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ABSTRACT

This work presents an analysis of the GPU implementations of the main isosurface
polygonization algorithms. The result of the analysis shows how the GPU may be mod-
ified in order to support polygonization of isosurfaces and also how these algorithms are
adapted to fit current GPUs. The techniques used in GPU-based versions of Marching
Cubes are extended and a polygonization with improved quality is achieved. We propose
parallel versions of Dual Contouring and Macet, algorithms which improve accuracy and
shape of triangles meshes, respectively. Both GPU approaches extract isosurfaces from
large volumetric data in less than one second, improving CPU versions up to two orders
of magnitude.

The contributions of this work also include a novel table-driven approach of Dual Con-
touring (DC) for uniform grids. A table is used for quad topology specification, which
aids the implementation and cache efficiency of parallel scenarios. It is suitable for stream
expansion with GPU versions of both geometry shader and Histogram Pyramids. In ad-
dition, our isosurface feature approximation version of DC is more straightforward than
Singular Value and QR Decompositions. The vertex positioning does not require diago-
nalization of matrices. Instead, it uses a simple trilinear interpolation.

In order to evaluate the efficiency of the techniques presented in this work, we com-
pare our approaches to state-of-the-art Marching Cubes GPU versions. We also present a
deep analysis of GPU architectures for isosurface extraction, in which industry profiling
tools are used. This analysis shows bottlenecks of the graphics hardware and helps the
evaluation of possible solutions for next generation GPUs.

Keywords: Isosurface extraction, Volumetric visualization, Contouring, Graphics hard-
ware architecture.





RESUMO

Análise e Aceleração da Extração de Isosuperfícies com Alta Qualidade

Este trabalho apresenta uma análise dos principais algoritmos de poligonização de
isosuperfícies na GPU. O resultado desta análise mostra tanto como a GPU pode ser mo-
dificada para oferecer suporte a este tipo de algoritmo quanto como os algoritmos podem
ser modificados para se adaptar as características das GPUs atuais. As técnicas usadas
em versões de GPU do Marching Cubes são extendidas e uma poligonização com menos
artefatos é gerada. São propostas versões paralelas do Dual Contouring e do Macet, algo-
ritmos que melhoram a aproximação e a forma das malhas de triângulos, respectivamente.
Ambas técnicas extraem isosuperfícies a partir de grandes volumes de dados em menos
de um segundo, superando versões de CPU em até duas ordens de grandeza.

As contribuições desse trabalho incluem uma versão orientada a tabelas do Dual Con-
touring (DC) para grids estruturados. A tabela é utilizada na especificação da topologia
dos quadriláteros, que ajuda a implementação e a eficiência de cache em cenários parale-
los. A tabela é adequada para a expansão de streams na GPU em ambos geometry shader
e Histogram Pyramids. Além disso, nossa versão de aproximação de características das
isosuperfícies é mais simples que a Decomposição de Valores Singulares e também que
a Decomposição QR. O posicionamento dos vértices não requer uma diagonalização de
matrizes. Ao invés disso, usa-se uma simples interpolação trilinear.

Afim de avaliar a eficiência das técnicas apresentadas neste trabalho, comparamos
nossas técnicas com versões do Marching Cubes na GPU do estado da arte. Também
incluímos uma análise detalhada da arquitetura de GPU para a extração de isosuperfícies,
usando ferramentas de avaliação de desempenho da indústria. Essa análise apresenta os
gargalos das placas gráficas na extração de isosuperfícies e ajuda na avaliação de possíveis
soluções para as GPUs das próximas gerações.

Palavras-chave: Extração de isosuperfícies, Visualização volumétrica, Contorno, Arqui-
tetura da placa gráfica.
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1 INTRODUCTION

Scientific visualization of volume data has been an important focus for many com-
puter graphics researchers. The creation of insightful visual images from volume data
aids scientists in the understanding of complex environments, ranging from physics to
medicine. Images are more appealing than other sources of information for most people,
since vision is our dominant sense and is consequently responsible for a large part of hu-
man cognition (BAINES, 2008). Thus, rendering meaningful images can be a helpful tool
to the advance of multiple scientific branches.

The acquisition of volume data is common in many distinct areas of science. Physi-
cians extract volume data from patients in magnetic resonance imaging (MRI) and com-
puter tomography (CT) for diagnosis; engineers acquire volume data from cars and air-
planes in wind-tunnels to test for aerodynamics; engineers also acquire data from numeri-
cal approximations of partial differential equations, such as heat transfer in engines, to test
material resistances; meteorologists obtain data about air density and pressure for climate
forecasts; etc.

The scientific volumes consist of a set of points uniformly or non-uniformly dis-
tributed with associated scalar values, functions or groups of functions. These volumes
can be viewed as discrete functions bounded in a regular or irregular space. When a
volume has uniformly distributed points, it is referred to as a regular volume grid. Oth-
erwise, it is referred to as irregular. Image scanners (MRIs and CTs) usually obtain its
point sampled densities on regular grids, while many simulations obtain irregular ones.
Current image scanners and simulation techniques may produce very large volumetric
images. This massive numerical information implies in two challenges for the extraction
of images: (i) how to choose parts of the volume to produce meaningful images; (ii) how
to do it efficiently.

The visualization of isosurfaces is a common approach to filter large volumetric datasets.
Isosurfaces are implicit surfaces defined by the zero-value of a given function (f : Rn →
R). The choice of one or more isovalues i simplifies the volume into areas of interest. The
isovalue is the only parameter in the definition of the isosurface I(i) = {x|f(x)− i = 0}.
Cartographers often use a set of isocontours defined by multiple isolevels (heights) in their
topographic maps (2D function, where n = 2). Contours are important for understand-
ing elevations of irregular terrains (see Figure 1.1). A set of connected points with the
same height represents each contour. The set of these contours in the 2D image contains
enough information to give a 3D perspective of the place. Isosurfaces in 3D (n = 3) are
an extension of this. The set of points with equal isovalue represents a surface.

The representation of these isosurfaces is a challenging problem and much research
has been done in the last decades. Some methods extract surfaces without explicit con-
nectivity. These methods may use point primitives such as surfels (CO; HAMANN; JOY,
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2003) or may even cast rays through the volume for direct visualization (KRUGER;
WESTERMANN, 2003). The first approach is memory and processing efficient. The
latter is accurate and produces beautiful isosurfaces. However, both suffer from their lack
of topology. If an application (collision detection, for example) requires that a primitive
uses boundary information from its neighbors, both representations are ineffective. This
is a serious issue if the generated surfaces are used as input for other application. On the
other hand, methods that polygonize the isosurface (WUENSCHE, 1997) have explicit
topology and do not suffer from these problems.

Figure 1.1: Cartography contour lines. Isocontours represent different elevations on the
terrain. Each line has one height associated. With this visualization technique, it is much
easier to understand the position of peaks and depressions in the terrain. In this partic-
ular image, the relief shading helps the visualization even further. Image extracted from
Google Maps R�.

Lorensen and Cline’s Marching Cubes (MC) (LORENSEN; CLINE, 1987) is one of
the first and the most successful isosurface polygonizer. In brief, it divides the space into
an uniform grid of cubes and generates triangles for the ones trespassed by the isosurface
based on a table of predefined cases. The major causes for such acceptance are its sim-
plicity, efficiency and robustness. Unfortunately, the algorithm has some shortcomings.
The triangle meshes generated might have degenerate triangles. In addition, the triangle
meshes fail to represent sharp edges and corners, due to the assumption of MC that the
input function is smooth.

Our first goal in this work is to present high-quality polygonization of isosurfaces.
Applications that create these polygonizations should have at least one of two possible
advantages over low-quality polygonizations. First, the polygonization generated is closer
to the isosurface. Second, the polygonization can be used as input by applications that
require non-degenerate polygons. These advantages can be achieved by using variations
of the original MC method presented on literature. Many variations need some extra
computational effort, which compromise the efficiency of the original algorithm.

Our second goal is to maintain interactive frame-rates in the polygonization of isosur-
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faces. A single isosurface is just a small part of the information contained in the volume.
Although it can be useful to show the local behavior of the information contained in the
volume, the global behavior can be only unveiled by showing a huge amount of isosur-
faces at the same time (in the same way that it is done in 2D height maps) or by having the
ability to change the isolevel interactively. There are three common approaches for the
acceleration of the polygonization step. First is to avoid empty space around the isosur-
faces, which is explored by one of our solutions. Second is to polygonize the isosurface in
a view-dependent way, which is not interesting to us as it does not accelerate the extrac-
tion of the whole isosurface. Finally, the third is to use massive parallel hardware such as
the Graphics Processor Units (GPUs), which is one of the most important focuses of this
work.

The GPU represents a programmable and generic processor (MACEDONIA, 2003)
and several algorithms explore its computational power. The GPU is a very powerful
tool for almost every parallel application. It distributes tasks for its multiple cores and
several algorithms are faster than on the CPU. Even though there is an increasing parallel
power on multi-core CPUs, we believe the most promising low-cost hardware today for
the polygonization of isosurface is the one on the GPUs. The intrinsic parallel nature
of the most common isosurfacing algorithms such as MC makes it amenable for parallel
(and thus faster) implementations.

1.1 Isosurface Applications

As mentioned before, isosurfaces are useful for filtering the content of massive volu-
metric data. There are infinite isovalues, consequently there are infinite isosurfaces. The
question that remains concerns choosing between infinite isosurfaces. Volume data is
usually bounded between two scalars, such as 0 and 255, for example, which restricts the
search. The user needs to choose one isovalue between these boundaries. The resulting
surface isolates the area of interest. But, still, it is often the case that the scientist does not
know the specific values of the volume in which he is interested. This varies depending
on the purpose of the visualization.

In medicine, computer tomographies (CTs) and magnetic resonance imaging (MRI)
help physicians diagnose multiple conditions in patients. These scanners extract densities
in tissues and bones in a series of 2D slices. The physicians might analyze the content
in each slice separately, but their composition to 3D makes a much more intuitive view
of the patient. A very small abnormality in one of the slices may indicate something
of uttermost importance to a possible diagnostic and further treatment. The physician
is trained to see these differences, so details are very important to the visualization. By
grouping these slices in 3D, the interactive navigation through multiple scalar densities
shows the same abnormality with a 3D perspective. It presents the physician a clear view
of the multiple layers of the volume. Figure 1.2 has an example of how this navigation
works on an engine and a human body.

There is another class of techniques, known as direct volume rendering, which is also
important and sometimes even more insightful than isosurfaces for human body investi-
gation. It consists of casting rays through the volume from the point of view of the camera
and measuring properties such as opacities or colors. However, these methods usually re-
quire fine adjustment of multiple parameters (transfer functions which adjust colors based
on densities, for example). In contrast, polygonization of isosurfaces requires only a scalar
(isovalue) change. Obviously, direct volume rendering can also extract isosurfaces, but
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Figure 1.2: Isosurface application. Navigation through multiple isosurfaces in an engine
and in a human body. The interaction is important for the visualization of the different
layers in the volume data.

many applications need explicit surface information. For instance, if the extracted surface
is used as input to another application, no geometric properties such as curvature, surface
area and object volume can be easily computed without an explicit representation.

There are applications for isosurfaces unrelated to volume visualization. As surfaces
often appear in many computer graphics fields, sometimes it is desirable to have their
volumetric representation. There are many algorithms (KAUFMAN; SHIMONY, 1987;
KAUFMAN, 1987; EISEMANN; DéCORET, 2006) that convert from triangle meshes
into volumetric data. This process is called voxelization or 3D scan-conversion. Some op-
erations are implemented much more easily in volumes than directly on triangle meshes.

In modeling, constructive solid geometry (CSG) operations are intuitive and fast in
volume data. For example, to subtract a sphere from a set of points, the only necessary
operation is to eliminate the points within the range of the sphere radius. It is common
practice to voxelize the surface, perform CSG operations and afterwards bring the surface
back to the triangular form with a polygonizer. The polygonizer that extracts the triangle
mesh needs to be robust enough to retain details from the original surface (assuming the
voxelization was robust as well).
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1.2 Contributions
This thesis focuses on the use of GPUs in the polygonization of isosurfaces. Its main

contribution encloses three closely related and important problems:

1. The mapping to the GPU of high-quality isosurface polygonizers.

2. The interactive polygonization of large datasets.

3. The proposal of improvements for the GPU architecture for isosurface extraction.

The only polygonization algorithms mapped to the GPU, to our knowledge, are March-
ing Cubes and Marching Tetrahedra (another important polygonizer) (HALL; WARREN,
1990). The featured extraction of isosurfaces, not available in either of the original ver-
sions of these algorithms, is an important contribution in this thesis. We were able to map
a modified version of Dual Contouring (an approach that finds corners and sharp edges) to
the GPU. Our approach to Dual Contouring approximates features in an original fashion,
more appropriate for a GPU version. Details are given in section 4.2. In addition, we
create a novel table-based version of Dual Contouring for improved interactivity.

Another important polygonizer implemented in the GPU in our work is Macet (DI-
ETRICH et al., 2008). Macet improves on triangle meshes generated by Marching Cubes
with one extra module than in the original algorithm. The improvement of the triangle
meshes is significant and is considerably faster than in CPU. Thus, it is possible to im-
prove triangle meshes generated by overwhelming volumes.

The interactive polygonization of isosurfaces on the GPU is usually restricted for
medium-sized datasets (2563). The extraction of isosurfaces using larger datasets, such
as 5123, is not as trivial. This type of dataset is not as large as the ones extracted by out-
of-core techniques. Out-of-core algorithms offload data to disk, which is slower than the
main memory and GPUs. Instead, our technique deals with datasets that fit in the main
memory, but do not fit on GPU memory (usually smaller). We further evaluate the use
of GPUs with a deep analysis of its bottlenecks along in the context of polygonization of
isosurfaces.

Sometimes, the programmable modules have constraints that are not easily circum-
vented. For example, until the introduction of Directx10, no geometry could be produced
inside the graphics card. In situations like this, many computer graphics researchers just
try to adequate the algorithms to fit the hardware. Our work implements state-of-the-art
versions on existing GPUs as well, but then we go further by using profiling tools. They
are useful for the discovery of bottlenecks and proposal of improved architectures. The
profiling of our techniques has detailed information about what parts of the programmable
modules are used the most and what parts are not used at all.

1.3 Structure of the Thesis
This thesis is organized in seven chapters. This chapter presents context and motiva-

tion of the problem of isosurface polygonization in the GPU. It also shows our objective
and contributions for the literature. Chapter two overviews common terms used in the the-
sis and shows important features for polygonizations. Chapter three presents the classic
Marching Cubes algorithm and its variations. Chapter four presents common dual con-
touring algorithms and our novel approach for Dual Contouring. Chapter five describes
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technology and algorithms involved in GPU polygonization. Chapter six shows our re-
sults and proposed GPU improvements in the context of polygonization. Finally, Chapter
seven concludes our research and discusses the future research possibilities.
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2 BACKGROUND

The visualization of isosurfaces is a relatively old research topic, being almost three
decades old. There are many different terms in literature that correspond to the same
concept. For example, in Marching Cubes, the element that divides the grid is called
voxel, cube or even cell. This chapter provides a quick reference guide (section 2.1) for
the sake of clarity. Moreover, there are even worse cases in which terms are used with
interchangeable meaning. Cell is used by some authors to describe the face of a cube,
and not the cube itself, as it is used in this text. This further justifies a section just to give
semantics to recurring terms.

This chapter also focuses on the desirable characteristics for isosurface polygonizers,
such as the manifold and watertight properties. In addition, other important quality fea-
tures for the polygonizations such as the approximation of the isosurface and polygon
aspect ratio are included here. These are the main goals of our work and, consequently,
are described in detail. Each of these properties has a different impact on applications and
is later detailed.

In some applications, such as finite-element analysis, the aspect ratio of polygons is
fundamental. On the other hand, if the only purpose of the application is a fast visual-
ization, polygon quality may be traded-off for quality in the approximation. Thus, the
extraction of the isosurface is completely dependent from the main purpose of the appli-
cation. Implications of quality tradeoff are described below.

2.1 Glossary
In this section we present a quick reference to the technical terms used in our work.

The explanations are contextualized in the field of polygonization of isosurfaces. The
only purpose of this section is to clarify items used throughout the thesis, not to generalize
concepts. The words are sorted1 alphabetically and illustrated on Figure 2.1.

1. Active edge: Edge of a grid (regular or irregular) intersected by an isosurface.

2. Cell: Cube or tetrahedra (element that subdivides the structured or unstructured
grid). In other literature sometimes cell refers to the face of the voxel.

3. Cube: Regular grid subdivision element. It is also the primitive used to divide data
volumes with Marching Cubes.

4. Cut Point: Point where an isosurface cuts an active edge.

1Synonyms are not grouped. One word holds the semantics, while others just point to it.
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Figure 2.1: Illustration of common terms in the polygonization of isosurfaces. The figure
shows a 2D case, but it can be seen as an orthogonal slice of a 3D example. Therefore,
words such as cube for a square still make sense.

5. Dataset: Volume data.

6. Irregular grid: Subdivision that uses elements of irregular shapes.

7. Isosurface: A contour inside the data volume, where a certain property assumes a
constant value, i.e., I(i) = {x|f(x)− i = 0}.

8. Isovalue: Constant parameter that defines an isosurface within a data volume.

9. Polygonization of isosurfaces: Extraction of an isosurface mesh (often a triangular
mesh).

10. Regular grid: Regular distribution of points in a discrete function.

11. Sample: Scalar value of the volume data.

12. Structured grid: Regular grid.

13. Unstructured grid: Irregular grid.

14. Volume data: Set of 3D scalar points acquired from the real world, simulations,
mathematical functions or conversions from other modeling techniques. It is often
referred as a discrete function.

15. Voxel: Cube.

2.2 Quality
Quality can be measured in different ways for the extraction of isosurfaces, with the

ones most relevant to our work being presented in this section. Measurement can be done
in terms of four different criteria: the polygon shape, the distance to the surface and the
watertight and manifold properties. The polygon shape matters for finite element analysis
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and tetrahedral mesh generation, while the distance to the surface is important for almost
every application, because coarse approximations might present false information. Mani-
fold and watertight properties are important for applications such as surface simplification
and collision detection, respectively.

Some of these characteristics are intrinsic of extraction algorithms, while others need
extra computational modules for that purpose. These extra modules significantly impact
the efficiency of the original algorithms. As one of our goals is to achieve quality and also
efficiency, the aspects that impact quality are studied in detail. Thus, the following quality
concepts are discussed in every polygonizer described in this thesis (sections 3 and 4).

Figure 2.2: Effects of wide angles of triangles. 200 triangles with different aspect ratio
were used to render a paraboloid with a piecewise linear approximation. Wider angles
present worse approximation of the paraboloid. Image extracted from (SHEWCHUK,
2002).

2.2.1 Polygon Shape

There are basically two types of polygons extracted in the polygonization of isosur-
faces. Triangles are commonly extracted by primal methods (section 3). Quadrilaterals
(quads) are a common primitive for dual methods (section 4). Evidently, this is not a
rule, since quads can be used in primal methods and triangles on dual methods. However,
triangles are the simplest and most common primitive for rendering surfaces in computer
graphics, thus we will analyze all polygon meshes as such.

The quality of triangle meshes is very important for our applications. Although not
so relevant to isosurface visualization, it plays a crucial role in simulation procedures of
finite-element analysis and tetrahedral mesh generation. The example presented in Figure
2.2 is even simpler to understand. It shows one scenario where wide angles significantly
affect the approximation of a paraboloid. This type of quality refers to the triangle aspect
ratio from every triangle in the surface mesh.

The simple existence of a single bad triangle in the mesh represents an ill-conditioned
situation for further numerical simulation. The triangle with the worst quality often de-
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fines the quality of the entire mesh (SHEWCHUK, 2002). If this quality is important
for the final application, a surface with a good average aspect ratio is not enough. The
polygonization technique needs to ensure that the worst case triangle does not affect the
application. If an algorithm such as Marching Cubes is used, then the triangles need to be
rearranged with a post-processing algorithm, such as Laplacian Smoothing.

To compute numerical results of triangle quality (Q), the ratio between the incircle
radius Rin and the circumcircle radius Rout is used. This is an often applied criterion
for the purpose of measuring triangle quality.f The ratio is computed as follows: Q =
Rin/Rout ∗ 0.5. The scalar 0.5 (half circumcircle radius) is simply used to normalize
results, scaling quality to range from 0 to 1. By using this evaluation, it is possible to
compare the quality among polygonizers.

2.2.2 Distance to the Isosurface

��� ���

Figure 2.3: Artifacts in the silicium dataset. (a) Silicium extracted with Dual Contouring.
(b) Silicium extracted with Marching Cubes. The two polygonizations represent the same
isosurface, but are extracted with different polygonizers. The first is faithful to the isosur-
face. The second has a spiky appearance. This aliasing occurs because there are regions
with sharp edges.

The polygon distance to the isosurface is an intuitive type of quality measurement.
The polygonization is accurate when it is near the isosurface. Applications that would
need accuracy in this respect are not difficult to imagine. If the volume data is extracted
from an MRI, the physician should see a reliable approximation of the isosurface. Even
when there is already some error in the data acquisition, additional error is not acceptable.

Notice that the polygon shape quality is not related with its distance to the isosurface.
In many cases one quality is exchanged by the other. Bad aspect ratio polygons might
represent with better precision an isosurface than good ones. It is hard to maintain good
aspect ratio triangles in a complex surface. On the other hand, badly shaped triangles
might just fit. For example, a long thin strip can be represented by two long triangles.
Since long triangles have a very small angle, the aspect ratio is low. Only with several
smaller triangles this strip can have a good aspect ratio triangle mesh. This occurs because
the good aspect triangles are bounded in some angle threshold.
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To compute numerical results for the distance to the isosurface is not easy. As the real
isosurface is implicit in the volume data, its distance to the polygons is hard to measure.
An application could measure this quality by ray-casting from the surface towards all
directions. The closest point would indicate a relative error. This should be done from
all points of the surface. However, this measurement could take too much computational
time.

A common practice to measure this quality is to use Metro (CIGNONI; ROCCHINI;
SCOPIGNO, 1998). Basically, the software compares the Hausdorff distance between
two triangle meshes. The assumption is that one mesh represents the isosurface extreme
accurately. Methods, such as Marching Cubes, might generate surfaces very close to the
isosurface by using a high resolution grid. The problem is that no polygonization method
really represents the isosurface with real accuracy. Samples outside the discrete function
use some approximation technique, which might be a wrong assumption in the first place.
Marching Cubes samples are trilinearly interpolated, which works for smooth isosurfaces.

On the other hand, if the dataset is not smooth, Marching Cubes may not be close to the
isosurface. In the presence of sharp features and corners, other methods such as Extended
Marching Cubes (KOBBELT et al., 2001) might better approximate the isosurface (see
Figure 2.3). Thus, they might be a better choice in case Metro is used to measure the
approximation. We assume that sharp features are relevant in this work, so we consider
the triangle meshes from Extended Marching Cubes superior to those of MC.

2.2.3 Manifold

Figure 2.4: Non manifold triangular mesh. The surface has vertices that are shared by
distinct parts, and locally are not topologically equivalent to a disk.

When we think about surfaces, we usually imagine the ones that are 2-manifold (or
simply manifold). Surfaces composing a topological space (point-set topology) in which
every point has an open neighborhood which is a disk (GUIBAS; STOLFI, 1985). Topo-
logical equivalence is less intuitive than geometrical equivalence, since it is related with
the connections and not the form of the object. Topology ignores geometrical form, which
means that an object might be scaled and bended and continue with the same topological
connections. Thus, a manifold surface is the one in which every point of the surface can
be locally flatten out into a disk-like form.

Non-manifold surfaces can be problematic. When a situation such as sharing one
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edge happens, surface fairing and parameterization might be compromised. Thus, the
generation of manifold meshes is a desirable characteristic. There are many mathematical
implications about manifold surfaces, but they go beyond the scope of this thesis.

Some polygonizers do not achieve this property directly. Dual methods are an example
of that (see Figure 2.4). Sometimes disjoint surfaces remain glued by one point. This
occurs because there is only one vertex being generated inside a voxel in which two
vertices should be (SCHAEFER; JU; WARREN, 2007). In analogy to MC, this is the
case of ambiguity, which is detailed in section 3.2.1.

2.2.4 Watertight

Watertight polygon meshes are surfaces without holes. The separation from inside to
outside the surface characterizes watertight meshes. Notice that geometrical objects such
as a torus have holes, but not in the polygon mesh. Figure 2.5 shows a watertight and a
non-watertight triangle mesh.

Figure 2.5: Non-watertight (left) and watertight surfaces. There are holes in the non-
watertight surface surrounded by highlighted red triangles. Image extracted from (DEY;
GOSWAMI, 2003).

Triangle meshes with incorrectness in the topology (non-watertight) are usually un-
desirable. There are several problems when meshes with holes are used as input. For
example, when the non watertight surface is used in collision detection, an object might
incorrectly trespass the missing triangles. In addition, they are not visually appealing.

Some extraction techniques in the literature need to fill holes depending of the in-
put dataset, such as delIso (DEY; LEVINE, 2007) as reported by Raman and Wenger
(RAMAN; WENGER, 2008), and even some cases of Marching Cubes (WILHELMS;
GELDER, 1990) (if the look-up table is incorrectly configured). They lack the produc-
tion of a closed triangle mesh in particular situations. Marching Cubes might produce
inconsistencies in the ambiguity case, which is explained in Section 3.2.1.
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3 PRIMAL METHODS

Isosurface polygonization is a well-studied problem, but still a focus of interest nowa-
days. Since the pioneering work of Udupa (HERMAN; UDUPA, 1982), several (and
significantly different) approaches for extracting polygon meshes from implicit surfaces
were proposed. These approaches can be categorized into three broad classes: (1) meth-
ods based on domain subdivision, (2) pseudo-physical methods and (3) surface tracking
methods. Our work is focused on methods based on domain subdivision, since its under-
lying approach usually leads to high-performance polygonizers.

Such methods follow the divide-and-conquer paradigm, that subdivides the domain
of the function f (f : Rn → R) into a structured (or unstructured) grid. The grid is
composed by a set of cells, which are processed independently. The isosurface inside
each cell is approximated by a set of polygons, in a way that, when combined for all
cells, forms a watertight and manifold mesh. Thus, all of the algorithms presented in this
section have both properties.

We present three contouring techniques in this chapter. All of them are important for
the understanding of our thesis goals. Cuberille is historical and helps the understanding
of divide-and-conquer algorithms. Marching cubes is the standard and used for compar-
ison with novel techniques. Finally, marching tetrahedra is as important as MC in the
context of GPU polygonization of isosurfaces.

3.1 Origins
At the beginning of the eighties, cuberille was a popular choice in isosurface extrac-

tion. Computer graphics was severely constrained by memory and computer processing
power. The algorithm is extremely simple, but robust and might be used for fast isosurface
visualization.

The subdivision elements in the cuberille technique are voxels (cubes). Consequently,
this technique works for polygonization in uniform grids. The algorithm for the polygo-
nization is very simple. Each cube is sampled at its center. If the sampled value is inside
the isosurface (lower than the isovalue), then that cube is opaque. Otherwise, if the sam-
pled value is outside the isosurface, that cube is transparent. The result is a set of cubes
that approximate the isosurface. However, note that this forms a solid object, and we are
interested in a surface. Instead of just setting the cube as opaque or transparent, we just
render the faces that are shared by cubes inside and outside the isosurface, as shown in
Figure 3.1.

The algorithm has the advantage of being extremely fast, as a consequence of its
simplicity. It also produces high-quality polygon shapes (the mesh may be formed by
quads or even triangles). However, the main problem is obvious: the surface is coarsely
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Figure 3.1: Sphere extracted with Cuberille at two different resolutions. Historical ap-
proach to polygonize isosurfaces. Refinement results in better approximation, but doubles
the storage requirements for each dimension.

approximated. The aliasing in the surface appearance occurs because there is no fine
adjustment of the polygon vertices. This continues visible even at high resolutions, which
increases the storage costs.

There were proposed solutions for the aliasing, such as using an adequate shading
technique (CHEN et al., 1985). With the inclusion of smooth shading, the resulting im-
ages are more interesting. The polygon normals are bended following the normal direc-
tion of the isosurface. This solution is good for fast and reasonably faithful visualizations.
However, the surface is still coarsely approximating the real isosurface.

The following algorithm, Marching Cubes (MC), is dual to cuberille. Each face of
cuberille is a point in Marching Cubes. But why do we call this chapter Primal, and
not Dual Methods? Because MC is usually referred to as primal, while other methods
similar to cuberille are called dual contouring algorithms (details about dual contouring
algorithms are presented in chapter 4).

3.2 Marching Cubes
Marching Cubes is a fundamental algorithm in the polygonization of isosurfaces. The

algorithm is widely accepted by the visualization community, for its simplicity and ro-
bustness. It is also referenced many times in other contexts, such as in modeling surface
reconstruction, as previously mentioned (section 1.2).

The algorithm divides the volume into a grid of regular cells (Figure 3.2a), such as in
the Cuberille. It operates on two fundamental steps: detection of active cells (cells crossed
by the isosurface) and generation of triangles inside each active cell. This separation is an
important characteristic for a pipeline implementation (section 5.1).

At each vertex cell, the scalar value associated with the location of this vertex is eval-
uated from the data volume, compared against an input isovalue, and classified as either
inside or outside the isosurface. Every edge of this grid that has its two endpoints with
opposite classifications is assumed to cross the isosurface (Figure 3.2b shows red vertices
over the active edges).
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Figure 3.2: Marching Cubes 2D algorithm. (a) The isosurface here is represented as the
computer graphics group logo. The grid is a uniform voxelization of this logo in very low
resolution. (b) The red points are linear interpolations along the active edges, where the
isosurface cuts. (c) The green edges show the resulting polygonization connecting the red
points. (d) The resulting low-resolution approximation of the computer graphics group
logo.

The limited combination of output classifications for the eight vertices of a given
cell (a finite set of 28 = 256) is encoded in a table that defines the number of triangles
and their topology. This configuration of the cell is used as an index to access directly the
triangulation case in a table-driven fashion. The 3D classification of topologically distinct
cases is shown in Figure 3.3. Crossings can be found in several ways: assuming that the
point is exactly in the middle of the edge; doing a linear interpolation along the edge;
doing a bisection algorithm in the active edge; etc. The original MC proposes the use
of linear interpolation, which is a fine approximation and not as costly as using bisection
(useful if the underlying isosurface has a coarse granularity).

The first step of MC is related to the algorithmic efficiency. The complexity of the
marching in the cubes is (O(n3)). As the number of empty cells is usually very large,
there are many works which attempt to improve this first step (SHEN et al., 1996; BAJAJ;
PASCUCCI; SCHIKORE, 1996; CIGNONI et al., 1997). There is also the alternative to
operate in a view-dependent manner (GREGORSKI et al., 2002). The view-dependent
approach marches through the cubes with respect to the camera, avoiding back-faced
triangles. However, we are interested in the extraction of the whole surface and not just
its fast visualization.

The second step is related to the quality of the final mesh. The shape of the triangles is
dependent on those pre-defined cases. There are different possibilities in the triangulation
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(DIETRICH et al., 2008), which impact the quality of the triangle mesh. The quality
of the approximation is defined in this step, since here the isosurface intersections are
computed. MC surfaces are accurate, in the case of smooth isosurfaces.
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Figure 3.3: Original Marching Cubes output classification cases with topologically dis-
tinct triangles. Black dots are samples from inside the isosurface. White dots are outside.
The configuration case can be computed as an eight bit index v7v6v5v4v3v2v1v0 and used
as a key for the identification of the topology of the triangles.

3.2.1 Shortcomings

In the previous section, we enumerated the strengths of Marching Cubes. This section
overviews its main shortcomings and shows common solutions that can be found in the
literature. Since our work focus on quality, it is important to show where MC fails. On
the other hand, this section also shows that the problems are only relevant for particular
applications.

One of the first and most studied problems is the ambiguous face (Figure 3.4(a) in
the topology table). This might produce topological inconsistencies in the production of
the triangle mesh (WILHELMS; GELDER, 1990). If the table specification is not de-
fined with caution, two ambiguous faces might end up with opposite table configurations.
Consequently, "holes" could appear and the triangle mesh has lost its watertight property,
leading to several problems, as discussed in section 2.2.4. Besides, even if the table is con-
sistently specified, the polygonization may present an incorrect isosurface (downside for
the quality in approximation). The ambiguous face can separate or connect two different
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parts of the isosurface, depending on the specified topology.
One approach to solve this is to extend the MC table to include these two cases. After

an ambiguous face case is identified, the algorithm needs to decide which one is the
correct case. Nielson and Hamman (NIELSON; HAMANN, 1991) did this by bilinearly
interpolating over the ambiguous face (Figure3.4(b)). The intersection of the asymptotes
decides which is the correct topology case. Another useful and even simpler approach is
estimating the center value of the ambiguous face (WYVILL; MCPHEETERS; WYVILL,
1986) (Figure3.4(c)). The sample is calculated as the average of the vertex values of the
face.

Figure 3.4: Ambiguity problem. (a) The ambiguous face and two proposed solutions: (b)
The asymptotic decider. Bilinear interpolation over the face. (c) Estimate a point value in
the middle of the face. Image extracted from (WUENSCHE, 1997).

Another problem is related to finding a given grid resolution that allows the isosur-
face to be correctly approximated by a piecewise linear approximation. Solutions often
consider adding resolution only in areas that require so, therefore leading to an adaptive
subdivision. Usually, a subdivision criterion tries to minimize the distance between the
linear approximation and the isosurface. It is not possible to have different neighboring
cube sizes in the original MC, as can be seen on Figure 3.5.

Examples of algorithms that address this issue are Dual Contouring (section 4.2) and
the method proposed by Bloomenthal (BLOOMENTHAL, 1988). The first is intrinsically
adaptive for its dual nature, but it requires that the initial grid is maximally collapsed. This
means that the adaptive subdivision simplifies the surface, but does not refine it. The latter
uses octree subdivision to track the surface, but it is rather complex to implement.

Figure 3.5: Adaptive subdivision problem with different sized voxels. The figure shows
an issue in the use of the original MC with an octree. The polygonization may not be
watertight.
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Another problem is the aspect ratio of the triangles generated by MC, which is one
of the focuses of this work. There are many works that center the attention in the qual-
ity and correctness of the triangles (LEWINER et al., 2003; LOPES; BRODLIE, 2003;
NIELSON, 2003). An interesting example of the latter is Macet (DIETRICH et al., 2009,
2008), an algorithm based on the notion of edge transformations. By allowing the posi-
tion of MC edges to be placed in more convenient locations, their proposal achieves much
better triangle quality and requires minor modifications in the original MC code.

A problem we find even more interesting is the featured extraction of isosurfaces. As
MC is meant for smooth isosurfaces, corners are often smooth. Many datasets have nor-
mal information (Hermite data). These normals open the possibility of finding features,
such as sharp edges and corners. Kobbelt (KOBBELT et al., 2001) extended MC into a
featured polygonizer. The method explicitly tests for sharp features, and if it is the case,
uses a triangle fan to render the edge or corner. If there is no sharp edge, the table of MC
is used. The central vertex from the fan is located at the minimizer of the quadratic error
function (solved by Singular Value Decomposition):

E[x] =
�

i

(ni · (x− pi))
2 (3.1)

The final problem we want to raise is the computational cost. If one method does
not have the previously mentioned problems, it will probably take much more time to
extract the surface than the original Marching Cubes. This is an important reason why to
implement divide-and-conquer polygonizers on parallel hardware, such as the GPU, and
decrease its complexity.

3.2.2 Edge Transformations (Macet)

Macet (DIETRICH et al., 2008) (Marching Cubes using Edge transformations) is a
technique that improves the triangle quality generated by Marching Cubes (optionally
Marching Tetrahedra). Basically, it perturbs the position of the active edges in a way
that avoids degenerate polygons. The algorithm is based on the previous knowledge of
situations in which bad triangles happen, such as near corners (Figure 3.7).

The technique uses an extra computational module for MC. The module is situated
after the discovery of active edges and before linear interpolation. It moves the position
of the active edges following one of two approaches (see Figure 3.6). Both approaches
improve the triangle quality, but one path may be better than the other at particular situa-
tions. Thus, they are combined to form the final mesh. The two approaches are described
as follows:

• Gradient: The edge points (ViVj) move along the gradient

∇f(x, y, z) =

�
∂f

∂x
,
∂f

∂y
,
∂f

∂z

�
(3.2)

In which the partial derivatives of f are estimated by central differences along the
axis (the size of the lattice L is used):

gx = f(x + Lx, y, z)− f(x− Lx, y, z),

gy = f(x, y + Ly, z)− f(x, y − Ly, z),

gz = f(x, y, z + Lz)− f(x, y, z − Lz),
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Figure 3.6: MACET 2D gradient and tangent edge transform examples. The gradient
outside the isosurface is used to move the grid (upper-right). The tangent transform moves
the edges along tangent trails disconnecting the grid, but retaining mesh topology (lower-
right).

∇f(x, y, z) ≈ �(gx, gy, gz)� (3.3)

This gradient estimation works for every point of the scalar field. It is possible now
to move both edge points along the gradient path.

Vi = Vi + α ∗ ∇f(Vi) (3.4)
Vj = Vj + α ∗ ∇f(Vj) (3.5)

There is one constraint not included in the above formulae. In order to maintain
differentiable meshes, it is necessary to test whether one edge point crossed the
isosurface. If this is the case, the step is discarded and the gradient moving stops.
Furthermore, α is used to control the size of the step.

• Tangent: The edge points (ViVj) move along a tangent trail in order to leave the
edge as close as possible to becoming perpendicular to the isosurface. In the case
the edge is active, the points are moved using the local coordinates (�b stands for
binormal):

�bi = ∇f(Vi)× (Vj − Vi),

Vi = Vi + α ∗ (�bi ×∇f(Vi)), (3.6)
�bj = ∇f(Vj)× (Vi − Vj),

Vj = Vj + α ∗ (�bj ×∇f(Vj)) (3.7)
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The algorithm has the same constraint as the gradient transform. The edge is not
supposed to cross the isosurface. The tangent trail also uses α to control the size of
the step. Equation (3.3) is used to estimate normals.

After extracting two meshes using both approaches, the combination of both is done.
A quality criteria evaluation is established, such as the one previously presented on section
2.2.1. Macet uses a radii ratio average (PÉBAY; BAKER, 2003) of the triangles that
share each vertex. The vertices with the best average are chosen between the tangent
and gradient transforms. This is done in multiple passes, since the evaluation changes
after vertices of these different meshes are chosen. This iteration stops when the best
configuration of vertices is reached. A united version of Macet was described recently
that does not require this iterative process (DIETRICH et al., 2009).

Figure 3.7: Isosurface trespassing voxels on different positions and associated triangle
quality. Image extracted from (DIETRICH et al., 2008).

3.3 Marching Tetrahedra
Marching Tetrahedra (HALL; WARREN, 1990) is a common alternative to Marching

Cubes. As the element of the grid subdivision is a tetrahedra, it works for isosurface
extraction in unstructured grids. Its main purpose is the polygonization in such scenarios,
working for physics simulations and adaptive subdivisions. In our experiments we use
regular grids, so Marching Tetrahedra is applied as such. The basic difference is that the
structured grid is divided into tetrahedra.

Each voxel can be separated into five or six tetrahedra (see Figure 3.8). Commonly, the
best choice for the subdivision is six, because the polygonization gets smoother. Dividing
the cube into five tetrahedra may lead to spiky surfaces (WUENSCHE, 1997). In many
cases, this means that the polygonization is far from the isosurface.

The algorithm has the same construction of MC, so our description is brief. The first
step is the detection of active tetrahedra. Then each different tetrahedra configuration
(24 = 16) of active edges is consulted in a table-driven fashion for further triangulation.
Even though the algorithm is practically the same as MC, the tetrahedral subdivision has
important implications.

There are some advantages of MT over MC. First, MT has no face ambiguity. The
tetrahedra face is composed of three vertices, forming triangles. There is only one way
to triangulate the different tetrahedral configurations. In addition, the topology table is
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Figure 3.8: Cube subdivision. Cubic cells might be divided into five or six tetrahedra.

smaller than the one in MC, having only 24 = 16 cases. Furthermore, MT can be imple-
mented with different grid resolutions. This allows the isosurface to be correctly approx-
imated by a piecewise linear approximation. However, the implementation is relatively
complex.

The main disadvantages of MT are both quality and the number of triangles it gener-
ates. MT generates about 100 to 150% more triangles (NING; BLOOMENTHAL, 1993)
than MC. This is very problematic for the storage of triangle meshes. These triangle
meshes are even worse shaped than the ones in MC. In addition, the tetrahedral subdivi-
sion of regular grids is undesirable for the isosurface approximation (SNOEYINK, 2006).

Both triangle quality and number of triangles issues are improved by vertex clustering
(post processing). The Regularized Marching Tetrahedra (TREECE; PRAGER; GEE,
1999) technique uses this strategy. The differences of the original MT to RMT can be seen
on Figure 3.9. Of course, this implies in higher computational costs, which compromise
the isosurface extraction speed.

3.4 Span Space
As previously mentioned, the most expensive step in the polygonization of isosurfaces

is the detection of active edges. In MC, every cube from the uniform grid has eight
vertices, each sampled once (it could be simplified to 4 vertices, in a more elaborate
neighbor-dependant implementation). This results in the dataset being sampled 8 times
per voxel. For instance, if the dataset has 512 samples per axis, the dataset is sampled 8
x (512 − 1)3 = 1 067 462 648 times. As the isosurfaces are sparse in the volume, the
best way to accelerate any polygonizer is to avoid cells that are not intersected by the
isosurface.

Improving active cell detection is commonly done in pre-processing stages, which
organize the access to the domain of function f according to a predefined isovalue. The
Span Space structure is a spatial hashing with cells organized in a 2D map, based on the
minimum and maximum values of f at cell vertices. The map is constructed in such way
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Figure 3.9: Regularized Marching Tetrahedra comparison with Marching Tetrahedra.
Gouraud Shading (GOURAUD, 1998) (per vertex illumination) used to show interpo-
lation problems. (a) Shaded MT. (b) MT with wireframe rendering addition. (a) Shaded
RMT. (d) RMT with wireframe rendering addition. Image extracted from (TREECE;
PRAGER; GEE, 1999).

that active cells corresponding to any isovalue are constrained to a subset of the map (see
Figure 3.10), which are easily determined from the isovalue used.

Two common data structures to handle the data and provide the queries are KD-trees
(LIVNAT; SHEN; JOHNSON, 1996) and interval trees (CIGNONI et al., 1997). The
basic difference is that KD-trees exchange efficiency for memory. Interval trees might
achieve optimal results. The worst case complexity for the interval tree search is θ(k +
log n), where k is the number of queried elements and n is the total amount of elements.
On the other hand, KD-trees have this complexity of θ(

√
n + k)). In addition, there is a

Span Space version that is parallel efficient. This technique, called ISSUE (SHEN et al.,
1996), uses a uniform grid to subdivide the space.

���

���

�

�

Figure 3.10: Span space. The mapped position of the voxels (black dots of the figure) in
maximum and minimum space simplifies the search of the voxels with active edges into
a geometrical query. The isovalue i is used for the composition of the subset of this map.

Classifying the voxels by groups of maximum and minimum is a very effective way to
avoid uncut voxels. If the isosurface is sparse, this is a very elegant and efficient approach.
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However, all of the approaches have a significant preprocessing time (θ(n log n)) and have
large memory (θ(n)) requirements. This sometimes is a harsh constraint for on-the-fly
volume extractions and massive volumes, respectively.

3.5 Summary
This chapter revisited two common algorithms in the literature that polygonize iso-

surfaces in primal space. We started with Cuberille, which is a historical dual contouring
algorithm and important for the understanding of Marching Cubes. Then we detailed
Marching Cubes, an algorithm which is the basis for comparison for any isosurface ex-
traction technique. MC was exhaustingly explored through its strengths and shortcom-
ings. We also presented a technique for unstructured grids, Marching Tetrahedra. MT is
important for later discussions of GPU based implementations. Finally, we discussed the
Span Space approach for the algorithmic improvement of efficiency in every polygonizer
of isosurfaces.
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4 DUAL METHODS

Dual contouring algorithms place vertices inside cells instead of on grid edges. Cut
points in the active edges become surfaces in these dual versions. In the case of uniform
grids, the surface is constrained by the four voxels that are adjacent to this edge. If the
surface is a full octree, the polygons are quads. If there are different size voxels, they are
triangles.

This type of approach has some advantages, like improving the shape of the polygons
and better approximating the surface. Both advantages happen because we have more
freedom where to place points. Instead of interpolating through one edge, as in primal
methods, the vertex has the entire voxel space to be positioned into.

We present two contouring techniques in dual space that generate watertight surfaces.
Surface Nets is important for the understanding of the reasons why one should apply a
dual contouring algorithm. Dual Contouring goes steps ahead, looking for even more
accurate surfaces, by polygonizing featured isosurfaces. However, both original algo-
rithms have the problem of not generating manifold meshes in the case of an ambiguous
cell, which leads to the problems described in section 2.2.3. We assume input volumes
sufficiently refined, so that there are no ambiguous cases.

4.1 Surface Nets

Surface Nets (SN) (GIBSON, 1998) appeared as a higher-quality alternative to March-
ing Cubes. The main purpose of the technique is achieving a better approximation of iso-
surfaces. It considers the existence of thin details in the isosurface, while many methods
assume that the function is smooth.

The algorithm consists on creating nets around the active edges. These nets are poly-
gons that converge to the isosurface with the help of pseudo-physical smoothing algo-
rithms. The approximation occurs by reducing the energy on the connections (vertices) of
the nets according to their neighbors. They move iteratively towards the position equidis-
tant between its adjacent neighbors. The surface does not shrink into a point by using one
constraint. The connections of the net are kept inside the cell.

The liberty to place connections is responsible for a polygonization with less alias-
ing. With an appropriate grid resolution, the polygonizations of SN retain details, es-
pecially important in MRIs and CTS. However, the approximation does not rely on any
fine approximation of the isosurface. The vertices are kept because of the uniform grid
positioning, without the underlying isosurface information.
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4.2 Dual Contouring
Dual Contouring (DC) is a method that refines the accuracy of Surface Nets and

works for adaptive grid resolutions. It is a hybrid between Extended Marching Cubes
(KOBBELT et al., 2001) and Surface Nets. The first has the characteristic of finding
sharp edges based on the point normals of the active edges. The latter has a dual-space
nature. This combination leverages the good characteristics from both methods.

The algorithm consists on finding the active edge and creating a quad with its four
points in the center of the four voxels sharing the edge, as in Surface Nets. After that,
it positions the vertex in the isosurface feature using information of position of the cut
points (as MC does) and also their normals. Similarly to the Extended Marching Cubes
(EMC) feature sampling.

���������	
������ ����������
���	
�

Figure 4.1: An isosurface being polygonized in primal and dual contouring. The vertices
are positioned in the edges in (a) and in the QEFs in (b).

Vertex positioning is done by solving the Quadratic Error Function described in equa-
tion 3.1. QR decomposition is used in Dual Contouring instead of Singular Value decom-
position (EMC approach). Ju et al showed that SVD needs double precision to minimize
the QEF in acceptable error bounds. This impacted significantly the memory require-
ments for their application (doubled it). Therefore, they traded efficiency of SVD for
smaller memory requirement of QR decomposition.

DC can adaptively simplify the generated meshes. It first extracts the most refined
version in an octree, and creates interior nodes by adding QEFs from the leaves. The
interior nodes whose QEFs have not surpassed a given error tolerance are collapsed into
leaves.

The natural adaptive subdivision of this approach is an advantage of DC over most
polygonizers. Since most isosurface extractors have a large memory demand, DC is an
interesting alternative. In addition, there is implicit feature identification. Both character-
istics are probably the most important features of DC. However, its implementation is not
as trivial as MC. Both SVD and QRD often require complex computations for the vertex
positioning of polygons, therefore we created a novel iterative approach that is explained
in the next section.

4.2.1 Particle-based feature approximation

This section introduces our algorithm for the vertex positioning in Dual Contouring.
It is an alternative to the ones presented by Ju et al (JU et al., 2002) and Kobbelt et al
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(KOBBELT et al., 2001). We did not use decomposition approaches because they have
expensive computations for the GPU, such as matrix diagonalization. As one of our goals
is the interaction through the isosurfaces, we created a novel approach. It is based on the
intuition of the description given by Kobbelt, which states why MC does not find sharp
features. The minimizer of the QEF is replaced by our particle-based method, which,
iteratively, moves the quad points (referred and treated hereafter as particles) towards the
isosurface.

The particles start at a mass point C̄ of the cell, calculated from the arithmetic mean of
the active edge intersection points (Pi). This process reduces the number of iterations of
the particle and is a good hint of the isosurface location(SCHAEFER; WARREN, 2002).

C̄ =
n�

i=1

Pi

n
(4.1)

The next step is to find the force �F that starts moving the particle from C̄ towards the
isosurface (Figure 4.3). Since the data used is Hermite, the normals of cut points are
necessary. We use the gradient of the scalar field to approximate the normals (�ni =
∇f(Pi)).

The force �F is generated by a trilinear interpolation of the forces �F0 to �F7 located at
the grid points �V0 to �V7 driven by the centroid C̄. These forces are calculated as the sum of
the vector distances to the planes defined by all pairs �ni and Pi (intersection points from
the voxel):

�Fk =
n�

i=1

(�ni, (Pi · �ni)) · S ∗ �ni (4.2)

in which S ≡ (�L ·x = −p) represents a plane in Hessian normal form, the grid lattices
L of the active edge used as normal, w = 1 and the point p at origin of the coordinate
system. When the eight forces of the voxel have been calculated, we get the force �F by
trilinear interpolation:
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�
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�
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Lx

��
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�
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�
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�
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�
∗ �Fb2 (4.3)

Particles move along the force �F with Euler integration. Best results were obtained
using 5% of �F in all our volumes. Fewer terracing artifacts and a better polygonization are
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(a) (b)

Figure 4.2: Dual Contouring fewer terracing artifacts. Marching Cubes (a) and higher
quality Dual Contouring (b) using Pig dataset. Fewer terracing artifacts and a better ap-
proximation of the polygonization are presented.

presented in Figure 4.2.This new position (C̄ � = C̄+(c∗ �F )) is used in the second iteration
as input to the trilinear interpolation (recalculate �F ). This procedure is repeated for a fixed
number of steps or until the particle converges (threshold driven) to the isosurface. Our
method does not allow that the particle leaves the voxel by clamping its position, in a
similar fashion of SN.

This iteration is responsible for a good approximation of the isosurface, as well as
finding sharp features. The shortcoming from our approach is no longer having the math-
ematical guarantee that the method finds the feature. But the real feature is hardly correct
using SV or QR decompositions, because the feature might not be sharp or even the gra-
dient samples (normals) might be noisy.

4.2.2 Table-Driven Geometry Specification

The second modification we propose for the efficiency improvement of the original
DC is a table-driven geometry specification. The table presents a description of the differ-
ent configuration cases for each cell of the full octree (all nodes are maximally collapsed).
Our configuration cases are analog to those previously defined for primal methods such
as MC (Figure 3.3). The table-driven orientation allows parallel approaches to be free
from topology computations and improves cache efficiency in the volume accesses. In
addition, this separates DC in two phases, the geometry specification and refinement of
the vertex positioning inside the voxel. The separation suits both approaches of geometry
creation in GPUs, especially Histogram Pyramids (section 5.3).

The table follows the idea that only three of the twelve edges are unique per voxel
(x, y and z axis). Any group of three edges of the voxel with different axis orientations
can be used for building the configuration table. We chose three edges that share one
vertex (upper-right), resulting in four vertices to be analyzed per voxel (Figure 4.4). It
is an even simpler table than the one of Marching Tetrahedra, because we have only to
combine three quads. The vertices that are inside or outside the isosurface can be mapped
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Figure 4.3: Particle-based approximation of features in Dual Contouring (2D example).
(a): hermite data. (b): vectors (green arrows) from the vertices of the grid to the planes
defined by the hermite data; (c): forces �Fk = �Fi + �Fi+1 + ... in the vertices of the grid;
(d): initial line positioning using the mass point C̄; (e): moving the particle towards the
feature. The red arrows show the particle path. (f) Final polygonization.

to four bits. The complete table used for Dual Contouring is described in Figure 4.5.
The first element of each row is the number of vertices required for the topological

case (4 for each quad used, corresponding to its 4 vertices). It is useful for determining
the number of iterations of vertex emission with geometry shader and for the creation of
primitives in HistoPyramids. The following elements are the neighboring voxel labels for
the vertices of the quad. For instance, if the index v3v2v1v0 is 0010, the first vertex is
located in the voxel along its z direction (V �

4), the second is in z plus x direction (V �
7), the

third is in the x direction (V �
3), and the last one is the current voxel (V �

0).

4.3 Summary

The first dual method was Surface Nets (GIBSON, 1998). The Surface Nets algorithm
is based on the Cuberille sampling technique, which places vertices at the center of each
active cell and connects them to vertices in adjacent active cells. The resulting mesh, as
a dual of MC base mesh (in the absence of self-intersections), does not have as many
badly-shaped triangles as MC. The quality of the mesh is further improved with a post-
processing smoothing step, which applies a Laplacian smoothing, while constraining each
vertex to the active cells.

The Dual Contouring algorithm (JU et al., 2002) combines the sampling technique of
Surface Nets with the feature sensitive approach of Extended Marching Cubes (KOBBELT
et al., 2001), which results in a fast and accurate polygonizer. Each vertex, instead of be-
ing positioned in the center of the active cell, is pushed to the corner of the sharp features
(if they exist) in the interior of the cell. This approach improves the accuracy of the
sampling technique, while maintains the efficiency of the Surface Nets.

We did two significant modifications in DC: the particle-feature approximation and the
table-driven geometry specification. The first is responsible for the iteration towards the
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Figure 4.4: Table-driven approach for dual methods. The highlighted edges present a
four bit combination i = v3v2v1v0 used to identify the topology of the quad by one of
the predefined cases. The table is similar to the one in the MC, but has much simpler
cases. For example, 1101 means the y axis is active (the vertex represented by the bit v2

is outside the isosurface), which is, by complement, the upper-left case of the figure. It is
used to identify the relative position of the vertices from the quad.

feature in a pre-established number of steps. The latter is oriented for topology discovery
in a similar fashion to MC. Both modifications target a parallel implementation.
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index 0000:
�

= 0 vertices
index 0001:

�
= 4 vertices, V �

4 , V �
0 , V �

1 , V �
5

index 0010:
�

= 4 vertices, V �
4 , V �

7 , V �
3 , V �

0

index 0011:
�

= 8 vertices, V �
4 , V �

0 , V �
1 , V �

5 & V �
4 , V �

7 , V �
3 , V �

0

index 0100:
�

= 4 vertices, V �
4 , V �

0 , V �
3 , V �

2

index 0101:
�

= 8 vertices, V �
4 , V �

0 , V �
1 , V �

5 & V �
0 , V �

3 , V �
2 , V �

1

index 0110:
�

= 8 vertices, V �
4 , V �

7 , V �
3 , V �

0 & V �
0 , V �

3 , V �
2 , V �

1

index 0111:
�

= 12 vertices, V �
4 , V �

0 , V �
1 , V �

5 & V �
4 , V �

7 , V �
3 , V �

0 & V �
0 , V �

3 , V �
2 , V �

1

Complement from cases 0 to 7:
index 1000:

�
= 12 vertices, V �

4 , V �
0 , V �

1 , V �
5 & V �

4 , V �
7 , V �

3 , V �
0 & V �

0 , V �
3 , V �

2 , V �
1

index 1001:
�

= 8 vertices, V �
4 , V �

7 , V �
3 , V �

0 & V �
0 , V �

3 , V �
2 , V �

1

index 1010:
�

= 8 vertices, V �
4 , V �

0 , V �
1 , V �

5 & V �
0 , V �

3 , V �
2 , V �

1

index 1011:
�

= 4 vertices, V �
4 , V �

0 , V �
3 , V �

2

index 1100:
�

= 8 vertices, V �
4 , V �

0 , V �
1 , V �

5 & V �
4 , V �

7 , V �
3 , V �

0

index 1101:
�

= 4 vertices, V �
4 , V �

7 , V �
3 , V �

0

index 1110:
�

= 4 vertices, V �
4 , V �

0 , V �
1 , V �

5

index 1111:
�

= 0 vertices

Figure 4.5: Indices for generating DC quads. The index is used to identify in which voxel
the dual vertex V �

X is positioned. The dual vertices numeration order is described in figure
4.4.
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5 GPU POLYGONIZATION

This chapter describes technology and algorithms applied in the GPU polygonization
of isosurfaces. It presents implementation details of the previously-described algorithms
on GPU. This helps the straightforward development of any divide-and-conquer polygo-
nizer of isosurfaces. Since the GPU originally operated with a single primitive in each
pipeline pass and many developers are not aware of stream-expansion approaches, we
outline current techniques for the creation of geometry on the GPU.

Programmable GPUs first appeared on architectures such as the PixelFlow (EYLES
et al., 1997), which was later introduced in commodity hardware. Early industry models
provided a very limited set of operations. General-purpose computing and polygonization
of isosurfaces were not originally designed for GPUs. The developer was restricted to the
creation of small rendering programs.

The early programmable modules allowed custom shading on pixels (NVIDIA, 2003a)
and vertices (NVIDIA, 2003b). The developer worked with basic functions for the pro-
duction of visual effects on these elements. The CPU produced all geometry and the GPU
worked with this geometry without any possibility of expansion. The polygonization of
isosurfaces could not define triangles on-the-fly inside the GPU. Some approaches cir-
cumvented this issue with the assumption of a fixed number of output polygons per voxel.
If there were remaining polygons (empty cells), then the geometry could be culled by
fixed functionality (outside the viewing frustum, for example).

The MT polygonizer described by (PASCUCCI, 2004) is one of the first GPU ap-
proaches that performs a significant part of the extraction inside the graphics processor.
The input for each tetrahedra is a quad, which is the configuration case with the maximum
number of primitives. If the configuration of the tetrahedra results in the polygonization
of a single triangle, then two points of the quad are collapsed into one. If no geometry is
necessary at all, the quad points are discarded by collapsing them into a single point. In
the case of a uniform grid, twenty or twenty four points are sent per voxel, which result
in a bandwidth bottleneck. Moreover, collapsing points to the same position results in
non-manifold surfaces.

Reck et al (RECK et al., 2004) used Span Space to reduce the amount of geometry sent
to the GPU. Klein (KLEIN; STEGMAIER; ERTL, 2004) used vertex arrays and shifted
computations to the fast Pixel Processors. Kipfer (KIPFER; WESTERMANN, 2005)
further improved this implementation by letting tetrahedra share vertices. However, all the
above algorithms perform tetrahedral subdivision, which is still undesirable for accuracy
purposes (SNOEYINK, 2006) and for their excessive increase in number of triangles in
comparison with MC.

The MC polygonizers described in (GOETZ; JUNKLEWITZ; DOMIK, 2005; JO-
HANSSON; CARR, 2006), with the help of Span Space, assumed that the number of
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primitives generated by each cell is performed on the CPU. Thus, excessive computation
was left for the CPU, resulting in a bottleneck. On-the-fly MC only appeared recently
with the new shader pipeline (TATARCHUK; SHOPF; DECORO, 2007).

Current GPUs have the geometry shader (GS) (BLYTHE, 2006), which allows the
creation and deletion of primitives. This makes obsolete workarounds to create geometry
and takes out excessive computations from CPU. MC and other subdivision-based poly-
gonizers can be fully implemented inside the GPU, without any CPU direct interference.
In contrast, an alternative data structure for compaction/expansion of primitives, called
Histogram Pyramids (HP) (DYKEN et al., 2008), is an elegant workaround. It uses multi-
ple passes of rendering to create the geometry out of a set of canonical indices (allocated
as triangles in a VBO).

In this work, we evaluate how the GS and the HP impact the GPU implementations
of Macet and DC. The GPU-based Macet algorithm shows edge transformations that im-
prove the quality of the extracted mesh. The GPU-based DC shows improvement in the
approximation of the isosurface. Both implementations explore GPU parallelism in detail
and result in the fastest (to our knowledge) high-quality polygonizers available today.

5.1 Implementation Details
GPUs provide general-purpose functionality for the polygonization of isosurfaces.

The implementation of these algorithms is very similar to the ones on the CPU. However,
it is still necessary to optimize GPU implementations or even to test among different im-
plementations to maximize the efficiency in results. We describe below how to implement
the most efficient versions we achieved. Our novel GPU approaches for polygonization
have the same basic procedures of current GPU-based MC, so one description suffices.

The input of all algorithms is the dataset, which is streamed from the CPU to the
GPU memory as a 3D texture. Each value sampled in the 3D texture within two slices
is parameterized to be filtered through trilinear interpolation. Values sampled outside can
be either clamped to the border or repeated.

Each voxel is processed independently, according to the approach that creates primi-
tives on the GPU. If geometry shading (section 5.2) is used, the CPU streams the vertices
with coordinates identifying the voxel position. If Histogram Pyramids is used (section
5.3), each voxel is identified as a pixel from a quad. Each of these approaches has its own
tradeoffs.

Current GPUs have integer support for textures and operations. They do not impact
the efficiency of the implementation. It is possible to store the topology table in a 2D
integer texture and perform a bitwise operation to create configuration indices such as
MC v7v6v5v4v3v2v1v0 and DC v3v2v1v0. With this index, the polygon topology (and
number of primitives) is consulted in the table texture. For the last step in MC, linear
interpolation is a hardware available technology, easily performed along the edges defined
by this topology.

The Macet algorithm is implemented as an extra module of the GPU-based MC. It
takes place before the linear interpolation over the vertex, and has the same implemen-
tation as on the CPU. Thus, the use of Macet is straightforward in parallel hardware and
there were no complex workarounds in its mapping to the GPU. The Dual Contouring
algorithm has been specified with our table-driven approach. The table is responsible for
the topology and geometry for the quads and our particle-based approach is responsible
for the Quadratic Error Function minimization. It has an MC-like implementation and is
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similarly mapped to the GPUs.

5.2 Geometry Shader
The geometry shader allows the deletion or creation of a limited number of primitives

after a vertex program. The polygonization of isosurfaces is possible in a single shading
step, without any workarounds in the primitive creation. Each voxel that contains the
isosurface is polygonized with this shading step. Voxels that are not crossed by the iso-
surface are discarded, i.e, the primitive corresponding to the voxel coming from the vertex
shader is not passed to the pixel shader.
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Figure 5.1: Geometry shader use for Marching Cubes algorithm. The vertex shader only
passes the relative voxel position within the volume grid to the geometry shader. The
point sent to the geometry shader is expanded into triangles that are emitted to the pixel
shader.

When a geometry shader program is created, it is necessary to tell what primitive will
come from the vertex shader (VS) and what primitives will be emitted to the pixel shader.
For instance, in MC the input of the GS are points (simplest primitive) and the output are
triangle strips. As MC table often relies on triangles, and not on triangle strips, the GS
may end the strip after three points have been emitted.

At runtime, the CPU sends to the VS, which just passes to the GS, the voxel position,
as shown on Figure 5.1. The geometry shader classifies it according to the samples in
the cube vertices. Next it emits triangles consulting their connection with the enumerated
triangle table texture. On the example of the figure, only two triangles are created (six
points are emitted). If there is no active edge, no triangle is passed to the pixel shader at
all.

Empty voxels can be avoided by Span Space on the CPU. Only cells crossed by the
isosurface are sent to the GS, which just triangulates them. This accelerates even more
the algorithm (results in section 6.1), but implies in preprocessing and search costs to the
CPU. If the CPU has many cores, ISSUE (described in section 3.4) may be used in a
multi-threaded implementation, sending multiple voxels to the GPU at the same time.
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5.3 Histogram Pyramids

Histogram Pyramids (HP) is a GPU data structure that creates and discards polygons
with multiple shader passes. Basically, it compacts data in a similar fashion of Scan
(HORN, 2005; HARRIS; SENGUPTA; OWENS, 2007) and expands this data with a set
of canonical indices. The implementation of the algorithm is not as straightforward as
geometry shading, but its efficiency for polygonization of isosurfaces justifies its use.

The geometry information of the polygonizers is stored in a pyramid (stack of tex-
tures). This pyramid is constructed applying multiple pixel shader passes in quadrilat-
erals. Each voxel is associated with a pixel in the pyramid base. This pixel contains
topology and number of necessary primitives for the polygonization. The frame buffer
object (FBO) is used to allocate GPU memory for the textures in the pyramid. The pixel
shader (last programmable module of the pipeline) streams out its elements for this buffer.

There are three steps needed to use HP: (i) the base construction, which stores geom-
etry information; (ii) the base reduction, which eliminates uncut cells; (iii) the pyramid
traversal, which expands the geometry from active cells. Each of these steps is mapped
into one or more shader passes. The algorithm does not have any preprocessing cost. All
of the steps are applied efficiently on current GPUs. The major problem of HP is the large
GPU memory usage for the stack of textures.

5.3.1 Base Construction

The pyramid base contains geometry information of cells of the polygonizer. Its con-
struction is the first shader pass and its storage is texture memory. A flat 3D method
(HARRIS et al., 2003) is used for the mapping of the 2D pyramid base to the 3D volume,
which is basically a tiling of z 2D textures into a squared texture, as can be seen in Figure
5.2. The pyramid base is drawn with a quadrilateral. Each pixel (associated with a cell)
in the texture base has two distinct elements: (i) the number of vertices of the polygons,
which can be triangles (three vertices each) or any other pre-specified type of primitive;
(ii) the topology of the polygon, which is specified by the bitwise combination of the table
of the polygonizer.

Current GPUs allow color channels to be represented by a float with 32 bits. Both
number of primitives and topology are represented in one scalar, which reduces the amount
of GPU memory required. The number of primitives is represented in the decimal part of
the float and the topology in its fractional part. The fractional part representation is ob-
tained with a division. For example, Dual Contouring has 16 different topological cases,
so the division number is 16.

5.3.2 Base Reduction

The base is reduced with multiple shader passes into a single pixel. The reduction
uses the information in the base about the number of primitives, while the topology is not
considered. This step is analogous to the deletion of primitives on the geometry shader,
where empty voxels are discarded.

The reduction is bottom-up and the texture layers follow the proportions of MipMaps.
Each four pixels in the lower texture are mapped into one pixel in the upper texture, as
can be seen on Figure 5.3. The function of mapping is the sum of primitives contained in
the base. At the top of the pyramid there is the total amount of primitives required for the
polygonization. This amount is used for the expansion step in the traversal.
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Figure 5.2: Pyramid base. The configuration case and the number of vertices of the Bonsai
dataset are stored in this base texture. The number on the tile represents the z slice of the
3D texture.

5.3.3 Traversal

At this point, the pyramid data structure is built and the number of primitives is avail-
able on the CPU. The expansion of the primitives specified in the pyramid base happens.
The single texel on the top, which contains the sum of all n vertices, is analog to a root
of a tree that points at four siblings with a hashing-like function. Each texel (voxel) in
the base texture is reached through unique identifiers (k), from 0 to n (sum of all ver-
tices), which enumerate each vertex. Hence, no direct communication from the CPU is
needed by the GPU, besides emitting the sum of vertices (triangles divided by three) with
predefined indices.

This index k trespasses all texture levels in a top-down traversal. At each mipmap
level, it is necessary to find out to which texel position Tx,y the k� (k updated per level)
points. There are four candidate siblings T−1,1 (upper-left), T1,1 (upper-right), T−1,−1

(lower-left) and T1,−1 (lower-right) per level. They are chosen based on the intervals of
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Figure 5.3: Pyramid reduction. The base has the information about the number of vertices
in each voxel. It is compacted up into a single bucket.

their values (Vx,y). Let

x = V−1,1,

y = V−1,1 + V1,1,

z = V−1,1 + V1,1 + V−1,−1,

w = V−1,1 + V1,1 + V−1,−1 + V1,−1

Therefore,

T−1,1 = [0; x), (5.1)
T1,1 = [x; y), (5.2)

T−1,−1 = [y; z), (5.3)
T1,−1 = [z; w]. (5.4)

At the first level k� = k. After that, k� is updated by subtracting the first interval endpoint.
At the lower level the same process is done, and it goes on until the base texture is reached.
The remainder of k� represents the vertex within 0 and the sum of the vertices of the
cell. This is where the expansion takes place. k� is used to access the table (patterns of
Marching Cubes and Dual Contouring) that identifies where the vertex is located.

The traversal is easier to understand with a practical example (based on Figure 5.3).
For instance, if k = 26, V−1,1 = 16, V1,1 = 8, V−1,−1 = 16 and V1,−1 = 16, then k maps to
the texel T−1,−1 = [y = 16+8; z = 16+8+16) (lower-left pixel). After that, k� = k−y,
where y = 16 + 8. The index k� = 2 is applied to the same procedure to locate what texel
it corresponds to in the pyramid base (T−1,1 = [0; x = 4). The remainder is k� = 2 − 0,
which is used to access the topology table. If this example is Dual Contouring and the
topology case is 0001, then k� = 2 points to the third element, which is the voxel V �

1 (see
Figure 4.5).

5.4 Polygon Shape Results
This section outlines the basic polygon shape results from our techniques. Macet

implementation did not differ from the CPU as well as its results, which were the best
among our GPU-based versions. The importance of polygon shape is described in section
2.2.1.
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The radii ratio average and minimum in MC is inferior to both DC and Macet (see
Table 5.1). The best triangle mesh results can be seen on Macet, which has an average
quality of 80 % (near equilateral edges) and its worst case is at least 200 times better than
MC.

Datasets
Backpack Bonsai Engine Stent

X x Y x Z 5122x256 2563 2563 5122x174
λ (Isovalue) 1000.5 49.5 49.5 500.5
# Tri. (MC) 2338896 671296 599024 2823756
# Tri. (DC) 2342608 673048 598920 2826208

Av.Qlty(MC) 0.700012 0.687802 0.70733 0.71089
Av.Qlty(DC) 0.766 0.75725 0.77274 0.77473

Av.Qlty(Macet) 0.81369 0.82694 0.81674 0.80432
Min.Qlty(MC) 1.525e-5 1.373e-3 4.232e-4 1.709e-5
Min.Qlty(DC) 1.785e-5 1.138e-4 6.55e-3 1.502e-3

Min.Qlty(Macet) 0.44475 0.47395 0.51064 0.45069

Table 5.1: Volume and isosurface extraction information. The average and minimum
triangle quality is given by the radii ratio.

One downside of the GPU implementation of Macet in (DIETRICH et al., 2008)
and (DIETRICH et al., 2009) is that the combination of both gradient and tangent trans-
form triangle meshes has complex topology requirements (accessing triangles in neighbor
cells). However, considering that the combination can be done in milliseconds by the CPU
using both GPU meshes, this is not a problem. Moreover, the bottleneck of these Macet
versions is the mesh extraction and not their combination. The single step version that is
shown in (DIETRICH et al., 2009) does not need any combination and was implemented
on our GPUs.

5.5 Summary
This chapter revisited two proposals for geometry creation on GPUs. It described

how to use these approaches for the polygonization of isosurfaces. The first relied on
implementing the entire algorithm inside the geometry shader (GS) feature. Such feature
represents a programmable stage added into the graphics pipeline to allow limited con-
trol on the creation and deletion of vertices (and consequently triangles). Acceleration
structures such as Span Space (SS) (SHEN et al., 1996) can also be combined with the
GS for improved performance. A second approach to the problem is to use a multi-pass
solution using the pixel shader, called HistoPyramids (HP) (DYKEN et al., 2008). Results
using this method are even better than using the GS, but it also has shortcomings, since
it requires large GPU memory allocation and may limit the size of input volumes. We
also showed the polygon shape results from the extraction of isosurfaces with GPU-based
Macet.
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Figure 5.4: Polygon shape Results. Interactive navigation through isosurfaces results and
radii ratio coloring (green = good, blue = bad) triangle vertices. Bonsai (row 1-2), Engine
(row 3-4) and Silicium (row 5-6) datasets. Marching Cubes (column 1), Dual Contouring
(column 2) and Macet (column 3) polygonizations with two different isovalues.
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6 EFFICIENCY ANALYSIS

This chapter presents, in two sections, the results from the exploration of GPU ca-
pabilities in the polygonization of isosurfaces. Section 6.1 shows the efficiency of our
two novel techniques previously described in comparison to the fastest version of MC on
the GPU. It also shows how fast the GPU can extract isosurfaces in comparison to the
CPU. Section 6.2 profiles the different GPU implementations of MC in order to find the
graphics hardware bottlenecks and proposes improvements in its architecture.

We implemented our methods in GLSL (OpenGL R� Shading Language) running on
two different configurations, which we called A and B. Configuration A is a GeForce1

8800 GTX with 768 MB of VRAM, an AMD Athlon2 64 Processor of 2.2 GHz and 2 GB
of RAM DDR1, running on a motherboard ASUS A8N SLI Premium. Configuration B is
a GeForce 9600 GT with 512 MB of VRAM, an Intel Core 2 Quad 2.4 GHz and 4 GB of
RAM DDR2, running on a motherboard ASUS P5N E.

The reason we chose these configurations is their different computational power. Con-
figuration A has a more powerful GPU, but a much simpler CPU, less main memory and
an older motherboard. Thus, we can find out in what scenario a very powerful GPU
by itself suffices for real-time visualizations. Moreover, the analysis of these different
configurations shows the impact of each low-cost hardware element in computationally
demanding algorithms such as isosurface polygonization.

The volume data used for our results were Aneurysm, Backpack, Stent, Bonsai, En-
gine and Silicium (VOLVIS, 2008). None of them is time varying and all are online and
available for download. Size and dimension of the datasets can be seen on Table 6.1. The
Aneurysm was reassembled (trilinear filtering) into a larger and more detailed dataset, but
still small enough for the main memory of a 32-bit operational system. We did not con-
sider out-of-core solutions in this work (terabyte order datasets), due to high I/O demand
on the hard disk, which is prohibitive for low-cost hardware.

Aneurysm Backpack Stent Bonsai Engine Silicium
X x Y x Z 10242x512 5122x373 5122x174 2563 2562x128 643x128

Sample precision unsigned short float float float float float
Memory (MB) 1024 373 174 64 32 2

Table 6.1: Volume dimensions and memory size.

The vertex buffer object (VBO) is used to decrease the bandwidth requirements on
CPU to GPU communication. The use of this technology implies in more memory con-
sumption, but it may accelerate even further the isosurface extraction. If there are too

1Copyright c�2007 nVidia Corporation
2Copyright c�2007 Advanced Micro Devices, Inc.
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many primitives (points in GS and triangles in HP) streamed into the GPU, then the trade-
off for memory may be useful.

The transform feedback (TF) extension (GLSL v1.20) is used to save the geometry
on the GPU as a Vertex Buffer Object. The inclusion of this technology brought two ad-
vantages: polygonization of the isosurface only once per isolevel and, more importantly,
allowing the CPU access to normal and vertex coordinates (streaming out the mesh to the
CPU). If the purpose of the polygonization is the pure visualization of isosurfaces, then
the inclusion of TF might be unnecessary, especially if the extraction takes less than one
second to happen.

6.1 Comparison of Techniques

We compare the different polygonizers running on the most efficient versions of ge-
ometry shader (GS) and Histogram Pyramids (HP) of our implementations. The claim
here is that, with little overhead, the GPU can polygonize more sophisticated techniques
than pure MC and result in better polygon meshes. We already enumerated why having
a high quality with regard to distance to the isosurface and polygon shape is fundamental
for many applications. Besides, we also show that the GPU versions are far more efficient
than the CPU ones.

Our intent with this section is to prove that our novel technique obtained similar results
than MC in its efficient versions. To achieve this, it is necessary to run different GPU
isosurface extractors, with one hardware configuration. Configuration A was used for
these tests.

We only used volumes that fit on the GPU memory and that could also be used along
the memory required by all techniques. HistoPyramids, which requires the most memory,
consumes much of the GPU memory for the pyramid storage. Therefore, the Backpack
dataset had some z slices taken out and simplified into 256 slices. We also used smaller
datasets such as bonsai, engine and stent.

CPU CPU  SS GPU  GS GPU  GS  SS GPU  HP

Silicium 1020,71 558 181 42 6

Engine   18332,9 15182,8 4488,51 767 79

Bonsai 33729,4 17382,2 5076,59 889 91

Stent 97436,3 65366,2 16040,2 3562,86 361

BackPack 131984 44453,7 14453 3823,85 311
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CPU CPU  SS GPU  GS GPU  GS  SS GPU  HP

Silicium 906,44 324 63 8 3

Engine   16273,1 6908,83 1348,07 154,7 36

Bonsai 31011,3 7899,57 1798,85 186 38
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Figure 6.1: Extraction times (in miliseconds) from our GPU-based Dual Contouring and
Macet compared to Marching Cubes.

Figure 6.1 shows that even with the help of Span Space acceleration, no CPU-based
polygonizers reach interactive frame-rates in any dataset. The CPU hardware is not
adapted (yet) to take advantage of the independence between active cells, and the in-
herent parallelism of domain subdivision methods. Results obtained on the GPU, on the
other hand, expose its hardware capabilities. The HistoPyramids-based implementation is
significantly faster than CPU versions (up to 1500 times faster), even with relatively large
datasets.
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DC and Macet are computationally more expensive than MC. They take approxi-
mately twice the time MC took for isosurface polygonization. These results were ex-
pected due to the higher quality polygonization. The fact that MC polygonizations are
computed in milliseconds on the GPU justifies the overhead for the polygonization of
better quality isosurfaces.

It is interesting to observe that the bottleneck of HistoPyramids, when the volume
fits the GPU memory, is related to the number of triangles and not to the volume size,
similarly to Span Space. This does not imply that the implementation suffers with a large
number of triangles, as shown on Table 6.2. Sparse isosurfaces, conversely, result in very
fast polygonizations even with large datasets.

Backpack Bonsai Engine Stent
λ (Isovalue) 1000.5 49.5 49.5 500.5

# Triangles (MC) 2 338 896 671 296 599 024 2 823 756
# Triangles (DC) 2 342 608 673 048 598 920 2 826 208

Table 6.2: Number of triangles generated in Marching Cubes and in Dual Contouring.
Each quad of DC is separate in two triangles.

One important disadvantage of Histogram Pyramids is the excessive memory con-
sumption. It is a challenging task to maintain large datasets, such as the backpack, in
GPU memory along with the data structure and other GPU structures (vertex buffer ob-
jects to save the polygons and to traverse the pyramid, for instance). Another drawback
is the square texture requirement, which increases quadratically and often needs padding.
For example, if the volume data has dimensions of 2563, it needs a 40962 base texture for
the pyramid, which fits perfectly. On the other hand, if one extra volume slice is added
(2563 + 2562), the base increases to 81922, wasting lots of memory with padding. Since
the base must be squared it is not possible to add a single tile.

6.2 Hardware Profiling
This section tries to shed some light in the performance of basic architectural modules

of the GPU in the polygonization of isosurfaces. Our objective is to show that there are
issues in the graphics pipeline related to this work. For instance, how can a data structure
such as HP be more efficient than GS, which is a hardware implemented technology for
stream expansion. Another important problem is the pipeline constraints that may affect
the polygonization of isosurfaces. These issues are important and we obtained detailed
GPU information with the help of profiling tools.

We collected results from 10 different implementations of MC with both A and B
hardware configurations:

1. HP - VBO - TF, HistoPyramids with Vertex Buffer Object and Transform Feedback.

2. HP - VBO, HistoPyramids with Vertex Buffer Object.

3. HP - TF, HistoPyramids with Transform Feedback.

4. HP, just HistoPyramids.

5. GS - VBO - TF, Geometry Shader with Vertex Buffer Object and Transform Feed-
back.
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6. GS - SS - TF, Geometry Shader with Span Space and Transform Feedback.

7. GS - VBO, Geometry Shader with Vertex Buffer Object.

8. GS - SS, Geometry Shader with Span Space.

9. GS - TF, Geometry Shader with Transform Feedback.

10. GS, just Geometry Shader.

The volume data used in these tests were silicium, bonsai, backpack and aneurysm.
As we wanted a scenario for navigation of isosurfaces, each dataset had twenty one dif-
ferent isosurfaces polygonized (Table 6.3). Massive results are important for reliability
since a great amount of variables is analyzed. Moreover, other applications such as the
operating system memory swap occasionally affect results, considering its I/O demand-
ing costs. Another important consideration is that these datasets have increasing memory
sizes (Table 6.1).

Step Aneurysm Backpack Bonsai Silicium
λ # Triangles λ # Triangles λ # Triangles λ # Triangles

0 1500.5 369 054 1500.5 1 057 600 130.5 662 824 140.5 32 280
1 1450.5 397 906 1450.5 1 077 880 125.5 621 156 135.5 34 936
2 1400.5 429 622 1400.5 1 098 328 120.5 581 384 130.5 38 192
3 1350.5 466 598 1350.5 1 132 876 115.5 551 432 125.5 40 464
4 1300.5 507 856 1300.5 1 320 868 110.5 529 248 120.5 40 080
5 1250.5 554 754 1250.5 1 649 424 105.5 514 020 115.5 40 080
6 1200.5 609 302 1200.5 1 935 280 100.5 502 124 110.5 39 888
7 1150.5 671 760 1150.5 2 238 888 95.5 492 100 105.5 39 444
8 1100.5 745 768 1100.5 2 546 200 90.5 480 748 100.5 39 688
9 1050.5 831 018 1050.5 2 816 956 85.5 470 604 95.5 39 728

10 1000.5 934 210 1000.5 3 012 820 80.5 459 308 90.5 39 640
11 950.5 1 056 686 950.5 3 229 920 75.5 448 828 85.5 39 896
12 900.5 1 206 806 900.5 3 436 416 70.5 440 116 80.5 40 000
13 850.5 1 391 984 850.5 3 611 284 65.5 435 812 75.5 39 768
14 800.5 1 626 098 800.5 3 763 772 60.5 446 184 70.5 39 664
15 750.5 1 938 236 750.5 3 900 828 55.5 491 404 65.5 39 808
16 700.5 2 386 450 700.5 4 060 512 50.5 622 280 60.5 39 816
17 650.5 3 089 764 650.5 4 305 840 45.5 832 772 55.5 39 688
18 600.5 4 378 990 600.5 4 615 804 40.5 1 020 516 50.5 39 056
19 550.5 7 593 614 550.5 4 932 648 35.5 1 041 280 45.5 38 944
20 500.5 17 353 656 500.5 5 249 772 30.5 1 212 724 40.5 38 544

Table 6.3: Number of triangles and isovalues in dataset navigation. Except for silicium,
larger number of triangles is extracted in the last steps of the navigation.

6.2.1 Memory Management

There were two datasets in our results that required different processing. The back-
pack occupies much of the GPU memory of our chosen configurations. This is even worse
in the case of the aneurysm, because the dataset alone does not fit the memory of neither A
nor B hardware configurations. Combining this with the fact that there are elements such
as TF, VBO and pyramid of HP that also consume significant GPU memory, management
becomes an important issue.

Our memory management scheme is simple. The volume is composed of z slices,
which can be separated into partitions. The size of the partitions is based on the memory



61

requirement of the volume size, combined with other elements of the GPU that also con-
sume memory. These additional elements are often proportional to the size of the volume.
For example, in HP, the pyramid base is calculated as a flat 3D volume, which is based
on the size of the dataset. Thus, we maximized the GPU memory usage considering this
type of representation.

Memory use in Transform Feedback (TF) has a direct relation to the volume in the
management technique. TF allocates GPU memory with a static size specified by the
developer. We have to know beforehand how many triangles the isosurface needs for its
extraction. With HP, this number is available after the stream reduction step. However,
it is too costly to allocate buffers with different sizes for each isovalue. Thus, we use the
same memory assumption for both HP and GS. The polygonization would not be more
than 25% of the triangles of the total number of cells in the volume for large datasets. This
assumption is reasonable since the isosurfaces are sparse in the volume, even in situations
where the data volume has noise. Besides, if this memory allocation is not enough and
the number of triangles exceeds the estimate percentage, more memory is allocated. A
simple query in the number of triangles written by the polygonizer would indicate the
amount necessary.

The Vertex Buffer Object (VBO), in the HP-VBO approach, has the same number of
triangles of TF. This is due to the fact that the triangles of the VBO are the triangles
used for the pyramid traversal, which are saved in TF. On the other hand, in the GS-
VBO approach, the VBO represents input points which are expanded into triangles. The
number of necessary points for the VBO is proportional to the number of volume cells.

Memory management is important for an automatic and interactive polygonization
of isosurfaces in larger datasets. The division of the dataset into multiple partitions is
easily implemented, without any additional preprocessing. As one of our goals is to fully
understand the context of GPU polygonization of isosurfaces, the memory management
also helps in the understanding of scalability in GPU-based approaches. In addition, it
allows the polygonizer to allocate appropriate sizes for TF, which requires much GPU
memory for the mesh storage.

6.2.2 Hardware and Software Benchmarking

The profiling tool we used is offered by nVidia (NVIDIA, 2008a). It is called perfor-
mance toolkit (PerfKit) and works for both DirectX and OpenGL. Basically, it provides
access to software and hardware counters, i.e., driver and GPU modules information. Per-
fKit does not work with a standard driver. It requires an instrumented version. We ensured
that the driver instrumentation did not impact our polygonization efficiency. There were
no significant differences in the results with the instrumentation enabled or disabled.

The hardware counters include a wide range of programmable and fixed GPU func-
tionality (Figure 6.2). The library function that retrieves these counters can be directly
integrated to the implementation. It is possible to retrieve hardware counters at any frame.
PerfKit also provides driver information. It helps the investigation of external factors to
the graphics hardware, such as the driver wait for the CPU. The counters cannot be di-
rectly extracted in implementation as hardware counters were. There is an intermediate
operational system interface (Performance Data Helper). We used the Microsoft c� Man-
agement Console to retrieve the information about these software counters.

The software and hardware counters sampled are the following (except for the last
two, which are not provided by PerfKit):

1. GPU busy: percentage of time the graphics processor unit is globally busy. It is
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Figure 6.2: nVidia G80 architecture. This diagram shows the graphics pipeline and what
modules are part of VS, GS and PS rendering steps. This architecture image is specified
in (NVIDIA, 2008a).

important to the investigation in case that the CPU is overloaded and the GPU is
idle.

2. Input Assembler Busy: percentage of time the GPU is assembling client buffers
into primitives.

3. VS busy: percentage of time the vertex shader unit is busy.

4. GS busy: percentage of time the geometry shader unit is busy.

5. PS busy: percentage of time the pixel shader unit is busy.

6. Shader busy: percentage of time of shader operations.

7. Rop busy: percentage of time in rasterization.

8. Texture busy: percentage of time in texture sampling.

9. Stream Out busy: percentage of time the TF is taking.

10. Geom busy: percentage of time Geom is busy.

11. AGP/PCI-E usage (MB): PCI-Express memory usage (MB).

12. Driver waiting: percentage of frame time the driver waits for CPU.

13. Video Memory (MB): Graphics hardware memory usage (MB).



63

14. CPU time3: percentage of time the application uses the CPU.

15. Extraction time: milliseconds taken for the isosurface extraction.

The combination of these counters with the navigation through the volume data re-
sulted in more than 18000 values. The interpretation and presentation of relevant results
are addressed in the next section.

6.2.3 Bottlenecks

This section has the purpose of presenting interesting results of different combinations
of PerfKit counters, MC extraction approaches, hardware configurations and datasets. Im-
portant facts of GPU polygonization were filtered by the analysis of some particular group
of variables among a massive number of combinations. For example, results showed
that bus bandwidth was never an issue. The only extraction approach that significantly
consumed the bandwidth was GS without VBO in the extraction of large datasets. The
AGP/PCI-E usage counter showed that there was a constant exchange of information be-
tween CPU and GPU. Given that CPU batches of geometry carried too much information,
the Input Assembler was also significantly busy (about 20%). Therefore, the fact that bus
bandwidth is massively loaded with data appears at this specific scenario found with these
specific variables.

One clear pattern in our results is related to the size of the dataset combined with
the geometry creation approach. Volume data that required our memory management
technique impacted external factors of the GPU, especially using HP. The datasets that fit
on GPU memory along other data structures showed an overall different behavior, having
GPU modules as bottlenecks. Exceptions to this pattern were GS approaches that did not
use SS. They were not affected by the memory management.

We first consider volume data that required memory management. When the volume
did not fit GPU memory, the CPU was a barrier for HP and GS-SS in both configurations
A and B. This issue becomes evident in configuration A, since the CPU is relatively
obsolete. The navigation through isovalues in backpack used the GPU less than 50 % of
each frame time, as can be seen in Figure 6.3 (the number of partitions in the memory
management is described in Table 6.4). Other counters such as the CPU time and the
Driver Waiting, which does not appear in the figure, further confirmed that the GPU was
left idle. These counters showed that the CPU was 100 % busy and the driver waiting for
the GPU was minimal. In addition, the isosurface navigation in aneurysm, another large
dataset, had a similar behavior.

Excessive data handling in the CPU is responsible for a large part of the GPU idleness.
The CPU has to stream parts of the volume from RAM to GPU memory at every frame,
multiple times. This is too costly even for a core 2 quad such as in configuration B. Notice
that the bottleneck does not reside in the PCI-Express bus, but in the memory handling by
the CPU. In HP, there are excessive CPU shader state changes for the multiple rendering
passes, which also overload the CPU. In GS-SS, the search and streaming of active cells
is expensive for the CPU, even if the query is optimal. This problem is similar to those
in older GPU polygonization techniques, such as the ones described by Pascucci and
Johansson et al.

One possible solution for the CPU overload is the increase in GPU memory. As
memory continues to get cheaper, next generation GPUs could boost their amount of

3Data provided by the operational system.
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Approach # partitions GPU Memory use (MB)
HP-VBO-TF 6 485.33

HP-VBO 3 565.33
HP-TF 6 437.33

HP 2 597.33
GS-VBO-TF 5 680
GS-SS-TF 4 660
GS-VBO 3 630
GS-SS 1 373
GS-TF 4 660

GS 1 373

Table 6.4: Partitioning in backpack for configuration A. The number of partitions is max-
imized according to other data structures in GPU memory.

GPU memory and minimize CPU load (and avoid memory management). However, if
datasets also increase in size at the same proportions, increasing GPU memory may not
be a solution for all cases. In addition, GS-SS still would suffer from the search of active
cells on the CPU. Another alternative may be building multithreaded solutions for many
core CPUs. If a CPU has considerable computational power it might at least be able to
transfer the volume fast enough for the GPU.

Now we discuss volume data that does not require memory management. When both
dataset and extraction approaches fit on the GPU memory, GPU cores were busy most
of the frame time. HP and GS-SS have their extraction time affected by the number
of triangles of the surface for both configurations A and B. Extraction time counter in
bonsai dataset shows this proportionality (Figure 6.4). This happens in HP because texture
accesses in the pyramid base construction are not as expensive as in the pyramid traversal
and the edge linear interpolation. Even though there are not as many output primitives as
input cells, the handling of geometry is still more expensive. VS Busy counter shows that
the vertex shader becomes busier while the PS Busy counter does the opposite. In GS-SS
the GPU module most busy is the geometry shading step.

One obvious way of improving the situation in which the GPU is fully utilized is
accelerating even more the GPU cores and texture memory fetches. However, as the
extraction time is already minimal, the acceleration may not be necessary. It would still
be more interesting to increase GPU memory so that larger datasets could be polygonized
without any memory management.

The polygonization approaches that were not affected by the memory management
used GS without SS. The problem of these approaches is the geometry shading module,
which is extremely expensive for current GPUs. The bottleneck has a direct relation to the
number of output primitives per voxel. MC is not a heavy output algorithm, as tessellation
is, but already exceeds the maximum threshold that maintains GPU peak performance
(20 scalar attributes) by far (NVIDIA, 2008b). MC has a triangulation case with five
primitives, combined with normal information, resulting in 75 scalar attributes. Thus, the
geometry shading needs to be improved for next generation GPUs.

Finally, the question of what is best choice for geometry creation can be answered.
Our results show that HP is a better choice despite its multiple rendering passes and high
memory demand. Even with SS algorithmic acceleration, GS is slower. The GS bottle-
neck is severe. For example, looking at the extraction results of silicium dataset (Figure
6.5), the GS step appears as a harsh constraint. The GS implementation combined with
bonsai and configuration A resulted in GS being up to 50 times slower HP. If GS is im-
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Figure 6.3: GPU busy counter in configuration A. Since Bonsai fits on GPU memory, the
GPU was busy for most polygonization approaches, except for HP without VBO, which
was affected by the wait for triangles of the CPU. In backpack, HP and GS-SS-TF were
idle more than 50% of the time, because they required memory management. Other GS
approaches offloaded the CPU because the geometry shading step is expensive.

proved and does not diminish GPU peak performance anymore, at least for a small amount
of triangles, there is still one reason why one would use HP in isosurface polygonization:
the access from one polygon vertex to the others. If developers allow one TF buffer to be
fully and coherently accessed from within the GPU and accelerate GS, then HP has no
advantage over GS.

6.3 Summary
This chapter presents the results of our novel approaches of high-quality polygoniza-

tions in the GPU and compares it to the most efficient GPU-based MC in the literature.
Results show a clear performance improvement over CPU implementations and also show
that our novel GPU-based approaches, Macet and DC, reached interactive results. The
chapter also analyses architectural modules and issues of GPUs in the polygonization
of isosurfaces. Our results indicate that GS is a very powerful shading module, but is
still much slower than HP. We show where each polygonization approach has issues and
propose improvements for the architecture in each of these problems. In addition, we
suggest that the next generation hardware improve the efficiency of GS, since it has its
performance compromised with few output primitives.
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Figure 6.4: Extraction times in configuration B.
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Figure 6.5: Geometry shader vs Histogram Pyramids. The 9600 GT graphics card shows
improvement in the geometry shader module, but is still no match for Histogram Pyra-
mids.
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7 CONCLUSION AND FUTURE WORKS

We presented an analysis and an extension of the GPU implementations of the main
isosurface polygonization algorithms. This analysis showed how the GPU can be used
for high-quality polygonization of isosurfaces at interactive frame-rates. Applications
that benefit from our work range from scientific visualization to simulation in multidisci-
plinary areas. Features such as sharp edges and corners are now possible to be visualized
in isosurfaces in real-time. Tetrahedral mesh generation and finite element analysis meth-
ods may employ surface meshes extracted in real-time without degenerate triangles.

Marching Cubes (MC) was exhaustingly exploited throughout the thesis to provide
the reader familiarity with isosurface polygonizers. The algorithm is well accepted for
its robustness, efficiency and simplicity. However, MC has some quality shortcomings,
which were presented along some solutions in the literature. MC may extract smooth and
badly shaped surface meshes, which implicate in problems enumerated in the thesis.

Our first and second goals, high-quality and efficient polygonization of isosurfaces,
were achieved with the mapping of Dual Contouring (DC) and Macet to the GPU, respec-
tively. Macet improved the shape of triangles in MC on-the-fly, by the computation of an
extra module in GPU-based MC versions from the literature. Dual Contouring approach
was not so straightforward to implement in a GPU-based version. We separated it in two
steps, turning it similar to MC.

The first step of our novel DC approach is table-driven. It uses a table for the gener-
ation of geometry and specification of topology, which is simple and robust for parallel
implementations and which works for other dual algorithms as well. The second step is
the approximation of the isosurface. We replaced the minimization of the quadratic error
function of DC for a particle-based fashion. The particle-based approach is a straightfor-
ward implementation and is not computationally expensive as SV or QR Decompositions.
The implementation of both table-driven and particle-based steps together had little over-
head in comparison to the most efficient version of MC.

We analyzed common isosurface extractors and pointed advantages and disadvantages
of their use. Both DC and Macet approaches have different quality purposes, so each one
has its own advantages and weaknesses. If a user needs a surface with better represen-
tation of small features, he might choose the polygonization of Dual Contouring. On
the other hand, if he needs to use the mesh in some numerical simulation, we presented
Macet. Our main focuses were both quality and speed, but other important surface prop-
erties such as manifold and watertight were shown on detail as well.

This work also discussed different GPU implementations of isosurface polygonizers
and technologies involved. We discussed how to explore the parallel nature of graphics
processors, while avoiding some of its constraints. We showed that our approaches for
Macet and DC were almost as fast as current MC GPU implementations, while achieving
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higher quality.
The hardware profiling in the last chapter showed the multiple variables involved in

the polygonization of isosurfaces on the GPU. We concluded that it is interesting to use
Histogram Pyramids (HP) data structure instead of geometry shader (GS), even with the
memory demand and multiple shader state changes of the data structure. GS is a very
powerful shading module, but its peak performance is compromised by the number of
output scalars required for MC and DC. The profiling also indicated that our memory
management for large datasets left the graphics hardware idle with HP, because the GPU
was not fed with the multiple partitions fast enough.

One of the objectives of the original Dual Contouring, the mesh adaptively refined by
means of octree subdivision, was not explored by our work. It is used for simplification
on the mesh regions with low curvature, which is an important tool to store large meshes.
The use of our particle-based approach instead of QR (or SV) decomposition does not
allow the quad mesh simplification with a simple sum of QEFs.

The next generation of GPUs technology, the Directx11, was presented in a Siggraph
conference (BOYD, 2008). It has three new stages in the graphics pipeline: the hull
shader, the tesselator and the domain tesselator. A deep analysis of these steps might
improve even further the interactivity in the polygonization of isosurfaces. In addition,
our HP approaches used pyramids with memory sizes specified by the volume dimensions.
But what if we used a static size for the pyramid base, small enough for the inclusion of the
volume and other structures? This might be a more efficient approach for HP. Moreover,
we could use GS in multiple passes for the creation of geometry, not exceeding the 20
scalars advised by the programming guide of nVidia. This might be a solution for the
efficiency in GS.
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APPENDIX A RESUMO EM PORTUGUÊS

Resumo da Dissertação em Português

A.1 Introdução
A visualização volumétrica é uma área multidisciplinar. Ela envolve desde a Física

até a Medicina, campos científicos nos quais é comum a aquisição de grandes volumes
de dados. Eles podem ser provenientes, por exemplo, de simulações e ressonâncias mag-
néticas. Como a quantidade de dados é expressiva, é necessário algum método que filtre
uma parte significativa do seu conteúdo. Nosso trabalho utiliza as isosuperfícies para
esse fim, que são superfícies implícitas definidas por apenas um parâmetro, o isovalor
I(i) = {x|f(x)− i = 0}. Essas isosuperfícies podem representadas através de polígonos,
que são o resultado de técnicas de divisão e conquista como o Marching Cubes (MC)
(LORENSEN; CLINE, 1987). A vantagem de se possuir uma representação explícita
de conectividade é a possibilidade de usar a informação de topologia em algoritmos de
deformação ou ainda em simulações numéricas.

Figura A.1: Navegação entre isosuperfícies. O volume de dados mostra uma tomografia
de um motor e as suas múltiplas camadas são apresentadas através de uma navegação
interativa.

O nosso primeiro objetivo com esse trabalho é representar essas isosuperfícies com
qualidade. Qualidade, no contexto de simulações numéricas (tetraedralizações ou mé-
todos de elementos finitos), se refere a forma desses polígonos. Formas degeneradas
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(SHEWCHUK, 2002) podem comprometer os resultados desse tipo de aplicação. MC
usualmente gera esse tipo de malha com polígonos degenerados. Por outro lado, qua-
lidade, no contexto de visualização, se refere a aproximação dessas poligonizações das
isosuperfícies. Mais especificamente, nos referimos à extração de características acentua-
das na isosuperfície, como o Extended MC (KOBBELT et al., 2001) e o Dual Contouring
(JU et al., 2002) provêm. Nós buscamos ambas as qualidades neste trabalho: forma dos
polígonos e aproximação da isosuperfície.

O nosso segundo objetivo é manter a interatividade na extração dessas isosuperfícies.
Isso possibilita com que o cientista navegue através de múltiplos isovalores. Essa nave-
gação facilita a interpretação do conjunto que esses dados representam (Figura A.1). Para
este fim, nós buscamos técnicas de aceleração na poligonização de isosuperfícies, como o
uso do hardware gráfico (GPUs). Essas GPUs possuem um hardware paralelo, que pode
diminuir significativamente o tempo de extração em algoritmos de divisão e conquista
como os poligonizadores de isosuperfícies.

As contribuições do nosso trabalho se referem aos seguintes pontos do contexto da
poligonização de isosuperfícies:

1. O mapeamento para a GPU de poligonizadores de alta qualidade.

(a) Dual Contouring com um novo método de busca de características acentuadas
na isosuperfície.

(b) Dual Contouring orientado a tabela.

(c) Marching Cubes com qualidade nos triângulos através do Macet (DIETRICH
et al., 2009).

2. A poligonização interativa em volumes grandes.

3. A proposta de melhoramentos na arquitetura das GPUs.

A.2 Poligonização na GPU
Marching Cubes (MC) é um algoritmo fundamental para a poligonização de isosu-

perfícies. O método é amplamente aceito pela comunidade científica, por sua robustez
e simplicidade. O algoritmo consiste basicamente em dividir o espaço em uma grade de
cubos tão pequenos que a isosuperfície fique previsível dentro de cada dos cubos. Trian-
gulações são pré-estabelecidas em uma tabela para as diferentes configurações de casos.
Essa tabela é criada e consultada através da diferença de sinal dos vértices das arestas
dos cubos. Se uma amostra de uma dessas arestas está dentro da isosuperfície seu va-
lor será negativo, senão será positivo. MC é tão importante para a visualização quanto
é referenciado em modelagem, outra área importante da computação gráfica. Conjuntos
de pontos são uma boa maneira para se representar uma superfície implícita, pois opera-
ções booleanas (CSG) são facilmente implementadas sobre esses conjuntos. MC extrai
malhas de triângulos em grandes volumes de dados na GPU em tempos interativos com
o uso da tecnologia de geometry shading ou através de uma estrutura de dados chamada
Histogram Pyramids (DYKEN et al., 2008). Porém, MC possui alguns inconvenientes,
como a geração de triângulos com aspecto ruim.

Macet aparece como uma alternativa viável para a implementação na GPU de um algo-
ritmo que melhora a qualidade dos triângulos do MC. Ele é composto por módulos extras
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na implementação do MC original, o que impacta significativamente na eficiência do al-
goritmo na CPU. Porém, esse custo é amortizado na implementação paralela da GPU, já
que múltiplos processadores estão lidando com diferentes cubos ao mesmo tempo. Macet
melhorou em pelo menos mais de 200 vezes a qualidade do pior triângulo da malha do
MC e continuou com tempos interativos. Porém, MC e Macet ainda possuem o problema
de apenas extrairem bem malhas suaves, sem considerar características acentuadas nas
isosuperfícies.
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Figura A.2: Novo método para a aproximação de isosuperfícies no Dual Contouring
(exemplo em 2D). (a): pontos com suas normais. (b): vetores (setas verdes) dos vér-
tices da grade para os planos definidos pelos pontos com suas normais; (c): forças
�Fk = �Fi + �Fi+1 + ... nos vértices da grade; (d): posicionamento inicial da linha usando
o centro de massa C̄; (e): movimento da partícula em direção à isosuperfície. As setas
vermelhas mostram o caminho que a partícula tomou. (f) poligonização final.

Dual Contouring resolve o problema da suavização das malhas. O método aproxima
melhor as malhas não suaves através das normais contidas sobre os pontos da triangula-
ção do MC. Se duas normais nos vértices de uma malha extraída pelo MC possuem um
ângulo significativo entre elas (noventa graus, por exemlo), provavelmente ali há uma ca-
racterística acentuada. Além disso, esse método de poligonização, como o próprio nome
já diz, gera malhas duais às do MC. Os pontos dos polígonos do DC encontram-se nas
faces do MC. Isso implica numa maior liberdade na movimentação de pontos, já que o
MC considera o corte da isosuperfície sobre a aresta da grade, e não dentro do cubo. Nós
modificamos a implementação do posicionamento desses vértices duais para uma versão
robusta e simplificada do DC, como mostra a Figura A.2, o que acelera o mapeamento
para a GPU. Também implementamos um DC orientado a tabela, da mesma maneira do
MC, para aumentar ainda mais a eficiência de sua implementação paralela. Os resultados
disso foram um novo DC que extrai malhas de qualidade em tempos interativos como o
MC (resultados visuais são apresentados na Figura A.3).

Finalmente, descobrimos como a GPU poderia ser melhorada no contexto de poligo-
nização de isosuperfícies. O geometry shader (GS) impacta significativamente na perfor-
mance da GPU, mesmo com a saída de um número pequeno de primitivas por célula do
MC e DC. Então optamos pelo Histogram Pyramids (HP) como forma mais eficiente de
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(a) (b) (c) (d)

Figura A.3: Marching Cubes na GPU em (a) e (c) bem como suas versões de alta qua-
lidade com o Macet (b) e com o Dual Contouring (d). O volume de dados backpack foi
usado em (a) e (b), enquanto que o dataset pig foi usado em (c) e (d). A qualidade dos
triângulos foi medida usando a razão do raio (radii-ratio) em (a) e (b), normalizada de
0 a 1, e as cores foram codificadas usando a tabela ao lado (verde = bom, azul = ruim).
Menos artefatos e uma melhor aproximação da poligonização são apresentados em (d)
quando comparados a (c).

criação de geometria, mesmo com ambos problemas de mudança constante de estado e
uso excessivo de memória na GPU. Se o módulo de geometry shading não fosse tão pre-
judicial para a performance da GPU, não precisaríamos de alternativas como o HP para
aumento de performance.




