loads a specific file (pok.elf) on the given TAP (Cluster0). The option -D can be used to
attach a k1-gdb and is the only hardware debug method available.

The hardware approach lets the developer have full control of the register set and completely
validate an application in terms of timing. The downside of this method is the need to reduce
the I/O communication as it affects heavily the execution of the program.
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7.4 Final Product

The results of the execution of the applications previously presented are in the table below,
organized by the ARINC service groups.

Table 1: Results of simulation and hardware validation

ARINC Service Group Simulation Hardware
ERROR 3 3

TIME 3 3

PARTITION 3 3

PROCESS 3 3

EVENT 3 3

BLACKBOARD 7 7

BUFFER 7 7

PORT 3 3

The table cells that contain the symbol 3 show that the corresponding ARINC service group
was validated through an application run on Time Composable Operating System (TiCOS), on
the simulator or using the hardware (depending on the column), according to the acceptance
criteria. The cells that contain the symbol 7 show that the corresponding ARINC service group
was not validated. Particularly, the blackboard and buffers groups, that supply intra partition
communication, were not tested in any of the executed applications.

While executing the tests the urge for a better build process appeared. Before, if a user
wanted to compile and run an example, it should go to the examples folder, choose the desired
example, compile it with a make command and then execute it.

This ended up limiting the user and forcing him to tap the same command several times.
Now, the root folder of the project has a makefile that builds all examples, puts them in a
folder named build-all and generates a custom makefile to run them: make simu to run
the example using the ISS or make hard to run the example using MPPA R© hardware.

The final product is, therefore, the ported single-core TiCOS for the MPPA R© with the
majority of ARINC services validated, except for two low priority groups. In addition to that
the build process was improved to ease and speed up the validation step of new examples.

7.5 Future work

The first stage of the work accomplished in the internship is a single core port, where
TiCOS kernel and application partitions are running on CC0, PE0. Partitions and processes
are allocated in the SMEM and virtually isolated. The next possible steps to accomplish are:

1. MMU utilization: use the hardware MMU to provide a proper isolation between the
partitions and processes allocated in the SMEM. This is currently under development
and should be integrated in the repository soon.

2. Compute Cluster port: TiCOS kernel running independently, possibly on PE0. The
application partitions would run on distinct PEs of the same CC. This solution is still in
study phase as it is unclear where the TiCOS kernel is supposed to run. Nonetheless,
its development cost is not too elevated once the single core port is well done.

Matheus SCHUH 41 / 59 Final Study Project Report



7 OBTAINED RESULTS

3. MPPA R© port: TiCOS kernel running on IOC. TiCOS application partitions running
on distinct PEs of distinct Clusters (spatially isolated). Inter-partition communication
mechanisms using the NoC. This solution is still in study phase as it is even more unclear
if the kernel should run on an IOC and the development cost to distribute the system
on the chip and use the MPPA R© NoC library is elevated.
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8 PROGRESSION

8.2 Forecast justification

The first stage consists in understanding Kalray’s MPPA R© architecture, specifically the
core, ISA and low-level software that has already been developed. After that, a period of
familiarization with the work environment is planned, which includes the Kalray tools suite,
development servers and internal git workflow. This stage ends with a state of the art study,
analysing the ARINC standard and compliant OSs to define the porting choice and how it will
be done on the MPPA R©.

The second stage involves the GitHub setup and initial work. This will allow to verify the
feasibility of the project and how the development of the next stages are supposed to happen.
Firstly, the MPPA R© tools need to be incorporated in the OS build configuration. Then two
kinds of compilation will be done, aiming a bootable system with minimal functionality: dirty
compilation, with all the MPPA R© libraries included, and clean compilation with no standard
library included, just the hypervisor mOS.

The next 3 stages are the actual OS port with all the tasks of each layer described in the
diagram. The kernel layer being the heavier task, more time has been assigned to it. It is
important to notice also that at the end of each stage a good amount of time is dedicated to
the integration of all tasks and to general testing. There is also a possible Kalray integration
where the internship final code can be pushed into Kalray’s official repository.

To conclude, the final assignments are related to the report and presentation, having their
particular deadlines which are to be observed.
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8.3 Final Gantt diagram

2016

Feb Mar Apr May Jun Jul

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22

Initial study
MPPA study
Environment familiarization
State of the art study

First Steps
GitHub Setup
Build configuration
Dirty Compilation
Clean Compilation

Kernel Layer
BSP
Threads/cswtich
Partitions/mem mgmt
Syscalls port
Timer/Interruption support
Port services

Library Layer
libC port
libCore tweaks
libARINC tweaks
libMiddleware tweaks

User application
Partitions/Threads examples
Intra-comm examples
Inter-comm examples
Code generator adaptation

Possible optimizations
Possible Kalray integration

Preliminary report writing
Preliminary Report deadline

Final presentation
Final report writing

Final Report deadline
End of PFE
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8 PROGRESSION

8.4 Final planning analysis

This final gantt diagram reflects more realistically the work that has been accomplished.
The preliminary diagram suggests that the kernel, library and user application development,
integration and tests were independent and sequential.

After the first report deadline, this process was seen as unmaintainable and unreal due to
the way the OS was compiled. Performing individual tests for each layer and their functional-
ities was very difficult because of their interdependency. A development with an incremental
approach was then adopted, with the kernel and library layer work being more tied up to the
type of application being executed in the system.

The Partition/Threads examples are relatively simple programs with single/multiple parti-
tions that contains one or more threads scheduling themselves. It required the development
of all kernel functions but the ARINC port services, as well as some libCore and libARINC
tweaks. The intra-communication examples used the same structure but dealt with different
functions from the library layer. The inter-communication examples required the development
of the aforementioned port services and some adjustments in the libMiddleware.

Some time is still reserved before the end of the internship for possible optimizations, the
integration process and adaptation of the code generator to include particular features of the
MPPA R© port.
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9 Internship appraisal

The port of an operating system unveils a lot of requirements, difficulties and opportu-
nities to learn. Some of them are the comprehension of external code (many times not well
documented), deep knowledge in C and assembly (from different architectures) languages and
understanding how an OS kernel works. Kalray has a private toolchain with their own version
of GNU tools for compilation, disassembly and debug, demanding familiarity with their options
and possibilities.

The concepts of a hypervisor and an exokernel, in this case mOS, are advanced operating
systems mechanisms that forced the learning of details about the MPPA R© architeture. The
exokernel may hides or extends the complexity of the architecture and knowing what was
virtualized, what was physical and its influence in the communication structure and system
calls was vital for the porting process. In addition, the MPPA R© is completely different from the
typical Intel or MIPS architecture, normally seen and studied. The ISA, processor organization
and deployment system have a quite slow learning curve, specially concerning undocumented
assembly code.

As a final internship result, TiCOS was successfully ported to the MPPA R©, except for
some minor low priority ARINC services. It does have the limitation of still being a single core
system, even though the processor was conceived to be parallel. Nevertheless, considering the
available internship time, the single core port was already a great achievement. The future
works on TiCOS parallelization are of sum importance to exploit all that the system and the
MPPA R© have to offer in terms of performance and safety.
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10 Conclusion

The work presented here covered the TiCOS single core port to the MPPA R©. Several
areas were addressed in depth throughout this document: development of operating systems,
parallel computing architecture, advanced C language concepts, a new ISA and the compilation
flow of a well structured project.

The rigorous software specification, in this case ARINC 653 increased the cost and im-
portance given to each coded line. As this program may be used for real avionic purposes, a
responsibility facet, not always incorporated in regular projects, was present.

As already stated, the future work that focus on the MMU utilization and parallelization
at cluster level which will then be extended for the whole MPPA R© carries a lot of importance.
This initial work created a functional basis that can now be extended to be safer and faster.
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A MPPA additional content

Figure 14: GPRs and GPR pairs with their respective usage convention
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Figure 15: SFRs and their respective functions
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B TiCOS additional content

B.1 Listings

The following listings present the handlers for system calls and interruptions, introduced
in subsections 6.4.1 and 6.5.1, respectively.

Listing 7: MPPA R© system call handler

1 .section .locked_text, "ax", @progbits
2 .align 8
3 .global _system_call_ISR
4 .proc _system_call_ISR
5 .type _system_call_ISR, @function
6 _system_call_ISR:
7 add $r12 = $r12, -16 # create scratch area
8 ;;
9 copy $r40, $r0 # save registers $r0-$r7

10 copy $r41, $r1 # because _vk1_context64_save
11 copy $r42, $r2 # modifies them
12 copy $r43, $r3
13 ;;
14 copy $r36, $r4
15 copy $r37, $r5
16 copy $r38, $r6
17 copy $r39, $r7
18 ;;
19 make $r16 = pok_current_context # retrieves current context
20 ;;
21 lw $r17 = 0[$r16]
22 ;;
23 _vk1_context64_save $r17 #saves it
24 ;;
25 make $r12 = _scoreboard_kstack_start; # stack switch
26 ;;
27 copy $r0, $r40 # restore registers $r0-$r7
28 copy $r1, $r41
29 copy $r2, $r42
30 copy $r3, $r43
31 ;;
32 copy $r4, $r36
33 copy $r5, $r37
34 copy $r6, $r38
35 copy $r7, $r39
36 ;;
37 add $r12 = $r12, -16 # create nested scratch area
38 call pok_arch_sc_int # jump to C code
39 ;;
40 _return_from_sc:
41 add $r12 = $r12, 16 # destroy nested scratch area
42 ;;
43 make $r16 = pok_current_context
44 ;;
45 lw $r13 = 0[$r16]
46 ;;
47 sw 0[$r13] = $r0
48 ;;
49 _vk1_context64_restore $r13 # restore context
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50 ;;
51 add $r12 = $r12, 16 # destroy scratch area
52 ;;
53 scall MOS_VC_RFE
54 ;;
55 .endp _system_call_ISR

Listing 8: MPPA R© interrupt handler

1 .section .locked_text, "ax", @progbits
2 .align 8
3 .global _interval_ISR
4 .proc _interval_ISR
5 _interval_ISR:
6 add $r12, $r12, -16 ## create scratch area
7 ;;
8 sd 0[$r12] = $p16;
9 make $r16 = pok_current_context # load memory adress of

10 ;; # current context
11 lw $r17 = 0[$r16]
12 ;;
13 _vk1_context64_save $r17 # save it
14 ;;
15 ld $p16 = 0[$r12]
16 make $r0, _scoreboard_start
17 get $r3, $pcr
18 ;;
19 extfz $r1, $r3, 15, 11 # retrieve the current PE in $r1
20 ;;
21 sll $r1, $r1, 8
22 ;;
23 add $r2, $r2, $r1
24 ;;
25 lw $r0 = MOS_VC_REG_PS[ $r2 ] # retrieve the current $ps in $r0
26 copy $r1, $r12 # retrieve the stack pointer in $r1
27 ;;
28 srl $r0 = $r0, 28
29 add $r12, $r12, -16 ## create nested scratch area
30 call __k1_do_int ## jump to C code
31 ;;
32 _return_from_int:
33 add $r12, $r12, 16 ## destroy nested scratch area
34 ;;
35 make $r16 = pok_current_context # retrieve the elected context
36 ;;
37 lw $r13 = 0[$r16]
38 ;;
39 _vk1_context64_restore $r13 # restore this new context
40 ;;
41 add $r12 = $r12, 16 # destroy scratch area
42 ;;
43 scall MOS_VC_RFE
44 ;;
45 .endp _interval_ISR
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B.2 Diagrams

Figure 16: Structure of the ARINC 653 Part 1 library layer for user applications
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Figure 17: Structure of the ARINC 653 Part 4 library layer for user applications
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Figure 18: TiCOS memory map
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B.3 Example arinc653-1part

The file activity.c describes the two threads that will run inside the part1 scope.

Listing 9: part1/activity.c

1 #include <libc/stdio.h>
2 #include <arinc653/types.h>
3 #include <arinc653/time.h>
4 #include "deployment.h"
5

6 void* thr1_1_job ()
7 {
8 RETURN_CODE_TYPE ret;
9 while (1)

10 {
11 printf("Partition n. 1 - Thread n.1\n");
12

13 /***************************************************************/
14 /* Message processing code should be placed here */
15 /***************************************************************/
16

17 PERIODIC_WAIT (&(ret));
18 }
19 }
20

21 void* thr1_2_job ()
22 {
23 RETURN_CODE_TYPE ret;
24 while (1)
25 {
26 printf("Partition n. 1 - Thread n.2\n");
27

28 /***************************************************************/
29 /* Message processing code should be placed here */
30 /***************************************************************/
31

32 PERIODIC_WAIT (&(ret));
33 }
34 }

The file main.c configures the two threads, start them and then puts part1 in normal
mode, which makes the partition and processes runnable from the scheduler point-of-view.

Listing 10: part1/main.c

1 #include "activity.h"
2 #include <libc/stdio.h>
3 #include <arinc653/types.h>
4 #include <arinc653/process.h>
5 #include <arinc653/partition.h>
6 #include "deployment.h"
7

8 PROCESS_ID_TYPE arinc_threads[POK_CONFIG_NB_THREADS];
9

10 int main ()
11 {
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12

13 PROCESS_ATTRIBUTE_TYPE tattr;
14 RETURN_CODE_TYPE ret;
15

16 printf("part1 - Main thread\n");
17 tattr.PERIOD = 100;
18 tattr.BASE_PRIORITY = 7;
19 tattr.ENTRY_POINT = thr1_1_job;
20 CREATE_PROCESS (&(tattr), &(arinc_threads[1]), &(ret));
21

22 tattr.PERIOD = 100;
23 tattr.BASE_PRIORITY = 9;
24 tattr.ENTRY_POINT = thr1_2_job;
25 CREATE_PROCESS (&(tattr), &(arinc_threads[2]), &(ret));
26

27

28 START (arinc_threads[1],&(ret));
29 START (arinc_threads[2],&(ret));
30

31 SET_PARTITION_MODE (NORMAL, &(ret));
32 return 0;
33 }

The execution trace that follows show the system from boot to user code. It is important
to notice the interruptions arrival ([DEBUG] DEC interrupt), the main entry point (line 30)
and the user threads being scheduled (lines 48,52; 59,62; etc) together with the idle thread
(lines 44; 55; 66; etc). The program continues indefinitely as there is no call to exit.

Listing 11: arinc653-part1 example execution

1 [DEBUG] Pok arch init finished.
2 [DEBUG] MALLOC: Space reserved starting at: 0x00050000, with size: 40000
3 [DEBUG] Partition 0 loaded at addr phys=|50000|
4 pok_create_space: 0: 50000 40000
5 Loading partition code from 2c000 to 50000, for a size of : 1668
6 Copied last partial block from 2c000 to 50000 ( size = 1668 )
7 Loading partition code from 30000 to 70000, for a size of : 15c
8 Copied last partial block from 30000 to 70000 ( size = 15c )
9 Loading partition code from 34000 to 1f0000, for a size of : 0

10 Copied last partial block from 34000 to 1f0000 ( size = 0 )
11 [DEBUG] Setting up main thread of partition: 0, addr: 50000
12 [DEBUG] MALLOC: Space reserved starting at: 0x00090000, with size: 130
13 [DEBUG] Creating context for partition 0, ctx: 0x00090000, entry: 50000
14 [DEBUG] Creating context for partition 0, stack: 8fff0
15 [DEBUG] pok_thread 0 created in partition 0
16 [DEBUG] Partition 0: index_low 0, index_high 3
17 [DEBUG] Creating KERNEL thread, id: 3
18 [DEBUG] MALLOC: Space reserved starting at: 0x00091000, with size: 130
19 [DEBUG] Creating IDLE thread, id: 4
20 [DEBUG] MALLOC: Space reserved starting at: 0x00092000, with size: 1130
21 [DEBUG] Context size 130
22 [DEBUG] Creating system context 4, ctx: 0x00093000, sp: 92ff0
23 POK kernel initialized
24 [DEBUG] TIMER_SETUP: Freq:74 MHZ, Div:37, Shift:0
25 TIME LAST: 3273, TIMER: 5000, TIME NEW: 8273, TIME CUR: 3273, DELTA: 5000
26 POK boot finished
27 [DEBUG] DEC interrupt:1
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28 Switch from partition 0 to partition 0
29 TIME LAST: 8273, TIMER: 50000, TIME NEW: 58273, TIME CUR: 8523, DELTA: 49750
30 part1 - Main thread
31 [DEBUG] MALLOC: Space reserved starting at: 0x00094000, with size: 130
32 [DEBUG] Creating context for partition 0, ctx: 0x00094000, entry: 500c0
33 [DEBUG] Creating context for partition 0, stack: 8dff0
34 [DEBUG] pok_thread 1 created in partition 0
35 [DEBUG] Partition 0: index_low 0, index_high 3
36 [DEBUG] MALLOC: Space reserved starting at: 0x00095000, with size: 130
37 [DEBUG] Creating context for partition 0, ctx: 0x00095000, entry: 500e8
38 [DEBUG] Creating context for partition 0, stack: 8bff0
39 [DEBUG] pok_thread 2 created in partition 0
40 [DEBUG] Partition 0: index_low 0, index_high 3
41 SET_PARTITON_MODE : partition[0] MODE = NORMAL
42 DEBUG::Activation of thread 0 updated to 0
43 switch from thread 0, sp=0x90000
44 switch to thread 4, sp=0x93000 entry point = 0x1b388
45 [DEBUG] DEC interrupt:11
46 Switch from partition 0 to partition 0
47 TIME LAST: 58273, TIMER: 50000, TIME NEW: 108273, TIME CUR: 58548, DELTA: 49725
48 Partition n. 1 - Thread n.1
49 DEBUG::Activation of thread 1 updated to 21
50 switch from thread 1, sp=0x94000
51 switch to thread 2, sp=0x95000 entry point = 0x500e8
52 Partition n. 1 - Thread n.2
53 DEBUG::Activation of thread 2 updated to 21
54 switch from thread 2, sp=0x95000
55 switch to thread 4, sp=0x93000 entry point = 0x1b388
56 [DEBUG] DEC interrupt:21
57 Switch from partition 0 to partition 0
58 TIME LAST: 108273, TIMER: 50000, TIME NEW: 158273, TIME CUR: 108355, DELTA: 49918
59 Partition n. 1 - Thread n.1
60 DEBUG::Activation of thread 1 updated to 31
61 switch from thread 1, sp=0x94000
62 switch to thread 2, sp=0x95000 entry point = 0x500e8
63 Partition n. 1 - Thread n.2
64 DEBUG::Activation of thread 2 updated to 31
65 switch from thread 2, sp=0x95000
66 switch to thread 4, sp=0x93000 entry point = 0x1b388
67 [DEBUG] DEC interrupt:31
68 Switch from partition 0 to partition 0
69 TIME LAST: 158273, TIMER: 50000, TIME NEW: 208273, TIME CUR: 158355, DELTA: 49918
70 Partition n. 1 - Thread n.1
71 DEBUG::Activation of thread 1 updated to 41
72 switch from thread 1, sp=0x94000
73 switch to thread 2, sp=0x95000 entry point = 0x500e8
74 Partition n. 1 - Thread n.2
75 DEBUG::Activation of thread 2 updated to 41
76 switch from thread 2, sp=0x95000
77 switch to thread 4, sp=0x93000 entry point = 0x1b388
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